
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2023

Safe and Reliable Software and the Formal Verification of Prim's Safe and Reliable Software and the Formal Verification of Prim's

Algorithm in SPARK Algorithm in SPARK

Brian S. Wheelhouse

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Wheelhouse, Brian S., "Safe and Reliable Software and the Formal Verification of Prim's Algorithm in
SPARK" (2023). Theses and Dissertations. 6945.
https://scholar.afit.edu/etd/6945

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F6945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6945?utm_source=scholar.afit.edu%2Fetd%2F6945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

SAFE AND RELIABLE SOFTWARE AND
THE FORMAL VERIFICATION OF PRIM’S

ALGORITHM IN SPARK

THESIS

Brian S Wheelhouse, Second Lieutenant, USAF

AFIT-ENG-MS-23-M-070

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-23-M-070

SAFE AND RELIABLE SOFTWARE AND THE FORMAL VERIFICATION OF

PRIM’S ALGORITHM IN SPARK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Brian S Wheelhouse, B.S.C.S.

Second Lieutenant, USAF

March 2023

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-23-M-070

SAFE AND RELIABLE SOFTWARE AND THE FORMAL VERIFICATION OF

PRIM’S ALGORITHM IN SPARK

THESIS

Brian S Wheelhouse, B.S.C.S.
Second Lieutenant, USAF

Committee Membership:

Kenneth M Hopkinson, Ph.D
Chair

Laura R Humphrey, Ph.D
Member

Douglas D Hodson, Ph.D
Member

Scott R Graham, Ph.D
Member

AFIT-ENG-MS-23-M-070

Abstract

Despite evidence that formal verification helps produce highly reliable and secure

code, formal methods, i.e., mathematically based tools and approaches for software

and hardware verification, are not commonly used in software and hardware develop-

ment. The limited emphasis on formal verification in software education and training

suggests that many developers have never considered the benefits of formal verifica-

tion. Despite the challenging nature of their mathematical roots, software verification

tools have improved; making it easier than ever to verify software. SPARK, a pro-

gramming language and a formal verification toolset, is of particular interest for the

Air Force Research Laboratory (AFRL), and will be a primary focus of this thesis.

This thesis provides an overview of two safe and reliable languages with verifica-

tion tools, namely SPARK and Rust. Then, to demonstrate the benefits of modern

software verification tools, two examples of software verification in SPARK are pre-

sented. These examples include a verified implementation of the quaternion data

structure and two implementations of Prim’s algorithm, to further demonstrate the

usability and methodology of the SPARK verification toolset.

iv

Acknowledgements

Many thanks to my advisor and committee for their mentorship, revisions, and

suggestions, and specifically to Dr. Laura Humphrey for contributing the Pythagorean

theorem analogy, Compact Position Reporting algorithm (CPR), Automatic Depen-

dent Surveillance-Broadcast (ADS-B), and NASA’s Deep Space 1 probe examples

found in paragraph two of Chapter II, and much of the background on formal meth-

ods, particularly those found in paragraph two of Chapter III.

Brian S Wheelhouse

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

I. Introduction . 1

1.1 Problem Background. 1
1.2 Research Objectives . 2

II. SPARK and Rust: An Overview of Safe and Reliable Software 4

2.1 Introduction . 4
2.2 Safe and Reliable Languages . 6
2.3 Formal Verification Tools for Rust and SPARK . 9

2.3.1 Prusti . 10
2.3.2 SPARK . 10

2.4 Example: Quaternion Data Type . 12
2.5 Conclusions . 16
2.6 Additional Work . 17

III. Formal Verification of Absence of Runtime Errors of Prim’s
Algorithm in SPARK . 18

3.1 Introduction . 18
3.2 Related Work . 20
3.3 SPARK . 22
3.4 Example . 24

3.4.1 Prim’s Algorithm . 24
3.4.2 Prim’s Algorithm in SPARK at the Silver Level 26

3.5 Results . 30
3.6 Conclusion . 33

IV. Formal Verification of Functional Properties of Prim’s
Algorithm in SPARK . 36

4.1 Introduction . 36
4.2 Related Work . 38
4.3 SPARK . 39
4.4 Example . 42

vi

Page

4.4.1 Prim’s Algorithm . 43
4.4.2 Prim’s Algorithm in SPARK at the Gold Level 45

4.5 Results . 50
4.6 Conclusion . 52

V. Conclusions . 54

5.1 Future Work . 56

Appendix A. Quaternion: Full Source Code . 57

Appendix B. Naive Prim’s Algorithm Implementation: Full
Source Code . 77

Appendix C. Textbook Prim’s Algorithm Implementation: Full
Source Code . 81

Bibliography . 93
Acronyms . 101

vii

List of Figures

Figure Page

1. Deductive Program Verification Tools That Use Why3
(reproduced from [1]) . 10

2. Quaternion Representation in SPARK . 13

3. Initial SPARK Analysis of Quaternion Implementation 15

4. SPARK Analysis After Bounding Specified Values 17

5. The Relationship Between SPARK and Ada [2]. 23

6. Package Specification mst prim.ads . 26

7. Package Body mst prim.adb . 28

8. Console Output After SPARK Analysis of the Code in
Figure 6 and Figure 7 . 29

9. Initialization of MST Record . 30

10. SPARK Analysis Report With Uninitialized MST 32

11. SPARK Analysis Report With MST Initialized . 33

12. The Relationship Between SPARK and Ada [2]. 40

13. Vertices, Edges, and Weights . 46

14. Representation of Graph in SPARK . 46

15. Min-Priority-Queue Queue Item . 47

16. Min-Priority-Queue Extract Min . 48

17. SPARK Implementation of Prim’s Algorithm . 49

18. MST Construction . 49

19. SPARK Analysis Report on Prim MST . 51

viii

List of Tables

Table Page

1. SPARK and Rust Similarities Overview . 7

2. SPARK and Rust Differences Overview . 8

3. Levels of SPARK Verification [3]. 11

4. Levels of SPARK Verification [3]. 24

5. Levels of SPARK Verification [3]. 42

ix

SAFE AND RELIABLE SOFTWARE AND THE FORMAL VERIFICATION OF

PRIM’S ALGORITHM IN SPARK

I. Introduction

1.1 Problem Background

Creating highly reliable and secure software is challenging. Most programming

languages seem to consider reliability and security features as an afterthought, leaving

the burden on the software developer to ensure the security and reliability of the

software they produce. This is usually done by unit testing and sometimes fuzzing.

However, these types of software testing approaches can only show that software errors

exist and not that the software is error-free. As software has become increasingly

complex, some programming languages have begun to consider reliability and security

as key elements of the language design itself. Two languages, SPARK (a subset of

Ada) and Rust, are prime examples of this trend in language design. Both languages

also have software verification tools available that allow developers to prove that their

software is functionally correct with respect to its specifications and that it is free

from runtime errors and other possible bugs through static analysis.

The use of verification tools has begun to play a role in the certification of some

safety critical systems such as those found in airplanes, trains, and automobiles, and

also shows promising results for ensuring reliability in other software systems. As an

example, consider that many distributed systems use a minimum spanning tree (MST)

as the backbone for efficient communication within the system; in such a critical role,

it is important that the MST source code is correctly implemented. One way to

1

ensure its correctness with a high degree of confidence is to use formal methods,

i.e., mathematically based tools and approaches for the design and verification of

software and hardware. Toward this end, an implementation of Prim’s algorithm for

constructing MSTs is provided in SPARK, which is both a programming language

and an associated set of formal verification tools. The SPARK verification tools are

then used to formally verify various properties of the implementation. At the most

basic level, formal verification in SPARK requires proving that code satisfies data

flow and initialization contracts and is free of runtime errors. Formal verification

often reveals rare or subtle errors that are hard to detect through testing alone. Once

errors have been corrected and all properties of the specification have been formally

verified, the result is highly reliable software that is mathematically proven to meet

the defined specification requirements.

1.2 Research Objectives

This thesis focuses on the benefits and features of safe and reliable software with

an emphasis on SPARK. To provide background on formal verification and some of

the attributes of highly reliable programming languages and tools, Chapter II gives

an overview of SPARK and Rust and poses the following research question:

RQ1: What are common attributes of highly reliable programming lan-
guages and how do those attributes and formal verification enhance the
quality of software?

With an understanding of the benefits of a secure language and using software

verification tools, Chapter III gives a tutorial of the basic formal verification of a naive

implementation of Prim’s algorithm. This proof of Prim’s algorithm is performed

without manually adding preconditions or postconditions, loop invariants, or other

2

annotations to assist in the proof, making it an automatic proof. It addresses the

following research question:

RQ2: What qualities does an automatic proof of Prim’s algorithm have?

Although this implementation and proof of Prim’s algorithm in Chapter III is

basic and beginner-oriented, the resulting code is a solid foundation for a reliable

implementation of the algorithm. In fact, the results lead to a more interesting proof

of Prim’s algorithm and raise the following question, which is examined in Chapter IV:

RQ3: How do you “level up” basic SPARK code to a meaningful proof of
functional correctness for Prim’s algorithm?

Finally, Chapter V revisits these research questions and summarizes the results

found in response to each question.

3

II. SPARK and Rust: An Overview of Safe and Reliable
Software∗

2.1 Introduction

Ensuring that a software system is secure and highly reliable is a challenging task.

Security and reliability can be easy to overlook when programming languages and

compilers fail to adopt programming practices that help prevent bugs, and thorough

testing of software, with all its edge cases, is unrealistic. A possible solution to this

problem is to use a language that enforces secure and reliable programming practices

and to use formal verification tools to prove that the code is free from common errors.

Rust and SPARK are two modern programming languages that have been built with

security and reliability in mind. Reviewing the characteristics of these languages

shows how they catch bugs early on and prevent security and reliability issues down

the road. Both languages have formal verification tools that are able to prove that

the software meets its desired specifications.

