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Abstract

Many of the United States’ major cities that have a high population are located

along the coast. The number of people residing in low-elevation coastal areas, be-

low 10 meters, is increasing. Coastal areas may be affected by various short- and

long-term climate hazards, such as sea level rise (SLR). Climate change induced SLR

will threaten residents and infrastructure in low-lying coastal areas. A household’s

capacity to respond to hazards is highly dependent on its socio-demographic situ-

ation which determines its social vulnerability. Wastewater treatment facilities are

a particularly critical piece of infrastructure often located in low-lying areas due to

gravity-fed collection systems. Additionally, flooding of these infrastructure systems

can lead to the spread of disease and contamination of water sources. In this analy-

sis, we utilized a geographic information system to assess the exposure of wastewater

infrastructure to sea level rise projections in the conterminous United States. We

then paired these inundation estimates against the Center for Disease Control’s So-

cial Vulnerability Index (SVI) to investigate inequities in infrastructure impact. An

analysis of variance (ANOVA) was performed to compare the SVI of populations near

wastewater treatment plants that were inundated to those that were not inundated

at sea level rise projections. Of the 1,040 wastewater treatment plants within two

kilometers of the coast in the United States, 394 treatment facilities are in danger

of inundation at 10 feet of sea level rise. Interestingly, the results of the ANOVA

tests revealed some statistical differences in social vulnerability indexes of impacted

populations and infrastructure against non-impacted populations.
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Sea Level Rise Impacts on Wastewater Treatment Plants

and their Social Vulnerability Differences

I. Introduction

The number of people residing in low-elevation coastal areas, below 10 meters

above sea level, continues to increase [1], while at the same time, coastal areas continue

to be affected by various short- and long-term climate hazards, such as sea level rise [2].

Sea level rise, resulting from climate change, will threaten residents living in low-lying

coastal areas, meaning coastal communities will experience more persistent and more

frequent flooding. Climate change projections show sea temperature increases and

melting ice caps leading to regional sea level rise, resulting in flooding, coastal erosion,

and shoreline retreat [3]. Additionally, projected rainfall intensification results in

an increase in flood risk in low-lying coastal areas [4]. These flood risks directly

affect infrastructure vulnerability, especially infrastructure in low-lying coastal areas

[5, 6]. As such, it is important to investigate how different infrastructure systems will

respond to sea level rise and recurrent flooding.

Wastewater treatment plants are particularly vulnerable to coastal impacts of

climate change as they are usually located at lower elevations, making them more

susceptible to coastal flooding [7, 8]. The Department of Homeland Security (DHS)

considers wastewater systems as critical infrastructure [9]. According to the DHS,

there are more than 16,000 publicly owned wastewater treatment systems in the

United States; 75 percent of the U.S. population has its sanitary sewage treated by

one of these wastewater systems [10]. Accordingly, disruption to wastewater treat-

ment plants can lead to economic impacts and severe public health and environmental
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effects. The lack of redundancy in wastewater treatment plants heightens these im-

pacts [9].

The amount of sea level rise is projected to vary across the world to include rela-

tive sea level rise changes across the United States with higher rates in the equatorial

regions compared to polar regions [11]. Therefore, wastewater treatment plant dis-

ruptions might vary by region. Approximately 40% of the U.S. population live in

counties located on a coast, creating a strong economic dependency on coastal com-

munities [12]. Due to climate change, America’s coastal properties, infrastructure,

and ecosystems face increased risks from ongoing sea level rise. Socially vulnerable

individuals are also more likely to be adversely affected as they have fewer resources

to protect against and recover from flood damage or property loss. Studies show,

however, that socioeconomic and educational factors can impede individuals’ abili-

ties to prepare for, respond to, and cope with the risks of climate change [12]. This

is true from other studies to include COVID-19 in the United States, [13], climate-

sensitive hazards [14], COVID-19 in England [15], and urban tree canopy [16], among

other studies. Socially vulnerable populations near climate change-affected wastewa-

ter treatment plants may have less sustainable and resilient socioeconomic capabilities

for coping with sea level rise.

