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Abstract

The uncertainty of lightning constantly threatens many weather-sensitive fields

where the slightest presence of lightning can endanger valuable personnel and assets.

The consequences of delaying operations have incited the research of methods that

can accurately predict the location of future lightning strikes from the current weather

conditions. High-dimensional remote sensing modalities contain information capable

of detecting significant patterns and intensities within storms that could indicate the

presence of lightning. This thesis induces sparsity into convolutional neural networks

(CNNs) and remote sensing modalities through a combination of regularization and

tensor decomposition techniques to call attention to sparse features that are most

indicative of lightning activity. The developed models produce accurate predictions

of the general pattern of true lightning strikes at lower time lags. The results demon-

strate the potential of using CNNs in combination with sparse methods that focus on

important features for the prediction of close-range lightning activity.
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INDUCING SPARSITY WITHIN HIGH-DIMENSIONAL REMOTE SENSING

MODALITIES FOR LIGHTNING PREDICTION

I. Introduction

Lightning is a common hazard that poses significant threats to the general public

and a variety of weather-sensitive mission sets. The slightest presence of lightning

greatly endangers personnel, valuable assets, and mission success. Additionally, mis-

sion cancellations due to weather waste precious time and resources, which can impact

subsequent operations. However, lightning strikes are among the extreme weather

phenomena that are incredibly difficult to forecast due to their sporadic nature. As a

result, methods that demonstrate the capability to accurately predict future lightning

strikes are highly desired throughout many fields.

Space launches are among the operations most heavily affected by the threat of

lightning. Nearby and direct lightning strikes can disrupt important communication

and navigation systems that are essential to the mission and even destroy the launch

vehicle altogether. As a result, aerospace engineers must either harden the launch

system to withstand a lightning strike or avoid the hazards by launching only under

safe flying conditions. Hardening the vehicle against lightning requires a large amount

of time, money, and heavy materials that could potentially affect the performance

of the system. Similarly, avoiding lightning storms requires extensive research into

weather patterns of the surrounding area and the capability to accurately forecast

potential storms. It also requires appropriate safety measures to be in place and

considerable flexibility when a threat becomes present which creates obstacles to

successful mission execution [1].
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To mitigate the risk of lightning, the American space program established the

Lightning Flight Commit Criteria (LFCC) to apply to all launch sites within the

United States. The LFCC are a set of weather constraints that must be satisfied

before the launch of a space vehicle is permitted. The LFCC has evolved as knowledge

about lightning behavior and techniques for forecasting lightning has improved over

time [1]. These improvements have increased the safety and availability of launches

appealing to a variety of stakeholders.

Lightning greatly affects aviation operations as well. A severe storm near an

airport can disrupt all ground operations and potentially delay or cancel all inbound

and outbound flights. Delays can be extremely costly and troublesome for airlines

and passengers. According to the Federal Aviation Administration, a delay costs an

airline as much as $4,500 per hour, with the value of passenger time costing as much

as $63 per hour [2]. Additionally, the sudden presence of lightning en route could

require an aircraft to change their flight path or divert to an alternate airport. The

United States Air Force requires weather personnel to routinely monitor weather along

planned routes to alert pilots and other decision-makers of potential hazards, such as

lightning [3]. Weather personnel need sophisticated technology and tools to promptly

monitor and forecast important weather conditions to support these time-sensitive

missions.

The ability to predict the patterns of lightning in an accurate and efficient manner

can have immense impacts on aviation and many other operations that are sensitive to

weather. Methods capable of determining if a lightning strike will occur at a specific

time and location based on observed weather conditions could drastically improve

mission safety and the criteria that must be satisfied to execute a specific mission,

such as the LFCC. Additionally, methods that are able to make predictions efficiently

can enable quicker adaptability to dynamic weather conditions.

2



This research utilizes different facets of weather data to predict future lightning

strikes and thus, provides advanced warning. Weather data is collected through a

variety of high-dimensional (HD) sensing modalities to describe their various aspects.

Some examples of these modalities include vertically integrated liquid (VIL), infrared

(IR), and other satellite imagery. These images contain useful information that can

identify certain features and patterns within weather events. Many studies identify

VIL as the sensing modality most indicative of lightning behavior. VIL estimates

the total amount of water contained within a vertical column of the atmosphere by

measuring the reflectivity of the air and is often used to identify features within hail

and thunderstorms. Shafer et al. observe a severe storm system in Oklahoma and

find, as the concentration of VIL increases so does the density of lightning strikes [4].

Holleman develops a hail and thunderstorm detection product and concludes larger

values of VIL are highly correlated with severe thunderstorms [5]. Lu et al. discover

VIL and echo top radar data have the greatest impact on their lightning monitoring

residual network model [6]. In addition to VIL, 10.7 µm infrared windows measuring

brightness temperatures of cloud tops have also proved useful in detecting the behavior

and intensity of thunderstorms. Molinie and Jacobson observe cloud top brightness

and cloud-to-ground lightning strike densities over the continental United States and

find, the likelihood of strike occurrence is greater when brightness temperatures are

coldest [7]. As a result, this research utilizes information from VIL and 10.7 µm

brightness temperature images as a predictor for lightning.

The spatio-temporal information within these sensing modalities are vital to de-

tect significant patterns and intensities within storms that could indicate an imminent

danger, such as lightning. However, since the features that contain information in-

dicative of lightning within the images are sparse, there may be an abundance of

data that is not relevant to the prediction of lightning strikes. This thesis aims to

3



introduce sparsity into convolutional neural networks (CNN) through regularization

to call attention to important features and subsequently reduce the complexity of the

models. CNNs are well-suited for tasks such as predicting weather patterns, where

the location of different weather features is important as they take into account the

spatial relationships between different pixels within an image. This research also in-

troduces sparsity into the remote sensing images by identifying sparse regions before

model training through robust tensor decomposition (RTD). RTD is a tensor decom-

position method that extracts anomalies within HD data in an efficient manner. The

sparse images produced by RTD are then input into the CNN to focus the model on

the most important features for prediction. Adding sparsity into the CNN and into

the remote sensing modalities calls attention to important regions of the images to

inform a more accurate prediction of the location of future lightning strikes.

The material within this thesis is organized as follows. Chapter II provides a

literature review of similar methodologies and applications. Chapter III details the

sparse CNN, the formulation of RTD, the different models tested, and the data set

that is applied. Chapter IV presents the results from the applied methodology to the

data set. Finally, Chapter V offers relevant insights from the results and provides

recommendations to continue this research.
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II. Literature Review

This chapter explores the wide range of literature related to this research. The first

section provides a brief overview of convolutional neural networks (CNN) and their

various applications in weather prediction problems. The second section discusses

various sparse methods to increase attention and improve performance within deep

learning models.

2.1 Convolutional Neural Networks

A CNN is a deep learning technique that is commonly used to find patterns within

images for use in tasks such as image classification, object detection, and image

segmentation. CNNs are comprised of a combination of convolutional layers, pooling

layers, and fully connected layers which are designed to learn the spatial hierarchies

of features through backpropagation. Convolutional layers perform feature extraction

by applying a set of kernels to the input data. A dot product between the entries of

the kernel and the input data at each location is calculated to create feature maps

which highlight specific features or patterns in the input data. The pooling layers

perform downsampling by dividing the feature maps into a set of non-overlapping

windows and applying a summary function (e.g. maximum, minimum, average) to

each window. This reduces the dimensionality of the data and makes the model more

robust to small translations and distortions in the data. The fully connected layers

interpret the extracted features and make a prediction for the final output, such as

classification [8].

