
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2023

Illuminating the Unknown: A Mixed Methods Exploration of the Illuminating the Unknown: A Mixed Methods Exploration of the

DoD Software Factory Ecosystem DoD Software Factory Ecosystem

Zachary O. Ryan

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Ryan, Zachary O., "Illuminating the Unknown: A Mixed Methods Exploration of the DoD Software Factory
Ecosystem" (2023). Theses and Dissertations. 6978.
https://scholar.afit.edu/etd/6978

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholar.afit.edu%2Fetd%2F6978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6978?utm_source=scholar.afit.edu%2Fetd%2F6978&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

ILLUMINATING THE UNKNOWN: A MIXED METHODS EXPLORATION OF

THE DOD SOFTWARE FACTORY ECOSYSTEM

THESIS

Zachary O. Ryan, Capt, USAF

AFIT-ENV-MS-23-M-229

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

i

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

ii

AFIT-ENV-MS-23-M-229

ILLUMINATING THE UNKNOWN: A MIXED METHODS EXPLORATION OF THE

DOD SOFTWARE FACTORY ECOSYSTEM

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Acquisitions and Program Management

Zachary O. Ryan, BS

Capt, USAF

March 2023

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iii

AFIT-ENV-MS-23-M-229

ILLUMINATING THE UNKNOWN: A MIXED METHODS EXPLORATION OF THE

DOD SOFTWARE FACTORY ECOSYSTEM

Zachary O. Ryan, BS

Capt, USAF

Committee Membership:

Dr. Mark Reith

Chair

Lt Col Paul Beach, PhD

Member

Lt Col Clay Koschnick, PhD

Member

iv

AFIT-ENV-MS-23-M-229

Abstract

 The Department of Defense’s (DoD) software factories are a collection of modern

software acquisition programs that commonly employ the agile, network-based business

strategies often found within commercial industries. Having been formally recognized by

senior leaders for their revolutionary software development approaches, the software

factories highlight a cultural shift within the DoD away from traditional organizational

practices. As a result of the factories demonstrated successes, the number of programs

employing non-traditional strategies is expanding. While this is notable, it also presents a

challenge because a comprehensive understanding of the characteristics, structures, and

behaviors of the DoD’s software factories does not currently exist.

 This thesis addresses this knowledge gap by employing a sequential mixed

methods methodology to explore the organizational characteristics and structures of the

DoD’s software factories using a three-phased research approach designed to facilitate

active community engagement and feedback. Primary research data was collected from

the software factory community through personnel interviews, participant observation,

and a case study. Results from this research include a software factory characterization

framework, a structural definition of software factories, and a new programmatic

assessment process designed to help acquisition practitioners understand the

organizational behaviors of non-traditional programs. The composition of these efforts

provides senior leaders and acquisition professionals with new insights into the

fundamental organizational components of the DoD’s software factory ecosystem.

v

Acknowledgments

I would like to express my sincere gratitude to my family for their unwavering

support and encouragement throughout my academic journey. Without their love and

belief in me, I would not have been able to achieve the success that I have today.

I would also like to thank my advisors, Dr. Mark Reith, Lt Col Paul Beach, and Lt

Col Clay Koschnick for their guidance, mentorship, and patience. Their expertise and

insights have been invaluable and I am deeply grateful for the time and energy that they

dedicated to my academic and personal growth.

Finally, I would like to thank the senior leaders within the software factory

community who took time out of their busy schedules to provide me with their personal

insights and to those who provided me with the opportunities and resources necessary to

complete this thesis. I have learned so much from this community and I am deeply

grateful for the support and encouragement they provided along the way.

 Zachary O. Ryan

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. viii

List of Tables ... ix

I. Introduction ...1

General Issue ..1
Problem Statement..3

Research Objectives/Questions ..3

Methodology...6
Assumptions/Limitations ..9
Implications or Expected Contributions ...11

II. Defining the Department of Defense (DoD) Software Factory: A Network Value

Approach ..13

Chapter Overview ...13
Publication Details..13
Abstract...14

Introduction ..14

The Software Factory Ecosystem ...17
Analysis Methodology..18
Discussion and Results ...22

Future Work and Conclusion..25
Summary...30

III. Hierarchy, Networks, and Software Factories: An Exploratory Analysis of

Organizational Structure ..31

Chapter Overview ...31
Publication Details..32
Abstract...32

Two-sentence summary ..32
Keywords ..33
Introduction ..33

The Network, Resources, and Exchange ..36
Software Factories as Networks ...39
Discussion & Recommendations ..46
Conclusion ..53
Summary...57

vii

Page

IV. Deconstructing the Software Factory: A Practical Application of Inter-

Organizational Network Analysis ..59

Chapter Overview ...59
Publication Details..59
Abstract...59

Introduction ..60
Background...62
Situation ..65
Analysis ..67
Conclusion ..81

Summary...87

V. Conclusions and Recommendations ..88

Summary of Research Phases ...88
Methodological Insights & Study Limitations ...91

Recommendations for Future Research..94
Significance of Research & Conclusion ...95

Appendix A —The Historical Evolution of DoD Software Acquisitions97

The Software Factory – (1960 – 2022) ...97

DoD Systemic Software Centric Challenges - (1970 – 2022)100

Appendix B – An Overview of the 2018 DIB Study Software is Never Done109

References ..114

viii

List of Figures

Page

Figure 1: The inductive-deductive research cycle. .. 7

Figure 2: Thesis Methodology Overview .. 9

Figure 3: Space Camp value network analysis. ... 23

Figure 4: Influential DoD Software Reports & Strategy. .. 35

Figure 5: A software factory network .. 43

Figure 6: A software factory financial network. .. 44

Figure 7: Hierarchical Organizational Structure. ... 63

Figure 8: The Inter-Organizational Network Analysis (ION-A) process 64

Figure 9: An example sociometric matrix ... 69

Figure 10: Composition of Software Factory networks ... 70

Figure 11: Tie Strength .. 71

Figure 12: The software factory economic network .. 74

Figure 13: A typical factory-customer transaction .. 77

Figure 14: Community detection in software factory networks. 79

https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977771
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977772
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977775
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977776
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977777
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977778
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977779
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977781
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124977783

ix

List of Tables

Page

Table 1: Characteristics framework for defining the DoD software ecosystem. 27

Table 2: Powell’s stylized comparison of forms of economic organization. 37

Table 3: Software factory characteristics and the network form 39

Table 4: Network variables of exchange. ... 68

Table 5: Software factory inter-organizational network analysis results......................... 81

Table 6: A framework for conducting the ION-A process .. 83

Table 7: Historical DoD software themes. .. 101

https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124978008
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124978009
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124978010
https://d.docs.live.net/8b83e39b7cc35099/Documents/Thesis/AFIT%20Thesis%20Ryan%20-%2018Jan23.docx#_Toc124978012

1

ILLUMINATING THE UNKNOWN: A MIXED METHODS EXPLORATION OF THE

DOD SOFTWARE FACTORY ECOSYSTEM

I. Introduction

General Issue

 The Department of Defense (DoD) acquisitions community, the Congress, and

the military services do not currently have a shared understanding of the characteristics,

structures, or functions of the non-traditional software acquisitions programs called

software factories. This knowledge gap is consistent with a longstanding trend as the

DoD has historically struggled to manage its software acquisitions programs; a challenge

it has acknowledged as a department wide issue dating back to the 1970s. Recent official

guidance reiterates these difficulties with the most recent Defense Innovation Board

Report titled Software is Never Done, stating “Countless past studies have recognized the

deficiencies in software acquisition and practices within DoD, but little seems to be

changing” (McQuade et al., 2019).1 Evidence illustrating the department’s lack of shared

knowledge into the software factories also extends beyond historical and recent reports; it

is evident in the recently observed actions and statements of the Congress, the DAF CSO,

and the greater defense acquisition community. A recent congressional inquiry into the

structures of the software factory ecosystem, and the cascade of actions it spurred within

1 A historical overview of the Department of Defense’s software acquisition challenges from 1970-2022 is

included in Appendix A. Appendix B includes an in-depth overview of the main lines of effort highlighted

in the 2019 Defense Innovation Board study.

2

the defense community, illustrates the fractured and inconsistent nature of the

departments collective knowledge and understanding of these new, non-traditional

software organizations.

 On July 27, 2022, the Congress issued a tasking to the Secretary of the Air Force

formally recognized the “significant contributions” that the software factories had made

to the Department of Defense’s software modernization efforts. In accompaniment to

this recognition, the Congress directed the Department of the Air Force (DAF) to provide

a formal briefing to the House Armed Services Committee (HASC) outlining its plan for

the structure of the software factory ecosystem by January 1, 2023. In response to this

congressional tasker, the DAF Chief Software Office (CSO) coordinated with Air Force

Materiel Command (AFMC) to lead the establishment of a series of working groups

tasked with understanding the core components of the greater software ecosystem.

 Acknowledging that a comprehensive and universally accepted strategic overview

of the software factory ecosystem did not exist, seven working groups were established to

study specific areas of the ecosystem and to develop a comprehensive roadmap for the

software factories. Those working groups were: strategic capability, procurement

management, talent management, cost management, operations and deployment, software

resiliency, and software architecture (AFMC, 2022). The strategic capability working

group, established as the AFMC lead, specifically focused on formalizing the

relationships, capabilities, processes, and structures of these organizations. This thesis

feeds and informs the ongoing efforts of the strategic capability working group and the

DAF CSO by providing an outside, research-centric perspective into the fundamental

building blocks that compose the software factory ecosystem.

3

Problem Statement

There is a pressing need to understand, define, and describe the Department of

Defense’s (DoD) software factories. Beginning with Kessel Run (Perkins & Long,

2020), the software factories have existed in some form for almost five years yet the

debate about how to conceptualize, define, and subsequently manage these organizations

has remained largely unsettled in both the defense acquisitions and software

communities. This lack of a clear and shared understanding has led to a fragmented

factory ecosystem and it has caused decision-makers to struggle with reconciling the

often unspoken and socially defined constructs used within the factory community with

the formal organizational definitions required for executive oversight.

As a result of the widespread interpretations of what defines the DoD’s software

factories, misconceptions and misunderstandings are common because a shared language

that illustrates the values, goals, and visions of the two communities does not exist.

Addressing this divide is paramount to the continued success of the greater software

ecosystem. Recognizing this, the overarching premise of this thesis is to develop a

clearer and more comprehensive understanding of the software factories, and in doing so,

establish a common theoretical foundation that can be used by both the software

development and acquisitions communities to enable more effective cross-domain

communication and collaboration.

Research Objectives/Questions

The overarching theme of this thesis is one of initial exploration and foundational

understanding. Existing literature on the organizational behaviors, characteristics, and

structures of software factories is largely non-existent and the community is

4

geographically and culturally diverse (Assistant Secretary of Acquisition & Air Force

Chief Software Office, 2021). Given this pretext, and understanding that the software

factories are largely unstudied from an organizational standpoint, this thesis employs an

iterative, three phased research approach designed to methodically deconstruct the

software factory ecosystem despite its immaturity. Within each phase of research, this

thesis employs a variety of methods to include interviews, literature reviews,

observational analysis, network analysis, and a case study analysis in order to make sense

of the fractured and disparate data sources that compose the collective understanding of

defense acquisitions knowledge on software factories.

This thesis follows a scholarly format and it is comprised of three separate

manuscripts that align with the objectives: Understand, Define, and Describe. This

iterative approach addresses the overarching theme of this thesis, to explore and

understand the DoD’s software factories, by breaking it into three incrementally

consumable objectives. These objectives are:

Understand the characteristics of software factories.

The first objective is to gain a baseline understanding of software factories by

identifying and defining their key characteristics from an organizational perspective.

This will involve analyzing the common traits and features of these organizations and

using this information to develop a more comprehensive picture of their underlying

structures and functions.

Primary Research Question: What are the defining characteristics of software factories?

5

Define the software factories.

The second objective of this thesis is to develop a formal definition for software

factories that is accessible to both software factory professionals and career acquisitions

practitioners. This objective is intended to build upon the first by comparing the

characteristics of software factories to existing organizational definitions with the intent

of identifying commonalities within their organizational structures to inform a unifying

definition. Establishing this definition will help to remove the underlying barriers to

communication that currently exist between the software factory and acquisitions

communities. Additionally, this will help reduce inter-organizational conflict by

establishing a shared perspective that both communities can reference.

Primary Research Question: What are the organizational structures of the software

factories?

Describe the software factories.

The third objective of this thesis is to expand upon the definition of the software

factory by describing it using a repeatable methodology. In addition to this description,

the development of a methodology will inform, educate, and equip the defense

community with new tools and techniques necessary to understand, define, and describe

other non-traditional organizations like software factories in a way that is repeatable and

accessible to the general acquisition practitioner.

Primary Research Question: How can acquisition practitioners analyze non-traditional

organizations like software factories?

6

 Despite the increasing importance of the software factories within the Department

of Defense, there exists a lack of understanding about what defines and differentiates

them from other acquisitions organizations. This lack of understanding limits the defense

community’s ability to predict and explain the behaviors of these organizations as well as

hinders the development of strategic policy. If decision makers are going to effectively

manage the software factories at the departmental level, they must first understand what

they are and how they fit within the greater defense acquisitions architecture. This thesis

acknowledges those shortfalls while simultaneously employing an approach designed to

facilitate active engagement with the software factory community to inform thesis

progression while staying abreast of new information and data sources as they become

available.

Methodology

 This thesis employs a sequential research design following the mixed methods

methodology. The mixed methods methodology emphasizes a research approach that

employs different types of qualitative and quantitative methodological techniques based

on the unique demands of the research topic, availability of data, and existing knowledge

on the subject (Tashakkori & Creswell, 2007; Tashakkori & Teddlie, 2003, 2009).

Mixed methods approaches are also said to be “pragmatic” because the selection of

method within the research cycle is driven by the immediate needs and values of the

researcher and their interpretation of the area of study (Tashakkori & Teddlie, 2003).

While mixed methods research designs often employ a combination of qualitative and

quantitative approaches, they can also employ different types of qualitative or

quantitative approaches depending on the needs of the researcher. Since this thesis

7

focuses on a topic area that remains largely unstudied by academics, it primarily employs

qualitative methods designed to establish theory and identify organizational phenomenon.

 The mixed methods methodology employs a cyclical pattern of research called the

“inductive-deductive research cycle”

(Figure 2). This cycle captures both

inductive and deductive reasoning

processes by illustrating how theory

and hypothesis are informed by and

inform the collection and

understanding of observations, facts, and evidence. Since software factory structures

have not been previously studied, this thesis begins the cycle with inductive reasoning,

beginning with the observational stage. Inductive reasoning is then used to develop

theory from existing data, a hypothesis is developed, and a method of analysis is selected

and conducted to test the hypothesis. Results from the analysis are then integrated with

existing data and the research cycle is reiterated.

 Mixed methods research designs vary depending on both the primary orientation

of the research, (qualitative or quantitative) and the temporal nature of the research

stages, (parallel or sequential) (Tashakkori & Teddlie, 2009). Considering these major

components, this thesis utilizes a sequential design (meaning the research is broken up

into sequential phases or threads), with the results of each phase informing and shaping

its successors. The three primary thread designs used in this thesis are narrative research,

participant observation, and a case study.

Figure 1: The inductive-deductive research cycle

(Tashakkori & Teddlie, 2009).

8

Supporting the exploratory theme of this thesis, the three threads were selected

based on their suitability for assisting researchers in understanding undefined

phenomenon and problems. All of the selected research designs are primarily qualitative,

however, some of the data collected from the third phase is quantitative and it has been

used to assist in the triangulation of the qualitative narratives through the assessment of

network data. The characteristics of the approaches selected for this research are also

complementary; the data collection forms, type of problems, analysis strategies, and

structure are similar and well suited for understanding and informing poorly defined

problems through interviews and observations (Creswell et al., 2007; Jorgensen, 2015).

In summary, this thesis studies the DoD’s software factories using the mixed

methods methodology. It sequentially iterates through three phases of research primarily

utilizing the narrative research, participant observation, and case study approaches. The

phases of research are sequential and the results of each sequence influences the next

cycle. The mixed methods research cycle begins at the observation stage and inductive

reasoning is used to develop general inferences about the software factory. This decision

(to begin with observation and inductive reasoning) is necessary due to the limited

availability of existing research on the software factory ecosystem. A summary of this

thesis, with each stage and its resultant method, output, and conclusion is included in

Figure 2.

9

Assumptions/Limitations

The DoD’s software factories are immature and fragmented, and most are not

formally established programs. This limits access to consistent data sources since

traditional programmatic metrics are aggregated and collected at the program level.

Basic organizational definitions and data that accurately depicts the characteristics of

software factories does not currently exist. Understanding this constraint and

acknowledging that quantitative data is largely unavailable, a qualitative approach to data

collection is appropriate. This will inherently limit the type of analysis that can be

conducted.

Figure 1: Thesis Methodology Overview. This thesis employs a sequential research

design following the mixed methods methodology (Tashakkori & Teddlie, 2009, pp.

32–33).

10

Organizations are constantly evolving and forming new relationships as they grow

in size and scope. Since a focus of this research is understanding the nuanced behaviors

of the software factories, some of the more specific results presented within the

manuscripts will be temporal. For example, some of the case-history examples contained

in Phase 3 must be considered as snapshots in time because they contain specific

recommendations tailored towards the immediate needs of the organization.

Additionally, while this research does make use of a variety of data sources and

assessment methodologies, it is unable to capture specific observations of each software

factory due to the size of the existing ecosystem and resource constraints. Instead, it

relies on methodological triangulation to support the credibility, quality, and

transferability of the inferences made within this thesis.

This research assumes that while the nuanced and specific individual

characteristics, structures, and behaviors of different software factories will undoubtedly

differ, the general structures and characteristics will be consistent amongst other similar

software factory organizations. Additionally, because this research prioritizes

community engagement and observation as well as the public presentation (formally and

informally) of qualitatively generated inferences to the community being studied, its

credibility is supported through its use of persistent observation and prolonged

community engagement.

Since this thesis uses a qualitative approach to develop theory and interact with

the community of interest, the results and points of view presented are also influenced by

the researcher’s values (Graff, 2013). Additionally, since social constructs like power

and organizational dynamics are explored primarily through observations and interviews,

11

the resultant conclusions and theories presented within must be considered in the context

of the community of interest and its value system. The mixed methods methodology

acknowledges the existence of these values structures in the researcher and the

community of study and thus the validity and credibility of this thesis is best considered

in context with the software factory community. For this reason, community engagement

and discussion are continually emphasized throughout the report.

Implications or Expected Contributions

This report will begin to systematically demystify the organizational phenomenon

that is the software factory through the application of proven research practices. First, it

will identify and capture the characteristics of software factories to expand the acquisition

community’s understanding of individual organizations and provide an academic basis

for future research. Second, it will then attempt to define the software factories by

observing the community and capturing the exchanges that occur between the

organizations with which the software factories most commonly interact. By assessing

the interactions of the organizations within their greater environments instead of

analyzing internal organizational behaviors, this thesis can more objectively identify the

commonalities in the structures of these organizations and as our understanding of the

current state of software acquisitions matures, make inferences on the characteristics of

the ecosystem as a whole. Finally, this thesis will conclude by providing acquisition

practitioners with the ability to assess their own non-traditional organizations. The

approach and perspectives used within this thesis will mark it as the first to define the

DoD software factories beyond traditional cost-schedule-performance measures and

instead define the software factories based on their organizational behaviors and

12

attributes whose interactions and exchanges comprise the wider department-wide

ecosystem.

