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Abstract 

The original research goal was to combine the best techniques in the drone swarm 

literature and model a functional combat drone swarm that conducts a Suppression of 

Enemy Air Defense (SEAD) mission.  However, the body of literature regarding Drone 

Swarm Target Assignment (DSTA) does not model enemy counteraction and assumes 

that the drones’ targets are compliant against destruction.  Therefore, a model of enemy 

counteraction against drone swarms is developed, and Novel DSTA (NDSTA) is 

proposed to respond to the weaknesses of the current DSTA.  Both methods of target 

assignment are combined with a tunable trajectory generation model, and the 

performance of DSTA vs. NDSTA is compared in an agent-based combat simulation.  

DSTA vs. NDSTA performance is compared using both a compliant enemy that cannot 

defend itself and a defiant enemy that can defend itself.  Results show that NDSTA 

statistically outperforms DSTA against both a compliant and defiant enemy.  Lastly, 

behavioral insights are obtained using a genetic algorithm (GA) to tune the model.  These 

insights suggest the utility of using GA in future drone swarm research. 
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DESIGNING A COUNTER-IADS DRONE SWARM: USING EVOLUTION TO 

EVALUATE COMBAT ASSUMPTIONS UNDERPINNING DRONE SWARM 

TARGET ASSIGNMENT  

 

I.  Introduction 

1.1 The Warfighter Problem: A Vignette 

Have you ever been asked to accomplish something but were not given the 

resources to do it properly?  Say that your significant other has given you the task of 

making a birthday cake, but there are only two eggs in the fridge.  She needs those eggs 

to make something else, so she won’t give them to you.  You could make a non-standard 

cake at best, but at worst, the cake could turn out to be a disgusting unmitigated disaster.  

Now imagine that the stakes are higher and the task to be executed is a combat mission.   

In my experience at the National Training Center as an attack aviator and 

observer-coach-trainer (OCT), I have repeatedly seen this dynamic play out between 

Army Attack Aviation (AVN) and the supported Infantry Brigades.  Resource 

constraints, stress, and human fallibility often combine to create sub-optimal Suppression 

of Enemy Air Defense (SEAD) planning and execution, which ultimately leads to 

mission failure and excess casualties.  Let me provide a more specific example to 

motivate this research.   

 

A high-risk mission with eight AH-64 Apaches is planned behind the forward line 

of troops to strike the enemy exploitation force just prior to its commitment to the enemy 

attack.  One of the planned risk mitigation measures is to task a reconnaissance resource 

to check along the AH-64s’ ingress and egress route so that enemy Air Defense Assets 
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(ADA) can be located and neutralized before the mission.  However, the request by the 

Aviation Battalion for reconnaissance is denied because all available resources are 

already allocated.  In response, the AH-64 battalion plans and requests suppression of 

enemy air defense (SEAD) fires based on templated-threat rather than actual-threat 

disposition. 

When the AH-64s launch on the mission, the SEAD fire mission takes place but 

accomplishes nothing except stirring up the earth on a hill two terrain features over from 

the enemy.  Four of eight AH-64s are shot down on mission.  But why?  Resource 

constraints on reconnaissance assets lead to the denial of the reconnaissance request.  

Because rocket fire is ineffective when it is expended haphazardly, not informed by 

reconnaissance.  Perhaps there was friction, misunderstanding, and lack of agreement 

between each echelon’s staff regarding the aviation mission’s risk and reward, the 

importance of the mission to supporting the ground scheme of maneuver, and the 

mission’s priority for support.    

 

The general problem of planning and executing combat missions from an AVN 

perspective is characterized by complexity, uncertainty, scarce resources, danger, and 

human limitations.  Nothing can be done about complexity and uncertainty, as these are 

part of the characteristics of warfare.  This research is motivated by the problem of 

enabling Rotary Wing Attack Aviation Missions behind the forward line of troops when 

resources are constrained and planners are stressed.  Future drone swarm technology, 

leveraging robotic autonomy, has the potential to provide a solution to this problem by 
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mitigating the scarce resource characteristic and limiting the danger faced by human 

warfighters.  

Fundamentally, the planning and execution of SEAD are well-documented and 

would be easy to accomplish in isolation from the other tasks and demands of war.  But 

SEAD will never need to be accomplished outside of the conditions of war.  Instead, this 

research seeks to create a framework for a system that can conduct SEAD without the 

same level of human planning and input, which often falters under stress.  Drone swarms 

and robotic autonomy, in combination with each other, offer a potential solution to this 

problem.  A suitably designed system would conduct reconnaissance and suppression 

autonomously, thus easing planning requirements for the mission and decreasing an 

already taxed human workload while also increasing the survivability of friendly air 

assets on dangerous missions.   

 

1.2 Overall Problem Statement 

 Given the requirements for an autonomous drone swarm that can conduct SEAD, 

how might one specify the behaviors of a drone swarm to accomplish this?  What 

mathematical models might underpin the drone swarms’ behaviors?  And how might each 

drone interact with the other drones to accomplish the mission? 

Broadly, there is a large body of research that investigates specific algorithms and 

mathematical models for particular problems and behaviors in the drone-swarm space.  

But no research was found that combines the best techniques from academic research and 

presents a working model of a SEAD-conducting drone swarm.   
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The overall problem is that a unified model of drone swarm that conducts SEAD 

does not exist.  So, this research sought to fill that gap by surveying the best techniques 

available and combining them as a unified drone swarm that conducts SEAD. 

The following section breaks down the overall problem into necessary sub-

problems for further investigation.  This decomposition and survey led to the discovery of 

a significant shortcoming in existing drone swarm research.  

 

1.3 Problem Decomposition and Research Gap 

 The main problem is developing an Autonomous Drone Swarm (DS) system that 

conducts SEAD.  The conduct of SEAD is the tactical problem.  The technical problem 

of how to accomplish SEAD using drone swarm is nested within the context of the 

tactical problem.  Then, this paper takes a behavioral perspective to decompose the 

technical problem into discrete subproblems. 

In the first level of decomposition, this problem decomposes into two natural 

subproblems.  The first subproblem is Wide Area Search, or how do I search my assigned 

area for targets (SP1)?  The second subproblem is Target Assignment, or how do I assign 

n drones to attack m targets (SP2)?   

 Solutions to the second subproblem lead to two additional subproblems when 

considering the tactical context of our overarching problem. So, the third subproblem is 

the problem of target self-defense: how will the target behave to mitigate the drone 

swarm system, and what effect does this have on the overall scenario results (SP3)?  The 

final subproblem is the problem of trajectory generation, or how do I progressively take 
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action within the battlespace as more information is gathered over time (SP4)?  See 

Figure 1. 

 

Figure 1. Main Problem Decomposition 

An initial review of the academic literature into each subproblem revealed a 

“scoping” problem pertaining to the tactical problem described previously.  Research into 

Wide Area Search and Target Assignment generally does not consider a target’s ability to 

defend itself.  Conversely, there are path-generating models meant to help future drone 

swarms solve navigation problems pertaining to avoiding known enemy threats.  But 

these models imply that the drones already have an assigned destination and know about 

the en-route threats.  In sum, the author did not find research where the assumptions and 

use cases of the pre-existing models solve the above subproblems holistically.  Thus, they 

were unsuitable for a drone swarm that conducts SEAD autonomously.  Therefore, it is 
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necessary to adapt the research problem and the gap it addresses based on this survey of 

the literature. 

Allow me to make further observations of research into the target assignment 

subproblem so that the research problem can be redefined.  First, target self-defense is 

largely scoped out of the existing target assignment research.  Instead, the current body of 

literature emphasizes providing suitable target-assignment solutions quickly, at low 

computational cost, and in a decentralized manner.   

Second, trajectory generation is also scoped out of the existing target assignment 

research on the assumption that generating trajectories is straightforward once the process 

of target assignment is complete.  That is, telling a specific drone what to do and where to 

go is considered a more challenging problem than telling it how to get there.   

Third, target self-defense is not modeled explicitly, if at all, in any of the research 

reviewed.  Target information does not inform the target assignment except for the 

target’s position. Instead, the emphasis of current target assignment research is providing 

adjusted solutions rapidly enough after a drone shoot-down instead of assigning the 

drones targets in such a way as to minimize the shootdowns. 

Fourth, each instance of target assignment begins with knowledge of the 

disposition of the targets.  In other words, the wide area search problem is scoped out of 

the existing literature. 
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The existing literature on drone swarm target assignment fits into a particular 

paradigm.  This paradigm is one where the targets are known to the autonomous drone 

system a priori, targets are assigned to drones for engagement, and then the drones 

generate the necessary trajectories to reach their assigned targets.  See Figure 2. 

 

 

Figure 2. Paradigm of Existing Target Assignment Research 

A large majority of existing research into Target Assignment only attempts to solve the 

scoped problem (SP2), lacking the context of the other subproblems.  No research was 

found that encompasses all the relevant subproblems. 

 Further, a natural consequence of operating in this paradigm is that solutions 

produced from the existing body of research are unlikely to be good when target defense 

is introduced as a factor.  The target assignment problem takes the form of an 

optimization problem that seeks to maximize an objective function (destroy the most 

targets, achieve the highest value of destroyed targets, etc.) subject to constraints.  

Because flight time is a universal constraint for aerial drones and target defense is not 

modeled, this likely results in solutions that favor drone-target pairings where distance is 
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minimized.  In other words, the closest drones attack the closest targets.  This provides a 

rule that the targets can exploit to defend themselves against the drones.    

 

1.4 Scoped Problem Statement and Research Approach 

 In designing a drone swarm that can conduct SEAD autonomously, I discovered 

that existing Target Assignment research is inadequate because of the assumptions 

underlying the current body of research.  Can we quantify the effect of these assumptions 

by measuring the effectiveness of existing Target Assignment algorithms when the 

enemy targets can defend themselves?  And can we find an alternative means of Target 

Assignment that performs at least as well, if not better? 

 The scoped problem is to propose a better way of assigning combat drones to 

targets and then compare the performance of the novel method with the existing method.   

To attack this problem, this research proposes a different paradigm than the one 

shown in Figure 2.  This research instead develops a method of trajectory generation, 

which will also serve the purpose of directing the Wide Area Search.  As targets are 

found in the battlespace, the drones will conduct target assignments based on information 

gained by flying the trajectories and conducting the Wide Area Search.  See Figure 3. 
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Figure 3. Alternate Paradigm to Address the Research Gap 

This paradigm change is necessary for two reasons.  First, a way to translate the existing 

Target Assignment methods into the SEAD scenario is needed.  Second, a way to make 

an experimental comparison between the current methods and the novel method this 

research proposes is also required.  The comparison will be made via simulation. 

From this point onwards, the existing body of research is referred to as DSTA, 

representing Drone Swarm Target Assignment.  The novel method under investigation 

shall be called NDSTA, or Novel Drone Swarm Target Assignment.  In that DSTA does 

not model the enemy’s ability to fight back, this condition will be referred to as having a 

‘compliant’ enemy, and the situation where the enemy can defend itself will be referred 

to as having a ‘defiant’ enemy.     
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The approach this research adopts to attack the problem is depicted in Figure 4. 

 

Figure 4. Research Approach 

 An agent-based modeling approach is used to focus on the relationships between 

members of the drone swarm, the enemy, and the asset that the SEAD mission is 

supposed to protect.  The first step is to develop a model of enemy decision-making and 

action that can be applied to our experiment.  This model is the representation of a defiant 

enemy.  Then, a model of trajectory generation is required so that the drone swarm can 

conduct the Wide Area Search subtask of the SEAD mission.  This model will have 

tunable parameters because it is impossible to know a priori how to achieve good 

trajectory generation for the SEAD mission.  Third, the Novel DSTA model is proposed.  

Both DSTA and NDSTA are target assignment strategies that drones can use to attack 

targets.  Fourth, a 2x2 experimental design is used to compare the performance of DSTA 

vs. NDSTA against both a compliant and a defiant enemy.  Fifth, each quadrant of the 

experimental design is treated as its own separate and independent ecosystem.  This 

allows the combined trajectory generation and target assignment parameters to be tuned 
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or evolved via genetic algorithm so effective parameters are found for each overall model 

before the final experimental comparison.  This is done because the trajectory generation 

model that best supports DSTA may not be similar to the trajectory generation model that 

best supports NDSTA.  Upon conclusion of evolutionary training using a genetic 

algorithm, the final step is to compare the performance of the best individuals from each 

ecosystem after a set number of generations.  Finally, analysis is conducted to see what 

conclusions can be drawn from the data. 

 

1.5 Research Questions and Measures of Effectiveness 

Given a model of enemy defensive action, a trajectory generation model, two 

methods of target assignment (DSTA vs. NDSTA), and a genetic algorithm to tune model 

parameters, this study explores the following questions: 

 

Research Questions 

1. Given an enemy that fights back, what is the ‘performance cost’ of assuming a 

compliant enemy against the drone swarm? 

2. Given either a compliant or a defiant enemy, Does NDSTA perform more 

effectively than DSTA in the SEAD scenario?  If so, why?  

3. What additional insights can be gained into the complex combat system 

modeled by the SEAD scenario as a result of using a genetic algorithm? 
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The following measures are listed in order of importance to measure the effectiveness of 

DSTA vs. NDSTA in the conduct of a SEAD mission in simulation: 

Measures of Effectiveness (MOEs) 

1. Hits on a Friendly Aircraft flying over enemy territory after Drone Swarm 

executes its mission (lower is better). 

2. Percent of Enemy ADA systems left alive (lower is better). 

3. Number of Drones in Swarm shot down by targets. (lower is better). 

4. Percent of Assigned Area unsearched (lower is better). 

 

 

The above MOEs are incorporated into the fitness function for the genetic algorithm and 

are used to tune the behavioral parameters of the competing models such that the 

evolutionary process will result in better-performing models.  The fitness function will be 

used as the comparative performance measure to answer the first two research questions 

since it incorporates all the MOEs.  To answer the third research question, the model 

parameters themselves will be examined such that relationships between model 

parameters and drone swarm behaviors can be explored. 

 

1.6 Research Scope and Assumptions 

The scope of this research is everything within the four subproblems from Section 

1.4, focusing on the tunable aspects of the trajectory generation model and the target 

assignment models.  The driving interest is the parameters that dictate the behaviors and 

interactions between model entities. 

Outside of this scope, many simulation parameter values will have to be assumed 

to achieve a workable simulation in terms of the performance of the drones and the 

performance of the enemy ADA systems.  In general, this research assumes that the 



13 

drones are cheap and expendable.  Thus, the drones in this research are assigned 

parameters that result in a drone that can be imagined as small, slow, and inexpensive.  

This is an important distinction because if the drones are fast, high-performance, and 

expensive, then the compliant enemy assumptions underpinning DSTA may be valid. 

 Additionally, the following simplifications are made: 

 

• Flat terrain with no masking features, such as trees or forests 

• Simple glimpse model with fixed probability for target detections  

• No lag in communications between members of the swarm 

• No error in drone position sensing or target identification 

• No target misidentification 

• No weather effects 

 

1.7 Summary of Key Contributions 

 This research presents a method of Target Assignment called Novel DSTA 

(NDSTA) that assigns targets more effectively than existing methods when tested in a 

SEAD scenario against a defiant enemy.  Even against a compliant enemy, NDSTA 

performs slightly better than DSTA in the SEAD scenario.  Both comparisons were found 

to be statistically significant.   

The behavioral parameters which maximize the effectiveness of NDSTA were 

found to be the parameters which maximize the decisional freedom of the NDSTA tactic.  

In other words, the drone swarm performed best when it minimized the threshold 

requirements of using NDSTA and maximized the target assignment options available to 

the swarm. 
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Third, the main assumption of most existing DSTA research, the presence of a 

compliant enemy, is tested in multiple ways.  It was found that applying existing DSTA 

with the compliant enemy assumption is not appropriate in a SEAD context.  This was 

found by allowing the four separate drone swarms to evolve under different assumptions 

and observing the level of performance exhibited in the overall simulation.  The other 

way the assumption was tested by was comparing the relative performance of the four 

drone swarms in each of the four ecosystems.  In this way, the impact of evolution under 

different assumptions was evaluated.  The assumptions implied by each drone swarms 

training ecosystem resulted in performance differences that highlighted how inadequate 

assumptions likely lead to inadequate conclusions.  Thus, great care must be taken when 

crafting assumptions in further research into combat systems. 

 

1.8 Organization of the Thesis 

The framework of the ensuing research is explained.  In general, the discussion of 

a subproblem and its associated literature is immediately followed by implications on this 

research and the modeling decisions made.  Analysis of results is accomplished 

immediately after the presentation of the results themselves. 

Chapter 2 is a deeper discussion of the subproblems specified in Figure 1 and a 

review of the relevant literature.  Modeling decisions in this chapter are made abstractly, 

and this chapter roughly corresponds to research steps 1-3, as depicted in Figure 4. 

Chapter 3 specifies the simulated SEAD scenario, the model of enemy defensive 

action, the model used to generate drone trajectories, the model that mimics the current 
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body of literature on DSTA, and the NDSTA model.  The unification of these models 

into a simulation is described and then related to the genetic algorithm and the four 

ecosystems that result from the experimental 2x2 design.  This chapter generally 

corresponds to steps 4-6 in Figure 4.   

Chapter 4 presents the results and analysis of the overall experiment.  Research 

questions are answered and analyzed.  Insights from using the genetic algorithm in this 

experiment are explored.   

Lastly, Chapter 5 summarizes the research’s contributions and suggests future 

research. 
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II. Background and Literature Review 

2.1 Chapter Overview 

This chapter examines the literature for relevant ideas pertaining to all aspects of 

this wide-scoping problem.   First, a broad look is taken by focusing on the tactical 

problem.  Then, the definition of autonomy is explored with an ensuing discussion of the 

principles of swarming system design.  Next, a discussion of the technical subproblems 

occurs in depth.  Lastly, the relevant literature is surveyed.  At the end of the chapter, the 

reader will understand the general framework under which NDSTA is proposed and the 

relevant background information of why DSTA vs. NDSTA is a relevant question.  This 

chapter roughly corresponds to steps 1-3 from Figure 4. 

Each sub-section centers around a specific aspect of the overall research goal: 

designing a drone swarm that can conduct SEAD autonomously.  The end of each 

subsection is followed by the relevant impact on the research methodology, whether an 

aspect of the problem was scoped out so that modeling could remain tractable or how the 

author intends to implement the conclusions reached in the ensuing models in Chapter 3. 

 

2.2 Defining Suppression of Air Defense 

At this point, the reader understands how difficult it is to execute a SEAD mission 

because of resource constraints and human fallibility from Section 1.1.  Let’s take the 

opportunity to define what SEAD is more sharply.  Army Technical Publication 3-01.4 

defines SEAD as “any activity that that neutralizes, destroys, or temporarily degrades 

enemy air defenses (ADs) by destructive or disruptive means” [1].   The intent of 
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conducting SEAD is to “disrupt or destroy surface-based enemy Air Defenses with the 

intent of preventing successful enemy engagement of friendly aircraft,” while the purpose 

of conducting SEAD is to create “favorable conditions for friendly aircraft to operate in 

contested airspace” [1]. 