A CNN’s ability to learn from spatial features is particularly useful in weather

applications where the position and arrangement of different weather features, such as

clouds and precipitation, are important for determining certain weather phenomena.
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Remote sensing images contain an abundance of information such as cloud formation

patterns, temperature, and the distribution of lightning strikes over a region. A CNN

trained on images of weather events can learn to recognize complex patterns and

relationships to predict future weather events based on the current conditions of the

system.

2.1.1 Weather and Lightning Application

Deep learning methods are a popular choice for weather forecasting applications

because of their ability to process and learn complex patterns within large amounts

of data. CNNs and similar methods that consider the spatial information within

weather imagery are especially useful in predicting future weather conditions where

such information is critical to the prediction. There is an abundance of research

available dedicated to using deep learning to detect and understand patterns in various

weather phenomena. Racah et al. propose a convolutional autoencoder architecture

for semi-supervised bounding box prediction to detect specific extreme weather events

within simulated images of the Earth’s atmosphere [9]. Han et al. employ various

CNN models to extract spatial information from 3D doppler radar data to perform

convective storm nowcasting [10].

More specific to the application in this thesis, many studies exist that explore

how deep learning can be used to predict the occurrence of future lightning activity.

Guo et al. develop the Convolutional LSTM Lightning Forecast Net (CLSTM-LFN), a

nowcasting model which merges historical lightning occurrence frequency and physical

variables to improve upon previous video prediction techniques [11]. Geng et al.

presents a convolutional autoencoder called LightNet, which uses spatial features

from simulated weather data to forecast the location of lightning strikes [12]. Lu

et al. build a CNN that utilizes features from multiple weather radar modalities to

6



predict the occurrence of a single lightning strike [6]. These studies find that the

spatial information within weather sensing imagery has substantial predictive power

over the patterns and occurrence of future weather phenomena, such as lightning.

2.2 Sparse Methods

Sparse methods help simplify the data and focus models on relevant information

for a variety of machine learning techniques. Introducing sparsity into CNNs is an

effective way to reduce model complexity and highlight the features of the input

data that are most important to the prediction task. When the input data has sparse

features, it is important to bring attention to the regions containing the most valuable

information to form more accurate predictions.

2.2.1 Regularization

One way to add sparsity in a CNN is to add a regularization term to the input

convolutional layer. Weight regularization introduces sparsity by adding a penalty

term to the loss function that encourages the model weights to be as small as possible.

This penalty term is typically a function of the L1 or L2 norm and serves to constrain

the model and prevent the weights from becoming too large. Adding the penalty term

encourages the optimization process to find a solution with smaller weights, which

can result in a sparser model, where more of the weights will be exactly or near zero.

Regularizers generalize the model and make it less prone to overfitting, helping to

improve prediction performance. Regularization methods to induce sparsity within

deep learning models is a heavily researched topic. Yoon et al. propose a combined

group and exclusive LASSO for deep neural networks to enforce sparsity within the

network’s weights, finding that the sparse model improves performance and reduces

computational time [13]. Additionally, Wu et al. apply L1/2 regularization for the

7



specification of hidden layers in feed forward neural networks and conclude that L1/2

regularization helps improve model generalization [14].

L1 regularization (LASSO) adds a penalty term to the loss function that is the

sum of the absolute values of the weights in the network multiplied by a lambda

parameter which controls the strength of the regularization. This allows some of

the unimportant weights to shrink to zero, effectively selecting a subset of the most

important features. This can reduce variance in the predicted values and improve the

interoperability of the model. However, LASSO can also produce models that are too

sparse, where only a small number of weights are non-zero, reducing the predictive

power of the model [15].

L2 regularization (Ridge Regression) adds a penalty term to the loss function that

is the sum of the squared weights in the network multiplied by a lambda parameter.

This allows the weights to shrink towards zero, but not as aggressively as LASSO.

This means that the model is encouraged to set the weights of features to small,

non-zero values, rather than zero. Like LASSO, this helps to minimize the impact of

some features included in the model and diminish multicollinearity, but is less likely

to reduce the predictive power of the model compared to LASSO. However, since

Ridge Regression does not shrink weights to exactly zero, the models are not sparse

and not as effective in feature selection as models trained with LASSO, which might

be a disadvantage in certain applications [16].

Lastly, Elastic Net extends LASSO by adding the Ridge Regression penalty term.

Elastic Net produces models much more robust to multicollinearity, as it groups and

shrinks highly correlated variables together and includes or excludes all of them from

the model. In contrast, LASSO randomly chooses one of the variables to include

in the model and removes the others, potentially making faulty assumptions about

which variables will produce the best model. However, Elastic Net can be more
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computationally expensive to implement because it includes calculations for both the

LASSO and Ridge Regression penalty terms [17].

2.2.2 Tensor Decomposition

Another way to add sparsity in a model is to extract sparse anomalies within

the input data itself. There is a substantial amount of literature dedicated to the

diagnosis of anomalies within high-dimensional (HD) data. Tensor decomposition

is an overarching method widely used to accomplish such a task by decomposing

tensors into their background and sparse components. Tensor decomposition builds

upon traditional matrix decomposition by extending it to process higher-order tensors.

This section describes the various matrix and tensor decomposition methods used to

identify sparse anomalies within images and data streams.

Some of the most popular methods for detecting anomalies within HD data are

based upon principal component analysis (PCA) due to its scalability and effective

dimensionality reduction abilities. However, the performance of PCA is limited due

to its sensitivity to outlying or corrupted observations. Robust PCA (RPCA) is

a dimension-reduction method that finds the best low-rank representation in large,

high-dimensional data, while also being robust to large errors and outliers. Candès

et al. propose an RPCA method known as principal component pursuit (PCP) that

decomposes a noisy matrix B into its low-rank component X and sparse components

E through a convex optimization problem [18]:

min
X,E

||X||∗ + λ||E||1

s.t. B = X + E

Here, X can be viewed as the image background and E its sparse anomalies. λ
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controls the strength of the sparsity enforced by the L1 norm. RPCA can be solved ef-

ficiently through a variety of algorithms, such as accelerated proximal gradient (APG)

and augmented Langrange multiplier (ALM) algorithms for use in various applica-

tions. Wright et al. apply RPCA to successfully remove shadows from face images

and to separate the background from the activity in airport surveillance images [19].

RPCA can be scaled to process tensors in a similar method known as robust tensor

decomposition (RTD) which decomposes tensors into their low-rank and sparse com-

ponents using an extension of the convex optimization problem used in RPCA. RTD

considers the low-rank structure of every matrix within the tensor which influences

what outliers the model will detect [20]. RTD can also be solved efficiently using an

algorithm known as alternating direction method of multipliers (ADMM) that solves

complex problems by breaking them into smaller subproblems and updates the rele-

vant variables in an alternating process. The formulation of RTD is futher explained

in Chapter III of this thesis. Hu and Work apply RTD to speed maps of traffic in

Nashville and find the algorithm can accurately detect outliers to indicate a car crash

[21].