Rather than mathematically proving that software is correct, today’s standard is

to settle for writing tests for software that are often thorough, but hardly ever ex-

haustive or complete. The problem is that software testing proves that errors exist,

but not that the software is error-free [4]. This practice of test-driven development

(as opposed to proof-driven development) has led to a history of unsafe and insecure

software. Testing software is a key process in the software development life-cycle;

however, to improve software generally, formal verification as a component of proof-

driven development can also be applied in the development life-cycle to enhance the

safety and reliability of code. Formal verification is the process of creating mathemat-

∗This chapter is based on a paper that will be published in an upcoming conference proceedings:
B. Wheelhouse, K. Hopkinson, L. Humphrey, D. Hodson, “SPARK and Rust: An Overview of Safe
and Reliable Software”, in Proceedings of the 2022 World Congress of Computer Science, Computer
Engineering, and Applied Computing (CSCE), Las Vegas, 2022.

4

ically or logically verifiable software. It requires creating formal specifications defined

in mathematical or logical terms, writing code that satisfies the specifications, and

then using a variety of tools such as automated theorem provers and satisfiability

modulo theories (SMT) solvers to mathematically prove that the code satisfies its

specifications for all allowed inputs. Consider an analogy based on the Pythagorean

theorem. Testing the Pythagorean theorem with various right triangles increases

confidence that the theorem is correct, while formally verifying the theorem using

geometric axioms proves that it is correct for all right triangles [5]. Similarly, formal

verification tools often find errors that are not found by testing, both in software and

other design artifacts such as requirements and algorithms. For example, consider

the Compact Position Reporting algorithm (CPR), which is part of the Automatic

Dependent Surveillance-Broadcast (ADS-B) protocol. Its goal is to encode aircraft

position in terms of latitude and longitude in 17-bits each, then decode the encoded

position back to approximate latitude and longitude values that are within 5 meters

of the original position. However, significant errors were observed in positions com-

puted by fielded implementations of CPR. Formal verification tools were later used to

reformulate the underlying algorithms and verify software implementations of them

[6]. As another example, consider NASA’s Deep Space 1 probe, which included an

artificial intelligence-based spacecraft control system architecture. Before fielding,

formal verification tools were applied to services to manage interacting parallel goal-

and-event driven processes in the plan execution module. As a result of this effort,

five previously undiscovered concurrency errors were found, one of which was a major

design flaw [7]. During operation, an analogous flaw in an unanalyzed part of the

system resulted in problems with the probe’s thrusters, and a remote patch that used

an analogous fix was applied.

In some cases, formally specifying and verifying software may seem unreasonable.

5

Many critics argue that formal verification is too cumbersome and impractical due

to the cost and the possibility of slowing down the development process. The chal-

lenges of verifying software are certainly evident when considering that software is

constantly changing. Each new feature potentially requires adjustments to the formal

specification and may require new and complex proofs to verify the code. As verifi-

cation tools improve and become more accessible, the ease and flexibility of verifying

software becomes less of a burden.

Advocates of formal methods claim that formal methods are an underused tool in

software development, and mathematically or logically verifying the code will improve

security and lead to highly reliable software [8]. Even when some education about

the philosophy and underlying concepts of formal verification is applied informally,

the quality of software can improve [4].

2.2 Safe and Reliable Languages

Rust and SPARK are two of the first languages that come to mind when it comes

to safe and reliable programming languages. Safety and reliability have been key in

the language constructs of both languages since they were created. The design re-

quirements for both languages feature considerable similarities [9]: “Rust is a systems

programming language focused on three goals: safety, speed, and concurrency... Mak-

ing it a useful language for a number of use cases that other languages are not good

at: embedding in other languages, programs with specific space and time require-

ments, and writing low-level code, like device drivers and operating systems. It im-

proves on current languages targeting this space by having a number of compile-time

safety checks that produce no runtime overhead, while eliminating all data races.”

[10]. Compare these requirements to the DoD Ironman requirements that led to

Ada (the language from which SPARK was developed) in the 1970s: “The language

6

shall provide generality only to the extent necessary to satisfy the needs of embedded

computer applications. Such applications require real-time control, self-diagnostics,

input-output to non-standard peripheral devices, parallel processing, numeric compu-

tation, and file processing. ... The language should aid in the design and development

of reliable programs. The language shall be designed to avoid error-prone features

and maximize automatic detection of programming errors.” [11].

Table 1 highlights some of the similarities between the two languages that Ochem

describes in [9]. These features suggest some of the key features of a highly reliable

language. Strict type safety prohibits implicit conversions between objects of dif-

ferent data types, which is a common source of errors. Strong static typing checks

type safety at compile time to ensure that type issues are not encountered at runtime.

Static memory checks ensure that the code handles memory safely and reliably before

a program even runs. A key feature for safe memory handling is anti-aliasing, which

removes the possibility of modifying shared data. For pointers, Rust uses an own-

ership policy that enforces anti-aliasing. SPARK was recently extended to include

pointers (called access types) based on the Rust ownership model as described in [12]

[13], although access types in SPARK have some limitations compared to Rust. Both

languages manage memory directly. This means that instead of a garbage collector

deciding what allocated memory is no longer needed, the allocated memory is freed

Table 1: SPARK and Rust Similarities Overview
Language Construct SPARK Rust

Strict Type Safety ✓ ✓

Strong Static Typing ✓ ✓

Static Memory Checks ✓ ✓

Dynamic Memory (Pointers) ✓ ✓

Memory Aliasing ✗ ✗

Garbage Collection ✗ ✗

Exception Handling ✗ ✗

7

as soon as it goes out of scope. SPARK and Rust both have very limited forms of

exception handling, which forces a developer to write code such that exceptions do

not exist. This makes the code more reliable as exceptions that are not caught may

crash a program.

Table 2 highlights some of the differences between the two languages that Ochem

describes in [9]. These highlighted differences show stylistic choices or areas where

the two languages are developing. For instance, Rust supports closures and lambda

expressions, while SPARK does not. Rust also supports static type inference, whereas

there is almost no type inference in SPARK. The SPARK language includes constructs

for writing behavioral contracts on functions and procedures, including preconditions

and postconditions. These are not included in the core Rust language, although there

are crates such as the contracts crate [14] and the prusti contracts crate that provide

them. Given such contracts, formal verification tools can attempt to prove that

programs satisfy their contracts, though this may require some assistance or guidance

from the developer. By default, SPARK will attempt to prove contracts through

analysis. However, since contracts in SPARK must be executable, there is also the

option to compile them as runtime checks in the code, which is useful for testing

or better exception handling if formal verification cannot be completed. To name a

few other differences, Rust does not have separate specification and implementation

files like SPARK does. File separation is a stylistic choice that is not critical to

Table 2: SPARK and Rust Differences Overview
Language Construct SPARK Rust

Support for Lambdas / Closures ✗ ✓

Static Type Inference ✗ ✓

Pre- and Post-Conditions ✓ ✗

Separate Spec. and Impl. Files ✓ ✗

Verify Class Consistency ✓ ✗

8

software reliability or safety, but may be a helpful separation with respect to formal

verification.

Leaving aside the stylistic characteristics, both languages treat reliability and

safety in very similar ways, which improves the ability to effectively verify programs

in these languages.

2.3 Formal Verification Tools for Rust and SPARK

This section provides an overview of how tools for formal deductive program ver-

ification work, which summarizes some of the introductory points in [1]. Then we

discuss aspects of the Prusti formal verification tool set for Rust [15] and the SPARK

formal verification tool set [16].

Modern tools for formal deductive program verification attempt to automatically

verify that software is free from run-time errors and some common vulnerabilities

using mathematical and logical approaches such as weakest precondition calculus

and tools such as SMT solvers. This is done by translating code with checks and

contracts to be verified to a deductive verification platform such as Why3 (used by

SPARK) or Boogie (used by Prusti) [17]. The deductive verification platform then

generates verification conditions (VCs) using a weakest-precondition calculus that,

if proven valid by SMT solvers or other provers, implies that the code satisfies its

specifications. Formal verification tools are designed so that they should never state

that a VC is true if it is not actually true. Figure 1 shows how several different

verification toolsets use Why3 as a platform for deductive verification, with other

formal verification tools used to prove VCs.

9

Figure 1: Deductive Program Verification Tools That Use Why3 (reproduced from
[1])

2.3.1 Prusti

Prusti is a new static verifier for the Rust language based on the Viper verification

infrastructure [18] [19]. Running this tool on Rust code will ensure that statements

such as panic!() and unreachable!() are unreachable and potential overflow vulnerabil-

ities are checked. Additionally, developers can add annotations such as preconditions

and postconditions and loop invariants to prove the functional behavior of the code.

If any of these checks fails, an error is reported stating that the code does not meet

the specifications.

2.3.2 SPARK

SPARK, which is a subset of the Ada programming language, is both a program-

ming language and a formal verification toolset. The SPARK toolset verifies code

without compiling or executing it. SPARK performs different types of analysis. The

simplest form of analysis checks that the code is valid SPARK code, that is, the

code does not contain any disallowed features of the Ada language. The next level

of analysis, flow analysis, checks the initialization of variables, unused assignments,

unmodified variables, and data dependencies between the input and output of the

subprograms. After flow analysis, proof analysis uses the toolset’s provers to check

10

for the absence of runtime errors and the conformance of the program with its specifi-

cations. When proof analysis is performed, check and flow analysis are also performed

since the proofs are not accurate unless the check and flow analysis pass.

Given the different types of analysis SPARK can perform and the fact that the

level of detail in program specifications can vary from partial to complete, some col-

loquial terms have been adopted by SPARK users to indicate the level of verification

that has been attained for the code. From lowest to highest, these levels are colloqui-

ally referred to as “stone,” “bronze” “silver,” “gold,” and “platinum” [3]. A simple

example of a gold level proof can be found in [20], which verifies that a merge sort

algorithm satisfies a partial specification. Table 3 gives more details on the levels of

SPARK verification and the use cases at each level.

Table 3: Levels of SPARK Verification [3].
Level Guarantees Use Case

Stone Valid SPARK
Intermediate level during the adoption of
SPARK

Bronze
Initialization, correct

data flow
As large a part of the code as possible

Silver
Absence of run-time
errors (AoRTE)

The default target for critical software (subject
to costs and limitations)

Gold
Proof of key integrity

properties
Only for a subset of the code subject to specific
key integrity (safety/security) properties

Platinum
Full functional proof

of requirements
Only for those parts of code with the highest
integrity (safety/security) constraints

[21] and [5] provide an overview of how SPARK has been used in various projects,

especially projects focused on cyber security and safety in the aerospace domain.