In this study, sea level rise impacts on critical infrastructure (wastewater treat-

ment facilities) are analyzed in conjunction with social vulnerability to understand

differences in socioeconomic impacts of infrastructure inundation. This study uses

a geographic information systems (GIS) to assess the exposure of coastal wastewa-

ter treatment plant infrastructure (from [17]) against sea level rise projections from

the National Oceanic and Atmospheric (NOAA) and the Center for Disease Con-

trol’s Social Vulnerability Indexes (SVI). The census block SVI information provides

information on potentially how disadvantaged groups might be impacted by the in-
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undation of neighboring wastewater treatment facilities. Through the combination of

variables in the GIS, this study answers the following question: What are the social

vulnerability differences in sea level rise impacts on wastewater treatment plants?
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II. Background and Literature Review

2.1 Sea Level Rise Trends

Sea level rise in the twenty-first century compared to the twentieth century has

been faster [18] and sea level rise will continue to accelerate in the 21st century [19].

Coastal areas are highly susceptible to sea level rise and the effects have been eval-

uated in multiple capacities. Behera et al. [3] studied sea level rise with increasing

rates using GIS, vulnerability assessment modeling and risk categorization, and an-

alytical hierarchy process. The result was a risk analysis of increased sea surface

temperature and thermal expansion of seawater and melting of glaciers on land and

ice. Additionally, their risk analysis showed social vulnerability mapping of coastal

populations to help policy planners to focus on an area having greater vulnerability

and to optimize the utilization of resources. Bera and Maiti [20] found that low eleva-

tion and low slopes that are characteristic of many coastlines contribute to a greater

rate of sea level rise. Hadipour et al. [2, 1] studied spatial multi-criteria decision

analysis (SMCDA) and found coastal areas are expected to have higher risks due

to flooding. Worldwide coastal population is growing with an estimated 200 million

residents in 1990 and a projected 600 million residents by 2100 [18]. Therefore the

total population exposed to coastal flooding could increase by three times by the year

2070 [21].

Worldwide coastal populations living below 10 meters, or 33 feet comprise 2% of

the land but 10% of the population [22]. In the United States, 4.2 million people

are susceptible to flooding at 3 feet of sea level rise and 13.1 million people are

susceptible to flooding at 6 feet of sea level rise by the year 2100 are projected [23].

Climate change-induced sea level rise necessitates analysis of coastal risks to develop

adaption strategies aimed at managing those impacts [24].
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Wastewater treatment plants are especially vulnerable to sea level rise because

they are commonly located at low elevations and next to a waterbody that receives a

discharge of treated water [25]. Additionally, flooding of wastewater treatment plants

can lead to the spread of disease and contamination of water sources, therefore it is

important to assess wastewater treatment plants and their surrounding communities.

Despite research on vulnerable populations of sea level rise, existing research is limited

in its understanding of the social vulnerabilities of these populations and their support

infrastructure.

2.2 Social Vulnerability Indexes

Social vulnerability was first introduced in the 1970s to understand interactions

between social and natural systems that give rise to hazards, i.e., sea level rise, and

disasters [14]. Alternatively, social vulnerability describes the differential impacts of

environmental threats on people and places where the people live. As opposed to

physical vulnerability, the ability of systems to absorb or withstand impacts, social

vulnerability accounts for a social construct that highlights the uneven social capacity

for preparedness, response, recovery, and adaptation to environmental hazards. There

are two items to understand the vulnerability of a place 1) attributes of the hazards

exposure, which includes frequency, severity, and areal extent and 2) sensitivity of the

population to impacts [14]. The sensitivity of a population is their social vulnerability,

which is defined as the social, economic, and demographic characteristics, which affect

a community’s ability to prepare for, respond to, cope with, recover from, and adapt

to environmental hazards. There are multitude of SVIs developed in the literature,