13

II. Defining the Department of Defense (DoD) Software Factory: A Network Value

Approach

Chapter Overview

 This chapter contains the first of three articles written for this thesis. The

included manuscript, which was published in Crosstalk: The Journal of Defense Software

Engineering, by Ryan, Reith, and Beach (2022) marks the initial, exploratory phase of

this thesis’s immersion into the greater software factory ecosystem. Through a series of

interviews with senior leaders, software factory personnel, and a review of internal

Department of the Air Force software factory documentation, the article begins with an

assessment of the acquisition communities understanding of the software factories. After

discovering that the software factory is not formally defined within the DoD, the article

begins to frame the software factory by identifying the tangible and intangible value

exchanges of Space CAMP, an existing DoD software factory, through the application of

a value network analysis methodology. Combining the results from the interviews,

document review, and value analysis the article concludes by presenting a

characterization framework that outlines the most common characteristics of software

factories.

Publication Details

 This article was published in the July 2022 issue of Crosstalk: The Journal of

Defense Software Engineering. It has been stylistically modified from its original

published format to align with the prescribed format of this thesis.

14

Abstract

Over the past five years, the Department of Defense (DoD) has placed renewed

emphasis on improving the DoD Acquisition System’s ability to develop and manage its

increasingly complex arsenal of software-centric materiel solutions. This sharpened

focus on software development has led to the widespread implementation of both

legislative and organizational changes that have directly impacted how Department of the

Air Force (DAF) programs develop software capabilities. With the evolving acquisitions

landscape, organizations have been exploring alternative business strategies that take

advantage of modern development practices in order to improve organic development

capabilities and more rapidly deliver secure and reliable code to end-users. A new

business model, the “Software Factory”, has become increasingly popular and has proven

itself as a key capability enabler for many organizations. While the intent and tactical

direction of the software factories are generally well understood by their parent units,

exactly how these organizations fit within the larger acquisition’s lifecycle and the

manner by which they deliver long-term value is less clear. This article seeks to shed

light on the underpinnings of the DAF’s software factory ecosystem by first modeling the

relationships between a single software factory and its stakeholder organizations in order

to identify how value is unlocked, and then proposing a set of generalizable criteria with

which to define and evaluate the greater software factory ecosystem.

Introduction

Software development within the DAF has historically lagged behind industry. In

2018, Congress directed a formal assessment of the DoD’s software acquisitions policies

and practices (McQuade et al., 2019). The results of this study recommended key areas

15

of improvement that were proposed to bring the DoD in line with industry software

development standards. Since the report was published, many high-level programmatic

recommendations have been implemented at both the services and congressional levels

(Lord, 2020; OSD, 2020). Paralleling the acquisition pathway and funding strategic

efforts, individual units have been quick to capitalize on the heightened interest and a

new type of organization, the “Software Factory”, has developed within the DoD

software ecosystem. While strategic efforts have been in lock-step with the study’s

recommendations, the changes do not necessarily align with these new units’ strategies.

An apparent disconnect has developed as formally documented processes and policies

fail to accurately reflect the actual methods, structures, and strategies that are being

employed at the operational level.

To understand the disconnect between perception and reality, one may observe

the DoD’s own use and definition of the term “Software Factory”. A cursory

investigation of the Air Force Chief Software Office’s (AF CSO) website seems to

indicate that Software Factories are a type of organization (Assistant Secretary of

Acquisition & Air Force Chief Software Office, 2021). This initial perception may

appear at first glance to be correct, however, upon deeper inspection, it is clear that the

listed programs are incredibly dissimilar—varying drastically in complexity, maturity,

and mission set. The AF CSO’s Software Factory listing is, in reality, simply a collection

of organizations that have self-declared themselves as software factories and were

subsequently endorsed by the AF CSO. While this disconnect would not normally be an

issue, the use of the term “Software Factory” has become widespread within the DoD’s

16

collective lexicon and is now being used as a cornerstone reference in strategic force

modernization guidance (Hicks, 2022).

The DoD’s pragmatic usage of the term is dichotomous to the units’ that have

chosen to carry it as a label. While the DoD often uses Software Factories to describe an

organizational construct, units instead use it in a less clearly defined manner. At the unit

level, “Software Factory” has no easily communicated definition. Instead, it is used as a

signal to the broader defense community that the organization carrying its name does

more than simply develop software. The Software Factory label, in this sense, relays that

the unit views itself as part of a greater movement within the DoD, not as simply an

organization that delivers software-based materiel solutions.

Central to the issue is that the use of the Software Factory label has become so

widespread that it no longer accurately describes any one type of organization, yet the

DoD still treats it as such. “Software Factories” now applies to an entire software

ecosystem within the DoD that is largely composed of organically funded, self-directed

units functioning as application developers, trainers, developmental services producers,

hosting service providers, and even fee-for-service consultants. If the DoD is going to

effectively manage, direct, and fund these organizations, it needs to stop thinking of its

Software Factories as a singular, easily-defined entity, and instead treat what it has as a

composition of demand driven organizations that have organically developed into a

complex ecosystem.

This article attempts to inform strategic decision making by exploring and

identifying the underpinning characteristics of one of the DAF’s software factories

through a preliminary data collection effort and through the application of a network

17

analysis technique. It is our hope that the characteristics identified within this analysis

can help establish the foundations of a larger framework or organizational model that can

be applied at scale to improve the understanding of the DoD’s organic software

development capabilities and to inform future direction.

The Software Factory Ecosystem

Software ecosystems, from a practical aspect, have been well studied within

academia and defining them is thus not the focus of this article. It is important, however,

to briefly review the formal definition as its composition provides insight into the

reasoning behind our proposed network-based analysis approach. This study, like many

other recent bodies of research, utilizes the definition of software ecosystems as defined

by Jansen, Finkelstein, and Brinkemper (2009) and reiterated in Jansen, Brinkemper, and

Cusumano’s book (2013) on Software Ecosystems as:

“…a set of actors functioning as a unit and interacting with a shared market for

software and services, together with relationships among them. These relationships are

frequently underpinned by a common technological platform or market and operate

through the exchange of information, resources, and artifacts.”

The DoD has, over the past two years, placed heavy emphasis on the technical

components within this definition, focusing strategic efforts on attempting to define and

develop common platforms through the implementation of efforts such as the DevSecOps

fundamentals guide (Department of Defense, 2021) and the stand-up of Platform One.

These efforts are not surprising as the technical underpinnings of platform definition are

18

fairly straightforward to capture and communicate; at least for specific applications and

architectures, which is evidenced by the AF CSO's endorsement of a common technical

framework that outlines specific development requirements based on a containerized,

Kubernetes managed solution (Chaillan, 2019). As units have matured, they often

struggle to describe themselves beyond their technical commonalities which hampers

external messaging.

On the other hand, the DoD has spent less time communicating how it intends to

address business aspects of the definition which focus on the economics of software

ecosystems. While a business-based definition may initially seem to be of questionable

applicability as the DoD is neither a traditional business nor a market, our observations

suggest that the existing organization of units and the manner in which they produce

value closely resembles that of entrepreneurial business networks. When one steps back

and views the DoD Software Factories through this lens, using an organizational and

interaction-based focus, it becomes clear that understanding how these organizations

interact and exchange value is critical to understanding and capturing the efficiency and

effectiveness of the larger software ecosystem.

Analysis Methodology

Network Value Analysis

In order to characterize the larger ecosystem, we must first begin to identify

characteristics inherent to the DAFs software factory organizations. This study begins

this analysis by applying a network analysis technique to analyze the strategic

relationships of an existing Air Force Software Factory, Space CAMP. Network analysis

is an area of study and analysis that focuses on depicting relationships between actors in

19

order to analyze the structures that emerge from the recurrence of these relations (Chiesi,

2015). Network analysis has seen widespread application with uses in geosciences,

social and behavioral sciences, economics, and many other disciplines (Chiesi, 2015;

Curtin, 2017; Kronenfeld, 2004) including the DoD (Enos & Nilchiani, 2018). Our

proposed analysis of the DoD’s software factory ecosystem looks to apply network

analysis based on the underlying assumptions that unique characteristics will become

more evident and can be better captured when broken down into key components.

The area of network analysis as it relates to software ecosystems encompasses a

wide span of topic areas, with differing intents and focuses. For example, a product-

centric approach of software ecosystem modeling includes Boucharas et al.’s (2009)

work which captured direct exchanges of products and services for resources surrounding

a real estate software product. Additional types of application include the fine-grained

modeling of internal software ecosystems (Boldi, 2020) and user/contributor centric

ecosystem modeling (Guércio et al., 2018).

Given the immaturity of our target ecosystem, the diversity of software solutions

and architectures, and the variety of organizations and customers within the DoD’s

software ecosystem, we determined that a value-based assessment would provide a

unique and new way of characterizing capability development for strategic decision-

makers. Value-based network analysis, which is rooted primarily in business theory,

Software Design and Architecture focuses on identifying areas of human-centric value

generation within business ecosystems (Allee, 2009).

We have chosen to analyze our ecosystem using the V2 model notation (Vorraber

et al., 2011) which was built off of work by Biem and Caswell (Biem & Caswell, 2008)

20

and then successfully applied to an open-source software project by Vorraber et al.

(Vorraber et al., 2019) yielding a detailed relationship model of the key stakeholders

involved in the development of a free, open-source software project. While Vorraber et

al.’s study focused on individual actors within the software ecosystem, our study

abstracts the actors to an organizational level in order to map value from a macro-view.

This approach allows us to garner insight into organizational relationships and

characteristics while still allowing for scaling, which has been a challenge with some

other types of software ecosystem modeling approaches that attempted to communicate

with both technical and non-technical audiences (Boucharas et al., 2009).

Data Collection

Data collection efforts for this study were undertaken with two main objectives.

First, we wanted to begin establishing some common characteristics that appeared to be

prevalent within the software factory ecosystem. Second, we needed to determine which

sources of information were most relevant and appropriate to guide our more in-depth

network analysis of a single DoD software organization. In order to meet these two

goals, our data collection strategy began with a broad general data collection effort and

narrowed in on specific organizations of interest to better understand the overall

relevancy and accuracy of different sources as well as establish a baseline understanding

of the overall software factory ecosystem.

We began our assessment with a review of the public-facing websites of the

Software Factory organizations as listed on the DoD CSO’s software.mil website. This

listing contains 19 organizations, 14 of which have short descriptions outlining their

missions, and 6 of them maintain public-facing websites with relevant information. The

21

corresponding websites varied in maturity, level of information, and relevance with a

broad range of communications ranging from information sharing to customer seeking

strategies. While the information contained on these public facing websites was useful to

develop a base level understanding of each organization, they do not convey the detailed

inter-organizational information that is required for us to perform an analysis.

In order to collect more tailored and relevant information, we expanded our

efforts and reached out directly to individual organizations with varying degrees of

success. Given the organizations are military units, identifying up-to-date contact

information from publicly available information proved challenging. In the end, a

request for internal program documentation was sent via email to 12 organizations; from

these, 4 responded and were willing to share additional program documentation.

Documentation ranged from highly detailed programmatic handbooks to basic executive

slide-show overviews. In total, 138 pages of documentation were collected and reviewed

for relevancy.

To further understand the characteristics of these organizations and develop a

foundational understanding from which to base our case study analysis, a series of

interviews were conducted with SMEs from the most mature and established software

factory organizations. Interviews focused on developing an understanding of how the

respective organizations operate, their inter-organizational relationships, and their

experiences operating within the DoD’s software development space.

In summation, our overall data collection efforts generated a large amount of

information from a wide variety of primary and secondary sources. This broad initial

approach supported both of this pilot study’s main data collection objectives—establish a

22

baseline understanding of the software factory ecosystem and identify the most relevant

data sources for future analysis. Finally, the large amount of data collected allowed us to

perform an initial analysis on an individual pilot organization in order to test the

feasibility of our proposed network-based approach.

Discussion and Results

The network model in Figure 3 was achieved by first performing an extensive

review of both public-facing and internal developer documentation for the target

organization. After forming a baseline understanding of organizational relationships,

outputs, and exchanges, an interview was conducted with an acquisitions SME who was

familiar with the overall mission and relationships of the organization. Questions were

developed to focus the conversation on customer interactions and were provided to the

interviewee prior to the interview. The primary questions used to guide the discussion

are as follows:

1. Can you tell me about how your organization interacts with operational units? Other

program offices?

2. Who do you consider your customers? Sponsors? Partners?

3. Can you walk me through the program lifecycle of an application from initial request

to handoff?

4. Does your organization have a formal strategy? Can you tell me about it?

After completing the interview, the analysis was conducted, the results of the

analysis were presented to the interviewee, and feedback was solicited to refine the

model. The results of the network analysis, in Figure 3, identified the primary

organizations and their value exchanges. In addition to developing a proposed list of

23

organization characteristics, we also identified a few unique areas of interest that appear

to be inherent to these types of organizations.

Figure 2:Space Camp value network analysis.

Value Diversity and Generation

A surface-level analysis of software factories such as Space CAMP may lead

many to focus only on the primary tangible output, namely software applications for end-

users. While software development and delivery is the primary mission of Space CAMP

(Space CAMP, 2021a), it is but one source of value that the organization creates within

the ecosystem. In addition to tangible services offered by the organization such as

24

consulting and training, non-tangible value by way of brand awareness and reputation

exchange is also noted. Space CAMP has hosted over 500 visitors since its 2018

inception (Space CAMP, 2021b), and search engine results for “Space CAMP Air Force”

generate multiple magazine articles, websites, and videos. While it is difficult to quantify

non-tangible value associated with recruiting, inspiring, and informing the organization,

the exchange of monetary capital for awareness and association is clearly visible within

the network graph.

Fiscal Relationships

The initial network analysis provides interesting insight into the fiscal

relationships and associated value exchanges of this particular organization. While one

would initially expect a DoD program to follow a formal top-down directed fiscal

hierarchy, our network graph clearly shows that Space CAMP does not adhere to this

model. Instead, it maintains multiple fiscal relationships outside of its parent

organization—in this case, AFRL/RV— instead of relying on a singular primary source

of capital. This particular organizational model differs significantly from the traditional

federal acquisitions lifecycle model which would designate funds based on a five-year

planning cycle. Since Space CAMP is not a formally funded program via the Future

Years Defense Program (FYDP), it’s not bound to traditional cycles making it more

susceptible to EOY funding chaos and its wide variety of fiscal relationships reflect that

reality.

Value Engines

Two primary value engines were identified in this analysis. Value engines are

“reinforcing loops of value creation and exchange between actors” (Vorraber et al.,

25

2011). The two most notable exchanges of value were between Platform One and Space

CAMP and the combat development teams (CDTs) and Space CAMP. These two

exchanges, as opposed to the other exchanges, directly impacted the value generation of

the partner organization. Furthermore, by way of information and services exchange,

they generated value in excess of what was initially exchanged by each organization.

While quantifying the value generation of the overall ecosystem was not a goal of this

study, it could provide a framework for future analysis.

Future Work and Conclusion

 The analysis of Space CAMP’s value network map helps shed light on the

complex inter-organizational structures that have organically formed within the Software

Factory ecosystem. A significant amount of the DAF’s newest Software Factories do not

necessarily follow the existing acquisitions pathways, including the newly created

software pathway, that was established through congressional legislation. Instead, Space

CAMP and many other Software Factories currently exist and operate as what appear to

be informal programs, delivering software capability early in what could be loosely

defined as the pre-acquisition pathway, having yet to achieve the official MDA

designation that one would normally expect prior to active capability delivery. Since this

organizational space falls outside of traditional acquisitions processes, it is not well

understood nor formally captured.

This disconnect causes significant challenges as capturing and quantifying the

value produced by these organizations becomes exceedingly difficult as funding profiles,

capability delivery, and inter-organizational dependencies are not well tracked at a

strategic level. It is our belief that if the DAF is going to successfully leverage its

26

software factories as a strategic asset it must first strive to define and understand the

ecosystem that has developed organically.

Our research suggests that formally defining and categorizing the DAF’s software

factory ecosystem could be accomplished through the development and application of an

organizational framework or model designed to capture specific characteristics that are

inherent to these programs. Some potential defining characteristics and potential

spectrums of measure that were revealed during this case study and our larger data review

of other software factory organizations are proposed in Table 1. Focusing on the unique

characteristics of these organizations will enable decision-makers to strategically assess

the DAF’s software development capabilities, identify organizational gaps or

redundancies, and duplicate proven success models when establishing new software-

centric units.

This study was undertaken in order to begin establishing characteristics of DAF

software factories through the review and assessment of a singular organization. This

was accomplished utilizing network value mapping techniques to identify key

organizations involved in the support and value creation of Space CAMP. Our approach,

which focused on identifying inter-organizational value exchanges extended beyond the

traditional acquisition-centric approaches and provided new and interesting insights into

the inner workings of the Department of the Air Force’s newest type of software

organization. Additionally, our review of software factory organizations revealed an

initial set of characteristics that could be used to define the DoD’s software factories

more appropriately than existing dictionary definitions.

27

Finally, it is our belief that a wider organizational assessment that expands the

scope of data collection and analysis

beyond a single organization should be

investigated as a means to characterize

DAF software organizations and develop

an organizational framework that can be

used to guide software factories through

a proven lifecycle and improve the

DAF’s understanding at a strategic level.

Table 1: Characteristics framework for

defining the DoD software ecosystem.

Proposed software factory framework

characteristics for defining the larger DoD

software ecosystem.

28

References

Allee, V. (2009). Value-creating networks: Organizational issues and challenges. Learning

Organization, 16(6), 427–442. https://doi.org/10.1108/09696470910993918

Assistant Secretary of Acquisition, & Air Force Chief Software Office. (2021). Software

Factories. https://software.af.mil/software-factories/

Biem, A., & Caswell, N. (2008). A Value Network Model for Strategic Analysis. In

Proceedings of the 41st Annual Hawaii International Conference on System Sciences

(HICSS 2008). https://doi.org/10.1109/HICSS.2008.43

Boldi, P. (2020). Fine-Grained Network Analysis for Modern Software Ecosystems. ACM

Trans. Internet Technol, 21(1). https://doi.org/10.1145/3418209

Boucharas, V., Jansen, S., & Brinkkemper, S. (2009). Formalizing Software Ecosystem

Modeling. http://softwareecosystems.com

Chaillan, N. (2019). DoD Enterprise DevSecOps Reference Design.

Chiesi, A. M. (2015). Network Analysis. International Encyclopedia of the Social &

Behavioral Sciences: Second Edition, 518–523. https://doi.org/10.1016/B978-0-08-

097086-8.73055-8

Curtin, K. M. (2017). Network Analysis. Comprehensive Geographic Information Systems, 3,

153–161. https://doi.org/10.1016/B978-0-12-409548-9.09599-3

Department of Defense. (2021). DevSecOps Fundamentals Playbook.

https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-2.0-

Playbook.pdf

Enos, J. R., & Nilchiani, R. (2018). Using Social Network Analysis to Identify Systems of

Systems in a Network of Systems. https://doi.org/10.1109/SYSOSE.2018.8428791

Guércio, H., Ströele, V., David, M. N., Braga, R., & Campos, F. (2018). Complex Network

Analysis in a Software Ecosystem: Studying the Eclipse Community. In 2018 IEEE 22nd

International Conference on Computer Supported Cooperative Work in Design

((CSCWD)). https://doi.org/10.1109/CSCWD.2018.8465170

Hicks, K. (2022). Department of Defense Software Modernization Strategy.

