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Abstract

Each year, millions of college athletes play sports that put them at risk of a vari-

ety of physical injuries. Notable among these injuries is mild traumatic brain injury

(mTBI). Following a mild traumatic brain injury (mTBI), many athletes suffer from

a post-traumatic headache (PTH), which will eventually resolve or develop into per-

sistent post-traumatic headache (PPTH). PPTH can lead to debilitating pain and

detrimentally affect an athlete’s lifestyle and future professional sports prospects. Al-

though no known cure for PPTH exists, research has shown that receiving treatment

at earlier stages of mTBI and PTH lowers the risk of patients developing PPTH.

Previous studies have shown machine learning (ML) models capable of predicting a

patient’s PTH progression (whether resolution to a healthy condition or conversion

to PPTH). However, none of them have considered the issue of retaining patient pri-

vacy within each institution. When respecting patient privacy, there is typically a

lack of data available to train ML models since model training can only be performed

within a single institution. Federated learning (FL) has demonstrated the poten-

tial of harnessing data from separate institutions without sacrificing patient privacy.

Within an FL framework, local institutions can run ML models on their own private

dataset and share the trained model parameters without sharing the data between

institutions. Additionally, quantifying uncertainty of model parameters associated

with key features of interest in predicting PTH progression has not been explored

in the context of FL. The proposed data analysis framework, Uncertainty Quantifi-

cation in Federated Learning (UQFL), combines FL and uncertainty quantification

(UQ) to (1) protect patient privacy and (2) provide a measure of uncertainty for

each model parameter. UQFL was applied to the Concussion Assessment, Research

iv



and Education (CARE) dataset, which contains clinical measurements that track the

condition of college athletes following an mTBI. UQFL identified a variety of clinical

measurements that significantly contributed to model prediction of PTH progression

(p < 0.05); namely, Satisfaction with Life Scale (SWLS) Score, SCAT3 Total Number

of Symptoms, Standardized Assessment Concussion (SAC) score, Vestibular Ocular

Motor Screening (VOMS) Score, Brief Symptom Inventory (BSI) 18 Score, SCAT3

Total Score, and Clinical Reaction Time (CRT). UQFL demonstrates the capabil-

ity to significantly capture the same parameter values calculated from the same ML

model trained on a centralized dataset. It was even found that some of the FL mod-

els outperformed traditional ML models trained a centralized database (likely due to

incorporating the heterogeneity of institutions directly into the model framework).

Future work will entail making the UQFL model robust to missing data and capable

of integrating different types of clinical measures shared from each institution.

v
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UNCERTAINTY QUANTIFICATION IN FEDERATED LEARNING FOR

PERSISTENT POST-TRAUMATIC HEADACHE

I. Introduction

Approximately 1.7 million people suffer from traumatic brain injury (TBI) annu-

ally. Among these, post traumatic headache (PTH) is the most common symptom

following TBI, which can either resolve or continue into persistent PTH (PPTH),

and can eventually lead to lasting brain damage or even death. However, recogniz-

ing PTH in the early stages and getting treatment quickly dramatically increases

a patient’s chance of PTH being cured. Different hospitals and organizations store

their own medical data but centralizing those data into one database is impossible

due to legal and privacy issues. This project proposes a solution to this issue us-

ing Uncertainty Quantification Federated Learning (UQFL). UQFL allows hospitals

to learn from data from other hospitals without having to share data. Using data

from NCAA athletes, this project builds a UQFL model of clinical measures among

student athletes to predict PTH persistence and quantify the uncertainties of model

parameters.

1.1 Background

1.1.1 Concussion and Neurodegenerative Diseases

A concussion or a mild traumatic brain injury (mTBI) is a brain injury caused by

a bump to the head that results in the brain moving back and forth rapidly [6]. This

movement causes the brain to either bump into the inner skull or twist the brain stem,
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injuring the brain cells. The most common symptom after a concussion is a PTH.

Primary symptoms of PTH include nausea, headaches, vomiting and sluggishness,

among many others. Most patients who suffered from a concussion get their PTH

resolved within 3-6 months. However, if these symptoms continue after 3-6 months,

this type of PTH is called PPTH. This persistent headache results from a continuous

degeneration and breakdown of the brain cells [7]. Because of the longer time period

that the brain cells were damaged, PPTH is thought to develop into secondary symp-

toms from the continuously damaged brain cells which may or may not correlate with

long-term neurological damage such as neurodegenerative diseases [8].

A neurodegenerative disease is a type of disease where neurons in the nervous

system stop functioning over time [9]. A nervous system is a network of nerves

throughout the body, including the brain and the spinal cord [10]. It is responsible

for relaying signals to bodily functions such as senses, thoughts, movements and

heartbeats. The breakdown or degeneration of the nerves, and ultimately the nervous

system, from a neurodegenerative disease leads to the loss of such bodily functions and

can lead to death. Some examples of neurodegenerative disease include Alzheimers

Disease (AD), Parkinson’s Disease (PD), or Amyotrophic Lateral Schlerosis (ALS or

Lou Gehrig’s Disease) [11]. Currently, there are no known cures to neurodegenerative

diseases and patients can only get treatment to prolong one’s life or ease the symptoms

of the disease. Because of the time-related nature of the disease, the probability of

developing a neurodegenerative disease increase as one ages. The symptoms worsen

as time passes as well.

No studies have conclusively proved that a concussion leads to a neurodegenerative

disease. However, many studies have shown that cognitive impairment coming from

the damage to the brain cells from an mTBI and the breakdown of neurons in the

brain and the nervous system that cause impairment of bodily activities and functions
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from neurodegenerative diseases are similar [8]. This similarity has led researchers to

presume that an untreated mTBI, such as a PPTH or repetitive concussions could

lead to a neurodegenerative disease.

1.1.2 Effects of Concussions and Neurodegenerative Diseases

Concussion is the most common type of mTBI. According to the University of

Michigan Health, every year, about 5-10% of athletes are concussed from sports-

related activities, which amounts to 3.8 million athletes annually. [12]. Concussions

are not contained to just professional athletic settings and can be caused in a variety

of ways, such as falling or vehicle crashes. Studies have shown that people who have

been concussed are more susceptible of having another concussion even with less force

to the head [13]. This means that the person is more at risk of brain damage even

with smaller threats. Even though a concussion might seem like a minor injury at the

moment, it can have permanent dangerous effects on the human brain, which may

lead to more serious neurodegenerative diseases such as Alzheimer’s Disease (AD) or

Parkinson’s Disease (PD).

AD affects more than 6 million Americans, most of whom are over 65 years old,

and may cause dementia. The National Institutes of Health cites that AD is the

7th leading cause of death in the United States and is the most common cause of

dementia [14]. The loss of cognitive function impedes most patients from performing

daily activities even if they are alive. PD causes unintended or uncontrollable move-

ments and patients diagnosed with PD have difficulty walking and talking. Around

60,000 Americans are diagnosed with PD annually, most of whom are also older [15].

Neurodegenerative diseases are thought to be most prevalent in people who have

repetitively experienced traumatic brain injuries throughout their lifetime. The two

biggest examples are contact athletes and members of the military. This disease also
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progresses with age as it starts off mildly with symptoms such as depression, ag-

gression or irritability. However, as it progresses over decades, it can lead to major

cognitive impairments and dementia [16]. Finally, ALS is a disease that destroys the

motor neurons in the brain that lead to loss of control of skeletal muscles. This means

that the patient loses control of activities such as walking, breathing and speaking

[17].

According to the National Institute of Health, there are no known cures for all

four of these diseases [9]. Another common factor among the four diseases is that

they are all progressive neuro-degenerative diseases. This means that the symptoms

over time get worse and can eventually lead to death. However, the earlier that these

diseases are discovered by doctors in patients, the patients will suffer fewer damaging

effects of the diseases through treatment and medicine. This process is analogous

to the need of finding cancer at stage 0 compared to finding cancer at stage 4; it

is more manageable to address cancer at stage 0 and extremely difficult (sometimes

impossible) to cure cancer at stage 4. This means that the earlier doctors can perceive

cognitive impairment, the patients have a higher chance of living longer and healthier

lives or even be cured.

1.1.3 NCAA/Collecting Data

Even though concussions can happen to anyone, collecting data for every instance

of a concussion nationwide is impractical and inefficient. As a result, athletes, who

are the most susceptible to concussions, are a natural source for data. Athletes daily

endure extreme physical contact that is far beyond the stress levels of an average per-

son. A 400-pound football player tackling another for a sack or 7-feet tall basketball

players elbowing each other in the face for a rebound are two examples. As a result,

professional athletes are the ideal source to data to study the effects of concussion on.
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The assumption is that if there is a treatment that can help the quarterback recover

from a concussion caused by a 400-pound man, then the treatment will work well on

an average person who received a concussion from a fall.

However, because of the hyper-competitive environment of the professional sports

industry, there is a very small sample size to gather data from. In 2021-2022, there

were 526 players in the National Basketball Association (NBA), 1123 players in the

National Hockey League (NHL) and 1696 players in the National Football League

(NFL) [18, 19, 20]. Even if all three leagues were combined, there would only be a

total of 3345 players. From an estimated 5-10% of athletes who are concussed every

year, it would only be 167 to 334 players every year to gather data from. As a result,

many studies study the effects of concussions and traumatic brain injuries on Division

I athletes.

In the National Collegiate Athletic Association (NCAA), there are 187,375 athletes

that compete at the Division I level, which is about 50 times the number of athletes

in the NBA, NFL and NHL combined [21]. College athletic programs are divided into

three divisions with each division separated in a hierarchy by the level of competition

they play. Division I schools play in games that have a larger fanbase, nationally

broadcasted and generate more revenue. This allows Division I athletic programs

to recruit among the best high school players in the nation. Consequently, these

school have the best college athletes playing in their programs who train and perform

almost at the professional level. To demonstrate the high level of competition Division

I athletes play, in 2021-2022, 1414 out of 1696 or 83% of the NFL players were drafted

from Division I schools [20]. By having a larger pool of data to source from without

sacrificing the competitiveness, and the susceptibility of a concussion, of professional

athletes, Division I athletes are the ideal source to conduct research on the effects of

concussion.
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However, data on concussion based on athletes can potentially biased. First,

the assessment tools to diagnosis of concussion are based on a series of self-reported

clinical scores [22]. These tools make assessing a patient’s concussion difficult because

it is near impossible to accurately detect the effects of concussion with commonly

used assessment tools [23]. For example, a SCAT3 score is one of the commonly used

assessment tools to diagnose a patient with concussion [24]. The patient answers a

series of questions with seven ordinal scaled responses about their physical and mental

well-being (i.e. “Nervous or Anxious” or as simple as “Headache”). The neurological

damage and the effects that damage will have on a person in the future cannot be

simply categorized into seven ordinal variables. The effects of the concussion are often

too complex to be fully comprehended by the assessment tools used today.

Second, athletes under report their symptoms [23]. As mentioned above, it is

extremely difficult to play in Division 1 sports, let alone get drafted to play pro-

fessionally. Health is one of the most important aspects scouts look for in drafting

athletes, whether it be at the collegiate or professional level. NFL Hall of Fame Ex-

ecutive Bill Polian states that the reason NFL hosts the NFL Combine every year is

to get a “complete assessment of (athlete’s) health and their ability to withstand the

rigors of pro football, the likes of which they have never had” [25]. As a result, players

are incentivized to remain healthy or maintain the appearance of being healthy in or-

der to be scouted and have a higher change of becoming a professional athlete. This is

one of the reasons why players under report their symptoms. They also under report

their symptoms in order to return to play as much as possible. For similar reasons to

play professionally or at the collegiate level, scouts make decisions on players based

off of their performances [26]. However, if they are not playing due to injury, then the

scouts cannot make positive reports on those players, which would potentially hurt

the athletes’ futures. In order to prevent this problem, many athletes do anything
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they can to keep playing, even by under reporting their concussion symptoms.

These inaccurate responses pose two major problems. First, the injured athletes

cannot be properly taken care of and the effects of concussion will potentially have

long-lasting effects on the athletes’ lives. Second, the effectiveness of any model or

studies can be considered ineffective because they were based on inaccurate data.

These problems add to the reasons as to why diagnosing and treating concussions

have been so difficult.

1.1.4 Military Applications

Not only are TBIs a problem of concern for the professional and amateur athlete

community, they are also a problem for military personnel as well. Military TBIs are

different from civilian TBI because of the environment, as well as external and internal

stress related to war [1]. One of the most common causes of TBI among military

personnel were combat related explosions [27]. Additionally, military personnel are

deployed to situations, even when not in combat, that require extreme physical and

mental demands, forced to inhabit harsh living conditions and are often expected

to operate under sustained sleep deprivation. These so-called non-combat situations

were shown to induce TBI in military personnel as well [27].

Figure 1 shows the number of incidents of TBI by military branch from 2000 to

2011 and how almost 30,000 personnel from all four branches of the mlitary were di-

agnosed with TBI in 2011 alone. Figure 1 also shows a sharp increase of TBI incidents

from the United States (US) Army since 2005. In 2015, the Congressional Research

Service reported that 253,330 TBI incidents occurred from 2000 to 2012, of which

194,561 cases were mTBI [28]. This timeline correlates with US military involvement

in Operation Iraqi Freedom and Operation Enduring Freedom, when soldiers were

deployed the most and subject to the harsh environments of war where they would
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be most likely to sustain TBIs in both combat and non-combat environments [27].

However, there are more conflicts awaiting the United States in the future [29].

These possible future conflicts that could affect US military personnel. If engaged in

war with these two countries, the occurrences of TBI in US military personnel will

be far greater than the numbers seen in Iraq and Afghanistan. Finding a method to

help mitigate the TBIs suffered by US military personnel will be of great importance

not only for our current veterans but also future veterans.

1.1.5 Patient Privacy

The most important aspect of gaining insights from a machine learning model is

to have good data. In contemporary times, data can be collected from everywhere at

any time due to the internet and handheld devices [30]. Companies can track how

much time their users spend on a particular web page or what parts of their user

interface are most used by a certain demographic in order to target specific ads to-

wards those demographic [31]. This is not only true in commercial industries, but also

in the medical industry. With medical tools and technology advancing, doctors are

Figure 1: DOD TBI Occurrences by Branch (2000-2011) [1]
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collecting more data than ever on patients in order to help diagnose their treatments

with less time and more accuracy [30]. Despite the deluge of data being tracked and

stored, accessing data can be challenging, if not impossible, for researchers in medi-

cal fields to properly run machine learning models. The Privacy Rule of the Health

Insurance Portability and Accountability Act (HIPAA) protects patients from hos-

pitals releasing their personally identifiable information (PII) [32]. HIPAA prevents

researchers or doctors from sharing patient data for medical purposes, which severely

impedes researchers from making valuable insights on diagnosis of patient conditions

such as TBI. One way this research proposes is using Federated Learning (FL) to help

mitigate that impediment and allow researchers to make valuable machine learning

models for patients based on limited data.