These include the Ship Helicopter Operating Limits Information System (SHOLIS);

the C130J “Hercules” core mission computer, which saw 80% savings in the mod-

ified condition/decision coverage (MC/DC) testing budget due to the low number

of faults discovered during testing; and the NSA-funded Tokeneer demonstrator, for

11

which testing found zero defects for a period after delivery. In terms of cyber secu-

rity, the silver-level verification in SPARK shows that the code is free of many of the

cyber vulnerabilities classified in the MITRE Corporation Common Weakness Enu-

meration (CWE) database [22]. This is discussed in [23] which provides a mapping of

how the language features of SPARK/Ada prevent certain classes of CWEs and how

verification with SPARK prevents others.

2.4 Example: Quaternion Data Type

As an exercise to explore the benefits and limitations of formal deductive pro-

gram verification, we verify an implementation of the quaternion data structure and

associated operations in SPARK. Quaternions are useful in simulations of rigid body

objects, such as airplanes. Bourg, the author of the book “Physics for Game Devel-

opers: Science, math, and code for realistic effects” defines and presents an imple-

mentation of quaternions as a means of solving the gimbal lock problem in a flight

simulator in Chapter 11 of [24]. To summarize Bourg’s definition, quaternions are a

four-dimensional quantity similar to a vector that is made up of four components. A

quaternion is typically represented in the form:

q = q0 + qxi+ qyj + qzk (1)

Furthermore, a unit quaternion satisfies the following, which makes it analogous

to a unit vector:

q0
2 + qx

2 + qy
2 + qz

2 = 1 (2)

We converted the quaternion sample code from [24] to Rust and then to SPARK.

This implementation presents a quaternion as a scalar portion (q0) and a three-element

12

1 −−General Purpose Quaternion−−−−−−−−−−−
2 type Spark Quaternion i s record
3 N: Float := 0 . 0 ; −− Sca lar Part
4 V: Vector3 ; −− Vector Part
5 end record ;
6 −−General Purpose 3−element vec tor−−−−−
7 type Vector3 i s record
8 X: Float := 0 . 0 ;
9 Y: Float := 0 . 0 ;
10 Z : Float := 0 . 0 ;
11 end record ;

Figure 2: Quaternion Representation in SPARK

vector to represent qx, qy and qz, with each value represented as a floating point

number, as shown in Figure 2.

Vector3 is our three-element vector implementation which implements the follow-

ing methods:

• Magnitude

• Normalize

• Cross Product

• “+” operator

• “-” operator

• “*” operator

• “/” operator

These methods help simplify the implementation of the quaternion package, which

includes the following functionality:

• Magnitude

• Get Vector

13

• Get Scalar

• Get Angle

• Get Axis

• Rotate Quaternion

• Rotate Quaternion by Vector

• Make Quaternion From Euler Angles

• Make Euler Angles From Quaternion

• “not” operator

• “+” operator

• “-” operator

• “*” operator

• “/” operator

All vector and quaternion methods and a couple of utility functions to convert degrees

to radians and radians to degrees are included in the SPARK analysis summary

presented in Figure 3. To help the provers, we added preconditions on the divide

(“/” operator) subprograms to avoid division by zero.

Testing the SPARK implementation with a few test cases builds confidence that

the implementation at least matches the Rust implementation, which we have not yet

attempted to verify with Prusti. Running the SPARK verification tool in the prove

all mode produces the summary of the SPARK analysis presented in Figure 3. [25]

provides finer details of the SPARK analysis results table; however, for the purposes

14

Summary o f SPARK ana l y s i s
=========================

−−
SPARK Analys i s r e s u l t s Total Flow Provers Unproved
−−
Data Dependencies
Flow Dependencies
I n i t i a l i z a t i o n 5 5 . .
Non−Al i a s i ng
Run−time Checks 234 . 102 (CVC4 92%, 132

T r i v i a l 8%)
As s e r t i on s
Funct iona l Contracts 10 . 8 (CVC4) 2
LSP Ve r i f i c a t i o n
Termination
Concurrency
−−
Total 249 5(2%) 110 (44%) 134 (54%)

max s t ep s used for s u c c e s s f u l proo f : 4494

Figure 3: Initial SPARK Analysis of Quaternion Implementation

of this chapter, we will relate our results to the levels of SPARK use described in

Table 3.

Based on the results in the analysis summary, this quaternion implementation

passes flow analysis, which corresponds to a bronze level SPARK proof, because there

are no data or flow dependencies and no accesses to uninitialized variables. Due to

the size of the code base and the use of unbounded floats, 132 unproved run-time

checks are produced with warnings similar to:

quatern ion . adb : 1 6 0 : 4 6 : medium : f l o a t over f l ow check

might f a i l [reason for check : r e s u l t o f f l o a t i n g −

po int mu l t i p l i c a t i o n must be bounded]

[p o s s i b l e f i x : subprogram at quatern ion . ads : 50 should

mention LEFT and RIGHT in a pre cond i t i on] [#71]

Unproved checks involving floating-point computations make increasing the level

of proof to the silver level complex and challenging. As stated in [26], “General pur-

15

pose tools for the deductive verification of programs have added support for floating-

point computations in recent years, but often the proved properties are limited to

verifying ranges or the absence of special values such as not a number (NaN) or Infin-

ity. Proofs of more complex properties, such as rounding error bounds, are generally

reserved to experts and often require the use of a proof assistant or a specialized solver

as a backend.” Resolving overflow checks, such as the ones shown above, may resolve

the two unproved functional contracts; however, the unproved functional contracts

should only be addressed once absence of runtime errors (AoRTE) is ensured. Once

AoRTE is ensured, the code will meet the standards for a silver level proof.

2.5 Conclusions

Formally verifying software comes at the cost of educating software developers

about formal methods for software verification. Choosing a safe and reliable language

along with formal verification tools and techniques can increase the reliability and

security of software by automatically checking commonly overlooked security and

reliability concerns in software. SPARK and Rust, with their associated verification

tools, exemplify how safe and reliable software goals can be achieved today.

In the future we would like to increase the level of proof of the quaternion package

to the silver level by exploring available options for bounding floating point num-

bers in [26]. A gold-level proof could then be attained by creating an appropriate

specification for quaternions and proving key properties of the quaternion implemen-

tation. We would also like to attempt to use Prusti to verify a Rust implementation

of quaternions. The attempt would likely run into the same issues involving floating-

point computations, but in any case it would be interesting to perform verification

using both SPARK and Prusti and compare the results.

16

2.6 Additional Work

After the final draft was submitted for publication, specifying tighter bounds for

input values and excluding large positive and negative floating point inputs for values

Deg Angle, Rad Angle, and Scalar as suggested in [26] provided significantly improved

results. Specifically, Deg Angle was bounded to values between 0.0..360.0, Rad Angle

to 0.0..2.0 ∗ Pi, and Scalar to −224..224 which should be large enough to simulate

any airplane that can physically be flown on Earth. The simple bounding of these

three values decreased the number of run-time errors by more than 50% as shown

in Figure 4. These results emphasize how simple specifications and bounding can

increase the reliability of the code, although it is difficult to resolve all the issues

when dealing with floating-point computations.

Summary o f SPARK ana l y s i s
=========================

−−−
SPARK Analys i s r e s u l t s Total Flow Provers Unproved
−−−
Data Dependencies
Flow Dependencies
I n i t i a l i z a t i o n 5 5 . .
Non−Al i a s i ng
Run−time Checks 316 . 252 (CVC4 31%, 64

T r i v i a l 69%)
As s e r t i on s
Funct iona l Contracts 8 . 6 (CVC4) 2
LSP Ve r i f i c a t i o n
Termination
Concurrency
−−−
Total 329 5(2%) 258 (78%) 66 (20%)

max s t ep s used for s u c c e s s f u l proo f : 4529

Figure 4: SPARK Analysis After Bounding Specified Values

17

III. Formal Verification of Absence of Runtime Errors of
Prim’s Algorithm in SPARK∗

3.1 Introduction

As software systems increase in complexity, it becomes more difficult to ensure

their correctness. A major reason is that as the complexity of the system increases,

the proportion of system behaviors that can be feasibly covered by standard test-

based verification approaches decreases, leaving more room for latent errors. A pos-

sible solution to this problem lies in the use of formal methods, i.e., mathematically

based tools and approaches for software and hardware verification [27, 28]. Whereas

testing checks individual execution traces of a system, formal methods analyze a

mathematical model of a system, opening the possibility of mathematically proving

that all possible behaviors of the system are correct. To make an analogy, consider

the Pythagorean Theorem. One could merely build confidence in its correctness by

testing it against a set of randomly selected right triangles, or one could prove its

correctness for all right triangles by applying geometric axioms.

In safety-critical domains, where errors can lead to substantial damage or loss of

life, there is a need to eliminate as many errors as possible. Therefore, certification

standards for many safety-critical domains promote the use of formal methods, for

example, ISO 26262 for the automotive domain [29], EN 50128 for the railway domain

[30], and the DO-333 supplement to DO-178C for the aerospace domain [31]. There

is a perception that formal methods require significant expertise to use and may not

provide a good return on investment [32, 4, 33], so historically the use of formal

methods has been concentrated in safety-critical domains. However, the challenge

∗This chapter is based on a paper that is published in the conference proceedings:
B. Wheelhouse, L. Humphrey, K. Hopkinson. “Formal verification of prim’s algorithm in spark”,
in Proceedings of the 56th Hawaii International Conference on System Sciences (HICSS), pages
6695–6703, 2023.