Jansen, S., Brinkkemper, S., & Cusumano, M. (2013). Software Ecosystems. Edward Elgar

Publishing. https://doi.org/10.4337/9781781955635

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research

agenda for software ecosystems. https://doi.org/10.1109/ICSE-

COMPANION.2009.5070978

29

Kronenfeld, D. B. (2004). Cognitive Research Methods. Encyclopedia of Social Measurement,

361–374. https://doi.org/10.1016/B0-12-369398-5/00325-X

Lord, E. M. (2020). DOD INSTRUCTION 5000.87 OPERATION OF THE SOFTWARE

ACQUISITION PATHWAY. https://www.esd.whs.mil/DD/.

McQuade, M. J., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019).

Software Is Never Done: Refactoring the Acquisition Code for Competitive Advantage.

OSD. (2020). Budget Activity (BA) “BA-08”: Software and Digital Technology Pilot

Program. https://discover.dtic.mil/section-809-panel/,

Space CAMP. (2021a). https://spacecamp.il2.dso.mil/#/home

Space CAMP. (2021b). Space CAMP Survival Guide 2.0.

Vorraber, W., Mueller, M., Voessner, S., & Slany, W. (2019). Analyzing and managing

complex software ecosystems: A framework to understand value in information systems.

IEEE Software, 36(3), 55–60. https://doi.org/10.1109/MS.2018.290100810

Vorraber, W., Voessner, S., Ssner, S. V., & Vössner, S. (2011). Modeling endogenous

motivation and exogenous influences in value networks of information service systems,

https://doi.org/10.4156/jcit.vol6.issue8.43

30

Summary

 This chapter contained the first of three manuscripts written for this thesis. While

this introductory article did not formally define the software factory, it did establish an

initial foundation upon which to base future analysis by identifying common

organizational characteristics and capturing those results in a software factory

characterization framework. In addition to its publication in a peer reviewed journal, the

article was circulated throughout the software factory community and it was presented to

the 4th DoD Software Factory Working Group and the DoD DevSecOps Community of

Practice, reaching a large joint audience. This community interaction and the circulation

of the characterization framework developed within this article spurred an ongoing

conversation within the community around what exactly defined the software factory. As

interest in the topic continued to expand, additional software factories began providing

feedback and internal organizational data which expanded the data set available for this

thesis.

 While the published article showcased the value network analysis technique as the

primary method of data collection, it was not the only approach employed during the data

collection process. Prior to conducting the network analysis, a narrative research process

was employed to generate an initial data set and to establish a foundational understanding

of the software factory ecosystem. This approach, which focused on interviews with

senior leaders and software factory founders, was necessary because data on the

organizational characteristics of the software factories did not exist. The data set created

during the narrative process was continually revisited and reanalyzed throughout the

mixed methods process.

31

III. Hierarchy, Networks, and Software Factories: An Exploratory Analysis of

Organizational Structure

Chapter Overview

 This chapter contains the second of three manuscripts written for this thesis.

Building upon the first article, the included Hierarchy, Networks and Software Factories:

An Exploratory Analysis of Organizational Structure, written by Ryan, Reith, and Beach,

seeks to define the software factory at the structural level by highlighting its fundamental

economic and social characteristics. The article begins with a review of past influential

Department of Defense software strategies and reports in an attempt to identify parallels

between past DoD software programs and the software factories2. After identifying what

appeared to be a historical trend of strategic management failures within DoD software

acquisitions, the article theorizes that an unspecified disconnect must exist between DoD

management policies and the natural organizational structures of software organizations.

The article builds upon this theory by comparing the characteristics of software factories

to the characteristics of the three primary economic forms of organization: hierarchy,

networks, and markets. The article concludes by identifying and characterizing the

software factory as an existing and formally defined economic form of organization— the

network.

2 A detailed historical assessment of the most influential DoD software reports conducted by the Defense

Innovation Board, Defense Science Board, and Government Accountability Office spanning 1970-2022 is

included as an additional supplement in Appendix A.

32

Publication Details

 This article was written for submission and consideration to Joint Forces

Quarterly.

Abstract

The Acquisitions community has historically struggled to understand, measure,

and manage non-traditional programs. The Department of Defense’s (DoD) newest batch

of software organizations, commonly known as Software Factories, highlights these

shortfalls and illustrates the need for alternative strategic management approaches

tailored toward unfamiliar economic architectures. This paper explores the characteristics

of software factories and classifies them as a formally defined economic structure

uncommon within the DoD called the network. We then expand upon our assessment by

exploring the social and economic behaviors of software factories by analyzing them in

relation to established socio-economic concepts. Finally, we close by providing a set of

recommendations, supported by academic literature, that can be used to tailor the

strategic development of the software factory ecosystem while simultaneously leveraging

the unique characteristics of networks.

Two-sentence summary

The Software Factory is a new type of software development organization that is

gaining popularity within the Department of Defense. This article explores their

structures in relation to their social and economic environments and suggests they are

best classified as networks.

33

Keywords

Inter-Organizational, Relationships, Management, Non-Traditional, Socio-economics

Introduction

 In 2018 an unusual organizational phenomenon emerged within the Department

of Defense (DoD) acquisitions community. Advocates of agile software development

began self-organizing under the term Software Factory to distinguish their approach from

traditional software development organizations. Built upon a set of common

foundational principles, the factories organically emerged and established themselves

around common goals, strategies, and technical vision. Acting outside of formally

established programmatic frameworks like those defined within the Defense Acquisitions

System (DAS), these organizations exhibited non-traditional characteristics unfamiliar to

many acquisition practitioners. As individual entities, the factories appeared to act

without formal structure yet when viewed holistically they shared a unified goal – to

develop better software. The software factories represented a cultural shift within the

military and they promised to deliver a faster, more effective method of software

acquisition through the application of alternative approaches, techniques, and structures.

From a historical perspective, many of the innovative principles and practices

espoused by the software factories such as iterative development practices, end-user

requirements flexibility, and a focus on software quality are not new. In fact, strategic

guidance illustrates the opposite. In a review of the most influential DoD software

strategy documents from the past 50 years, we determined that when one looks past the

constantly evolving methodologies, technologies, and architectures the roots of the

DoD’s software struggle have remained fundamentally unchanged. The Acquisition

34

System is inflexible, the DoD fails to implement development best practices, and

software metrics are non-existent or ineffective. The Defense Innovation Board (DIB)

study Defense Software (2000), which also reviewed and aggregated strategic studies

arrived at a similar conclusion stating:

“Most all of the recommendations remain valid today and many could

significantly and positively impact DoD software development capability. The DoD's

failure to implement these recommendations is most disturbing and is perhaps the most

relevant finding of the Task Force. Clearly, there are inhibitors within the DoD to

adopting the recommended changes “(Hansen & Nesbit, 2000, p. ES1).

The harsh language used in the 2000 DIB study is not unique. The

historical reports and strategic documents listed in Figure 4 illustrate through their

consistency that there exists an unidentified problem with the mechanisms that the

DoD uses to strategically manage its software enterprise. While many of the

reports acknowledge the existence of this problem, they simply attribute it to poor

execution instead of seeking to understand why the problem exists. In doing so,

they ignore the heart of the issue choosing instead to reiterate known

organizational challenges and repeat the same general set of recommendations.

We believe that it is time to stop re-explaining the known and instead assess the

unknown by exploring the underlying economic and social environments that

influence the DoD’s software programs. To quote the late Colin Powell, “There

are no secrets to success. It is the result of preparation, hard work, and learning

from failure.” If the DoD is going to be bold and dominate the modern battlespace

by enabling Joint All Domain Command and Control (JADC2), it must first learn

35

from its past failures. To do so we must be prepared to challenge our existing

preconceptions and established organizational norms to understand why our past

software acquisition efforts have continuously fallen short. The current software

factory movement provides us with this opportunity.

Figure 3: Influential DoD Software Reports & Strategy.

 Research into software factories has primarily focused on the technical and

financial underpinnings of factory operations; however, recent academic works have

begun to explore their organizational structures. In a recent Crosstalk article, Ryan,

Reith, and Beach (2022) published an analysis of the software factory ecosystem which

described a framework outlining observed software factory characteristics. While the

writers did not provide a written definition of the software factory, they did identify and

catalog previously undocumented organizational characteristics. In reviewing their

framework, we discovered that the characteristics they captured appeared to align closely

36

with the features of a previously defined and well-understood economic form called the

network. Building upon this observation, we hypothesize that the organizational

structures of software factories are best represented, understood, and managed as

networks.

This article begins by introducing the network economic form by discussing

fundamental socio-economic concepts that may be unfamiliar to the reader. We then

characterize the software factory as a network through a series of contextual examples

designed to illustrate how software factories fit within the hierarchy-network-market

continuum. Additionally, we also expand upon the social and economic behaviors of

software factories that are not typically found within traditional military hierarchies.

Finally, we close with a series of recommendations that we believe can be used to guide

the strategic development of the software factory ecosystem by drawing on established

network management principles.

The Network, Resources, and Exchange

The network as an economic form was first defined in 1990 when Walter Powell

published a seminal piece of research titled Neither Market nor Hierarchy: Network

Forms of Organization. Powell’s work introduced the network as a formal form of

organization that existed between the previously well-defined and explored economic

forms of market and hierarchy. He argued that the network form had unique attributes

that could be identified by observing the patterns of both economic and social behaviors

between interdependent organizations. Powell’s work drew upon exchange-based

theories to describe the network as well as socio-economic theories of social structure.

His consideration of social concepts such as network embeddedness (Granovetter, 1985),

37

trust (Arrow, 1975), and

reciprocity (Gouldner, 1960;

Keohane, 1986) and their impacts

on information exchange allowed

Powell to identify the key features

of economic networks. Powell

chose to define this new

economic form by creating a

framework, illustrated in Table 2,

that highlighted the network’s key

features in comparison to markets

and hierarchies.

 Before progressing further, we must first take a moment to address the definition

of the term network. This article primarily discusses networks in a strategic context,

referring to the formal economic form of organization. In practical application, however,

the term network is ubiquitous and its meaning is often derived contextually which makes

it difficult to define. This presents a challenge as unstated ambiguity often leads to

confusion. For example, when we speak of managing networks to what do we refer?

From where are we deriving our perspective? Are we speaking broadly, referring simply

to groupings of similar entities, or are we attempting to communicate something more

nuanced such as the existence of an implicit social structure? Perhaps we are inferring

the existence of specific characteristics or maybe we are simply implying casual

connection. To what do we speak when we reference inter-organizational networks?

Table 2: Powell’s stylized comparison of forms of

economic organization (1990).

38

Software Factory networks? We cannot answer these questions without first defining and

understanding the pre-existing or implied context.

 To maintain a strategic management focus, we supplement Powell’s definition of

the network form by drawing upon network research as it relates to inter-organizational

relationships. Within this context, we define networks as the continuous exchange of

resources between interdependent organizations acting within shared social and economic

environments. This definition draws upon the resource dependence theory of inter-

organizational relationships (Franke, 2017), which is built upon the underlying

assumption that an organization’s success in achieving its stated goals depends on its

ability to access limited resources in relation to its greater environment. By extension

this introduces the concept of the exchange – the mechanism organizations use to gain

access to these limited resources (Levine & White, 1961). By applying the basic

concepts of resources and exchange, we can employ a simple but useful medium by

which to observe inter-organizational behaviors. Put simply, by observing the exchange

of resources between organizations we can build our understanding of networks.

Research into networks is incredibly broad with existing literature having

expanded upon Powell’s original work. Network studies now encompass many diverse

fields including public policy and management, innovation, and organizational dynamics.

Given this diverse and ever-growing body of knowledge on networks, we cannot

realistically provide an all-encompassing overview of the concept. Instead, we will take

a tailored approach by focusing on the exchange behaviors of software factories to

illustrate their organizational alignment as networks. The following section discusses the

39

software factories as networks by analyzing patterns of behavior that we observed within

their social and economic environments.

Software Factories as Networks

In order to utilize Powell’s definition of the network as a mechanism to help

describe the software factory,

we must first review and loosely

characterize existing

Department of Defense

organizational and

programmatic structures.

Traditionally, the DoD and the

military services follow the

hierarchical form of economic

organization. Communication

and directives flow downward

via formal channels, passing

through various levels of the

organization before arriving at

subordinate units.

Communication, or information

exchange, is routine and the

overall climate is bureaucratic

and formal. The traditional

Table 3: Software factory characteristics and the

network form. The observed characteristics of software

factories align with the features of economic networks.

Because software factories often lack formal programmatic

designations, they must rely heavily on social relationships

and trust-based networks to secure the resources (i.e.

money & personnel) that are necessary to accomplish

organizational objectives. Software Factories strategically

build their social capital and reputations by leveraging non-

traditional mechanisms such as LinkedIn, websites, media

outreach, and trade shows to drive organizational growth.

Traditional programs do not exhibit this social reliance

because they receive resources through the formally

established hierarchical mechanisms defined within the

Defense Acquisitions System.

40

organizational chart which defines administrative and operational authorities is a familiar

visualization of formal hierarchy at work. The Defense Acquisitions System (DAS)

exhibits similar hierarchical patterns. Control of programmatic organizations is

maintained through the application of formal financial controls, standardized directives,

and careful structural definition of programs outlined within DoD 5000.01, The Defense

Acquisitions System. These traditional frameworks break down when used to describe

software factories. Acknowledging this shortfall, we turn towards the network.

Utilizing Powell’s framework to expand Ryan et al.’s work, we engaged with and

observed the software factory community through working groups, communities of

practice, and senior leader interactions. Additionally, we also embedded ourselves within

a Department of the Air Force software factory for three months in order to observe its

social and economic exchanges. Our observations of software factory behaviors closely

aligned with Ryan et al.’s findings as well as Powell’s network characteristics supporting

our proposed hypothesis. Our observed characteristics of software factories are presented

alongside Powell’s key features of networks in Table 3. In order to further illustrate the

networked nature of software factories and provide the reader with a foundational

understanding of network fundamentals, the following sections expand upon the social

and economic environments of software factories using basic explanatory examples.

Social Environment

 Software factories are socially active organizations. Our observations revealed

that software factories are active participants within their social environments with many

software factories maintaining public-facing websites, active social media profiles, and

well-defined public messaging strategies. Additionally, within the software factory social

41

sphere, there are various working groups, conferences, and trade shows through which

these organizations regularly participate. While these social behaviors may at first appear

as common to the casual observer since most are accustomed to the commercial websites

and social media presence of companies, they are in actuality less common internally to

the DoD. This raises the question: why are software factories so active and why are they

expending resources on what could be categorized as advertising and outreach? The

answer to this question is easily explained when one views software factories through the

network lens.

 Network participation requires organizations to actively seek and create social

connections for a variety of reasons. First and foremost, organizations must interact with

their environment to gain access to resources. The exchange of resources, in a network

context, includes the exchange of information as well as tangible goods, services, and

money. This horizontal exchange of information between organizations is emphasized

within innovation-heavy industries such as software (Castilla et al., 2000). Like all types

of exchange, information exchange places a financial burden on organizations. With

software factories, this cost is visible through their social activities: personnel travel,

website costs, and media messaging. This phenomenon, the cost of an exchange or

transaction, is a fundamental concept within economics and is referred to as transaction

cost (Williamson, 1979). Since networks have a heavy social component, organizations

must expend resources to participate.

In addition to transaction costs, organizations participating in networks must also

expend resources to build and maintain social capital, and as an extension, reputation.

Since networks lack the formal control mechanisms found within hierarchies, they rely

42

on organizational reputation and social standing to signal trustworthiness. Trust is a

critical component of successful networks because it facilitates cooperation between

organizations and it enables self-governance. This is especially true in emergent

networks like software factories (Provan & Lemaire, 2012). Due to the interdependent

nature of networks where organizational success is often shared, organizations with poor

reputations or social standing may be denied access to critical resources or even

wholesale rejected from the network ultimately leading to their failure. Additionally,

organizations with high social capital have access to greater power, influence, and

resources within the network (Provan & Lemaire, 2012). Thus, to ensure continued

success within the network, participating organizations expend resources to build and

maintain their social standing and reputation. Thus, we have explained the active social

outreach.

43

The social component of networks extends well beyond the fundamental concepts

that we have provided in this section. Inter-organizational networks can be incredibly

complex and difficult to measure, much less quantify. As a practical example, during our

studies, we observed a new software factory less than a year old with a rapidly growing

network comprised of 53 individual organizations. To illustrate this interconnectivity, a

visualization of this organization’s network is provided in Figure 5. Extending this

complexity to the greater software factory ecosystem, we can begin to envision the

intricate web of social connectivity that underpins the software factory movement. This

Figure 4: A software factory network. Software factory networks are comprised of

interdependent organizations exchanging resources within shared economic and social

environments. We can explore the interorganizational behaviors of software factories by

observing these exchanges.

44

network complexity is intertwined with and supports the economic activities of software

factories.

Economic Environment

 While the social environments of

software factories can be understood by

observing the exchange of information,

the economic environment is best studied

by focusing on the tangible exchanges of

goods, services, and finances. Ryan et al

(2022) observed the basic financial

exchanges of a single software factory

noting that it appeared to have an unusual

customer-driven funding model. Our

observations of software factories yielded

similar results. While not all software

factories rely on customer-driven funding

instead receiving direct appropriations, a significant portion leverage network-driven

funding strategies. In a traditional programmatic model, this lack of a formalized

hierarchical funding mechanism may appear as an inherent weakness; however, from a

network perspective the distributed funding model illustrates how networks can

efficiently self-distribute limited resources amongst competing organizations based on

customer requirements.

Figure 5: A software factory financial network.

Software factories often employ distributed, customer-

based funding models. Customer organizations that

are actively funding the sample software factory are

highlighted in yellow.

45

 To further explore network-based funding mechanisms and illustrate their

effectiveness, we reference the financial network of a sample software factory--provided

in Figure 6. This sample network captures the economic exchanges of a single software

factory revealing its highly distributed nature with funding sources extending across

multiple MAJCOMs. This model reveals a break from the hierarchical MAJCOM or

congressionally controlled funding model in favor of a domain-centric, customer-

controlled model typically found within commercial markets. Under this model, software

factories are able to extend their economic networks beyond formally established

organizational boundaries and end customers are able to leverage the network aspects of

trust and reputation to shape software factory behaviors without relying on hierarchical

authority. Within these networks, the software factory that fails to satisfy its customers

will likely develop a poor reputation eventually leading to network exclusion and its

ultimate failure. This effect illustrates the power of the customer-driven funding model

as well as demonstrates how the concepts of interdependence and trust are intertwined

within both the social and economic environments of networks.

 The social and economic environments of the software factories provide them

with a higher degree of autonomy not typically seen within traditional DoD acquisition

programs. Theoretically, a distributed funding model prevents a singular organization

from exerting authoritative control over an individual software factory organization via

financial leverage. Additionally, while a software factory may have to provide status

reports to a leadership organization, in actuality authoritative control is limited. The

widespread adaptation, or lack thereof, of Platform One illustrates this effect in practice.

While the adoption of Platform One has not yet been mandated, Platform One has been

46

designated as an official enterprise service provider for the DoD. Even so, many

organizations have still chosen to employ alternative technical solutions. This effect

illustrates the network form at work – resources are distributed based on network

dynamics. In networks the individualized needs of organizations often drive decisions;

not the desires of external parties.

Discussion & Recommendations

Our observations and analysis demonstrate that the Software Factories’

organizational characteristics closely align with the network form of economic structure.

