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Abstract

The United States Air Force (USAF) has struggled with a sustained pilot short-

age over the past several years; senior military and government leaders have been

working towards a solution to the problem, with no noticeable improvements. Both

attrition of more experienced pilots as well as wash out rates within pilot training

contribute to this issue. This research focuses on pilot training attrition. Improving

the process for selecting pilot candidates can reduce the number of candidates who

fail. This research uses historical specialized undergraduate pilot training (SUPT)

data and leverages select machine learning techniques to determine which factors are

associated with success in SUPT. Humanly understandable (known as interpretable)

machine learning techniques will be used to predict SUPT outcome, as these mod-

els provide justifications for these predictions and build trust with decision-makers.

Three interpretable models were considered, including two rule-based models and one

tree-based model. PCSM score was identified as the strongest predictor for success.

The best performing model achieved an F1 score of 0.93, compared to 0.84 and 0.77

for the other models. The results of this research emphasizes the usefulness of inter-

pretable models and their ability to inform a decision-maker, assisting them in their

selection of future pilots.

iv
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PREDICTING SUCCESS OF PILOT TRAINING CANDIDATES USING

INTERPRETABLE MACHINE LEARNING

I. Introduction

1.1 Motivation for Research

The United States Air Force (USAF) has been struggling with a shortage of pilots.

Senior leaders have repeatedly expressed concern over the pilot shortage and how it

is affecting our ability to complete the mission. In 2017, the Secretary of the Air

Force (SECAF) Heather Wilson stated that the shortage was at around 2000 pilots, a

10% deficiency from where they need to be. The SECAF emphasized that a shortage

of this size could “break the force” [1]. Reasons for this shortage are two-fold: the

increase in pilot demand in the commercial sector, which decreases our retention of

experienced pilots currently in the force, and attrition within pilot training [2]. This

paper focuses on pilot training attrition since improving this issue will not only assist

in closing the pilot shortage gap but ensure the USAF is investing money into trainees

who have a higher likelihood of success.

The amount of money the USAF invests in its pilot trainees is enormous. The

cost of training a qualified transport/mobility pilot ranges from $2.5 million to $5.5

million, and even more for a fighter pilot at $5.6 million to $10.9 million [3]. This is

an incredible amount of money to be wasted on pilots not completing their training,

which could be lessened better insight on what features are associated with candidate

success. The cost in conjunction with the impact on mission readiness makes this a

prescient issue and motivates this research.

1



This research is not only focused on building an accurate predictive model for

success in pilot training but also a model readily understood by humans. Black box

models are more common because of their good predictive performance; however, such

models require decision-makers to blindly trust the results because they provides no

justification for the predictions they make. Humanly understandable (also known

as interpretable) models give decision-makers a greater understanding of why the

model is making a certain prediction, and therefore allows the decision-maker to

choose whether they want to trust the model, as they have a better understanding of

the subject matter. Additionally, knowing how the model is making its predictions

allows us to identify significant features used to predict success in pilot training. This

research demonstrates how an interpretable model is used to classify pilot candidates

as passing or failing training, and illustrates how these results are useful for identifying

significant features.

1.2 Background

The pilot selection process has generally remained the same over the past several

decades. Pilots are selected from several different commissioning sources and go

through the same process to become a qualified USAF pilot, which is depicted in

Figure 1.

There are many aspects to the candidate review process, as the evaluation board

needs to ensure candidates are meeting a variety of requirements. The process can

slightly differ based on commissioning source, and there are several that cultivate

USAF pilot applicants: the United States Air Force Academy (USAFA), Air Force

Reserve Officer Training Corps (AFROTC), and Officer Training School (OTS). Each

applicant submits a package to their respective selection boards, which review each

pilot candidate’s mental, physical, and medical requirements, as well as their aca-

2



Figure 1: Flow chart of the pilot training application and completion process [4].

demics, scores from several evaluation and aptitude tests, previous flight experience,

and any letters of recommendation. Whereas USAFA and AFROTC selection boards

only evaluate an applicant’s potential as a pilot because they have already been ac-

cepted for military service, OTS boards must additionally review the individual’s

capability for military service. The three commissioning sources also differ in how

they weight each component of the applicant package.

While there are aspects that differ depending on commissioning source, there are

parts of the process that are required for all pilot candidates; most importantly, all

candidates must take several aptitude tests, which are intended to measure different

metrics to determine an applicant’s potential for success as a pilot. The required

evaluations include the Air Force Officer Qualification Test (AFOQT) and the Test of

Basic Aviation Skills (TBAS). Certain scores from these tests are then combined with

the applicant’s previous flight experience to create their Pilot Candidate Selection

Method (PCSM) score.

3



The AFOQT is a standardized test with twelve separate sections which measure

math, verbal, pilot aptitude, pilot knowledge, and personality traits [5]. It includes

sections commonly seen throughout many other standardized tests, as well as sec-

tions on table reading, instrument reading, block counting, and a few others. These

scores are used to determine an applicant’s pilot and navigator composite scores. The

composite score is expressed in terms of a percentile. To be considered a competitive

pilot candidate, there are minimum pilot and navigator composite scores. For a more

detailed description on each AFOQT section, go to Table 6 in Appendix 1.

The TBAS is the other aptitude test applicants are required to take; it is a com-

puterized psychometric test to supplement the AFOQT [6]. The test is designed to

measure an applicant’s multitasking abilities, as well as spacial abilities related to fly-

ing. Further information on the TBAS sections can be found in Table 7 in Appendix

1. While applicants are never explicitly given their results for the TBAS, these scores

are used in conjunction with AFOQT scores and previous flight hours to create the

candidate’s PCSM score. A candidate’s PCSM score is a number from 0-100, where

higher scores indicate a stronger pilot candidate.

The previous evaluation metrics all take place before acceptance; however, candi-

dates are required to complete additional medical tests after they are accepted into

the pilot pipeline. This timing sometimes varies based on commissioning source, but

all pilot candidates must complete Medical Flight Screening (MFS)[7]. The candi-

date must pass before proceeding to their assigned SUPT base for training. Once

candidates have in-processed at one of the three SUPT training bases, candidates are

sent to Initial Flight Training (IFT); they must pass this phase before proceeding to

the next two phases of SUPT.