discussed in the following section. However, this study adapts the CDC’s social

vulnerability index based on its use across a wide variety of applications including

natural disasters and COVID-19 response.
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The CDC’s Agency for Toxic Substances and Disease Registry (CDC/ATSDR)

defines social vulnerability as the potential negative effects on communities that are

caused by external stresses, i.e., natural, or human-cause disaster, or disease out-

breaks, on human health [26]. Understood in this way, reducing social vulnerability

may decrease both humans’ distress and economic loss. CDC/ATSDR social vulner-

ability indexes are based on 15 variables from the United States Census Bureau’s

data to identify communities that might need assistance before, during, or after a

disaster. The index is updated every two years to identify at-risk groups in times of

crisis [27]. The CDC/ATSDR social vulnerability indexes lists four themes: 1) so-

cioeconomic status, 2) household composition and disability, 3) minority status and

language, 4) housing type and transportation, and final summary index. Multiple

studies have used the CDC’s social vulnerability assessments. Cunningham et al.

[28] used the CDC’s social vulnerability indexes to identify vulnerable populations

needing additional mental health assistance post-hurricane. Flanagan et al. [29]

showed the potential value of the social vulnerability indexes by exploring the impact

of Hurricane Katrina on local populations to decrease both human suffering and the

economic loss that are related to providing social services and public assistance after a

disaster. Moreover, Lehnert et al. [30] explored the relationship of heat related emer-

gency departments visits with the CDC’s social vulnerability data to demonstrate

the spatial and statistical relationship of social vulnerability to heat related health

outcomes. Al Rifai et al. [31] used the CDC’s social vulnerability indexes to find the

distribution of social vulnerability indexes across U.S. states and the average number

of COVID-19 cases, deaths, tests, and vaccinations to use social vulnerability indexes

as a valuable tool that can be used for resource allocation and health policy design

to combat COVID-19 or other diseases. The CDC’s social vulnerability indexes is a

well-established metric to study social vulnerabilities of a population in an area.

6



The overlap of social vulnerability and infrastructure is a growing field to under-

stand infrastructure and environmental justice concerns. For example, Fekete and

Rhyner [32] found emerging vulnerabilities due to growing dependency on critical

infrastructure show different implications with identifying groups and their vulnera-

bilities to disaster risks need changes within common indicators of social vulnerabil-

ity and their dependencies with critical infrastructure. Novak et al. [33] presented

a framework for different disinvestment actions based on a developed Disinvestment

Vulnerability Index (DVI), which identifies socially vulnerable populations impacted

by disinvestment by setting up criteria for roadway necessity. Similarly, Karakoc et al.

[34] proposed an important measure of transportation infrastructure that is driven by

social aspects of resilience, using a multi-criteria decision analysis technique to deter-

mine the final importance ranking. Social vulnerabilities have been incorporated into

the analysis of infrastructure to help decision-makers for investment and restoration

activities.

2.3 Sea Level Rise and Social Vulnerability

Many studies have analyzed sea level rise risks [35] and social vulnerability con-

sequences using many methods. Social vulnerability is defined by social, economic,

and demographic characteristics that influence a community’s ability to prepare for,

respond to, cope with, recover from, and adapt to environmental hazards [36, 14,

37, 38, 39, 40]. While organizations like the CDC have their own SVI, many studies

developed their own social vulnerability indexes to reach more targeted goals (e.g.,

[41, 37, 42, 43, 44, 45]). For example, Emrich and Cutter [14], studied social vul-

nerability based on race/ethnicity, wealth, housing type and tenure, education and

employment, age, gender, and health, and gender and family structure to natural

hazards from floods, hurricanes, and sea level rise, among others.
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Previous research has applied these SVIs to flooding and sea level rise risk evalu-

ations, just not considering wastewater treatment plants. For example, Chakraborty

et al. [46] quantitatively examined coastal hazards and developed a spatial represen-

tation of the hazards to social vulnerability indexes. Hardy and Hauer [47] studied

the sea level rise scenarios and population projections scenarios using the Hamilton-

Perry method. The Hamilton-Perry method is a cohort-component method used for

sub-county population projections with smaller data requirements than traditional

cohort-component methods. This method uses data from the two most recent cen-

suses and only projects population by age and sex using cohort-change ratios (CCR)

[48]. Finally, Koks et al. [39] analyzed hazard and social vulnerabilities information

using flood risk management strategies.