1.1.6 Uncertainty Quantification of Federated Learning

Federated Learning (FL) is a machine learning model that is capable of gaining

as much insight from a regular machine learning model with restricted data. FL is

able to learn and make predictions without a need for a centralized database, unlike

other machine learning models [33]. This means that FL models allow learning from

decentralized databases where individual organizations or hospitals do not have to

share data and researchers and doctors can still gain meaning insights just by looking

at model parameters generated by those individual organizations or hospitals. This

partially circumvents HIPAA, with which many research projects would have been

previously deemed illegal; with FL no data is shared, only the model parameters.

However, models that learn from decentralized databases might have more uncer-

tainties. This is because there are more steps involved to generate the model output

only using model parameters. Unfortunately, there is very little research out there

that quantifies uncertainty for a FL model. Having uncertainty quantification for
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FL models will allow more credible and reliable research to be done on previously

infeasible medical databases all around the world.
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II. Literature Review

2.1 Application of Machine Learning in PTH

2.1.1 Overview

Most work performed on diagnosing and studying concussion and its symptoms

are done on the actual brain [34]. They study the brain and the physiological and

neurological damage that the brain sustains in an mTBI. However, there are few

studies that emply machine learning to study the effects of concussion in terms of

clinical tests (e.g., human aptitude and symptom tests) [35].

Most studies have used basic machine learning techniques such as logistic regres-

sion and random forest. One paper used random forests to impute nominal and

ordinal data of PTH clinical tests [36]. Another used logistic regression to place an

arbitrary threshold of whether someone had mTBI based on certain features [37].

However, these classifications were based on arbitrary thresholds determined by the

researchers of the study.

Other machine learning studies done on TBI and concussion were performed on

neurological images or had response variables that were separated into classes. As a

result, most studies have methodologies with convolutional neural networks (CNNs)

or regressions with binary or multi-class responses. In contrast, this paper uses lin-

ear regression to predict continuous data (i.e., concussion severity clinical scores) as

output. However, there are still some things to take away from different machine

learning techniques done on concussion studies.

2.2 Supervised Machine Learning

Supervised machine learning processes are machine learning techniques that pre-

dict future output based on past labeled inputs. Supervised machine learning tech-
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niques are often used in PTH and TBI research due to their predictive capabilities

and historical data from the long-term design of most PTH and TBI studies [38]. The

two techniques discussed in this thesis are regression and classification techniques.

2.2.1 Regression

2.2.1.1 Overview

Regression analysis is a mathematical technique that estimates a dependent value

(outcome) based on independent values (features). It determines the relationship be-

tween the dependent and independent variables by finding the effect the independent

variable has on the dependent variable mathematically. In other words, it finds how

much of the independent values has an affect on the outcome of the dependent value.

Despite its simplicity, regression is a powerful tool used in almost every aspect of

the professional world, such as business, law, medicine, engineering and science [39].

There are numerous different types of regression models, but the two that will be

discussed in this paper are Linear Regression and Logistic Regression.

2.2.1.2 Assumptions

For all machine learning models, the data used to train and test the models have

to be a good representation of the population as a whole [40]. This is to to ensure

that the results from the machine learning models will have insights on the real

world problems it was modeled after. Additionally, there are different assumptions

for different techniques that need to be met in order for the model to be insightful. In

all linear regression models, there are five assumptions that have to be met in order

for the model to have statistical significance [40].

1. Linearity
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2. Normality

3. No Multicollinearity Among Features

4. No Auto-Correlation of Residuals

5. Homoscedasticity

Linearity is the assumption that the response variables and its feature variables

have a linear relationship. If a linear relationship does not exist in a linear regression,

the predicted estimate would not be useful as it would be no different than guessing

what the next estimate would be. This would severely decrease the accuracy of

the model to predict values. Normality assumes that the error terms of the model

are normally distributed with zero mean. This is important because we calculate

confidence intervals to quantify uncertainty and confidence intervals rely on normally

distributed error terms. No multicollinearity among features means that the feature

variables are not correlated with one another. This is important because if they

are correlated with one another, then we do not know which features impacted the

output in what way. Having auto-correlation among the residuals means that the

model is wrong. It usually means it is missing features from the regression required

to accurately model the data. Finally, homoscedasticity means that the variance

associated with each observation is independent of the independent variable. If they

are not, it means that the model is incorrectly putting too much weight on certain

features or portions of the data [40]. These assumptions are important to be checked

if not made in order to have validity of the linear regression model.

2.2.1.3 Linear Regression

A linear regression is a mathematical model that models the relationship between

a continuous dependent variable and one or more independent variables. Linear
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regression assumes there exists a relationship between the featuresX and the response

variable Y . The model that results is called a regression function and it maps the

linear combination of the features to a independent variable [41]. A basic linear model

is in the form of (y = β0+βkxk+ ϵ), where y is the response variable, k is the number

of features, β0 is the constant coefficient, βk is the coefficient for the kth feature, xk is

the kth feature, and ϵ is the error. The coefficients are called the model parameters

and determine how much of a feature is calculated for the independent variable in the

regression function. This linear model has two applications: prediction and variation.

For prediction, a linear model allows the capability of fitting the observed data to

predict what the independent variable will be given a new set of dependent features.

There are generally two types of predictions available with a linear model: predicting

a mean response (general estimate) and predicting a specific response value (point

estimation) [41]. This paper will be focused on point estimation because the data

are all numerical values. The first reason is that there are no images required for

classification. The second reason is point estimates allow us to construct pseudo-

distributions and confidence intervals.

For variation, an analysis on the model can calculate how consistent the dependent

variables are in relationship to the independent variable. We quantify this through

uncertainty quantification. This will be discussed more in depth in Section 2.5.

Because of the predictive power of the linear regression model, it is often used

in healthcare research where clinical tests are quantified as numerical values. Re-

searchers in New York University (NYU) studied the severity of the SCAT3 score

using PTH presence (headache free), intensity and frequency as independent features

[22]. The study was conducted on a heterogeneous group with a varying range in age,

gender and severity of the PTH. This was to get as accurate of a representation of

the population as possible. The study shows that the intensity of the SCAT3 scores
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correlates with the intensity of the headaches and the frequency of the headaches.

It also shows that patients who did not have post traumatic headaches had lower

SCAT3 scores. The study is able to show a relationship between the SCAT3 score

and the independent feature variables. Although this study does not use the exact

same features as the ones used by the researchers at NYU, it was still able to define a

relationship between the SCAT3 scores and a patient’s brain health. The researchers,

among many other literature reviewed, conclude that the SCAT3 score is a good as-

sessment to evaluate post-traumatic headache. This is why we use the SCAT3 score

and the SCAT3 symptom score as our two main response variables for the study.

2.2.1.4 Logistic Regression

One method of supervised machine learning techniques used often for PTH stud-

ies is logistic regression. Logistic regression estimates the binary outcome of a linear

function by calculating what the probability of the outcome will be using the param-

eters of the model [42]. Whereas linear regression has continuous response variables,

logistic regression has binary response variables. Logistic regression tries to solve the

probability Pr(Y = 1 | X = x) for a set number of feature variables X given Y = 1

or Y = 0. The parameters of X are solved through maximum likelihood and the

probability of Y is solved using a sigmoid function.

Logistic regression, similar to linear regression, also assumes that there exists a

relationship between the features X and the response variable Y . The difference be-

tween logistic regression and linear regression is that in linear regression, the response

variable is a continuous variable while the response variable in logistic regression is

a binary variable. However, because the response variable is not continuous, logistic

regression requires a link function, called a logit function, to solve for the expected

value of the response variable. The logit function is ln p
1−p

where p ∈ (0, 1) is the prob-
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ability that the outcome of a specific combination of features will be 1 (Y = 1|X = x).

1 − p in turn, is the probability that the outcome will be 0 (Y = 0|X = x). The

logit function then can be modeled as a linear function of the features just like linear

regression, allowing the assumption of linear relationship between the features and

response variable to hold for a logistic regression.

The logistic regression model using the logit function then turns into

log
p

1− p
= β0 + xk

′β (1)

for k number of features.

Solving for p gives,

p =
1

1 + e−(β0+xk
′β)

(2)

which is a sigmoid function

p =
1

1 + e−z
(3)

using a logistic regression model, replacing z with (β0 + xk
′β), shown in figure below.

The sigmoid function allows a probability odds threshold, usually set a 0.5, whether

the probability output of the combination of features is closer to 1 or 0.

One of the tests done to predict the effect of concussions on neurocognitive activ-

ities was used for logistic regression using the binary variable of whether the athlete

had a previous concussion history or not based on neuromechanical performance tests.

The authors test whether neuromechanical performance deficiencies are a result of

previous sport related concussions. The study is conducted on 35 Olympic athletes

were tested for both ordinal scale tests that were self-answered and continuous timed

reflex tests [43]. These sets of features made it similar to our study as our dataset

contained both ordinal and time data as well.
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Figure 2: Sigmoid Function Visual Example [2]

Wilkerson et. al studied the affect of athletes’ previous concussion history by

studying their sensorimotor skills. They had a group of 75 athletes with 12 features

and a binary label output of whether that particular athlete had a concussion history

or not. The 12 features were sub-tests of visual-motor reaction time (VMRT) and

whole-body reactive agility (WBRA) tests. VMRT is similar to the Vestibular Ocular

Motor Screening (VOMS) and WBRA is similar to the ImPACT scores, which include

visual motor speed scores.

Using similar features to our dataset, the authors calculate the probability of

whether performance deficiencies of the athletes are a result of previous concussions.

2.2.2 Classification

One study showed that patients with concussions showed changes in brain electri-

cal activity and used response variables from an electroencephalogram (EEG) to use

classification techniques to find relationships with brain activity and patients with
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concussions [44]. The study used the Concussion Index, which is an ordinal score of 0

to 100 where a higher index means more cognitive impairment, and arbitrarily used

a threshold of 70 as whether patients had a concussion or not.

2.3 Unsupervised Machine Learning

One of the studies performed was employing unsupervised convolutional auto-

encoders on brain magnetic resonance imaging (MRI) [3]. Due to the cost of MRIs,

there is a lack of data to fully train a regular convolutional neural network. Under

the assumption that mTBI only affects certain parts of the brain, the researchers

study only parts of the MRI images they called “patches”. However, they cannot get

the labels of the patches from the subject MRI images because the mTBI does not

impact all patches. This is why supervised learning is not viable and they must use

unsupervised learning techniques. The researchers use a convolutional auto-encoder,

which is an unsupervised learning technique, to uncover latent features. It uncovers

latent features by taking a patch image and pushing the image through multiple

convolution and pooling layers through the encoding phase. Then it attempts to

reconstruct the original image from the convoluted image using the learned features

through the decoder phase.

The features that were uncovered through the convolutional auto-encoders are put

into a histogram of all the patches in a specific region in visual words. Finally, the

histogram of the patients is compared with the histogram of the control to compare

where there are differences in the number of visual words represented for different

patches of the image. Figure 3 shows the differences of histograms of the number of

features constructed from the MRI between the the patients with mTBI (red dotted

line) and the control group (blue dotted line). The green dotted line shows the

differences between the two groups. The major oscillations seen in the green line
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show that there are clear differences in the features extracted from the MRIs of

patients with mTBI and the control group. This means that the MRIs between the

two groups are different, so patients with mTBI have an altered image of the brain.

Figure 3: Histogram of Number of Features of TBI Group and Control Group [3]

2.4 Federated Learning

2.4.1 Overview

Currently, technology in the 21st century can be described by a framework called

Internet of Things (IoT). IoT is a system of technologies that are connected over

a shared network system (typically the Internet) and share each other’s data on a

single database [45]. The type of technologies can range from handheld devices, such

as phones or smartwatches, to vehicles and home appliances that all have connection

to the Internet. For example, General Motors (GM) has a program called OnStar.

The OnStar program gathers data from all GM vehicles, called edge devices, that

are part of this service send monitoring data to a OnStar cloud database. GM then

aggregates these data, builds models and sends the current state of the health of the

vehicle from the cloud database back to the individual vehicle [46]. By aggregating

data from all possible devices a single organization owns, that organization can work
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with a larger dataset to have a more accurate representation of the population. This

allows organizations to save money by spending time on a few models on a centralized

database rather than creating and running models on thousands of individual devices.

It also saves time as a few models are applicable to thousands of different edge devices.

Most IoT systems have similar processes where all the data from edge devices are

collected on a centralized database. Then, different types of statistical models, such as

predictive or maintenance, are then run on the collected data. Finally, those models

are sent back to the edge devices so that the users have an improved experience.

This process is called a centralized model [46]. This provides many advantages as it

improves efficiency, saves on cost and models provide a more accurate representation

of the population. However, there are two major issues. The two major issues are (1)

security and (2) privacy.

Centralized databases collect, store and train models on all of the data collected

from the organization’s edge devices [45]. For GM’s example, the data of hundreds of

thousands of cars that are subscribed to the OnStar program are all on one database

in one location. This can potentially be a big security concern. In an era where cy-

bersecurity is a major concern, if a few individuals with malevolent intentions either

hack or expose the database, then the data of every single edge device is leaked and

exposed to the world. Instead of hacking hundreds of thousands of different cars,

hackers can attack just one database, which would take less time due to the differ-

ence in quantity alone. Also, no hardware or software is perfect–there are reliability

concerns and technology will malfunction or break down eventually. If a mistake hap-

pens, software has a bug or hardware breaks down, then the database can be broken

and the organization would lose all the data instantly. Worse, the data can be leaked

and the organization would be legally liable to every single user.
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2.4.2 Concept

Federated Learning (FL) trains models on a central server, just like IoT, without

having to collect individual data from its edge devices [47]. Around 20 years ago,

mobile phones were just starting to emerge, laptops were beginning to become main-

stream and cars were beginning to have more complicated sensors. The computing

power in these edge devices were weak or nonexistent. The lack of computing power

in these edge devices made FL impossible. It was a necessity to send all the data into

a central database because big organizations were the only ones who could afford a

big, powerful computer to run machine learning models.