The purpose of this research involves predicting a pilot candidates’ success before

they enter training, as well as being able to predict the phase in which they are likely

4



to fail, if they are predicted to fail. Therefore, the results of this research will be vital

for the pilot selection boards, as it will improve their ability to select candidates with

higher odds of success. Alternatively, it will identify a priori the points at which

pilot trainees merit preemptive intervention to improve their likelihood of success in

SUPT.

1.3 Problem Statement

Pilot training attrition is a significant problem in the USAF that has a direct

impact on the readiness of the force and drains money being invested on unsuccessful

pilot trainees. Existing studies on pilot training have used black box models to predict

candidate success, and while black box models exhibit strong predictive accuracy they

are not good for credibility amongst decision makers as they do not provide justifica-

tion for their results. However, more novel models have been developed to produce

understandable results while also performing well in terms of prediction accuracy.

Using one of these novel interpretable models to predict pilot candidate success will

allow decision makers to to understand the model’s reasoning behind each predic-

tion, and their greater understanding of the subject matter will allow them to decide

whether or not to trust the results. Additionally, the transparent results produced

from these models will highlight the important features associated with candidate

success.

1.4 Research Objectives

We are interested in pursuing the following research objectives:

1. Create an interpretable machine learning model to accurately predict (85% ac-

curacy or greater) whether a pilot candidate will pass or fail SUPT, and if they

fail, predict the phase in which they will fail.

5



2. Determine the features associated with pilot candidate success. This finding

will provide evidence either for or against the current evaluation metrics used

by the pilot training selection boards. It will also highlight which cutoffs the

model is using to predict success, which will allow us to identify whether the

current standards are too high or too low for candidates.

1.5 Scope

This research is based on historical SUPT data ranging from 2010-2018. The data

has been filtered to only contain aircraft pilots, as it previously included others such

as Combat Systems Officers (CSO) and Remotely Piloted Aircraft (RPA) pilots. It

excludes pilots that proceed to helicopter training, as the pipeline for helicopters is

slightly different. We are only looking at individuals completing USAF pilot training,

not from any other branches of the military.

1.6 Summary of Key Contributions

Out of the three models chosen, scalable Bayesian rule lists (SBRL) exhibited the

best performance accuracy with an F1 score of 0.93 and a prediction accuracy of 0.86;

however, FIGS had the best readability as well as the most well-rounded results. All

three interpretable models validated PCSM score as an efficient metric for predicting

a candidate’s performance in pilot training; fast interpretable greedy-sums (FIGS)

identified that a PCSM score of at least 35.5 is significant in distinguishing between

passing and failing. According to certifiably optimal rule lists (CORELS), individuals

failing in Phase 1 appear to have less flight knowledge and experience whereas those

failing in Phase 3 generally have more experience (i.e. they could be leaving for reasons

other than failure, but we do not have the data to support such a determination).

6



1.7 Overview

Chapter II reviews previous literature both relating to pilot training as well as

different applications of interpretable methods. It also explains several different in-

terpretable methods in more detail including the ones used in this research, and it

shows an example output of CORELS and how its accuracy compares to other black

box methods. Chapter III starts off explaining the structure of the data and the

initial cleaning that was required, and then delves into some preliminary analysis of

the data to demonstrate some potential relationships present between features. The

chapter then discusses how we approached the class imbalance in the data as well as

the software used, and it ends by identifying which methods were chosen. Chapter IV

reveals all of the outputs from the three models used, and discusses potential inter-

pretations of each result as well as the accuracy for each model. Finally, Chapter V

concludes this research by discussing the extent to which each research objective was

met, including a summary of key contributions and a description of potential future

work to extend this research.

7



II. Background and Literature Review

This section surveys previous research revolving around pilot training, including

studies examining how to streamline the process and other work on the different

methods that selection panels use to evaluate potential pilot candidates. We then

discuss interpretability in machine learning and its meaning, to include research that

has used interpretable methods for a wide range of fields. We then identify and

compare modern interpretable methods including those selected for use in this thesis.

2.1 Pilot Training Studies

Pilot training has remained fundamentally the same over the past several decades

in the USAF, even with ongoing issues related to student attrition. However, there

have been attempts to streamline and improve the process, and research has demon-

strated the efficacy or inefficacy of these changes. One attempt includes the creation

of Pilot Training Next (PTN), a program that focuses on simulation-based training,

which has been successful at shortening the length of UPT for those in PTN. It has

also automated certain tasks usually taken on by Instructor Pilots and increased effi-

ciency by allowing the instructors to focus on more vital tasks [8]. This has been a step

in the right direction, unlike previous attempts by the USAF to improve the training

process, such as the replacement of IFT with Initial Flight Screening (IFS). This ef-

fort was an attempt to minimize voluntary attrition in pilot training and showed no

significant difference in attrition in comparison with IFT [9].

Many pilot training studies focus on the validity of the evaluation metrics used

to determine acceptance into pilot training [7, 10, 11]. As expected, these studies

have continuously validated these metrics as highly effective at predicting success for

candidates, especially the AFOQT and the PCSM score. These papers also confirmed

8



that flying experience rated highly in its predictive ability, as prior flying training

exposes candidates to direct job knowledge and additionally screens out those who

may have less motivation, those who have an unknown fear of flying, and those who

struggle to handle the aircraft properly [7, 10]. Although often overlooked, research

has also confirmed that the measures of cognitive ability and personality traits in the

AFOQT are important factors in predicting pilot success. It is encouraged for these

scores to be used in conjunction with the PCSM score to measure pilot aptitude [12].

Other studies have identified other potential predictors for success in pilot train-

ing beyond the current evaluation measures. A study on the demographics of SUPT

attrition shows that women and minorities face unique challenges to becoming pilots.

Before entering training, they experience less support and encouragement to pursue

the piloting career field. Additionally, as they are greatly outnumbered by the white

male majority, they can often struggle to find support through same race or same gen-

der peers [13]. The study also showed that, across these demographic groups, there

were few differences in rates of self-elimination. However, the high attrition rates

among women and minorities mainly stemmed from flying performance. The paper

emphasized that race/ethnicity and gender are not solely driving these differences in

attrition rates, but that members of these groups are less likely to possess the prepa-

ration or experience that increases the chances of success. Another paper examined

factors influencing low representation in the piloting career field, and in its findings

showed that gender discrimination is still present within the industry. Because there

have been very few changes to the training pipeline over the past several decades and

the training program was developed for years by men for men, there could be some

issues to be considered when training women [14].