What this means is that an enemy force wants to shoot down a friendly aircraft to 

prevent the friendly aircraft from conducting its mission.  The friendly force executes the 

SEAD mission in support of the friendly aircraft to protect the friendly aircraft.  

Ultimately, supporting the friendly aircraft is accomplished by either destroying the 

enemy air defense asset or preventing the enemy air defense asset from successfully 

engaging the friendly aircraft.   

Further, ATP 3-04.1 describes the range of activities that can be characterized as 

SEAD as a continuum.  These activities fall into three groups: Avoidance, Disruption, 

and Destruction.  See Figure 5. 

 

Figure 5. The SEAD Continuum of Activities [1] 
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Avoidance activities generally involve staying outside of an air defense asset’s 

(ADA) threat envelope.  Disruption activities specifically mean disrupting the sequential 

tasks the ADA must accomplish to engage a friendly aircraft successfully.  This also 

includes the threat of destruction, causing the ADA to act in a manner to protect itself 

instead of continuing the required actions to shoot down a friendly aircraft.  Destruction 

is self-explanatory.  This is relevant to our problem description because it gives us a 

framework for describing what a SEAD-executing drone swarm should be able to do.   

The drone swarm can promote threat avoidance by communicating threat 

information to a friendly aircraft, thus enabling the friendly aircraft to operate in 

increased safety.  This means that the drone swarm should be able to find and identify 

threats independently. In addition, the drone swarm should disrupt ADA assets in some 

way and possibly be able to attack the ADA assets. 

Additionally, the doctrinal publication describes three elements common to each 

SEAD mission: Stimulation, Sanitization, and Suppression.  While all three elements may 

occur simultaneously, it’s helpful to think of each element as happening in sequential 

order.  This is the General SEAD process.  See Figure 6. 

 

Figure 6. The General SEAD Process 

The stimulation element is the actions the friendly force takes to get an ADA to 

emit radar energy or produce some signature that enables it to be located.  This is called 
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stimulation because the default state of an ADA agent would be not to emit a radar 

signature unless preparing for an engagement. After all, each emission incurs a risk to the 

survival of the ADA agent itself since it reveals its position. 

The sanitization element refers to the group of actions related to locating the 

IADS based on its emissions or signatures.  US doctrine uses this specific term to 

differentiate this step from generalized reconnaissance or searching when describing the 

SEAD process.  Sanitization refers explicitly to looking for ADA agents based on their 

emission signatures during a SEAD mission. 

The suppression element refers to any activity that prevents a successful 

engagement of an ADA agent to a friendly aircraft.  If stimulation and sanitization result 

in information about where the ADA agents are located on the battlefield, then 

suppression is the process of acting on information about specific ADA threats.  Doctrine 

defines the actions one can take when suppressing as a continuum.  See Figure 7. 

 

 

Figure 7. The Suppression Continuum of Activities 
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Figure 7 shows the range of actions one could take to suppress an ADA threat.  

Knowing the location of the ADA agents, one could transmit that information to the 

aircraft and allow it to avoid the threat. Alternatively, one could disrupt the ADA’s ability 

to engage the aircraft successfully.  For example, one could jam the ADA’s radar so it 

cannot ‘lock on’ to the target.  Or one could destroy the ADA agent using a different 

military system than the friendly aircraft being protected, such as using artillery.   

 

2.3 SEAD Problem Implications for this Research 

Given the above description of SEAD and its constituent elements, it’s now 

possible to make certain design decisions regarding the drone swarm system.  To be a 

self-contained SEAD-conducting system, the drone swarm must accomplish three tasks.  

Therefore, the drone swarm designed in this research will be heterogenous with three 

different types of drones.   

The drone swarm needs to stimulate the enemy IADS system, so one drone type 

will be a decoy that encourages ADAs within the IADS to emit with their radars.  This 

drone will be referred to as the decoy drone.   

Another type of drone will need to conduct sanitization by passively receiving the 

RF energy to help locate the ADA assets.  This second drone will be referred to as the RF 

drone.   

A third type of drone should be able to disrupt and destroy ADA.  The third drone 

will use kamikaze tactics and be referred to as the kamikaze drone.  As a result, 

suppression will be accomplished by destroying the ADA agents.   
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Let’s also say that each drone’s purpose translates to a drone payload that 

accomplishes each purpose: a decoy payload, an RF payload, and a destructive payload.  

To allow for each drone to navigate its environment, let’s also say that each drone has a 

camera payload.  The camera allows the drone to visually navigate its environment, spot 

and identify targets and avoid obstacles.  This research does not investigate the specifics 

of camera capabilities on drones.  But existing research, commercial-off-the-shelf 

offerings, and military technology show that the camera modules and software 

underpinning their use can be quite impressive [2].  A recent technology report 

commissioned by the Department of the Air Force lists Target Recognition as a mature 

technology [3]. 

Since we are talking about drone design decisions regarding payloads, here is an 

excellent time to discuss other design decisions of significant impact on the ensuing 

research.  Since this drone swarm system is meant to solve an Army problem, let the 

method of employment be from an Army system such that it is fired from an artillery 

system into the middle of the area where it will conduct its mission.  Given the method of 

employment, this places the following design limitations upon the researcher: 1) the 

drones must be relatively small to fit inside of a missile or artillery tube, and 2) the 

drones must be relatively cheap since each drone is likely to be single use due to the 

danger of the mission and the kamikaze style engagement method employed by the 

swarm.  From these two design limitations, the author assumes drone performance 

parameters such as drone speed, battery life, etc., that can be characterized as “low-

performance.”  These parameters are discussed further in Appendix A for reference.   
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In summary, the combined effect of every drone in the drone swarm is a system 

capable of conducting all elements of the SEAD mission.  Also, this section discussed 

some critical design decisions and assumptions regarding the drones and directed the 

reader to Appendix A to examine specific parameter values and characteristics of the 

drones. 

Now that the members of the drone swarm are defined, it is time to examine 

another aspect of the problem: how do we engineer the behaviors of the drone swarm so 

that the drone swarm can physically execute its mission?  Before this can be 

accomplished, we must understand the spectrum of robot autonomy.   

 

2.4 The Spectrum of Autonomy 

The authors in [4] proposes the following definition of autonomy as “an 

unmanned system’s own ability of sensing, perceiving, analyzing, communicating, 

planning, decision-making, and acting, to achieve its goals as assigned by its human 

operator(s) through designed human-robot interaction.” This definition implies that 

full robotic autonomy is the ability to achieve a goal without human input.  The opposite 

of full autonomy would be that of a zero-autonomy platform, which would require total 

human input to operate, for example, a remote-controlled toy car.   

Out of the various tasks listed in the definition of autonomy, let’s focus on the 

decision-making aspect of autonomy and explore the question, “How can a robot make 

decisions?”  The author did not find a universally adopted taxonomy in the literature.  In 

general, we can think of three basic decision-making methods that a robot can leverage, 
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and all existing autonomous systems blend these approaches in some form or fashion.  

The three methods of decision-making are to use 1) a learning system or neural network 

model (i.e., Artificial Intelligence), 2) use an optimization model 3) or use a behavioral or 

rule-based model.  See Figure 8. 

 

Figure 8. Spectrum of Autonomy 

There are pros and cons to each method of decision-making autonomy.  For 

instance, a correctly specified optimization model will always produce a good solution. 

Still, it is not good at solving problems quickly or dynamically, nor is it robust to a lack 

of information.  In the case of a lack of information, one might have to make heroic 

assumptions to get an optimization model to produce an answer. That answer may not be 

optimal or even good because of the assumptions required to deal with the lack of 

information and uncertainty. 

A learning model (i.e., Artificial Intelligence) can make quick decisions under 

uncertainty. However, it must be trained, and an AI system’s ability to learn depends on 
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the data available to train it.  An alternate taxonomy of learning models is that they are a 

sub-class of optimization models, but they are applied to situations with significant 

uncertainty and nonlinearities that result in difficulty in specifying a closed-form 

optimization model.  Results can be outstanding when data is abundant (e.g., language AI 

models), but it can be challenging to train a good AI if data is unavailable (e.g., combat 

data). The benefits of an AI system are that it can get quite good at achieving its desired 

performance measure, but the downside is that this approach relies on having a high-

fidelity training environment (or lots of data).  If data is unavailable, one must train the 

AI in a simulation environment.  At this point, the AI is limited by the fidelity of the 

simulation environment.  Given that simulations are computationally expensive and the 

amount of data required to train an AI is massive, it’s challenging to accrue enough high-

quality data to train the AI properly. 

On the other hand, a rule-based model is easy to implement, cheap, and 

understandable to humans operating alongside the robot.  However, rule-based models 

can fail spectacularly when in ambiguous situations when the robot encounters a situation 

it doesn’t have a rule for. There is also the challenge of enumerating every type of 

decision a drone or robot might need to make and scripting a rule to handle that situation.  

This is generally accepted to be an impossible task.  However, the understandability of 

this approach is valuable because the understandability engenders trust between the 

human master and the robot. For example, a human is likelier to use a robot system 

whose behavior he understands to the point where the human can predictably interpret the 

robot’s actions, given the human’s observation of the robot’s environmental inputs. 
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From these three modes of decision-making, you can blend elements of any/all 

three to fit a use case.  Perhaps the most famous prolific case is that of self-driving 

vehicles.   Tesla has been training an AI model that attempts to optimally solve traffic 

navigation problems.  Most of the research in the academic space deals with this AI-

heavy blend of autonomy.  However, it’s common knowledge that Tesla has been 

collecting driving data from its vehicles for years because it requires a massive volume of 

data to train its autonomous driving AI software.   

An interesting alternative taxonomy of robotic autonomy is one where autonomy 

is defined as bipolar between rule-based and optimization systems instead of including AI 

as a third pole.  The AI is considered part of the optimization pole because it tries to 

optimize its action, given environmental inputs and the expected value of actions it can 

take.  I find it interesting that when the AI is training, it’s learning to make better 

evaluations of the expected value of any actions it can take.  Once the AI is done 

learning, one could say that it has developed and fine-tuned rules for what action(s) it 

should take, given a set of inputs.  This creates a circular dynamic because the AI system 

just developed a “rule” but is depicted as the opposite of a rule-based system.  In this 

respect, the AI system resembles the rules-based system but after a much longer time. 

A further interesting question regarding autonomy is, “How much information 

should a robot incorporate into its decision-making to achieve the best mission 

outcomes?”  In other words, how complex should the robot’s decision-making model be?  

Results from [5] and [6] both suggest that a moderate amount of information is best.  The 

reasoning behind these results is that information has a high value when it is scarce, but 

as more information is incorporated into a decision-making model, the value of additional 
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information falls.  Eventually, there is an inflection point where adding further 

information adds primarily noise to the decision’s context, reducing the robot’s ability to 

make good decisions.  As a result, a Goldilocks zone of complexity exists when 

designing decision-making models for robots and drones. 

 

2.5 Autonomy Implications for this Research 

 What is desired is a way for the drone swarm to accomplish its mission 

autonomously, but not based upon an AI model.  While rule-based systems have fallen 

out of vogue, the challenges associated with developing an AI and associated training 

environment are significant.  Further, the existence of a Goldilocks zone of decisional 

complexity suggests that erring on the simple side of decision model design will yield 

reasonable results compared to an overly complicated model.  Thus, this research takes a 

rule-based approach to enabling robotic autonomy.   

This has some key advantages that aren’t associated with AI: rule-based systems 

are human-interpretable, meaning that humans can understand the rules the robots operate 

under.  This, in turn, encourages trust and adoption of the system under development.  

Conversely, the standard neural-net-based AI cannot tell you in an interpretable way what 

rules it follows and why.  It can only provide perceptron and edge weights that don’t have 

natural and intuitive meaning to a human looking into the system. 

 Additionally, a rule-based system should be cheaper and, thus, more appropriate 

to a drone swarm where the drones are designed for single use.  Also, since a trained AI 

essentially uses rules of its own tuning to decide its behavior, it makes sense to return to a 
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rules-crafting approach and see if a rule set can be designed that produces the desired 

results.   

 How does this research design the rules in the rule-based system?  Given the 

impossibility of code-scripting every situation the drone swarm might encounter, this 

research will treat each instance of the drone swarm as a synthetic creature.  Its rule set 

will be tunable, where the decision weights of each rule will constitute the creature’s 

genetic code.  Then synthetic evolution via genetic algorithm will be applied to a 

simulated population of these creatures so that successive children will exhibit superior 

parameter sets.  By applying synthetic evolution, it is hoped that this research can arrive 

at well-crafted rules that perform well in the simulated combat environment without 

requiring the millions of simulation runs that might be required to train an Artificial 

Intelligence. 

 In conclusion, this section weighed the pros and cons of different approaches to 

autonomy and decided that for the author’s attempt to provide something that might one 

day conduct SEAD missions for Army Aviation, a tunable rules-based approach will be 

adopted.  Now that an approach to autonomy has been adopted, let’s investigate how to 

engineer a drone swarm. 

 

2.6 Principles of Engineering a Drone Swarm System 

 In [7], swarming is defined as the “useful self-organization of multiple entities 

through local interactions.”  In the context of this research’s drone swarm, swarming is 

thus the self-organization that occurs when drones within the drone swarm interact with 
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each other to accomplish the SEAD mission.  The authors in [7] explore how and why 

swarming systems work.  Understanding this is crucial in designing the rules system that 

will define the drone swarm behavior in this research. 

The authors state that three key enablers contribute to the success of swarming 

systems: Coupled Processes, Autocatalysis, and Functions. See Figure 9. 

                                  

Figure 9. Enablers for Swarming Systems [7] 

 Interpretation of Figure 9: in the process-space of all possible processes, 

swarming systems are defined by the intersection of processes that incorporate all three 

enablers.  In other words, a system that does not exhibit the three key enablers is not a 

true or effective swarming system.  Let’s break down each of the three enablers.   

 The Coupled Processes enabler refers to how agents share information that 

informs the processes of every other agent in the swarming system.  For example, drone 

A and drone B are both searching an area.  This process of searching becomes coupled 

when drone A and drone B share information with each other such that the two drones’ 

search pattern changes based on this information sharing.   

Information sharing can be peer-to-peer, like a conversation.  Or information can 

be shared via an environmental variable such as pheromones.  The key is that information 
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discovered by one drone can be communicated to other drones so that each drone can 

make more informed decisions.   

In either case, a mechanism must be available that discounts old stale information 

such that the drones do not act on information that is no longer true. So, let’s say that this 

mechanism promotes “information quality.” 

In a peer-to-peer system, information might be weighted inversely with the time it 

was received.  In pheromone-inspired systems, the pheromones evaporate at some rate 

such that old messages decrease in strength and disappear over time.  In both of these 

methods, information quality is maintained because old and irrelevant information has a 

method of dissipating from the system. 

 In summary, Coupled Processes describe the communication between entities in a 

swarming system and are thus a key enabler for any system that swarms.  Next, let’s 

review Autocatalysis.   

 Autocatalysis means that the drone swarm system performs its duties in such a 

way that a drone performing its tasks leads to further effective execution of those same 

tasks.  To explain, a catalyst in chemistry is a substance that enables a chemical reaction 

between two other substances without being changed or consumed itself.  In 

autocatalysis, a product from a chemical reaction is itself a catalyst of the chemical 

reaction being performed, thus driving further chemical reactions.   

In the context of swarming drones performing a search, an autocatalytic process 

would be a process where the search of one area drives the subsequent search towards 

other areas away from the first area. For example, imagine that an area is searched and 

then marked as searched with a pheromone that tells other agents not to search there.  
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Thus, a search performed at time t informs the next search at time t+1 in a way that 

would certainly be more effective than searching the same empty area again.  Because 

this process of search and mark drives further searching and marking, this process is 

autocatalytic.   

Lastly, Functions refer to the overall goal that is useful for a system’s 

stakeholders.  For example, in a counter-IADS drone swarm, the system’s function is to 

prevent engagements on a manned blue aircraft.  However, the functions are complex to 

the point where the steps to accomplish the function cannot be scripted. For example, one 

could not simply tell a drone to prevent a shootdown on X aircraft in Y environment.  

Functions are differentiated from processes in that processes are concretely definable, 

while functions are defined by the valuable outcomes that occur as a result of multiple 

processes. 

Given a set of coupled processes with autocatalytic potential, it is still not 

straightforward how to select the parameters that would enable the coupled processes to 

achieve autocatalysis, which would eventually result in the overall system functionality 

that we want.  If it were, we would script the behavior that we wanted.   

The authors in [7] describe how tuning behavioral parameters of a swarming 

system may be done using biology-inspired methods, either synthetic evolution (i.e., 

genetic algorithm) or particle swarm optimization.  Given that optimal behavioral 

parameters are not known in what is potentially a vast n-dimensional space of behavioral 

parameters, swarming systems must be tuned progressively from random starting points 

such that optimal behaviors emerge through experimentation. 
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To summarize this section, a swarming system must be designed so that its 

processes are coupled, meaning that each process informs the other processes that an 

agent/drone accomplishes.  Further, these coupled processes should progressively be 

autocatalytic such that behavior at time t drives desirable behavior at time t+1.  Lastly, 

the potentially infinite diversity in types of behaviors and tunable parameters in a drone 

swarm behavior model must be searched through heuristic methods. 

 

2.7 Drone Swarm Engineering Implications for this Research 

 Takeaways from the above paper to this research is that when designing a drone 

swarm, one must consider coupled processes, the autocatalytic potential of those 

processes, and a mechanism for combining all of the specified processes into an overall 

system function that is desired. 

 This is an excellent place to define the drone swarm's coupled processes and 

overall function.  In general, each drone must be able to do the following processes: 

1) Move within the mission area 

2) Stay within the mission area 

3) Search the mission area for ADA threats 

4) Engage the ADA threats 

5) Disperse away from other members of the drone swarm 

 

Next, let’s couple processes 2-4 and enable autocatalytic potential by specifying how 

information will be shared between the drones in the drone swarm.   

1) Each drone in the drone swarm will be able to know its position relative to the 

borders of the mission area and, in general, will be repelled away from the borders 

of the mission area. 

2) Each drone will drop a search pheromone that reports where it has recently 

searched.  The search pheromone will evaporate over time and has the effect of 
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repelling other drones away from itself such that multiple drones are not searching 

the same area as other drones. 

3) Each drone will drop a target pheromone when it discovers a target, and the target 

pheromone’s effect will be to attract other drones to this area and prepare to 

engage this target.  This pheromone also evaporates over time, so drones are not 

attracted to a target location if the target no longer exists due to engagement. 