One of the main benefits of social vulnerability indexes is their versatility in pair-

ing natural or manmade risks with the social aspect. Lianxiao and Morimoto [40]

studied social vulnerability influences the distribution of resources and power that

are necessary for disaster preparedness and countermeasure. Bera et al. [20] studied

Sundarbans, an UNESCO world heritage site, to assess the degree of vulnerability of

its coastline using physical and social variables to find social vulnerability based on

the surrounding area to calculate its risk. To accurrately represent the relative level of

risk among places both the spatial reprentation of the hazard and the social vulnera-

bilities are required [14]. Social vulnerabilities are needed as a significant component

of engineering decision-making of flood risk reduction [1]. Regional environmental

assessment of social vulnerability to natural hazards has become increasingly urgent

for risk management and sustainable development [42]. Additionally, recent federal

objectives have prioritized environmental justice considerations in planning and man-

agement of infrastructure projects, further driving the need for social vulnerability

assessments as part of future disaster planning.
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III. Methodology

3.1 Study Area

This study focuses on the conterminous United States for analysis of wastewater

treatment plants. Analysis was completed across the total study region and across

three coastal regions, Figure 1. The western United States included the states of

California, Oregon, and Washington; The southeastern United States spanned from

Texas to North Carolina. The northeastern United States spans from Virginia through

Maine. Vermont does not have a coastline and is, therefore, excluded from the north-

east area of interest. Additionally, the study analyzed three smaller case studies

within each of the regions based on high density of wastewater treatment facilities:

the San Francisco Bay Area, the state of Louisiana, and the Delaware River estuary

across the states of Delaware, Pennsylvania, and New Jersey.
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Figure 1: The conterminous United States coastline was investigated nationally and
across three regions: west, southeast, and northeast.

3.2 Data Collection

Four main data sources were needed for the analysis. First, geospatial vector

shapefiles of specific sea level rise projections are available NOAA’s Office of Coastal

Management [49]. These shapefiles are based on LiDAR collection data and range

from 1-10 foot (0.3 – 3.0 m), with multiple shapefiles per state. Second, Hummel et al.

[17] compiled a list of 1,040 wastewater treatment plants within two kilometers of the

coast based on Environmental Protection Agency with the west region having 205,

southeast having 404, and the northeast having 431 wastewater treatment plants. The

wastewater treatment plant data contain characteristics of the wastewater treatment

plants to include whether the wastewater treatment plants are public or federal and

major or minor wastewater treatment plants. Next, the Center for Disease Control’s

Agency for Toxic Substances and Disease Registry’s (ATSDR) Geospatial Research,

Analysis, and Services Program (GRASP) provide data on social vulnerability indexes
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[50] across four categories and at a combined metric for census tracts in the United

States. Finally, census tract spatial extents were available through the United States

Census Bureau [51]. Data were aggregated and processed using ArcGIS Pro v3.0 and

the R programming language v4.1.1.

3.3 Data Analysis

Using ArcGIS’s geoprocessing tools, wastewater treatment plants were assigned

to census tracts based on location of the treatment facility. The upstream sewer

system was not considered in the assigning of facilities to a census tract. Inundation

of facilities at each of the sea level rise assessments was assessed based on a simple

overlap of the sea level polygons with the wastewater treatment location. Using the

concurrent location data, social vulnerability indexes and the level of inundation (if

applicable) were assigned to each wastewater treatment facility. Following spatial

evaluation and combination of data, data were exported to RStudio for statistical

analysis. Analysis of Variance (ANOVA) tests were performed to evaluate difference

in means of social vulnerability indexes across all sea level rise scenarios. These

ANOVA tests were conducted at the three different study scales: national, the three

regions, and the three local case studies to identify any statistical differences in SVI

between flooded and non-flooded wastewater treatment plants. In this analysis, the

significance thresholds α were 0.05 and 0.1.