In one of the most prevalent studies that aim to predict pilot training success,

Jenkins’ and Caballero’s black box model identified degree type and commissioning
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source as the most important features in determining academic success, in addition

to the number of AFOQT retests, race, and gender. It is relevant to note that the

AFOQT, TBAS, and PCSM scores are not present among the most influential factors,

which implies that the results from these evaluation metrics alone is insufficient to

predict a candidate’s success in SUPT. Furthermore, the personality questions on the

AFOQT were found to be among the least influential factors, and they recommended

this section be considered for removal to minimize overall testing time [4]. While

this paper developed some important findings, they used black box models that are

difficult to understand and provide no justification for their predictions.

This research aims to reach the same goal, but using interpretable models instead

of black box methods. This research also takes the previous paper a step further and

attempt to predict the phase in which a candidate fails, if they are predicted to fail.

The interpretable models used in this research allows us to produce results that justify

the reasoning behind the predictions; this builds trust in the model and promotes a

higher understanding of how we can better evaluate our SUPT candidates.

2.2 Explainable AI Methods

2.2.1 Interpretability and Its Importance

Interpretability does not have an official mathematical definition, but in this con-

text, it is best defined as “the degree to which a human can understand the cause of

a decision” and “the degree to which a human can consistently predict the model’s

result” [15]. Both interpretable and explainable are used interchangeably in the fol-

lowing sections; there is a distinction, however, in the term explanation which is

defined as a justification for a specific result/prediction.

Interpretability of machine learning models is incredibly important, but it can be

dependent upon the scenario we are analyzing. Sometimes all we wish to accomplish
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is the prediction itself, and we are not interested in the reasoning behind the decision.

In other instances, we would like to know why the prediction was made and trade

some of the accuracy of our prediction for higher interpretability. Understanding our

models and why they are making these predictions builds more trust in the model,

which is incredibly important within high-stakes environments. Interpretability helps

build our model’s credibility so that we have greater confidence that our results are

accurate outside of the simple metric of classification accuracy.

2.2.2 Studies Using Interpretable Models

Current machine learning models such as random forests, kernel methods, and

deep neural networks produce very accurate predictions. Although these models are

accurate, they are very complex and difficult to understand, resulting in poor inter-

pretability of the results [16]. Despite the machine learning community propagating

the idea that there exists a large trade-off between accuracy and interpretability, it

may not be as drastic as we have grown to believe. According to Rudin, when the

data is structured and the features incorporated into the model are meaningful, we

can get similarly accurate results from both black box and interpretable models [17].

While interpretable models are not as popular as black box methods, interpretable

models can be used in many different fields, which conveys their usefulness and im-

portance in various settings. For example, interpretable methods have been applied

to early warning systems in an academic environment; interpretability is important

in this instance, as we need to know why students are failing or have a potential to

fail so that they have an opportunity to improve before it is too late [18]. Another

field where interpretability is important is in the medical realm, as the model should

be able to provide justifications for each prediction. Any model that is making pre-

dictions for high-stakes decisions should provide these justifications to the decision
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makers, as it allows field experts to decide whether or not to trust the model outcomes

[19].

2.2.3 Comparing Modern Interpretable Models

As mentioned previously, black box models have historically been preferred over

interpretable models because of their superior prediction accuracy. However, more

recent interpretable models have demonstrated accuracy levels similar to those of

black box models; these developments are ground-breaking in that we can have both

accuracy and transparency in our results, something that was never achievable in

the past. Table 1 provides relevant information for a few of these newly developed

models.

There are three main factors that differentiate one model from another. The first

is the type of data input that is required, such as numerical, binary, or categorical.

The second involves the type of classification it performs, which is either regression,

binary classification, or multi-class classification. Lastly, they differentiate in terms

of the optimality of the results, as some are not certifiably optimal and instead rely

on heuristics [20].

From Table 1, we see that the majority of these models take in binary data as

their input. This means that the features being used to make predictions are binary.

While at first this may seem very limiting, it is relatively easy to convert continuous

variables into several binary variables by binning the data, which also means these

Table 1: Summary of Interpretable Models

Data Input
Model Name

Binary Categorical Numerical
Type of Classification Solution Method

CLASSY [21] X X Multi-Class Heuristic
CORELS [22] X Binary Optimal
SBRL [23] X X Binary Optimal
ORL [24] X Binary Mixed IP
ICRM [25] X X Multi-Class Heuristic
FIGS [26] X X X Binary Heuristic
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models may require more data pre-processing than others. Additionally, the majority

of these models are limited to binary classification, which limits the range of problems

to which these models can be directly applied.

The interpretable models represented in the table are mostly rule list models, with

one tree-based model. CLASSY works by using a greedy heuristic search algorithm

to find good rule lists; which means that unlike CORELS, CLASSY is not certifiably

optimal, as heuristic algorithms are not guaranteed to find global optima. SBRL is a

Bayesian rule-list model, and similar to CORELS it creates bounds. Yet, CORELS

implements tighter rule list bounds, which reduces the search space and increases the

efficiency of the algorithm. Although ORL employs Mixed Integer Programming to

find an optimal rule list, CORELS is still deemed to be more efficient. The last rule

list model, ICRM, uses an evolutionary programming algorithm to minimize both the

number of rules and conditions provided, yet this provides no guaranteed optimality

either.

Tree-based models such as decision trees and random forests have long been con-

sidered a cornerstone of machine-learning practices. Fast Interpretable Greedy-Tree

Sums (FIGS) is an generalization of the Classification and Regression Tree (CART),

creating multiple smaller trees within a summation rather than a single tree. The

FIGS model is intended to overcome a key weakness of single-tree models by reduc-

ing repeated splits of the same feature, which thereby reduces the redundancy of the

model. FIGS is able to provide more concise decision rules than singular decision

trees without sacrificing predictive performance.

All of these methods are highly effective, both in terms of model performance and

interpretability. Some models can be more effective on certain data sets than others

because of a variety of factors, such as number of features, number of samples, types

of data inputted, etc. This is discussed in further detail in Chapter III, when we
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discuss which methods are used in this research and why.