Similar methods have been developed to detect anomalies within HD data through

tensor decomposition. Smooth Sparse Decomposition (SSD) uses a similar framework

to RPCA but operates on images that have a smooth background. As a result,

SSD decomposes an image into three components: its smooth background, sparse

anomalies, and random noise. This is accomplished through a penalized regression

model that enforces background smoothness and anomaly sparsity through penalty

terms added to the loss function. Yan et al. find SSD reduces computation time and

improves detection accuracy within stress maps due to its ability to decompose an

image in a single step [22].

Spatio-temporal smooth sparse decomposition (ST-SSD) extends SSD by intro-
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ducing a temporal component to process HD data streams with a time-varying mean.

ST-SSD can process entire data streams and output how the smooth background,

sparse anomalies, and random noise change over time. It extends the SSD penalized

regression model by adding temporal parameters to model the temporal trends of

HD data streams in addition to the spatial structures. ST-SSD identifies anomalies

when an abrupt change is detected in the functional mean of the smooth background,

as opposed to RTD which extracts anomalies within every image based its low-rank

structure. It is typically used in applications where there are few sparse anomalies in

only a small proportion of the frames within a large data stream. Yan et al. applies

ST-SSD to streams of solar images to detect solar flares [23]. ST-SSD improved the

detection of solar flares due to its ability to model the spatial features of the images,

as well as detect temporal changes that reveal sparse anomalies.

For the purposes of this problem, RTD is chosen as the most appropriate method

to extract anomalies from the HD remote sensing modalities. RTD identifies sparse

features within each image of a data stream instead of only when an abrupt change

occurs as in ST-SSD. This is especially important when predicting lightning activity

far in advance, when more information about the storm is required to model the

future patterns of the event rather than just a singular anomalous occurrence in a

particular time frame. It is important to display sparse features within every frame

of the data stream so each image contains relevant data the CNN can learn from to

make an accurate prediction of the location of lightning.
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III. Methodology

3.1 Problem Statement

Remote sensing modalities of weather events contain important spatio-temporal

information crucial in identifying behaviors within storms that contribute to the oc-

currence of extreme weather phenomena. These high-dimensional (HD) images in-

clude complex patterns and sparse features that can be difficult for deep learning

methods to learn from and use for prediction. This thesis aims to induce sparsity

into convolutional neural networks (CNN) through regularization techniques to fo-

cus on sparse features that are most indicative of lightning activity. Sparsity is also

introduced into the remote sensing images themselves through a tensor decomposi-

tion method known as Robust Tensor Decomposition (RTD). RTD extracts sparse

anomalies within the HD data streams which are then input into the CNN to reduce

the impact of potentially unimportant features. In addition, adding sparsity into the

models will help determine the predictive power of multiple remote sensing modalities

and their sparse features in relation to lightning activity.

3.2 Data Set

This research applies its methodology on the Storm EVent ImagRy (SEVIR) data

set. Collaborators at MIT Lincoln Laboratories created the SEVIR data set to provide

researchers with the appropriate tools to develop innovative and insightful models

on weather patterns [24]. The SEVIR data set contains spatially and temporally

aligned image sequences for thousands of weather events associated with three years

of thunderstorm events in the continental United States. Each event includes a four-

hour length sequence of images in five-minute frames that cover 384 × 384 km patches

for each of the five recorded sensing modalities: 0.6 µm visible satellite imagery
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(VIS), 6.9 µm channel infrared satellite imagery (IR 6.9), 10.7 µm channel infrared

satellite imagery (IR 10.7), vertically integrated liquid (VIL), and total lightning

flashes collected by the GOES-16 geostationary lightning mapper. Intercloud and

cloud to ground lightning strikes are recorded continuously throughout the four-hour

duration of an event with a time and location. The strikes are converted into images of

five-minute increments where a single pixel is an integer value indicating the amount

of strikes experienced within that pixel during that period. Additionally, events

are separated into storm events and random events. Storm events were deliberately

selected to target severe storm events, while random events were randomly chosen

across the U.S.

Since this research focuses on the VIL, IR 10.7, and lightning modalities, only the

12,872 events that contain all three modalities are considered. The five modalities

for these events are stored in sequences of 49 images spanning the four-hour time

period where each image represents a snapshot in time every 5 minutes . The VIL,

IR 10.7, and lightning images are 384 × 384 pixels, 192 × 192 pixels, 48 × 48 pixels,

respectively. Figure 1 displays an example of a single time step image for IR 10.7, VIL,

and lightning modalities. In the lightning image, the brightness of a pixel indicates

the amount of strikes, where black indicates zero strikes.

Figure 1: Weather Sensing Modalities
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3.2.1 Data Pre-Processing

Since the SEVIR data set contains tens of thousands of events with multiple time

steps each, the number of events input into the model must be limited to reduce

the computational complexity. Additionally, the data set is extremely imbalanced,

with most events containing little to no lightning activity. Therefore, in order to

capture the patterns indicative of lightning, events exhibiting high lightning activity

must be injected into the training data to give the model enough information to

make an informed prediction. As a result, 100 events are randomly chosen from

the entire set of events and another 56 are randomly chosen from the events that

record the most lightning strikes within their four-hour time period. Each event

contains sequences of 49 images for a total of 7,644 images in each modality used

in this analysis. Furthermore, 80% of these events are utilized for training, 10% for

validation, and 10% for testing.

In addition, the lightning images are transformed to fit the purpose of this project.

Each image is transformed into a binary representation, where each pixel is converted

to a 1 if lightning occurred within the pixel and 0 otherwise. The images are then

flattened into vectors of size 1 × 2304 to be used as the labels in a multi-label

classification problem. Finally, both the VIL and IR 10.7 images are normalized to

reduce the complexity of the computations during model training.

3.3 Building the Convolutional Neural Network

This research transforms lightning prediction into a multi-label classification prob-

lem. In this case, a class is representative of a single pixel within an image that dis-

plays the dispersion of lightning strikes in a single storm event. Each pixel is binary,

where a 1 indicates that a lightning strike occurred in that pixel and a 0 indicates

otherwise. The CNN takes in remote sensing images as the input and classifies them
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into any number of the many classes (pixels) within the lightning image. The model

outputs the probabilities that an input image belongs to each of the classes, repre-

senting the probabilities that a lightning strike will occur in each pixel. Therefore,

the pixels with high probabilities are predicted to experience a lightning strike.

The CNN used in this research contains 9 layers, including a combination of

4 convolutional and max pooling layers, and a single fully connected layer. The

convolutional layers obtain the important features of the image while the pooling

layers decrease the spatial size of the convoluted features. The convolutional layers

have a kernel size of 3 × 3 with a stride of 1. The number of filters range in order

from 16 to 128, doubling in each convolutional layer. The pooling layers have a

pooling window size of 2 × 2 with a stride of 2. The convolutional and pooling layers

both utilize same padding to ensure the outer edges of the images are retained due

to the potentially important patterns related to the lightning activity within those

regions. Furthermore, the convoluted features are flattened and output through a fully

connected layer with a sigmoid activation function that will predict the probability

of class membership for each of the pixels in the output map. In other words, each

pixel will have a probability from 0 to 1 on whether it contains lightning. Lastly,

the model is fit using the Adam optimizer and the binary cross-entropy loss function

which compares the predicted probabilities to the true label. Table 1 details the

architectures of the CNNs used for the VIL and IR 10.7 modalities. A multimodal

CNN is also developed to use both the VIL and IR 10.7 as input. This CNN uses

the same architecture in Table 1b except the input size is 192 × 192 × 2 as the VIL

images were resized to reflect the smaller dimensions of the IR 10.7 images.
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Table 1: CNN Architecture