4) Each drone will be repelled away from other members of the drone swarm.  Each 

drone in the swarm will have up-to-date position information for all drones in the 

drone swarm. 

 

From the above list, it should be noted that information is generated by each of those four 

processes and drives further accomplishment of those processes over time.  Thus, these 

processes are autocatalytic.  However, there is not much information to drive the system 

when the drone swarm is first deployed.  Therefore, to jumpstart autocatalytic processes, 

let’s add a fifth process: 

5) Each drone will feel a force in a random direction to drive the initial search of the 

mission and kickstart the autocatalysis among the specified processes.   

 

 

These five processes are coupled, autocatalytic, and result in a force that drives the 

drone’s future trajectory and actions.  For further reference, let’s name these processes as 

forces: 

1) The process that results in staying within a defined mission area will be called the 

GeoFence Force because the boundaries of the mission area will act like a fence. 

2) The process that drops the search pheromone and results in searching unsearched 

spaces will be called the Search Force. 

3) The process that drops the target pheromone and results in attractive forces 

toward targets will be called the Target Force. 

4) The process that encourages drones to disperse from one another will be called 

the Family Force because it is as if each drone is repelled by proximity to its own 

family (like teenagers in real life).  

5) The process that dominates the determination of a drone’s future movement in the 

absence of other environmental information will be called the Chaotic Force 

because randomness is chaotic.   
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These five forces are the basis of the rule-based model presented in Chapter 3.  The 

overall function desired from the combination of these forces/processes is a drone swarm 

that effectively conducts SEAD missions.   

  Additionally, this five-force system serves as a basis for solving the trajectory 

generation problem (SP4) in the framework presented in Figure 1.  For this reason, the 

model introduced abstractly in this section is now referred to as the trajectory generation 

model. 

The rest of this chapter follows a structure that follows the sub-problems.  

Because this research is focused on comparing existing DSTA with a novel method of 

Drone Swarm Target Assignment, this is discussed first.  Following that is a discussion of 

the target self-defense problem and the wide area search problem.  Finally, the existing 

body of research is reviewed. 

 

2.8 SP2: DSTA in a Combat Scenario  

 For this section, I reviewed many sources ([8], [9], [10], and [11]), including a 

survey paper and more recently published work. 

The foundational method for conducting Optimal Task assignment of n drones to 

m targets is to use a mixed-integer linear program (MILP) to assign drones to targets with 

the goal of maximizing the value of the targets destroyed within the performance 

constraints of the drones composing the drone swarm.  This baseline scenario is 

considered a global allocation model because one considers all known drones and targets 

and then solves for a solution.  It seems simple enough but quickly becomes complex as 
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more and more constraint types are added.  For instance, if the drones in the drone swarm 

are heterogeneous in capabilities, then this problem instance evolves into a cooperative 

multi-task assignment problem (CMTAP) [9].   

Further complexities abound if one considers drone fuel status, drone weapons 

loadout (in the case where the drones do not use kamikaze tactics), heterogeneous target 

value, etc.  MILP and similar global solution methods quickly become bogged down.  

The two highest-impact considerations that have driven research in this area are the 

complexity introduced by time-varying factors and the knowledge that drones can be shot 

down. Hence, the need for new solutions is frequent.  In other words, the problem of 

target assignment becomes dynamic, increasing complexity and decreasing solution 

speed.  Yet the need for frequent new solutions means increasing solution speed is 

essential. 

 Driven by these considerations, the current body of research focuses on building 

distributed algorithms such that the problem is decomposed into local segments and 

solved locally.  The goal is to provide solutions that are ‘good enough’ but can be 

computed quickly, given dynamic constraints and the ability for targets to get shot down 

[8].  These algorithms are considered distributed because they are computed 

cooperatively on-board each of the drones rather than centrally for the global optimal 

allocation.   Locally computed potential solutions are communicated amongst members 

of the swarm before one is selected.  The concept is sound, but, in practice, these ‘good 

enough’ solutions are characterized by “the shortest distance and the optimal time” [9]. 

 Despite recent progress, the field is still hamstrung by unsolved problems.  

According to [9], constraints in current target allocation models are still too simplified to 
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be useful in the real world (i.e., targets are not dynamic). Current models rely on having 

at least a portion of target information in advance.  In other words, the targets do not 

evade or engage the drone swarm, and the existing algorithms do not work in situations 

where target information is unknown.  While the existing algorithms are robust enough to 

adapt to drone shootdowns and to finding previously unknown targets (and assigning 

drones to deal with them), they are incapable of searching in low-information/no-

information environments. 

 Additionally, knowing that drones will get shot down is different than modeling 

the enemy actually shooting down the drones.  Existing research largely does not attempt 

to model enemy action or measure the effectiveness of DSTA against a defiant enemy.   

 These existing issues within the current body of research make DSTA unsuitable 

for the goal this research seeks to accomplish: designing a drone swarm that is launched 

with no target information beforehand and in a situation where the targets of the drone 

swarm have a well-defined ability to defend itself.  Clearly, the method of rule-based 

autonomy this research explores will need to relate to problems of the existing body of 

research into DSTA as well as the wide-area search problem.  But first, we need to define 

the third subproblem: that of target self-defense.     

 

2.9 SP3: The Target Self-Defense Subproblem  

Since existing DSTA research does not include a model of enemy action, this 

research must create its own.  For simplicity, let’s imagine the Target Self-Defense 

problem as a game with three types of players: The ADA agents, the helicopter (or any 
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other asset to be defended with SEAD), and the drones in the drone swarm.  See Figure 

10. 

 

Figure 10. Target Self-Defense Modeled as a 3-player Game 

The helicopter’s goal is to traverse the mission area while avoiding getting shot 

down by an ADA agent.  The drone’s goal is to detect and destroy any ADA agent it 

encounters to protect the helicopter.  The drone can detect the ADA either visually or 

through the ADA’s radar signatures, depending on the type of drone. 

The ADA agents’ primary goal is to shoot down the helicopter.  The ADA 

accomplishes this by remaining alive and undetected until it is ready to turn on its radars 

and shoot the helicopter down.  However, the ADA system is hunted by the drones.  So, 

the ADA system must also hide from the drones.  Of course, the ADA system can turn on 

its radars and fire missiles to engage the drones in self-defense, but it does so at the cost 

of being discovered by other drones in the drone swarm and at the cost of firing a missile 

likely more expensive than the drone it is destroying.  However, the cost of taking no 

action is to risk destruction at the hands of the drone. 

For the ADA agents, the correct action to take is ambiguous.  If the ADA system 

knows that a drone is tracking itself for engagement, it becomes clear that the ADA 

system should turn on its radars and defend itself by shooting the drone.  However, if the 
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drone is still searching for ADA agents and the ADA turns on its radar, then the ADA 

makes its position known to the other drones and invites other drones to attack it.   

How might the ADA system deal with such ambiguity?  The ADA would be 

logical in attempting to discriminate between drones that are target tracking (and likely 

attacking) the ADA agent and drones that are not. In the interest of balancing the 

competing desire to 1) not waste missiles on drones, 2) stay hidden when possible, and 3) 

survive while also successfully engaging the helicopter, the ADA would act logically if it 

only attacks drones that it thinks are attacking itself.  In other words, the ADA would 

attempt to shoot down drones only if those drones were on an attack heading towards it 

and otherwise hold fire in the attempt to “stay hidden.”   

The above strategy seems decent; it’s reasonable to believe it will work well 

against the drone swarm.  Especially considering that DSTA results in solutions 

characterized by nearest drones to nearest target pairings [9].   These two beliefs, taken 

together, result in a refinement of the above ADA strategy where the ADA orients on the 

drone nearest to it and only fires if the drone nearest to the ADA agent turns towards the 

ADA agent (signifying taking an attack heading).  The ADA can leverage the 

predictability of the drone swarm target assignment process to defend against the drone 

swarm.   

This line of reasoning leads us to consider a more significant meta-question best 

introduced by juxtaposing two paragons of generalship in human history.  General 

George Patton is quoted as saying, “A good plan, violently executed now, is better than a 

perfect plan next week.” In contrast, Sun Tzu is quoted as saying, “Let your plans be dark 

and impenetrable as night, and when you move, fall like a thunderbolt.”  A side-by-side 
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comparison of these two generals begs the question: Is it better to execute a simple, 

quick-to-execute plan or execute a complex plan that entails deception and takes longer 

to execute?  In short, are simple tactics more effective than complex ones?   

The goal of a complex attack tactic in the context of this research would be for the 

drone swarm to deny the ADA the predictability of current methods of drone swarm 

target assignment and therefore become more effective at destroying the ADA.  This 

complex attack tactic is the defining feature of NDSTA.  This complex attack tactic is 

explicitly defined later in Chapter 3. 

Conversely, DSTA is abstracted and embodied into what is referred to as the 

simple attack tactic.  It is characterized by the shortest distance/shortest time method of 

dealing with a target once it is found.  In practice, a kamikaze drone will always attempt 

to attack the nearest target it is tracking.  When a non-kamikaze drone type finds a target, 

it will attempt to use target pheromone to lure a kamikaze drone into a position where it 

can find the target and attack it.   

2.10 Implications of Task Assignment and Target Self-Defense for this Research 

 Given that current research into drone swarm task assignment involves 

assumptions where 1) the targets themselves do not fight back against the drone swarm 

and 2) the solutions produced by existing methods are predictable, this research compares 

the efficacy of a simple attack strategy (DSTA) vs. a complex attack strategy (NDSTA) 

when applied to a drone swarm vs. a set of ADA agents.  This research question leads to 

the 2x2 experimental design referenced in Step 4, Figure 4.   
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 The simple attack strategy and the complex attack strategy are defined in detail in 

Chapter 3.  However, there is still the question of how the drone swarm searches the 

battlespace to find targets, since at 𝑡 = 0 the drone swarm in this study does not know 

what targets exist within its battlespace. Therefore, it is now time to examine the Wide 

Area Search sub-problem. 

 

2.11 SP1: Wide Area Search Problem 

Optimal search over a wide area is simple in non-military contexts.  

Internationally recognized standard search patterns abound based on the sensor type and 

type of search conducted, as shown in Figure 11 [12]. 

 

Figure 11. Internationally Recognized Search Patterns [12] 

Generally speaking, when moving from a one-platform search pattern to a multi-

platform search pattern, the strategy is to divide the search space and apply one of the 
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single-platform search patterns depicted above.  The problem with using optimized 

search patterns relates to the target self-defense problem: they are utterly predictable.  

Suppose an ADA agent is observing a drone flying an optimal search pattern, and 

the ADA agent knows the sensor capabilities of the drone flying the pattern. In that case, 

the ADA agent can deduce not only if the drone will find the ADA agent on a given pass 

but when detection might occur because of the predictable flying pattern.   

This leaves us questioning how one should search a battlespace if we do not allow 

ourselves to use the optimized patterns.  First, let’s understand what we are not giving 

ourselves access to.  An optimized search pattern is essentially a path or series of 

trajectories to fly, informed by the search area's size and the searching platform's sensor 

performance.  If what we need to conduct the search is a series of trajectories to fly, then 

what we need is a trajectory generator for each drone in the swarm while it is searching.  

Luckily, this research has already proposed a framework for a trajectory generation 

model in Section 2.7.  The specifics of the trajectory generation model are presented in 

Section 3.7. 

 

2.12 Wide Area Search Implications for this Research 

 Given that this research will use rule-based autonomy as a basis for conducting 

Wide Area Search, let’s discuss any potential trade-offs that are implicitly made by 

taking this design decision.  On the one hand, there is no guarantee of optimally 

searching the assigned space.  But on the other hand, there is a distinct lack of 

predictability as to how exactly each drone in the swarm will behave while it is searching 
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its assigned battlespace.  In a contested battlespace where the ADA can fight back against 

the drone swarm, the lack of predictability should theoretically translate to increased 

‘survivability’ of the drones and thus increase overall mission effectiveness.  This trade-

off might not be valuable if the drone swarm system under question was explicitly a low-

cost, attritable reconnaissance system.  But this trade-off is likely valuable in the context 

of a drone swarm that can suppress and destroy ADA systems.  

 Additionally, moving forward with this hard-to-predict trajectory generation 

method will benefit this research.  When this research compares a simple attack strategy 

(DSTA) and a complex attack strategy (NDSTA), the trajectory generation model will 

allow for a more natural comparison of the two strategies.  In other words, set-piece 

scenarios will not have to be built to test DSTA vs. NDSTA because the trajectory 

generation model will put the drones in the positions they need to be relative to the 

targets.  This removes a source of bias where the researcher may build scenarios that 

favor one strategy over the other.  

However, a downside of this method is that one could reasonably expect 

increased variance in the reported effectiveness between the attack tactics due to the 

unpredictable and random nature of the trajectory generation model since one of its 

elements is the chaotic force.  Mitigating this downside is that there is increased face 

validity to the experiment because combat is indeed chaotic.   

Further mitigating this downside is that the trajectory generation model will 

eventually be tailored to the attack strategy it will support since it’s a tunable model that 

will undergo synthetic evolution.  To use an analogy: suppose you are training two 

children to properly cut their food before eating it.  One is given a fork and a knife; the 
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other is given only a fork.  The motions and coordination required to use those tools 

optimally are different.  Tuning the trajectory generation model is akin to allowing both 

children to learn the optimal motions that enable the use of the respective tool(s) they are 

given, and the different tools are akin to the different attack strategies. 

 At this point, the chapter has reviewed all the relevant problems and subproblems. 

So let’s explore some additional existing research in the drone swarm space.  

 

2.13 Existing Research  

 There are two approaches to heterogeneity in the context of the drone swarm. 

First, behaviors and decision rules can be varied between different agent types on the 

software level [13].  Alternatively, agents can be varied in their intrinsic hardware 

capabilities and limitations [14].   

 In [13], the authors start with a search and rescue scenario. They design three 

types of drones within their drone swarm, differentiated by their behaviors. First, there is 

a ‘near-search’ drone that searches near a located survivor on the theory that survivors are 

likely to clump together.  Second, there is a ‘far-search’ drone that aims to maximize 

dispersion between members of the swarm.  Third, there is a communications drone that 

aims to position itself such that network connectivity between all drones is maintained.  

Their simulation experiment looked at the performance of drone swarm, varied by the 

make-up of the drone swarm among these three types.  They found that having any 

number of communication drones within the swarm hurt performance, highlighting that 

within their experimental parameters, there was no benefit to having one of the three 
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drone types.  It was interesting how they sought to determine the optimal mixing of the 

three drone types within a drone swarm of specified size to accomplish a mission.  The 

key similarity of this paper to my research is the comparison of the effectiveness of a set 

of behaviors in a given scenario.  The key difference is that the three behaviors are 

compared in a cooperative context instead of an adversarial one. 

 In [14], the authors posit a surveillance scenario where three types of drones, 

varied in hardware configuration (maritime vehicle, ground vehicle, air vehicle), work 

together to find enemies trying to escape a geographic area.  The authors use a rule-based 

model where trajectory generation is done as a matter of vector addition.  What’s distinct 

about their model is how chaotic or random forces drive the trajectory generation of the 

drones, with the only other force being a repulsive force experienced by each member of 

the drone swarm to drive dispersion over the search area.  The three drone types worked 

together using only two forces.  This paper directly inspired the inclusion of the chaotic 

force described in Section 2.7.   

Additionally, this paper used synthetic evolution to derive simulation validity.  

Specifically, the authors specify a rule set and tunable parameters for both the 

simulation's searching and escaping agents.  Then, the simulation is run using a 

competitive genetic algorithm where the searching force and escaping force evolve 

increasingly better strategies (i.e., specific parameters for their rule sets) to either escape 

or catch the escapers.  In short, this paper treated both the heterogeneous drone swarm 

and the enemies as synthetic creatures, placed them into a synthetic ecosystem, and 

allowed them to synthetically evolve against each other in a competitive manner.   
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[5] investigates the impact of cooperation or non-cooperation between loitering 

munitions conducting a search and destroy mission.  While the simulation scenario 

between this source and my own research is near-exact, I did not use this source as a 

baseline because his drones face targets that do not fight back, and his drones fly optimal 

search patterns prior to enemy contact.  Refer to Sections 2.9 and 2.10 on why I believe 

this is invalid in a SEAD context.  However, it’s worth noting that this reference presents 

an exciting dynamic that might be worth exploring as an excursion to the research 

presented in this paper.[5] claims that one of the fundamental dynamics to model the 

drone swarm in this scenario is that of target identification accuracy where there are valid 

and invalid targets, and there is some probability of a drone misclassifying a target.  His 

findings were that cooperation between drones only resulted in increased mission 

effectiveness when the probability of misclassification was relatively large.   

In [15], the author uses a rule set to control a drone swarm that conducts 

reconnaissance missions.  Her model examines the rule set a drone might follow by 

mission phase: launch, en-route travel, mission execution, and subsequent recovery.  

Then, she dynamically weights the rules by mission phase.  This work was the one most 

similar to my own of all sources listed, though I developed my own model prior to 

finding this source.  One major difference between this research and mine was that she 

manually adjusted her parameters to find high-performing values and limited the 

maximum size of her drone swarm to ten. 
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2.14 Chapter Summary 

 This chapter began with the broad problem of Suppression of Enemy Air 

Defenses and defined the tactical problem where a drone swarm solution is desired.  

Then, the technical problem was explored by reviewing robotic autonomy and the 

principles of engineering swarming systems, resulting in a trajectory generation 

framework.  Following that, the remaining technical subproblems of Drone Swarm 

Target Assignment, Target Self-Defense, and Wide Area Search were discussed.   

We now have all elements of the necessary framework to conduct the 

experimental research of this paper.  Preliminary modeling was explained abstractly and 

tailored to the problem rather than the underlying mathematics.  The reader was also 

directed to Appendix A if interested in relevant non-experimental parameters of this 

research. 

Chapter 3 specifies the underlying models explicitly and mathematically from 

Steps 1-3 in the Research Approach and then covers Steps 4-6.  Refer to Figure 4 on page 

10 for visual reference. 
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III.  Methodology and Modeling 

3.1 Chapter Overview 

The purpose of this chapter is to provide a detailed explanation of the simulation, 

the model parameters for the various behaviors described in Chapter 2, and the 

experiment as a whole.  This roughly corresponds to experimental steps 4-6 in Figure 4.  

This chapter breaks naturally into two themes: the modeling and the experiment. 

Along the modeling theme, a plausible SEAD scenario is abstracted, so it’s 

suitable for agent-based simulation.  Next, the different types of agents in the simulation 

and their general relationships will be broken down in detail.  After that, the 

mathematical model behind trajectory generation is specified, and tunable parameters are 

discussed.  Further, the rules and parameters of the two attack strategies are defined. 

Following the modeling discussion, then the experiment is described in four parts.  