2.2.4 CORELS Example Output

Now that we have established a general explanation of what interpretability means,

it is useful to depict some outputs of these models to give an idea of what interpretabil-

ity looks like. In the original CORELS paper, Rudin explains that CORELS was built

so that we could have an interpretable model with guaranteed optimality; this was

because of the ProPublica article on the Correctional Offender Management Profil-

ing for Alternative Sanctions (COMPAS) recidivism prediction tool [22]. The article

highlights a case where a black box model was being used for recidivism predictions,

where recidivism is the tendency for a convicted criminal to re-offend (in a time-frame

of two years, in this instance). The COMPAS results were racially biased, but because

they were using a black box model, it was unable to determine the reason behind the

bias, nor the reason behind any prediction. They had assumed the black box model

would provide better accuracy. This is where the need for something like CORELS

appeared, a certifiably optimal model that provides transparent results.

Figure 2 depicts the output CORELS provided for this problem, presented as a

series of IF-THEN statements [22]. This format, known as a rule list, demonstrates

how samples are separated into the two different classes based on which conditions

are met for that specific sample. The two classes are yes, the individual will re-offend

within two years or no, they will not re-offend within two years. For example, the

output could be interpreted as: if a sample is 19 years old and is male, they are

predicted to re-offend within two years after their release.

The output for CORELS and other interpretable models can vary in complexity

and size, depending on the number of features included in the data. The type of

output can be determined using parameters to help maintain the simplicity of the
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Figure 2: CORELS output for 2-year recidivism data set [22].

output and ensure we are getting understandable results.

Compared to other models, both interpretable and black box, CORELS demon-

strates a similar prediction accuracy. In fig. 3, Rudin compares the performance of

CORELS to nine other algorithms, where some are interpretable and some are black

boxes [22]. Across all algorithms, there was no significant difference in test accura-

cies. This result shows that for the recidivism problem, CORELS produces models

that perform comparably to black box models in terms of accuracy while providing

superior interpretability.

Figure 3: Accuracy of CORELS compared to 9 other algorithms for 2-year
recidivism prediction [22]
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III. Methodology

This chapter goes over several important details explaining how we apply the

methods previously mentioned to our data. The chapter describes what the data

entails, preliminary analysis and visualizations of the data, and what modifications

have been made to the data so that we can apply our chosen methods.

3.1 Data

3.1.1 Structure of the Data and Initial Cleaning

The SUPT data set used in this research is made up of 10,435 samples across

78 input features and 1 categorical response variable (SUPT Pass or Fail, whereas

fail also indicates what phase they failed in). The data is explained in more detail in

Table 2 and Table 8 (which can be found in the Appendix) and includes 68 continuous

features and 10 categorical features.

Table 2: SUPT Data Set Categorical Features

Feature Levels
Gender Male, Female, Unknown
Commissioning
Source/Status

AFROTC, USAFA, OTS, Active Duty,
Reserves, Guard, Other

Race Caucasian, Minority, Unknown

Degree Type
High School, Associates, Bachelors,
Masters, Doctorate, Unknown

Aerospace Related Major No, Yes
Engineering-Related Major No, Yes
Number of AFOQT Retests 0, 1, 2, 3
Policy Waiver No, Yes
Prior Enlisted No, Yes

Each sample in the original data set represents a SUPT candidate between the

years of 2010 and 2018. Several thousand of these samples needed to be removed

because a majority of the data was missing, an issue that cannot be remedied with
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data imputation. Furthermore, within this research we determined that helicopter

pilots were outside of the scope since they are a part of a separate pipeline and have

different requirements. Additionally, Combat System Officers (CSO) were removed

as well because while they are considered rated, their pipeline and training is also

different. These two groups were present in the original data only because they are

required to take part in Phase 1 of SUPT, but afterwards they branch off into their

respective training pipelines.

The SUPT data indicated that the pilot training environment is a white male

dominated environment, with the racial makeup being 89.3% Caucasian and 10.6%

American Indian, Alaska Native, African American, Pacific Islander, or a combination

of two of the mentioned races. As for gender, 91.3% of our candidates are male and

8.7% are female.

Table 3: Graduation Rates By Year

2011 2012 2013 2014 2015 2016 2017 2018
78% 84% 83% 79% 87% 87% 92% 83%

The SUPT data set suffers from a common issue of class imbalance, as we have sig-

nificantly more candidates successfully completing SUPT than not. Our data demon-

strates that approximately 85% of our candidates finish training while 15% do not

(either voluntarily or from failing out). The graduation rates for every year included

in our data set is depicted in Table 3. Since this issue is something that can affect the

validity of our results, we will discuss how it was rectified with Synthetic Minority

Oversampling Technique (SMOTE) in the next section.

3.1.2 Preliminary Data Analysis

This section goes into detail regarding the correlation of certain features within the

data and success in pilot training. There are several features we would like to inspect
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further, including the amount of AFOQT retests, Flight Hours, GPA, PCSM Scores

and AFOQT Pilot Scores. These features are currently the most obvious metrics

to evaluate candidates’ potential for success in pilot training, and we conduct some

preliminary analysis before applying our interpretable methods.

Figure 4: PCSM scores for each SUPT outcome

The PCSM score is heavily relied upon as an indicator of success within pilot

training, as it compiles AFOQT and TBAS scores along with FAA Flight hours into

a singular number. It was designed to provide an overarching view on how prepared

an individual is for training. Similarly, the AFOQT pilot composite score is directly

measuring an individuals prior knowledge required for pilot training. Figure 4 depicts

the distribution of PCSM scores among each success/failure group in an attempt to

capture any noticeable patterns across these groups. From this graphic, it is clear

that samples with lower PCSM scores are failing in Phase 1, while those who passed

exhibit a clear positive trend with PCSM scores. Figure 5 shows a strong relationship
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between the AFOQT pilot composite score and individuals failing in Phase 3, as there

is a much greater density for higher pilot composite scores. This could indicate that

individuals failing in this phase are highly qualified and prepared for training, but are

perhaps exiting the pipeline voluntarily. Although the initial data set had a column

indicating the reason behind each candidate leaving or failing training, there was too

much missing data for it to be useful.

Figure 5: AFOQT Pilot Composite Scores for each SUPT Outcome

Furthermore, AFOQT retests appear to have a relationship with the AFOQT

pilot composite score, as indicated in Figure 6. As the number of retests increases,

the density shifts towards higher pilot composite scores. It is also apparent that as

the number of retests increases, a greater density of individuals are passing, and those

who have undertaken three AFOQT retests have a 100% pass rate.
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Figure 6: Distribution of AFOQT Pilot Composite Scores based on AFOQT retests
and SUPT Outcome

Flight hours demonstrate how much prior flying experience each candidate has

prior to entering SUPT, which could largely be correlated with candidate success. In

Figure 7 we are using the square root of flight hours as the data ranges from 0 to

5910, which makes it difficult to notice any details with such a large range of values.