(a) VIL CNN

Layer Output Size

Input 384 × 384 × 1
Convolution 384 × 384 × 16
Max Pooling 192 × 192 × 16
Convolution 192 × 192 × 32
Max Pooling 96 × 96 × 32
Convolution 96 × 96 × 64
Max Pooling 48 × 48 × 64
Convolution 48 × 48 × 128
Max Pooling 24 × 24 × 128
Dense 2304

(b) IR 10.7 CNN

Layer Output Size

Input 192 × 192 × 1
Convolution 192 × 192 × 16
Max Pooling 96 × 96 × 16
Convolution 96 × 96 × 32
Max Pooling 48 × 48 × 32
Convolution 48 × 48 × 64
Max Pooling 24 × 24 × 64
Convolution 24 × 24 × 128
Max Pooling 12 × 12 × 128
Dense 2304

3.3.1 Sparse CNN

Sparsity is introduced into the CNN through a regularizer added to the first con-

volutional layer of the model. The regularizer adds a penalty term to the loss function

which prevents the weights of the network from becoming too large. The penalty term

encourages many weight values from the first layer towards zero, effectively selecting

a subset of features to be processed throughout the network. This results in a sparse

network where only the most important features are considered for prediction. Regu-

larization can help to prevent overfitting and improve the generalization of the model

by focusing the model on the relevant features of the input data.

Three different types of regularization techniques are explored in this research:

LASSO, Ridge Regression, and Elastic Net. LASSO is particularly suitable for cre-

ating sparse models, as it shrinks some of the weights to exactly zero, essentially

removing certain features from the model. The LASSO penalty term utilizes the L1

norm which is the sum of the absolute values of the weights:

λ||w||1 = λ
N∑
i=1

|wi|
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Here, w is the vector of weight values in the model and λ is the regularization

parameter that controls strength of the regularization.

In contrast to LASSO, Ridge Regression shrinks weights to small, non-zero values.

As a result, Ridge Regression is not as effective at focusing models on sparse features

as LASSO. However, it can still reduce the impact of certain features by decreasing

the magnitude of their weights. The Ridge Regression penalty term utilizes the L2

norm which is the sum of the weights squared:

λ||w||2 = λ

N∑
i=1

w2
i

Finally, Elastic Net combines LASSO and Ridge Regression to zero out certain

weights while still ensuring all weights do not become to large in magnitude. The

Elastic Net penalty term is a function of both the L1 and L2 norm:

λ1||w||1 + λ2||w||2 = λ1

N∑
i=1

|wi| + λ2

N∑
i=1

w2
i

Elastic Net requires more hyperparameter tuning as both the L1 and L2 norms

have a regularization parameter, λ1 and λ2. Each type of regularization technique

aims to reduce the complexity of the model by controlling the model weights and

focusing on the most important features. LASSO, Ridge Regression, and Elastic Net

are tested to determine which technique produces the best results in the context of

this research problem.

3.3.2 Hyperparameter Tuning

Regularization techniques require hyperparameter tuning to choose the optimal

regularization parameter, λ. This parameter controls the amount of regularization

that is applied to the model. Increasing the parameter value, increases the strength
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of the regularization which can significantly affect the performance of a model. Next,

the regularization techniques themselves must be evaluated to select the method that

produces the best results.

This research utilizes Bayesian Optimization to efficiently select the optimal reg-

ularization parameters and regularization technique. Bayesian optimization uses a

Gaussian process to map the relationship between the hyperparameters and the per-

formance of the model. The response surface is built using prior evaluations of the

model which is then used to select the set of hyperparameters most likely to result

in the best performance of the model. This process is repeated until the optimal

hyperparameters are found [25].

The parameters evaluated range on a logarithmic scale from 0 to 1: 0.0001, 0.001,

0.01, 0.1. The Bayesian optimization tuner is applied to each of the regularization

techniques (LASSO, Ridge Regression, and Elastic Net) to select the parameter values

from the given list that produce optimal results for the respective technique. Lastly,

the Bayesian optimization tuner is applied again to determine the regularization tech-

nique that maximizes model performance using the specific optimal regularization

parameters for each technique. The best performing regularization technique and its

optimal parameter values are then used in model testing.

3.4 Robust Tensor Decomposition

The second way this research introduces sparsity is within the remote sensing im-

ages themselves. Sparse features in the images are extracted and then input into the

CNN. The intent is to focus the CNN on the spatial features that are most indica-

tive of lightning, while also removing unnecessary information that could potentially

distract the model, to inform a better prediction. This is accomplished using RTD, a

tensor decomposition method that separates images into their background and sparse
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features.

RTD decomposes an HD tensor into its low-rank and sparse components by solving

the following convex optimization problem:

min
X ,E

N∑
i=1

||Xi||∗ + λ||E||1

s.t. B = X + E

Here, B is an HD tensor of observed data that is comprised of a low-rank tensor

X and a sparse tensor E . Xi is a two-dimensional matrix within X , E is the sparse

matrix, and λ is a parameter that controls the sparsity of E. The model finds the

lowest rank X that can generate the data B while ensuring that the entries of E

are sparse. The nuclear norm is used in place of rank(X ) because it is the convex

relaxation of tensor rank and the L1 norm is used to enforce sparsity within the tensor

E .

RTD is solved via an alternating direction method of multipliers (ADMM) algo-

rithm which is an efficient method to solve distributed convex optimization problems

by breaking them down into smaller, more manageable subproblems. ADMM forms

an augmented Lagrangian function where the primal variables (solutions to the orig-

inal problem) and dual variables (Lagrange multipliers) are updated in alternating

fashion until an optimal solution or consensus is found [26].

In the context of this problem, B represents a stream of remote sensing images.

The low-rank tensor X can be viewed as a tensor comprised of the backgrounds of

the images and E is the tensor comprised of their sparse features. The λ parameter

is chosen based on how well the matrices of sparse features match the most intense

regions of the original images. The sparse images are then used as inputs into the

CNN. Figure 2 displays of an example of this process on a single image from the
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vertically integrated liquid (VIL) modality.

Figure 2: RTD Model Framework

3.5 Model Testing

To evaluate the performance of the sparse CNN and the sparse images created

with RTD in the prediction of future lightning strikes, several models are generated

using a combination of both methods. The first model uses the sparse CNN with

the original remote sensing images as input. The second model uses a non-sparse

CNN (i.e. without regularization) with the original images as input. The third model

uses the sparse CNN with the RTD images as input (RTD + Sparse CNN). Finally,

the fourth model uses a non-sparse CNN with the RTD images as input (RTD +

Non-Sparse CNN).

In addition, these four models are tested at different time lags to analyze how

their performance changes when predicting lightning activity further in the future.