While we believe that this conclusion is well supported using empirical evidence, we

would be remiss to continue without addressing the perspective from which it was

derived. There is little doubt that classifying organizations using the Hierarchy-Network-

Market continuum can provide interesting insights into organizational behaviors but it

can also prove challenging. This is because the perspective with which one chooses to

approach organizational structure can have an unintended impact on the outcome. Take

for example a hypothetical assessment of the software factories that begins with the

underlying expectation that military organizations must be hierarchical.

In this hypothetical scenario, an assessment may begin by seeking out

organizational characteristics known to support the hierarchical model. For example,

among other documents and policies, the assessment could limit its focus to existing

organizational charts; this limited approach could lead to the forgone conclusion that

structures are hierarchical. Building upon this conclusion, to the assessment could then

be extended to include external behaviors. Given the historically contractual nature of

government-industry exchanges, this may lead to the conclusion that the external

47

behaviors of software factories can be characterized exclusively as market driven

interactions. While this assessment may align with existing preconceptions, it fails to

thoroughly explain other behaviors. For example, it does not explain the interdependent

relationships that have evolved between the software factories, their partner

organizations, their government customers, and the greater software factory ecosystem.

Additionally, it fails to acknowledge the frequency and intensity of the social exchanges

that exist between the software factories and their industry partners. In this way

perspective can be limiting.

The exact number of software factory organizations within the DoD is currently

unpublished; however, the DAF Chief Software Office website does identify 12 software

factories, 3 software engineering groups, and 3 enterprise service providers under the

existing Air Force Ecosystem. Given this diversity, it is expected that our observations

and the characteristics of networks cannot apply to all software factory organizations.

Additionally, it is likely that some behaviors have remained unobserved. Some may

choose to point towards this lack of totality as a characterization failure; however, it is

not our intent to perfectly define the software factory space nor do we believe it is

possible. Instead, we simply seek to provide a much-needed foundational base by which

to establish a shared context. Defining and understanding organizational structure drives

us toward that goal.

Our findings have significant implications for the Department of Defense’s

current efforts to formalize the software factories into a cohesive ecosystem. Drawing on

the precedence discussed within our introduction, it is clear that the DoD has historically

struggled to manage, control, and grow its software-centric programs. We believe that

48

these past shortfalls could be partially attributed to a misalignment of management

strategies in relation to the organizational structures of software programs. Network-

based organizations, like those found within the software factory ecosystem, are

fundamentally different from traditionally defined hierarchical structures and as such,

they require different strategic management approaches that may be unfamiliar to career

practitioners. To continue forward under the premise that familiar hierarchical practices

and techniques will succeed with software factories when they have previously failed is

inviting a repetition of past failures. To prevent this, we have provided the following

strategic recommendations which are informed by existing literature on network

management. We believe that by employing these principles the DoD can improve

strategic oversight of the greater software factory ecosystem while still allowing software

factories to maintain their network-centric attributes.

Recommendation #1

The Department of Defense should focus efforts on enabling network dynamics, not

controlling individual organizational outcomes.

 Traditional hierarchical management approaches focus on controlling risk by

internalizing and standardizing business functions to achieve authoritative control.

Standardization of communication channels and consolidated decision-making via formal

bureaucratic structures are often preferred over distributed systems which encourage

organizational autonomy. While the monitoring and control of organizational behaviors

(Provan & Kenis, 2008) is an effective means by which to manage traditional programs,

these hierarchical control mechanisms are less effective when applied to networks that

rely on autonomy and relational information exchange to function. Additionally, from a

49

strategic perspective, the successful management of individual organizations does not

directly translate to the successful management of the whole network. Thus, when

managing networks, senior leaders must employ strategic approaches specifically

designed toward enabling network dynamics instead of controlling individual

organizational outcomes. For example, policies that focus on improving network

participation and self-regulation through the reduction of transaction costs and increased

inter-organizational trust should be considered.

Recommendation #2

Senior Acquisitions Executives should consider Software Factories’ existing structures

before granting formal programmatic designation.

Many software factories have a flagship product or focus within a specific niche

of the software development community. To fund product development within this

space, they rely on multiple funding streams directly from interested customer

organizations. This funding strategy, while effective, introduces instability into the

software factories’ operational profiles. Research into the inter-organizational behavior

of organizations suggests that software factories will naturally seek stable access to

resources (Benson, 1975), which in many cases takes the form of formal funding through

the Future Years Defense Program (FYDP). While this approach will provide financial

stability to the software factory, it also directly impacts the organizations participating

within the software factories networks by shifting network dynamics. Introducing

external funding reduces the software factories’ reliance on its customer organizations

and it fundamentally shifts power within the network. Since the software factories will

no longer be interdependent on their customer organizations for funding, the inter-

50

organizational relationships will be impacted. The decision to grant centralized funding

in effect reduces the financial leverage currently held by customer organizations –

removing their primary mechanisms of influence. Thus, before granting centralized

funding, network effects on other interdependent organizations outside of the requesting

software factory should be considered.

Recommendation #3

The Department of Defense should avoid mandating specific architectures, platforms, or

technical solutions to software factories.

 Historically the Department of Defense has turned to standardization and

consolidation as mechanisms by which to shape software acquisitions. While

standardization can reduce variance across programs, it works against network dynamics

and can have unintended impacts on innovation. The DoD’s choice to standardize around

Ada in the ’80s and ’90s provides a good example of this effect. In mandating Ada, the

DoD drifted from the commercial sector which continued to grow and innovate (Boehm

et al., 1997). As a response to this, DoD acquisitions policy shifted dramatically in the

90s and 00’s as decision-makers realized the importance of the commercial sector for

software acquisitions. To prevent a repetition of past mistakes and replicate commercial

practices, senior leaders should allow software factory networks to drive technical

decision-making.

 In addition to the historical lessons learned from standardization, mandates also

have impacts on inter-organizational dynamics. By mandating a specific technical

solution provider, the DoD reduces the autonomy and flexibility of its software factories.

The power within the greater network shifts from the software factories to the designated

51

platform provider. This shift in dynamics is exaggerated as software factories lose

control over internal financial assets that must now be utilized to implement the

mandated solution. Instead, the DoD should employ an ecosystem approach that

emphasizes the shared value of the platform relationship. Like networks, one of the

defining aspects of ecosystems is that of autonomy (Jacobides et al., 2018); organizations

choose to participate within the ecosystem due to mutual benefit. If organizations are not

currently choosing to adopt specific technical solutions, then the value proposition

between platform providers and network organizations should be revisited.

Recommendation #4

The Department of Defense should consider facilitating the software development

services of software factories through the use of a revolving fund structure.

 Our final recommendation, and most specific, is to consider establishing a new

DoD-level revolving fund for software services, which would provide the Department of

Defense with an alternative means of standardization, control, and accountability over

software factory network exchanges without relying on direct mandates. While there are

ongoing efforts to provide alternative acquisitions and funding mechanisms within the

DAS via the new Software Pathway (OUSD, 2020) and the BA-08 pilot (OSD, 2020),

these efforts are tailored towards traditional programs and do not necessarily fit the

network-centric structure favored by the software factories. Additionally, our

observations reveal that the software factories perform a service function within their

greater networks and do not act as traditional programs. While software factories

primarily develop software, this is often provided as a service. They also provide other

services such as consulting, design, training, and maintenance. Under 10 U.S. Code §,

52

2208 – the Department of Defense can require working-capital funds to “provide working

capital for such industrial-type activities, and such commercial type activities that provide

common services within or among departments”.3

Research into innovation centers such as Silicon Valley has revealed that financial

institutions play a critical role in transferring financial resources and enabling

organizations to innovate (Castilla et al., 2000; Cohen & Fields, 1999). Our research

shows that this role is largely absent in the existing factory ecosystem. Currently,

organizations must rely on third parties to act as financial brokers. This fractured and

informal banking function prevents the ecosystem from self-regulating because potential

customers have no way of assessing the financial reputation of the software factories. If

the software factory ecosystem is going to succeed, there must be a means to loudly

communicate poor performance to the greater ecosystem. Software factories must be

allowed to fail and a revolving fund could provide the necessary economic-based control

mechanisms.

 In establishing a separate fund for software services, the DoD can provide a

flexible funding mechanism for the software factories while also establishing accounting,

reporting, and auditing controls over software factory operations. The revolving fund

would also allow software activities to be tracked at the customer level instead of by

traditional cost per application, SLOC, or other historically ineffective metrics. This shift

would provide essential customer-centric data related to development costs, performance,

and customer satisfaction further enabling self-regulation. Additionally, the fund would

3 GSA’s 18F unit successfully utilizes its acquisitions services fund to provide developmental services

similar to those provided by software factories. Given these similarities, a model for effective revolving

fund implementation of technology and software already exists (18F: Digital Service Delivery , 2022).

53

provide improved accountability for the appropriation of funds. Finally, a revolving

fund would provide access to tangible economic-based metrics for software factory

performance. Those in the software development space will often state that the only

metric that matters is user satisfaction; a revolving fund would allow money to be used as

a measure of satisfaction. Customer metrics such as lifetime value (LTV), repeat

customer rate, and customer churn rate, as well as financial metrics such as overhead

costs, cash runway, and fully burdened developer costs, could all be tracked through the

use of a revolving fund structure.

Conclusion

 We have gone to great lengths in an attempt to educate the reader on the

foundational aspects of inter-organizational networks while simultaneously defining

software factories as networks. First, we provided a brief overview of the basic forms of

economic organization: hierarchy, markets, and networks. We then explored the

organizational structures of the non-traditional organizations formally known as software

factories and subsequently defined them as networks. Next, we performed an exploratory

analysis that assessed both the social and economic behaviors of these organizations

while also engaging the reader with a discussion on key network concepts. Finally, we

provided a set of broad strategic management recommendations that we believe will help

align the software factory ecosystem with existing departmental intent while also

avoiding past management failures.

 While there is a berth of existing literature on inter-organizational networks and

their management in both the public and private sectors, their applicability within

Department of Defense acquisitions programs is largely unexplored. Additionally, there

54

exists a shortfall in existing programmatic guidance as it relates to managing and

understanding programs in relation to their greater economic and social networks.

Strategically, defense acquisition guidance focuses on the internal structures and

behaviors of programs. If program managers are going to successfully manage network-

centric organizations then they must first have a means by which to assess and understand

the strategic “big-picture” aspects of their programs. Expanding the existing body of

defense acquisition knowledge to create and provide these assessment mechanisms as

well as educate practitioners on network structures should be a focus. Finally, metrics

specific to network-based organizations within the DoD should be explored as an

additional means to enable network self-governance and measure progress.

In February 2022, the Office of the Secretary of Defense formally acknowledged

the strategic importance of the growing software factory ecosystem in its DoD Software

Modernization Strategy (Hicks, 2022). This strategy outlined three primary goals

designed to shape the future of defense software development and enable JADC2:

accelerate the DoD enterprise cloud environment, establish the department-wide software

factory ecosystem, and transform processes to enable resilience and speed. In order to

accomplish this overarching modernization objective, the DoD must figure out how to

transform its organic software factories into a cohesive movement. The first and most

critical step in achieving that objective is understanding what currently exists at a

foundational level. This article is the first to address and drive the Department of

Defense toward that objective.

55

References

Arrow, K. (1975). The Limits of Organization. In The ANNALS of the American Academy

of Political and Social Science (Issue 1). Norton.

Benson, J. K. (1975). The Interorganizational Network as a Political Economy.

Administrative Science Quarterly, 20(2), 229. https://doi.org/10.2307/2391696

Boehm, B., Baker, T., Embry, W., Fox, J., Hilfinger, P., Holden, M., Moss, E., Royce,

W., Scherlis, W., Taft, T., Vaughn, R., & Wasserman, A. (1997). Ada and

Beyond: Software Policies for the Department of Defense. In Ada and Beyond.

National Academies Press. https://doi.org/10.17226/5463

Castilla, E. J., Hwang, H., Granovetter, E., & Granovetter, M. (2000). 11 Social

Networks in Silicon Valley. In The Silicon Valley Edge (pp. 218–247). Stanford

University Press. https://doi.org/10.1515/9781503619180-017

Cohen, S. S., & Fields, G. (1999). Social Capital and Capital Gains in Silicon Valley.

California Management Review, 41(2), 108–130.

Franke, U. (2017). Inter-Organizational Relations: Five Theoretical Approaches. In

Oxford Research Encyclopedia of International Studies. Oxford University Press.

https://doi.org/10.1093/acrefore/9780190846626.013.99

Gouldner, A. W. (1960). The norm of reciprocity: A preliminary statement. American

Sociological Review, 25, 161–178.

Granovetter, M. (1985). Economic Action and Social Structure: The Problem of

Embeddedness. Source: American Journal of Sociology, 91(3), 481–510.

https://doi.org/10.2307/2780199

Hansen, M., & Nesbit, R. (2000). Defense Science Board Task Force on Defense

Software. https://dsb.cto.mil/reports/2000s/ADA385923.pdf

Hicks, K. (2022). Department of Defense Software Modernization Strategy.

Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a theory of ecosystems.

Strategic Management Journal, 39(8), 2255–2276.

https://doi.org/10.1002/smj.2904

Keohane, R. O. (1986). Reciprocity in international relations. International Organization,

40(1), 1–27. https://doi.org/10.1017/S0020818300004458

Levine, S., & White, P. E. (1961). Exchange as a Conceptual Framework for the Study of

Interorganizational Relationships. Administrative Science Quarterly, 5(4), 583.

https://doi.org/10.2307/2390622

56

OSD. (2020). Budget Activity (BA) “BA-08”: Software and Digital Technology Pilot

Program. https://discover.dtic.mil/section-809-panel/,

OUSD. (2020). DOD INSTRUCTION 5000.87 OPERATION OF THE SOFTWARE

ACQUISITION PATHWAY. https://www.esd.whs.mil/DD/.

Powell, W., Staw, B., & Cummings, L. (1990). Neither Market Nor Hierarchy: Network

Forms of Organization. Research in Organizational Behavior, 12, 295–336.

Provan, K. G., & Kenis, P. (2008). Modes of network governance: Structure,

management, and effectiveness. Journal of Public Administration Research and

Theory, 18(2), 229–252. https://doi.org/10.1093/jopart/mum015

Provan, K. G., & Lemaire, R. (2012). Core Concepts and Key Ideas for Understanding

Public Sector Organizational Networks: Using Research to Inform Scholarship

and Practice. Public Administration Review. https://doi.org/10.2307/41687977

Ryan, Z. O., Reith, M. G., & Beach, P. M. (2022). Defining the DoD Software Factory: A

Network value Approach. Crosstalk.

https://community.apan.org/wg/crosstalk/m/documents/420788

Williamson, O. E. (1979). Transaction-Cost Economics: The Governance of Contractual

Relations. The Journal of Law and Economics, 22(2), 233–261.

https://doi.org/10.1086/466942

57

Summary

 This was the second of three manuscripts written for this thesis and it was the first

within departmental and academic literature to research and formally identify the

underlying structures of the software factories. This article, and the article presented in

Chapter Four, where briefed to the Department of Defense CIO and a joint audience at

the 5th Software Factory Working group where they garnered the attention of the

Department of the Air Force Chief Software Officer and the Department of Defense

Strategic Software Factory Working Group who recognized its innovative approach to

organizational definition. In addition to directly informing strategic decision makers

within the Department of Defense, this article also highlighted a gap in defense

acquisitions guidance and training as it related to the management and definition of non-

traditional software organizations. The output of this article, the network theory of

software factories, provided the community with an alternative perspective into how the

organizational structures of the software factories affected strategic management

decisions within the DoD.

 This article built upon the data analyzed during the first phase of research by

collecting additional data through a participant observational study of a sample software

factory and the software factory community. The use of a participant study was

necessary due to the closed nature of the software factory community. In addition to

enabling data access, this research approach provided two primary benefits. First, it

allowed for the observation of the relationships of a sample software factory and it also

provided insight into the social and economic behaviors of other organizations acting

within the ecosystem. Second, the data collected during the observational period

58

established a baseline of behavior prior to moving into the third phase of research, which

utilizes participant interviews to gather data. This mixed methods approach helped

control for interviewee bias and it increased the credibility of both data sets.

59

IV. Deconstructing the Software Factory: A Practical Application of Inter-

Organizational Network Analysis

Chapter Overview

 This chapter contains the final manuscript written for this thesis, Deconstructing

the Software Factory: A Practical Application of Inter-Organizational Network Analysis,

written by Ryan, Reith, and Koschnick. The first two articles primarily focused on

defining the software factories through their characteristics and through their structural

composition. In doing so, they highlighted how understanding organizational structure is

an important first step in the strategic management of non-traditional software

acquisitions programs. The third article in this collection expands upon the first two

phases of research by developing, describing, and demonstrating a practical inter-

organizational network analysis (ION-A) methodology that acquisitions practitioners can

employ to develop a big picture view of non-traditional network-based software

organizations like software factories.

Publication Details

 This article has been submitted for publication and is currently in peer review for

Defense Acquisitions Research Journal. It follows the case-history format prescribed in

DARJ publication guidelines and it has been stylistically modified from its submitted

format to align with the prescribed format of this thesis.

Abstract

Over the past five years, there has been an increase in the number of Department

of Defense (DoD) software organizations that employ non-traditional organizational

60

structures. These organizations, commonly referred to as software factories, often follow

structures found within commercial industries. This article demonstrates how network

analysis techniques can be used to develop and visualize a strategic, big picture view of

these non-traditional organizations. Drawing on methodologies employed by network

researchers, we develop and present an inter-organizational analysis (ION-A) process that

captures a program's social and economic structures. Following the case history

approach, we then demonstrate the applicability of this approach by analyzing an

emergent DoD software factory. Throughout the article, we discuss how network

principles and accessible analysis techniques can be applied to the real-world challenges

faced by modern, network-based DoD organizations. Finally, we conclude by presenting

the results of our analysis and a guiding framework that the acquisition community can

use to analyze non-traditional programs.

Two-sentence summary: This article shows how network analysis can be used to

understand and visualize the inter-organizational networks of non-traditional Department

of Defense (DoD) software organizations. It presents a network analysis technique that

captures economic and social relationships through the observation of exchanges and

applies it in a case history analysis of a DoD software factory.

Introduction

Program Managers (PMs) have at their disposal a variety of assessment and

tracking tools designed to provide actionable insights into the cost, schedule, and

performance of acquisition programs. Existing tools such as Earned Value Management,

Work-Breakdown Structures, and Technical Performance Measures (Driessnack, 2017)

61

provide valuable insight into the internal characteristics of acquisitions organizations

while also helping PMs monitor and control program dynamics. While these tools are

effective at providing oversight into specific aspects of program performance, they do not

provide direct insight into the social and economic interactions that shape the

organization’s overall structure. To understand this big picture, PMs must rely on

alternative information sources like organizational charts, employee interviews, and

established institutional knowledge.

 Understanding the people, processes, and program perspectives that compose the

strategic big picture of an acquisition program is central to the core responsibilities of the

program manager and the overall success of the program; the DoD has created and

published a myriad of tailored and accessible guidance available to PMs (DAU, 2022a,

2022b). While this guidance is applicable to the majority of defense programs, it does

make the underlying assumption that programs will follow the traditional structures

outlined within the Defense Acquisition System (DAS). When organizations fall outside

of these bounds, (e.g., some non-traditional software organizations), this guidance is less

applicable. From a systems viewpoint, abstractions used to represent organizational

structures (such as organizational charts or architectural models) may not be wholly

adequate when applied to non-traditional software organizations. This raises the

question: if existing guidance is not sufficient for non-traditional programs, how can the

program manager begin to understand their organization’s structure and subsequently

develop the strategic big-picture perspective? More simply stated:

How can program managers assess the inter-organizational structures of non-traditional

software organizations?