18

of maintaining software correctness in the face of growing complexity has recently

motivated the use of formal methods in other domains. For example, engineers at

Amazon Web Services (AWS) have been using formal methods since 2011 to help

solve difficult design problems in systems that use distributed algorithms for data

management [34], and AWS also uses formal methods to address a variety of cyber

security concerns [35, 36, 37]. Despite perceptions that formal methods are difficult

and expensive to use, Newcombe et al. (2015) found that “formal methods find bugs

in system designs that cannot be found through any other technique we know of,”

and “Formal methods are surprisingly feasible for mainstream software development

and give good return on investment.” In fact, they found that using formal methods

to write and check proofs of certain types of algorithm was actually faster and easier

than doing so by hand. In general, while the use of formal methods does require

some investment, the return on investment is eventually realized in terms of better

reliability, security, and fewer bugs to fix after development [33].

For formal program verification, one language and toolset that we have found

relatively easy to use is SPARK [16]. This is both because the design philosophy

of the language emphasizes safe and correct programming, it is freely available as

part of the GNAT Community Edition [38], and there are a number of educational

materials and examples available [2, 39]. In this chapter, we show how to use SPARK

to implement and verify certain properties of Prim’s algorithm for building minimum

spanning trees (MSTs). We choose to focus on this algorithm because MSTs are

used in problems involving network reliability, classification, and routing [40, 41] and

would benefit from formal verification given the need for reliability in these problem

domains.

The remainder of the chapter proceeds as follows. Section 3.2 discusses a few

applications of SPARK in industry and efforts to prove Prim’s algorithm using various

19

methods, Section 3.3 gives some background on SPARK, Section 3.4 demonstrates

how SPARK is used to develop and verify Prim’s algorithm, Section 3.5 addresses

the results of the analysis report generated by SPARK, and Section 3.6 concludes the

chapter.

3.2 Related Work

Formal methods have been used successfully in a variety of large projects and in

proving Prim’s algorithm. [21] and [5] provide an overview of how SPARK has been

used in various projects, especially projects focused on cyber security and safety in the

aerospace domain. These include the Ship Helicopter Operating Limits Information

System (SHOLIS); the C130J “Hercules” core mission computer, which saw 80%

savings in the modified condition/decision coverage (MC/DC) testing budget due

to the low number of faults discovered during testing; and the NSA-funded Tokeneer

demonstrator, for which testing found zero defects for a period after delivery. In terms

of cyber security, the silver-level verification in SPARK shows that the code is free

of many of the cyber vulnerabilities classified in the MITRE Corporation Common

Weakness Enumeration (CWE) database [22]. This is discussed in [23], which provides

a mapping of how the language features of SPARK/Ada prevent certain classes of

CWEs and how verification with SPARK prevents others.

We briefly note that other tools and frameworks perform analogous types of for-

mal verification for different languages. For example, Frama-C is a framework for

analyzing C code in which contracts and assertions are written in ANSI/ISO C Spec-

ification Language (ACSL) and plugins for formal verification are available [42]. A

case study comparing ACSL/Frama-C with SPARK can be found in [43]. There is

also Prusti for Rust [44] and Krakatoa [45] for Java, just to name a few.

In regard to Prim’s algorithm, some efforts have already been made to apply

20

formal methods. Abrial, Cansell, and Méry give an approach to proving Prim’s al-

gorithm using the formal modeling tool Atelier B [46]. Atelier B is an environment

for generating and proving proof obligations for formal models, e.g. of algorithms.

Such models can be automatically translated into C, C++, Ada, or HIA code [47],

but since errors could be introduced during this translation, additional program ver-

ification tools such as SPARK should be used.

Another effort has succeeded in a proof of full functional correctness of an exe-

cutable implementation of Prim’s algorithm written in verifiable C using Coq: Com-

pCert and the Verified Software Toolchain (VST) separation logic deductive verifier

[48]. Mohan demonstrates that Prim’s algorithm works on disconnected graphs (thus

finding a minimum spanning forest (MSF) rather than a MST) and predicts that

more-automated tools such as Why3 would not be able to prove full functional cor-

rectness as easily as their work with VST.

Based on the denotational semantics of the language, SPARK translates programs

along with checks and contracts to be verified to the Why3 deductive verification plat-

form [17]. Why3 then uses a weakest-precondition calculus to generate verification

conditions (VCs), i.e. logical formulas whose validity would imply the soundness of

the code with respect to its checks and contracts. Why3 then uses multiple theo-

rem provers/satisfiability modulo theories (SMT) solvers to discharge VCs, including

CVC4 [49], Alt-Ego [50], and Z3 [51]. While the tools attempt to automate this pro-

cess, sometimes additional assertions in the code must be provided by the user to guide

the underlying provers. We demonstrate what SPARK is able to prove automatically

using Prim’s algorithm as an example. This example also serves as a simple tutorial

on how to begin using SPARK to formally verify an executable implementation of a

common algorithm.

21

3.3 SPARK

This section provides an overview of SPARK, much of which is summarized in

[2]. SPARK is a programming language and a formal verification toolset. SPARK,

as a programming language, is based on the Ada programming language. Ada has a

number of features that help to support the development of safe and correct programs,

which SPARK builds upon. However, SPARK both adds some features that support

formal verification, and removes some features that make formal verification difficult.

In summary, SPARK leverages Ada features, such as

• Type safety

• Ada 2012 aspects for writing contracts

• A package system that enables clean separation of interfaces from implementa-

tions

and removes features such as

• Aliasing (assigning two names to the same object)

• Exception handlers

• Backward goto statements

• Controlled types

• Side-effects in expressions, including functions

For users who rely on Ada features that are restricted in the SPARK subset, note

that, while SPARK can be used to prove an entire program, it can also be applied to

only specific parts of a program, including designated lines, subprograms, or packages.

Combined with the fact that SPARK is compiled using an Ada compiler, this makes

22

it possible to mix unproven Ada code with restricted features into the program if

necessary. The SPARK User’s Guide goes into more detail about these restrictions

in [52]. The relationship between SPARK and Ada is depicted in Figure 5.

As a static verification toolkit, SPARK verifies code without compiling or exe-

cuting it. SPARK performs several different types of static analysis. One is flow

analysis, which checks the initialization of variables, unused assignments, unmodified

variables, and data dependencies between the input and output of subprograms. The

other is proof, which checks the absence of runtime errors and the conformity of the

program with its specifications.

Given the different types of analysis SPARK can perform and the fact that the

level of detail in program specifications can vary from partial to complete, some col-

loquial terms have been adopted by SPARK users to define the level of assurance

that has been attained for the code. From lowest to highest, these levels are colloqui-

ally referred to as “stone,” “bronze” “silver,” “gold,” and “platinum” [3]. A simple

example of a gold level proof can be found in [20], which verifies that a merge sort

algorithm satisfies a partial specification. Table 4 gives more details on the levels of

SPARK verification and the use cases at each level.

Figure 5: The Relationship Between SPARK and Ada [2].

23

Table 4: Levels of SPARK Verification [3].
Level Guarantees Use Case

Stone Valid SPARK
Intermediate level during the adoption of
SPARK

Bronze
Initialization, correct

data flow
As large a part of the code as possible

Silver
Absence of run-time
errors (AoRTE)

The default target for critical software (subject
to costs and limitations)

Gold
Proof of key integrity

properties
Only for a subset of the code subject to specific
key integrity (safety/security) properties

Platinum
Full functional proof

of requirements
Only for those parts of code with the highest
integrity (safety/security) constraints

3.4 Example

Spanning trees can be used in communication protocols to provide paths from one

node in the network to another non-neighboring node. A spanning tree is a subset of

edges in a graph that connect all nodes or vertices in the graph without any cycles,

where the number of edges is one less than the number of vertices. For a weighted

graph, a minimum spanning tree is one whose edge weights have the smallest sum of

all possible spanning trees in the graph [53].

Prim’s algorithm is one algorithm that can be used to compute an MST for a

graph. In this section, we start by describing this algorithm. Then, we present an

implementation of this algorithm in SPARK and show how to refine it so that it is

proved at the bronze and silver level.

3.4.1 Prim’s Algorithm

Prim’s algorithm is a greedy algorithm for finding an MST of a weighted undi-

rected graph given a starting vertex. Let G = (V,E) be a weighted undirected graph

with vertices V , edges E, and a function w : E → R assigning a weight w(u, v) to

every edge (u, v) ∈ E. Let us denote the set of vertices as G.V . Starting from an

24

arbitrary root vertex r ∈ G.V , Prim’s algorithm incrementally builds a tree A. In

each iteration, it adds to A the edge with minimum weight that connects a vertex in

A to a vertex in G.V that is not in A. In each iteration, A is an MST for the subgraph

of G whose vertices are connected by the edges in A. As soon as all the vertices in

G.V are connected by edges in A, A is an MST of G. Note that the algorithm does

not work when there are disconnected vertices in the graph and the computed MST

may vary depending on the choice of r.

A min-priority queue is commonly used in Prim’s algorithm to quickly extract

the next minimum edge. For each vertex v ∈ G.V , let G.Adj[v] be a list of adjacent

vertices. For each vertex in the minimum priority queue Q, let v.key store the min-

imum weight of any edge connecting v to a vertex in the tree A (with v.key = ∞

if there is no edge), so that function Extract-Min(Q) returns the vertex associated

with the smallest weight. Let v.π store the corresponding parent of v in the tree.

Then Algorithm 1 describes the steps of Prim’s algorithm as given in [53], with r

Algorithm 1 Prim’s Algorithm [53]

1: procedure MST-Prim(G, w, r)
2: for each u ∈ G.V do
3: u.key = ∞
4: u.π = NIL
5: end for
6: r.key = 0
7: Q = G.V
8: while Q ̸= ∅ do
9: u = Extract-Min(Q)
10: for each v ∈ G.Adj[u] do
11: if v ∈ Q and w(u,v) < v.key then
12: v.π = u
13: v.key = w(u, v)
14: end if
15: end for
16: end while
17: end procedure

25

being the root of the generated tree A and the structure of A described by the values

of v.π extracted from the queue Q.

3.4.2 Prim’s Algorithm in SPARK at the Silver Level

The Ada language includes two types of subprograms: functions and procedures.