However, in modern times, phones have computer chips that are more powerful

than the computers that sent Apollo 11 to the moon [48]. All modern vehicles have

computer chips and even home appliances have connection to the Internet. This de-

velopment of computing power in edge devices allows those devices to run machine

learning models and calculate model parameters. It also decreases the necessity of

edge devices to send their data to a central database just to run machine learning

models. Instead of sending the actual data, federated learning only sends model pa-

rameters. It stores all the data of the edge devices locally and each runs an individual

machine learning algorithm on its own device. After the algorithm is run locally, it

sends the local parameters to a global server and the global server collects all of the

individual model parameters from the edge devices. It then calculates an optimization

and gradient descent with those collected model parameters, outputs new parameters

and sends those updated parameters down to the edge devices. The edge devices then

run a new model with the new model parameters from the global server on its local

data and repeats the process [47]. This process of sending updated model parameters

back and forth between the global server and edge devices prevents local data from

being shared with anyone else.
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2.4.3 Patient Privacy

In the United States, HIPAA is a law that prevents healthcare companies and

organizations from sharing patients’ personal health information (PHI). It protects

three areas of patients and their privacy [49].

1. “Portability of insurance or the ability of a patient/worker to move to another

place of work and be certain that insurance coverage is not denied” [49]

2. “Detection and enforcement of fraud and accountability” [49]

3. “Simplify administrative procedures in health care and other professions” [49]

The first two directly apply to the need of patient privacy for the security of the

individuals. The first is the denial of insurance during insurance swapping process.

Employers have different insurance companies that they sign contracts with so that all

of their employers that are eligible can have healthcare. Due to anti-competitive laws,

there are numerous options for insurance companies that employers can choose from.

The employees, however, do not have such options and would most likely have to take

the healthcare provided by the employers unless the individuals want to pay more

out of pocket to get a separate healthcare plan. This means that when an employee

changes companies, they would most likely have to change insurance companies as

well. However, the accepting insurance company cannot reject the healthcare of the

incoming individual based on personally identifiable information. The first part of

HIPAA protects this scenario by making it illegal to share personally identifiable

healthcare information. The second part is more simple–it is to protect patients from

fraud and fake accountability so that people cannot use other people’s healthcare

plans or incur costs that the individual did not use. Finally, the third part is to allow

a smooth and safe process for patients. It is to ensure that patients can move from

22



one hospital to another or one doctor to another and their medical data will not be

lost during transition of files for any reason [49].

HIPAA applies to all healthcare provides and administrative staff as well as re-

searchers who study medical data. PHI can only be shared in specific circumstances.

Some include discussing diagnosis and treatment of the patient with other healthcare

providers, disclosing laboratory tests with other healthcare providers, or when calling

a pharmacists for medication required by the patient. Generally, PHI can only be

shared when offering treatment or advise that is directly involved with the patient

[49]. This means that collecting data for a research that does not directly involve the

health and safety of the patient, such as PTH, is not a reasonable grounds to disclose

PHI.

There are some environments where sharing data is not possible due to privacy

concerns. One example is the medical field. In the United States, under the Health

Insurance Portability and Accountability Act (HIPAA), it is illegal for all hospitals

and health insurance companies to reveal personally identifiable information of their

patients or customers [32]. Legal jurisdictions, such as HIPAA, prevent implementa-

tion of IoT in some industries. However, it also prevents the advantages of efficiency,

cost saving and an accurate representation that IoT systems bring. A new method

that not only protects the privacy and security of individuals but also brings the

advantages of IoT is called Federated Learning.

The lack of capability to share data impedes the collection and gathering of im-

portant or rare medical data, forcing research to be infeasible or expensive. Less data

also means that it is less representative of the population. For example, a hospital

in Los Angeles might have different representation of data than a hospital in Boston

on the same clinical problem. The lack of representation and segmented subsets in

currently available data can lead to biases in the research or results, making a pro-
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posed medical theory or practice ineffective for some patients at best or dangerous at

worst [50]. It is impossible to centralize the data and working on subsets of data are

problems for researchers and patients. Federated learning allows hospitals to share

information without sharing the data [51, 52, 50].

2.4.4 Federated Averaging

Federated Averaging (FedAvg) is one of the parameter aggregation techniques for

federated learning. There are two steps to FedAvg. In step one, after each client

would run its machine learning model on its local data, the parameters would be sent

to the server. In step two, the server then averages all of the clients’ parameters and

sends the new averaged parameters back to each client. In a typical gradient descent

model, these two steps would be repeated until an optimization is reached [53].

2.5 Uncertainty Quantification Problem

The late statistician George Box once said, “All models are wrong, but some are

useful” [54]. The quote is often used to show that statistical models cannot entirely

replicate the reality of the world. In order to grasp the difference, there needs to be

some measure to quantify how much difference there is from the model created and

the true reality of the world. Calculating the difference between model and reality

and giving it a mathematical value of some sort is called uncertainty quantification

[55]. The reason models do not represent the reality exactly is because of the error of

the data or erroneous assumptions when constructing the model. That is why models

without uncertainty quantification cannot be trusted.

In uncertainty quantification, there are two types of uncertainties: aleatoric and

epistemic uncertainties. Aleatoric uncertainties come from the data and how random

it is or how it is not completely representative of the population. This randomness is
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part of the data and cannot be reduced. Epistemic uncertainties are created when a

lack of data creates uncertainties of the model. This is captured through confidence

intervals and be one of the main aspect of this paper [56].

The data uncertainty, called aleatoric uncertainty, stems from randomness of the

data [57]. This can range from people collecting the wrong data, mislabeling data or

just missing data. Because the dataset is wrong to begin with, any model that tries

to do prediction using this faulty dataset would not provide accurate or trustworthy

results. Unfortunately, nothing can be done to reduce data error and uncertainty

is quantified by adding an error term. On the other hand, uncertainty on model

assumptions and errors stem from incorrect model assumptions and incorrect param-

eters, called epistemic uncertainty [57]. This can be the result of a small dataset that

is not a good representation of the population or a large dataset that does not have

proper training data [58]. These uncertainties can be quantified using variance of the

model parameters. Correctly quantifying the uncertainties of a model will present a

more accurate representation of the real world.

2.5.1 Bootstrapping

Bootstrapping is a resampling technique to estimate the true variation of popu-

lation parameters when there is insufficient data [59]. For example, one model using

one dataset would output only one mean. Without boostrapping, there would only be

one mean and it would be very difficult to find the distribution of that data’s mean.

Bootstrapping allows us to find that distribution by picking each sample, with re-

placement, from that dataset. This would create multiple new datasets based on one

dataset and allow the model to run multiple times to calculate multiple means. This

generation of multiple means creates a distribution of means that would be an esti-
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mate of the true population mean. The distribution can generate standard deviations

and confidence intervals that were previously unable to be calculated.

26



III. Methodology

Preamble

This chapter discusses The CARE Consortium dataset and particular features of

interest that were chosen for subsequent analysis. On the final two feature subsets

chosen, a basic linear regression is performed, that simulates a centralized database,

and a FL using linear regression, that simulates a potential methodology for running

better models without sharing data. Finally, the uncertainties of both methodologies

are quantified to determine the variation of each model to show that uncertainty

quantification (UQ) in FL is a viable model.

3.1 NCAA-DoD Grand Alliance CARE Consortium Dataset and Feature

Selection

The dataset was collected from student athletes in Division 1 programs from 30

different universities across the United States from 2014 to 2018. There are three

main timelines for each patient used in this research: baseline, 24-48 hours and 6

months post injury. Before the start of every season, each athlete is required to do

a diagnostic concussion test, which is labeled as baseline. Throughout the season, if

the athlete is concussed, they are required to receive the same concussion test within

24-48 hours and after 6 months to check whether the score changed to gauge whether

the athlete’s concussion was treated or not [23]. However, there is a lot of missing

data in the dataset because the data was collected from a variety of universities,

each with their own practices and protocols on concussion treatment. There is very

limited standardization on the diagnosis and treatment of concussed individuals in

the medical industry, let alone in the NCAA. Even the most common tests have been

proven to be unreliable at times but necessary due to a lack of standardization in
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how to diagnose a concussion [60]. There are a total of 37 different clinical tests

that can possibly be used to diagnose a patient for a concussion. In reality, doctors

use a mixture of those different tests. This lack of standardization allows doctors

and physicians at each university to administer their own concussion procedures and

tests, which leads to different athletes taking one diagnosis test over the other. The

different procedures affect the dataset because not everyone is taking the same tests

or the same number of tests. Some universities have students that take only one or

two tests while other universities might take 20-30 tests. This imbalance creates a lot

of features but a lot of the data in those features are missing, creating missing data

in the aggregated dataset.

In order to mitigate the negative impacts of the missing data as much as possi-

ble, the focus was on the features that were heavily used in other studies, such as

the SCAT3 score or standardized assessment of concussion (SAC) score, and had a

complete dataset in accordance with other features. This means that patients that

had the same combination of features were studied only if those features all contained

data. In the end, 12 different scores were obtained, each with all three of the time-

lines, and obtained the best possible combination by comparing each combination

based on the highest R2 and R2-adjusted scores.

Sport Concussion Assessment Test (SCAT) is a collected of 22 reported symptoms

that are self-rated on 7-point scale (0: no symptoms, 6: severe symptoms) [24]. Figure

4 shows the SCAT3 scorecard that scores individual symptoms ranging from 0, no

symptoms, to 132, the highest score with worst symptom [4]. As shown in the figure,

the SCAT3 tests 22 different sub-tests that is self-reported by the athlete, who grades

each question based on a score of 0 to 6, with 0 feeling no symptom at all and 6

feeling severe symptom. The maximum score that is available for the SCAT3 test is
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132 and the lowest score is 0. The maximum number of symptoms the patient can

mark is 22; the lowest is 0.

Figure 4: SCAT3 Scorecard [4]

3.2 Centralized Model

The centralized model simulates the concussed athletes all being in one hospi-

tal. Although this is not realistic, as these athletes were gathered from 30 different

universities, the centralized model is the standard in which the FL model will be

compared.

29



The linear model used:

y = xk
′β + ϵ (4)

where β = (β0, β1, ..., βk) for k number of features.

y is the response variable, k is the number of features, β0 is the constant coefficient,

βk is the coefficient for the kth feature, xk is the kth feature, and ϵ is the error. The

two response variables for y are SCAT3 score and SCAT3 number of symptoms. The

SCAT3 score is the score of the diagnosis test of the SCAT test. A Sport Concussion

Assessment Test (SCAT) 3 test is the most widely used diagnosis test for concussion

in individuals who are believed to have suffered from a concussion [24].

The two main response variables each has its own set of features. The total

number of combination of features from the 12 for each response variable was 559.

Using the 559 total combinations, the best possible combination of features for each

response variable recorded is calculated on four different time periods based on R2 and

R2-adjusted scores. In the end, eight different possible combinations are compared.

3.3 Federated Learning Model

Compared to the central model, the FL model simulates more realistically how

hospitals work and take HIPAA into account. This situation is simulated by creating

four clients, representing four hospitals, along with a central server. This is modeled

below.

There are four clients and one server. After each client runs a certain machine

learning model, the end parameters end up in these four equations.

yclient1 = xk,1
′β1 + ϵ1 (5)
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yclient2 = xk,2
′β2 + ϵ2 (6)

yclient3 = xk,3
′β3 + ϵ3 (7)

yclient4 = xk,4
′β4 + ϵ4 (8)

After these parameters are calculated in the client side, the parameters from each

equation are sent to the server and are then averaged. Thus, the server model, with

n being the number of clients, ends up looking like this:

yserver =
β1 + β2 + β3 + β4

n
∗ xserver + ϵserver (9)

Simplifying,

yserver = avg(β) ∗ xserver + ϵserver (10)

Finally, these new model parameters are sent back to the clients to restart the

federated process. This equation is assuming that each client has the same number

of samples. This means that each client is weighted equally in the averaging process.

However, if the number of samples are not equally distributed in each client, the

clients are weighted differently based on the number of samples.

For example, if K is the total number of samples, there are four clients and µ is

the percentage of samples in each client based on K, then:

K + clienti = µi (11)
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and

1 = µ1 + µ2 + µ3 + µ4 (12)

Using µ into the original federated averaging equation, the new equation for feder-

ated averaging not assuming each client has the same number of data samples would

look like this:

yserver = (µ1β1 + µ2β2 + µ3β3 + µ4β4)xserver + ϵserver (13)

The reason four clients is used is because of the limitation of the size of the dataset.

Most of the datasets tested were between 100 and 200 samples. The reason is that

linear regression does not work with incomplete data in the features. In a dataset

filled with missing data, the size of the datasets tested had to be trimmed significantly

to create a complete dataset with all the data in the features for the model to work.

Using the same dataset from the central model, the data is randomly shuffled

and split into four clients evenly, meaning each client would get the same number of

samples. Then, each client would run its own linear regression model and calculate

model parameters and R2 and R2-adjusted scores. These parameters and scores are

then sent to a simulated central server that averages the values calculated from each

client. This simulates the FedAvg modeling. In a more traditional FL model using

a neural network, the model parameters and averages calculated from the server are

sent back to the clients to run a new iteration on the same data and model but

with the new received parameters. This process would continue iteratively until an

optimal is reached. However, because linear regression is a closed-form solution, there

is no need for the iterative process like a neural network. This means that the values

calculated from the server do not go back to the client.

These R2 and R2-adjusted scores are then compared to the corresponding central

32



model values in order to see if there is a loss in information by only sharing model

parameters instead of the actual data. If the R2 and R2-adjusted scores for the FL

model are lower than corresponding values from the centralized model, then there is

a loss in information during the process in the federated model and may not be a

viable option for healthcare purposes. The reason is that every piece of information

regarding patients and their health records can be paramount in the health and safety

of the individual. If the values are the same or higher than the central model, then

this would mean that not only is the FL model not losing patient information but also

learning more by sharing model parameters rather than collecting data in a central

database. This would show that the federated model can be seen as a viable solution

to the problem of HIPAA, where hospitals cannot share data.

3.4 Uncertainty Quantification Federated Learning (UQFL)

The biggest reason a linear regression model is used is to be able to calculate the

uncertainty in a FL model setting. This allows us to see with a 1 − α confidence

how accurate the parameters of the individual features are to the real world. UQFL

calculates the individual variances of the features for each client. Then, it calculates

a global model variance for each feature by using FedAvg and averaging the variances

from individual clients. Finally, using the global variance, it calculates the confidence

intervals of each feature with a 1−α confidence. Figure 5 visualizes the UQFL system,

with four hospitals acting as local clients, sharing variances to generate confidence

intervals.

The formulation is modeled below.

Client: The variances of each model parameters are calculated for each client.

yi,k = xi,k
′βk + ϵi,k for ith value in K client, assuming ϵi,k N(0, σ2

k) (14)
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β̂k = (x⃗′
kx⃗k)

−1x⃗′
ky⃗k (15)

V ar(β̂k) = V ar((x⃗′
kx⃗k)

−1x⃗′
ky⃗k) (16)

V ar(β̂k) = (x⃗′
kx⃗k)

−1x⃗′
kx⃗k(x⃗′

kx⃗k)
−1V ar(y⃗k) (17)

V ar(β̂k) = (x⃗′
kx⃗k)

−1σk (18)

σ̂2
k =

1

n− p

n∑
i=1

(yk,1 − ˆyk,i)
2 (19)

V ar(β̂k) = (x⃗′
kx⃗k)

−1σ̂k (20)

Server: The client parameter variances are aggregated and averaged in the server.