62

 In this article, we aim to address the challenge of understanding the structures of

non-traditional programs by proposing and demonstrating an analysis methodology

designed to capture and visualize inter-organizational networks. Specifically, we present

a tailored methodology derived from a multiplex, egocentric network analysis technique4

and demonstrate its utility by analyzing the social and economic structures of a non-

traditional DoD software factory. We conclude with a discussion on the implications of

our research, a list of strategic analysis questions, and the approach’s applicability to

other non-traditional defense programs.

Background

 DoD software factories often adopt inter-organizational structures more

commonly found in commercial industries. These structures influence the economic and

social relationships between organizations differently than those defined by traditional

acquisition program boundaries. As a result, non-traditional programs do not always

align with the established hierarchical structures outlined within the DAS. This case

history analyzes one such program, a non-traditional Department of the Air Force (DAF)

4 Multiplex, Egocentric Network Analysis: A multiplex network displays multiple types of relationships or

ties between organizations. Egocentric networks focus on a specific organization of interest, defined as the

ego (Perry et al., 2018). This differs from a socio-centric analysis approach which seeks to derive insights

into the whole network. Multiplexity is discussed in-depth in the analysis section of this article.

63

Software Factory, using a

process called inter-

organizational network

analysis (ION-A). This

background section introduces

the concept of inter-

organizational networks by

explaining how they are

related to familiar

organizational models. It then

describes their composition

and explains how inter-

organizational networks can

be used to visualize the

economic and social relationships of an organization. Finally, this section closes by

introducing the ION-A process as a method to characterize these relationships.

Visual models of inter-organizational structures allow acquisition practitioners to

easily draw on past experience and training to derive a baseline understanding of the

behaviors and dependencies of a target organization. To illustrate this effect, we break

down Figure 7, which depicts a common organizational structure composed of boxes and

lines representing entities and their relationships. Because the structure of boxes and

lines is easily recognizable and familiar to practitioners, the roles, motivations, and

influences of the depicted entities can be assumed even if not explicitly stated on the

Figure 6: Hierarchical organizational structure.

Departmental literature is primarily tailored toward

acquisition programs that follow formally defined

hierarchical structures. In this chart extracted from the

DAU Program Manager’s Toolbox (Driessnack, 2017),

financial resourcing is implicitly tied to the PEO and

MDA. Non-traditional programs, like software factories,

can exhibit alternative structures that do not align with

this framework. As a comparison, the PM of a traditional

program may request additional funding from formal

channels, while the PM of a software factory may seek

funding directly from customers or partner organizations.

64

diagram. Additionally, basic economic and social interactions between entities can be

inferred. Figure 7, in its simplicity, begins to frame the big picture of a program by

invoking a familiar structure by which to understand economic and social relationships.

However, when organizations do not follow these established patterns, the underlying

assumptions regarding the economic and social relationships inferred from the

hierarchical structure may no longer be valid. Therefore, additional steps should be taken

to deliberately characterize the behaviors and patterns of exchange that were previously

assumed or inferred.

The generic organizational structure depicted in Figure 7 can be characterized as

an abstract representation of the inter-organizational relationships of a program. If this

representation were expanded to represent all organizations that interact with the

program, it would in effect begin to

depict the program’s network. By

adding additional detail and

explicitly defining the lines to

represent relationships between the

entities, we can formally define the

resultant representation as the

program’s inter-organizational

network (Brass et al., 2004). An

inter-organizational network

encompasses a collection of related

organizations (called nodes), and

Figure 7: The Inter-Organizational Network

Analysis (ION-A) process. The 4-step Inter-

Organizational Network Analysis process can be

used to develop a "big picture" view of an

organization. ION-A focuses on understanding

the social and economic relationships of a target

program by visualizing exchanges of money,

goods& services, and information.

65

their relationships (called ties, links, or edges). These relationships, which can be

observed through exchanges5, can be further subset by type. Economic relationships can

be observed by identifying exchanges of money and goods & services. Social

relationships can be observed by identifying exchanges of information. When multiple

types of relationships are represented within an inter-organizational network, the network

is defined as multiplex. When viewed holistically, this collection of nodes and ties

provides a model of the organization’s economic and social structures that can be

analyzed.

Modeling and analyzing an organization’s inter-organizational network can be

accomplished by conducting an inter-organizational network analysis (ION-A). This 4-

step process, depicted in Figure 8, outlines how practitioners can deliberately capture and

visualize the inter-organizational networks of their programs; these networks can then be

analyzed using established network methods and by employing a deliberate assessment

approach designed to facilitate strategic critical thinking. The following sections further

define the ION-A process and demonstrate its application in a case history analysis of a

DAF software factory.

Situation

To demonstrate how the (ION-A) process can be utilized to better understand

non-traditional software programs, we embedded ourselves within a DAF software

factory that could not be easily characterized via the formally established structures

5 The utilization of the exchange as a way to measure organizational relations was initially proposed as a

method for studying inter-organizational behavior and relations in the early 60’s by Levine & White

(1961). Since its initial definition, the exchange has been broadly employed by researchers to measure both

social and economic transactions between both individuals and organizations (Wasserman & Faust, 1995).

66

outlined within the DAS. In preparation for this case history, and to develop a contextual

understanding of the organization’s patterns of behavior as well as establish trust, we

observed the daily stand-up meetings of the software factory leaders for three months.

This approach mimics the experience of someone new to the organization and shows that

practitioners do not need extensive experience within the program to conduct a

meaningful analysis.

 The software factory analyzed for this case history has existed for one year and it

does not have any formally defined military or civilian manpower requirements. Instead,

this organization is composed of participants from partnering organizations who have

volunteered to manage and grow the software factory. This software factory exists to

provide a specific niche of goods and services in the form of consulting services, design

services, educational outreach, application development, and systems development and

maintenance to external customers. Since the organization is in the early stages of

growth it relies heavily on organizations within its local network to supplement core

acquisitions functions such as contracting, finance, and legal services. This organization

also maintains autonomy and control over its assets and it has been formally recognized

by the AF CSO as a software factory. Programmatically, this software factory operates

outside of existing acquisition pathways and it does not have the compulsory reporting

requirements of a formal program. Collecting information on software factories was

challenging because many candidates were uneasy about sharing organizational

information. We addressed this concern by not attributing these results.

67

Analysis

This section describes in detail how to assess the social and economic

relationships of the software factory using the inter-organizational analysis process (ION-

A). Each step in the ION-A process is described and demonstrated using the software

factory as an example. There are a wide variety of network analysis methodologies

employed by academic researchers; however, many of these approaches can be

overwhelming to those without a network background. Considering this, the ION-A

process focuses on basic concepts that should be intuitive to many professionals and

applicable to most programs. Finally, this section summarizes the specific insights

gained into the software factory. We now begin the four-step ION-A process.

Step 1 – Scope Definition

Step 1 in the ION-A process is to define the scope of analysis. Begin by defining

the nodes and ties of the inter-organizational network. Nodes will encompass all

organizations that interact with the program and ties will represent relationships between

those organizations. When defining nodes, the specific boundaries of individual military

organizations will need to be considered based on the size and environmental context of

the program of interest. To maintain a strategic focus, military organizations were

aggregated and captured at the branch or squadron level in this analysis. Three types of

ties representing both economic and social relationships are defined using the exchange

variables: goods & services, finances, and information. A detailed definition of these

variables is included in Table 46.

6 The variables goods & services, financial, and information were selected based on the findings of recent

research into the structures of software factories (Ryan et al., 2022) and research on multiplex economic

networks (Maghssudipour et al., 2020).

68

Table 4: Network variables of exchange.

Step 2 – Data Collection

Step 2 in the ION-A process is to collect and organize data. Data collection is the most

challenging step of an ION-A but it can be broken down into two major efforts— the

identification of nodes and the identification of ties. Node identification begins with the

creation of a list containing all known organizations that the program has interacted with.

This initial list may be built from a variety of sources including internal websites,

existing documentation, or employee interviews. The list used to analyze the software

factory was built by identifying the organizations named within the software factory’s

internal knowledge management system, Confluence. Each organization was labeled

based on affiliation as government, industry, or working group before being organized in

69

a matrix format using excel. Figure 9 demonstrates how a matrix can be created,

organized, and interpreted.

 After creating a matrix, identify inter-organizational exchanges. It is unlikely that

a consolidated data source containing a comprehensive listing of exchanges currently

exists. With this in mind, we

recommend data be collected

through a series of semi-structured

interviews or brainstorming sessions

with experienced personnel using the

matrix as an aid.

 In this case history, a series

of video interviews were conducted

with software factory leadership to

identify inter-organizational

exchanges. The matrix served as a

guide and tool to document

individual exchanges. Each intersection within the matrix was reviewed and interviewees

were asked to provide information on exchanges between organizations. All exchanges

were assessed for directionality. The matrix was completed through four interviews and

responses were validated through a review of the video recordings. Inconsistent or

unclear responses were addressed in subsequent interviews. The final matrix was

comprised of 62 organizations and their exchanges.

Figure 8: An Example sociometric matrix. A

sociometric matrix can be used to capture exchanges

between organizations. Organizations identified in

the roster are organized in the first column and

duplicated in the first row. Exchanges between

these organizations are then noted within each

corresponding cell of the matrix. The matrix is

interpreted by reading “column A sends (Money,

information, goods & services) to Row 1. Example:

The software factory sends information and services

to organization D.

70

Once data is collected it must be converted to a network format for analysis. There are

several existing open-source network tools that may be used for this task. For this case

history, the finalized matrix was processed using the open-source network graphing

software Gephi (Bastian et al., 2009) and Cytoscape (Ideker, 2003). Step 2 is complete

once the data has been initially processed using the network graphing software. The

networks of the software factory are displayed in Figure 10. The composite network

(10a) is created by combining the three variables of exchange: informational (10b),

financial (10c), and goods & services (10d).

Figure 9: Composition of Software Factory networks. Four separate inter-

organizational networks were generated from the exchange variables finances, goods &

services, and information collected in step 2 of the ION-A. The software factory’s

composite network is comprised of government (69.3%), industry (25.8%), and working

groups (3.2%) totaling 62 organizations. These networks provide a visualization of the

economic and social structures of the program and they are analyzed in step 3 of the ION-

A process.

71

Step 3 – Network Analysis

Step 3 in the ION-A process is to analyze the inter-organizational network of the

software factory. In this stage, we focus on assessing four strategic areas: relationship

strength, organizational influence, patterns of exchange, and communities of interest. A

summarized assessment framework that includes these four areas of interest along with

assessment questions and common network indicators is presented in the conclusion in

Table 6. The remainder of this section addresses these areas individually. The first area

of analysis is relationship strength.

Identify the weakest and strongest relationships within the organization’s network.

 The analysis begins at the composite network level (4a) by assessing the strength

of relationships between nodes using the concept of multiplexity. The existence of

multiple types of ties (i.e., social and

economic) between entities is generally

believed to indicate greater strength and

durability of the relationship

(Granovetter, 1973; Perry et al., 2018).

Using this concept, a basic assessment of

strength can be determined by counting

the ties between nodes. More ties indicate

a stronger relationship while fewer ties

indicate a weaker relationship. Important

relationships can be identified manually or

network analysis software can be used to

Figure 10: Tie Strength. Tie strength for

the composite software factory network

was assessed using a multiplex approach.

Individual exchanges between nodes were

counted and summed to provide a relative

measure of exchange-relationship strength.

72

easily assess the entire network. Figure 11 illustrates how tie strength and durability can

be analyzed via multiplexity.

The network of the software factory is primarily composed of ties constituting medium

relative strength with only 6% of ties reaching the strongest threshold. These ties, which

represent shared, reciprocal relationships exist primarily between the software factory

and its partnering organizations. Notably, this tie pattern is also present between the

sample software factory and a government platform provider where a two-way exchange

of services occurs. The weakest ties within the software factory network are primarily

informational. A unidirectional reporting relationship is an example of a weak tie.

Assessing relationship strength provides useful insight into common

organizational interactions. Strong ties can be deliberately built by engaging in different

types of exchange. Weak links can be identified and deliberately strengthened as the

organization matures. Strategic social partnerships can be reinforced by engaging in

economic exchange. For example, the software factory provides software services at zero

cost to an organization that controls access to informational resources. This deliberate

action strengthens the software factory’s relationship with an influential organization.

This leads to the next area of analysis; organizational influence.

Identify the most influential organizations within the network. Consider both the social

and economic environments.

Most practitioners are familiar with the authoritative power structures that exist

within a traditional hierarchy. However, in situations where these structures are less

well-defined, an organization’s positional power can often play a greater role in its ability

to exert power and control over the program. Positional power structures can be

73

identified by analyzing centrally positioned organizations, critical resource flows, and

exchange brokers within the program’s inter-organizational network. By considering

these factors in conjunction with the program’s requirements, it is possible to identify

influential organizations.

To identify centrally positioned organizations we assessed the composite inter-

organizational network of the software factory for betweenness centrality- which is

represented on the network models using node size. Betweenness centrality measures

how often a node exists on the shortest path between nodes within the network in order to

identify nodes that have greater influence due to their positional embeddedness (Freeman,

1977). The two primary partner organizations of the software factory had the highest

centrality indicating their importance relative to other organizations in the network.

When assessing the economic network for centrality, (displayed in Figure 12a),

additional influential organizations can be identified.

74

Figure 11: The software factory economic network. The economic network of the

software factory is generated by combing the exchange variables finances and goods &

services. In addition to identifying centrally positioned organizations, three broker roles

were deemed notable within the Software Factory economic network: the representative,

the gatekeeper, and the itinerant. Tracking these brokers is an essential component of

identifying and controlling external program risks.

The economic network, which was generated from the finances and goods &

services exchange variables, provides valuable insight into the flow of resources between

organizations. One notable observation is that the flow of financial resources through the

network is varied; the software factory is funded by customer organizations as opposed to

a centralized source. In order to utilize these resources, the software factory relies on

multiple contract vehicles owned by other organizations within its network. The

organizations that manage and maintain these vehicles act as economic hubs. Because

75

they control the flow of resources from customers to the software factory, they have

positional power. Another observation is the flow of goods & services is largely centered

around and converges on the software factory with additional convergence occurring

around the organizations acting as brokers- which are organizations that help coordinate

exchange.

There are three primary broker roles within the software factory network

highlighted in Figure 12b: the representative, the gatekeeper, and the itinerant. These

roles are defined based on their affiliation and positioning within the network (Gould et

al., 1989). The representative broker exists when a government organization coordinates

a transaction from a government organization to an industry partner. One government

organization is representing another. This occurs when customers fund a contractor

through a third-party government organization. The gatekeeper role exists when a

government organization purchases services from a third party via a contractor

organization. The contractor exists as a gatekeeper between the third party and the

purchaser. Gatekeeping also occurs when an industry partner passes services to a

government organization which then passes services to a government customer. The

software factory is primarily acting as a gatekeeper. The final brokerage role, the

itinerant, occurs when an industry partner acts between two government organizations.

All itinerant brokerage relationships within the software factory network are managed via

formal contract vehicles. The influence of brokers must be considered in concert with

their organizational affiliation and the flow of resources through the network.

In situations where traditional hierarchical structures are not clearly defined,

identifying the organizations which hold the most influence over a program can be

76

challenging. However, ION-A can assist practitioners in this task by providing a visual

representation of the program’s inter-organizational relationships. By analyzing these

resultant models, we can assess centrality, identify resource flows, and identify broker

roles. This information can then be used to identify influential organizations. Next, we

will explore how identifying patterns of exchange can inform the big-picture perspective

of a program and assist in decision-making.

Identify common patterns of exchange.

At this point in the ION-A process, important organizations and their relationships

within the program’s network have been identified and considered with the assistance of

network-based measures such as multiplexity and centrality. Conversely, identifying

patterns of exchange requires a more nuanced analysis approach. Begin by focusing on

the identification of the exchange patterns required to complete known inter-

organizational transactions. Since the relative importance of specific transactions will be

dependent on the specific program, consider the program’s mission statement, its

organizational objectives, and its core functions to assist in identification. We focused

our analysis on the transactions that occur between the software factory and its customers

due to their frequency and relative importance to the program’s strategy.

77

Figure 13 illustrates the

exchanges required to execute a typical

transaction between a customer

organization and the software factory.

In addition to the primary exchanges,

there is a secondary set of service

exchanges representing the support

functions such as contracting, finance,

and legal services required to execute

funds. Since the software factory does

not maintain these functions organically,

it must engage the help of external

organizations. These exchanges, which

must be repeatedly coordinated by

factory personnel, represent a hidden

cost of the transaction that would be missed using other analysis methodologies.

After the transactions of interest have been analyzed, it may be beneficial to

assess the network models holistically to investigate areas of activity that appear unusual

or out of place. Engage with experienced members of the organization and ask clarifying

questions when the reasoning behind an exchange pattern is unknown using the network

model as a visual guide. Finally, consider how patterns of exchange can be simplified to

reduce the overall cost of individual transactions. Step 3 of the ION-A process concludes

with an assessment of the communities within the inter-organizational network.

Figure 12: A typical factory-customer

transaction. Four primary exchanges must

occur to complete a transaction between the

software factory and a customer. First, the

customer sends money to a third-party

organization that maintains an existing contract

vehicle. Second, money is sent to the

contractor via the vehicle. Third, the contractor

provides services to the software factory.

Finally, the software factory provides services

to the customer organization. The software

factory orchestrates every step of the

transaction through its social connections.

78

Identify clusters of organizations or communities of interest.

Identifying communities within the program’s inter-organizational network

allows practitioners to understand and navigate the complex relationships and

interdependencies that exist between organizational subgroups. Community detection

algorithms can be used to quickly identify these communities. We applied a hierarchical

community detection algorithm (Pons & Latapy, 2005) to the software factory network;

seven distinct communities of interest were highlighted (see Figure 14). The largest

communities roughly aligned with the parent commands of the two partner organizations,

activity associated with a local “innovation group”, and a community of organizations

associated with an industry partner acting under a Partnership Intermediary Agreement

(PIA). The algorithm also highlighted three additional smaller communities: two of

these communities can loosely be categorized as subgroups of Partner B; and one

highlights a “gatekeeper” brokerage pattern between an industry partner and a cloud

vendor.

79

Figure 13: Community detection in software factory networks. A random walk

community detection algorithm was utilized to identify communities of interest within

the composite software factory network. Community detection algorithms identify sub-

groups within a community by measuring connections between nodes. When applied to

our network, 7 separate clusters were identified. While many clusters were easily

attributable to known communities, others provided additional insight by highlighting

previously unknown subgroups.

When applied to the software factory network, the community detection algorithm

accurately identified known communities indicating its validity as an assessment tool.

Additionally, its identification of smaller subgroups within the software factory network

provided an alternative perspective on sub-group dynamics. By identifying communities

of interest early in the program lifecycle, the program manager can plan the growth of the

organization to align with community needs.

This completes the analysis step of the ION-A process. This step utilized the

network models created in step 2 to identify influential organizations, organizational

80

relationships, common patterns of exchange, and communities of interest within a non-

traditional program’s inter-organizational network. This information, can provide the

program manager with a foundational understanding of the inter-organizational dynamics

of their program and can then be used to establish an informed big picture perspective.

Step 4 – Monitor and Review

Step 4 in the ION-A process is to periodically monitor and review the inter-

organizational network. After completing an ION-A the program manager should

regularly revisit the network as new contextual information becomes available. Networks

by nature are temporal and previous assessments will become outdated if not maintained.

Revisiting or even updating the network on a recurring basis will continue to provide

value by providing a measurable visualization of organizational evolution and growth.