In Figure 7, we can see that there is not a very noticeable difference between the

overall pass and fail groups. However, it is evident that those who fail in Phase 1

have significantly fewer flight hours than any other group, which could indicate that

these individuals generally have less flying experience.

20



Figure 7: Flight Hours by SUPT Outcome

GPA is another one of the evaluation criteria examined by the boards to determine

a candidate’s fitness for pilot training. It is intended to measure the intellectual capa-

bility of the candidate and determine their ability to perform in a difficult academic

environment. This can be compared to pilot training, as SUPT itself is also a rigorous

academic environment despite being solely focused on flying. Yet, in Figure 8, there

appears to be no correlation between GPA and SUPT outcome. This is interesting,

as it could be showing that we do not need to place as much focus on GPA, or that
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GPA alone is not a significant factor.

Figure 8: GPA by SUPT Outcome

The general impression from this preliminary data analysis is that PCSM score,

AFOQT pilot score, AFOQT retests, and flight hours all appear to have a relation-

ship with the SUPT outcome, while GPA alone may not be enough to determine a

candidate’s potential for success within SUPT.

3.1.3 SMOTE

Imbalanced data sets are a common issue within machine learning and must be

remedied to ensure that the models being built are reliable. In reference to the SUPT

data set, we could simply classify every sample as passing and we would achieve a

classification accuracy of 85%, which is relatively good. However, this would not be

a useful or insightful model, and it would fail to inform us of the proper indicators

conducive to failing training. SMOTE is a common approach used to modify the
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distribution of a data set to ensure that we have balanced classes [27]. The approach

works by generating synthetic minority samples by using k-nearest neighbors; this

takes a minority sample and k of its neighbors and combines them to create a new

sample. There are different types of SMOTE types to tackle different types of data,

such as binary or categorical.

For this research, we combined undersampling with synthetic minority oversam-

pling technique for nominal (SMOTEN) to balance our data set; SMOTEN was used

instead of SMOTE as we altered our data to be nominal for the purpose of the mod-

els being implemented. Combining undersampling and oversampling techniques is

more effective than simply choosing one or the other [28]. The data was split into

a training and test set before any class balancing was completed, with 75% training

and 25% testing. SMOTEN in conjunction with undersampling was only applied to

the training set.

3.2 Software

This research utilizes the imodels package located in Python, which provides a

simple interface for building novel interpretable models that are compatible with the

more popular scikit-learn module. The module includes 18 different interpretable

models, made up of different types of rule sets, rule lists, rule trees, and decision

trees. This package was selected because it standardizes the code syntax used to

apply these methods to a data set; this greatly simplifies the process as many of these

methods are relatively new and can only be implemented using source code found

online.
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3.3 Assumptions/Limitations

This study assumes that the SUPT data set provided is free from errors, and the

data is an accurate sample of the SUPT population. Some limitations include a lack

of reasoning for the samples identified as failing, as there will be different predictors

for a candidate that fails versus a candidate that leaves voluntarily. For our CORELS

and SBRL models, we are unable to create more bins to add specificity to our data as

these models do not perform well on data with a lot of features. Our last limitation

arises from not being able to apply more models identified in our literature review,

as a few of the models did not have easily accessible code to replicate them.

3.4 Interpretable Methods Chosen

The following three models were selected as our preferred methods: FIGS, CORELS,

and SBRL. This was because of the supposed accuracy of each of these models and

the clarity of the model’s outputs, as well as the variety of output type from each

model. We wanted to ensure each model’s output was unique, as it allows us to get

different perspectives from each method and see if there is any overlap in the results,

as an overlap would increase the validity of our results. The specific outputs of these

models are discussed in greater detail in Chapter IV.

3.4.1 Data Structure for SBRL and CORELS

The data needs to be formatted slightly differently for SBRL and CORELS, since

they each accept solely binary variables as input. FIGS can process the data without

further pre-processing, so we were able to leave the data as is for the implementation

of that method.

As both CORELS and SBRL only accept binary data, our SUPT data set needed

to be adjusted accordingly. Each feature in the data set needed to be binarized
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into a set number of bins, so that each continuous feature could be converted into

several binary features. The continuous SUPT data was split into two bins per feature

based off of the median of each feature, doubling our total number of columns for

the continuous data. Two bins per feature was decided on to prevent the dataset

from becoming too large. Previous attempts with a greater number of bins provided

convoluted results for these models, as they perform better with less data. We used

the median to split our bins to separate our features into the top half and bottom

half, which is more easily interpreted in the results. The final dataset consisted of

only binary features.
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IV. Results and Analysis

This chapter entails all results from our chosen models, as well as the analysis

of each output and the evaluation of each model’s performance. Some models are

applied to the binary pass/fail problem, while some are applied to the four-class

problem, which includes the different phases a candidate could fail in. The first

section explains why this was necessary.

4.1 Prediction of Phase Failure vs. Overall Pass/Fail

While this research was aiming to build a multi-class predictive model to distin-

guish between the different SUPT outcomes (pass, Phase 1 fail, Phase 2 fail, Phase

3 fail), it also strives to achieve interpretable results. Some of our selected models,

when applying the multi-class problem, did not provide the level of interpretability

that we were looking for, as the multi-class problem introduced a lot of complexity;

this minimized the value of our results as we could not interpret them. After observ-

ing these uninterpretable results, they were excluded from this section due to their

lack of contribution; therefore, we have kept results from one model for the multi-class

problem and results from two models for the binary-class problem.

4.2 Multiple Class Prediction

4.2.1 CORELS Results

While CORELS is built for binary class prediction, we are able to apply it to

a multi-class problem by building more than one model comparing several of the

SUPT outcomes to one another. The first model is pass vs. fail, the second model

is Phase 1 fail vs. Phases 2 and 3 fail, and the final model is Phase 2 fail vs. Phase

3 fail, applying only the relevant class data to each model. This format allows for
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us to identify the distinguishing features for each SUPT outcome, while maintaining

transparent results. This sequential approach is the only method being used for

multiple class prediction, which distinguishes between passing or failing in one of

three different phases.