V ar(β̂) = (
K∑

K=1

V ar(β̂K)) (21)

Confidence Intervals: Confidence intervals are calculated using the final server

parameter variances with a 1− α confidence.

[lower, upper] = β̂K ± zα
2
σ̂βK

(22)

where:

β̂k = Estimate of Coefficient for Client k

β̂ = Estimate of Coefficient for Server

σ̂k
2 = Variance estimate for Client k

σ̂β = Std Dev for Server Coefficient

K = Number of Clients

zα
2

= z-score
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Figure 5: Example of UQFL with Four Hospital Clients
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IV. Results and Analysis

4.1 Choosing Subsets with the Dataset

Shown in the Appendix 13, the best R2 and R2-adjusted scores come from the

time periods in which the response variable is the 6 months post injury time scores

and the features are the baseline time scores. For this time period, the two response

variables tested, SCAT3 Total Number of Symptoms and SCAT3 Total Score, had two

distinct set of features that gave the highest R2 and R2-adjusted scores. For SCAT3

Total Number of Symptoms, there were five features used in the model: Satisfaction

with Life Scale (SWLS) Score, SCAT3 Total Number of Symptoms, Standardized

Assessment Concussion (SAC) score, Vestibular Ocular Motor Screening (VOMS)

score and Brief Symptom Inventory (BSI) 18 Score. For SCAT Total Score, there

were four features used in the model: SCAT3 Total Score, Clinical Reaction Time

(CRT) score, SAC score and BSI 18 score. Because the two response variables have

their own data, the datasets will be called subsets.

4.1.1 Features Explained

BSI 18 is a self-reported checklist that has 18 symptoms listed. It measures a

patient’s brain health. The patient records each symptom listed in the test on a

five-point scale based on how much that specific symptom bothers the patient (0:

no symptoms, 5: felt worst pain). The total scores can range from 0 to 90 (0:

no symptoms, 90: all symptoms, felt worst pain on all symptoms). The patient is

considered to have a healthier brain if he has a lower BSI 18 score [61].

SAC measures a patient’s brain health for concussion. It is separated into four

parts: Orientation Score, Immediate Memory Score, Concentration Score and De-

layed Recall Score. The Orientation score has five questions that asks the patient the
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month, date, day of week, year and time. The patient receives one point from each

correctly answered question for a maximum of five points. The Immediate Memory

Score has five words that the patient must recall in order immediately after the test

administrator reads them aloud. This test is repeated three times and the patient

receives one point from each word remembered correctly for a maximum of 15 points.

The Concentration Score has five questions. Four of the questions require the patient

to repeat a series of numbers read by the test administrator backwards. For example,

the test administrator reads 5-8-3, the patient must answer 3-8-5. The fifth ques-

tion requires the patient to recall the months of the year backwards starting from

December. The patient receives one point from each correctly answered question for

a maximum of five points. Finally, the Delayed Recall requires the patient to recall

the five words from the Immediate Memory Score in any order. The patient receives

one point from each correctly answered question for a maximum of five points [62].

All the points are summed up for a maximum score of 30 and a minimum score of 0.

The patient is considered to have a healthier brain if they has a higher SAC score.

SWLS measures the patient’s current life satisfaction. The questions consists

of five statements: “In most ways my life is close to my ideal.”, “The conditions

of my life are excellent.”, “I am satisfied with my life.”, “So far I have gotten the

important things I want in life.” and “If I could live my life over, I would change

almost nothing.”. The patient places a value on each question based on a seven point

scale (1: “strongly disagree”, 7: “strongly agree”). The responses are summed up

with a maximum score of 35 and a minimum score of 5. A patient is considered to

have a higher life satisfaction if they has a higher SWLS score [63].

VOMS measures a patient’s visual and balance control. It has eight categories: a

baseline and seven sub-tests. The sub-tests include smooth pursuit, saccades (Hori-

zontal) saccades (Vertical) convergence (Near Point), Vestibular-Ocular Reflex (VOR)
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Horizontal, VOR Vertical Visual Motion and sensitivity. These tests include checking

if the patient gets double vision looking at an object in close proximity (convergence)

or if the patient can maintain eye contact with an object while the patients head moves

side to side (VOR Horizontal). Each category measures four symptoms: headache,

dizziness, nausea, fogginess. These four symptoms are measured at baseline and once

again after conducing each sub-test. Each symptom for each category is measured on

a ten-point scale (0: feels no symptom, 10: feels most symptom). The responses are

summed up with a maximum score of 320 and a minimum score of 0. A patient is

considered to have a better visual and balance control, thus better brain health, if he

has a lower VOMS score [64].

CRT measures the hand eye coordination of a patient through reaction time. The

test administrator holds a stick in the air and the patient places his hand at the

bottom end of the stick. The test administrator drops the stick and the patient has

to catch the falling stick as fast as possible. An example of how this test is conducted

is shown in Figure 6. The time to catch the stick is measured as a reaction time. The

patient is considered to have a healthier brain if he has a faster reaction time [65].

Figure 6: CRT Test Example [4]

38



4.1.2 Transformation

Figure 7 shows that the response variables of interest (SCAT3 Total Score and

SCAT3 Total Symptoms) take on a Poisson distribution. As a result, I transformed

the y-variable by square rooting its values, shown in Figure 8, (y′ =
√
y, because

the variance of the square root of a Poisson random variable is independent of the

mean [5]. The transformation of the response variable allows the variance to be

more stable, predict better and meet the constant variance assumption. However,

the model did not perform better compared to the original, untransformed data. The

average values of the R2 and R2-adjusted scores for the transformed y-values for 1000

runs were about the same as the average values of the R2 and R2-adjusted scores for

the original y-values for both central and FL models shown by Table 1. Given that

the data is mostly ordinal data and there was little improvement of the results for the

transformed data, the untransformed data was chosen in order to maximize results

[66].

Table 1: Transformed y-values for SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms Transformed

Intercept (-5.5634, 2.7096) (-6.0847, 3.2308)

102

Satisfaction with Life Scale.SWLSTotalScore (0.0012, 0.0032) (0.0012, 0.0032)
SCAT3TotalSymptoms (0.1115, 0.1185) (0.1099, 0.1202)

SACScore (0.0492, 0.0573) (0.0483, 0.0581)
VOMS Scoring.VOMSTotalScore (0.0047, 0.0051) (0.0046, 0.0052)

BSI18Score (0.0089, 0.0134) (0.0064, 0.0159)
R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.1048±0.2842) (0.2481±0.2095) (-0.1677±0.3707) (0.0192±0.4535) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(-0.0084, 0.6236) (0.1234, 0.7649) (-0.3152, 0.509) (-0.1433, 0.6933)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.6056±0.184) (0.5113±0.1573) (0.1648, 1.4166) (0.3416, 1.0427)

4.1.3 Normalization

SWLS, SAC, BSI 18, SCAT3 and VOMS are all ordinal variables. They have a

clear ordering to their values and a lower score has one meaning for a particular test
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(a) Histogram of SCAT3 Total Number of
Symptom Response Variables

(b) Histogram of SCAT3 Total Score
Response variables

Figure 7: Distribution of Potential Response Variables

Figure 8: Variance-Stabilizing Transformations based on Expected y-values [5]

and higher score means another for a different test. CRT is a continuous variable as it

is the only test that is measured with time. As a result, the CRT scores are normalized

at the very beginning. However, the ordinal variables are not. This section shows

that the normalization of the ordinal data does not improve the R2 and R2-adjusted

scores. Using the SCAT3 Total Number of Symptoms at 6 months post injury as a

response and SCAT3 Total Number of Symptoms, SWLS, SAC, VOMS, BSI scores

at baseline as features, figures below show the comparison of the R2 and R2-adjusted

scores for the original subset and the normalized subset. As shown in Table 2, the

normalized subset is only marginally better than the original subset in terms of R2 and

R2-adjusted scores. This pattern is also true for SCAT3 Total Score at 6 months and

SCAT3 Total Score, CRT, SAC, and BSI 18 scores at baseline. Given that the data
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is mostly ordinal data and there are many challenges involving normalizing medical

data, I chose the original subset as the final subsets to perform tests on [66].

Table 2: Normalized y-values for SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms Normalized

Intercept (-0.0218, 0.0195) (-0.0266, 0.0243)

102

Satisfaction with Life Scale.SWLSTotalScore (-0.0156, 0.0348) (-0.0162, 0.0354)
SCAT3TotalSymptoms (0.3961, 0.5022) (0.3737, 0.5245)

SACScore (0.1002, 0.1447) (0.0958, 0.1491)
VOMS Scoring.VOMSTotalScore (0.0246, 0.0834) (0.0158, 0.0922)

BSI18Score (-0.0039, 0.1230) (-0.0690, 0.1881)
R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.1079±0.2668) (0.2467±0.2142) (-0.1636±0.3479) (0.0174±0.2795) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(-0.0181, 0.6247) (0.1134, 0.7612) (0.1134, 0.7612) (-0.1565, 0.6885)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.8292±0.2544) (0.7015±0.217) (0.279, 2.1588) (0.1912, 1.4717)

4.1.4 Data Imputation

In order to combat the missing data, I implemented a K-near neighbor (kNN)

data imputation technique. kNN imputes data using data proximity [67]. The major

concept of kNN data imputation is to group data that are close to one another so that

if a new or missing data is introduced, kNN estimates the value of the missing data

based on how close it is to other groups. The imputed value is the average of the closest

group of data [68]. However, increasing the subset size did not improve the model

scores. Using the SCAT3 Total Score data as the original subset, the original and the

imputed subset are compared to see which subset performs better with higher R2 and

R2-adjusted scores for both the central and federated models, based on 1000 iterations.

The original subset had 103 data points and the imputed data had 1579 data points.

Despite having more data to work with, shown in Appendix A, the imputed subset

performed worse than the original subset in almost every score that was measured.

In the original subset, the mean R2 and R2-adjusted scores for the central model

were 0.14408 and -0.0699 respectively. For the imputed subset, the mean R2 and
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R2-adjusted scores for the central model were 0.0679 and 0.0457 respectively. In the

original subset, the mean R2 and R2-adjusted scores for the FL model is 0.3909 and

-0.2387 respectively. For the imputed subset, the mean R2 and R2-adjusted scores for

the FL model is 0.0878 and 0.0661 respectively. In both central and FL models, the

original subset scores much higher on the R2 but the imputed subset scores marginally

higher on the R2-adjusted scores. Also, the max R2 and R2-adjusted scores were much

higher for the original subset, scoring in the 80 and 90 percentile, while the imputed

subset scores maxed out in the 10 percentiles. Due to the results, I chose not to

impute the data and use the original subset to perform tests on.

4.1.5 Data Assumptions

4.1.5.1 SCAT3 Total Number of Symptoms

1. Linearity

• Figure 9 shows a fairly linear relationship between the the SCAT3 Total

Number of Symptoms and its residuals.

2. Normality

• Figure 10 shows a pretty normal distribution of SCAT3 Total Number of

Symptoms Residuals.

3. No Multicollinearity Among Features

• Figure 11 shows little multicollinearity among SCAT3 Total Number of

Symptoms features.

4. No Auto-Correlation of Residuals

• The Durbin-Watson value = 1.9159
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• Little to no autocorrelation of SCAT3 Total Number of Symptoms residu-

als.

5. Homoscedasticity

• Figure 12 shows no apparent pattern in SCAT3 Total Number of Symptoms

residuals.

Figure 9: Linearity Test for SCAT3 Total Number of Symptoms

4.1.5.2 SCAT3 Total Score

1. Linearity

• Figure 13 shows a fairly linear relationship between the the SCAT3 Total

Score and its residuals.
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Figure 10: Normality Test for SCAT3 Total Number of Symptoms

2. Normality

• Figure 14 shows a pretty normal distribution of SCAT3 Total Score Resid-

uals.

3. No Multicollinearity Among Features

• Figure 15 shows little multicollinearity among SCAT3 Total Score features.

4. No Auto-Correlation of Residuals

• The Durbin-Watson value = 2.4058

• Little to no autocorrelation of SCAT3 Total Score residuals.

5. Homoscedasticity

• Figure 16 shows no apparent pattern in SCAT3 Total Score residuals.
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Figure 11: Multicollinearity Test for SCAT3 Total Number of Symptoms

Figure 12: Homoscedasticity Test for SCAT3 Total Number of Symptoms
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Figure 13: Linearity Test for SCAT3 Total Score

Figure 14: Normality Test for SCAT3 Total Score
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Figure 15: Multicollinearity Test for SCAT3 Total Score

Figure 16: Homoscedasticity Test for SCAT3 Total Score
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4.2 Final Tests

4.2.1 FL vs Central

The final tests done on both the SCAT3 Total number of Symptoms and SCAT3

Total Score each has three sections: FL vs Central comparisons, Client vs Total

Bootstrapping comparisons, and Percentile vs Empirical Bootstrapping comparisons.

First, the tests compare the differences based on three main scores: R2 scores, R2-

adjusted scores, and Mean Squared Error (MSE) scores. For each of the three scores,

there is a mean, along with a standard deviation, and a minimum (min) and maximum

(max) value for each score. The min values are actually the 25th percentile of each

test. The reason is that there are anomalies with the size, structure and randomness

of the test subsets that causes the R2 scores and R2-adjusted scores to output values

that are wildy different. For example, Figure 17 shows a histogram of 1000 R2 scores

for the FL model of the SCAT3 Total Number of Symptoms subset. The histogram

shows values of -3 and -1.5 for the R2 scores, but there are only 1 to 5 of those values

out of 1000. Coupled with the fact that R2 scores can only range from -1 to 1, these

values are seen as outliers, which is why the 25th percentile is used as the min values.

In addition to these three tests, there is a confidence interval associated with each

model parameter and the intercept for both the central and FL models. The number

of data points used for each of the two subsets is also provided.

Figure 17: Histogram of R2 for FL for SCAT3 Total Number of Symptoms (1000
Runs)
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Furthermore, for the FL vs Central comparisons, the results display a histogram

of the R2 and R2-adjusted scores for each model. For all the tests, with the excep-

tion of Empirical Total Bootstrapping at 300 iterations for SCAT3 Total Number of

Symptoms, the results exhibit confidence intervals (CI) for all of the subset features

based on the number trials. Even in the exceptional case, the only parts that the

central model scored better than the FL model was the 25th percentile and max MSE,

where the central model had lower max and higher 25th percentile scores compared to

the FL model. For the client bootstrapping, there are four tests, each with different

number of trials: 1000, 3000, 5000, and 10000 trials. For the total bootstrapping,

there are also four tests with different numbers of trials. However, due to a lack of

computational power and limited time, the numbers of trials are 300, 500, 1000 and

2000. Finally, the times it took to complete the tests are shown for the corresponding

number of trials.