Assessing a program’s inter-organizational network provides useful insight into

organizational interactions and behaviors. Identifying influential organizations and

relationships can be used to inform stakeholder management plan development and to

assist in the prioritization of future organizational interactions. Assessing patterns of

exchange can help identify dependencies regarding economic or social resources and

mitigation strategies can be proactively developed in accordance with existing risk

management best practices. Community identification can provide insight into social

dynamics and it can help identify previously unknown communities of interest. In

summary, the ION-A process can provide acquisition practitioners with a strategic

perspective of the social and economic relationships of their programs. This section

demonstrated this by presenting a case history of a non-traditional software program.

81

Table 5 summarizes the most relevant outputs and strategic insights from the ION-A

process.

Conclusion

 This article began by pointing out that existing guidance for acquisition programs

is tailored towards organizations with traditional hierarchical structures; thus it may not

be sufficient for assessing non-traditional programs. This led to the formulation of a

research question designed to address this gap in understanding:

Table 5: Software factory inter-organizational network analysis results. The ION-

A process provides practitioners with a method to assess the social and economic

relationships of their programs. This case history assessed an existing DAF software

factory in four key areas: organizational influence, relationship strength, patterns of

exchange, and communities of interest. Strategic insights, organizational risks, and

potential opportunities tailored towards the specific needs of this non-traditional software

factory organization are derived from the ION-A process.

Table 6: Software factory inter-organizational network analysis results. The ION-

A process provides practitioners with a method to assess the social and economic

relationships of their programs. This case history assessed an existing DAF software

factory in four key areas: organizational influence, relationship strength, patterns of

exchange, and communities of interest. Strategic insights, organizational risks, and

potential opportunities tailored towards the specific needs of this non-traditional software

factory organization are derived from the ION-A process.

Table 7: Software factory inter-organizational network analysis results. The ION-

A process provides practitioners with a method to assess the social and economic

relationships of their programs. This case history assessed an existing DAF software

factory in four key areas: organizational influence, relationship strength, patterns of

exchange, and communities of interest. Strategic insights, organizational risks, and

potential opportunities tailored towards the specific needs of this non-traditional software

factory organization are derived from the ION-A process.

Table 8: Software factory inter-organizational network analysis results. The ION-

A process provides practitioners with a method to assess the social and economic

relationships of their programs. This case history assessed an existing DAF software

factory in four key areas: organizational influence, relationship strength, patterns of

exchange, and communities of interest. Strategic insights, organizational risks, and

potential opportunities tailored towards the specific needs of this non-traditional software

factory organization are derived from the ION-A process.

82

How can program managers assess the inter-organizational structures of non-traditional

software organizations?

 To answer the research question, we applied a process called inter-organizational

network analysis (ION-A) to demonstrate its effectiveness using the case history method

on a non-traditional Department of the Air Force (DAF) software factory. The ION-A

process, which is derived from the network analysis principles of multiplexity and

egocentricity, has been simplified for practicality yet it still provides a technically sound

foundation for practitioners to analyze and understand the organizational structures of

their programs.

 The ION-A process describes how practitioners can collect and organize network-

centric program data that can be used to model the social and economic relationships of

their programs. It also recommends common data sources, describes accessible data

collection techniques, and identifies open-source software programs that can be used to

create an inter-organizational network from the collected data. The ION-A process

continues by guiding practitioners through an analysis of four focus areas of inter-

organizational networks using a framework of contextual assessments. Table 6 includes

a summary of this framework which addresses these four focus areas, provides initial

assessment questions, and identifies a collection of relevant analysis techniques and

network models that can be used in the analysis.

83

Table 9: A framework for conducting the ION-A process. The ION-A process guides

practitioners through an assessment of the inter-organizational network of their programs.

The analysis framework used in step 3 of ION-A focuses on four primary areas of interest

in order to provide a foundational understanding of program dynamics. Questions

designed to guide the assessment are provided along with relevant network-based

indicators.

In addition to developing and demonstrating a new assessment approach, the case

history also provided an in-depth look into the underlying mechanisms that drive non-

traditional software factories. Additionally, many of the network-derived attributes

highlighted in our assessment can be explained using established academic literature.

Strategic network management is a rapidly maturing field that has expanded beyond

academia and is currently being applied by industry practitioners to provide new insights

into organizational behaviors (Cross & Gray, 2021; McDowell et al., 2022). As open-

84

source graphing applications (such as those used in our analysis) continue to evolve and

become more accessible, the ability of practitioners to apply network analysis to gain

insight into their own organizations will continue to increase. The cultivation and

management of inter-organizational partnerships and stakeholder relationships is a

critical component of any program. The application of network assessment techniques

like those demonstrated in this article allows practitioners to better understand these

relationships early in the program lifecycle.

This article contributed to both the Department of Defense and academia by

demonstrating a new and intuitive approach to organizational analysis while also

providing an in-depth look into an emergent acquisition organization the software

factory. This case history provided insight into the structure and relationships of an

organization prior to a formal entry into the acquisition system. Identifying alternative

analysis methods for such organizations is important since this early period is largely

undocumented and thus a possible source of confusion for many acquisition

professionals.

In conclusion, the inter-organizational network analysis (ION-A) process was

demonstrated as a valuable assessment tool for acquisition practitioners seeking to

understand the complex structures and interactions within non-traditional software

organizations. By providing a deeper understanding of inter-organizational structures

and behaviors, network analysis methods can help inform decision-making and improve

the success of non-traditional defense acquisition programs.

85

References

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for

exploring and manipulating networks. International AAAI Conference on Weblogs

and Social Media. https://gephi.org/users/publications/

Blau, P. M. (2017). Exchange and power in social life. Exchange and Power in Social

Life, 1–352. https://doi.org/10.4324/9780203792643/EXCHANGE-POWER-

SOCIAL-LIFE-PETER-BLAU

Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. (2004). TAKING STOCK OF

NETWORKS AND ORGANIZATIONS: A MULTILEVEL PERSPECTIVE.

Academy of Management Journal, 47(6), 795–817.

Cook, K. S. (1977). Exchange and Power in Networks of Interorganizational Relations.

The Sociological Quarterly, 18(1), 62–82. https://doi.org/10.1111/j.1533-

8525.1977.tb02162.x

Cross, R., & Gray, P. (2021). Optimizing Return-to-Office Strategies With

Organizational Network Analysis. MIT Sloan Management Review.

https://sloanreview.mit.edu/article/optimizing-return-to-office-strategies-with-

organizational-network-analysis/

DAU. (2022a). A Guide to DoD Program Management Business Processes.

https://www.dau.edu/pdfviewer?Guidebooks/DAG/A-Guide-to-DoD-Program-

Management-Business-Processes.pdf

DAU. (2022b). A Guide to Program Management Knowledge, Skills and Practices.

https://www.dau.edu/pdfviewer?Guidebooks/DAG/A-Guide-to-Program-

Management-Knowledge-Skills-and-Practices.pdf

Driessnack, J. (2017). Program Manager Toolkit.

https://www.dau.edu/tools/Lists/DAUTools/Attachments/143/Program%20Manag

er%20Toolkit.pdf

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness.

Sociometry, 40(1), 35. https://doi.org/10.2307/3033543

Gould, R. v, Fernandez, R. M., & Fernandezt, R. M. (1989). Structures of Mediation: A

Formal Approach to Brokerage in Transaction Networks. Source: Sociological

Methodology, 19, 89–126.

Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology,

78(6), 1360–1380. https://doi.org/10.1086/225469

Ideker, T. (2003). Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

86

Levine, S., & White, P. E. (1961). Exchange as a Conceptual Framework for the Study of

Interorganizational Relationships. Administrative Science Quarterly, 5(4), 583.

https://doi.org/10.2307/2390622

Maghssudipour, A., Lazzeretti, L., & Capone, F. (2020). The role of multiple ties in

knowledge networks: Complementarity in the Montefalco wine cluster. Industrial

Marketing Management, 90, 667–678.

https://doi.org/10.1016/j.indmarman.2020.03.021

McDowell, T., Horn, H., & Witkowski, D. (2022). Organizational Network Analysis

Gain insight, drive smart. https://www2.deloitte.com/us/en/pages/human-

capital/articles/organizational-network-analysis.html

Perry, B. L., Pescosolido, B. A., & Borgatti, S. P. (2018). Egocentric Network Analysis.

Cambridge University Press. https://doi.org/10.1017/9781316443255

Pons, P., & Latapy, M. (2005). Computing communities in large networks using random

walks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 3733 LNCS, 284–

293. https://doi.org/10.1007/11569596_31/COVER

Ryan, Z. O., Reith, M. G., & Beach, P. M. (2022). Defining the DoD Software Factory: A

Network value Approach. Crosstalk.

https://community.apan.org/wg/crosstalk/m/documents/420788

Wasserman, S., & Faust, K. (1995). Social Network Analysis: Methods and Applications.

Cambridge University Press.

87

Summary

This manuscript was the third and final written for this thesis. Its primary goal

was to provide an assessment methodology that acquisitions practitioners can use to

understand the dynamics of non-traditional defense programs in light of their non-

hierarchical forms. In parallel, the article also described and demonstrated how a

multiplex, ego-centric network analysis approach could be used to study a department of

defense software factory, focusing on its economic and social environments. Within the

analysis, the article also highlighted fundamental concepts of networks and it discussed

how these concepts could be applied by program managers to garner insight into the

strategic big picture perspectives of their programs.

This article primarily focused on the Inter-Organizational Network Analysis

(ION-A) process which was derived from the network analysis techniques employed in

the case study. While this is a notable contribution, the data generated from the case

study also further reinforced the network theory of software factories developed during

the second phase of research. In doing so, this article continued to push the ball forward

within the field of defense acquisitions by building upon the findings of the first two

articles and providing a new methodology for understanding the complex social and

economic relationships that influence the success of non-traditional acquisitions

programs.

88

V. Conclusions and Recommendations

This chapter summarizes the results of the three research phases conducted in

support of this thesis and it discusses how the credibility and relevance of these results

are strengthened when viewed in accordance with the principles of the mixed methods

methodology that was used to guide the overarching research process. It begins by

addressing each article individually before discussing how when viewed holistically, the

composite results directly address the overarching exploratory theme of the thesis. Next,

this chapter discusses the limitations of this research before recommending additional

areas of further study. Finally, this chapter concludes by highlighting how the research

contained within this thesis contributed to both the Department of Defense (DoD) and

academia by establishing the initial foundation of knowledge necessary to guide future

software factory research and strategic growth.

Summary of Research Phases

This thesis employed a mixed methods research methodology which broke down

the overarching objective of this thesis, to expand the DoD’s knowledge of the Software

Factory Ecosystem, into three sequential phases: Understand, Define, and Describe. This

section summarizes the results of the research phases.

Understand the characteristics of software factories.

Primary Research Question: What are the defining characteristics of software factories?

The first phase of research established a baseline understanding of the software

factories by employing a narrative research process to assess the current state of the

software factory ecosystem. The research began with the development of a working

89

theory that software factories shared internal organizational characteristics. This phase

then utilized primary research data collected from multiple sources to include interviews

and internal software factory documentation in an attempt to identify commonalities

between software factory organizations. Contrary to the working theory, the findings of

the first phase of research revealed that software factories cannot be solely defined by

their internal characteristics. Nonetheless, the phase still addressed the first primary

research question by capturing a range of common characteristics of software factories

and it presented them to the community in an accessible framework.

Define the software factories.

Primary Research Question: What are the organizational structures of the software

factories?

The second phase of research looked beyond the internal characteristics of

software factories and instead it attempted to define them based on their underlying

organizational structures. Building on the previous stage and continuing through the

inductive-deductive reasoning cycle, a new working theory was developed. This second

theory, that software factories shared non-traditional organizational structures, was

developed based on data collected in the first phase of research and from data collected

from an in-depth review of historical strategic software acquisition documentation. A

participant observational analysis was then conducted; the researcher embedded

themselves within the software factory community and a sample software factory and its

interactions with various software factory working groups was observed. Additionally,

previously collected documentation was reassessed against the findings of the analysis.

90

The findings of the participant observation and the review of previously collected data

indicated that software factories exhibited structural characteristics that align closely with

the network structure defined by Powell et al.’s (1990) market-network-hierarchy

continuum of organizational structures. While this phase did not produce a traditional

software factory definition, it did present the network theory of software factories which

effectively defined the software factories as economic networks based on their

organizational structures.

Describe the software factories.

Primary Research Question: How can acquisition practitioners analyze non-traditional

organizations like software factories?

The third phase of research studied the inter-organizational networks of a sample

software factory using the case study approach. Building upon the network-based theory

of software factories developed in the second phase of research, economic and social

behaviors were captured through a series of semi-structured interviews with software

factory leaders in order to better understand the software factory’s relationships. A

multiplex, egocentric network analysis approach was employed to capture these

behaviors due to its relevance to the network organizational structure identified in the

second phase and due to its accessibility as a metaphorical tool. The data collected from

this phase was then analyzed and compared against the results derived from the

participant observational study conducted in Phase 2. The results from the research phase

were presented to the software factory of interest which deemed them both credible and

relevant.

91

To address the primary research question, the multiplex, egocentric network

process used within the case study was tailored for repeatability and accessibility. The

finalized process, which was specifically developed for use by acquisition practitioners,

was then presented to the acquisition community as the Inter-Organizational Network

Analysis (ION-A) process.

Methodological Insights & Study Limitations

 The first two manuscripts discussed in this thesis employed purely qualitative

methods in their analysis: narrative research and participant observation. These

manuscripts primarily utilized interviews, observations, and literature reviews to establish

a foundational understanding of the software factories. For example, the senior leader

and software factory founder interviews referenced in the first article helped establish the

internal context of the software factories by focusing on the experiences and knowledge

of the interviewees. The approach used in the second article was similar, additional

observations and community interactions were used to supplement the data collected

during the first phase; however, the intent of the research phase differed. Instead of

seeking only to understand the software factories, its intent was to identify a unifying

definition or theory that could describe the greater software factory phenomenon. The

third article also employed a qualitative approach, a case study, and augmented it using

quantitative network data to measure the relationships and centrality of organizations

within the software factory’s inter-organizational network.

 When viewed holistically, the three manuscripts each address the overarching

research objective by approaching the software factory ecosystem from different

methodological perspectives. This approach reinforces the trustworthiness of the

92

research. Demonstrating this, the network-based theory presented in article two is

reinforced by the results of the first and second articles. Simply put, the characteristics

identified in the first article support a network theory of software factories and the

network models generated within the third article illustrate how the studied organization

maintains a network-based structure. This effect is called triangulation and it supports

the credibility and inference quality of the combined works (Tashakkori & Teddlie,

2009).

In addition to triangulation, the credibility of the research stream was supported

through persistent observation and community engagement. Observation of the software

factory community began early in the research cycle with the combined observation

window expanding 12 months of study. This extended duration ensured that multiple

perspectives were captured during the research cycles. In totality, the combined research

contains perspectives and insights from many viewpoints to include senior leaders,

software factory founders, directors, engineers, and mid-level managers. The outputs

from the three phases of research were presented to the community of study to solicit

feedback and assess the inference quality of the works. Feedback from the community

being studied was largely positive which added weight to the credibility of the

conclusions.

 The mixed methods approach offers notable benefits in terms of credibility and

quality, yet this thesis is not without limitations. One limitation is associated with the

scope of this research. Although various perspectives from the software factory

community were gathered, the number of participants from an organizational perspective

is limited. The software factory community is vast; 18 organizations are listed on the AF

93

CSO’s website and a significant number of software factories remain unidentified or

belong to sister services. Considering this, additional research that encompasses a

diverse set of organizations should be conducted to improve the transferability of this

thesis’s results.

The limitations of this research also extend to the methods used to collect data on

organizational behaviors. The first challenge was accessing relevant data. The software

factory ecosystem is a closed community and gaining access to organizational

information was very challenging. Because of this, an interactive observational approach

was necessary to develop trust within the community. This is especially evident during

the second phase of research. The second limitation is related to the Hawthorne Effect,

or the tendency for individuals to modify their behavior when they are observed (Adair,

1984). Because of the inherently social nature of the topics addressed within this thesis,

it must be assumed that the data provided by the software factories and interviewees is

biased based on their perspectives, organizational goals, and opinions. While this thesis

tried to account for this bias through active engagement, bias that extends throughout the

community must be assumed to exist. The software factory ecosystem is in the early

stages of growth and thus, it is in the community’s best interest to maintain a positive

outward appearance. Finally, this thesis was limited by the lack of metrics on software

factory performance. Without internal metrics, it is impossible to associate

organizational effectiveness with the results in this study. Instead, this study can only

identify the existence of organizational characteristics; this inherently limits the

operational applicability of these results until internal performance metrics can be

developed.

94

Recommendations for Future Research

 Exciting opportunities exist to expand upon the theoretical foundation and the

network-based analytical approaches established within this thesis. The first opportunity

is to expand network data collection to other organizations within the software factory

ecosystem. Assessing the inter-organizational networks of the more established and

mature organizations like DoD’s Platform One or Kessel Run would provide interesting

insights into the relationships that drive the greater ecosystem. Assessing multiple

organizations could also provide insight into the attributes of the organizations in the

software factories networks and this would help strengthen or weaken the network-based

theory presented within this thesis. Alternatively, assessing the social networks of the

individual participants acting within the ecosystem could also provide new insights and

an alternative perspective.

 A second opportunity for future research lies within the socio-economic field.

Article three of this thesis discussed structural dependency and power within software

factory networks however, non-structural dependency between organizations can also be

measured. Understanding the dependency relations between the software factories and

their industry partners would provide actionable information to inform the structuring of

future programs which closely interact with industry to co-develop materiel solutions.

 Finally, and arguably the most relevant extension to this research is expanding it

to include the development of an ecosystem architecture to guide future organizational

growth. While this thesis was able to identify many of the core characteristics of the

software factory ecosystem, it was unable to develop a formal model based on its

findings. Model-based systems engineering techniques could be utilized to develop and

95

present a useful ecosystem framework that could be used by decision makers within the

DoD.

Significance of Research & Conclusion

The three manuscripts included within this thesis each individually contributed to

the Department of Defense and to academia. The initial article, Defining the DoD

Software Factory, was the first to formally study the internal organizational

characteristics of the software factories and subsequently capture those characteristics in

a formal framework. The second article, Hierarchy, Networks, and Software Factories,

built upon the first by presenting an alternative theoretical perspective by which to view

and define the software factory ecosystem. This article was the first to identify the

disconnect that exists between the DoD’s hierarchical management strategies historically

used to manage software programs and the network-centric structures of the software

factories. The manuscript assessed this dichotomy and it recognized that the

organizational structures of software factories fundamentally differ from traditional

defense programs. The resultant output of the article was a structural theory of software

factories which formally identified and defined these organizations as economic

networks. The third and final article, Deconstructing the Software Factory,

acknowledged that the non-traditional characteristics and structures of the software

factories that were identified within the first two manuscripts had left the acquisitions

community without an accessible methodology to analyze and understand these

organizations. It developed, demonstrated, and presented an assessment framework

grounded in network analysis techniques which was specifically tailored towards

acquisition practitioners seeking to understanding non-traditional software organizations.

96

The resultant output, the Inter-Organizational Network Analysis (ION-A) process,

provides practitioners with a practical and repeatable method of analysis by which they

can assess their own programs.