3.4 Challenges

NOAA shapefiles of sea level rise are very large due to their detailed representation

of the United States coastline and its elevation. As a result, these data were not able

to be merged to allow for ease of data manipulation. Therefore, each sea level rise

polygon for every sea level projection had to be treated individually against the

11



wastewater treatment plant. Additionally, NOAA’s sea level rise projections were

missing parts of the conterminous United States, specifically the northwestern coast

of the state of Washington, which contained only one wastewater treatment plant

within two kilometers of the coast.
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IV. Results and Analysis

4.1 Sea Level Rise Projection Impacts

Figure 2 shows that the total number of wastewater treatment plants and pop-

ulation inundated are closely coupled, with the trend increasing steadily after three

feet of sea level rise. Across the United States, an estimated 394 wastewater treat-

ment plants will be inundated at 10 feet of sea level rise. The southeast region has

the largest number of vulnerable wastewater treatment plants (160), followed by the

northeast region (155), and the west region (79). The total population inundated

at 10 feet of sea level rise is approximately 11 million [52], approximately 3.6% of

the 2020 conterminous United States population. Three different scales of analysis

were completed to evaluate these trends and their impacts on social vulnerability:

national, regional, and local case studies.

Figure 2: Sea Level Rise impacts in terms of the number of wastewater treatment
plants (WWTPs) increase dramatically after three feet of sea level rise.
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4.2 National Scale Analysis

A national scale analysis compared the SVIs of inundated wastewater treatment

plants of non-inundated treatment plants at each of the ten sea level rise scenarios

(1-10 ft). An analysis of variation compared each of the four themes and the overall

SVI between the two categories. Significance at the 0.05 and 0.10 levels was assessed;

see Figure 3.

The four themes, socioeconomic status (theme 1), household composition and

disability (theme 2), minority status (theme 3) language, housing type and trans-

portation (theme 4), and summary values had different responses to sea level rise

impacts of wastewater treatment plants. The dark red represents a p-value below

0.05 and the light red represents a p-value between 0.05 and 0.10. The lower sea

level rise typically results in statistical differences in means, which is largely due to

the small sample size. Theme 4 or housing type and transportation were statisti-

cally different within 0.1 for all sea level rise scenarios except sea level rise of 2 feet.

Additionally, sea level rises of 1, 3, and 7 feet were statistically different means for

social vulnerability indexes besides minority status and language, i.e., theme 4. All

social vulnerability indexes that were statistically significant, i.e., red, or light red,

the impacted wastewater treatment plants were less socially vulnerable.

Figure 3 highlighted boxes indicate significantly different means of social vulner-

ability indexes between wastewater treatment plants and not inundated wastewater

Figure 3: Highlighted boxes indicate significantly different means of social vulner-
ability indexes between, inundated wastewater treatment plant and not inundated
wastewater treatment plants.
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treatment plants. 2 feet of sea level rise is not significantly different due to multi-

ple factors, such as similar means, small sample size, and non-uniform shaped census

blocks. Additionally, these census blocks were considered inundated when the wastew-

ater treatment plants were inundated, regardless of the shape or size of the census

block.

4.3 Regional Scale Analysis

The test was completed on nationwide, west, southeast, northeast regions to find

statistical difference in means for social vulnerability indexes. The ANOVA for the

west region resulted in no social vulnerability indexes being statistically different

at any sea level rise scenario. The ANOVA for the southeast region resulted in

being statistically different in sea level rise scenarios of four through seven feet for

all social vulnerability indexes, i.e., socioeconomic (Theme 1), household composition

and disability (Theme 2), minority status and language (Theme 3), housing type and

transportation (Theme 4), and summary (Theme 5). The ANOVA for the northeast

region resulted in two indexes, i.e., socioeconomic status (Theme 1) and household

composition and disability (Theme 2), being statistically different at sea level rise

scenario at one foot. Additionally, the direction of all the statistically significant

ANOVA tests indicates the inundated social vulnerability of wastewater treatment

plants were less socially vulnerable compared to wastewater treatment plants.