Introducing a time lag means a remote sensing image is paired with a lightning image

from a later time step for model training. For example, in a 5-minute time lag, a

remote sensing image is paired with the lightning image from the succeeding time

step. The different time lags investigated are: 5 minutes, 10 minutes, 15 minutes, 20

minutes, 25 minutes, 30 minutes, 45 minutes, and 1 hour.
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The performance of these models are evaluated using four performance metrics:

area under the ROC curve (AUC), area under precision-recall curve (AUPRC), pre-

cision, and recall. These metrics are chosen because of their ability to better capture

the performance of the multi-label classification model in the context of this problem,

where typical metrics, such as accuracy, are not appropriate. This specific applica-

tion is more concerned with capturing the overall pattern of the lightning strikes and

accurately predicting specific classes, rather than perfectly matching the entire set of

predicted labels to their true labels. AUC measures class separability and informs

how well the model can distinguish between positive and negative classes. Precision

is the proportion of true positive predictions to all positive predictions made by the

model, while recall is the proportion of true positive predictions to all actual positive

instances in the data. AUPRC is a single value that summarizes the trade-off between

precision and recall. Each of these metrics range between 0 and 1, where 1 indicates

perfect classification of the model.

The models are trained to optimize AUC to maximize their ability to recognize

what distinguishes pixels that contain lightning from those that do not. This is

done by recording the weights that produce the best AUC value on the validation

set to ensure the highest performing model is applied to the test set. In addition,

early stopping is implemented which ceases training once the validation AUC stops

improving with a patience of five epochs and restores the best weights to reduce the

effects of overfitting. The four models are trained 10 times each for each of the different

time lags, to account for model variation. The average and standard deviation of the

performance metrics are recorded for each model and time lag combination.
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IV. Results

This chapter presents the results of this thesis using sparse convolutional neural

networks (CNN) and sparse inputs to predict the location of lightning strikes. The

models were trained and tested on images from the SEVIR data set which includes

multiple remote sensing modalities and their corresponding lightning strike data.

The different models are compared using several metrics, including area under the

ROC curve (AUC) and area under the precision-recall curve (AUPRC). The results

demonstrate the potential of utilizing sparse methods for accurate prediction of close-

range lightning activity.

4.1 Modality Trials

One of the main focuses of this thesis is to find the remote sensing modality or com-

bination of modalities that best predict future lightning activity. Previous research

suggests that vertically integrated liquid (VIL) and 10.7 µm brightness tempera-

ture (IR 10.7) modalities contain information that are most indicative of lightning,

prompting their use in this application. VIL, IR 10.7, and a combination of the two

modalities were used as inputs into the sparse and non-sparse CNNs. For the multi-

modal model, the VIL and IR 10.7 images were aligned in a two channel input to be

input into the CNNs. The performance of these models were used as initial results

to determine the potential of the different modalities in predicting future lightning

strikes.

While training and testing these models, the performance of the VIL modality

far surpassed the performance of IR 10.7 and the combination of VIL and IR 10.7.

The models utilizing the VIL images consistently produced higher values of AUC,

AUPRC, precision, and recall at all time lags. Furthermore, the predictions made
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by the VIL models closely matched the general pattern of the true lightning activity

in the majority of the images, whereas the predictions made by the IR 10.7 and

multimodal models appeared much more sporadic and random. As a result, IR 10.7

was determined to not contain enough relevant information to indicate the presence

of lightning. Additionally, the mutimodal model, may have suffered from information

loss by reducing the size of the VIL images and unnecessary complication by adding

the IR 10.7 data which provided little value. Therefore, the VIL modality was chosen

for further testing and analysis as outlined in chapter III. The remaining results in

this thesis focus on the utilization of the VIL modality in the various methods and

models tested.

4.2 RTD Results

The VIL sequences of all 156 events were processed through RTD to extract the

sparse features from each image. A λ value of 0.08 was subjectively chosen because it

generated an appropriate amount of sparsity within the VIL images that align with

the corresponding lightning activity. RTD was effective at extracting the regions of

the images that are most intense where lightning activity is most likely to occur.

Figure 3 displays examples of images where RTD accurately identified the sparse

features that match the corresponding regions where lightning strikes occurred in

the following frame. The figure also shows the predicted lightning produced by the

non-sparse CNN which used the RTD images as input. The model demonstrates its

ability to accurately predict the pattern of lightning activity from sparse VIL images

in which RTD correctly identifies the sparse features that correspond with lightning.
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(a)

(b)

(c)

(d)

Figure 3: Successful Examples of RTD Applied to VIL Images
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However, RTD also extracted some features that were anomalous respective to

their surrounding pixels even if they were not regions with a high concentration of

VIL. This resulted in images with many small sparse features which could give a

false indication of lightning. Images with numerous sparse features often confused

the model, resulting in predictions that did not capture the full scope of lightning

within the image. Figures 4a and 4b present examples where the abundance of sparse

features fail to highlight the regions with lightning, resulting in poor predictions.

Additionally, RTD failed to identify regions where scattered lightning strikes occur

that are isolated from the main concentrations of lightning. Figures 4c and 4d display

examples where RTD strictly extracted the most intense regions, leaving the model

no information that lightning could occur elsewhere. These figures highlight the

limitations of extracting sparse features without the target information in mind and

using as them as model inputs, as some relevant information will inevitably be thrown

out.

(a)

(b)
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(c)

(d)

Figure 4: Poor Examples of RTD Applied to VIL Images

4.3 Model Comparison

This section presents the results of the four models generated to evaluate the

performance of the sparse CNN and the sparse images created with RTD in the

prediction of future lightning activity. The models tested included: the sparse CNN,

the non-sparse CNN, the sparse CNN using RTD images, and the non-sparse CNN

using RTD images. Each model was trained and tested 10 times on the same data

for each of the eight time lags. The performance metrics were averaged over the

10 runs to account for model variation. Additionally, based on the results of the

Bayesian optimization hyperparameter tuning, the sparse CNNs were trained using

L1 regularization with a regularization parameter of 0.01.

Each model was prone to overfitting during model training due to the large amount

of trainable parameters within these models relative to the size of the training sets.

The validation losses would begin to increase after only a few epochs, while the
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training losses would continue to decrease. Similarly, the validation AUC values would

begin to decrease after a few epochs, while the training AUC values would continue

to increase. However, the regularization within the sparse CNNs delayed the effects

of overfitting by reducing the complexity of the models. Regularization decreased

the rates at which the training and validation losses and AUC values diverged from

one another. Figures 5 and 6 display the loss and AUC curves for the training

and validation sets of the sparse and non-sparse CNNs at the 5-minute time lag,

respectively.

Figure 5: Sparse CNN Performance Curves

Figure 6: Non-Sparse CNN Performance Curves
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4.3.1 AUC Performance

Figure 7 displays the average AUC performance and standard deviation for each of

the models. All four models have similar rates of degradation as the time lag increases

with a slightly sharper and more constant decline occurring after 30 minutes. This

may result from the difficulty of predicting lightning past 30 minutes and from the

greater time lag jump taken to reach to 45 minutes and 1 hour. Additionally, the

sparse and non-sparse CNNs using the original VIL data produced higher average

values of AUC for each time lag than the sparse and non-sparse CNNs using the

RTD images. The sparse and non-sparse CNNs produced similar results over all

times lags, while the non-sparse CNN using RTD performed slightly better than its

sparse counterpart. However, the performance of the models using RTD appear to

start converging after the 30-minute time lag. Lastly, the average AUC values for

the sparse CNN using RTD were more sporadic over all the time lags, while the

other models experienced a smoother decline as the time lags decreased. For further

comparison, all average AUC values and standard deviations for each model and time

lag combination are recorded in Table 4 in Appendix A.
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Figure 7: AUC Performance

In order to conclude which models performed best, a two-sample t-test was con-

ducted to compare the AUC performances of both pairs of models at each time lag.