The theories, inferences, and outputs of the research phases included within this

thesis were presented to and were well received by leaders within the DoD and the joint

software factory community. In addition to the tangible contributions of the three

individual manuscripts, this thesis’ emphasis on active community engagement also

helped shape widespread discussions and explorations into the fundamental

characteristics of the software factory and it directly influenced existing department level

ecosystem architectures and factory definitions. As a direct consequence of the active,

engaged, and iterative approach used to develop and refine the theoretical propositions

employed within this thesis, heuristic value was continuously provided to the DoD’s

Software Factory community. In short, while the tangible contributions of the included

manuscripts have provided demonstrable value to the Department of Defense, the

intangible benefits associated with the ongoing community discussions, questions, and

new perspectives that arose from the holistic process should be emphasized as the

hallmark benefit and contribution of this research.

97

Appendix A —The Historical Evolution of DoD Software Acquisitions

Understanding the historical evolution of Department of Defense (DoD) software

development programs and by extension, the software factory, played a critical role in

informing the direction and development of this thesis. This appendix captures the

extensive historical review that was conducted in support of this thesis starting with the

formal introduction of the factory concept in a journal article that described development

processes at the System Lifecycle Development Corp (Bratman & Court, 1975). Next,

the discussion progresses by identifying important software challenges within the DoD,

through the use of primary government source documents from the early 1970’s through

2020’s that organizational constructs like software factories have been intended to solve.

Finally, this appendix concludes by discussing the ongoing software development efforts

that were outlined in the introductory chapter of this thesis by illustrating how the growth

of organizations like the modern software factories represents a fundamental break from

the organizational constructs and strategic approaches employed by the DoD in the past.

Upon concluding this appendix, the reader will understand historical challenges

associated with DoD software acquisitions and how the DoD has repeatedly employed

various organizational constructs and strategies in an attempt to solve those problems.

The Software Factory – (1960 – 2022)

The software factory and subsequently its definition has shifted in focus over time

varying in meaning since its initial conception. Two threads exist in academic literature,

starting in the late ‘60s which refer to the factory as both a specific type of organizational

structure and to the automation and tools necessary to improve software quality and the

efficiency of developers (Cusumano, 1991). The software factory thus exists and is

98

referred to as two separate states throughout literature- the software factory as an

organizational construct and the software factory as a technical capability delivery

mechanism.

Multiple examples of what would be considered software factory-type

organizations being deployed within the defense and software industries dating back to

the mid ’70s. Cusumano in his in-depth overview of the history of the Software Factory

construct identified multiple early attempts to utilize a factory-based concept to develop

software both in Japan and the United States, with varying degrees of success

(Cusumano, 1989). His findings, captured through a series of publications, illustrate that

many of these early examples such as Hitachi Software Works and System Development

Corp (SDC), whose work was intertwined with multiple Department of Defense projects

at the time, worked to perfect a centralized factory model that allowed it to consolidate

the often-limited technological workforce into a single location while providing them

with all the tools, processes, and functions necessary to develop and deliver software.

Cusumano highlights through his series of articles, how in addition to ultimately

failing to solve some of the most prevalent challenges with software development, the

early software factories all encountered difficulties and challenges associated with their

management and growth. For example, the software factory model demanded a long-

term commitment of resources due to the management and systems engineering resources

required to make them function. Additionally, their scale complicated requirements

definition, and due to process and toolchain limitations, they demanded a narrow scope in

order to function efficiently. Due to these challenges, and with advances in development

technologies, the formal software factory eventually fell out of favor as industry within

99

the United States moved away from the centralized model to more customer-centric

development practices. Academic research on software factories as an organizational

construct largely falls off in the mid-1990’s in response.

Within the last 5 years the software factory term has seen a resurgence within

departmental documentation by illustrating the software factory as a developmental

construct. The 2018 DIB report, introduced in Chapter 1 of this thesis, mentions the term

software factory 9 times – primarily referring to the software factory as a technical

development mechanism. The CIOs DevSecOps playbook (Department of Defense,

2021) also refers to the software factory as a development mechanism referencing it as a

critical component in developing software; the CSO’s website does however also

acknowledge and promote the factory utilizing an organizational definition through its

“Software factories” registration and designation (Assistant Secretary of Acquisition &

Air Force Chief Software Office, 2021). Interestingly, this interpretation and change in

definition from technical to organizational also occurred in early factory implementations

as SDC documentation defined the software factory not as the organization it would

eventually become but as “an integrated set of software development tools to support a

disciplined and repeatable approach to software development” (Bratman & Court, 1975).

The software factory examples of the ’70s, ‘80s, and early ’90s offer important

insights into some of the challenges that the Department of Defense has grappled with

during the past 50 years. Some of the problems that the original factories were meant to

solve such as standardization and control over the development process, difficulty with

design and requirements specification, technical standardization, limited reuse, and

strategic management of assets have been issues that the Department of Defense has

100

historically struggled to resolve. These problems are systemic in nature and are

repeatedly reflected in various departmental reports and memorandums. The following

sub-section highlights key examples of these ongoing challenges.

DoD Systemic Software-centric Challenges - (1970 – 2022)

The DoD has struggled to resolve the same core systemic issues since it first

began procuring and acquiring software type solutions via major acquisitions programs in

the 1950’s. During software’s infancy, the ‘50s-’60s era largely saw software transition

from a hardware-centric mindset to the rapid expansion into a field of study of its own

(Boehm, 2006). It is during the 1970’s, however where software systems development

saw an explosion of growth and the core challenges associated with its activity became

readily apparent within literature. While many challenges can be loosely categorized as

specific to the era in which they were identified, some are more broadly applicable to the

larger study of military software acquisitions. Broadly speaking, four recurring themes

with direct relevance to the DoD’s historical management of its software enterprise were

identified in this review. Debate and opinions on how best to resolve these core

challenges have varied over the past 70 years; however, the issues have largely remained

unchanged. This section reviews departmental documentation in order to identify policy,

recommendations, and management challenges inherently linked to these recurring

themes (see Table 7) while simultaneously illustrating their historical significance.

101

Table 10: Historical DoD software themes.

Department of Defense Systemic Software Challenges & Issues

Disconnects between the DAS and software development best-practices.

Standardization of systems, software, tools, and methodologies.

Strategic management and growth of the DoD software workforce.

Measuring and controlling cost, schedule, and performance of DoD software programs.

 Studies into software acquisitions and development within the DoD began in the

1970’s with reports for how best to approach challenges relevant to software coming out

of both the department and academia. Early research into the field identified core issues

or focus areas that would continue to remain at the forefront of the software acquisitions

debate for the next 60 years. Thematic challenges include the existence of disconnects

between DAS policies and software development practices to include: requirements

management and program flexibility; how and or if to standardize tools, solutions, and

methodologies; how best to strategically manage software personnel; and how to manage

and control cost, schedule, and performance measures for DoD programs (McMillan et

al., 1977; Delauer et al., 1974; Keller, 1977; Buchsbaum, 1978;, Gansler, 1975).

 Recommendations on how to tackle challenges associated with maintaining

flexibility within the Defense Acquisitions System (DAS) vary and are addressed through

different avenues in the ‘70s. Early reports such as the Report of the Task Force on

Electronics Management, recommend working within the DAS by identifying alternative

means to meet requirements early in the acquisitions cycle. Other recommendations

propose what can be considered relatively modern approaches such as encouraging

incremental delivery strategies for software and suggesting wholesale modification or

102

exclusion of the DAS to allow for increased adaptability of requirements by software

systems (Buchsbaum, 1978; Walden et al., 1978). These recommendations were at odds

with DoD software development policies at the time which favored the highly structured

waterfall model (Boehm, 2006). The literature does not offer a universally accepted

solution for how best to develop software within departmental constraints. However, a

general consensus exists on the numerous disconnects between how software is procured

and developed and how the DoD formally directs the execution of those programs

through the DAS.

 Discussions and debates related to the standardization of software development

tools, software systems solutions, and development methodologies have also been

ongoing since the DoD began procuring software. While the majority of the 1970’s

reports arrive at the general consensus that standardization as related to procurement

could potentially reduce cost, how best to implement standardization and at what level is

appropriate remained debated. For example, broad system standardization is identified as

“in conflict” with DoD policy in the 1974 Electronics Management report, yet the same

report also suggests that there could be “substantial positive impact” if an appropriate

standardization program can be conceived. The discussion around standardization also

extends into development methodologies and development languages with a 1978

scientific advisory board report recommending “freezing” the methodology used by

programs as a standardization solution (Walden et al., 1978); on the other hand, a 1977

report by the Air Force Studies Board recommended continued research and growth into

design methodologies. Finally, numerous GAO reports identify how the DoD’s own

103

policies and guidelines have hampered the standardization of data and code elements to

the detriment of programs (Keller, 1977).

The debate around the benefits of standardization, and the emphasis on its

importance as a primary focus area can be highlighted in a GAO report to the SECDEF

titled The Department of Defense’s c for Military Computers – A More Unified Effort is

Needed (Gutmann, 1980). This report advocates for broad standardization across the

departments to include systems, architectures, and management frameworks. While not

all of the primary sources reviewed for this thesis are as direct in their recommendations

as the 1980 GAO report, most contain either direct or indirect themes associated with

how best to manage the DoD’s software acquisitions enterprise.

How best to control and manage software acquisitions programs cost, schedule,

and performance also rises as a primary theme within early literature. The 1974

Electronics Management report acknowledges that the DOD cost accounting system does

not allow for the proper management of indirect and direct costs associated with software

making it “impossible” for the DoD to accurately determine true costs associated with

electronics development. GAO reports at the time further expand on these issues

identifying multiple cost-schedule performance challenges to include failure to follow

procurement practices, difficulties in determining user-needs, and poor design and

planning (Keller, 1977). A 1977 study by the Air Force Studies Board further highlights

these challenges, and as a solution, provides a detailed acquisitions strategy and

contracting plan built around an incremental approach designed to improve the

management of programmatic cost, schedule, and performance risk.

104

Agency reports continue into the 1980’s where a large body of literature centers

around how best to address the four primary themes identified in the 1970’s. Of notable

mention, the National Research Council conducted an in-depth study into software

development policies titled Adapting Software Development Policies to Modern

Technology (1989), in response to the growing realization that existing acquisitions

management practices and policies were failing to keep pace with modern technology

systems. In addition to providing 26 recommendations geared towards addressing

acquisitions shortfalls, the report included a review and summary of preceding major

software acquisitions studies. Notable recommendations from the report include

maintaining the flexibility of acquisitions programs through alternative management

methodologies, contract flexibility, and incremental acquisition approaches and tailoring;

improved software personnel management; standardization of “Software Engineering

Environments” across programs, and increase investment in technology transfer and

growth.

Additional reports throughout the 1980’s provide similar recommendations in

response to the recurring challenges identified in the ‘70s. The following themes, from

various reports, were drawn from the NRC report summary: challenges dealing with

strategic management of programs are noted to include the lack of departmental guidance

and structure (Glaseman & Davis, 1980); the poor management of the software lifecycle

(General Accounting Office, 1981); and the insufficient management of software

personnel (Druffel, 1982). Challenges stemming from the inherent inflexibility of the

acquisition’s cycle are also noted in multiple reports (Booz Allen, 1981; Druffel, 1982;

105

Fowler, 1987). Standardization7 around software architectures, practices, and measures

are heavily mentioned to include recommendations pertaining to development

environments (Vick et al., 1985;McDonald, 1988), languages, and metrics (Fowler,

1987). Finally, challenges associated with appropriately managing the cost, schedule,

and performance of software programs are addressed. Notable recommendations for

these issues include centralized oversight and uniform tracking, user engagement and

requirements development (Munson, 1983), as well as development of universal

management tool-sets (Vick et al., 1985).

The 1990’s were largely dominated by a trend of widespread standardization and

control of development models, languages, and methodologies across the Department of

Defense. It is during this era that the DoD chose to mandate the Ada language for use in

all new software development projects (Boehm et al., 1997). The strategic decision to

top down direct a specific technological solution had widespread impacts on both the

DoD’s organic software development capabilities and to the wider software industrial

base. A 1997 report by the National Research Council reviews in-depth the impacts of

the DoD’s Ada mandate and notes that, as a result of policy, the DoD was no longer

aligned with the commercial sector in development tools, languages, and skillsets. The

DoD’s choice to lock-in a language had essentially left it as the sole user of a specific

development language and architecture which significantly hampered technological

progression.

7 The DoD and GAO actively debated through policy documents the benefits of standardizing all software

development around the ADA language throughout 1985-1987. The DSB heavily favored standardization

however, the GAO was against this approach citing the potential for negative impacts on the technological

advancement of the defense industrial base (Brooks, 1982). DoD decision-makers eventually won the

debate and Ada was mandated for all new software development projects from 1987-1997.

106

 Breaking from previous assessment formats, the Defense Science Board issued

its third major report on DoD Software in 2000 centered primarily around a review of the

validity of past recommendations and as such included a summary of reports made by the

board and other investigative agencies throughout the 1990s (Hansen & Nesbit, 2000).

The board concluded that the 134 past recommendations made throughout the 90’s could

be grouped into five primary areas. The areas identified within the report were software

architecture, software technology, workforce issues, contract strategy, and acquisitions

policy. In addition to categorizing past recommendations the board reiterated additional

key observations such as consistently poor requirements-setting and management,

disparities between commercial best-practices and practiced favored by the DoD, and a

lack of experienced DoD software practitioners.

While the overall themes outlined at the beginning of this section largely

remained consistent over time, one notable change in strategic directive that is still

relevant to today’s software strategy was a formal acknowledgment that the DoD had

been largely outpaced as a driver of software technology development by the commercial

sector. This shift can be noted in literature as research began to explore and subsequently

recommend an increased reliance on acquiring software through the commercial sector.

This transition was also evident through policy directive as the DoD’s software

standardization requirements shifted--effectively ending the DoD’s decade long Ada era.

 The post Y2K era can be defined by an explosion of growth in connectivity

through the internet throughout both the government and commercial sectors and the rise

in influence of agile methodologies that had begun to develop in the late 90’s (Beck et al.,

n.d.). Trends within the DoD at this time mirrored commercial sector movements and a

107

shift to “Net-centric, service oriented” strategy and a push for enterprise IT acquisition

can be noted as core strategic movements (Grimes, 2007). Standardization also

continued to be a major theme, however its focus shifted from language, as was the case

in the 90’s, and instead was illustrated through a call to standardize around open

standards and architectures for both data and software in order to facilitate the

departments connectivity goals.

 While standardization could be noted as the hallmark theme throughout the 90’s,

the 2000’s saw a shift in focus towards defense acquisitions reform as legislative actions

sought to reduce program costs and risk for software programs by increased reporting and

oversight requirements. The FY2007 NDAA implemented multiple legislative mandates

targeting IT acquisitions to include defining criteria for systems, mandating reporting

requirements, and prescribing specific timeframes for business systems (John Warner

National Defense Authorization Act for Fiscal Year 2007, 2006). In addition to these

legislative changes the DoD updated the acquisition process in 2003 in an attempt to

provide some additional flexibility for modern practices and methodologies while still

maintaining oversight. Notably, the new model still maintained the hallmarks of past

traditional acquisitions pathways such as a heavy reliance on formal documentation and

milestone-based based approach to programmatic progression (Vitto et al., 2009).

 In 2018 the Defense Science Board released its most recent report on the state of

software development within the Department of Defense (LaPlante et al., 2018). Within

the executive summary the board acknowledges that the DoD is still struggling with the

same underlying issues that have hampered DoD software acquisitions programs over the

past twenty years. The recommendations and supporting reasoning provided by the

108

board also largely remain unchanged. Recommendations focused on aligning the DAS

with commercial best practices, implementing agile and incremental delivery models,

managing and controlling programs throughout their lifecycles, and growing the software

workforce. Finally, the DSB report resurrected the term “Software Factory” and

incorporated into their primary recommendation – suggesting its implementation should

be a cornerstone around which the future of DoD software acquisitions is built.

 Chapter One of this thesis provided an overview of recent reports, academic

literature, and legislative documents that highlighted how the Department of Defense has

continued to face challenges in the acquisition and management of software centric

materiel solutions through the modern day. It also reviewed the results of the most recent

Defense Innovation Board Study and it’s four primary recommendations as an illustrative

tool by which to “set the stage” and inform the reader about the core drivers behind

existing software acquisitions policies. It is important to highlight that the DIB

recommendations, while highly relevant, are not new and are directed at the same four

primary thematic challenges that have been discussed throughout this appendix.

109

Appendix B – An Overview of the 2018 DIB Study Software is Never Done

This appendix includes an analysis of the four primary lines of effort established

in the 2018 Defense Innovation Board Study. In 2017 the National Defense

Authorization Act contained a provision, Section 872, which directed the Defense

Innovation Board (DIB) to study the current state of affairs of software acquisitions

within the DoD. The NDAA tasked the DIB with 4 primary objectives specifically

related to streamlining software acquisitions within the DoD. The four objectives were to

review acquisition regulations and organizational structures, review ongoing software

development and acquisition programs, produce recommendations for legislative and

non-legislative actions to drive change within the DoD, and produce any other

recommendations as appropriate (House of Representatives, 2017).

 The resultant DIB study titled “Software is Never Done. Refactoring the

Acquisition Code for Competitive Advantage” covered in-depth the state of software

within the Department of Defense and delved into great detail covering the different

aspects that influence the DoD as an organization. Within the report, the DIB highlights

4 specific lines of effort with 10 recommendations that, since their initial publication,

have influenced and driven congressional legislation and reform specifically designed to

improve the effectiveness of the software acquisition process. The DIB report spurred

renewed interest into the challenges associated with software acquisitions and due to its

emphasis on commercial practices, it enabled the software factories to explore non-

traditional approaches. Because the growth of the software factories was impacted

significantly by this report, this appendix includes a detailed breakdown of the board’s

recommendations.

110

1. Congress and the DoD should refactor statutes, regulations, and processes for

software.

The most visible and potentially impactful outcome of the first line of effort’s

recommendation was the creation and implementation of DoD Instruction 5000.87,

Operation of the Software Acquisition Pathway (Lord, 2020). The new pathway provides

an avenue for software programs to develop capability utilizing modern development

processes outside of the traditional JCIDs regulatory limitations. While less prescriptive

in nature the new pathway still provides a framework via formal documentation

requirements required for entry to include a Capability Needs Statement (CNS) and an

Acquisition Decision Memorandum. Part of CNS development involves formally

defining desired capabilities prior to moving forward with execution. As of September

ten USSF/USAF sponsored programs have moved to adopt the Software Pathway –

JCC2, Space C2, UP, WARP Speed, WDA Inc. 5, AOC, ADCP, C2IMERA, Mod &

Sim, T&G (Carney & Konwin, 2021a, 2021b). The Software Acquisitions pathway is a

key component that spans and touches on all of the DIB’s recommendations.

In addition to developing a new acquisition pathway, OSD is currently piloting a

new budget authority, BA-08 which is specifically designed to meet the needs of

programs implementing DevOps methodologies. BA-08 provides a single color of money

that combines what would normally be separate RDT&E, procurement, and sustainment

dollars into a single pool (OSD, 2020). The Air Force has budgeted $418M for FY22

under this new software pilot program with the Space Force budgeting $155M (USAF,

2021). Two of the existing software factories involved in the pilot program are Kessel

Run and Kobayashi Maru (Department of Defense Fiscal Year (FY) 2022 Budget

111

Estimates Justification Book Volume 3b, 2021; Department of Defense Fiscal Year (FY)

2022 Budget Estimates, RDT&E, Space Force, 2021).

2. The Office of the Secretary of Defense and the Services should create and maintain

cross-program/cross-service digital infrastructure.