Figure 4, A, shows the west region’s wastewater treatment plants when inundation

will occur if inundation does occur. There are up to 79 wastewater treatment plants

that will be inundated at ten feet of sea level rise. The location of high inundation

occurs at the San Francisco Bay area, which include the cities of San Francisco,

San Jose, and Oakland. Figure 4, B, shows the interquartile range (IQR) and the

median of the summary social vulnerability index. The IQR is the range of data from
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Figure 4: A, west region wastewater treatment plants (WWTP) inundation by sea
level height. Figure 4, B, wastewater treatment plants social vulnerabilities’ interquar-
tile range (IQR) and median of inundated and not inundated wastewater treatment
plants versus sea level rise.

the 25th to the 75th percentiles of data with the median being the 50th percentile.

The median of the sea level rise scenarios is approximately 0.5 and for inundated

wastewater treatment plants is lower for sea level rise scenarios 1-4 feet.

Figure 5: A, southeast region wastewater treatment plants (WWTP) inundation by
sea level height. Figure 5, B, wastewater treatment plants social vulnerabilities’
interquartile range (IQR) and median of inundated and not inundated wastewater
treatment plants versus sea level rise.
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Figure 5, A, shows the west region’s wastewater treatment plants when inundation

will occur if inundation does occur. There are up to 160 wastewater treatment plants

that will be inundated at ten feet of sea level rise. The location of high inundation

occurs at the state of Louisiana’s coastline, which include the city of New Orleans.

Figure 5, B, shows the interquartile range (IQR) and the median of the summary social

vulnerability index. The median of the sea level rise scenarios is approximately 0.65

and for inundated wastewater treatment plants is lower for all sea level rise scenarios.

Additionally, the sea level rise scenarios of 4-7 feet, annotated by an asterisk, were

statistically significant difference in means based on the ANOVA test.

Figure 6, A, shows the west region’s wastewater treatment plants when inunda-

tion will occur if inundation does occur. There are up to 155 wastewater treatment

plants that will be inundated at ten feet of sea level rise. The location of high inun-

dation occurs at the Delaware River estuary, which includes the states of Delaware,

Pennsylvania, and New Jersey. Figure 6, B, shows the interquartile range (IQR) and

the median of the summary social vulnerability index. The median of the sea level

Figure 6: A, northeast region wastewater treatment plants (WWTP) inundation by
sea level height. Figure 6, B, wastewater treatment plants social vulnerabilities’
interquartile range (IQR) and median of inundated and not inundated wastewater
treatment plants versus sea level rise.
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rise scenarios is approximately 0.38 and for inundated wastewater treatment plants

is lower for all sea level rise scenarios.

Figure 7: Regional comparison of the three regions’ IQR and medians are shown in
this figure. The Southeast is the most socially vulnerable, followed by the West, and
the Northeast regions as described above.

4.4 Local Case Study Analyses

As expected, the number of wastewater treatment plants inundated increases

around cities, including San Francisco, CA; New Orleans, LA; and Philadelphia, PA.

These three cities were chosen for further analysis as local case studies: the San Fran-

cisco Bay area, Louisiana’s Coastline, and the Delaware River estuary. Figure 7 shows

the maps of the summary social vulnerability index for the three case studies against

the wastewater treatment plant locations. In a general comparison of the three case

studies, the San Francisco Bay Area and the Delaware River are less socially vulner-

able, i.e., lighter in color, than Louisiana, i.e., darker in color. Additionally, Figure

7 shows the inundation of wastewater treatment plants that will be inundated based

on the DSRL database projection of the three regions [53]. The approximate sea

level rise for the three regions is 1 foot for San Francisco Bay Area and Louisiana’s
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coastline and 2 feet for the Delaware River estuary by 2065. In Figure 7, the red

wastewater treatment plants indicate inundation by 2065, which results in five, four,

and four wastewater treatment plants being inundated for the San Francisco Bay

Area, Louisiana’s coastline, and the Delaware River estuary, respectfully.