A function is a subprogram that returns a value, while a procedure is a subprogram

that does not. The implementation of Prim’s algorithm presented in this chapter uses

two functions: one called Extract Min and another called Mst Prim. Rather than

using a minimum priority queue as shown in Algorithm 1, this implementation tracks

the visited vertices with a type called V isited Set, which is an array of Booleans, and

uses Extract Min to find the next minimum edge that has not yet been visited. The

declaration of these functions is given in Figure 6, and the implementations are given

in Figure 7 and revised in Figure 9. This example restricts the graph size to only five

vertices for simplicity.

1 package MST Prim with SPARK Mode i s
2 Subtype Weight i s I n t eg e r range 0 . . Integer ’ Last ;
3 Subtype Extended Vertex i s I n t eg e r range 0 . . 5 ;
4 Subtype Vertex i s Extended Vertex range 1 . . 5 ;
5 type Des t ina t i on s i s array (Vertex) of Vertex ;
6 type Weights Li s t i s array (Vertex) of Weight ;
7 type MST i s record
8 Weights : Weights Li s t ;
9 Edges : De s t ina t i on s ;
10 end record ;
11 type Vi s i t e d S e t i s array (Vertex) of Boolean ;
12 type Adj L i s t i s array (Vertex) of Weight ;
13 type Graph i s array (Vertex) of Adj L i s t ;
14
15 function Mst Prim (G: Graph ; r : Vertex) return MST;
16 function Extract Min (
17 Weights : Weights Li s t ;
18 V i s i t ed : V i s i t e d S e t
19) return Vertex ;
20 end MST Prim ;

Figure 6: Package Specification mst prim.ads

26

Since SPARK is a subset of Ada, it follows the same packaging structure. The

code is structured into two files: a specification file with an “.ads” file extension which

contains function and parameter declarations of the package and a package body file

with an “.adb,” file extension which contains the function implementations of the

package. The following code is an implementation of Prim’s algorithm in SPARK at

the stone level, i.e. the code compiles but the results show that it does not pass flow

analysis as shown in Figure 8.

Figure 6 contains the package specification. In the specification file, we set types

to describe a graph and an MST. We represent a graph as an adjacency matrix that

specifies the weights for each edge, and we represent an MST as a record that contains

a list of parents and a list of minimum edge weights, each list having one element per

vertex. The list of minimum edge weights is stored using a type called Weights List,

which is analogous to the set of v.key values in Algorithm 1, and the list of parents is

stored using a type called Destinations, which is analogous to the set of v.π values.

Each list is an array indexed by V ertex, so that each index of the array corresponds

to a vertex in the graph. The V ertex type in Figure 6 cannot have a value less

than 1 or greater than 5. This SPARK feature, which is inherited from Ada, helps

with type safety. Strong types in SPARK help clarify the intent of the code and

ensure that values are not corrupted by incompatible types during run-time. Type

names are also case-insensitive, which adds additional clarity to the code by enforcing

that all type names must be unique. If the names are not unique, the code will not

compile. For example, a variable cannot be named “vertex” when there is already a

type called “Vertex.” Bounding a type ensures that out-of-bounds values cannot be

assigned to variables of that type without a runtime error during execution. SPARK

verification tools can automatically prove that variables of bounded types are never

assigned out-of-bounds values as part of the flow analysis check.

27

1 package body MST Prim with SPARK Mode i s
2 function Extract Min (
3 Weights : Weights Li s t ; V i s i t ed : V i s i t e d S e t
4) return Vertex i s
5 min : Weight := Weight ’ Last ;
6 min Index : In t eg e r ;
7 begin
8 min Index := 1 ;
9 for I in Vertex loop
10 i f Weights (I) < min
11 and Vi s i t ed (I) = Fal se
12 then
13 min := Weights (I) ;
14 min Index := I ;
15 end i f ;
16 end loop ;
17 return min Index ;
18 end Extract Min ;
19
20 function Mst Prim (G: Graph ; r : Vertex) return MST
21 i s
22 M : MST;
23 V i s i t ed : V i s i t e d S e t := (others => False) ;
24 u : Vertex ;
25 begin
26 M. Weights (r) := 0 ;
27 M. Edges (r) := Extended Vertex ’ F i r s t ;
28 for I in Vertex loop
29 u := Extract Min (M. Edges , V i s i t ed) ;
30 V i s i t ed (u) := True ;
31 for V in Vertex loop
32 i f G(u) (V) > 0 and Vi s i t ed (V) = False and
33 G(u) (V) < M.Weights (V)
34 then
35 M. Weights (V) := G(u) (V) ;
36 M. Edges (V) := u ;
37 end i f ;
38 end loop ;
39 end loop ;
40 return M;
41 end MST Prim ;
42 end MST Prim ;

Figure 7: Package Body mst prim.adb

Figure 7 contains the implementations of the algorithms’ functions. For a given

initial vertex r, the function MST Prim initializes the corresponding weight in MST

M to zero and the edge to its parent as Extended V ertex′First (which is zero) to

28

represent NIL. At each iteration, the vertex that is reachable with minimum weight

from the current tree stored in MST M is selected as the current vertex and is

marked as visited in V isit Set. From here, the function follows the process described

in Algorithm 1 and updates the minimum weights to reach each vertex to which the

current vertex is connected. Using Extract Min, the next reachable vertex with the

minimum edge weight is selected, and the process of updating the edge weights in

the solution MST continues. As a new edge is added, a new partial solution MST is

created that contains all the vertices that have been visited so far.

Although the code in the Figure 7 is correct SPARK code (making this a stone-

level verification), it does not pass the SPARK flow analysis. Flow analysis verifies

that data will flow through variables and subprograms correctly at runtime [2]. In this

case,M is not properly initialized, so SPARK analysis provides the output in Figure 8,

identifying the fields of the record M that are not properly initialized. Uninitialized

variables introduce nondeterminism, which is evident when the program specified in

Figure 7 is executed. Without initializing the variable M , the execution of the code

results in an incorrect MST. To solve this problem, we simply initialize M as shown

in Figure 9, with the minimum edge weights set to the maximum possible value for

the type Integer and all the edges for the parents set to 0 (representing NIL).

Once M is initialized, the flow analysis passes and the code constructs a correct

MST. This raises the verification level to bronze, and with no run-time errors, it is even

considered a silver-level proof. The automatic achievement of silver-level verification

Phase 1 o f 2 : gene ra t i on o f Global c on t r a c t s . . .
Phase 2 o f 2 : a n a l y s i s o f data and in fo rmat ion f low . . .
mst prim . adb : 3 5 : 2 7 : medium : ”M. Edges” might not be i n i t i a l i z e d
mst prim . adb : 3 9 : 1 9 : medium : ”M. Weights” might not be i n i t i a l i z e d
mst prim . adb : 4 6 : 1 4 : medium : ”M. Weights” might not be i n i t i a l i z e d
mst prim . adb : 4 6 : 1 4 : medium : ”M. Edges” might not be i n i t i a l i z e d

Figure 8: Console Output After SPARK Analysis of the Code in Figure 6 and Figure 7

29

1 type MST i s record
2 Weights : Weights Li s t := (others => Integer ’ Last) ;
3 Edges : De s t ina t i on s := (others => 0) ;
4 end record ;

Figure 9: Initialization of MST Record

in this case is mainly due to the simplicity of the code and the straightforward type

definitions. The analysis report in the next section explains what checks were proven

to achieve these levels of verification.

3.5 Results

SPARK generates an analysis report that summarizes the checks performed on

the code during analysis, including whether or not the checks were successful and

which tools or provers were used to discharge them. These details are presented as

a table included in the analysis report, as shown in Figure 10 and Figure 11. Each

row in the table represents the categories of checks that SPARK performs, and the

columns represent which tool was used to discharge each check. When a prover is

used to discharge a check, the name of the prover is cited in the provers column. The

numbers in the table represent the total number of checks verified by the associated

tool. The number of steps needed to prove the checks and a breakdown of the checks

by subprogram are also given in the analysis report. A detailed description of the

analysis report that includes descriptions of the columns and rows of the table can

be found in [25] but the results for this example are presented here.

Figure 10 shows the analysis report for our program when it had an uninitialized

variable. When a variable is not initialized, the flow analysis fails. The code analyzed

in this case is contained in Figure 6 and Figure 7, where the variable MST in the

MST Prim subprogram is not initialized. After running SPARK with the “prove all”

option in this code, 4 checks (50% of all checks) are unproved, as shown in the analysis

30

report. These four checks are directly related to the warnings given in Figure 8. This

means that there is no guarantee that valid values will pass through the variable M

in the subprogram Mst Prim. The column “Unproved” in Figure 10 demonstrates

how flow analysis is able to catch initialization issues that are not caught by the

compiler. Initializing M as shown in Figure 9 resolves the error, and the new analysis

report, presented in Figure 11, shows that all initialization checks are successful.

Additionally, the code now passes the flow analysis and is guaranteed to have valid

information flow because flow analysis is sound, which means that if the errors it is

supposed to catch are not caught, then there are no such errors [2].

Both results summaries show one check discharged by the CVC4 prover. In this

case, the Extract Min subprogram has been proven to contain no runtime errors

when it uses an Integer type for min Index to return a V ertex type. This means

that min Index will never hold a value outside the range of type V ertex, which is a

proof that can be automatically performed by SPARK using provers such as CVC4

without the need for additional annotations from the developer.

Proofs performed by the provers are only guaranteed if flow analysis is passing.

Therefore, the results in the “Provers” column should be considered only after the

flow analysis is complete. For more complex code or code with gold or platinum

level functional specifications, it is likely that more effort would be required from the

developer, e.g., additional annotations in the code needed to guide the provers (see

[20] for an example).

Since all subprograms in this example had 0 unproved checks in all rows above

“Functional contracts,” the subprograms are verified to the silver level. We consider

this an automatic proof because the code did not need to be annotated with precon-

ditions and postconditions, loop invariants, assertions, etc. for all checks to prove.