The t-test determines whether the population mean of the two sample groups of 10

model evaluations are equal. An F-test was also conducted for each model pair to

determine if equal variances could be assumed for each of the t-tests. The appropri-

ate t-test was then performed based on the outcome of the associated F-test. Table

2 displays the p-values from the t-tests comparing the sparse and non-sparse CNNs

using the original VIL images. All p-values are statistically significant at the 0.05

level, except at the 10-minute time lag, suggesting there is strong evidence in favor

of the alternate hypothesis that the population means of the two models are different

29



at these time lags. Therefore, it can be inferred the sparse CNN results in higher

AUC values than the non-sparse CNN at all time lags, except 10 minutes and 1 hour.

Table 3 displays the p-values from the t-tests comparing the sparse and non-sparse

CNNs using the RTD images. All p-values in this table are statistically significant at

the 0.05 level, indicating the non-sparse CNN using RTD images performs better in

AUC than the sparse CNN using RTD images at all time lags.

Table 2: t-test: Non-Sparse CNN vs. Sparse CNN

Time Lag p-value

5 minutes 2.47E-7
10 minutes 0.689
15 minutes 0.007
20 minutes 1.26E-16
25 minutes 1.63E-5
30 minutes 2.90E-5
45 minutes 4.94E-5
1 hour 4.70E-8

Table 3: t-test: RTD + Non-Sparse CNN vs. RTD + Sparse CNN

Time Lag p-value

5 minutes 3.81E-12
10 minutes 1.26E-19
15 minutes 3.63E-16
20 minutes 0.001
25 minutes 1.49E-19
30 minutes 5.00E-11
45 minutes 2.86E-5
1 hour 8.17E-5
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4.3.2 AUPRC Performance

In addition to AUC, Figure 8 displays the average AUPRC performance and stan-

dard deviation for each model over all time lags. The AUPRC performance exhibits

similar trends to AUC, as all models degrade in similar fashion and experience a more

constant decline after 30 minutes. Furthermore, the sparse and non-sparse CNNs us-

ing the original VIL images produced higher average values of AUPRC than the CNNs

which used the RTD images at all time lags. Additionally, the sparse and non-sparse

CNNs using the original images performed similarly as they did with AUC, while

the predictions made by the non-sparse CNN using RTD input resulted in higher

average values of AUPRC than its sparse counterpart. Lastly, the sparse CNN pro-

duced AUPRC values that were more sporadic over all the time lags than the other

models which had more consistent slopes. Because AUPRC summarizes the trade-

offs between both precision and recall, only AUPRC is discussed thoroughly in this

section. However, all average and standard deviation values for AUPRC, precision,

and recall can be viewed in Appendix A. Most of the model variability was evident in

the precision and recall performance compared to AUC and AUPRC which remained

relatively constant throughout the 10 model runs.
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Figure 8: AUPRC Performance

4.3.3 Predictions

In addition to evaluating the performance metrics of the models, it is important to

examine their lightning predictions and how they degrade as the time-lag increases. In

general, all four models were able to predict the general pattern of lightning activity

at lower time lags from 5 minutes to 20 minutes. The patterns within the VIL and

lightning sequences only slightly differ within the four frames accounting for this time

period, especially within 5 and 10 minutes. Therefore, the models were able to more

effectively learn from the information within the VIL data at lower time lags when

the distribution of lightning closely matches the patterns within the VIL images.
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Movement starts to become more apparent after 25 minutes, as lightning moves

farther from its original location within the VIL images and morphs into different

shapes. Furthermore, there may be instances in storm events that have few strikes

where lightning is present in one frame and not in the next, making it very difficult

to determine if and where the lightning will occur in greater time lags. As a result,

the models become increasingly restrictive with positively classifying a pixel as a

lightning strike. However, these models still achieved higher levels of precision for the

few lightning strikes they did identify. Predictions at the 1-hour time lag exhibited

higher values of recall, but lower values of precision. The models were unable to

learn the behavior of lightning an hour in advance from the current VIL images, and

would therefore, cast a wider, less precise net of positive predictions. This is because

images from recent observations provide little information on the trends of storm

developments that far into the future. Figure 9 displays sample predictions at all

time lags made by the sparse CNN that exhibit these overarching trends. Figure 12

in Appendix B is provided as an additional example.

(a) 5-Minute Time Lag
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(b) 10-Minute Time Lag

(c) 15-Minute Time Lag

(d) 20-Minute Time Lag

(e) 25-Minute Time Lag
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(f) 30-Minute Time Lag

(g) 45-Minute Time Lag

(h) 1-Hour Time Lag

Figure 9: Example Prediction 1

Another trend that occurred in many of the predictions was the inability to detect

scattered strikes that are isolated from the main concentrations of lightning activity.

Figure 13 in Appendix B presents an example made by the sparse CNN that was

able to predict the location of the main cluster of lightning, but failed to predict

the outlying strikes throughout the image. This trend was especially apparent in

the predictions made by the CNNs using the RTD images, where areas of isolated

clusters and strikes were less likely to be identified by RTD and thus, not input into

the model.
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The models also demonstrated the ability to predict frames that included zero

lightning strikes. This is an important capability as many applications require the

prospect of no lightning to execute operations. However, correctly predicting the

occurrence of no lightning is a difficult task, as VIL instances with zero lightning

strikes appear very similar to instances which do contain lightning. Figure 14 in

Appendix B displays an example where the sparse CNN was able to consistently avoid

predicting lightning over all time lags. In general, the models were able to accurately

predict storm events containing no lighting in the majority of their frames. However,

there were many instances where the models falsely predicted the occurrence of no

lightning in images with few and scattered lightning strikes. This may result because

the behavior of lightning within these frames is less related to the apparent patterns

within the VIL images. These events also have fewer high intensity regions which the

models learned typically indicate the presence of lightning. Furthermore, the amount

of lightning in their frames fluctuates with some frames containing no lightning at

all. These instances can confuse and mislead the model into falsely predicting no

lightning. Figure 15 in Appendix B presents sample predictions made by the sparse

CNN where the model falsely predicted no lightning under these circumstances.
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V. Discussion

This thesis explores the effects of applying sparse methods within convolutional

neural networks (CNN) to accurately predict the location of future lightning strikes.

A combination of regularization and tensor decomposition techniques were used to

call attention to important features within HD remote sensing modalities and reduce

the complexity of the models. L1 regularization induces sparsity within the CNNs

during model training, while robust tensor deposition (RTD) extracts sparse features

within the input images themselves. Four different models were trained and tested

to evaluate the performance of these methods and the different sensing modalities in

the prediction of lightning activity.

5.1 Key Findings

Initial model results indicate the superior performance of vertically integrated liq-

uid (VIL) compared to 10.7 µm brightness temperature modality (IR 10.7) in the

prediction of lightning. This finding aligns with previous studies which suggest VIL

measurements are more highly correlated to the density of lightning strikes within

thunderstorms than other commonly observed sensing modalities. As a result, the

VIL modality was used to conduct the remaining model testing to evaluate the per-

formance of the different sparse methods.