Only one ANOVA analysis was statistically significant in the San Francisco Bay

Area, household composition and disability (Theme 2) at the sea level rise scenario of

6 feet. However, with no other statistically significant results, we can conclude that

this observation might be due to sample size. Along the Coast of Louisiana, two of

the social vulnerability themes showed statistical significance between 7-10 feet of sea

level rise: household composition and disability (theme 2) and minority status and

language (theme 3). Upon further examination, the difference was counter to what

one might expect with inundated wastewater treatment facilities being less socially

vulnerable than wastewater treatment unaffected facilities between seven and nine

feet. However, the direction of the difference in means reverses for sea level rise of

ten feet with the household composition and disability indicator showing inundated

wastewater treatment plants of being more socially vulnerable than unaffected loca-

tions for the coast of Louisiana. Finally, the ANOVA analysis for the Delaware River

estuary shows no statistical significance across all social vulnerability indexes and all

sea level rise scenarios. In general, despite a few statistically significant categories,

the local scale studies showed no overall correlation between those plants affected by

sea level rise and their social vulnerability compared to unaffected locations. The

results of this study indicate there is relatively equal inundation of the wastewater

treatment plants regardless of region, i.e., 37%, or location, i.e., 50%, at ten feet of

sea level rise.
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Figure 8: Social vulnerability is higher in Louisiana than the other two case study
locations, however, there is minimal statistical significance on social vulnerability
correlated with impacted wastewater treatment plants across each study.
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V. Discussion

5.1 Inundation of Wastewater Treatment Plants

Projected sea level rise will impact up to 11 million people based on 2020 popu-

lations. Accompanying the population impacted are the critical infrastructures that

support society. This study evaluated wastewater treatment plants and their local

community social vulnerability. While the number of wastewater treatment plants

vary by region, with nearly 400 wastewater treatment plants impacted at 10 feet of

sea level rise, 160 in the southeast region alone. Wastewater treatment plants per-

form an essential community service by purifying and removing contaminants from

sewage before returning it into the environment. In the case of sewer overflows, raw

sewage is discharged directly into the environment, causing significant environmental

and public health impacts. Inundation of these wastewater treatment plants could

have similar public health implications and populations with a higher vulnerability

would not recover as quickly.

Social vulnerability refers to the potential negative effects on communities that

are caused by external stress on human health. Furthermore, the reduction of social

vulnerability can decrease both human suffering and economic loss [26]. CDC’s social

vulnerability indexes can be used to help emergency response planners and public

health officials identify and map communities that will likely need assistance before,

during, and after hazardous events [50] to reduce social vulnerability.

This study found based on ANOVA analysis that there is minimal statistical

difference in local social vulnerability between inundated and not affected wastewater

treatment plants at all scales and sea level scenarios. For the minimal comparisons

that were significant, the coastal wastewater treatment plants that are inundated are

in general less socially vulnerable communities than those plants that are not affected.
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Additionally, coastal regions are not homogeneous in that there are differences in

social vulnerability between regions. Therefore, if a hazardous event, i.e., sea level

rise, were to occur and affect a local wastewater treatment plant, the people living

near an inundated wastewater treatment plant are more capable to deal with the

hazard, i.e., less socially vulnerable, than those that are not affected by sea level rise.

5.2 Climate Change and Social Vulnerability

This study’s findings align with other findings of less socially vulnerable people

live near coasts at the national [54, 52], regional [14], local [45], and international

scales [37]. This finding is likely due to the desire and attraction for people to live

near coasts and cope with the vulnerabilities it may have, e.g., buying insurance or

putting their house on stilts.