4.2.2 Client vs Total Bootstrapping

The client and total bootstrapping technique comparisons show the CI of the

model parameters for both the SCAT3 Total Number of Symptoms and SCAT3 Total

Score subsets for the FL models only. The difference between the two techniques is

that the client bootstrapping technique re-samples data after the subset is split evenly

into the four clients. The total bootstrapping technique re-samples data before the

is split into the clients. The client technique is more representative of how hospitals

and research organizations would operate FL models and the total technique is a

simulation to show a comparison. The reason is that in the real world, hospitals do

not have access to a centralized database nor does a centralized database of patient

information exist. As a result, the total bootstrapping technique would not be possible

in the present application.
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4.2.3 Percentile vs Empirical Bootstrapping

The original central and FL models made distributional assumptions; both models

assume a normal distribution of the data in order to calculate model parameters and

its variances. The client and total bootstrapping techniques explained in the previ-

ous section uses a percentile bootstrapping technique. Percentile bootstrapping is a

parametric technique that assumes that the subset can be modeled by a distribution.

However, parametric bootstrapping is sensitive to the data and its procedures. It only

works well if the data is a true representation of the real world. However, the model

cannot make this assumption for the subset due to myriad of different issues such as

missing data and faulty data collection procedures. Because the data used for both

the client and total bootstrapping techniques assumes a normal distribution, the two

techniques would also have similar faults regarded with parametric bootstrapping.

This means that the client and total bootstrapping used in these tests are parametric

bootstrapping techniques.

In order to combat the sensitivity of parametric models, an empirical bootstrap-

ping technique is tested. Empirical bootstrapping technique is a non-parametric

procedure, meaning the distribution of the data is not assumed. Empirical bootstrap

re-samples the data just like the percentile distribution. However, for each iteration

of sampling, it subtracts the model parameter of the FL model from percentile boot-

strap parameters. This is done for a certain number of iterations and creates a CI

of those differences. Finally, at the end, I add the true model parameter to the CI

in order to center around the original data and get an estimated true distribution.

Equation 23 shows the logic that is used to estimate the true distribution of the data.

The distribution of FFL, FL model, is assumed in order to estimate distribution of

FB, percentile bootstrap. Then, the newly formed relationship is used to assume

that relationship would be similar between the distribution of FFL and the distribu-
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tion of F , an estimate of the true population distribution. The formulation of the

distribution is created using Equation 24.

FB → FFL ≈ FFL → F (23)

where:

FB = Distribution of Percentile Bootstrap

FFL = Distribution of the FL Model

F = Estimate of True Population Distribution

≈ = Mimics

(β̂B
k − ˆβFL

k )quantileα
2
+ βFL

k (24)

where:

β̂b
k = Estimated Model Parameter at feature k for bth Bootstrap

ˆβFL
k = Estimated Model Parameter at feature k for FL Model

βFL
k = True Model Parameter at feature k for FL Model

By relaying the relationship between FB → FFL to FFL → F , the true distribution

of the data can be estimated. The CI are compared between the parametric percentile

bootstrapping and the non-parametric empirical bootstrapping.

4.3 SCAT3 Total Number of Symptoms

4.3.1 FL vs Central

Table 4 depicts the results of the FL and the central models for SCAT3 Total

Number of Symptoms under the assumption of normality. Figure 18 shows that the

CI for the central model is narrower than the CI for the FL model. The difference

in CI is also shown numerically in Table 3, where the average difference of the CI
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for the central model is 0.0275 and the average difference of the CI for the FL model

is 0.0397. The central model is 0.0122 narrower than the FL model. The smaller

difference in the CI for the central model means that the central model has lower

variance than the FL model. This is to be expected because FL models have less

information to work with. FL models have more uncertainty due to the fact that

they gather the model parameters of the client models instead of running models on

a centralized database. This means that FL models have higher variance and, thus,

larger confidence intervals.

4.3.2 Client vs Total Bootstrapping

Figure 19 shows the comparisons of the CI between the client and total bootstrap

techniques for SCAT3 Total Number of Symptoms subset for 1000 iterations. It shows

that the client bootstrap has a larger CI on average for the model parameters than

the total bootstrap technique. This is shown numerically by Table 5. Table 5 shows

the CI differences between client and total Bootstrapping for the FL model of the

SCAT3 Total Number of Symptoms. The total bootstrapping technique for the FL

model has an average CI difference of 0.0242. The client bootstrapping technique has

(a) Central CI for SCAT3 Total Number of
Symptoms Features

(b) FL CI for SCAT3 Total Number of
Symptoms Features

Figure 18: Comparison of CI for SCAT3 Total Number of Symptoms
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Table 3: FL vs Central CI Average Length Differences for SCAT3 Total Number of
Symptoms Features

Central Model

Features Lower CI Upper CI Difference Central CI Difference Average
SWLS Total Score 0.0162 0.0278 0.0116

0.02752
SCAT3TotalSymptoms 0.2228 0.263 0.0402

SACScore 0.0909 0.138 0.0471
VOMS Total Score 0.0133 0.0161 0.0028

BSI18Score 0.0742 0.1101 0.0359

FL Model

Features Lower CI Upper CI Difference Fl CI Difference Average
SWLS Total Score 0.0156 0.0284 0.0128

0.0397
SCAT3TotalSymptoms 0.2109 0.2749 0.064

SACScore 0.0831 0.1459 0.0628
VOMS Total Score 0.0128 0.0166 0.0038

BSI18Score 0.0596 0.1147 0.0551

Table 4: FL vs Central for SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms

Intercept (-27.8990, 20.4172) (-32.6229, 25.1411)

102

SWLS Total Score (0.0162, 0.0278) (0.0156, 0.0284)
SCAT3TotalSymptoms (0.2228, 0.2630) (0.2109, 0.2749)

SACScore (0.0909, 0.1380) (0.0831, 0.1459)
VOMS Total Score (0.0133, 0.0161) (0.0128, 0.0166)

BSI18Score (0.0742, 0.1101) (0.0596, 0.1147)
R Squared Central (Mean±Std Dev) R Squared FL (Mean±Std Dev) R Squared-adjusted Central (Mean±Std Dev) R Squared-adjusted FL (Mean±Std Dev) Number of Trials

(0.0079±0.5896) (0.2237±0.3477) (-0.294±0.7691) (-0.0125±0.4535) 1000

R Squared (25th percentile, Max) Central R Squared (25th percentile, Max) FL R Squared-adjusted (25th percentile, Max) Central R Squared-adjusted (25th percentile, Max) FL

(-0.0994, 0.7035) (0.0747, 0.7850) (-0.4339, 0.6132) (-0.2069, 0.7196)

MSE Central (Mean±Std Dev) MSE FL (Mean±Std Dev) MSE (25th percentile, Max) Central MSE (25th percentile, Max) FL

(3.7156±1.5914) (3.0052±1.3774) (0.4314, 9.4947) (0.3416, 6.9325)
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an average CI difference of 0.0303. The total bootstrapping technique has a smaller

average CI difference by 0.0062 compared to the client bootstrapping technique.

4.3.3 Percentile vs Empirical Bootstrapping

Figures 20 and 21 show comparison of the CI for the percentile and empirical

bootstraps for both the client and total techniques. Figure 20 shows that the empiri-

cal bootstrap CIs have larger lengths than the percentile bootstrap CIs for the client

bootstrap technique. Table 6 also shows that the average difference of the CI for the

empirical bootstrap is 0.0403 and the average difference of the CI for the percentile

bootstrap is 0.0303. The percentile bootstrap CI have a smaller average difference

than the empirical CI by 0.01. This means that there is more variance in the empirical

bootstrap technique using the the client bootstrap technique. Figure 21 also shows

that the empirical bootstrap CIs have smaller lengths than the percentile bootstrap

CIs for the client bootstrap technique. Table 7 backs this visual as the average differ-

ence of the CI for the empirical bootstrap is 0.0231 and the average difference of the

CI for the percentile bootstrap is 0.0255. The empirical bootstrap CI have a smaller

(a) Total Bootstrap SCAT3 Total Number of
Symptoms

(b) Client Bootstrap SCAT3 Total Number of
Symptoms

Figure 19: Comparison of Client and Total Bootstrap CI for SCAT3 Total Number
of Symptoms (1000 Runs)
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Table 5: FL CI Differences between Client and Total Bootstrapping SCAT3 Total
Number of Symptoms

FL Total Bootstrapping (1000 Runs)

Features FL Lower CI FL Upper CI FL CI Difference FL CI Difference Average Total
SWLS Total Score 0.0148 0.0286 0.0138

0.02416
SCAT3TotalSymptoms 0.1833 0.2152 0.0319

SACScore 0.0847 0.1028 0.0181
VOMS Total Score -0.0008 0.0067 0.0075

BSI18Score 0.1199 0.1694 0.0495

FL Client Bootstrapping (1000 Runs)

Features FL Lower CI FL Upper CI FL CI Difference FL CI Difference Average Client
SWLS Total Score -0.0057 0.0121 0.0178

0.030322
SCAT3TotalSymptoms 0.08379 0.1289 0.04511

SACScore 0.0469 0.0679 0.021
VOMS Total Score 0.0147 0.0245 0.0098

BSI18Score 0.1925 0.2504 0.0579

average difference than the empirical CI by 0.0024. This means that there is more

variance in the percentile bootstrap technique using the total bootstrap technique.

(a) Client Percentile Bootstrap SCAT3 Total
Number of Symptoms

(b) Client Empirical Bootstrap SCAT3 Total
Number of Symptoms

Figure 20: Comparison of CI for Client Percentile and Empirical Bootstrap SCAT3
Total Number of Symptoms (1000 Runs)

55



(a) Total Percentile Bootstrap SCAT3 Total
Number of Symptoms

(b) Total Empirical Bootstrap SCAT3 Total
Number of Symptoms

Figure 21: Comparison of CI for Total Percentile and Empirical Bootstrap SCAT3
Total Number of Symptoms (1000 Runs)

Table 6: Comparison of Client Percentile and Empirical Techniques for SCAT3 Total
Number of Symptoms (1000 Runs)

Client Percentile Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
Satisfaction with Life Scale.SWLSTotalScore -0.0057 0.0121 0.0178

0.030322
SCAT3TotalSymptoms 0.08379 0.1289 0.04511

SACScore 0.0469 0.0679 0.021
VOMS Scoring.VOMSTotalScore 0.0147 0.0245 0.0098

BSI18Score 0.1925 0.2504 0.0579

Client Empirical Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
Satisfaction with Life Scale.SWLSTotalScore 0.0151 0.0268 0.0117

0.04034
SCAT3TotalSymptoms 0.2359 0.3075 0.0716

SACScore 0.0962 0.1116 0.0154
VOMS Scoring.VOMSTotalScore 0.0016 0.0203 0.0187

BSI18Score 0.0083 0.0926 0.0843

Table 7: Comparison of Total Percentile and Empirical Techniques for SCAT3 Total
Number of Symptoms (1000 Runs)

Total Percentile Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
Satisfaction with Life Scale.SWLSTotalScore 0.0172 0.0288 0.0116

0.0255
SCAT3TotalSymptoms 0.2277 0.2677 0.04

SACScore 0.0851 0.1325 0.0474
VOMS Scoring.VOMSTotalScore 0.0124 0.0151 0.0027

BSI18Score 0.0716 0.0972 0.0256

Total Empirical Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
Satisfaction with Life Scale.SWLSTotalScore 0.0129 0.0265 0.0136

0.0231
SCAT3TotalSymptoms 0.2392 0.2679 0.0287

SACScore 0.1006 0.1214 0.0208
VOMS Scoring.VOMSTotalScore 0.0085 0.0161 0.0076

BSI18Score 0.0537 0.0984 0.0447
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4.4 SCAT3 Total Score

4.4.1 FL vs Central

Table 9 depicts the results of the FL and the central models for SCAT3 Total

Score under the assumption of normality. Figure 22, similar to the SCAT3 Total

Number of Symptoms, shows that the CI for the central model is also narrower than

the CI for the FL model. The difference in CI is also shown again numerically in

Table 8. The average difference of the CI for the central model is 0.0743 and the

average difference of the CI for the FL model is 0.0835. The central model is 0.0092

narrower than the CI model, showing that the central model has indeed less variance

than the FL model.

4.4.2 Client vs Total Bootstrapping

Figure 23 shows the two different types of bootstrapping techniques compared side

by side. Visually, the client bootstrap has a larger CI than the total bootstrap. This

difference in the width of the CI is shown in Table 10. Table 10 shows the comparisons

of the CI for the Total and Client Bootstrapping models for 1000 iterations for the FL

model. The FL model client bootstrap has a larger average interval by 0.0099 than

(a) Central CI SCAT3 Total Score (b) FL CI SCAT3 Total Score

Figure 22: Comparison of CI for SCAT3 Total Score
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Table 8: FL vs Central CI Differences Total Score

Central Model

Features Lower CI Upper CI Difference Central CI Difference Average
SCAT3TotalScore 0.2232 0.2278 0.0046

0.074325
CRTScore -0.1443 0.0754 0.2197
SACScore -0.1443 -0.0808 0.0635
BSI18Score -0.0129 -0.0034 0.0095

FL Model

Features Lower CI Upper CI Difference Fl CI Difference Average
SCAT3TotalScore 0.2199 0.231 0.0111

0.0835
CRTScore -0.143 0.0742 0.2172
SACScore -0.1502 -0.0749 0.0753
BSI18Score -0.0234 0.007 0.0304

Table 9: FL vs Central for SCAT3 Total Score

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalScore

Intercept (-21.6516, 28.4347) (-26.8669, 33.6499)

103
SCAT3TotalScore baseline (0.2232, 0.2278) (0.2199, 0.2310)

CRTScore (-0.1443, 0.0754) (-0.1430, 0.0742)
SACScore (-0.1443, -0.0808) (-0.1502, -0.0749)
BSI18Score (-0.0129, -0.0034) (-0.0234, 0.0070)

R Squared Central (Mean±Std Dev) R Squared FL (Mean±Std Dev) R Squared-adjusted Central (Mean±Std Dev) R Squared-adjusted FL (Mean±Std Dev) Number of Trials

(0.1430±0.7613) (0.3783±0.5083) (-0.0713±0.9516) (0.2229±0.6354) 1000

R Squared (25th percentile, Max) Central R Squared (25th percentile, Max) FL R Squared-adjusted (25th percentile, Max) Central R Squared-adjusted (25th percentile, Max) FL

( -0.0198, 0.8659) (0.1860, 0.9572) (-0.2748, 0.8324) (-0.0175, 0.9465)

MSE Central (Mean±Std Dev) MSE FL (Mean±Std Dev) MSE (25th percentile, Max) Central MSE (25th percentile, Max) FL

(4.5366±2.1148) (3.2882±1.4147) (0.5154,16.773) (0.4599, 7.531)

the total bootstrap. Both Figure 23 and Table 10 show that the client bootstrap has

a larger CI, thus more variance, than the total bootstrap technique.