The sparse CNN using L1 regularization and the original VIL images outperformed

the other models at most time lags by producing higher area under the ROC curve

(AUC) and area under the precision-recall curve (AUPRC) values. This indicates

that encouraging sparsity via regularization to extract important features from non-

sparse images improves the prediction of future lightning strikes compared to the

other methods presented in this thesis. The results also suggest sparse inputs do not
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contain enough relevant information to capture the behavior of lightning activity as

the original, non-sparse images. Additionally, using a sparse CNN with sparse inputs

performed the worst, as it appears to eliminate too many relevant features from the

inputs to accurately predict future lightning. Finally, the results show a degradation

of performance for each model as the time lag of prediction increases. The models

accurately predicted the approximate location of lightning strikes at smaller time-

lags. This demonstrates the potential of using deep learning methods that learn

spatial information, such as CNNs, in combination with sparse methods which call

attention to important features for the prediction of close-range lightning activity.

Furthermore, all models performed best when predicting lightning in events that

displayed consistent patterns throughout their many frames. For example, events that

moved slowly and did not drastically change shape through time produced more ac-

curate predictions, especially as the prediction window grew larger compared to other

events. The models generated predictions that better matched the general pattern of

the true lightning in events with consistent distributions of lightning as well. Lastly,

the models struggled to predict outlying and scattered strikes that are isolated from

the main clusters of lightning activity. These observations highlight the limitations

of using remote sensing images to identify and predict the relatively unpredictable

behavior of lightning. There is no modality or combination of modalities that can

fully capture the scope of lightning because lightning strikes may still occur with little

indication from the available information within remote sensing modalities.

5.1.1 Sparse Method Comparison

The different sparse methods utilized in this thesis aim to call attention to the

most important features of the input data and reduce model complexity to generate

predictions of future lightning activity. In this application, inducing sparsity within
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CNNs, via L1 regularization, performed better than using sparse input data created

with RTD. RTD extracts sparse features from the remote sensing images without any

consideration of the target variable (i.e. lighting data) which consequently, prevented

valuable information from being input into the models. In contrast, regularization

encourages sparsity within the model weights during models training, effectively se-

lecting a subset of important features. Because regularization takes place during mode

training, the sparse CNN selects the relevant features while taking into account the

information within the lighting images. This difference may be the reason the sparse

CNN using the original VIL images outperformed the non-sparse CNN using the RTD

images. The sparse CNN could effectively select the sparse features by zeroing out

specific model weights that were also most indicative of the associated lightning.

5.2 Future Work

There are many potential avenues for future work building upon the results pre-

sented in this thesis. With the increasing demand for accurate weather forecasts,

there is a need for robust and reliable models able to predict lightning activity with

high accuracy. The results of this thesis demonstrate promising results in predicting

lightning activity. However, there is still room for improvement and various directions

for exploration. This section discusses various methods with the potential to be de-

veloped and applied to extend the capabilities of this thesis. These recommendations

could improve the prediction accuracy of incoming lightning farther in advance and

may help address some of the limitations presented in the results.

5.2.1 Probability Predictions

The methodology of this thesis transforms lightning prediction into a binary clas-

sification problem. The CNNs output the predictions where each pixel contains a
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probability from 0 to 1 on whether it contains lightning. The possibility of gener-

ating probability maps from these results were explored briefly during this research.

However, the probabilities output from the model did not display a great represen-

tation of the true lightning activity. Therefore the probabilities were rounded to one

which produced results that better resembled the patterns of the true lightning.

However, presenting a map displaying the probabilities of whether lightning will

occur in each pixel could be an extremely useful tool for a variety of different mis-

sions requiring the advanced knowledge of imminent lightning to plan and execute

operations. These probability maps could drastically improve mission safety as they

would provide a buffer around areas most likely to experience lightning. Addition-

ally, they would provide more confidence in the predictions of regions potentially free

of future lightning strikes. Exploring different techniques to improve the predicted

probabilities could greatly improve the functionality of the predictions presented in

this thesis for use in a multitude of different fields.

Figures 10 and 11 display example probability maps produced by the Sparse CNN.

The probabilities in these maps are inflated to emphasize the distribution of pixels

with larger probabilities relative to the majority of pixels (black regions) in the images.

Figure 10 presents a probability map for the sample prediction in Figure 13a. In

the original prediction, where the probabilities are rounded to one, the model was

unable to predict the isolated cluster of lightning. However, this map reveals the

model is actually capable of predicting the isolated cluster, just at a lower probability.

Similarly, Figure 11 presents a probability map for the sample prediction in Figure

15a where the model falsely predicted the occurrence of no lightning. However, the

map reveals that the model’s highest predicted probabilities in the frame aligned with

the region containing the most lightning. This demonstrates the model’s capacity to

predict the presence of lightning in frames with few and scattered lightning strikes.
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These examples highlight the potential of scaling the probabilities from the predictions

to create functional probability maps. They also unveil the possibility of lowering the

threshold at which probabilities are rounded up to be classified as lightning strikes.

A combination of these potential alternatives could be explored and tuned to find

the probability maps that best represent true distribution of future lightning. This

would help address the limitations and improve upon the predictions presented in

this thesis.

Figure 10: Example Probability Map of Figure 13a

Figure 11: Example Probability Map of Figure 15a

5.2.2 Spatio-Temporal Methods

Because only single frames are input into the CNN, they have a difficult time

learning the future patterns and developments of storm events. As a result, predic-

tions of lightning increasingly degrade as the time lag increases. Storm events move
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rapidly through space and change shape over time. Therefore, methods that con-

sider the temporal element in addition to the spatial elements of the entire remote

sensing modality sequences are necessary to predict lighting farther in advance. The

convolutional LSTM (ConvLSTM) is a deep learning technique that combines the

CNN and the Long Short-Term Memory (LSTM) architectures, allowing it to process

both spatial and temporal data. Shi et al. demonstrate the power of ConvLSTMs in

capturing spatio-temporal data by accurately forecasting future precipitation maps,

showcasing its ability perform well in weather applications, such as the one presented

in this thesis [27]. The transformer is another deep learning method built to process

sequential data such as natural language or time series data. It uses self-attention

mechanisms to weigh the importance of each element in a sequence, enabling the

model to process information in parallel, leading to improved processing times and

performance [28]. The transformer could improve the prediction of lightning activity

at greater time lags through its ability to process large amounts of spatio-temporal

data.

In addition to using spatio-temporal methods, the inclusion of more data input

into the models could help improve the prediction of lightning activity. The compu-

tational constraints in this thesis limited the amount of storm events used in model

training. However, the SEVIR data set contains upwards of 10,000 storms events

available for analysis. The utilization of more data in model training would supply

the models with a plethora of diverse storm events that could provide relevant insights

and improve the prediction of the behavior of lightning.