Raising this code to the gold or platinum level would require first writing functional

31

−−
SPARK Analys i s r e s u l t s Total Flow Provers Unproved
−−
Data Dependencies
Flow Dependencies
I n i t i a l i z a t i o n 6 2 . 4
Non−Al i a s i ng
Run−time Checks 1 . 1 (CVC4) .
As s e r t i on s
Funct iona l Contracts
LSP Ve r i f i c a t i o n
Termination
Concurrency
−−
Total 7 2 (29%) 1 (14%) 4 (57%)

max s t ep s used for s u c c e s s f u l proo f : 1

Analyzed 2 un i t s
in uni t main , 0 subprograms and packages out o f 1 analyzed

Main at main . adb : 4 skipped
in uni t mst prim , 3 subprograms and packages out o f 3 analyzed

MST Prim at mst prim . ads : 1 f low analyzed
(0 e r ro r s , 0 checks and 0 warnings) and proved (0 checks)
MST Prim . Extract Min at mst prim . ads : 23 f low analyzed
(0 e r ro r s , 0 checks and 0 warnings) and proved (1 checks)
MST Prim . Mst Prim at mst prim . ads : 27 f low analyzed
(0 e r ro r s , 4 checks and 0 warnings) and proved (0 checks)

Figure 10: SPARK Analysis Report With Uninitialized MST

specifications for each subprogram in the form of preconditions and postconditions

and then using SPARK to attempt to prove that they are satisfied. After that, if

SPARK is not able to prove that the code satisfies the specifications automatically,

then the developer would need to add additional annotations in the code to guide the

provers. At the silver level, the code is currently guaranteed to have correct variable

initialization and data flow and to be free of run-time errors, which is a key step in

demonstrating that the code is highly reliable.

32

−−−
SPARK Analys i s r e s u l t s Total Flow Provers Unproved
−−−
Data Dependencies
Flow Dependencies
I n i t i a l i z a t i o n 3 3 . .
Non−Al i a s i ng
Run−time Checks 1 . 1 (CVC4) .
As s e r t i on s
Funct iona l Contracts
LSP Ve r i f i c a t i o n
Termination
Concurrency
−−−
Total 4 3 (75%) 1 (25%) .

max s t ep s used for s u c c e s s f u l proo f : 1

Analyzed 2 un i t s
in uni t main , 0 subprograms and packages out o f 1 analyzed

Main at main . adb : 4 skipped
in uni t mst prim , 3 subprograms and packages out o f 3 analyzed

MST Prim at mst prim . ads : 1 f low analyzed
(0 e r ro r s , 0 checks and 0 warnings) and proved (0 checks)
MST Prim . Extract Min at mst prim . ads : 23 f low analyzed
(0 e r ro r s , 0 checks and 0 warnings) and proved (1 checks)
MST Prim . Mst Prim at mst prim . ads : 27 f low analyzed
(0 e r ro r s , 0 checks and 0 warnings) and proved (0 checks)

Figure 11: SPARK Analysis Report With MST Initialized

3.6 Conclusion

In this chapter, we have given a brief overview of formal methods, with an empha-

sis on SPARK for formal program verification. We have shown how to use SPARK to

develop and formally verify a basic implementation of Prim’s algorithm for construct-

ing MSTs, with an explanation of what types of analysis SPARK performs and how

the different levels of verification in SPARK are categorized. In this case, the provers

automatically formally verified that our implementation is free of data initialization,

data flow, and runtime errors. This level of verification provides a solid foundation

for reliable code.

33

In the future, we would like to reimplement the algorithm using a formally veri-

fied implementation of a minimum-priority queue such as the one presented in [54] to

match Algorithm 1 more closely. Next, we would like to formally verify that our imple-

mentation satisfies the functional specifications of the algorithm. This would require

writing appropriate specifications for our subprograms in the form of preconditions

and postconditions that describe their desired behavior. While SPARK attempts to

prove such properties automatically, fully automated proof is generally not feasible,

so it is likely that annotations in the form of assertions and loop invariants will be

needed to guide the provers. As a starting point, we can leverage work by Möller

and Höfner who prove Prim’s algorithm by hand (i.e. not with formal methods), but

using a proof strategy explicitly designed to facilitate formal program verification of

an implementation of the algorithm [55]. Most other proof approaches rely on (1)

existence of a minimal spanning tree of the overall graph and (2) properties that rely

on reasoning about graph cycles, both of which are hard to reason about in program

verification tools. Möller and Höfner’s proof strategy establishes invariants at each

step of the algorithm, which is much easier to reason about in program verification.

In a SPARK implementation, these invariants likely provide the assertions and loop

invariants needed to prove that the code satisfies functional specifications. If we are

able to complete a proof of full functional correctness using the approaches in [55] and

also provide enough additional functionality to form a library, we plan to make our

code available as a crate through the new Alire (Ada LIbrary REpository) distribu-

tion system. Completing this proof will show that a full functional correctness proof

of Prim’s algorithm is possible with more-automated tools such as Why3, contrary to

Mohan et al.’s prediction that such tools would not be able to prove full functional

correctness as easily as their work with VST [48].

Additional research can be done to compare a variety of formal verification tools

34

using other languages, such as Rust, with the Prusti formal verification tool. The Rust

language was built with many of the same security concerns in mind that resulted in

the creation of Ada/SPARK. Recently, SPARK has released support for a restricted

form of pointers inspired by Rust [56]. This new feature allows for the verification of

recursive data structures, demonstrating that as the SPARK language grows, more

challenging structures and algorithms can be formally verified using SPARK. Since

both the Rust and SPARK languages were developed with similar safety and security

concerns in mind, they will probably continue to influence each other. An interesting

exercise with these languages would be to use the same specification to generate and

verify code in each language to see how the tools, reliability, safety, and security

compare. This exercise may give some insight into what the future of formal software

verification may look like.

35

IV. Formal Verification of Functional Properties of Prim’s
Algorithm in SPARK∗

4.1 Introduction

As software systems have become increasingly complex, it has become more and

more difficult to ensure their correctness. A major reason is that as the complexity

of a system increases, the proportion of system behaviors that can be feasibly cov-

ered by standard test-based verification approaches decreases, leaving more room for

latent errors. A possible solution to this problem lies in the use of formal methods,

i.e., mathematically-based tools and approaches for software and hardware verifica-

tion [27, 28]. Whereas testing checks individual execution traces of a system, formal

methods analyze a mathematical model of a system, opening the possibility of math-

ematically proving that all possible behaviors of the system are correct. To make an

analogy, consider the Pythagorean Theorem. One could simply build confidence in

its correctness by testing it against a set of randomly selected right triangles, or one

could prove its correctness for all right triangles by applying geometric axioms.

In safety-critical domains, where errors can lead to substantial damage or loss of

life, there is a need to eliminate as many errors as possible. Therefore, certification

standards for many safety-critical domains promote the use of formal methods, for

example, ISO 26262 for the automotive domain [29], EN 50128 for the railway domain

[30], and the DO-333 supplement to DO-178C for the aerospace domain [31]. There

is a perception that formal methods require significant expertise to use and may not

provide a good return on investment [32, 4, 33], so historically the use of formal

methods has been concentrated in safety-critical domains. However, the challenge

of maintaining software correctness in the face of growing complexity has recently

∗This chapter is based on a paper that will be submitted for publication in a journal or conference
that is yet to be determined: B. Wheelhouse, L. Humphrey, K. Hopkinson, “Formal Verification of
Prim’s Algorithm in SPARK,” will be submitted for publication.

36

motivated the use of formal methods in other domains. For example, Amazon Web

Services engineers have been using formal methods since 2011 to help solve difficult

design problems in systems that use distributed algorithms for data management [34],

and Amazon Web Services also uses formal methods to address a variety of cyber

security concerns [35, 36, 37]. Despite perceptions that formal methods are difficult

and expensive to use, Newcombe et al. (2015) found that “formal methods find bugs

in system designs that cannot be found through any other technique we know of,”

and “Formal methods are surprisingly feasible for mainstream software development

and give good return on investment.” In fact, they found that using formal methods

to write and check proofs of certain types of algorithm was actually faster and easier

than doing so by hand. In general, while the use of formal methods does require

some investment, the return on investment is eventually realized in terms of better

reliability, security, and fewer bugs to fix after development [33].

For formal program verification, one language and toolset that we have found

relatively easy to use is SPARK [16]. This is both because the design philosophy of

the language emphasizes safe and correct programming, it used to be freely available

as part of the GNAT Community Edition [38] and is now freely available under the

GNU General Public License v3.0 [57], and there are several educational materials and

examples available [2, 39]. In this chapter, we show how to use SPARK to implement

and verify certain properties of Prim’s algorithm for building minimum spanning trees

(MSTs). We choose to focus on this algorithm because MSTs are used in problems

involving network reliability, classification, and routing [40, 41] and would benefit

from formal verification given the need for reliability in these problem domains. The

rest of the chapter proceeds as follows. Section 4.2 discusses a few applications of

SPARK in industry as well as efforts to prove Prim’s algorithm using various methods,

Section 4.3 gives some background on SPARK, Section 4.4 demonstrates how SPARK

37

is used to develop and verify Prim’s algorithm, Section 4.5 addresses the results of

the analysis report generated by SPARK, and Section 4.6 offers some conclusions.

4.2 Related Work

Formal methods have been used successfully in a variety of large projects and in

proving Prim’s algorithm. [21] and [5] provide an overview of how SPARK has been

used in various projects, especially projects focused on cyber security and safety in

the aerospace domain. These include Ship Helicopter Operating Limits Information

System (SHOLIS), the C130J “Hercules” core mission computer, which saw 80% mon-

etary savings in the modified condition/decision coverage (MC/DC) testing budget

due to the low number of faults discovered during testing; and the NSA-funded Toke-

neer demonstrator, for which testing found zero defects for a period after delivery. In

terms of cyber security, the verification of code at the silver level in SPARK proves

that the code is free of many of the cyber vulnerabilities classified in the MITRE cor-

poration Common Weakness Enumeration (CWE) database [22]. This is discussed in

[23], which provides a mapping of how the language features of SPARK/Ada prevent

certain classes of CWEs and how verification with SPARK prevents others.