The first part describes unifying all of the models into a single simulation.  The second 

part describes the 2x2 experimental setup where DSTA vs. NDSTA is compared against 

both compliant and defiant enemy.  The third part explains the genetic algorithm. Finally, 

the fourth part explains the validation procedure used to generate the final data for 

answering the primary research questions. 

 

3.2 SEAD Scenario to Simulation Environment 

 Remembering that the motivation of this research is to build a drone swarm that 

can conduct SEAD missions, I start with a scenario conducive to the application of the 

drone swarm.  In Figure 12, the enemy (red diamonds) is going to attack the friendly 
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ground forces (black rectangles).  However, friendly forces have an Attack Helicopter 

Battalion located in Assembly Area (AA) Hawk in the bottom center of the figure.  The 

plan is for the Attack Helicopters to fly along Axis Blade (left side of figure) so they can 

interdict the enemy in Engagement Area (EA) Dagger.   

 

Figure 12. An Example Attack Helicopter Concept of Operations [16] 

While the above concept of the operation is very coarse and does not show detail, it is 

reasonable to assume that the enemy will likely have forces forward of the main elements 

of the attack and that the attack aviation will have to fly over or past these enemy forces 

to get to the EA.  Therefore, a SEAD-conducting Drone Swarm would be desired. 

 Using the above scenario, this research focuses on the portion of the aviation 

mission where the attack helicopters are maneuvering along Axis Blade en route to EA 

Dagger, so they set the trap in the engagement area.  The last 30 kilometers of the route 
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are likely to be the most dangerous, as it is the closest to the presumed enemy positions, 

so I set the simulation area to be 30 kilometers by 30 kilometers (km), and an attack 

helicopter will transit through the area.   

 The next step is to add the drone swarm and the enemy to the simulation.  Eight 

enemy ADA agents are randomly and arbitrarily placed on the battlefield according to a 

uniform distribution about the 20 km by 20 km center of the battlespace.   Eight agents 

are used because that is a typical number of platforms for some ADA unit types. 

Emplacement is random and arbitrary because there is no terrain to take 

advantage of in the simulation, so there is no ensuing logic to use for the ADA 

emplacement.  Additionally, this placement leads to a diversity of scenarios rather than a 

few crafted scenarios on which the drone swarm might later overtrain.   

The area of enemy employment is smaller than the overall simulation area so that 

a 5 km buffer zone results around the employment area where ADA agents can still 

engage the helicopter.  This ensures that the ADA agents can always engage at their 

maximum range rather than having that range arbitrarily cut off at a simulation boundary.  

 For the deployment of the drone swarm, it is assumed that the drones are 

deployed to the center of the battlespace from an artillery system.  In practice, this means 

they appear in the middle of the battlespace at the start of the simulation.  It is further 

assumed that a uniform distribution governs the random placement of the drones over the 

3 km by 3 km center of the battlespace. 

 Lastly, a “geofenced” area is added in which the drone swarm remains for the 

duration of the operation.  This area is 20 km by 20 km in size.  The existence of the 

geofenced area is realistic because battles are often controlled by subdividing the battle 
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space between agents such that friendly fire and friendly aircraft collisions are unlikely to 

occur.  By coincidence, it is the exact dimensions as the enemy deployment zone.  In 

sum, a typical simulation scenario at time 𝑡 = 0 resembles Figure 13.   

 

Figure 13. Simulation Battlespace Depiction 

 Regarding time, the Drone Swarm will have 15 minutes to search the battlespace 

and engage any targets it finds.  At the end of the 15 minutes, an indestructible attack 

helicopter will fly from right to left, transiting the drone swarm’s battlespace for 10 

minutes.  The helicopter is indestructible because the helicopter’s purpose in this 

simulation is to log engagements from any ADA agent that the drone swarm has not 

destroyed.  In total, the simulated time is 25 minutes long.  Each time-step in the agent-

based model represents one second, so there are a total of 1500 time-steps per simulation 

run.   
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 Last, the quantities of each agent are as follows: there are eight enemy ADA 

agents in each simulation because this is the general number of systems within an ADA 

battery.  There are 20 drones deployed in total: 16 kamikaze drones supported by two 

decoy drones and two RF drones.   

 Why 20 drones in total?  There isn’t a scientific basis for how many drones there 

should be since this scenario does not exist, so 20 is picked arbitrarily.  It seems 

reasonable that ten small drones might fit inside an artillery-launched missile and be 

launched as a package.  Of those ten drones, at least one of the drones should be of each 

support type.   

Similarly, it seemed reasonable to use 20 drones because the drones are assumed 

to be orders of magnitude cheaper than both the helicopter they are protecting and the 

ADA agents they are hunting.  Ten drones seemed like too few drones, and 30 drones 

seemed like too many.   

Additionally, simulating 30 drones was computationally expensive.  Adding 

additional drones into the swarm resulted in the non-linear growth of computation 

required because each pre-existing drone had to account for another drone and its 

resultant information, in addition to the calculations required for the new drone. 

 

3.3 Agent-to-Agent Relationships 

As referenced in Sections 2.3 and 2.4, the drone swarm contains three types of 

drones: Kamikazes, Decoys, and Radar-Finding (RF) Drones.  The simulation also 
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includes an attack helicopter and enemy ADA agents.  The interactions between the 

friendly agent classes (blue) and the enemy agent class (red) are depicted in Figure 14. 

 

 

Figure 14. Friendly Agent Relationships with the Enemy Agents 

The three drone types correspond to the three elements of the general SEAD 

process.  The helicopter represents the asset the SEAD mission is meant to protect.  The 

helicopter is said to “stimulate” the ADA agent since its presence triggers the ADA to 

attempt an engagement on the helicopter.  The ADA agents hide and defend themselves 

from the drones while seeking to destroy the helicopter. 

 The following sections of this paper describe the behavior of each of the agent 

types. 

3.4 Target (ADA) Behaviors  

Each ADA agent’s behavior can be considered to be governed by one of two 

primary states: a visual search state and a radar search state.  Each ADA agent starts the 
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simulation in its randomly derived position in a visual search state, allowing it to detect 

drones at a short range from any direction without emitting any radar.  The visual search 

state can be thought of as hiding and waiting for a higher-value target (i.e., the helicopter) 

to enter the battlespace.  The radar search state can be thought of as a state of heightened 

awareness because the ADA is either preparing to defend itself against the drones or 

“pounce” on the helicopter.  The ADA must be in a radar search state to execute any 

engagements.    The flowchart in Figure 15 models the ADA decision logic and 

behaviors. 

 

Figure 15. ADA Decision Logic and Behavioral Flowchart 

Two events can trigger the radar search state: the ADA agent finds a drone or 

helicopter with a visual search, or a decoy drone or helicopter stimulates the ADA agent 

into the radar search state.  What is meant precisely by stimulate is that the decoy drone 

or helicopter tells a specific ADA agent to turn on its radar and attempt to gain a radar 

track on the agent that stimulated it. 
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Digression: The stimulation process conducted by the decoy or helicopter on the 

ADA agent approximates how an ADA agent would be cued to conduct a radar search in 

real life.  In real life, each ADA agent would be part of an Integrated Air Defense System 

(IADS) or network.  The IADS would have a commander who oversees and directs the 

operation of the ADA agents over a geographic area much larger than the simulated 

battlespace in this study.  The IADS commander would have access to other radars, 

sensors, and sentries through which he would receive indications of an air threat (i.e., the 

helicopter or decoy drone).  Based on this information, the IADS commander would 

direct specific ADA agents to turn on their radar and point toward the air threat to 

confirm or deny its presence and engage if appropriate.   

This stimulation process is approximated because this allows for modeling the 

behavior of ADA agents as part of an IADS without requiring explicit modeling of the 

IADS Commander and his awareness.  The accurate process being approximated is that 

the decoy drone and the helicopter both emit signatures that the IADS commander would 

detect.  As a result, the IADS Commander would direct specific ADA agents to search 

for the source of those signatures.   

 

We now return to a description of the ADA agent’s behaviors and Figure 15. 

When in a radar search state, the ADA turns on its radar and orients to the closest target 

in its awareness to try to establish a radar track.  Once the radar track is established, the 

ADA agent begins a 10-second engagement sequence, simulating the time required to get 



54 

a firing solution.  The ADA agent can have any number of radar tracks within the width 

of its radar beam and thus can develop multiple firing solutions simultaneously.   

The ADA agent requires the following conditions to engage a drone or helicopter.  

First, the 10-second target solution process must be complete.  Second, the ADA agent’s 

azimuth must be aiming at the target.  Third, the target must be within range.  These three 

conditions are sufficient to engage the helicopter.   

In the case of targeting drones, the ADA agent must meet a fourth condition.  The 

ADA will only engage drones it perceives as attacking itself.  The ADA agent thinks that 

a drone is attacking if the drone is flying directly toward the ADA agent.  This restraint is 

meant to model the dynamic of attempting to stay hidden and conserving ammunition in 

case the drone has not found the ADA agent. 

Lastly, the ADA agent will return to a visual search if it does not find any radar 

tracks within 10 seconds.  This is meant to model the logic that the ADA agent should not 

emit signatures that give away its position if those emissions do not result in information 

that will help the ADA defend itself or accomplish its mission.  Essentially, the ADA 

agent returns to hiding and waiting.   

This section has covered the behavioral dynamics of the ADA agents in the 

simulation.  A further discussion of the ADA parameters, as well as the drone and 

helicopter parameters, can be found in Appendix A.  The next section of this paper 

describes the behaviors of the friendly agents in the simulation.   
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3.5 Drone Swarm and Helicopter Behaviors 

  Generically, each drone in the drone swarm starts the simulation in a search state.  

While in a search state, each drone uses the trajectory generation model described in the 

next section to select its next heading for search.  The drones visually search the 

battlespace with their onboard camera.  The drones communicate their current position 

directly to each other so that each drone in search state may be repelled away from every 

other drone, thus encouraging a dispersed search. 

 The drones also indirectly communicate information using a pheromone map of 

the battlespace maintained between all members of the drone swarm.  The pheromone 

map positions correspond to the battlespace, except that positions in the pheromone map 

are abstracted from precise locations to 1km x 1km grid squares.  When a drone is within 

a grid square in the actual battlespace, it rounds the x and y coordinates of its position to 

the nearest whole kilometer and drops a search pheromone in that grid in the pheromone 

map.  This is to communicate which areas have been recently searched and repel other 

drones away from these areas. 

 Similarly, the drones also communicate target information using abstracted 

location data by dropping target pheromone in the pheromone map.  The purpose is to 

communicate the general target location of any target found to other members of the 

swarm.  Target pheromone serves as an attractor for the drones such that the drones want 

to fly towards target areas.   

Why is the location information abstracted?  This is to decrease the volume of 

information required for transmission.  Packing this information into an abstracted 

pheromone map accomplishes this reduces data volume at the expense of fidelity.  It has 
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nothing to do with anything under study in this research paper, but it lays the groundwork 

for possible follow-on studies where limitations are placed on the drones’ communication 

rate, as opposed to the current research where information is passed perfectly and without 

latency among all members of the swarm. 

 Target Pheromones, Search Pheromones, and positions of each drone form the 

basis of information from which each drone calculates its next trajectory using the 

trajectory generation model discussed in section 3.7.  This is common to all drones and is 

the foundation of their behavior. 

As for specific drone-type behaviors, Decoy drones exhibit a behavior where they 

can coerce ADA systems to turn on within a specific range of themselves.  The real-

world dynamic modeled is that a decoy drone would look like a high-value aircraft to an 

operational or theatre-level IADS Commander.  The IADS Commander would detect the 

decoy as a real aircraft and direct tactical ADA agents on the ground to turn their emitters 

on and engage the decoy, believing it’s a high-value manned aircraft.  

This is modeled in the simulation by giving the decoy drone the ability to 

randomly select an ADA agent to turn on its radar within 10 km of itself and then have 

the ADA agent begin to turn in azimuth towards the decoy drone.  The range of 10 km is 

selected because that range is well within the ability of modern ADA systems to detect 

and engage a large aircraft that the decoy drone mimics. 

Similarly, the RF drone can detect emitting radars and localize the source of those 

emissions.  Within a range of 10km, if a radar is emitting at an azimuth pointed in the 

direction of the RF drone, the RF drone detects the radar and drops a target pheromone in 

the location of the ADA agent.  This alerts the rest of the drone swarm to that target.  The 
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10km range of this ability was selected to match the decoy drone’s ability to stimulate 

targets.  The range of this capability is technically feasible. But I had to assume that this 

technology could be sufficiently miniaturized to be incorporated into a small drone. 

 The Kamikaze drones are the only drones that can attack targets.  When a 

Kamikaze drone is attacking a target, it flies a straight-line path from its current position 

to the target’s position.  Successful engagements result from the Kamikaze drone 

reaching the target location without getting shot down by the ADA agent, which results 

in the death of both the drone and the ADA. 

The method by which the Kamikaze drones enter attack mode is the critical 

difference in how DSTA versus NDSTA is modeled.  However, both DSTA and NDSTA 

leverage the simple attack behavior described.  A detailed description of how both 

methods are modeled is in section 3.8.   

Lastly, the helicopter is modeled as transiting the simulated battlespace area from 

right to left.  The helicopter doesn’t fight back in the simulation since the drone swarm 

behaviors and their subsequent performance are the subjects of this research.  But the 

helicopter does stimulate ADA agents to turn on their radars and turn in azimuth towards 

the helicopter to begin an engagement sequence.  From the ADA agent’s perspective, the 

helicopter always takes engagement priority over a drone.  The helicopter is 

indestructible and logs all ADA hits against it.  This is one of the critical measures of 

effectiveness by which the drone swarm’s performance is evaluated. 
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3.6 Drone Swarm Trajectory Generation Model 

 This section introduces the mathematical notation of the Drone Swarm Trajectory 

Generation Model.  Keep in mind that many of the scalar variables presented correspond 

to behaviors and how those behaviors manifest themselves in the simulation.  The 

tunability of the scalar variables is critical in that this tunability will allow us to leverage 

synthetic evolution (i.e., the genetic algorithm) to find high-performing configurations of 

the model, subject to the ecosystem in which the model evolves.  This section will 

proceed at a broad level before delving into the specifics.  

At a broad level, the Drone Swarm Trajectory Generation Model is a vector 

summation where each of the five force types (Family, Target, Search, Geofence, 

Chaotic) is a vector normalized to a length of one.  The weighted sum of the vectors 

results in a new direction for that drone to fly towards.  The weight applied to each vector 

corresponds to a scalar quantity that represents the relative importance of each force in 

determining the next direction.  See Equation 1. 

𝑁𝑒𝑥𝑡 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  ∑ 𝜔𝑡𝑦𝑝𝑒 𝐹𝑜𝑟𝑐𝑒𝑡𝑦𝑝𝑒

𝑡𝑦𝑝𝑒

 

Where: 

𝑁𝑒𝑥𝑡 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  = total aggregated <x, y> vector 

𝜔𝑡𝑦𝑝𝑒    = scalar by type 

𝐹𝑜𝑟𝑐𝑒𝑡𝑦𝑝𝑒    = normalized and aggregated <x, y> vector by type 

 

 

The Next Direction vector can be thought of as a goal.  Once the drone calculates 

its next direction, it compares it to the drone’s current direction.  If the next direction is 

within the drone’s max rate of turn (45 degrees), the drone makes the turn in a single 

(1) 
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step, and its current direction matches its next direction.  If the Next Direction vector is 

not within the max rate of turn of the drone, the drone turns 45 degrees towards its goal 

azimuth.  For each step, the drone recalculates its next direction based on the information 

available and turns toward that vector. 

 Each force type in Eq. 1 is a vector adjusted according to its own tunable 

parameter 𝜔𝑡𝑦𝑝𝑒.  The scaling variable 𝜔𝑡𝑦𝑝𝑒 only applies at the aggregated level. Also, 

𝜔𝑡𝑦𝑝𝑒 is a tunable parameter in its own right, subject to synthetic evolution, which will 

eventually allow for varied weights to be experimented with. 

 To understand the model broadly, consider Figure 16 below. 

 

Figure 16. Concept View of the Trajectory Generation Model 

 Next Direction is the final model output, constituted from the weighted vectors of 

the five component forces.  Two of the five component forces (GeoFence and Chaotic) 

are constituted as a single force and are described in detail further in this section.  Three 

of the five component forces (Family, Target, and Search) are themselves amalgamations 
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of many individual forces between one drone and the different types of information 

available to that drone.  Overall, using the trajectory generation model can be thought of 

as proceeding from the bottom of the pyramid to the top.  From here, the family of 

equations that govern the Family, Search, and Target Forces will be explained.  

Following that, GeoFence and Chaotic Force will be explained. 

The Family, Search, and Target Forces are a summation of vectors based on the 

information available to an individual drone and itself.  Let i represent a piece of 

information.  Two examples: a target pheromone is a piece of information for the target 

force.  Similarly, a drone’s position is a piece of information for another drone’s family 

force.  Additionally, let self refer to the drone generating the forces in its trajectory 

generation model.  The Family, Search, and Target Force types can be described 

generally as in Eq. 2 on the following page. 

 

                                       𝐹𝑜𝑟𝑐𝑒𝑖,𝑠𝑒𝑙𝑓 =  𝑆𝑖 ∗ 𝐷𝑖,𝑠𝑒𝑙𝑓 ∗ 𝐴 ∗  𝑉𝑖,𝑠𝑒𝑙𝑓                            (2) 

where: 

𝐹𝑜𝑟𝑐𝑒𝑖,𝑠𝑒𝑙𝑓  = <x, y> vector representing force of i on self 

𝑆𝑖   = signal strength modifier (scalar) 

𝐷𝑖,𝑠𝑒𝑙𝑓   = distance modifier (scalar) 

𝐴     = attraction modifier 

𝑉𝑖,𝑠𝑒𝑙𝑓   = <x, y> unit vector from i to self 

 

The force felt by self (the drone of interest) because of information i is a product 

of signal strength S, distance modifier D, attraction modifier A, and direction V between 

the agent of information and the drone.  Each of these components is governed by Eqs. 3-
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6. 

                                    𝑆𝑖 =  {
𝑆𝑖(𝑡),     𝑖𝑛 𝑡ℎ𝑒 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑐𝑎𝑠𝑒
1,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (3) 

                               𝐷𝑖, 𝑠𝑒𝑙𝑓 = 𝑀𝑎𝑥(1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑠𝑒𝑙𝑓)

𝛿
, 0)                        (4) 

                                𝐴 =  {
1,                         {𝐹𝑎𝑚𝑖𝑙𝑦, 𝑆𝑒𝑎𝑟𝑐ℎ}

−1,                                     {𝑇𝑎𝑟𝑔𝑒𝑡}
                     (5) 

                                     𝑉𝑖,𝑠𝑒𝑙𝑓 = 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑠𝑒𝑙𝑓 <x, y>                            (6) 

 

           𝑆𝑖(𝑡) refers to the equations governing pheromone evaporation and pheromone 

placement in the cases of using target or search pheromone.  This equation is further 

decomposed and described with Eqs. 7-9, following a simplified example of force 

generation to promote understanding. 