4.2.1.1 Pass vs. Overall Fail Model

Figure 9 shows the output for our overall pass vs. fail model, indicating that PCSM

score and one of the TBAS components are deemed most important in determining

whether a student will pass or fail. This further validates the ability for these tests

to properly evaluate pilot candidates, as they are singled out as the optimal features

for this prediction.

Figure 9: Interpretable CORELS Rulelist output predicting either Pass of Overall
Fail

These results makes sense, as higher PCSM scores indicate the individual is more

knowledgeable in aviation skills and has a greater number of flight hours. This would

ensure the candidate already has an idea of what to expect with flight training,

and that they have a grasp of the basics. The TBAS component demonstrates the

individual has strong hand-eye coordination skills, an important skillset to have when

it comes to learning how to maneuver an aircraft. Overall, the model output makes

sense and does not conflict with any prior understanding of what is indicative of

success in SUPT. However, this interpretation as well as the following interpretations

of each model are only one way to look at the output, as an expert in the field may

be able to better dissect the output from these models.
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4.2.1.2 Phase 1 Fail vs. Phases 2 or 3 Fail

Figure 10 displays the model output distinguishing a Phase 1 failure from a failure

in either Phase 2 or Phase 3. The output identifies those failing in Phase 1 to have

a PCSM score below 59 and 0 retests of the AFOQT. This demonstrates that those

failing in phase 1 generally have less flight experience and knowledge, as the PCSM

score was built to measure the aviation aptitude of candidates. Furthermore, having

0 retests of the AFOQT suggests low AFOQT pilot composite scores for those who

fail SUPT, shown by the relationship in Figure 6.

Figure 10: Interpretable CORELS Rulelist output predicting either fail in Phase 1
or Fail in Phase 2 or Phase 3

Overall, those failing in Phase 1 appear to have less flight experience, indicative of

the lower PCSM scores. The 0 retests of the AFOQT could potentially be indicative

of a lack of persistence, as Figure 6 indicates a positive relationship between AFOQT

retests and the pilot composite score.

4.2.1.3 Phase 2 Fail vs. Phase 3 Fail

Figure 11 indicates the model output distinguishing between a Phase 2 failure

and a phase 3 failure. This output is slightly more interesting, as it identifies a high

TBAS component score and a high aviation information score as indicative of failure

in Phase 3. This could inform us that those failing in Phase 3 are perhaps not failing

out because of a lack of affinity for aviation or a lack in skill, but perhaps they are

failing out for other reasons. Individuals leave pilot training for reasons other than

failing, like family emergencies, medical reasons, or simply a desire to be in another

career field. It would make sense that a candidate so far along in their training would

28



not fail out, but leave for some other reason (but the existing data cannot confirm

this).

Figure 11: Interpretable CORELS Rulelist output predicting either Phase 2 fail or
Phase 3 Fail

Overall, it appears that those with a higher aptitude for flying (as indicated in

the higher score in aviation information and the TBAS component) are good enough

to make it to Phase 3, but perhaps are leaving for reasons besides failing out.

4.3 Binary Class Prediction

4.3.1 SBRL Results

Figure 12 shows the output for the SBRL model, which makes a probabilistic

prediction for a candidate’s likelihood for success. A probability of at least 50%

can be interpreted as passing. This is the first of two methods being applied to

the binary class prediction problem, which distinguishes between pass or fail. The

first notable observation about the output is the quantity of strength deployment

inventory (SDI) personality traits present. High neuroticism and scientific interest

in conjunction provided a 98.4% chance of success, which is interesting given that

neuroticism means an affinity for negative emotions such as stress and anxiety [29].

Another observation to note is that within this model output, (race = white) is

being used as a predictor. While it is not necessarily a predictor of success (with a

probability of passing as 49.7%), it highlights how these model outputs should not

be followed blindly as a method to select new pilots. Rather, these models are to be

used with discretion, as the interpretability of these models allows the decision maker
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Figure 12: Interpretable SBRL output distinguishing between overall pass and fail
classes

to understand the model output and utilize it as an aid. Rather than viewing white

as a predictor for a specific outcome, the decision maker should view this as an area

demanding attention; it could be revealing instead that there are unintended barriers

to building a diverse set of pilots, which is a problem considering we already know

that SUPT is currently a white male dominant environment. It warrants further

examination to understand the ‘why’ behind (race = white) appearing as a predictor;

since this is beyond the scope of this research, this finding compels a follow-on study to

examine questions such as: do we have enough minorities and women entering SUPT

to properly inform the model of those characteristics being potential predictors? Are

there more minorities or women washing out of pilot training, whether that is failing

out or dropping out voluntarily? After answering those questions, we need to identify

why its happening and what we can do to change it.

4.3.2 FIGS Results

Figure 13 shows the model output for the FIGS model. As previously discussed

in Chapter II, FIGS builds multiple trees where each tree is created based on the
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unexplained variance of the previous tree; this also helps to reduce the likelihood of

the same feature appearing more than once. To use the FIGS model to predict the

outcome of a candidate, we would start with the first tree, and based on the candidates

characteristics, determine which leaf they get filtered into. We would do that for each

tree, and then add up the values from each final leaf, which can be transformed into a

probability using a sigmoid function. This probability will indicate the likelihood of

the individual to pass SUPT, whereas a probability of at least 50% can be interpreted

as passing.

The FIGS tree output is rather interesting, as each tree appears to be focused

around a specific category used to determine the aptitude of a candidate to pass

SUPT. Tree 1 is focused on prior flight experience, using PCSM score as the root of

the tree and an AFOQT component and Flight hours as the two branches. Tree 2

is focused on hand-eye and foot-eye coordination, as components of the TBAS are

used to measure these skills. Lastly, Tree 3 hones in on the academic component of

a candidate’s aptitude for success. The root of the tree identifies whether or not a

candidate attended the United States Air Force Academy (USAFA), along with GPA

as the other branch of the tree.

Out of the three trees, the one with the highest values is Tree 1 which categorizes a

candidates flight experience. This is consistent with other models, as PCSM score has

consistently been identified as a strong predictor for success within pilot training; this

tree splits candidates at a PCSM score of 35.5. For those with a PCSM above that

value, FIGS also splits on flight hours, which the other models have not used. The

tree splits at 8.1 flight hours, whereas candidates with less are given a value of 0.56,

while those with more have a value of 0.69 — a notable difference, which emphasizes

the importance of prior flight experience to increase the likelihood of success in SUPT.
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Figure 13: Interpretable FIGS output distinguishing between overall pass and fail
classes

FIGS is the only model to identify commissioning source and GPA as significant

features, more specifically singling out USAFA graduates as more likely to succeed.