(a) FL Client Bootstrap SCAT3 Total Score (b) FL Total Bootstrap SCAT3 Total Score

Figure 23: Comparison of Total and Client CI for FL model of SCAT3 Total Score
(1000 Runs)
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Table 10: FL CI Comparison for Total and Client Bootstrapping for SCAT3 Total
Score (1000 Runs)

Total Bootstrapping (1000 Runs)

Features FL Lower CI FL Upper CI FL CI Difference FL CI Difference Average Total
SCAT3TotalScore 0.23 0.2539 0.0239

0.03225
CRTScore -0.0437 -0.0042 0.0395
SACScore -0.1342 -0.1011 0.0331
BSI18Score -0.0061 0.0264 0.0325

Client Bootstrapping (1000 Runs)

Features FL Lower CI FL Upper CI FL CI Difference FL CI Difference Average Client
SCAT3TotalScore 0.1981 0.2202 0.0221

0.0422
CRTScore -0.1695 -0.0929 0.0766
SACScore -0.1588 -0.1356 0.0232
BSI18Score 0.0864 0.1333 0.0469

4.4.3 Percentile vs Empirical Bootstrapping

Figure 24 shows the comparison of CI for the percentile and empirical techniques

for the client bootstrapping SCAT3 Total Score. Figure 25 shows the comparison

of CI for the percentile and empirical techniques for the total bootstrapping SCAT3

Total Score. Both figures show that the percentile bootstrap technique has a larger

CI on average than the empirical bootstrap techniques.

The visualization is translated numerically with Tables 11 and reftab:CI Com-

parison for Percentile and Empirical Total Bootstrapping SCAT3 Total Score. Table

11 shows the comparison of the client percentile and empirical bootstrapping tech-

niques. Comparing the two client bootstrapping techniques, the percentile technique

(a) Client Percentile Bootstrap SCAT3 Total
Score

(b) Client Empirical Bootstrap SCAT3 Total
Score

Figure 24: Comparison Client CI for for Percentile and Empirical Bootstrapping of
SCAT3 Total Score (1000 Runs)
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(a) Total Percentile Bootstrap SCAT3 Total
Score

(b) Total Empirical Bootstrap SCAT3 Total
Score

Figure 25: Comparison Total CI for for Percentile and Empirical Bootstrapping of
SCAT3 Total Score (1000 Runs)

has a wider average CI than the empirical technique by 0.0243. Table 12 shows the

comparison of the total percentile and empirical bootstrapping techniques. The per-

centile technique also has a wider average CI than the empirical technique, which is

wider by 0.0257. These two tables agree with Figures 24 and 25 in that the empirical

bootstrapping technique has a smaller CI than the percentile techniques. This means

that the empirical techniques have a lower variance.

Table 11: CI Comparison for Percentile and Empirical Client Bootstrapping for
SCAT3 Total Score (1000 Runs)

Client Percentile Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
SCAT3TotalScore 0.1981 0.2202 0.0221

0.0422
CRTScore -0.1695 -0.0929 0.0766
SACScore -0.1588 -0.1356 0.0232
BSI18Score 0.0864 0.1333 0.0469

Client Empirical Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Client
SCAT3TotalScore 0.229 0.2375 0.0085

0.017925
CRTScore -0.0461 -0.0155 0.0306
SACScore -0.1137 -0.1035 0.0102
BSI18Score -0.0296 -0.0072 0.0224
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Table 12: CI Comparison for Percentile and Empirical Total Bootstrapping for SCAT3
Total Score (1000 Runs)

Total Percentile Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
SCAT3TotalScore 0.23 0.2539 0.0239

0.05725
CRTScore -0.0437 -0.0042 0.0395
SACScore -0.2342 -0.1011 0.1331
BSI18Score -0.0061 0.0264 0.0325

Total Empirical Bootstrapping (1000 Runs)

Features Lower CI Upper CI CI Difference CI Difference Average Total
SCAT3TotalScore 0.2111 0.2316 0.0205

0.0316
CRTScore -0.0488 -0.0095 0.0393
SACScore -0.1342 -0.1079 0.0263
BSI18Score -0.0142 0.0261 0.0403

4.5 Final Results

For both subsets, the results were consistent. In all of the bootstrap types and

the different number of trials, the FL models consistently produced higher scores but

had more variance for its model parameters. The CI for the FL model features were

consistently larger. The FL models produced higher mean R2 scores, R2-adjusted

scores, lower standard deviations for each score, lower 25th percentiles and higher

maximums. The FL models also outputted lower average MSE scores, lower standard

deviations, higher 25th percentile and lower maximums. These results show the trade-

offs of using a FL model versus a central model. Although the FL models can produce

higher scores, there is more variability within the model parameters when compared

to its central model counterpart. The empirical bootstrapping technique was also able

to capture the estimate of the true distribution while the percentile bootstrapping

technique could not. The difference of the results of the two bootstrapping techniques

shows it was incorrect to assume the residuals are normally distributed. However,

the empirical bootstrapping technique can accurately estimate the true distribution

of the data, unlike the percentile bootstrapping technique.
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V. Conclusions

5.1 Key Findings and Contributions

One of the key findings was that the FL models produced better results but

had a larger variance of the model parameters than the central models. This is to

be expected because the FL model learns information by sharing model parameters

of its clients while the central model learns information by having the actual data

itself. This means that the central model learns from a more true representation

of the population than the FL models. This will cause the FL models to have a

higher variance of its model parameters compared to those of the central model. The

unexpected part was that the FL models consistently produced better results than

the central model. Because the central model has a more true representation of the

data, I expected better results. However, in most of the tests, the FL models score

higher average R2 and R2 adjusted scores with higher minima and maxima and lower

MSE scores with lower maxima and minima.

Another key finding was the the client bootstrapping technique had larger average

CI lengths compared to total bootstrapping technique. This means that the client

bootstrapping has a larger variance compared to the total bootstrapping technique.

Client bootstrapping re-samples data within its own clients so there is no sharing

of data with the other clients. Unlike the client bootstrapping technique, the total

bootstrapping technique re-samples the data centrally before splitting up into clients.

This means that, similar to the comparison of the FL and central models, the total

bootstrapping techniques have more data to work with, which means a more true

representation of the underlying population to work with, compared to the client

bootstrapping techniques. As a result, there is limited information for the client
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bootstrapping technique so there is more variance and uncertainty compared to the

total bootstrapping technique.

The final key finding was that the the non-parametric empirical bootstrapping

technique calculated lower average CI lengths, thus smaller variance, compared to

the parametric percentile bootstrapping technique for both the client and total boot-

strapping methods. This means that, as expected, the empirical bootstrapping tech-

nique was able to capture an estimate closer to the true distribution of the data than

the percentile bootstrapping technique.

5.2 Limitations

There were two major limitations. The first was the computational power. The

lack of computational power is shown in the total bootstrapping techniques where

2000 iterations of the SCAT3 Total Score total bootstrapping takes 1305 minutes or

roughly 22 hours to run. 10,000 iterations of the client bootstrapping for the same

data takes 11 minutes to run. As a result, a one-to-one comparison for each iteration

was infeasible. The total bootstrapping technique tests had iterations of 300, 500,

1000 and 2000 due to limited computational power while the the client bootstrapping

technique tests had iterations of 1000, 3000, 5000 and 10,000.

The second major limitation was the dataset itself. The dataset was a compilation

of individual clinical scores from 30 different universities with 30 or more doctors and

test administrators providing their own input and interpretations of the clinical tests.

Because some universities did not do certain tests that others did and vice versa, not

everybody was following the same procedures and hurt the data collecting process.

The lack of standardization in which tests to administer to collect data caused a

major missing data problem for the end user of the dataset. The missing data forced
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major assumptions of linearity to be broken and large chunks of the dataset rendered

useless.

5.3 Future Work

For future work, there are three things that I would like to test. First, I would like

to apply bootstrapping techniques on more complex models such as neural networks.

This research is limited to closed form solutions in order to find the variance and CI of

the model parameters. This limitation is why I strictly used linear regression for this

thesis. However, bootstrapping techniques allow open form solutions to re-sample

data and calculate the CI of the model parameters.

Second, I would like to try different imputation techniques to enlarge the dataset

size. Using a kNN imputation techniques on subsets of the entire dataset proved to be

not useful and produced poor results. With more time, applying different imputation

techniques not only on subsets of the data but also the entire dataset itself might

produce better results. Because of the poor collection process, there was no use for

large parts of the dataset. By correctly testing different imputation techniques, the

entirety of the dataset would be more useful. This would give us more samples to run

tests on, be more representative of the true population, and offer more insight into

the problem.

Finally, the last part would be to test larger iterations of each bootstrapping tech-

niques, which was limited by time and computational power. Either with more time

or computational resources, trying the 3000, 5000 and 10000 iterations for the total

bootstrapping techniques might produce different results. Testing these iterations

would provide a more direct comparison between the client and total bootstrapping

techniques.
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Appendix A. Comparison of Original vs Imputed Datasets
for SCAT3 Total Score

1.1 Original Data

Table 13: Original Data SCAT3 Total Score

Response Variable Features Number of DataPoints Number of DataPoints

SCAT3TotalScore (Original)

Intercept

103 1000

SCAT3TotalScore

CRTScore

SACScore

BSI18Score

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev)

(0.1430±0.7613) (0.3783±0.5083) (-0.0713±0.9516) (0.2229±0.6354)

R2 (Min, Max) Central R2 (Min, Max) FL R2-adjusted (Min, Max) Central R2-adjusted (Min, Max) FL

( -0.0198, 0.8659) (0.1860, 0.9572) (-0.2748, 0.8324) (-0.0175, 0.9465)

MSE Central (Mean±Std Dev) MSE FL (Mean±Std Dev) MSE (Min, Max) Central MSE (Min, Max) FL

(4.5366±2.1148) (3.2882±1.4147) (0.5154,16.773) (0.4599, 7.531)
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1.2 Imputed Data

Table 14: Imputed Data SCAT3 Total Score

Response Variable Features Number of DataPoints Number of DataPoints

SCAT3TotalScore (Imputed)

Intercept

1579 1000

SCAT3TotalScore

CRTScore

SACScore

BSI18Score

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev)

(0.0679±0.0408) (0.0878±0.0353) (0.0457±0.0418) (0.0661±0.0362)

R2 (Min, Max) Central R2 (Min, Max) FL R2-adjusted (Min, Max) Central R2-adjusted (Min, Max) FL

( 0.0394, 0.1302) (0.0596, 0.149) (0.0165, 0.1095) ( 0.0372, 0.1287)

MSE Central (Mean±Std Dev) MSE FL (Mean±Std Dev) MSE (Min, Max) Central MSE (Min, Max) FL

(10.4705±3.8071) (10.2584±3.7328) (5.3276, 16.4912) (5.1456, 16.1147)

66



Appendix B. Comparison of FL vs Central Model

2.1 SCAT3 Total Number of Symptoms

Table 15: SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms

Intercept (-27.8990, 20.4172) (-32.6229, 25.1411)

102

SWLS Total Score (0.0162, 0.0278) (0.0156, 0.0284)

SCAT3TotalSymptoms (0.2228, 0.2630) (0.2109, 0.2749)

SACScore (0.0909, 0.1380) (0.0831, 0.1459)

VOMS Total Score (0.0133, 0.0161) (0.0128, 0.0166)

BSI18Score (0.0742, 0.1101) (0.0596, 0.1147)

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.0079±0.5896) (0.2237±0.3477) (-0.294±0.7691) (-0.0125±0.4535) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(-0.0994, 0.7035) (0.0747, 0.7850) (-0.4339, 0.6132) (-0.2069, 0.7196)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7156±1.5914) (3.0052±1.3774) (0.4314, 9.4947) (0.3416, 6.9325)
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2.2 SCAT3 Total Score

Table 16: SCAT3 Total Score

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalScore

Intercept (-21.6516, 28.4347) (-26.8669, 33.6499)

103

SCAT3TotalScore (0.2232, 0.2278) (0.2199, 0.2310)

CRTScore (-0.1443, 0.0754) (-0.1430, 0.0742)

SACScore (-0.1443, -0.0808) (-0.1502, -0.0749)

BSI18Score (-0.0129, -0.0034) (-0.0234, 0.0070)

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.1430±0.7613) (0.3783±0.5083) (-0.0713±0.9516) (0.2229±0.6354) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

( -0.0198, 0.8659) (0.1860, 0.9572) (-0.2748, 0.8324) (-0.0175, 0.9465)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5366±2.1148) (3.2882±1.4147) (0.5154,16.773) (0.4599, 7.531)
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Appendix C. Transformed Data Results

3.1 SCAT3 Total Number of Symptoms

Table 17: Transformed SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms Transformed

Intercept (-5.5634, 2.7096) (-6.0847, 3.2308)

102

Satisfaction with Life Scale.SWLSTotalScore (0.0012, 0.0032) (0.0012, 0.0032)
SCAT3TotalSymptoms (0.1115, 0.1185) (0.1099, 0.1202)

SACScore (0.0492, 0.0573) (0.0483, 0.0581)
VOMS Scoring.VOMSTotalScore (0.0047, 0.0051) (0.0046, 0.0052)

BSI18Score (0.0089, 0.0134) (0.0064, 0.0159)
R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.1048±0.2842) (0.2481±0.2095) (-0.1677±0.3707) (0.0192±0.4535) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(-0.0084, 0.6236) (0.1234, 0.7649) (-0.3152, 0.509) (-0.1433, 0.6933)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.6056±0.184) (0.5113±0.1573) (0.1648, 1.4166) (0.3416, 1.0427)

3.2 SCAT3 Total Score

Table 18: Transformed SCAT3 Total Score

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalScore Transformed

Intercept (-1.9624, 5.8610) (-3.0164, 6.9149)

103
SCAT3TotalScore (0.0571, 0.0578) (0.0565, 0.0584)

CRTScore (-0.0222, 0.0124) (-0.0242, 0.0143)
SACScore (-0.0653, -0.0553) (-0.0665, -0.0541)
BSI18Score (0.0165, 0.0181) (0.0149, 0.0197)