           𝛿, in Eq 4., refers to the distance threshold inside which the force felt by the drone 

is inversely proportional to its distance from the information.  Information beyond the 

threshold is not felt at all with a force equal to zero.  Additionally, 𝛿 is a tunable 

parameter.  Variable A, in Eq.5, modifies the force such that Target forces are attractive 

and results in drones flying towards targets, while Family and Search forces are repulsive 

and push drones away. 

To explain by example: the Family force is felt between all drones and does not 

have a pheromone component so 𝑆𝑖 = 1.  Family force is repulsive so 𝐴 = 1.  Eqs. 3-6 

work together to produce a force, as shown in a two-drone example in Figure 17.  The 
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closer the two drones are to each other, the stronger the repelling force they feel away 

from each other. 

 

Figure 17. Family Force Example Between Two Drones 

 If more drones are introduced to the example, then more family force vectors are 

generated as long as the distance parameter 𝛿 is greater than the physical distance 

between the drones.  At the conclusion of generating all applicable family force vectors 

between the drone of interest and all nearby drones, these vectors are summed and then 

normalized to unit length such that 𝐹𝑜𝑟𝑐𝑒𝑓𝑎𝑚𝑖𝑙𝑦 is now a normalized vector and can be 

passed to the overall trajectory generation model embodied by Eq. 1. 

Now let’s return to signal strength 𝑆𝑖(𝑡) and the pheromone case.  Pheromone 

signal strength always begins the simulation equal to zero in all grid squares in the 

pheromone map.  Over time, quantity 𝑆𝑖(𝑡) can change because drones can place 

pheromones on the map, and those pheromones are subject to evaporation. 
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Signal strength, 𝑆𝑖(𝑡) is acted upon first by the placement equation (Eq. 7) every 

time a drone drops a pheromone.  Then, 𝑆𝑖(𝑡) is acted upon by an evaporation equation 

(Eq. 9).  Eq. 8 represents the starting pheromone level. 

 

                                                  𝑆𝑖(𝑡) = 𝑆𝑖(𝑡 − 1) + 𝛾                                                     (7) 

                                                  𝑆𝑖(0) = 0                                                                        (8) 

where: 

𝑆𝑖(𝑡)    = Strength of Pheromone i at time t 

𝑆𝑖(𝑡 − 1)  = Strength of Pheromone i at time t-1 

𝛾   = Strength of Pheromone deposited by a drone 

 

 

 

 

 

 

 

                                𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑆𝑖(𝑡) = {
0,                                       𝑆𝑖(𝑡) ≤ 𝛽

𝑆𝑖(𝑡) ∗ 𝑒−𝛼,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                    (9) 

where: 

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑆𝑖(𝑡)  = 𝑆𝑖(𝑡) after evaporation is applied 

𝑆𝑖(𝑡)   = Strength of Pheromone i at time t 

𝛼   = Rate of Evaporation 

𝛽   = Minimum Pheromone Threshold 

 

 

 

Eq. 7 is the placement component of pheromone signal strength, where γ 

represents how much pheromone is placed at each time step by a drone.  For example, a 

drone searching the battlespace drops search pheromone in a given grid square which 
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results in a signal strength increase of 𝛾 for that specific pheromone type in that specific 

grid square in the pheromone map.  Also, note that 𝛾 is a tunable parameter. 

Eq. 9 represents the pheromone signal strength's evaporation component, where 𝛽 

is the minimum pheromone strength threshold and 𝛼 is the evaporation rate.  If 𝑆𝑖(𝑡) falls 

below the minimum threshold, then that pheromone strength resets to zero, and the 

pheromone is considered removed from the map.  The purpose of this is to prevent 

calculations and actions on pheromone strength that are effectively zero and to set a 

minimum threshold of action for a drone to act on a certain piece of information.  𝛼 

governs the rate of evaporation of existing pheromones placed in the pheromone map in 

an exponential fashion.  Both 𝛼 and 𝛽 are tunable parameters. 

Using the previous example, a drone has deposited additional pheromone in a grid 

using Eq. 7.  After all drones have deposited pheromones on the pheromone map and the 

drones have calculated their force vectors using the pheromone map, evaporation takes 

place at the beginning of the following time-step.  The purpose of evaporation is to 

discount and eventually erase old information that resides within the pheromone map.  

So, 𝑆𝑖(𝑡) is evaporated by using Eq. 9, leading to a decreased resultant 𝑆𝑖(𝑡) in that grid 

square.  Then the cycle starts again but with two possible outcomes.  If the grid square is 

still being searched by a drone, more search pheromone will be deposited, indicating to 

other drones that they should be repelled away from that location.  If the drones fly away 

from that particular grid square and no longer deposit pheromone there, then eventually 

the pheromone signal evaporates below 𝛽 and then goes to zero.  This encourages the 

drones to revisit areas inward areas of the battlespace if an outward search of the 

battlespace does not yield targets as expected.   
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 Up to this point, the Family, Target, and Search Forces have been mathematically 

described by Equations 2-9.  What remains is the description of the Chaotic Force and the 

Geofence Force. 

 The chaotic force is a random force that is driven by random number generation.  

Unlike the previous forces, it operates based on a compass heading and uses a helper 

function to translate this heading into a unit vector in the proper direction.  The heading 

that passes through the helper function is composed of the current heading of the drone 

plus the chaotic heading.  The chaotic heading is based upon a step function that results 

in 1 of 5 outputs: turn hard left or right, turn easy left or right, or go straight, given the 

current heading.  See Eqs 10-12. 

                               𝐹𝑜𝑟𝑐𝑒𝐶ℎ𝑎𝑜𝑡𝑖𝑐 = 𝑓(𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝐶ℎ𝑎𝑜𝑡𝑖𝑐)                (10) 

 

                            𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑡) = 𝑡 𝑚𝑜𝑑 𝛳                                              (12) 

where: 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = Current Drone heading (degrees) 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝐶ℎ𝑎𝑜𝑡𝑖𝑐 = Degrees 

𝜂   = Hard Turn Threshold 

𝜀   = Easy Turn Threshold 

𝛳   = Chaotic Step Stability 

𝑡   = Model Timestep 

Variables ε and η govern the chaotic force as depicted in Eqs. 10 and 11.  Eq. 12 

depicts the trigger function that introduces a third parameter, ϴ, called the chaotic step 

stability.  All three of these parameters are tunable. 

(11) 
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While the other four forces are relatively stable between one time-step (one 

second) and another, an unconstrained chaotic force could change quite drastically 

between time-steps such that these forces could cancel each other out over time.  The 

purpose of ϴ and the trigger function is to stabilize the chaotic force.  By stabilizing the 

chaotic force, the drone is given an appropriate chance to act on that force and have its 

heading informed by it.  When the trigger function equals zero, the drone’s chaotic force 

is updated.  In practice, this means that each drone’s chaotic force is only updated every 

ϴ time-steps in the simulation while the other four forces update every step in the 

simulation.   

 Lastly, there is the GeoFence force.  The GeoFence force applies a force vector 

perpendicular to the geofence boundary if a drone is within a distance threshold delta 𝛿 to 

that boundary and is zero otherwise.  See Figure 18.  

  

Figure 18. Example of Geofence Force Repelling Drone from Boundary 

 Mathematically, the Geofence Force is a special case of Eq. 2 where 𝑆𝑖 = 1, 𝑉𝑖,𝑠𝑒𝑙𝑓 

points perpendicular to the boundary, and 𝐷𝑖,𝑠𝑒𝑙𝑓 operates as expected in respect to 𝛿, 

modifying the strength of the force inversely with its distance away from the boundary.  . 
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The Geofence Force’s purpose is to keep drones operating within their assigned airspace. 

As with the previous forces, the associated 𝛿 parameter is tunable. 

In summary, the five forces consisting of Target, Search, Family, Chaotic, and 

GeoFence forces make up the trajectory generation model that the drones use to search 

the battlespace.  Each of the forces has several tunable parameters associated with it.  The 

parameters are designed to be tunable because it is impossible to know a priori how 

exactly each force should be tuned mathematically to arrive at the desired behavioral 

outcomes. A genetic algorithm will be used to tune the parameters, as explained in 

Section 3.9.  Before explaining the genetic algorithm, we must review the difference 

between simple and complex attack behavior.    

 

3.7 Simple Attack vs. Complex Attack Behavior  

 One of the main research questions of this paper is to explore whether a simple 

attack strategy (DSTA) is better than a complex attack strategy (NDSTA) when the ADA 

agents can fight back.  Before going into the details of each behavior, it’s important to 

note that once a drone enters attack mode, it changes its heading to fly directly toward the 

target and is no longer informed by the trajectory generation model.   

The simple attack strategy is indeed simple: any time a kamikaze drone 

encounters targets, the drone enters attack mode and immediately begins to attack the 

target by flying directly toward it.  Over the course of a simulation, this tactic is 

tantamount to the nearest drones attacking the nearest targets.  Additionally, if a different 
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drone destroys a drone’s target, the first drone reverts to search mode and continues to 

search for more targets.   

Recall that my criticism of the existing literature on drone target assignment, 

referred to as DSTA, is that it results in solutions where the majority of drone-target 

pairings are nearest-drone nearest-target.  DSTA is mimicked by the simple attack 

strategy presented here.   

 In contrast, the complex attack strategy (NDSTA) is triggered when any drone 

finds a target.  The nearest drone to the target becomes the attack coordinator on that 

target and the attack coordinator can be any type of drone.  The coordinator drone checks 

for nearby kamikaze drones without assigned targets within distance δ of the target.  If 

the number of kamikaze drones within δ of the target equals or exceeds a minimum 

number κ, then the coordinator drone randomly selects 2 of the kamikaze drones to attack 

the target.  The two selected drones enter attack mode and turn toward the target to attack 

it.  See Figure 19.   
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Figure 19. Complex Attack (NDSTA) Flowchart Example 

 Suppose drone X is in a search state and detects a target.  Drone X then 

determines if it is the nearest drone in the swarm to the target.  If so, Drone X determines 

if enough eligible Kamikaze drones are nearby.  In this example, five drones are within δ 

of the target, but only three drones are eligible.  Additionally, the number of eligible 

drones meets or exceeds κ.  Since all conditions are met, Drone X coordinates an attack 

by randomly selecting two eligible drones.  Drone X then sends those drones the target 

information and commands them to assume an attack state.  At this point, attack 

coordination is finished.  If the attack-coordinator drone is shot down, it does not directly 

affect the two assigned drones’ ability to attack their assigned target.  

 Complex attack coordination occurs every time-step where the conditions are met.  

This means more than two drones can be assigned to the same target over multiple time-

steps.  It’s reasonable to wonder if this situation may sometimes lead to poor outcomes 

and if there should be a rule should be added to negate this behavior.  Instead of writing a 
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rule to disallow this behavior, I thought letting nature take its course would be 

interesting.  The genetic algorithm could theoretically evolve the κ to be large and δ 

parameter to be small such that this behavior was negated under most circumstances.   

Also, attack coordinators cannot nominate themselves to be attackers.  The reason 

for this is that the attack coordinator assumes that if the ADA agent is aware of any of the 

drones, it most likely is aware of the coordinator drone because it is, by requirement, the 

nearest drone to that target.   

The complex attack strategy hopes that the two drones selected to attack a given 

target approach from meaningfully different directions such that the ADA agent cannot 

simultaneously track and engage both drones because one of the drones is outside of the 

ADA agent’s weapon engagement zone.  If both attack drones attack from similar 

directions and the ADA is radar tracking both of them, the complex attack may fail 

because the ADA can engage both drones in rapid succession. 

Because the Simple Attack (DSTA) vs. Complex Attack (NDSTA) comparison is 

the key focus of this research, let’s examine a side-by-side example.  See Figure 20 on 

the following page.  
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Figure 20. Simple Attack vs. Complex Attack 

Under the simple attack strategy, drones 1-4 each target the ADA agent closest to 

themselves.  However, under complex attack, let’s suppose that drones 1-4 are within the 

relevant distance thresholds from the two left-most targets.  Drone 1 coordinates an attack 

on the left-most ADA agent by telling drone 2 and 4 to attack it.  Drone 2 is the nearest 

drone to the middle ADA agent and coordinates for drones 1 and 3 to attack it.  Drone 2 

also tries to coordinate an attack on the right-most ADA agent, but Drone 2 cannot 

because the number of kamikaze drones in search mode around that target does not meet 

the minimum threshold κ and drone 5 is outside of the distance radius of the target.  So 

that target is deferred until the next time-step when conditions will be re-checked for 

appropriateness to assign drones to attack that target.   

The hypothesized mechanism by which the complex attacks should perform better 

is two-fold.  First, the nearest drones to the targets are likely to be the most outwardly 

dispersed drones from the initial starting zone in the battlespace.  By not assigning the 

nearest/most-outwardly-dispersed drone to attack, those drones can continue searching 
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the battlespace for more targets.  Second, by randomly assigning two attack drones, it is 

hoped that they will converge on the ADA agent in such a way that the ADA agent 

cannot successfully defend against both of them simultaneously because of its radar 

width limitations.  In other words, if the two attack drones approach from significantly 

different directions, the ADA agent cannot orient its radar and weapons on both drones 

simultaneously.  For reference, the radar width of the ADA agents is 45 degrees in this 

simulation. 

At this point, all the rules and behaviors underpinning the drone swarms’ 

behaviors have been specified along with their tunable parameters.  In total, there are 20 

behavioral parameters to be tuned.  These parameters will be revisited and summarized at 

the beginning of Section 3.10 when the genetic algorithm is discussed because the genetic 

algorithm is used to tune the parameters.  But before we discuss the genetic algorithm, a 

discussion must be had that unifies all the modeling done up to this point into an overall 

simulation model. 

 

3.8 Overall Simulation Model 

 It’s finally time to unify the different agent behaviors and the trajectory 

generation model into a single simulation.  This simulation model is coded in Python 

using an Agent-Based Modeling library called AgentPy.  Code, as well as experimental 

data, is available from the author by request. 

 The required starting parameters fall into three categories: Behavioral Parameters, 

Ecosystem Parameters, and Static Parameters.  Behavioral Parameters are the tunable 
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variables from the trajectory generation model and the complex attack behavior.  The 

Ecosystem Parameters describe the attack strategy that the drones have access to (simple 

vs. complex) and the type of enemy present (compliant vs. defiant) in the simulation.  

The Static Parameters are the performance parameters, such as drone speed and ADA 

radar width, necessary for the combat simulation but are not of experimental interest.  

These parameters are described in Appendix A. 

 The simulation model operates with three main functions: a Setup function, a 

Time-step function, and a Report function.  The Setup function initializes the battlespace, 

all of the agents within the battlespace, and the pheromone map that the drones use to 

communicate with pheromones.  The Time-step function increments the model clock by 

one time-step, representing one second of simulated time.  The Time-step function is the 

function in which agents take all of their actions: scanning the environment, moving, 

engaging targets, and communicating with each other.  The Report function runs at the 

end of the simulation and reports the results of the simulation.   

 The actions undertaken in the Time-step function generally fall into 3 phases: An 

Update Perceptions phase, A Conduct Attacks phase, and a Move and Communicate 

Phase.  The actions and their order of operation are depicted in Figure 21 on the 

following page.  
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Figure 21. Time-step Function Actions and Phases 

 The two housekeeping actions are to update each agent’s random number and to 

remove destroyed agents from the battlefield.  The purpose of the housekeeping actions is 

to ensure independence between agents and to improve simulation runtime as agents are 

destroyed, respectively. 

 In the Update Perceptions phase, the drones and the targets search the battlefield 

for each other.  All drones search with their camera.  The RF and Decoy drones conduct 

their unique functions.  The targets search visually or with radar, depending on their 

search state.   

 In the Conduct Attack phase, drones update their trajectory using information 

gathered from the search phase and with information in the pheromone map.  Drones also 

can change between search state and attack state in this phase.  In a simple attack 

scenario, Kamikaze drones will change to an attack state if they have any targets in their 

tracklist.  In a complex attack scenario, drones acting as an attack coordinator will 

command selected Kamikaze drones to an attack state and insert target information into 

those drones’ tracklists.     
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Then, the drones conduct attacks.  The engagement is considered successful if a 

drone is within one time-step’s distance from its intended target.  Both the attacking 

drone and the attacked ADA agent are marked as killed and will be removed from the 

simulation by the completion of the Time-step function.   

In the second half of the attack phase, the ADA agents act according to their 

behavioral flowchart depicted in Figure 15.  If an ADA agent meets engagement criteria 

on a helicopter or drone, it attacks the friendly agent.   

A consequence of the drones perceiving and acting first is that this results in the 

drones winning all scenarios that can be considered ties.  A scenario might occur where 

an ADA agent would have met all engagement criteria on a drone in the same time-step 

where an attacking drone has closed the distance to the ADA agent to less than one time-

step’s travel distance.  Because the drone gets to attack first, it wins the tie. 

Upon completion of the Conduct Attack phase, dead agents are removed from the 

battlefield.  Then, the Move and Communicate phase occurs for the drones.  The drones 

update their headings and positions according to the trajectory generation model and drop 

the relevant pheromones onto the Pheromone Map. 

Lastly, if the simulation is in the final 10 minutes, then the helicopter agent is in 

play.  The helicopter updates its position and stimulates nearby IADS systems.  The 

helicopter also exerts a Family force on the drones, so the drones are encouraged to move 

away from the helicopter at any time-step when the helicopter is in play.  This action 

concludes the description of all actions that take place within a single simulation time-

step.   
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Upon completion of the simulation, the Report function provides the simulation 

results.  It outputs data related to the four measures of effectiveness (MOEs) described in 

Section 1.5 and the simulation's overall fitness value.  Next, the fitness function is 

described as it relates to the MOEs. 

 All MOEs are presented as ratios for more straightforward incorporation into the 

fitness function.  The ratios are scaled to be values between zero and one.   Also, the 

direction of preference for each MOE is such that lower ratios are always better than 

higher ratios. 

MOE 1 is the ratio of hits that the helicopter receives divided by the maximum 

number of hits possible.  In this simulation, this measure always assumes the form of   

𝑥
8⁄  because the helicopter can theoretically be hit by all 8 ADA agents. Each ADA agent 

only fires at the helicopter once, so in effect this measure counts the number of ADA 

agents that engage the helicopter. 

MOE 2 is the ratio of ADA agents still alive at the end of the simulation.  This 

MOE also assumes the form of  𝑥 8⁄  .  