The findings of this study indicate there is relatively equal inundation of the

wastewater treatment plants regardless of region, i.e., 37%, or location, i.e., 50%, at

ten feet of sea level rise. Additionally, regions with lower social vulnerability, i.e.,

southeast region, and regions with higher social vulnerability, i.e., northeast region,

are affected equally by sea level rise. Therefore, many wastewater treatment plants,

e.g., Figure 7, have locations in highly vulnerable areas, i.e., susceptible to sea level

rise, which have low social vulnerability. Therefore, it is important to understand

social conditions on a case-by-case basis to evaluate community impact of sea level

rise.

5.3 Limitations of this Study

This study assumed a uniform sea level rise. However, sea level rise is not uniform

with areas lower in latitude experiencing more sea level rise [11] and regional differ-

ences dictating relative sea level rise including ground subsidence and other factors.
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Therefore, the southern conterminous United States is experiencing higher rates of

sea level rise than the northern conterminous United States. Additionally, this study

did not consider how sea level rise implications of operations, such as maintenance of

the wastewater treatment plants. Some limitations that may affect operations from

sea level rise include increased salinity in air [55], inundation of network links, e.g.,

pipes [56], imperviousness of land cover [57], presence of ocean barriers [58], and

disruption of service [5, 59]. Additionally, this study was constrained to data regard-

ing infrastructure parallel to wastewater treatment, which limited conclusions of this

study.
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VI. Conclusions

Sea level rise puts low-lying coastal infrastructure, such as wastewater treatment

plants, at significant risk. The results of this study indicate that a nation-wide sea

level rise of 10 feet would inundate nearly 400 wastewater treatment facilities. Flood-

ing of a wastewater treatment facility would result in the inability to treat wastewater

and potential hazardous overflows in neighboring communities. The neighboring com-

munities surrounding wastewater treatment plants vary in their social vulnerability,

which is indicative of a community’s ability to recover from a disaster. We assessed

the relative statistical difference in social vulnerability of the community surrounding

inundated and non-inundated wastewater treatment plants. Following multiple anal-

ysis of variance tests, we conclude that there is no widespread statistical difference in

social vulnerability of populations that are inundated at the national, regional, or local

scale. While there is no statistical difference in the impacted population, communities

with higher vulnerability have wastewater treatment plants that are susceptible to

sea level rise and need to be analyzed on a case-by-case basis. The analysis of social

vulnerability indexes in conjunction with infrastructure impacts open new insights

into how communities are affected. Moreover, precautionary measures may need to

be taken for the people living in low-lying areas that may be affected by sea level rise.

While the current study focused on wastewater treatment plants, there are other

infrastructure systems impacted by sea level rise and other coastal hazards from cli-

mate change. Therefore, future research could study social vulnerabilities of other

infrastructure types, including bridges, electric power infrastructure, or other public

infrastructure. The study of additional infrastructure types will enable a better un-

derstanding of the impact of hazards on communities and their potentially dispropor-

tionate ability to respond to disasters. For example, military facilities’ infrastructure,

which are essential to national security, are also at risk to sea level rise [25]. There are
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more than 1,700 military installations worldwide coastal areas that may be affected

by sea-level rise, which are vital due to their support of DoD readiness and oper-

ations [60]. The communities that support these installations have different levels

of adaptive capacity, as defined by social vulnerability. Alternatively, electric power

substations are a critical infrastructure and sea level rise increases the vulnerability

of these systems to flooding [61]. Understanding the impacted populations from sea

level rise could give insights into the inequitable distribution of resilience and adapta-

tion efforts in infrastructure systems. Therefore, social vulnerability indexes or other

socio-economic indicators should be an essential factor in assessing vulnerabilities to

climate change across infrastructure.
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Appendix A. Appendix

Figure 9: This is an example of 20 WWTPs data, which was used in this study. Items
shown in the table include the WWTP’s name, the sea level rise of inundation, and
the SVI themes associated with the WWTPs.
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