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.2569±0.2639) (0.358±0.2170) (0.0711±0.3298) (0.1975±0.2713) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

( 0.1231, 0.7461) (0.2497, 0.8219) (-0.0962, 0.6827) (0.0621, 0.7773)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.6079±0.1988) (0.5241±0.147) (0.2191, 2.1019) (0.1717, 1.138)
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Appendix D. Normalized Data Results

4.1 SCAT3 Total Number of Symptoms

Table 19: Normalized SCAT3 Total Number of Symptoms

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalSymptoms Normalized

Intercept (-0.0218, 0.0195) (-0.0266, 0.0243)

102

Satisfaction with Life Scale.SWLSTotalScore (-0.0156, 0.0348) (-0.0162, 0.0354)
SCAT3TotalSymptoms (0.3961, 0.5022) (0.3737, 0.5245)

SACScore (0.1002, 0.1447) (0.0958, 0.1491)
VOMS Scoring.VOMSTotalScore (0.0246, 0.0834) (0.0158, 0.0922)

BSI18Score (-0.0039, 0.1230) (-0.0690, 0.1881)
R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.1079±0.2668) (0.2467±0.2142) (-0.1636±0.3479) (0.0174±0.2795) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(-0.0181, 0.6247) (0.1134, 0.7612) (0.1134, 0.7612) (-0.1565, 0.6885)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.8292±0.2544) (0.7015±0.217) (0.279, 2.1588) (0.1912, 1.4717)

4.2 SCAT3 Total Score

Table 20: Normalized SCAT3 Total Score

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for FL Model Number of DataPoints

SCAT3TotalScore Normalized

Intercept (-0.0156, 0.0166) (-0.0208, 0.0218)

103
SCAT3TotalScore (0.5537, 0.6335) (0.4947, 0.6925)

CRTScore (-0.0207, 0.0121) (-0.0224, 0.0138)
SACScore (-0.1263, -0.0934) (-0.1299, -0.0897)
BSI18Score (0.0812, 0.1603) (-0.0085, 0.2501)

R2 Central (Mean±Std Dev) R2 FL (Mean±Std Dev) R2-adjusted Central (Mean±Std Dev) R2-adjusted FL (Mean±Std Dev) Number of Trials

(0.2779±0.2724) (0.3658±0.2421) (0.0973±0.3405) (0.2073±0.3027) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL

(0.1446, 0.7818) (0.2648, 0.7729) (-0.0692, 0.7272) (0.081, 0.7162)

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(0.6691±0.2468) (0.5828±0.1706) (0.2191,3.9023) (0.1925, 1.1335)
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Appendix E. Percentile Client Bootstrap

5.1 SCAT3 Total Number of Symptoms

5.1.1 1000 Runs

Table 21: Percentile Client SCAT3 Total Number of Symptoms 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0172, 0.0288) (-0.0057, 0.0121)

SCAT3TotalSymptoms (0.2277, 0.2677) (0.08379, 0.1289)

SACScore (0.0851, 0.1325) (0.0469, 0.0679)

VOMS Total Score (0.0124, 0.0151) (0.0147, 0.0245)

BSI18Score (0.0716, 0.0972) (0.1925, 0.2504)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.0142±0.6036) (0.1565±0.4839) (-0.2859±0.7874) (-0.1002±0.6311) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1029,0.6482) (-0.0088,0.8737) (-0.4386, 0.5412) (-0.3158, 0.8352) 31.8s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6432±1.5968) (3.0612±1.3182) (0.6233, 10.871) (0.4776, 7.3475)
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5.1.2 3000 Runs

Table 22: Percentile Client SCAT3 Total Number of Symptoms 3000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0165, 0.0282) (0.0041, 0.01304)

SCAT3TotalSymptoms (0.2261,0.2666) (0.0723, 0.1143)

SACScore (0.0881, 0.1359) (0.0378, 0.0579)

VOMS Total Score (0.0123, 0.0151) (0.0168, 0.0293)

BSI18Score (0.0675, 0.0933) (0.2007, 0.2246)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.0126±1.2155) (0.1562±0.6911) (-0.2913±1.5854) (-0.1006±0.9014) 3000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1087, 0.6812) (-0.0213, 0.8606) (-0.4461, 0.5842) (-0.3321, 0.8182) 3m 49s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7184±1.6169) (3.1356±1.3379) (0.5422, 11.4692) (0.4598, 7.511)

5.1.3 5000 Runs

Table 23: Percentile Client SCAT3 Total Number of Symptoms 5000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0153, 0.0269) (0.0009, 0.0071)

SCAT3TotalSymptoms (0.2260, 0.2662) (0.0931, 0.1449)

SACScore (0.0887, 0.1362) (0.0399, 0.0621)

VOMS Total Score (0.0127, 0.0154) (0.0156, 0.0222)

BSI18Score (0.0687, 0.0943) (0.2053, 0.2272)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.0105±0.7972) (0.1415±0.6271) (-0.2907±1.0398) (-0.1198±0.818) 5000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1053, 0.6714) (-0.0220, 0.8572) (-0.4417, 0.5713) (-0.3331, 0.08138) 10m 25s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6756±1.5861) (3.1206±1.3097) (0.5134, 10.8711) (0.3505, 7.1678)
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5.1.4 10,000 Runs

Table 24: Percentile Client SCAT3 Total Number of Symptoms 10,000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0158, 0.0275) (0.0083, 0.0169)

SCAT3TotalSymptoms (0.2258, 0.2661) (0.0897, 0.1155)

SACScore (0.0892, 0.1367) (0.0409, 0.0538)

VOMS Total Score (0.0129, 0.0156) (0.0156, 0.0183)

BSI18Score (0.0683, 0.0940) (0.2086, 0.2250)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(-0.023±1.3356) (0.1205±1.0314) (-0.3344±1.742) (-0.1472±1.3454) 10000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1165, 0.7288) (-0.0242, 0.9006) (-0.4564, 0.6463) (-0.3359, 0.8703) 42m 58s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6773±1.575) (3.1137±1.3149) (0.3828, 11.6019) (0.2990, 8.1362)

5.2 SCAT3 Total Score

5.2.1 1000 Runs

Table 25: Percentile Client SCAT3 Total Score 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2251, 0.2299) (0.1981 ,0.2202)

CRTScore (-0.1512, 0.0654) (-0.1695, -0.0929)

SACScore (-0.1419, -0.0797) (-0.1588, -0.1356)

BSI18Score (-0.0178, 0.0080) (0.0864, 0.1333)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.1407±0.8929) (0.2321±0.8696) (-0.0741±1.1161) (0.0402±1.087) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( 0.0266, 0.8915) (0.0516, 0.9675) (-0.2168, 0.8644) (-0.1856, 0.9594) 20s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4923±2.0396) (3.7899±1.6589) (0.4108, 14.9036) (0.3461, 9.5259)
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5.2.2 3000 Runs

Table 26: Percentile Client SCAT3 Total Score 3000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2237, 0.2285) (0.2125, 0.2215)

CRTScore (-0.1490, 0.0726) (-0.1840, -0.1545)

SACScore (-0.1447, -0.0810) (-0.1693, -0.1408)

BSI18Score (-0.0151, -0.0051) (0.0820, 0.1172)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.146±0.8543) (0.2437±0.8486) (-0.0675±1.0679) (0.0546±1.0608) 3000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( 0.0032, 0.8807) (0.0752,0.9656) (-0.246, 0.8508) (-0.1560, 0.957) 2m 51s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5618±2.0505) (3.7995±1.6997) (0.4127, 19.0703) (0.3696, 9.6066)

5.2.3 5000 Runs

Table 27: Percentile Client SCAT3 Total Score 5000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2224, 0.2272) (0.2068, 0.2124)

CRTScore (-0.1503, 0.0720) (-0.1724, -0.1583)

SACScore (-0.1452, -0.0815) (-0.1567, -0.1462)

BSI18Score (-0.0116, -0.0020) (0.1088 , 0.1199)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.1666±0.7749) (0.2604±0.7633) (-0.0418±0.9687) (0.0755±0.9541) 5000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0013, 0.899) (0.0761, 0.9642) (-0.2516, 0.8738) (-0.1548, 0.9552) 8m 33s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4626±2.0294) (3.775±1.7489) (0.4239, 15.7181) (0.2741, 10.5301)
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5.2.4 10,000 Runs

Table 28: Percentile Client SCAT3 Total Score 10,000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2221, 0.2268) (0.2158, 0.2244)

CRTScore (-0.1479, 0.0722) (-0.1690, -0.1599)

SACScore (-0.1459, -0.0825) (–0.1464, -0.1403)

BSI18Score (-0.0117, -0.0019) (0.0940, 0.1087)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Client Number of Trials

(0.1418±0.7929) (0.2383±0.7677) (-0.0728±0.9911) (0.0478±0.9596) 10000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0159, 0.9132) (0.0518, 0.9734) (-0.2699, .8915) (-0.1853, 0.9668) 48m 28s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5132±2.0595) (3.7855±1.6929) (0.3535, 17.0.110) (0.3526, 9.9625)
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Appendix F. Empirical Client Bootstrap

6.1 SCAT3 Total Number of Symptoms

6.1.1 1000 Runs

Table 29: Empirical Client SCAT3 Total Number of Symptoms 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0172, 0.0288) (0.0151, 0.0268)

SCAT3TotalSymptoms (0.2277, 0.2677) (0.2359, 0.3075)

SACScore (0.0851, 0.1325) (0.0962, 0.1116)

VOMS Total Score (0.0124, 0.0151) (0.0016, 0.0203)

BSI18Score (0.0716, 0.0972) (0.0083, 0.0926)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(-0.0365±1.3381) (0.0963±1.1444) (-0.352±1.7453) (-0.1787±1.4927) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1361, 0.652) (-0.0420, 0.8959) (-0.4818, 0.5461) (-0.3591, 0.8643) 34.9s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6747±1.5971) (3.1260±1.3382) (0.4199, 9.9705) (0.3622, 7.7736)
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6.1.2 3000 Runs

Table 30: Empirical Client SCAT3 Total Number of Symptoms 3000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0165, 0.0282) (0.0213, 0.0389)

SCAT3TotalSymptoms (0.2261,0.2666) (0.2144, 0.2514)

SACScore (0.0881, 0.1359) (0.0919, 0.1126)

VOMS Total Score (0.0123, 0.0151) (0.0104, 0.0157)

BSI18Score (0.0675, 0.0933) (0.0487, 0.0887)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(0.0144±0.9311) (0.1703±0.5681) (-0.2856±1.2145) (-0.0823±0.7411) 3000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1001, 0.7129) (0.0054, 0.8906) (-0.4349, 0.6256) (-0.2973, 0.8573) 6m 39s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6562±1.6055) (3.0584±1.312) (0.4755, 10.4407) (0.4674, 7.4325)

6.1.3 5000 Runs

Table 31: Empirical Client SCAT3 Total Number of Symptoms 5000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0153, 0.0269) (0.0185, 0.0252)

SCAT3TotalSymptoms (0.2260, 0.2662) (0.2389, 0.2694)

SACScore (0.0887, 0.1362) (0.1084, 0.1189)

VOMS Total Score (0.0127, 0.0154) (0.0085, 0.0154)

BSI18Score (0.0687, 0.0943) (0.0732, 0.0903)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(-0.0068±0.9411) (0.1392±0.7011) (-0.3132±1.2275) (-0.1228±0.9145) 5000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1126, 0.7191) (-0.0124, 0.8636) (-0.4513, 0.6336) (-0.3205, 0.8221) 20m 54s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7022±1.6096) (3.1171±1.3344) (0.4630, 10.6612) (0.3300, 7.4443)
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6.1.4 10,000 Runs

Table 32: Empirical Client SCAT3 Total Number of Symptoms 10,000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0158, 0.0275) (0.0215, 0.0305)

SCAT3TotalSymptoms (0.2258, 0.2661) (0.2202, 0.2473)

SACScore (0.0892, 0.1367) (0.1105, 0.1229)

VOMS Total Score (0.0129, 0.0156) (0.0123, 0.0152)

BSI18Score (0.0683, 0.0940) (0.0787, 0.1163)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(0.0189±0.6450) (0.1584±0.5146) (-0.2796±0.8413) (-0.0978±0.6713) 10000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1020, 0.7262) (-0.0114, 0.9053) (-0.4374, 0.6429) (-0.3192, 0.8765) 81m 21s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.681±1.5911) (3.1055±1.3242) (0.4025, 12.7403) (0.2939, 8.0476)

6.2 SCAT3 Total Score

6.2.1 1000 Runs

Table 33: Empirical Client SCAT3 Total Score 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2251, 0.2299) (0.229, 0.2375)

CRTScore (-0.1512, 0.0654) (-0.0461, -0.0155)

SACScore (-0.1419, -0.0797) (-0.1137, -0.1035)

BSI18Score (-0.0178, 0.0080) (-0.0296, -0.0072)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

( 0.1364±0.7790) (0.3179±0.6006) (-0.0795±0.9737) (0.1474±0.7508) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0423, 0.9009) (0.1361, 0.9498) (-0.3029, 0.8761) (-0.0799, 0.9373) 24.4s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.6821±2.1133) (3.6248±1.5226) (0.4823, 18.8282) (0.4237, 8.5066)
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6.2.2 3000 Runs

Table 34: Empirical Client SCAT3 Total Score 3000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2237, 0.2285) (0.2223, 0.2268)

CRTScore (-0.1490, 0.0726) (-0.0382, -0.0197)

SACScore (-0.1447, -0.0810) (-0.1230, -0.1129)

BSI18Score (-0.0151, -0.0051) (-0.0103, -0.0012)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

( 0.1503±0.8031) (0.3204±0.6324532107275694) (0.1505±0.7906) (0.1474±0.7508) 3000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0132, 0.8775) (0.1426, 0.9558) (-0.2665, 0.8469) (-0.0718, 0.9448) 9m 34s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4938±1.9977) (3.5714±1.5745) (0.388, 14.9746) (0.3411, 9.4782)

6.2.3 5000 Runs

Table 35: Empirical Client SCAT3 Total Score 5000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2224, 0.2272) (0.2220, 0.2256)

CRTScore (-0.1503, 0.0720) (-0.0391, -0.0288)

SACScore (-0.1452, -0.0815) (-0.1135, -0.1078)

BSI18Score (-0.0116, -0.0020) (-0.0114, 0.0054)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(0.1450±0.7859) (0.3111±0.6219) (-0.0687±0.9823) (0.1389±0.7774) 5000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0158, 0.9023) (0.1290, 0.9684) (-0.2697, 0.8779) (-0.0888, 0.9605) 36m 12s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4696±2.0336) (3.5512±1.5475) (0.4151, 19.1195) (0.3889, 9.5458)
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6.2.4 10,000 Runs