MOE 3 is the ratio of the drone swarm killed by the ADA agents, not counting 

successful kamikaze drone engagements of ADA agents.  An ADA kill is theoretically 

possible on all 20 drones, so this MOE assumes the form of  𝑥 20⁄ . 

MOE 4 is the ratio of 1x1 km grid squares in the mission area not visited by any 

member of the drone swarm.  This measure is a proxy for how thoroughly the drone 

swarm explored its mission area.  Because the geofenced area in the simulation measures 
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20km x 20km, there are 400 grid squares in the geofenced area.  Therefore, this MOE 

assumes the form of  𝑥 400⁄ . 

 With MOEs defined, now the fitness function can be built. The fitness function is 

the mechanism by which the genetic algorithm will grade solutions and select 

reproducers.  For interpretability, I elected to set the best possible fitness value to 100 and 

the worst possible fitness value to 0.  In other words, if each of the four MOEs evaluated 

to perfect scores from the friendly perspective, then the fitness function would be 100.  

The inverse is also true.   

Next, relative weights between the MOEs must be established such that the sum 

of all weights should equal 100.  MOE 1 represents half the total value of the drone 

swarm to the helicopter crew and gets a weight of 50 because the overall purpose of the 

drone swarm is to prevent the engagement of the helicopter by the ADA agents.  MOE 2 

gets a weight of 30 as ADA kills are still an important outcome.   MOEs 3 and 4 receive 

weights of 10 each since they are one-third as important as MOE 2.   

Admittedly, these numbers were not derived from interviews with Attack 

Helicopter unit commanders. But I’m a former Apache pilot, so I’m is well-informed on 

what commanders typically consider most valuable.  Putting the descriptions of the 

MOEs and their weights results in Eq. 10 below.   

 

           𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 100 − (50 ∗ 𝑀𝑂𝐸1 + 30 ∗ 𝑀𝑂𝐸2 + 10 ∗ 𝑀𝑂𝐸3 + 10 ∗ 𝑀𝑂𝐸4)  (10) 

  

 With the fitness function defined and the simulation described, it is time to 

discuss the genetic algorithm used in this research.  
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3.9 Genetic Algorithm 

 Given 20 tunable parameters and a range that each parameter value can assume, 

the number of unique combinations can be quite large, so a method to search the 

parameter space heuristically is desired.  As an approximation, if we discretize the range 

of each parameter into ten possible values, that leaves 1020 unique combinations where 

each unique combination is an individual solution.  See Table 1. 

Table 1. Tunable Behavioral Parameters with Associated Behaviors and Ranges 

 

 

 Using a biological analogy, let each possible arrangement of parameters be 

considered a single synthetic individual and then consider the genetic algorithm 

analogous to synthetic evolution.  This research will explore the parameter space in an 

intelligent way by producing child solutions from successful parent solutions in the hope 

of discovering ever-improving behavioral parameters that dictate how the drone swarm 

behaves.   Now let’s explore how we translate this problem instance into a form where 

the genetic algorithm can be leveraged. 
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 The generalized Pseudocode for the genetic algorithm is introduced in Figure 22. 

  

Figure 22. Generic Genetic Algorithm Pseudocode 

 In general, the way a genetic algorithm works is to start with a randomized 

population of solutions.  Each unique solution in the population is referred to as an 

individual.  Each individual in the population is evaluated for effectiveness by a fitness 

function.  In this research, the fitness function measures the performance of the drone 

swarm.  Then, the best-performing solutions are selected to create child solutions.  The 

child solutions are formed by combining parts of parent solutions. 

Additionally, a controlled amount of mutation randomly occurs when forming 

child solutions.  The resulting child solutions form the population for the next generation 

of the algorithm.  This process repeats until the maximum number of generations has 
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been evaluated.   Next, I explain the specific implementation of the genetic algorithm in 

this research. 

 Starting with the input parameters, I selected a population size of 40 because past 

research suggests that an optimal population size for complex problems is about 2n, 

where n is the number of parameters in the solution [17].  I have 20 tunable parameters so 

selecting 40 as the population size naturally follows. 

I set the maximum number of generations to 20, which will result in the creation 

and evaluation of 800 total individuals in each instance of the genetic algorithm. This 

number was set relatively low because of the computing time required. 

I set the mutation rate to a relatively high 10%.  The tradeoff involved with this 

parameter is that a high mutation rate prevents convergence of the genetic algorithm, but 

a low mutation rate might result in premature convergence and a non-thorough search 

through the parameter space.  I selected a high mutation rate because I valued a broader 

search of the parameter space more than achieving an arbitrary level of convergence.  Yet 

10% is not so high as to constitute a random search and invalidate any future analysis I 

planned to do on the convergence of the parameters. 

 The genetic algorithm requires that the candidate solutions be expressed in a form 

resembling a strand of DNA.  This means taking the 20 tunable parameters from Table 1 

and expressing those parameters as a 20x1 vector, referred to as a chromosome.  In the 

context of genetic algorithms, the individual tunable parameters are hence referred to as 

genes. 
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 For the initial population, each individual is created by randomly selecting that 

parameter value, subject to the parameter’s valid range and discretization.  Refer to the 

right-most column of Table 1. 

 Next, each individual in the population is run through the simulation described in 

Section 3.9.  Each individual is evaluated 30 times using 30 different scenarios.  While 

the 30 scenarios differed in model seeds, friendly starting positions, and enemy starting 

positions, each individual was tested on the identical set of 30 scenarios.  In this way, the 

performance of the individuals via fitness function can be directly compared because the 

behavioral parameters of the individuals were the only thing that varied in the simulation.   

 This research evaluated each individual one time in 30 different scenarios rather 

than the inverse because I desired to evolve the drone swarm to be good in general 

situations rather than optimized for a single scenario.   

 After each individual in a generation is evaluated multiple times, the individual 

and its corresponding fitness results are logged into a Hall of Fame, where it is ranked 

according to performance.  Only the top 16 individuals in the hall of fame are allowed to 

reproduce.  This is an elitist mode of reproduction.  The top performers in the hall of 

fame are the top performers in the entire running of the algorithm, not just the current 

generation.   

While the top performers could theoretically reproduce every generation, they 

never were reevaluated.  This was because the model seeds and starting positions were 

controlled in the evaluation phase.  Reevaluation would have led to the exact same results 

as the previous evaluation.  
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The elitist reproduction method was selected because the high mutation rate 

increased the risk that all children in a proceeding generation might be worse than their 

parents.  Using this elitist mode of reproduction prevents backtracking as the genetic 

algorithm works.   

 When ranking individuals to determine which could reproduce or not, it is 

desirable to not only pick individuals who, on average, perform better but also pick 

individuals who perform consistently.  Thus, I implemented one further modification to 

how individuals were ranked in the Hall of Fame.   

I developed an adjusted fitness score to select individuals who consistently 

performed well in the simulation.  Given that each individual is evaluated 30 times, the 

algorithm possesses enough data to calculate a confidence interval of the average fitness 

score.  I had the algorithm calculate an 80% confidence interval of the average fitness 

value using the normal distribution.  Then, I used the lower bound of the confidence 

interval as the value to rank all individuals in the Hall of Fame.  Because I used the lower 

bound, I had reason to be 90% confident that the actual underlying fitness value of the 

tested individual was at least as good as the number used to determine the Hall of Fame 

ranking.  The adjusted fitness score should select individuals who both performed well 

and consistently. 

At the end of the evaluation stage, the next generation is produced.  For each child 

to be produced, the algorithm randomly selects two parents out of the top 16 individuals 

in the Hall of Fame.  From the two selected parents, a generalized crossover function is 

applied where any gene is equally likely to be inherited from either parent.  This creates a 

child that is part of the next generation’s population.  Lastly, a mutation function is 
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applied to the child where any gene has a 10% chance of changing.  A gene selected for 

mutation has equal probability of assuming any valid value in the discretized range for its 

associated tunable parameter.  See Figure 23 below.  

 

Figure 23. Depiction of Selection, Crossover, and Mutation in the GA. 

 

3.10 Experimental Design 

We are now ready to set up the experiment using a 2x2 design so that the 

performance of DSTA can be compared to the performance of NDSTA in scenarios 

where the enemy ADA can either shoot down the drones (defiant) or cannot (compliant).   

The experimental design results in four distinct scenarios where the overall simulation 

model and the genetic algorithm will be allowed to run.  Because the pairwise 

combination of attack strategy available to the drones and the enemy behavior is unique, 

it is suitable to refer to each quadrant as an ecosystem.  The different and unique 

combinations result in unique selection pressures that will drive the evolution in each 

ecosystem.  See Figure 24 on the following page. 

  



84 

 

Figure 24. Four Ecosystems: 2x2 Experimental Design. 

 After running the genetic algorithm on the drone swarm model in each ecosystem, 

data will then exist which can answer the research questions proposed in Chapter 1.  The 

experiment will yield a direct performance comparison between the most evolved 

individuals from each ecosystem.  Additionally, we will be able to examine how the 

drone swarm model evolved in each ecosystem.  The hope is that further analysis of the 

evolved tunable parameters will yield interesting behavioral insights into combat drone 

swarms.   The research questions are rewritten below for easier reference. 

1. Given an enemy that fights back, what is the ‘performance cost’ of assuming a 

compliant enemy against the drone swarm? 

2. Given either a compliant or a defiant enemy, Does NDSTA perform more 

effectively than DSTA in the SEAD scenario?  If so, why?  

3. What additional insights can be gained into the complex combat system 

modeled by the SEAD scenario as a result of using a genetic algorithm? 
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Why execute the complicated procedure of synthetic evolution instead of directly 

comparing the performance of the different attack behaviors?  Allow me to use an 

analogy to explain why using synthetic evolution is valid and, indeed, necessary. 

Imagine that there is a small dog and a large dog whom you’d like to teach to 

navigate an obstacle course.  The dog’s size corresponds to the attack strategy that the 

drones use in that the attribute is immutable.  It is unknown whether the attribute is a 

strength, a weakness, or context-dependent.  It is reasonable to assume that both dogs 

would have to develop different behavioral strategies, given their size, to optimize their 

own performance on the obstacle course.  Now imagine there is a second obstacle course 

that is unlike the first.  The behavioral strategies mitigated by dog size are likely to be 

different from the first set of strategies and unique in their own right. 

Using the evolutionary approach in this research allows the drone swarms in each 

ecosystem to optimize towards whatever behavioral configuration best suits their attack 

strategy and the enemy behavior present in their ecosystem.  It’s a means to ensure that 

the simple DSTA attack strategy and the NDSTA complex attack strategy are placed on 

equal footing for later comparisons in performance.   

  

3.11 V&V for the Model and the Genetic Algorithm  

The discussion of verification and validity splits into two parts: that of the model 

and that of the genetic algorithm. 

Verification is examining a model for fidelity to its design.  The overall 

simulation model was verified by completing test runs where the drones reported their 
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positions and forces from the trajectory generation model for every time step in the run.  

The code was reviewed for fidelity to the mathematical models stated in previous 

sections of this chapter.   

Validation is examining a model for fidelity to the real-world phenomena of 

interest.  Validation in this research focused on agent-to-agent behaviors.  To validate the 

model, an animation function was implemented that produced video output of the 

simulation.  The video showed the agents moving in the battlespace, engagements 

between the agents, and the pheromone map over time.  In test runs, behaviors were 

validated, given the input parameters.  Further, input behavioral parameters were adjusted 

and then checked visually for the expected behavior changes. 

There are some valid criticisms of the overall model and the behaviors contained 

therein.  The most significant criticism is that 1) the complex attack tactic was designed 

to counter the behavior of the ADA agents as specified in this research and 2) that the 

ADA behavior itself was simplistic and of low fidelity.  The response to the first criticism 

is that all injected complexity in military endeavors is meant to counter the effects the 

enemy may bring to bear because of the cost of that enemy’s counteraction.  There is no 

way around this dynamic.  If military affairs were simple with predictable outcomes, this 

research would have no value.   

The second criticism is more substantial, but it is harder to control.  In future 

research, the enemy ADA may be given their own ability to counter-adapt to what the 

drone swarm is doing.  Alternatively, the ADA might be assigned a range of actions 

selected by some probability distribution. 
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The verification of the genetic algorithm was straightforward.  Parent selection 

was verified by examining the hall of fame and comparing it to the list of parents in a 

given generation.  Crossover and Mutation were verified by cross-referencing child 

chromosomes with their respective parents' chromosomes. 

Validation of the genetic algorithm was more complex than verification.  The 

validity of the genetic algorithm specifically refers to its ability to select good-performing 

parents for reproduction.  The crux of the issue is a trade-off between the number of 

simulations used to evaluate each individual and the time required to complete the 

algorithm.      

Initially, five runs were used to evaluate individuals within the algorithm, which 

proved inadequate.  Upon completion of the genetic algorithm, the top 5% of individuals 

were re-evaluated with 60 runs.  The average performance of individuals between their 5-

run data and the 60-run data showed differences of up to 30 fitness points.  The genetic 

algorithm did not accurately produce parameter sets that represented improving drone 

swarm behavioral models under this initial condition. 

Subsequently, 30 runs were used within the genetic algorithm to estimate an 

individual's fitness.  As before, the top 5% of individuals were re-evaluated with 60 runs.  

The gap between the 30-run average and the 60-run average was significantly reduced.   

The results of this described validation procedure for the genetic algorithm are 

reported in Section 4.3 before answering the research questions.  The validity of the 

answers to the research questions depends on the validity of the genetic algorithm 

because the genetic algorithm tunes the underlying behavioral parameters such that the 
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performance of DSTA vs. NDSTA can be compared without requiring an arbitrary 

selection of parameter values.   

Additionally, data from the validation procedure will help us separate and 

quantify the effect of random choice, or luck, in selecting individuals for reproduction 

and the subsequent suitability of using the genetic algorithm in this experiment.  

Sources of randomness controlled in this experiment include the model seeds that 

underlie the determination of probabilistic events in the simulation.   The starting 

positions for all agents are also controlled.  Additionally, each agent is assigned its own 

random number generator so that each drone’s chaotic force can be considered 

independent of all others. 

 

3.12 Summary 

This chapter explained in detail how the real-world problem was transposed into a 

simulation.  Then, the behaviors and logic of all simulation agents were explained.  The 

agents and associated behaviors were then combined into an overall simulation model.  

The overall model was then related to the genetic algorithm and experimental design, 

resulting in four distinct ecosystems in which synthetic evolution will occur.  Lastly, 

verification and validation of the overall model and the genetic algorithm were described. 
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IV.  Analysis and Results 

4.1 Chapter Overview 

This chapter describes the results of running the experiment described in Chapter 

3 and answers the research questions presented in Chapter 1 with appropriate caveats.  

First, the tentative results are examined and then results from the validation procedure are 

analyzed.  Then, the research questions are answered. 

For the analysis, let the following shorthand describe the four ecosystems of the 

2x2 experiment described in Chapter 3 {SP, SD, CP, CD}.  S stands for simple attack and 

C stands for complex attack.  P stands for ‘passive’ enemy, what is referred to as 

compliant enemy in this paper.  D stands for defiant enemy.   

 

4.2 Initial Results from GA Output 

 Given a genetic algorithm population size of 40 and 20 generations, 800 

individuals were evaluated in running each of the four experimental ecosystems.  Each 

individual’s quality was evaluated 30 times resulting in 24,000 simulations conducted in 

each ecosystem.  Figure 25 shows the average adjusted fitness value of the top 16 

individuals (i.e., the reproducing individuals) over time within the genetic algorithm. 

 



90 

 

Figure 25. Average Reproducer Fitness Value by Ecosystem 

 Initial results are promising because they demonstrate results one would expect.  

Comparing the results from scenarios with compliant ADA {SP, CP} versus results with 

defiant ADA {SD, CD}, the defiant ADA results in lower observed fitness values in 

those ecosystems.  This makes intuitive sense, given that the defiant ADA can shoot 

down the drones. 

Two interesting observations exist in the compliant enemy case when comparing 

SP and CP performance.  First, the performance of the CP drones is initially lower than 

the SP drones.  This is reasonable because they have two additional complex attack 

parameters that must be tuned in their parameter set to perform effectively.  In unevolved 

form, CP is not as effective as SP because CP’s attack behavior is not tuned, while SP’s 

attack behavior is straightforward and effective from the start.  Second, once evolution 

occurs, both CP and SP converge in performance.  This indicates that once those 
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populations are evolved, there is not a performance difference between a simple attack 

tactic and a complex attack tactic. 

In the defiant enemy case, the unevolved performance of SD and CD begins near-

identically.  But over time, the CD drones, using complex attack, evolve to be more 

effective.  This is a reasonable result because the complex attack behavior was designed 

to counter the ADA. 

Initial results appear clear and promising.  Next, the effect of random choice on 

genetic algorithm performance is examined using the Validation Procedure described in 

Section 3.13.  Following that, answers to the research questions will be presented. 

 

4.3 Results of the GA Validation Procedure 

 Recall that within the genetic algorithm, the individuals in the population are 

evaluated 30 times to assess their fitness.  This evaluation is critical for determining 

which individuals will reproduce and produce child solutions.  Given the probabilistic 

nature of the simulation, the evaluation of an individual decomposes into two 

components: the underlying quality of that individual and random choice, or luck. 

 What is desired is some way to quantify how much luck may have contributed to 

each individual’s fitness score within the genetic algorithm.  If luck was significant, then 

the genetic algorithm did not select reproducing individuals based on their underlying 

quality. 

Using the process described in Section 3.13, the average fitness of the validation 

run was compared to the reported average fitness from the original running of the genetic 
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algorithm for the top 40 individuals in each ecosystem.  This resulted in 40 observations 

of difference per ecosystem.  The distribution of these observations is summarized such 

that luck in the underlying selection of the genetic algorithm is quantified.  See Figure 26. 

 

 

Figure 26. Difference in Average Fitness: Original Sample vs. Validation Resample 

Figure 26 demonstrates that in the compliant ADA scenarios {SP, CP}, 30 runs 

provided very good estimates of underlying performance.  The average difference 

between the 30-run and the 60-run mean was less than one fitness point of value.  This 

suggests that luck played a minimal role in the performance of the genetic algorithm in 

the compliant ADA ecosystems.   

In the defiant ADA scenarios, differences were larger and spanned a much greater 

range.  However, the average difference was approximately 2.5 points in both scenarios.   
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To contextualize the 2.5-point difference, consider the following:  In a given 

simulation run, an additional ADA agent that survives and shoots the helicopter would 

result in an approximate 10-point difference in reported fitness value, holding the other 2 

MOEs affecting the fitness value equal.   Fitness points would only be lost due to the 

helicopter's engagement and the drone swarm's failure to destroy the ADA agent.   

If this occurred in each of the 60 runs in the validation process, then a 10-point 

difference would appear in the data underlying Figure 25.  A possible explanation of the 

2.5-point difference is that in 25% of validation runs, an additional ADA agent survives 

and engages the helicopter.   