USAFA is an institution that was created to build successful officers, and it has many

programs that offer cadets opportunities to gain flight experience and flight hours.

Furthermore, GPA is only significant for those that did not attend USAFA, indicating

that even USAFA graduates with a GPA below 3.025 are more likely to be successful

in pilot training than another graduate with a higher GPA, all other factors equal.
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4.4 Comparison Between Models

Table 4 shows several performance accuracy metrics for all three of our inter-

pretable models. It is important to note that while the accuracy of these models

is important, we value interpretability more. This simply means that, even though

some of the models’ accuracies are lower than we would like, their results are still

useful.

Upon further inspection of the performance of the CORELS models, we can see

that they are all relatively similar when it comes to general accuracy as well as

balanced accuracy. Both of these metrics are direct measures of the correct predictions

the model has made, but balanced accuracy is more suitable for unbalanced data as it

calculates the average classification accuracy by class. However, when observing the

F1 scores, the pass vs. fail model has a much higher score of 0.77 compared to 0.43

and 0.54. This indicates that the model performs well in both recall and precision,

as the model is able to both identify a large majority of the positive class as well as

have very few samples classified as false positives.

At first glance, we can see that SBRL performed better than the CORELS pass

vs. fail model, with a general accuracy measure of 0.86 and an F1 score of 0.93.

The balanced accuracy is about the same from what we have previously seen, and

because it is much lower than our overall accuracy, the model is most likely doing well

classifying one class but struggling with the other. The F1 score is the highest of all

Table 4: Summary of Performance metrics for Each Interpretable Model

CORELS

Pass v Fail
Phase 1 vs.
Phase 2 & 3

Phase 2 vs.
Phase 3

SBRL FIGS Ensemble

Accuracy 0.65 0.66 0.68 0.86 0.71 0.72
Balanced
Accuracy

0.59 0.55 0.55 0.60 0.59 0.53

F1 Score 0.77 0.43 0.54 0.93 0.84 0.83
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models used in this research, indicating this model is effective in correctly classifying

most successful samples.

Compared to the other models, FIGS is middle of the pack with a lower F1 score

than the SBRL model, but a higher overall accuracy than CORELS. The balanced

accuracy is very similar to that of the other models, which indicates none of our

models performed well in the classification of both classes. However, the F1 scores

for the pass vs. fail CORELS model, FIGS model, and SBRL model are all relatively

good and demonstrate the ability for these interpretable models to compete with some

black box models in terms of performance. Overall, the most important quality of

these models is the interpretability of them, and how they are transparent with how

they are making their predictions. The higher performance we have seen in certain

aspects of the model is only an added bonus to these results.

The ensemble column demonstrates the accuracy when using all three models

together as a voting ensemble. This means that all three models are used together

to produce a majority vote, which will indicate whether the individual will pass or

fail. The accuracy of the ensemble is not higher than any of the other models used

individually, demonstrating that they do not perform better when used in conjunction.

It would be more effective to choose a model based on preference, or SBRL because

of the better predictive accuracy.

When it comes to interpretability, FIGS and CORELS produce the clearest output

while SBRL can be more difficult to interpret. SBRL’s predictive probabilities are

interesting but hard to distinguish what would be considered a ‘good’ probability;

would we consider above 50% to be a good enough passing probability, or would

it need to be higher? This is a nuanced question dependent on a decision-maker’s

opinion. The CORELS ouput is the simplest out of the three, but perhaps too simple

because it only provides two or three features of importance. The best model in
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terms of interpretability is FIGS, as it does a good job of identifying more features

than CORELS but still maintaining simplicity. The tree-based output facilitates the

readability of the output, and because each tree builds upon the unexplained variance

of the previous tree we get well-rounded results.
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V. Conclusion

This chapter provides a summary of the research findings. This summary is orga-

nized by research objective, addressing how well each objective was or was not met.

Then we discuss potential future work that can be built upon using this research,

including findings that need more attention or work that could not be completed

within the time frame of this research.

5.1 Research Objectives

This section addresses each research objective identified in Chapter I and discuss

how well the objective was met.

5.1.1 Accurate Multi-Class Predictive Model

The first research objective identified in Chapter I emphasized two important

aspects; these were to ensure the interpretable model we built was accurate, and that

the model was able to predict the phase of failure.

While we made it an objective to build an accurate model, we prioritized the in-

terpretability over the performance accuracy of our models. However, accuracy is still

important and we maintained it within our objective. We were pleasantly surprised

when the performance accuracy of our models exceeded expectations (specifically

SBRL, with an F1 score of 0.93), in terms of the F1 score. All of our models per-

formed well by this metric, with the lowest score being 0.77 and the highest being

0.93. This indicates our models are good at identifying the majority of the passing

class, while also minimizing the number of wrongly identified passes. While there is

still room for improvement in comparison to the performance of black box models, it

was definitely higher than expected.
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With regard to building a model that will predict the phase of failure, we were only

able to use one model to accomplish this part of the objective. Predicting the phase

of failure proved to be far more difficult than we initially thought, as it introduced a

large amount of complexity that diminished the interpretability of our model outputs;

since interpretability was the whole purpose of this research, we decided to only apply

the CORELS model to our multi-phase problem and maintain the binary pass/fail

problem for the others. We were able to gain some insight into what distinguishes

the failures in each phase. Phase 1 failures appeared to be dependent on prior flight

experience, as those with less experience were more likely to fail in this initial phase.

Phase 3 failures were contradictory, as candidates with higher test scores and more

experienced were predicted to fail in Phase 3. One interpretation for this was that

they were not failing out, but perhaps leaving for other reasons such as medical or

family emergencies. It was unclear as to what specific features distinguished Phase 2

failures.

5.1.2 Significant Features and Cutoffs

The second objective identified in Chapter I emphasized the identification of fea-

tures significant in determining success within pilot training, as well as identifying

important cutoff values within those metrics that identify success.

This objective was met reasonably well, as the main purpose behind using an

interpretable model is to understand how the model works and what values of specific

features it is using to make predictions. Several features were used by each of the

three models, displayed in Table 5.