We briefly note that other tools and frameworks perform analogous types of for-

mal verification for different languages. For example, Frama-C is a framework for

analyzing C code in which contracts and assertions are written in ANSI/ISO C Spec-

ification Language (ACSL) and plug-ins for formal verification are available [42]. A

case study comparing ACSL / Frama-C with SPARK can be found in [43]. There is

also Prusti for Rust [44] and Krakatoa [45] for Java, just to name a few.

In regard to Prim’s algorithm, some efforts have already been made to apply

formal methods. Abrial, Cansell, and Méry give an approach to proving Prim’s al-

gorithm using the formal modeling tool Atelier B [46]. Atelier B is an environment

38

for generating and proving proof obligations for formal models, e.g. of algorithms.

Such models can be automatically translated into C, C++, Ada, or HIA code [47],

but since errors could be introduced during this translation, additional program ver-

ification tools such as SPARK should be used.

Another effort has succeeded in a proof of full functional correctness of an exe-

cutable implementation of Prim’s algorithm written in verifiable C using Coq: Com-

pCert and the Verified Software Toolchain (VST) separation logic deductive verifier

[48]. Mohan demonstrates that Prim’s algorithm works on disconnected graphs (thus

finding a minimum spanning forest (MSF) rather than a MST) and predicts that more

automated tools such as Why3 would not be able to prove full functional correctness

as easily as their work with VST.

4.3 SPARK

This section provides an overview of SPARK, much of which is a summary of

[2]. SPARK is a programming language and a formal verification toolset. SPARK

as a programming language is based on the Ada programming language. Ada has a

number of features that help to support the development of safe and correct programs,

which SPARK builds upon. However, SPARK both adds some features that support

formal verification and removes some features that make formal verification difficult.

In summary, SPARK leverages Ada features, such as

• Type safety

• Ada 2012 aspects for writing contracts

• A package system that enables clean separation of interfaces from implementa-

tions

and removes features such as

39

• Aliasing (assigning two names to the same object)

• Exception handlers

• Backward goto statements

• Controlled types

• Side-effects in expressions, including functions

For users who rely on Ada features that are restricted in the SPARK subset, note

that, while SPARK can be used to prove an entire program, it can also be applied to

only specific parts of a program, including designated lines, subprograms, or packages.

Combined with the fact that SPARK is compiled using an Ada compiler, this makes

it possible to mix unproven Ada code with restricted features into the program if

necessary. The SPARK User’s Guide goes into more detail about these restrictions

in [52]. The relationship between SPARK and Ada is depicted in Figure 12.

As a static verification toolkit, SPARK verifies code without compiling or exe-

cuting it. SPARK performs several different types of static analysis. One is flow

analysis, which checks the initialization of variables, unused assignments, unmodified

Figure 12: The Relationship Between SPARK and Ada [2].

40

variables, and data dependencies between the input and output of subprograms. The

other is proof, which checks for the absence of runtime errors, as well as the conformity

of the program with user-defined specifications. To perform these types of analyses,

SPARK uses the denotational semantics of the language to translate programs along

with checks and contracts to be verified to the Why3 deductive verification plat-

form [17]. Why3 then uses a weakest precondition calculus to generate verification

conditions (VCs), i.e., logical formulas whose validity would imply the soundness of

the code with respect to its checks and contracts. Why3 then uses multiple theo-

rem provers/satisfiability modulo theories (SMT) solvers to discharge VCs, including

CVC4 [49], Alt-Ego [50], and Z3 [51]. Note that while the tools attempt to automate

this process, sometimes additional assertions in the code must be provided by the

user to guide the underlying provers.

Given the different types of analysis SPARK can perform and the fact that the

level of detail in program specifications can vary from partial to complete, some col-

loquial terms have been adopted by SPARK users to define the level of assurance

that has been attained for the code. From lowest to highest, these levels are colloqui-

ally referred to as “stone,” “bronze” “silver,” “gold,” and “platinum” [3]. A simple

example of a gold level proof can be found in [20], which verifies that a merge sort

algorithm satisfies a partial specification. Table 5 gives more details on the levels of

SPARK verification and the use cases at each level.

41

Table 5: Levels of SPARK Verification [3].
Level Guarantees Use Case

Stone Valid SPARK
Intermediate level during the adoption of
SPARK

Bronze
Initialization, correct

data flow
As large a part of the code as possible

Silver
Absence of run-time
errors (AoRTE)

The default target for critical software (subject
to costs and limitations)

Gold
Proof of key integrity

properties
Only for a subset of the code subject to specific
key integrity (safety/security) properties

Platinum
Full functional proof

of requirements
Only for those parts of code with the highest
integrity (safety/security) constraints

4.4 Example

Spanning trees can be used in communication protocols to provide paths from one

node in the network to other non-neighboring nodes. A spanning tree is a subset of

edges in a graph that connect all nodes or vertices in the graph without any cycles,

where the number of edges is one less than the number of vertices. For a weighted

graph, a minimum spanning tree is one whose edge weights have the smallest sum of

all possible spanning trees in the graph [53].

Prim’s algorithm is one algorithm that can be used to compute an MST for a

graph. In this section, we start by describing this algorithm. Then, we present an

implementation of this algorithm in SPARK and show how to refine it so that it is

proven to a gold level. The implementation in this chapter builds on previous work

in which we used SPARK to automatically prove a version of Prim’s algorithm to the

bronze and silver level [58]. Whereas the previous version only allowed for graphs of

a specified size, the version in this chapter allows for any reasonably sized graph. It

also improves on the previous version by using a formally verified priority queue in

the implementation.

42

4.4.1 Prim’s Algorithm

Prim’s algorithm is a greedy algorithm for finding an MST of a weighted undi-

rected graph given a starting vertex. Let G = (V,E) be a weighted undirected graph

with vertices V , edges E, and a function w : E → R assigning a weight w(u, v) to

every edge (u, v) ∈ E. Let us denote the set of vertices as G.V . Starting from an

arbitrary root vertex r ∈ G.V , Prim’s algorithm incrementally builds a tree A. In

each iteration, it adds to A the edge with minimum weight that connects a vertex in

A to a vertex in G.V that is not in A. A is an MST for the subgraph of G whose

vertices are connected by the edges in A [55]. As soon as all the vertices of G.V are

connected by the edges of A, A is an MST of G. Note that the algorithm does not

work when there are disconnected vertices in the graph, and the computed MST may

vary depending on the choice of r.

A min-priority queue is commonly used in Prim’s algorithm to quickly extract the

next minimum edge. For each vertex v ∈ G.V , let G.Adj[v] be a list of adjacent ver-

tices. For each vertex in the minimum priority queue Q, let v.key store the minimum

weight of any edge connecting v to a vertex in the tree A (with v.key = ∞ if there

is no edge), so that the function Extract-Min(Q) returns the vertex associated with

the smallest weight. Let v.π store the corresponding parent of v in the tree. Then Al-

gorithm 2 outlines the steps of Prim’s algorithm as given in a well-known algorithms

textbook [53], with r being the root of the generated tree A and the structure of A

described by the values of v.π extracted from the queue Q.

In order to prove Prim’s algorithm to the gold or platinum level, a specifica-

tion must be given to form the requirements the implementation must satisfy to be

proven correct. Using Algorithm 2 and the specifications given in [53], we present

the following specifications to define several key properties that can be proven in our

implementation of Prim’s algorithm.

43

Algorithm 2 Prim’s Algorithm [53]

1: procedure MST-Prim(G, w, r)
2: for each u ∈ G.V do
3: u.key = ∞
4: u.π = NIL
5: end for
6: r.key = 0
7: Q = G.V
8: while Q ̸= ∅ do
9: u = Extract-Min(Q)
10: for each v ∈ G.Adj[u] do
11: if v ∈ Q and w(u,v) < v.key then
12: v.π = u
13: v.key = w(u, v)
14: end if
15: end for
16: end while
17: end procedure

1. The queue entries must be initialized to the specified values representing an

initial priority of ∞ and an initial parent vertex of NIL, as shown in lines 2-4

of Algorithm 2.

2. The queue must initially contain an entry for each vertex in the input graph,

as shown on line 6 of Algorithm 2.

3. For each iteration of the loop on lines 8-16 of Algorithm 2 the following prop-

erties must hold:

• The minimum priority value is extracted from the Queue

• The edges of the growing MST A are within the set

A = {(v, v.π) : v ∈ V − {r} −Q}

• The vertices already placed in the MST are those in V −Q

44

• For all vertices v ∈ Q, if v.π ̸= NIL, then v.key < ∞ and v.key is the

weight of a light edge (v, v.π) connecting v to some vertex already placed

in the MST

4.4.2 Prim’s Algorithm in SPARK at the Gold Level

The purpose of this implementation is to follow Algorithm 2 as closely as possible.

To do so, we encode a graph as shown in Figure 14. A graph can be initialized as a set

of vertices and a set of edges. We use Ada.Containers.Formal V ectors, which is part

of SPARK’s Formal Containers library [59], to hold edges and vertices, so that graphs

can be constructed by appending to the appropriate vector. The Formal Vectors are

defined as shown in Figure 13. Our representation of a Vertex is intentionally simple,

such that a vertex is an integer, specifically the integers from one to the size of the

input graph. The subtype Extended Vertex provides an uninitialized value, orNIL, of

0 to initialize Edge.From at the beginning of our implementation of Prim’s algorithm.

We define an Edge as a two-element subset of a finite set of vertices. An edge may

be denoted as {u, v} ∈ V × V with u ̸= v by uv or vu. Weights are mapped directly

to Edges, so we simply include the weight (W) as a property of an Edge.

SPARK does not allow unbounded data structures within records, so the param-

eters Num Vertices and Num Edges allow the user to define the size of the graph

being created in terms of the number of vertices and the number of edges. The

parameters Num Vertices and Num Edges are checked by the provers using the Dy-

namic Predicate, however, this check is redundant because the bounds in the predicate

are identical to the bounds of type Count Type. By including the predicate, we can

ensure that our specified bounds remain the same even if the bounds of Count Type

change.