It is reasonable to conclude that using 30 runs in the genetic algorithm in the 

defiant scenarios results in luck being a factor that hampers the effectiveness of the 

evolutionary mechanism.  However, I don’t believe this level of luck is so significant as 

to invalidate the evolutionary procedure used in the experiment.  In general, conclusions 

drawn from data yielded by the genetic algorithm still have validity. Additionally, it is 

observed that the average difference across both defiant scenarios (SD and CD) is 

approximately equal, so comparisons of results between these two scenarios are still 

valid. 

 

4.4 RQ 1: Quantifying the Performance Cost of DSTA Assumptions 

The first research question is, “What is the ‘performance cost’ of assuming a 

compliant enemy against the drone swarm?”  Analysis of the validation run data on the 
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top 40 individuals from each ecosystem yields Figure 27.  The performance cost is 

measured in terms of Fitness since it incorporates all MOEs. 

 

Figure 27. Performance Cost of Compliant Enemy Assumptions 

 Figure 27 shows a large difference in performance between the compliant enemy 

scenarios and the defiant enemy scenarios.  When the average compliant fitness values 

and defiant fitness values are compared, the average difference that results is 20.73 

fitness points.  There is convincing evidence that the compliant enemy assumptions of 

DSTA have a performance cost.  However, the specific level of performance cost is likely 

heavily reliant on the static parameters of the simulation (Appendix A), so I will not draw 

specific conclusions on the quantity and measurement of that performance difference. 
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4.5 RQ 2: DSTA vs. NDSTA Effectiveness and Analysis 

The second research question is, “Does NDSTA perform more effectively than 

DSTA in the SEAD scenario?  

To answer this question, confidence intervals were built using the 60-run data on 

the top 40 individuals from each ecosystem.  The t-distribution was used, with 𝑛 = 40, 

and a level of significance (α) of 0.05.  As in the previous section, the fitness value is 

used as the overall measure of effectiveness.  See Figure 28. 

 

 

Figure 28. Confidence Interval Performance Comparisons across ADA Scenarios 

The confidence interval on the left shows that the difference between a complex 

attack and a simple attack tactic is statistically significant in the compliant scenarios.  The 

confidence intervals do not overlap.  However, the scale of the difference is less than half 
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of a fitness point.   It is reasonable to conclude that a meaningful difference does not exist 

between DSTA and NDSTA against a compliant enemy.    

The confidence interval on the right clearly shows a statistically significant 

difference in performance between the complex attack strategy (NDSTA) and simple 

attack strategy (DSTA).  Moreover, this difference appears meaningfully significant at 

approximately six fitness points.  This is roughly equivalent to the helicopter taking one 

less hit from the ADA in each simulation.   

The remainder of this section is dedicated to explaining why the data presented as 

it did.  It was expected that NDSTA would outperform DSTA in the defiant enemy 

scenarios, but it was surprising that NDSTA also outperformed DSTA in the compliant 

enemy scenarios.  

In the compliant enemy scenarios (SP and CP), the reason for the difference in 

performance might be that the complex attack drone swarms searched the battlespace 

slightly better.  The drone swarm gets deployed in the center of the battlespace in all 

scenarios.  Say one could draw a polygon where the nodes of the shape consist of the 

outermost drones in the drone swarm, and the edges are formed by connecting the nearest 

neighbors among the outermost drones.  This forms a group of outer drones and a group 

of inner drones that are not part of the polygon.   

In the simple attack case, the drone swarm begins to search outward, and the 

nearest drones at the edge find targets and destroy them.  There is no guarantee that the 

innermost drones will be directed by their behavioral model to fill in the search gap 

created by the outermost drone that just attacked targets.  On the other hand, in the 

complex attack case, the outermost drones find targets and assign those targets for attack 
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to the innermost drones.  This doesn’t happen every time due to the random selection 

process, but it occurs at least part of the time.  This allows the outward most drone that 

coordinated the attack to continue searching the outward battlespace that, by definition, 

no other drone has looked at yet.   

An indicator that this dynamic occurred is shown by how the complex attack 

behavior searched, on average, 1.1% more of the battlespace than the simple attack 

drones.  This difference only accounts for one-quarter of the fitness score difference 

between the two, but it stands to reason that the additional information obtained by the 

additional search effectiveness led to better outcomes in terms of destroying ADA agents.  

This would account for the rest of the performance difference. 

In the two defiant ADA cases (SD and CD), the difference in search does not 

seem to play a factor because the SD drones, on average, searched more of the 

battlespace than the CD drones (31% unsearched vs. 33% unsearched).  Rather, the 

performance difference was solely related to the additional lethality of the complex attack 

tactic, which had downstream effects on all the MOEs.   

Next, behavioral insights gained from using a genetic algorithm will be explored. 
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4.6 RQ 3: Additional Insights from Behavioral Parameter Analysis 

This section aims to explore additional insights that can be generated by using a 

genetic algorithm as the exploration method.  The questions that will be answered in this 

section are: 

1. What level of convergence was achieved in each of the four scenarios, given the 

genetic algorithm parameters? 

2. Were any of the behavioral parameters in the model uniquely important across all 

scenarios? 

3. Did the drone swarm behave roughly the same way in each scenario, or did they 

develop unique schemas to operate in their environment? 

4. If different schemas of behavior exist, are they optimized to the environment they 

evolved from?  Or are any of them uniquely good across all environments? 

 

In attempting to answer these questions, the value of using a genetic algorithm 

and synthetic evolution as a construct is investigated.  Let’s begin with the first question, 

“What level of convergence was achieved in each of the four scenarios, given the genetic 

algorithm Parameters?” 

 Convergence is defined abstractly as the opposite of diversity among the 

reproducing population.  By example, a perfect level of convergence of 1.0 would show 

that all reproducing individuals within the algorithm have exactly the same behavioral 

parameters across every parameter. In contrast, a minimal level of convergence near 0.0 

would imply that each unique parameter in each member of the reproducing population 

was unique to that member and not shared by any other member.  Convergence is 

calculated for a single parameter by identifying the statistical mode of the parameter 

value within the reproducing population and computing the proportion of the reproducing 

population that contains the mode value.  Average Convergence is obtained by averaging 

the convergence across all parameters for the reproducing individuals in an ecosystem.   
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The average Convergence from each ecosystem is shown in Figure 29. 

 

Figure 29. Average Convergence within Ecosystems 

What’s interesting is how the end level of convergence roughly matches the level 

of difficulty faced by the drone swarm in its evolutionary environment.  In other words, 

the drone swarms that evolved without the enemy defending themselves faced less 

evolutionary pressure, leading to their respective parameter sets narrowing earlier than 

the scenarios where the enemy could fight back.   

Another interesting set of observations is how the two defiant scenarios (SD and 

CD) led to roughly similar levels of convergence and that both rates of improvement in 

Convergence went stale around generation 10.  One interpretation of this observation is 

that the increased selection pressure from the enemy fighting back forced the genetic 

algorithm to continue exploring different parameter sets and that the genetic algorithm 

didn’t happen upon any new parameter sets that performed meaningfully better than one 

had already found.   
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Another interpretation is based on the “luck component” from Section 4.2, where 

luck was more pronounced in the scenarios where the enemy fights back.  Since the 30-

run sampling using the genetic algorithm resulted in average differences of 2.5 fitness 

points compared to the 60-run sampling, the individuals in the hall of fame that were 

allowed to reproduce could have been influenced more by luck than underlying 

performance.  This would have led to the creation of children in subsequent generations 

whom did not have improved underlying parameters and would have relied on similar, if 

not greater, values of luck to get ranked in the hall of fame and become a member of the 

reproducing population.   

Both interpretations are logical and may have influenced the results presented.  If 

the luck interpretation is the true reason for the average convergence results shown in 

Figure 24, this could be better controlled for in future experiments by increasing the size 

of the sampling of each individual.  In section 4.2, I concluded that a 2.5-point difference 

in average fitness value was significant but not enough to discount the experimental 

results.  However, that same level of difference may have significantly hindered the 

effectiveness of the selection mechanism of the genetic algorithm upon reaching a certain 

threshold of performance. 

With the average convergence analyzed, let’s examine the individual parameters 

and see if any insights can be gleaned from that data.  Did any individual parameter 

values converge, thus suggesting a parameter(s) that were uniquely important in 

achieving results in the drone swarm behavioral model?  First, we’ll look at the parameter 

values over time, and then we’ll look at overall convergence in the last generation.   
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See Figure 30 for a time-centric view of parameter convergence in each of the 

four scenarios. 

 

Figure 30. Individual Parameter Values over Time by Scenario 

I show the above figure to the reader, not as a point of clarity but to show the 

underlying messiness of what occurred within the genetic algorithm in each arena.  

However, this shows us some valuable insights as we continue our investigation.  Firstly, 

achieving a perfect convergence value of 1.0 in a given parameter is not necessarily 

“sticky.”  There are multiple instances of parameter convergences hitting 1.0 and 

subsequently dropping to lower levels over the course of the experiment.  For example, in 

the CP ecosystem, the search force distance parameter 𝛿𝑠𝑒𝑎𝑟𝑐ℎ achieved a convergence 

level of 1.0 in generation 14 before subsequently dropping to a convergence level of 

0.625 by generation 20.   
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Secondly, there were many instances of a parameter value converging in a single 

scenario but not in other scenarios, so it’s difficult to conclude whether any single 

parameter values were uniquely important.   

 To find uniquely important parameters, let’s transition to a time-static view.  

Figure 31 shows each parameter’s convergence level during the final generation of the 

genetic algorithm.  A red dotted line is added at the 0.9 level of convergence to highlight 

the high level of convergence shown by the right-most parameters across scenarios.  See 

Figure 31. 

 

Figure 31. Individual Parameter Convergence at Generation 20 
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 From Figure 31, two observations are possible.  One is that the SP scenario shows 

much higher convergence in its parameters than the other scenarios.  This aligns with the 

average convergences shown in Figure 30.  This first observation is not surprising.   

Second, the two complex attack parameters, 𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑡𝑡𝑎𝑐𝑘 and 𝜅, are the only 

two parameters that universally show levels of convergence higher than 0.9.  Upon 

further inspection, one finds that the statistical modes assumed by those two parameters 

evolved to values of 10000 meters and 2, respectively.  This means that in the NDSTA 

ecosystems where complex attack is used, the genetic algorithm pushes each parameter to 

the value of maximum freedom.   What is meant by maximum freedom is that the distance 

parameter, 𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑡𝑡𝑎𝑐𝑘, assumed the maximum value in its allowable range so a drone 

coordinating an attack on a target could pull from the most extensive possible list of 

kamikaze drones to coordinate that attack.  Similarly, parameter 𝜅 assumed the minimum 

value in its allowable range of 2.  The 𝜅 parameter acts as a decision threshold where if a 

coordinating drone did not have at least 𝜅 kamikaze drones within its complex attack 

coordination radius, 𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑡𝑡𝑎𝑐𝑘, then it failed to coordinate an attack in that timestep.  

Combined together, this means that the genetic algorithm found the parameters that 

lowered the threshold of achieving minimum criteria for coordinating a complex attack 

on a target while simultaneously providing the maximum number of attack options that a 

coordinating drone could coordinate with the other kamikaze drones.  It was quite 

thrilling when the author discovered that the genetic algorithm uncovered this behavioral 

insight all on its own.   

  A third insight is possible from Figure 31 if the significance threshold is relaxed.  

The third most converged parameter was Θ𝐶ℎ𝑎𝑜𝑡𝑖𝑐, which was the chaotic step stability 
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parameter in the behavioral model.  In all four scenarios, this value converged at the very 

high end of the possible range: either 9 or 10 out of a maximum value of 10 steps.  This 

suggests that the chaotic force did have some positive contribution to the performance of 

the drone swarm model and that this contribution was more significant when the chaotic 

vector was allowed to steadily influence the action of the individual drones over longer 

periods of time.   

In some ways, this observation makes intuitive sense, while in other ways, it is 

somewhat confounding.  It makes sense that a high chaotic step might be preferable to a 

low chaotic step because this allows the chaotic vector to consistently influence a drone’s 

vector steadily over time.  This might promote better dispersion of the drones in the 

battlespace over the course of the simulation since all of the drones start from a central 

point.  In comparison, a low chaotic step could result in a chaotic force that ultimately 

cancels itself out over time since it changes so often.  What’s confounding about this 

observation is that the interpretation I provided above is not very satisfying as to why the 

chaotic step turned out to be an important parameter. 

The subsequent analysis concerns the different schemas of behavior found by the 

genetic algorithm in the four quadrants or scenarios.  I define a schema of behavior as the 

specific model parameters discovered by the genetic algorithm in each ecosystem or 

scenario of the experiment.  Sufficiently different parameter values are interpreted as 

different behavioral mechanisms by which the drone swarms try to accomplish their goal 

of air defense suppression.  Using an analogy to clarify the concept, imagine that a person 

is given the goal of moving from point A to point B with some obstacle in the way.  The 

person could go over, under, around, or through the obstacle.  Examining the different 
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schemas is meant to tell us if all four drone swarm models learned to navigate the 

obstacle the same way or if the models learned different ways to navigate the obstacle.  

This method of investigation will also help us interpret the possible importance of chaotic 

step stability, as we will see how it contributed to overall behavior. 

To find a schema of behavior, the mode value for the parameters is taken from the 

reproducing individuals from each scenario.  Then, each mode value is scaled in a range 

of 1-10 so all parameter values can be directly compared.  The result of this analysis is in 

Table 2. 

Table 2. Schemas of Behavior from Each Scenario 

                           Scenario 

Parameter    SP   SD   CP   CD 

𝛼𝑠𝑒𝑎𝑟𝑐ℎ  10   6   6   7 

𝛿𝑠𝑒𝑎𝑟𝑐ℎ    6.8   9.5   7.2   6.8 

𝛽𝑠𝑒𝑎𝑟𝑐ℎ   3   4   3   5 

𝛾𝑠𝑒𝑎𝑟𝑐ℎ    9   7 10   7 

𝛼𝑡𝑎𝑟𝑔𝑒𝑡   2   1   5   9 

𝛿𝑡𝑎𝑟𝑔𝑒𝑡   5.9   4.1   1.4   2.3 

𝛽𝑡𝑎𝑟𝑔𝑒𝑡   5   2   1 10 

𝛾𝑡𝑎𝑟𝑔𝑒𝑡 10   2   5   3 

𝛿geofence   1.8   1.4   2.7   1.8 

𝛿𝑓𝑎𝑚𝑖𝑙𝑦   5.9   7.2   7.7   8.1 

𝜀𝑐ℎ𝑎𝑜𝑡𝑖𝑐   2   1   1   3 

𝜂𝑐ℎ𝑎𝑜𝑡𝑖𝑐   1   1   1   1 

𝜃𝑐ℎ𝑎𝑜𝑡𝑖𝑐   9 10   9   9 

𝜔𝑐ℎ𝑎𝑜𝑡𝑖𝑐   5   6   7   3 

𝜔𝑓𝑎𝑚𝑖𝑙𝑦   4   9   5 10 

𝜔𝑠𝑒𝑎𝑟𝑐ℎ   1   5   6   2 

𝜔geofence   8   8   9   7 

𝜔𝑡𝑎𝑟𝑔𝑒𝑡   10   6   8   1 

𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑡𝑡𝑎𝑐𝑘   -   -   9.5   9.5 

𝜅𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝐴𝑡𝑡𝑎𝑐𝑘   -   -   1   1 
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Previous analysis in this chapter was concerned with the level of convergence, or 

the proportion of the reproducing population that exhibited the mode value of a given 

parameter.  The above is different because it shows a scaled version of the actual mode 

value.  When the columns of Table 1 are taken together, they can be referred to as 

“centroids of convergence” because each column represents a centroid in the parameter 

space where it is assumed the algorithm was converging toward when it completed the 

final generation.   

 Once the assumption above has been made, each centroid is treated as its own 

unique and idealized individual from the ecosystem that generated it.  This allows for 

interesting behavioral comparisons across the four centroids.  Next, let’s plot the 

centroids visually using bar charts.  From here on out, each centroid’s visual 

representation will be referred to as its fingerprint because each centroid possesses a 

unique visual fingerprint.  See Figure 32.  

 

Figure 32. Converged Individual Fingerprints from the 4 Ecosystems 
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 Figure 32 shows the dissimilarity between the four centroids from each 

experimental scenario.  Moreover, the dissimilarity is not uniform across all parameters.  

Specific groupings of parameters are examined for further analysis to see what insights 

can be gleaned.  A grouping of the chaotic force parameters is shown in Figure 33.   

 

Figure 33. Chaotic Parameters across Converged Individuals 

Figure 33 shows little dispersion in the converged values, including no dispersion in the η 

parameter.  The fact that little dispersion was observed in the converged parameter values 

and that these parameters showed a relatively high level of convergence (Figure 31) 

provides evidence that the chaotic force was at least somewhat important to the 

behavioral model.  In contrast, if these parameter values were unimportant to the model, a 

more dispersed and random-looking pattern should have resulted than what is shown.   

 To track down the importance of the chaotic force to the behavior of the overall 

behavioral model, coefficient weights are examined for each of the five forces.  A small 
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force was important, while a large coefficient would indicate the opposite.  For ease of 

comparison, all weights ω have been normalized.  See Figure 34.  

 

Figure 34. Normalized Coefficient Weights across the 5 Forces 

Many observations are possible from Figure 35.  First, the relative weights for the chaotic 

force appear to show only a small amount of variation, with an average relative weight of 

0.17.  This suggests that the chaotic force plays some role across all models and should 

not be automatically discounted in importance.  

This result is further interesting if one considers an abstract version of one of the 
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same things, then the answer to the abstracted question is that it depends on how lucky 

you are.  

 The other valuable observation from Figure 34 is that there is wide variation 

among the four fingerprints in regard to the weights corresponding to Family Force, 

Target Force, and Search Force.  The maximum range of this variation comes from 

comparing the SP fingerprint and the CD fingerprint.  See Figure 35. 

 

 

Figure 35. Fingerprint Comparison of SP and CD along selected Parameters 
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(large γ), and the distance at which the target force acts for SP is relatively far (large δ)  

compared to CD while the minimum pheromone level β is in the middle of the range.   

In contrast, the CD individual has a very small coefficient weight for the target 

force and a very high minimum pheromone level β for its own target force set at the 

maximum value.  The way that the pheromone map works in the behavioral model means 

that having β set to the maximum value of 1 will trigger that pheromone level to go to 

zero at the beginning of every time step per Equation 7 in Section 3.7.  This means that 

target forces are only produced for targets being actively tracked by other drones in a 

single time step, and the target information does not carry over from one time step to 

another.  Effectively, the CD individual evolved the targeting pheromone system to the 

absolute minimum level of effectiveness allowable, given the range those parameters 

were allowed to assume. 