Several of these features appeared in more than one model, with some features

being deemed as more relevant than others. The most influential feature is PCSM

score, appearing in every model and generally being the most relevant in determin-
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Table 5: Features Utilized by Each Model

CORELS SBRL FIGS
PCSM score X X X
A2 PCSM X

FAA Flight Hours X
AHR on Target (TBAS) X
AHP on Target (TBAS) X

AHP R on Target (TBAS) X
HT Skilled Redirected (TBAS) X

AFOQT retests X
Aviation Information (AFOQT) X

ABM Composite (AFOQT) X
Verbal (AFOQT) X

Stress Under Pressure (SDI) X
Openness (SDI) X

Neuroticism (SDI) X
Scientific Interest (SDI) X

Reflective (SDI) X
Race X

Commissioning Source X

ing a candidates outcome. In addition to PCSM score, several TBAS components

appeared in more than one model; this highlights the relevance of physical skills such

as hand-eye and foot-eye coordination. FAA flight hours was deemed rather relevant

as well, however both FAA flight hours and the TBAS are incorporated within the

PCSM score. The SBRL model identified several personality traits as significant, in-

cluding stress under pressure, neuroticism, scientific interest, reflective, and openness.

However, these were not identified in any other models. FIGS was the only model

to single out commissioning source and GPA, stating that being a USAFA graduate

increased a candidate’s chances of success. AFOQT retests were identified as a dis-

tinguising feature for those failing in Phase 1 in our CORELS model, as candidate’s

with zero AFOQT retests in addition to a lower PCSM score were predicted to fail

in phase 1.

FIGS was the only model to identify specific values within certain features, as
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it was the only model to use continuous variables. Notable values include a PCSM

score of 35.5 to split candidates, where those with a PCSM above that had a greater

probability of success. A total of 8.1 flight hours was used to split candidates, where

those with flight hours above 8.1 had a 13.2% higher probability of success. The last

notable cutoff was for candidates that did not graduate from USAFA, as they were

split at a value of 3.025 for GPA, where those that had a higher GPA had an increased

chance of success of 12%.

5.2 Key Contributions

All three interpretable models validated PCSM score as an efficient metric for

predicting SUPT outcome. FIGS identified that a PCSM score of 35.5 is significant

in distringuishing between passing and failing. According to CORELS, individuals

failing in Phase 1 appear to have less flight knowledge and experience while those

failing in Phase 3 generally have more experience (could be leaving for reasons other

than failure, but we do not have the data to support that). This research produces

easily understandable results with a reasonable level of accuracy; this is indicative in

the F1 score of 0.93 and prediction accuracy of 0.86 for the SBRL model. Out of the

three models, FIGS produced the most readable and well-rounded results, since each

sub-tree was focused on a different skill-set required for success within SUPT.

This research demonstrates the value of interpretable models, because choosing

pilot candidates drastically affects the lives and careers of individuals. From an

ethical perspective, we need an algorithm that can provide valid justifications for these

personal decisions being made. Additionally, interpretable machine learning models

have a higher likelihood of being accepted by senior leadership. If decision-makers

can understand the algorithm, they are more likely to implement it. Furthermore,

senior leaders can tailor the algorithm to their desires. If there is a feature they do
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not want included in the model, it can be removed and a new model can be produced

without that feature.

Interpretable models need to be implemented for these more personal decisions

rather than black box models; these model types are not in competition with one

another, but rather should be used for different types of problems.

5.3 Future Work

Because of the time frame that this research was accomplished in, there are several

areas that need to be further evaluated. The following areas are identified below:

• Within our SBRL model, (race = white) was identified as a predictor. This

should be taken with discretion, as it should not be interpreted as a predictor

of success but rather an area that requires more attention. Further work would

include an evaluation of the diversity within pilot training either using data

analysis or a literature review, as well as determining whether the small sample

size of minority groups even allows for a proper analysis of each groups’ charac-

teristics of success. Once those questions are answered, it is then necessary to

answer the ‘why’ of those questions. Why is there so little diversity within pilot

training? Are there race or gender-based barriers to obtaining flight experience

prior to training? If there is a higher wash-out rate for minorities in SUPT,

why?

• There were a few methods identified in Table 1 that I did not have time to

apply to this data set. This is because of a lack of time, as well as barriers to

obtaining the code needed to use these methods. It would be interesting to see

how these other methods perform for our data, and if any of them do better

than the methods used in this research.
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• Find different pilot data that includes the reason for washing out, whether that

is because they failed or had other reasons such as medical or family circum-

stances. That data would have greatly helped in building a proper predictor,

as each reason for leaving pilot training will have vastly different features being

used to make that prediction. This would also help solidify the interpretation

that those leaving in Phase 3 are for reasons other than failing, as they have

higher test scores and should not be failing out.
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Appendix: Descriptions of Test Sections and Continuous

Data Features

Table 6: Description of AFOQT Sections

Section Desctiption
Verbal
Analogies

Measures ability to identify relationships
among words

Arithmetic
Reasoning

Tests ability to perform arithmetic
tasks

Word
Knowledge

Assesses vocabulary and their knowledge
of word meanings

Math Knowledge
Measures knowledge of mathematical
principles and related problem-solvingmethods

Reading
Comprehension

Assesses ability to read and understand
written material

Situational
Judgement

Explores ability to reason via interpersonal
situations

Self-Description
Inventory

Measures applicant’s neuroticism, extraversion,
openness, agreeableness, and conscientiousness

Physical
Science

Tests knowledge of core concepts to the
physical sciences

Table
Reading

Measures applicant’s ability to quickly identify
table elements

Instrument
Comprehension

Assesses ability to identify aircraft position with
instrument information

Block Counting
Assesses ability to mentally visualize and
manipulate objects in three dimensions

Aviation
Knowledge

Tests knowledge of basic aviation principles
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Table 7: Description of TBAS Subtests

Section Desctiption

Airplane Tracking (ATT)
Use joy stick to keep reticle on moving
airplane that randomly changes
directions

Horizontal Tracking (HTT)
Use rudder pedals to move box horizontally
and keep randomly moving airplane

ATT & HTT (AHTT) Perform ATT and HTT simultaneously

Direction Orientation (UAV)
UAV with directional information and
ground map provided; must identify
corresponding target

Multi-tasking (SynWin)
Concurrently perform memorization,
arithmetic, visual monitoring and listening
tasks
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