In alignment with the DIB study, in 2018 the DoD initiated a standup of a joint

OUSD, DoD CIO, DISA, and Services wide DevSecOps initiative which began

producing guidance on both the technical and organizational components necessary to

begin implementation of shared cross-program digital infrastructure. The DevSecOps

initiative made a number of changes to address DIB recommendations with infrastructure

efforts primarily aligning under an Enterprise IT initiative which stood up Platform One

and Cloud One as the first DoD-wide managed services (Chaillan, 2020). Additionally,

the USA&S and DoD CIO signed a DoD-wide DevSecOps enterprise reference design

which laid a framework for future software program MVPs via the Platform One effort

and laid out the first step towards DoD-wide ATO reciprocity (Deasy & Lord, 2020).

Since its initial standup Platform One and Cloud One have rapidly grown as a

potential solution for the cross-program/cross-service digital infrastructure goal outlined

by the DIB. Platform One’s services--which are used by some of the AF’s software

factories--have grown the department’s organic digital infrastructure capabilities via

multiple IAC repositories and both on-prem and cloud-native environments serving all

the services within the DoD. Furthermore, Platform One provides shared hardened

containers and enables the distribution of approved code via a shared repository

designated the Iron Bank (Platform One, n.d.).

112

3. The Services and OSD will need to create new paths for digital talent (especially

internal talent).

Software factories, by nature of their design, could provide an avenue to meet the

third area of effort as directed by the DIB. Specifically, the board’s primary

recommendation for action was to “Create software development units in each service

consisting of military personnel…” (McQuade et al., 2019). In addition to cultivating

talent through the widespread use of DevOps practices via the numerous software

factories, the DoD was also directed via the FY20 NDAA section 230 to develop policy

on its software talent management core competencies (House of Representatives, 2019).

In response to this directive, the DoD created a formal software workforce working group

tasked with the identification and creation of career tracks for software professionals.

The most recent 2020 DIB assessment indicated that there was still a significant amount

of work that needed to occur to meet the intent of the digital talent recommendations

(FY2020 NDAA DIB Assessment: Software Development and Software Acquisition

Training and Management Programs, 2020).

4. DoD and industry must change the practice of how software is procured and

developed.

The final recommendation specifically targets the DoD’s need to cultivate a

positive culture change in order to drive the changes necessary to improve software

development. In addition to providing technical guidance to meet the recommendations

of the DIB, the CIO efforts under the DevSecOps initiative have also been focused on

facilitating the framework necessary to drive these cultural changes. The board made

113

three initial recommendations which involved improving DoD access to source code and

frameworks, making baked-in security a priority when developing software, and shifting

to a feature-based as opposed to a requirements-based development process.

As discussed under the first line of effort, the new software acquisitions pathway

takes a step back from the initial requirements-driven JCIDS documents and replaces

them with the capability needs statement. The DoD DevSecOps initiative also addresses a

feature-based approach and specifically addresses security as a major component of

software factory development. In summary, the DIB report’s recommendations

attempted to identify the pre-conditions necessary to address existing shortfalls while still

considering the unique needs of Department of Defense software acquisitions.

114

References

John Warner National Defense Authorization Act for Fiscal Year 2007, (2006)

(testimony of 109th Congress). https://www.govinfo.gov/content/pkg/PLAW-

109publ364/pdf/PLAW-109publ364.pdf

Adair, J. G. (1984). The Hawthorne effect: A reconsideration of the methodological

artifact. Journal of Applied Psychology, 69(2), 334–345.

https://doi.org/10.1037/0021-9010.69.2.334

Allee, V. (2009). Value-creating networks: Organizational issues and challenges.

Learning Organization, 16(6), 427–442.

https://doi.org/10.1108/09696470910993918

Assistant Secretary of Acquisition, & Air Force Chief Software Office. (2021). Software

Factories. https://software.af.mil/software-factories/

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for

exploring and manipulating networks. International AAAI Conference on Weblogs

and Social Media. https://gephi.org/users/publications/

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.,

Schwaber, K., Mellor, S., Sutherland, J., & Thomas, D. (n.d.). The Agile Manifesto.

Biem, A., & Caswell, N. (2008). A Value Network Model for Strategic Analysis. In

Proceedings of the 41st Annual Hawaii International Conference on System

Sciences (HICSS 2008). https://doi.org/10.1109/HICSS.2008.43

Boehm, B. (2006). A View of 20th and 21st Century Software Engineering.

Boehm, B., Baker, T., Embry, W., Fox, J., Hilfinger, P., Holden, M., Moss, E., Royce,

W., Scherlis, W., Taft, T., Vaughn, R., & Wasserman, A. (1997). Ada and Beyond:

Software Policies for the Department of Defense. In Ada and Beyond. National

Academies Press. https://doi.org/10.17226/5463

Boldi, P. (2020). Fine-Grained Network Analysis for Modern Software Ecosystems.

ACM Trans. Internet Technol, 21(1). https://doi.org/10.1145/3418209

Booz Allen. (1981). Defense Automatic Data Processing Acquisition.

Boucharas, V., Jansen, S., & Brinkkemper, S. (2009). Formalizing Software Ecosystem

Modeling. http://softwareecosystems.com

Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. (2004). Taking Stock Of

Networks And Organizations: A Multilevel Perspective. Academy of Management

Journal, 47(6), 795–817.

115

Bratman, H., & Court, T. (1975). The Software Factory. Computer, 8, 28–37.

Buchsbaum, S. (1978). Report of the Defense Science Board Task Force on Command

and Control Systems Management.

Carney, G., & Konwin, K. (2021a). Software Acquisition Pathway CoP News. DoD Agile

Acquisition Community of Practice, 21. https://federalnewsnetwork.com/defense-

main/2021/05/pentagon-wants-to-use-its-biggest-it-

Carney, G., & Konwin, K. (2021b). Software Acquisition Pathway CoP News. In DoD

Agile Acquisition Community of Practice (Issue 22).

Chaillan, N. (2019). DoD Enterprise DevSecOps Reference Design.

Chaillan, N. (2020). DoD Enterprise DevSecOps Initiative.

https://software.af.mil/training/

Chiesi, A. M. (2015). Network Analysis. International Encyclopedia of the Social &

Behavioral Sciences: Second Edition, 518–523. https://doi.org/10.1016/B978-0-08-

097086-8.73055-8

Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative

Research Designs: Selection and Implementation. The Counseling Psychologist,

35(2), 236–264. https://doi.org/10.1177/0011000006287390

Cross, R., & Gray, P. (2021). Optimizing Return-to-Office Strategies with Organizational

Network Analysis. MIT Sloan Management Review.

https://sloanreview.mit.edu/article/optimizing-return-to-office-strategies-with-

organizational-network-analysis/

Curtin, K. M. (2017). Network Analysis. Comprehensive Geographic Information

Systems, 3, 153–161. https://doi.org/10.1016/B978-0-12-409548-9.09599-3

Cusumano, M. A. (1989). The Software Factory: A Historical Interpretation.

Cusumano, M. A. (1991). Factory Concepts and Practices in Software Development. In

Annals Hist Comput (Vol. 13).

DAU. (2022a). A Guide to DoD Program Management Business Processes.

https://www.dau.edu/pdfviewer?Guidebooks/DAG/A-Guide-to-DoD-Program-

Management-Business-Processes.pdf

DAU. (2022b). A Guide to Program Management Knowledge, Skills and Practices.

https://www.dau.edu/pdfviewer?Guidebooks/DAG/A-Guide-to-Program-

Management-Knowledge-Skills-and-Practices.pdf

Deasy, D., & Lord, E. (2020). Software Development, Security, and Operations for

Software Agility. https://www.milsuite.mil/book/

116

Delauer, R., Boileau, O., Bridge, C., Campobasso, T., Fox, R., Gansler, J., Gates, H.,

Larsen, P., Lehmann, H., Livesay, M., Schroter, A., Shea, J., Smith, H., Sonenshein,

N., Templeman, J., Webster, D., White, J., & Woll, H. (1974). Report of the Task

Force on Electronics Management.

https://dsb.cto.mil/reports/1970s/Electronics%20Management%2030%20April%201

974.pdf

Department of Defense. (2021). DevSecOps Fundamentals Playbook.

https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-

2.0-Playbook.pdf

Department of Defense Fiscal Year (FY) 2022 Budget Estimates Justification Book

Volume 3b. (2021).

Department of Defense Fiscal Year (FY) 2022 Budget Estimates, RDT&E, Space Force.

(2021).

Driessnack, J. (2017). Program Manager Toolkit. https://www.dau.edu/tools/t/Program-

Manager-Toolkit

Druffel, L. (1982). Strategy for a DOD Software Initiative.

https://apps.dtic.mil/sti/pdfs/ADA121737.pdf

Enos, J. R., & Nilchiani, R. (2018). Using Social Network Analysis to Identify Systems of

Systems in a Network of Systems. https://doi.org/10.1109/SYSOSE.2018.8428791

Fowler, C. (1987). Report of the Defense Science Board Task Force on Military

Software.

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness.

Sociometry, 40(1), 35. https://doi.org/10.2307/3033543

FY2020 NDAA DIB Assessment: Software Development and Software Acquisition

Training and Management Programs. (2020).

Gansler, J. (1975). Comment. Defense Management Journal, 11(4).

https://archive.org/details/sim_defense-management-journal_1975-

10_11_4/page/n1/mode/2up

General Accounting Office. (1981). Federal Agencies’ Maintenance Of Computer

Programs: Expensive And Undermanaged. https://www.gao.gov/assets/afmd-81-

25.pdf

Glaseman, S., & Davis, M. (1980). Software Requirements for Embedded Computers.

117

Gould, R. v, Fernandez, R. M., & Fernandezt, R. M. (1989). Structures of Mediation: A

Formal Approach to Brokerage in Transaction Networks. Source: Sociological

Methodology, 19, 89–126.

Graff, C. (2013). Mixed Methods Research. In H. Hall & L. Roussel (Eds.), Evidence-

based practice: an integrative approach to research, administration, and practice.

Jones and Bartlett Learning.

Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology,

78(6), 1360–1380. https://doi.org/10.1086/225469

Grimes, J. G. (2007). Net-Centric Services Strategy.

Guércio, H., Ströele, V., David, M. N., Braga, R., & Campos, F. (2018). Complex

Network Analysis in a Software Ecosystem: Studying the Eclipse Community. In

2018 IEEE 22nd International Conference on Computer Supported Cooperative

Work in Design ((CSCWD)). https://doi.org/10.1109/CSCWD.2018.8465170

Gutmann, R. (1980). The Department Of Defense’s Standardization Program For

Military Computers-- A More Unified Effort Is Needed.

https://www.gao.gov/assets/lcd-80-69.pdf

Hansen, M., & Nesbit, R. (2000). Defense Science Board Task Force on Defense

Software. https://dsb.cto.mil/reports/2000s/ADA385923.pdf

Hicks, K. (2022). Department of Defense Software Modernization Strategy.

https://media.defense.gov/2022/Feb/03/2002932833/-1/-1/1/department-of-defense-

software-modernization-strategy.pdf

House of Representatives. (2017). National Defense Authorization Act for Fiscal Year

2018. In House of Representatives. https://www.congress.gov/bill/115th-

congress/house-bill/2810

House of Representatives. (2019). National Defense Authorization Act for Fiscal Year

2020. https://www.congress.gov/bill/116th-congress/senate-bill/1790

Ideker, T. (2003). Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

Jansen, S., Brinkkemper, S., & Cusumano, M. (2013). Software Ecosystems. Edward

Elgar Publishing. https://doi.org/10.4337/9781781955635

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research

agenda for software ecosystems. https://doi.org/10.1109/ICSE-

COMPANION.2009.5070978

118

Jorgensen, D. L. (2015). Participant Observation. Emerging Trends in the Social and

Behavioral Sciences, 1–15. https://doi.org/10.1002/9781118900772.ETRDS0247

Keller, R. (1977). Problems Found with Government Acquisition and use of Computers

from November 1965 to December 1976. https://www.gao.gov/products/fgmsd-77-

14

Kronenfeld, D. B. (2004). Cognitive Research Methods. Encyclopedia of Social

Measurement, 361–374. https://doi.org/10.1016/B0-12-369398-5/00325-X

LaPlante, W., Wisnieff, R., Coleman, V., Nielsen, P., Lynch, C., Schneider, F.,

Markowitz, J., Thaer, L., Nesbit, R., & Velosa, A. (2018). Design and Acquisition of

Software for Defense Systems.

Levine, S., & White, P. E. (1961). Exchange as a Conceptual Framework for the Study of

Interorganizational Relationships. Administrative Science Quarterly, 5(4), 583.

https://doi.org/10.2307/2390622

Lord, E. M. (2020). DOD INSTRUCTION 5000.87 OPERATION OF THE SOFTWARE

ACQUISITION PATHWAY. https://www.esd.whs.mil/DD/.

Maghssudipour, A., Lazzeretti, L., & Capone, F. (2020). The role of multiple ties in

knowledge networks: Complementarity in the Montefalco wine cluster. Industrial

Marketing Management, 90, 667–678.

https://doi.org/10.1016/j.indmarman.2020.03.021

McDonald, C. (1988). Results of Follow-up 1983 SAB Report on Mission-Critical

Software. https://apps.dtic.mil/sti/citations/AD1048883

McDowell, T., Horn, H., & Witkowski, D. (2022). Organizational Network Analysis

Gain insight, drive smart. https://www2.deloitte.com/us/en/pages/human-

capital/articles/organizational-network-analysis.html

McMillan, B., Cairns, R., Galt, J., Mueller, G., O’Brien, B., Oder, F., Villard, O., &

Ware, W. (1977). Operational Software Management and Development for the

USAF Computer Systems. https://apps.dtic.mil/sti/pdfs/ADA069804.pdf

McQuade, M. J., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019).

Software Is Never Done: Refactoring the Acquisition Code for Competitive

Advantage. https://media.defense.gov/2019/Mar/26/2002105909/-1/-

1/0/swap.report_main.body.3.21.19.pdf

Munson, J. (1983). The High Cost and Risk of Mission-Critical Software.

National Research Council. (1989). Adapting Software Development Policies to Modern

Technology. The National Academies Press.

http://nap.naptionalacademies.org/19037

119

OSD. (2020). Budget Activity (BA) “BA-08”: Software and Digital Technology Pilot

Program. https://discover.dtic.mil/section-809-panel/,

Perkins, J., & Long, J. (2020). Software Wins Modern Wars. What the Air Force Learned

from Doing the Kessel Run. Modern War Institute.

Perry, B. L., Pescosolido, B. A., & Borgatti, S. P. (2018). Egocentric Network Analysis.

Cambridge University Press. https://doi.org/10.1017/9781316443255

Platform One. (n.d.). 2021. Retrieved November 29, 2021, from https://p1.dso.mil/#/

Pons, P., & Latapy, M. (2005). Computing communities in large networks using random

walks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 3733 LNCS, 284–293.

https://doi.org/10.1007/11569596_31/COVER

Powell, W., Staw, B., & Cummings, L. (1990). Neither Market Nor Hierarchy: Network

Forms of Organization. Research in Organizational Behavior, 12, 295–336.

Ryan, Z. O., Reith, M. G., & Beach, P. M. (2022). Defining the DoD Software Factory: A

Network value Approach. Crosstalk.

https://community.apan.org/wg/crosstalk/m/documents/420788

Space CAMP. (2021a). https://spacecamp.il2.dso.mil/#/home

Space CAMP. (2021b). Space CAMP Survival Guide 2.0.

Tashakkori, A., & Creswell, J. W. (2007). The new era of mixed methods. Journal of

Mixed Methods Research, 1, 3–7.

Tashakkori, A., & Teddlie, C. (2003). Issues and dilemmas in teaching research methods

courses in social and behavioral sciences: U.S. perspective. International Journal of

Social Research Methodology, 6, 61–77.

Tashakkori, A., & Teddlie, C. (2009). Foundations of Mixed Methods Research. Sage

Publications, Inc.

USAF. (2021). Department Of the Air Force Fy22 Budget Overview.

https://www.saffm.hq.af.mil/Portals/84/documents/FY22/SUPPORT_/FY22%20Bu

dget%20Overview%20Book.pdf?ver=SMbMqD0tqIJNwq2Z0Q4yzA%3D%3D

Vick, C., Boehm, B., Davidson, J., Giese, C., McMillan, B., Martin, J., Miller, E.,

Mohler, S., Ramamoorthy, C., Urban, J., Ware, W., & Yeh, R. (1985). Methods for

Improving Software Quality and Life Cycle Cost.

http://www.nap.edu/catalog.php?record_id=19315

120

Vitto, V., Kerber, R., Guthrie, P., Hoeper, P., Kaminski, P., Lengerich, T., Longuemare,

N., Maybury, M., Roca, R., Stenbit, J., & Wade, A. (2009). Department of Defense

Policies and Procedures for the Acquisition of Information Technology.

Vorraber, W., Mueller, M., Voessner, S., & Slany, W. (2019). Analyzing and managing

complex software ecosystems: A framework to understand value in information

systems. IEEE Software, 36(3), 55–60. https://doi.org/10.1109/MS.2018.290100810

Vorraber, W., Voessner, S., Ssner, S. V., & Vössner, S. (2011). Modeling Endogenous

Motivation and Exogenous Influences in Value Networks of Information Service

Systems. https://doi.org/10.4156/jcit.vol6.issue8.43

Walden, D., Muntner, M., Nehama, I., Hendricks, G., & Beam, D. (1978). Software

Management in the Air Force.

Wasserman, S., & Faust, K. (1995). Social Network Analysis: Methods and Applications.

Cambridge University Press.

121

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

02-13-2023
2. REPORT TYPE

Master’s Thesis
Sep 2021 – Feb 2023

TITLE AND SUBTITLE

Illuminating the unknown: A mixed methods exploration of
the DoD software factory ecosystem

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ryan, Zachary O., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-23-M-229

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Assistant Secretary of Acquisition, Chief Software Office

1060 Air Force Pentagon, Washington DC 20330-1060

EMAIL: Af.cso@us.af.mil

PHONE: 714-458-2303

ATTN: Maj Marvin Poquiz

10. SPONSOR/MONITOR’S
ACRONYM(S)

DAF/CSO

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT
 The Department of Defense’s (DoD) software factories are a collection of modern software acquisition programs
that commonly employ the agile, network-based business strategies often found within commercial industries. Having
been formally recognized by senior leaders for their revolutionary software development approaches, the software
factories highlight a cultural shift within the DoD away from traditional organizational practices. As a result of the
factories demonstrated successes, the number of programs employing non-traditional strategies is expanding. While
this is notable, it also presents a challenge because a comprehensive understanding of the characteristics, structures,
and behaviors of the DoD’s software factories does not currently exist.
 This thesis addresses this knowledge gap by employing a sequential mixed methods methodology to explore the
organizational characteristics and structures of the DoD’s software factories using a three-phased research approach
designed to facilitate active community engagement and feedback. Primary research data was collected from the
software factory community through personnel interviews, participant observation, and a case study. Results from this
research include a software factory characterization framework, a structural definition of software factories, and a new
programmatic assessment process designed to help acquisition practitioners understand the organizational behaviors
of non-traditional programs.

15. SUBJECT TERMS
Inter-Organizational Behavior, Software Factories, Software Development, Agile, Network Analysis

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

131

19a. NAME OF RESPONSIBLE PERSON

Mark G. Reith, AFIT/ENG
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-7777

Mark.reith@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Illuminating the Unknown: A Mixed Methods Exploration of the DoD Software Factory Ecosystem
	Recommended Citation

	tmp.1717426352.pdf.p1HM9