Table 36: Empirical Client SCAT3 Total Score 10,000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Client Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2221, 0.2268) (0.2234, 0.2280)

CRTScore (-0.1479, 0.0722) (-0.0393, -0.3092)

SACScore (-0.1459, -0.0825) (-0.1249, -0.11367)

BSI18Score (-0.0117, -0.0019) (–0.0099, -0.0054)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Client R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Client Number of Trials

(0.1454±0.7827) (0.3111±0.6141) (-0.0683±0.9784) (0.1389±0.7676) 10000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0171, 0.9003) (0.1200, 0.9572) (-0.2713, 0.8753) (-0.0999, 0.9465) 92m 33s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5323±2.0379) (3.601±1.5855) (0.449, 16.3193) (0.2822, 9.1031)
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Appendix G. Percentile Total Bootstrap

7.1 SCAT3 Total Number of Symptoms

7.1.1 300 Runs

Table 37: Percentile Total SCAT3 Total Number of Symptoms 300 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.01566, 0.0270) (0.0109, 0.0316)

SCAT3TotalSymptoms (0.2266,0.2664 ) (0.1768, 0.2377)

SACScore (0.0872, 0.1332) (0.0775, 0.1134)

VOMS Total Score (0.0112, 0.0138) (-0.0049, 0.0084)

BSI18Score (0.0656, 0.0911) (0.1046, 0.1699)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.0540±0.4481) (0.2450±0.3162) (-0.2339±0.5845) (0.0152±0.4125) 300

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.0692, 0.6711) (0.0751, 0.8158) (-0.3946, 0.571) (-0.2064, 0.7597) 12m 45s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7279±1.5705) (2.9882±1.2650) (0.6775, 8.8768) (0.4883, 6.2516)
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7.1.2 500 Runs

Table 38: Percentile Total SCAT3 Total Number of Symptoms 500 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0147, 0.0263) (0.0124, 0.0308)

SCAT3TotalSymptoms (0.2252, 0.2659) (0.1671, 0.2243)

SACScore (0.0886, 0.1361) (0.0827, 0.1122)

VOMS Total Score (0.0120, 0.0147) (-0.0044, 0.0061)

BSI18Score (0.0722, 0.0981) (0.1108, 0.1617)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.0427±0.4707) (0.2415±0.3173) (-0.2486±0.6140) (0.0106±0.4139) 500

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.0969, 0.6376) (0.0567, 0.8246) (-0.4307, 0.5273) (-0.2304, 0.7713) 40m 6s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.6782±1.5959) (2.9646±1.3640) (0.7921, 8.8637) (0.3148, 6.9409)

7.1.3 1000 Runs

Table 39: Percentile Total SCAT3 Total Number of Symptoms 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0155, 0.0270) (0.0148, 0.0286)

SCAT3TotalSymptoms (0.2239, 0.2642) (0.1833, 0.2152)

SACScore (0.0886, 0.1356) (0.0847, 0.1028)

VOMS Total Score (0.0124, 0.0152) (-0.0008, 0.0067)

BSI18Score (0.0707, 0.0961) (0.1199, 0.1694)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(-0.0091±1.0217) (0.2001±0.6808) (-0.3162±1.3326) (-0.0434±0.8880) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1101, 0.6557) (0.0532, 0.8319) (-0.4479, 0.551) (-0.2350, 0.7807) 191m 21s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7506±1.6433) (3.0208±1.375) (0.4406, 10.2498) (0.2151, 7.1407)
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7.1.4 2000 Runs

Table 40: Percentile Total SCAT3 Total Number of Symptoms 2000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0152, 0.02679) (0.0147, 0.02421)

SCAT3TotalSymptoms (0.2280, 0.2681) (0.1926, 0.2152)

SACScore (0.0897, 0.1368) (0.0861, 0.1013)

VOMS Total Score (0.0138 , 0.0165) (0.0003, 0.0057)

BSI18Score (0.0656, 0.0911) (0.1232, 0.1548)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.0203±0.5642) (0.2158±0.3937) (-0.2779±0.7359) (-0.0229±0.5136) 2000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1006, 0.6449) (0.0584, 0.8631) (-0.4356, 0.5369) (-0.2282, 0.8214) 1347m 24s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.671±1.5844) (2.975±1.3481) (0.4643, 9.9618) (0.3228, 7.3726)

7.2 SCAT3 Total Score

7.2.1 300 Runs

Table 41: Percentile Total SCAT3 Total Score 300 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2271, 0.2319) (0.2303, 0.2612)

CRTScore (-0.1525, 0.0720) (-0.0791, 0.0229)

SACScore (-0.1490, -0.0849) (-0.1281, -0.0812)

BSI18Score (-0.0163, -0.0063) (-0.0215, 0.0451)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.1426±0.7390) (0.3415±0.5093) (-0.0718±0.9238) (0.1768±0.6366) 300

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0644, 0.8849) (0.1300, 0.9630) (-0.3305, 0.8561) (-0.0875, 0.8537) 11m 1s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.3774±1.9747) (3.3071±1.4478) (0.5509, 13.8465) (0.3893, 8.2739)
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7.2.2 500 Runs

Table 42: Percentile Total SCAT3 Total Score 500 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2213, 0.2261) (0.2279, 0.2614)

CRTScore (-0.1466, 0.0754) (-0.0697, -0.0057)

SACScore (-0.1435, -0.0802) (-0.1231, 0.0845)

BSI18Score (-0.0106, -0.0010) (-0.0096, 0.0359)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.1862±0.6647) (0.385±0.4694) (-0.0173±0.8309) (0.2313±0.5868) 500

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( 0.0494, 0.8662) (0.2024, 0.9433) (-0.1883, 0.8327) (0.0030, 0.9291) 36m 19s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5752±1.9825) (3.4283±1.3988) (0.5338, 13.7961) (0.5751, 8.8899)

7.2.3 1000 Runs

Table 43: Percentile Total SCAT3 Total Score 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2227, 0.2274) (0.2300, 0.2539)

CRTScore (-0.1439, 0.0752) (-0.0437, -0.0042)

SACScore (-0.1454, -0.0822) (-0.1342, -0.1011)

BSI18Score (-0.0139, 0.0039) (-0.0061, 0.0264)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.1320±0.9364) (0.3363±0.7223) (-0.0850±1.1705) (0.1703±0.9029) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0216, 0.8841) (-0.1647, 0.9430) (-0.2770, 0.8552) (-0.0441, 0.9287) 175m 37s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.498±2.0371) (3.3501±1.3674) (0.5381, 18.0542) (0.4969, 8.2852)
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7.2.4 2000 Runs

Table 44: Percentile Total SCAT3 Total Score 2000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Bootstrap Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2218, 0.2265) (0.2387, 0.2529)

CRTScore (-0.1492, 0.0711) (-0.0397, -0.0111)

SACScore (-0.1445, -0.0817) (-0.1188, -0.1009)

BSI18Score (-0.0124, -0.0027) (-0.0032, 0.0205)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Bootstrap Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Bootstrap Total Number of Trials

(0.1392±0.8291) (0.3437±0.6361) (-0.0759±1.0364) (0.1797±0.7952) 2000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0137, 0.8833) (0.1876, 0.9592) (-0.2671, 0.8542) (-0.0155, 0.9490) 1305m 49s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5184±2.0537) (3.35±1.4147) (0.5072, 14.9126) (0.4183, 8.0642)
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Appendix H. Empirical Total Bootstrap

8.1 SCAT3 Total Number of Symptoms

8.1.1 300 Runs

Table 45: Empirical Total SCAT3 Total Number of Symptoms 300 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.01566, 0.0270) (0.0115, 0.0324)

SCAT3TotalSymptoms (0.2266,0.2664 ) (0.2154, 0.2655)

SACScore (0.0872, 0.1332) (0.0846, 0.1302)

VOMS Total Score (0.0112, 0.0138) (0.0083, 0.0248)

BSI18Score (0.0656, 0.0911) (0.0566, 0.1308)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

(0.0733±0.3986) (0.2333±0.4503) (-0.2087±0.5199) (0±0.5873) 300

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.0757, 0.6548) (0.0882, 0.8593) (-0.4031, 0.5498) (-0.1894, 0.8165) 11m 33s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.8667±1.6569) (3.1504±1.49) (0.5539, 10.6878) (0.3646, 14.1696)
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8.1.2 500 Runs

Table 46: Empirical Total SCAT3 Total Number of Symptoms 500 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0147, 0.0263) (0.0176, 0.0380)

SCAT3TotalSymptoms (0.2252, 0.2659) (0.2174, 0.2609)

SACScore (0.0886, 0.1361) (0.0939, 0.1219)

VOMS Total Score (0.0120, 0.0147) (0.0107, 0.0220)

BSI18Score (0.0722, 0.0981) (0.0632, 0.1149)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

(-0.0006±0.5606) (0.2082±0.3749) (-0.3051±0.7312) (-0.0328±0.4891) 500

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1342, 0.641) (0.0417, 0.8233) (-0.4793, 0.5317) (-0.2499, 0.7695) 39m 29s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7158±1.5671) (2.9856±1.3175) (0.5275,9.9532) (0.4175, 6.753)

8.1.3 1000 Runs

Table 47: Empirical Total SCAT3 Total Number of Symptoms 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0155, 0.0270) (0.0129, 0.0265)

SCAT3TotalSymptoms (0.2239, 0.2642) (0.2392, 0.2679)

SACScore (0.0886, 0.1356) (0.1006, 0.1214)

VOMS Total Score (0.0124, 0.0152) (0.0085, 0.0161)

BSI18Score (0.0707, 0.0961) (0.0537, 0.0984)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

(0.015±0.5987) (0.2152±0.3956) (-0.2847±0.7809) (-0.0236±0.516) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1161, 0.6531) (0.0584, 0.854) (-0.4558, 0.5475) (-0.2281, 0.8096) 204m 9s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7533±1.6028) (3.0271±1.3425) (0.5467, 8.7968) (0.3964, 7.1324)
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8.1.4 2000 Runs

Table 48: Empirical Total SCAT3 Total Number of Symptoms 2000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalSymptoms 102

SWLS Total Score (0.0152, 0.02679) (0.0134, 0.0239)

SCAT3TotalSymptoms (0.2280, 0.2681) (0.2381, 0.2623)

SACScore (0.0897, 0.1368) (0.1019, 0.1175)

VOMS Total Score (0.0138 , 0.0165) (0.0100, 0.0167)

BSI18Score (0.0656, 0.0911) (0.0668, 0.0972)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

(0.0094±0.6436) (0.2167±0.4169) (-0.2921±0.8395) (-0.0217±0.5438) 2000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

(-0.1039, 0.6685) (0.0578, 0.8502) (-0.4398, 0.5676) (-0.2290, 08046) 1316m 23s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(3.7298±1.6022) (3.0008±1.3281) (0.5458, 10.6987) (0.27, 7.1546)

8.2 SCAT3 Total Score

8.2.1 300 Runs

Table 49: Empirical Total SCAT3 Total Score 300 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2271, 0.2319) (0.2044, 0.2391)

CRTScore (-0.1525, 0.0720) (-0.0639, -0.0079)

SACScore (-0.1490, -0.0849) (-0.1303, -0.0879)

BSI18Score (-0.0163, -0.0063) (-0.0340, 0.0215)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

( 0.0913±0.8926) (0.3032±0.7107) (-0.1358±1.1158) (0.1290±0.8884) 300

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0498, 0.8886) (0.1547, 0.9472) (-0.3123, 0.8608) (-0.0566, 0.9340) 14m 59s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4518±1.9832) (3.2989±1.3669) (0.5595, 12.3045) (0.4475, 7.1673)
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8.2.2 500 Runs

Table 50: Empirical Total SCAT3 Total Score 500 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2213, 0.2261) (0.2058, 0.2383)

CRTScore (-0.1466, 0.0754) (-0.0533, -0.0006)

SACScore (-0.1435, -0.0802) (-0.1198, -0.0821)

BSI18Score (-0.0106, -0.0010) (-0.0365, 0.0106)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

( 0.1724±0.7023) (0.3655±0.5121) (-0.0345±0.8779) (0.2069±0.6401) 500

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( 0.0457, 0.8784) (0.1993, 0.9541) (-0.1929, 0.8479) (-0.0009, 0.9427) 47m 29s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.4257±1.9363) (3.3625±1.4107) (0.6223, 11.4299) (0.4982, 7.5234)

8.2.3 1000 Runs

Table 51: Empirical Total SCAT3 Total Score 1000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2227, 0.2274) (0.2111, 0.2316)

CRTScore (-0.1439, 0.0752) (-0.0488, -0.0095)

SACScore (-0.1454, -0.0822) (-0.1342, -0.1079)

BSI18Score (-0.0139, 0.0039) (-0.0142, 0.0261)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

( 0.1303±0.9299) (0.3207±0.7162) (-0.0871±1.1624) (0.1509±0.8953) 1000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( -0.0319, 0.8941) (0.1314, 0.9635) (-0.2898, 0.8676) (-0.0858, 0.9544) 210m 16s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.6306±2.1642) (4.6306±2.1642) (0.3118, 13.7749) (0.3118, 13.7749)
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8.2.4 2000 Runs

Table 52: Empirical Total SCAT3 Total Score 2000 Runs

Response Variable Features 95% Confidence Interval for Central Model 95% Confidence Interval for Empirical Total Model Number of DataPoints

SCAT3TotalScore 103

SCAT3TotalScore (0.2218, 0.2265) (0.2209, 0.2352)

CRTScore (-0.1492, 0.0711) (-0.0624, -0.0324)

SACScore (-0.1445, -0.0817) (-0.1189, -0.0979)

BSI18Score (-0.0124, -0.0027) (-0.0265, -0.0023)

R2 (Mean±Std Dev) Central R2 (Mean±Std Dev) Empirical Total R2-adjusted (Mean±Std Dev) Central R2-adjusted (Mean±Std Dev) Empirical Total Number of Trials

( 0.1675±0.7424) (0.3616±0.5362) (-0.0406±0.928) (0.202±0.6703) 2000

R2 (25th Percentile, Max) Central R2 (25th Percentile, Max) FL R2-adjusted (25th Percentile, Max) Central R2-adjusted (25th Percentile, Max) FL Time

( 0.0137, 0.8874) (0.1854, 0.9696) (-0.2328, 0.8593) (-0.0183, 0.962) 1360m 15s

MSE (Mean±Std Dev) Central MSE (Mean±Std Dev) Empirical Total MSE (25th Percentile, Max) Central MSE (25th Percentile, Max) Empirical Total

(4.5536±2.0399) (3.4111±1.4061) (0.39912, 14.0953) (0.2515, 9.2929)
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