5.2.3 Supervised RTD

Another method that could be implemented to improve upon the methods pre-

sented in this thesis is a supervised version of RTD. Because RTD provided promising
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results in identifying the regions where lightning was most likely to occur, the develop-

ment of a supervised version could be a productive way forward. RTD decomposes the

remote sensing sequences into their low-rank and sparse components without consid-

ering the information in the associated lightning images, resulting in sparse images

that disregarded information valuable to the prediction of lightning. A supervised

version of RTD would take into account the information within the lightning images

while extracting the sparse features of the remote sensing modalities. This could

reduce instances where RTD performed poorly, leaving out relevant information that

could inform certain patterns with the ability to indicate the development of storm

events and the locations of lightning strikes. The development of supervised RTD

would also extend the current RTD framework to make predictions of the target vari-

able. Extracting sparse features in remote sensing modalities under the supervision

of the associated lightning activity could vastly improve the prediction of close-range

lightning strikes.
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Appendix A. Performance Tables

Table 4: Average AUC Performance

Time Lag Sparse CNN Non-Sparse
CNN

RTD +
Sparse CNN

RTD +
Non-Sparse

CNN

5 minutes 0.9292 ±
0.0002

0.9281 ±
0.0003

0.8887 ±
0.0013

0.9023 ±
0.0004

10 minutes 0.9189 ±
0.0009

0.9187 ±
0.0007

0.8746 ±
0.0008

0.8913 ±
0.0010

15 minutes 0.9149 ±
0.0005

0.9139 ±
0.0009

0.8778 ±
0.0006

0.8850 ±
0.0005

20 minutes 0.9079 ±
0.0003

0.9045 ±
0.0002

0.8428 ±
0.0139

0.8707 ±
0.0011

25 minutes 0.8900 ±
0.0007

0.8884 ±
0.0003

0.8506 ±
0.0010

0.8599 ±
0.0022

30 minutes 0.8859 ±
0.0007

0.8834 ±
0.0012

0.8468 ±
0.0009

0.8541 ±
0.0014

45 minutes 0.8575 ±
0.0008

0.8522 ±
0.0025

0.8205 ±
0.0008

0.8255 ±
0.0013

1 hour 0.8265 ±
0.0003

0.8289 ±
0.0006

0.7961 ±
0.0003

0.7997 ±
0.0018
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Table 5: Average AUPRC Performance

Time Lag Sparse CNN Non-Sparse
CNN

RTD +
Sparse CNN

RTD +
Non-Sparse

CNN

5 minutes 0.4820 ±
0.0060

0.4716 ±
0.0016

0.3957 ±
0.0024

0.4313 ±
0.0020

10 minutes 0.4574 ±
0.0031

0.4405 ±
0.0008

0.3525 ±
0.0027

0.3968 ±
0.0026

15 minutes 0.4348 ±
0.0006

0.4255 ±
0.0014

0.3549 ±
0.0031

0.3822 ±
0.0019

20 minutes 0.4112 ±
0.0006

0.4040 ±
0.0006

0.2734 ±
0.0315

0.3555 ±
0.0025

25 minutes 0.3769 ±
0.0015

0.3647 ±
0.0009

0.2909 ±
0.0027

0.3088 ±
0.0032

30 minutes 0.3606 ±
0.0007

0.3466 ±
0.0023

0.2790 ±
0.0007

0.3094 ±
0.0023

45 minutes 0.2830 ±
0.0014

0.2698 ±
0.0042

0.2325 ±
0.0006

0.2527 ±
0.0013

1 hour 0.2395 ±
0.0010

0.2350 ±
0.0018

0.1890 ±
0.0003

0.2036 ±
0.0027

45



Table 6: Average Precision Performance

Time Lag Sparse CNN Non-Sparse
CNN

RTD +
Sparse CNN

RTD +
Non-Sparse

CNN

5 minutes 0.5830 ±
0.0082

0.5717 ±
0.0103

0.5208 ±
0.0007

0.5551 ±
0.014

10 minutes 0.5849 ±
0.0146

0.5846 ±
0.0060

0.5561 ±
0.0165

0.5316 ±
0.0943

15 minutes 0.5965 ±
0.0058

0.5803 ±
0.0073

0.5285 ±
0.0181

0.5504 ±
0.0131

20 minutes 0.5877 ±
0.0044

0.5875 ±
0.0030

0.4514 ±
0.0607

0.5597 ±
0.0155

25 minutes 0.5728 ±
0.0021

0.5517 ±
0.0030

0.4040 ±
0.0113

0.4162 ±
0.0080

30 minutes 0.5311 ±
0.0094

0.5237 ±
0.0139

0.4567 ±
0.0035

0.4917 ±
0.0102

45 minutes 0.4474 ±
0.0054

0.4357 ±
0.0087

0.3700 ±
0.0325

0.4069 ±
0.0031

1 hour 0.3482 ±
0.0051

0.3533 ±
0.0044

0.2774 ±
0.0213

0.3060 ±
0.0059
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Table 7: Average Recall Performance

Time Lag Sparse CNN Non-Sparse
CNN

RTD +
Sparse CNN

RTD +
Non-Sparse

CNN

5 minutes 0.3576 ±
0.0200

0.3648 ±
0.0285

0.3154 ±
0.0040

0.3331 ±
0.0263

10 minutes 0.3114 ±
0.0272

0.2567 ±
0.0147

0.1588 ±
0.0214

0.2376 ±
0.0154

15 minutes 0.2168 ±
0.0135

0.2267 ±
0.0155

0.1891 ±
0.0219

0.2141 ±
0.0211

20 minutes 0.1618 ±
0.0089

0.1523 ±
0.0055

0.0516 ±
0.0309

0.1386 ±
0.0230

25 minutes 0.1207 ±
0.0038

0.1258 ±
0.0054

0.2627 ±
0.0246

0.2837 ±
0.0120

30 minutes 0.1601 ±
0.0257

0.1256 ±
0.0245

0.1016 ±
0.0067

0.1347 ±
0.0132

45 minutes 0.1031 ±
0.0123

0.0813 ±
0.0210

0.0960 ±
0.0032

0.1210 ±
0.0063

1 hour 0.1886 ±
0.0107

0.1418 ±
0.0091

0.1634 ±
0.0322

0.1602 ±
0.0089
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Appendix B. Sparse CNN Example Predictions

(a) 5-Minute Time Lag

(b) 10-Minute Time Lag

(c) 15-Minute Time Lag

(d) 20-Minute Time Lag
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(e) 25-Minute Time Lag

(f) 30-Minute Time Lag

(g) 45-Minute Time Lag

(h) 1-Hour Time Lag

Figure 12: Example Prediction 2

This figure displays a typical sample prediction where the model accurately predicts
the general pattern of future lightning activity for the first 20 minutes and progres-
sively degrades as the time lag increases.
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(a) 5-Minute Time Lag

(b) 10-Minute Time Lag

(c) 15-Minute Time Lag

(d) 20-Minute Time Lag
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(e) 25-Minute Time Lag

(f) 30-Minute Time Lag

(g) 45-Minute Time Lag

(h) 1-Hour Time Lag

Figure 13: Example Prediction 3

This figure displays a sample prediction where the model accurately identifies the
location of the main concentration of lightning, but fails to detect the isolated clusters
of surrounding lightning strikes.
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(a) 5-Minute Time Lag

(b) 10-Minute Time Lag

(c) 15-Minute Time Lag

(d) 20-Minute Time Lag
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(e) 25-Minute Time Lag

(f) 30-Minute Time Lag

(g) 45-Minute Time Lag

(h) 1-Hour Time Lag

Figure 14: Example Prediction 4

This figure displays a sample prediction where the model rightfully avoids predicting
the presence of future lighting strikes in a storm event where no lightning occurs.
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(a) 5-Minute Time Lag

(b) 10-Minute Time Lag

(c) 15-Minute Time Lag

(d) 20-Minute Time Lag
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(e) 25-Minute Time Lag

(f) 30-Minute Time Lag

(g) 45-Minute Time Lag

(h) 1-Hour Time Lag

Figure 15: Example Prediction 5

This figure displays a sample prediction where the model falsely predicts the occur-
rence of no lightning in frames containing few and scattered lightning strikes.
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