Compared to each other, the SP and the CD individual have entirely different 

ways of accomplishing their mission. They developed these different schemas of 

behaviors organically within the synthetic evolution of the genetic algorithm!   

 Up to this point, I’ve demonstrated that the schemas of behavior arrived upon in 

each scenario are unique and that it’s valid to think of them as unique individuals.  The 

final insight this chapter will explore is whether the uniqueness of the schemas of 

behavior is meaningful in terms of mission performance and in the context of the 

scenarios in which they were evolutionarily trained.  An appropriate analogy is thinking 

about the four schemas like species of ants.  Are the four schemas like a local variety of 

ants optimized only to the environment they trained in?  Or is any of the schemas, like 



111 

fire ants, capable of spreading across the world and outcompeting local species in 

ecosystems that the ant themselves didn’t evolve into?  

 To answer this question, a 60-run sample was collected of each schema in each 

ecosystem, and the resulting fitness values were averaged.  To make the comparison fair, 

optimal complex attack values from the SD and CD individuals were given to the SP and 

CP individuals since there was no selection pressure for those individuals to evolve those 

parameters.  See Table 3.   

 

Table 3. Average Fitness Values of Schemas Across Scenarios 

 

 

Additionally, Welch’s t-test is performed to check for statistically different 

performance of the schemas across the four scenarios.  Welch’s t-test is used because it 

does not assume homoscedasticity.  Green values represent statistically significant results 

with p-values of less than or equal to 0.10.  Yellow represents a relaxed threshold of 

statistical significance with p-values of less than or equal to 0.20.  See Figure 36.   
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Figure 36. P-values from Pairwise Comparisons of Schemas by Scenario 

 Results overall are mixed and are presented by scenario.  For the SP scenario, the 

SP schema outperforms the other schemas as expected.  Moreover, all pairwise 

comparisons indicate significantly different performance between the four schemas.  The 

SP schema conclusively outperforms the other schemas in the SP scenario.  The second-

best schema is the SD schema.  The fact the SP and SD schemas performed best suggests 

that evolving without the complex attack tactic was an important factor in the resulting 

performances of the schemas in the SP scenario. 

 In the CP Scenario, there were two comparisons that were not significantly 

different: The SP:SD comparison and the CP:CD comparison.  The lack of statistical 

significance in these two comparisons is interesting for two reasons.  First, the SP and SD 

schemas both performed well compared to the CP and CD schemas.  Second, the SP and 

CP schemas both evolved in ecosystems where the enemy was compliant.  So, the insight 

produced when one considers both the performance level and the t-test p-values is that 

the attack strategy that the drone swarm evolved with had a more significant effect on 
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performance than the type of enemy the drone swarm evolved with.  This is the same 

insight as from the SP scenario. 

 In the SD Scenario, the SD schema appears to outperform the others when 

looking at solely at average performance.  However, the results from the t-test indicate 

that none of the schemas performed significantly different than any of the others.  What 

this indicates is that when the drone swarm does not have access to the complex attack 

tactic to counter the enemy’s ability to fight back, they all suffer in performance.  None 

of the schemas were able to evolve behavioral parameters that conferred a relative 

advantage over the other schemas in this scenario.   

 In the CD scenario, the data is less clear.  Using a relaxed threshold of 

significance of the p-values (0.20), allows for the observation that the best performing 

schema, CD, is statistically different from the third and fourth best performing schemas 

(CP and SP).  Also, the second best performing schema was SD.   This results in a 

noticeable pattern where the schemas that evolved with a defiant enemy were more 

effective.  The insight from this observation is the opposite of the insights produced by 

analyzing the CP and SP scenario: that the type of enemy the drone swarm evolved with 

in its home ecosystem seems to have a stronger effect on performance than the attack 

strategy that the drone swarm trained with.   

 In summary, the SP and CP scenarios with compliant enemy, the schemas that 

perform best are the ones that evolved using simple attack.  In the SD scenario, where 

there is a defiant enemy but the drone swarm doesn’t have access to an attack strategy to 

overcome the enemy’s ability to defend itself, all four schemas perform poorly and in a 
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statistically equal manner.  In the CD scenario, the two schemas who evolved in 

ecosystems with defiant enemy performed best.   

 Recall that the SP and SD schemas were given optimal complex attack parameters 

since they did not face pressure to evolve those parameters.  What is interesting in the CP 

scenario is how the top two performers (SP and SD) evolved their behavioral parameters 

to simple attack.  Then, giving those two schemas optimal complex attack parameters, 

they performed better than the swarms who evolved using complex attack.  This suggests 

that NDSTA has underlying value as a tactic and matches the conclusions reached 

previously under research questions two.  But an interesting follow-on question is how 

one might arrive at a complex attack tactic with optimally tuned values if one had never 

questioned the compliant enemy assumption in the first place?  So the final insight of this 

paper is that one should always question the assumptions when conducting scientific 

research because the assumptions are foundational to the results 

 

4.7 Chapter Summary 

This chapter explained the experiment’s results, answered the research questions, 

and provided analysis.  There is a substantial cost of assuming a compliant enemy in 

drone swarm target assignment.  NDSTA, a method purpose-built to counter the 

compliant enemy assumption, performs better than attack techniques that mimic DSTA.  

And the use of a genetic algorithm was useful in providing insights into the complex 

dynamic of drone swarm versus ADA.   
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter summarizes the research, describes the research’s impacts and 

significance, and provides recommendations for future research.  

 

5.2 Conclusions of Research 

This research was primarily inspired by the observation that current research into 

drone swarm target assignment does not model enemy counter-action acting upon the 

drone swarm.  In other words, the existing research assumed a compliant enemy.  The 

first research question was thus, “Is there a performance cost to assuming that enemy 

platforms won’t defend themselves?”  The answer appears to be yes, but the level of 

performance difference depends on the exact parameters used in the combat simulation 

and the model of enemy counter-action.  I only tried one model of enemy counter-action 

and one set of parameters, so I cannot answer this question more firmly. 

This research developed a model of enemy action in addition to a model of drone 

swarm behavior. Then it used an evolutionary approach to see if the drone swarm could 

evolve to be effective against both a defiant enemy and a compliant enemy.  It was found 

that the drone swarms could evolve their behavioral parameters to be effective in both 

cases, but overall, drone swarm performance was significantly affected by the enemy’s 

ability to defend itself. 

The second research question was birthed from an observation of existing drone 

swarm target assignment research.  Existing methods set the problem as an optimization 
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problem with an objective function and appropriate constraints.  This approach is logical 

but presents problems when faced with a defiant enemy because optimal approaches 

result in predictable behavior that an enemy could leverage to shoot down the drones and 

defend itself.  This dynamic was summarized in the creation of a “simple attack” 

behavior that mimics the behavior of the existing drone swarm target assignment 

research.  An alternate behavior of “complex attack,” referred to as Novel DSTA or 

NDSTA, was proposed, and the two were compared for efficacy in experimentation.   

The second research question was, “Is complex attack (NDSTA) better than 

simple attack (DSTA)?”  This research found not only that the NDSTA performed better 

than DSTA against a defiant enemy (as expected) but also unexpectedly found that the 

NDSTA performed slightly better against a compliant enemy compared to DSTA.  This is 

likely because NDSTA promoted a more effective search of the battlespace. 

The third research question concerned the methodology used in this research 

paper.  It used a synthetic-evolution construct enabled by a genetic algorithm.  The 

research question was, “What additional insights can be gained into the complex combat 

system modeled by the SEAD scenario as a result of using a genetic algorithm?”   

The genetic algorithm allowed analysis of which specific components were 

important to a drone swarm’s overall behavior.  A few parameters converged strongly, 

suggesting their importance.  But for many other parameters, the analysis did not provide 

conclusive results.   

The use of a GA also uncovered completely different behavioral schemas of 

operation.  Unexpectedly, one of the drone swarm models evolved to discount target 

information to the maximum amount it was allowed to under experimental constraints.  
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This defies intuition; it’s reasonable to think that a drone swarm designed to kill targets 

would prioritize target information.  This observation suggests merit in using a genetic 

algorithm for further research. 

 

5.3 Significance of Research 

The significance of this research falls into two categories: design of future drone 

swarm systems and methodological approach.   

For the design of drone swarm systems, the impact of this research is that it 

presents evidence that existing drone swarm target assignment methods should not be 

used in designing future drone swarm systems under conditions like the combat 

simulation conducted in this research.  This research imagines relatively small, slow, and 

cheap drones operating cooperatively and loitering over a battlespace for a period of time.   

Existing drone swarm target assignment should only be used in scenarios where 

the compliant enemy assumption can be assumed to be mostly true.  An example of this 

type of scenario is where the drones resemble cruise missiles, where the drone’s speed 

might sufficiently increase survivability by decreasing exposure time in the ADA’s 

weapon engagement zone.   

The other impact of this research is a demonstration of the methodological 

approach.  Using the evolutionary approach gives future researchers a way to discover 

effective behavioral models that do not require clairvoyance on the part of the researcher.  

It also allows for comparisons where there is less potential for bias from the researcher.  

The trajectory generation model was combined with two attack tactic models (DSTA vs. 
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NDSTA), so the attack models could be compared holistically throughout an entire 

mission sequence.  If an evolutionary approach was not used, the researcher would need 

to take care to set the trajectory generation model parameters such that the full potential 

of both attack techniques could be compared.  This manual process might be subject to 

more error than using an evolutionary approach. 

 

5.4 Recommendations for Future Research 

Recommendations for future research fall into two categories: improvements on 

the validity/fidelity of the simulation and expanding the scope of the synthetic evolution 

demonstrated in this research. 

To improve the validity and fidelity of the simulation, one option is to add 

additional entity types within the simulation.  There is existing research that claims that a 

key behavioral dynamic in autonomous drone swarm systems with destructive capacity is 

the misidentification of objects on the battlefield.  In other words, how does system 

performance change when there is a probability that a given drone attacks the wrong 

target or even a non-combatant?  This research path could focus on effects such as 

collateral damage or the inefficiencies generated by expending kamikaze drones on 

targets invulnerable to the drones.  Perhaps different behaviors could be developed where 

the drones cooperatively identify targets to prevent misidentification? 

Another option for improving the fidelity and validity of the model is to improve 

the ADA decision model.  The decision model presented in this research could be 

characterized as conservative in terms of expending missiles, but it’s easy to imagine a 
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scenario when the enemy might more readily shoot down drones at the expense of 

possibly losing an opportunity to fire at the helicopter.  Perhaps multiple models of 

enemy action could be developed and tested against the existing drone swarm model.  

How robust are the results of this paper to different models of enemy behavior?   

Lastly, the scope of the synthetic evolution framework could be expanded to 

include both the ADA behaviors and the Drone behaviors.  In other words, both the ADA 

behaviors and the drone behaviors could be set to evolve in tandem with each other.  It 

would be interesting to discover if there was an equilibrium or not between ADA 

performance and drone swarm performance (indicating optimal strategies) or if a cycle of 

evolution counter-evolution ensued where the adaptation never settles.   

In conclusion, there are a lot of exciting possibilities for continuing research in 

this direction. 
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Appendix A. Static Parameters in ABM Simulation with a Discussion on Validity 

Simulation is a key component of this research to investigate a behavioral model 

underpinning a counter-IADS drone swarm and compare two possible attack strategies in 

performance.  However, many additional parameters of the agents that were not under 

investigation were required to be defined such that each agent could perform combat in 

the simulation.  Examples include the speed of the drones, the efficacy of the ADA radar 

systems, etc.  Those parameters are listed here, as well as a short discussion on why they 

were selected.  The bottom line up front: parameters were not selected on a scientific 

basis meant to model any particular real-world existing system(s) but were modeled to be 

within the realm of plausible values.  After all, drone swarms don’t exist yet, and there is 

a great variety of ADA systems that vary in capability.  This research searched for a 

behavioral model that might be used to build a drone swarm in the near future, focusing 

on the interactions between agents. 

 For this reason, all the simulation's static parameters are listed here with a 

description.  These parameters still ought to be addressed because they impacted the 

results of this study.  But first, a discussion on why agent-based modeling was selected 

and its impacts.  Then, an explanation of specific non-behavioral parameters in the 

simulation and their impact on results.  

 

A.1 ABM Modeling vs. Other Types of Simulation 

 An Agent-Based Model (ABM) was selected over other simulation models 

because the emphasis was on the relationships between the drone swarm entities and the 
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ADA entities.  As a result of this design decision, the Python library AgentPy was 

leveraged as the foundational library used to code the simulation.  The cost of this 

decision is that it excluded existing combat simulation software that is not ABM-based.  

Existing combat simulation software, such as the Advanced Framework for Simulation 

(AFSIM), typically includes pre-built tools for ensuring realistic and non-erratic flight 

paths and other benefits.  Additionally, the ABM increments in time steps (interpreted as 

one second per step) instead of pseudo-continuously over a simulation clock. 

 As a result, the movement of the drones between each simulation step was 

unrealistic.  Each drone’s maximum rate of turn parameter was set to 45 degrees per 

second.  But instead of following an arcing path that results in the heading difference, the 

model’s drones instantaneously changed their heading and flew a straight-line path to 

their next position. 

 The benefit of using ABM modeling is that it made communication by all drones 

in the drone swarm easy and instantaneous over each time step.  This is neither realistic 

nor necessarily desired in a hypothetical system, but communications delays were scoped 

out of this research in pursuit of examining the behavioral interactions and outcomes. 

 The above two examples are instances of model behavior not modeling valid real-

world behavior.  The following section addresses non-behavioral parameters that affect 

the results of this study. 
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A.2 Non-Behavioral Parameters 

 This section describes and explains the logic behind parameters that were set that 

affect the outcome of this research but are not the focus of it.  This section will cover the 

drone parameters, the ADA parameters, and the population-level parameters selected. 

 For selecting parameters that would constrain each drone’s performance, the idea 

was to pick values that intuitively felt realistic based upon some basic assumptions.  

Those assumptions are that the drone is a small airplane-like drone that could fit inside a 

ground-launched missile along with some other drones.    See Table 4 for all parameters. 

Table 4. Drone Non-Behavioral Parameters 

Drone Speed 35 Meters/Second  

Drone Turn Rate 45 Degree/Second 

Drone Altitude 300 feet 

Drone Camera Field of View Width 45 Degrees 

Drone Camera Probability of Detection 0.8 

Drone Camera Max Range 1700 meters 

Drone Camera Look Down Angle -10 Degrees from Horizontal  

Radar Detection Max Range 10,000 meters 
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For example, a drone speed of 35 meters per second was selected because this 

equates to about 80 miles per hour.  This is a reasonable flight speed for a drone that is 

expected to fit within an artillery missile body, along with perhaps nine other drones.  

Drone speed, turn rate, and camera field of view are all reasonable parameters and don’t 

require much explanation. 

 One parameter worth extra discussion is the drone camera’s max range.  It is 

relatively short at 1700 meters, but this was calculated based on the drone’s assumed 

altitude and look-down angle.  If the top edge of the camera’s field of view is 10 degrees 

below the horizon, then the maximum range of the camera is 1700 meters.  Given the 

short range and the modern sophistication of cameras and image-classifying algorithms, 

this results in a high probability of detection of 0.8 for any target within the drone’s field 

of view.   

 The other parameter worth discussing is the radar detection range of the RF drone, 

which was set at 10,000 meters.  This distance is twice that of the ADA agents’ ability to 

detect the drones.  The reasoning behind this dynamic is simple: ADA systems generally 

have more trouble detecting small drones than regular aircraft because the radar return 

produced by their size and speed more closely approximates the radar signature that wild 

birds might return from the system.  Conversely, the RF drone doesn’t have the same 

difficulty in detecting the difference between naturally occurring radar energy vs. enemy 

radar energy since naturally occurring radiation doesn’t resemble energy emanating from 

a radar system.  What is unknown is if the RF capability can be miniaturized sufficiently 

to fit on a small drone.  This was assumed to be true. 
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 The discussion of RF detection is a good segway into discussing the ADA 

parameters.  See Table 5. 

Table 5. ADA Non-Behavioral Parameters 

Engagement Range 5000 meters 

Time to Engage 10 Seconds 

Radar Range  5000 meters  

Radar Width 45 degrees 

Visual Detection Range 1500 meters 

Visual Detection Width 360 degrees 

Visual Probability of Detection .05 

Radar Probability of Detection .05 

 

The Engagement and Radar ranges of the ADA agents are relatively short at 5000 

meters compared to modern systems’ advertised values.  That is because the open-source 

values are based on the detection of conventional aircraft.  Much anecdotal evidence from 

the recent Nagorno-Karabakh conflict and the Ukraine conflict shows the difficulty ADA 

systems have with detecting drones. That is why the engagement range was made so 

short.  Along this same line of thinking, the probability of detection was set at 0.05 

because of this difficulty.  This means that a given ADA agent has a good chance of 

detecting drones over some time but a small chance of detecting a drone in any given 

second.  Similarly, the time required to engage after detecting a target is set to 10 
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seconds, which is higher than what is required to engage an aircraft but adjusted for the 

difficulty in detecting and maintaining tracks for the drones.   

 Lastly, see Table 6 for the number of each drone type present in the simulation. 

Table 6. Population Parameters 

Kamikaze Drones 16 

Decoy Drones 2 

RF Drones  2  

ADA Systems 8 

 

The sum of the numbers in the table above represents the total number of agents 

interacting in the simulation before engagements.  There were two objectives in setting 

the population parameter values that were at odds with each other.  On the one hand, it 

was desired to model as many entities in a single simulation as possible.  But on the other 

hand, a reasonable run time for the simulation was desired, and each additional agent 

added exponential complexity to the simulation, so this pulled the number down.   

 I tried to split the middle between these two objectives, resulting in the values 

shown in Table 6.  The number of ADA systems was set to 8 because the number of 

ADA systems a tactical ADA unit might have is 8, depending on the type of unit and 

system employed.  This, in turn, led to 16 Kamikaze drones because this number felt 

large enough to be called a swarm and exhibit interesting behavioral dynamics.  The 

drones are implicitly cheap enough so that you could have a large number of them.  Then, 

two decoys and 2 RF drones are added to the swarm.  This felt like a number large 
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enough to guarantee their behavioral dynamics would contribute to the simulation and 

had the added benefit of bringing the total number of drones to 20.   

 Having 20 total drones allows us to imagine their deployment from an army 

missile artillery system as coming in packages of 10, consisting of 8 kamikaze drones and 

an RF and decoy drone. 

 In summary, this section was about the choices for parameters outside this 

research’s scope.  But these parameters had to be defined by necessity to run the combat 

simulation.  The results presented in this research are dependent upon the parameters 

described in this appendix, but these parameters were controlled across all simulation 

runs.  Future research could change these values to match real-world systems or real-

world data to enhance the validity of the model presented in this research.    
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