We use a formally verified implementation of a minimum-priority queue that is

45

1 Subtype Extended Vertex i s Natural range 0 . . 100 ;
2 Subtype Vertex i s Extended Vertex range 1 . .

Extended Vertex ’ Last ;
3 Subtype Weight i s Natural
4 range 0 . . 1000 ;
5 type Edge i s record
6 From : Extended Vertex ;
7 To : Vertex ;
8 W: Weight ;
9 end record ;
10 with Dynamic Predicate =>
11 From /= To ;
12
13 package Ver t i c e s i s new Formal Vectors (
14 Element Type => Vertex , Index Type => Pos i t i v e) ;
15 use Ver t i c e s ;
16 package Edges i s new Formal Vectors (
17 Element Type => Edge , Index Type => Pos i t i v e) ;
18 use Edges ;

Figure 13: Vertices, Edges, and Weights

1 type Graph(Num Vertices , Num Edges : Count Type) i s record
2 V: Ve r t i c e s . Vector (Num Vertices) ;
3 E: Edges . Vector (Num Edges) ;
4 end record
5 with Dynamic Predicate =>
6 Num Vertices >= 0 and
7 Num Edges >= 0 ;

Figure 14: Representation of Graph in SPARK

based on the priority queue presented by Baity in [54] with the difference being the

data structure used to represent the queue. Our implementation uses a Formal Vector

with an element type of Queue Item shown in Figure 15.

This approach makes the queue more usable for a user, as its functionality is the

same as any other formal vector, but with some additional functionality. The added

functionality includes Is In Queue, Get Item Priority, Update Item, and Baity’s ver-

ified method for extracting the minimum element Extract Min. Verification of Ex-

tract Min was simplified using Formal Vectors because the library already verifies

operations such as deleting an element, which requires shifting the elements in the

46

1 type Queue Item i s record
2 ID : Vertex ;
3 Value : Edge ;
4 P r i o r i t y : Weight ;
5 end record
6 with Dynamic Predicate =>
7 ID in Vertex and
8 Value . From in Extended Vertex and
9 Value .To in Vertex and
10 Value .W = Pr i o r i t y and
11 P r i o r i t y in Weight ;
12
13 Package PQ i s new Formal Vectors (
14 Element Type => Queue Item , Index Type => Pos i t i v e) ;
15 use PQ;

Figure 15: Min-Priority-Queue Queue Item

vector to fill the index of the removed element. Figure 16 shows that we still preserve

the preconditions and postconditions and the loop invariants provided in the origi-

nal min-priority queue. This functionality ensures that the minimum weighted edge

currently connected to the graph is always given at the beginning of each iteration.

When comparing Figure 17 with Algorithm 2, the similarities are evident. First, a

queue is initialized with items for each vertex and a given default priority of infinity.

Next, the graph is searched, and the queue is updated by extracting the minimum

priority (weight) item from the queue and updating all the weights of the edges

connected to the item’s corresponding vertex.

Despite the similarities, there are also some apparent differences. Beginning with

the input parameters, our implementation accepts an adjacency matrix rather than

a graph, as described in the specification. This is due to the simplicity of implement-

ing an adjacency matrix as opposed to the graph implementation described above.

Converting a graph to an adjacency matrix or adjacency list is a straightforward ex-

ercise but adds some verification complexity that is beyond what we need to prove

Prim’s algorithm in this example. We also include weights as part of a graph edge

rather than as an additional parameter, as shown in Algorithm 2 and pass an empty

47

1 −− d e c l a r a t i on in . ads f i l e
2 procedure extract min (Q: in out PQ. Vector ;
3 pa i r : out Queue Item)
4 with
5 pre =>
6 not PQ. Is Empty (Q) and then
7 In t eg e r (Length (Q)) in Vertex ,
8 Post =>
9 Did Queue Decrease (Q’ Old , Q) and
10 Is Min (Q, pa i r) and
11 I s F i r s t Ex t r a c t e d (Q’ Old , Q, pa i r) ;
12
13 −− d e f i n i t i o n in . adb f i l e
14 procedure extract min (Q: in out PQ. Vector ;
15 pa i r : out Queue Item)
16 i s
17 min index : Vertex := 1 ;
18 begin
19 for I in 1 . . I n t e g e r (Length (Q)) loop
20 i f Q. Element (I) . P r i o r i t y < Q. Element (min index) .

P r i o r i t y
21 then
22 min index := I ;
23 end i f ;
24 pragma Loop Invar iant (min index in 1 . . I) ;
25 pragma Loop Invar iant (for a l l E in 1 . . I =>
26 Q. Element (E) . P r i o r i t y >=
27 Q. Element (min index) . P r i o r i t y) ;
28 pragma Loop Invar iant (
29 for a l l E in 1 . . min index−1 =>
30 Q. Element (E) . P r i o r i t y >
31 Q. Element (min index) . P r i o r i t y) ;
32 end loop ;
33 pa i r := Q. Element (min index) ;
34 PQ. Delete (Q, min index) ;
35 end extract min ;

Figure 16: Min-Priority-Queue Extract Min

initialized graph to be able to construct it and return it as an MST.

When an item is extracted from the queue, we prove that the edge of the re-

sulting item is the minimum edge in the loop-invariant directly following the call to

Extract Min. Having obtained the minimum edge, we add the edge and a new vertex

to the resulting MST, as demonstrated in Figure 18.

48

1 procedure Prim MST(G: Adj Matrix ; r : I n t e g e r ;
2 MST: in out Graph)
3 i s
4 u : Queue Item ;
5 w : Weight ;
6 Q : PQ. Vector (G’ Length) ;
7 begin
8 for I in G’Range(1) loop
9 Q. Append ((I , (0 , I , Weight ’ Last) ,Weight ’ Last)) ;
10 pragma Loop Invar iant (
11 In t eg e r (Length (Q)) = I and
12 I <= Int eg e r (Capacity (Q))) ;
13 pragma Loop Invar iant (for a l l J in 1 . . I =>
14 Q. Element (J) . ID = J and
15 Q. Element (J) . Value .To = J) ;
16 end loop ;
17 Update Item (Q, r , 0 , r) ;
18 while Is Not Empty (Q) loop
19 extract min (Q, u) ;
20 pragma Loop Invar iant (for a l l I of Q =>
21 u . P r i o r i t y <= I . P r i o r i t y) ;
22 −− Construct MST
23 for I in 1 . . G’ Length loop
24 pragma Assume(u . Value .To <= G’ Length) ;
25 w := G(u . Value .To , I) ;
26 pragma Assume(Is In Queue (Q, I)) ;
27 i f w > 0 and I /= u . Value .To and
28 w < Get I t em Pr io r i ty (Q, I)
29 then
30 Update Item (Q, (I , (u . Value .To , I ,w) ,w)) ;
31 end i f ;
32 end loop ;
33 end loop ;
34 end Prim MST ;

Figure 17: SPARK Implementation of Prim’s Algorithm

1 i f Length (MST.V) < Capacity (MST.V) then
2 MST.V. Append(u . Value .To) ;
3 end i f ;
4 i f u .X. From /= r and Length (MST.E) < Capacity (MST.E) and
5 Length (MST.W) < Capacity (MST.W)
6 then
7 MST.E. Append ((u . Value . From , u . Value .To , u . P r i o r i t y)) ;
8 end i f ;

Figure 18: MST Construction

49

4.5 Results

We have presented a more refined and dynamic min-priority queue based on

Baity’s work in [54], which allowed us to prove the key property of having the current

minimum edge returned from the queue at each iteration of Prim’s algorithm.

SPARK generates an analysis report that summarizes the checks performed on

the code during analysis, including whether or not the checks were successful and

which tools or provers were used to discharge them. These details of the checks

performed on Prim MST and the types associated with it, i.e., Graph, Adj matrix

and Formal Vectors, are presented as a table included in the analysis report shown

in Figure 19. Each row in the table represents the categories of checks that SPARK

performs, and the columns represent the tool used to discharge each check. When

a prover is used to discharge a check, the name of the prover is cited in the provers

column. Proofs performed by the provers are only guaranteed if flow analysis is

passing. Therefore, the results in the Provers column should be considered only after

the flow analysis is complete. The numbers in the table represent the total number of

checks verified by the associated tool. A detailed description of the analysis report,

including descriptions of the columns and rows of the table, can be found in [25] but

the results for this example are presented here.

Reviewing the table in Figure 19, the Data Dependencies checks verify that the

Formal Vectors (Vertices, Edges, and Weights) are read and written properly in the

subprogram Prim MST according to the Formal Vectors specification. These checks

also allow GNATprove to assist in proving flow dependencies, initialization, and other

proof checks related to the Formal Vectors. The three Initialization checks belong to

the variables u, w, and Q in Prim MST. Since these checks pass, these variables will

be initialized properly at runtime and will not have garbage values that could make

the resulting MST unreliable. Run-time Checks include overflow, range, and index

50

checks. In this case, 147 run-time checks are proven, including range, index, dynamic

accessibility, pointer dereference, and overflow checks. Finally, the report shows 93

proven Functional Contracts. Functional contracts include predicates and pre- and

post-conditions that help prove that the code meets the specification requirements.

An example of a functional contract proven in this project is shown in Figure 16

where the declaration provides the preconditions and postconditions which must be

true to prove that the subprogram runs as intended. Specifically, the preconditions

specify that the queue must not be empty and the length of the queue is in the range

of the Vertex type, and the postconditions specify that an item was removed from the

queue, shortening the queue by one, and that the removed item is the minimum item,

and the item was to be the first extracted. Other functional contracts are declared

in other parts of the source code, such as in the Formal Vectors library.

Since this example had 0 unproved checks in all rows above and including Func-

tional contracts, this implementation is verified to the gold level. Raising this code to

a higher gold or platinum level would require implementing more functional contracts

−−
SPARK Analys i s r e s u l t s Total Flow Provers Unproved
−−
Data Dependencies 4 4 . .
Flow Dependencies
I n i t i a l i z a t i o n 4 4 . .
Non−Al i a s i ng
Run−time Checks 147 . 147 (CVC4 95%, .

T r i v i a l 5%)
As s e r t i on s 12 . 12 (CVC4) .
Funct iona l Contracts 93 . 93 (CVC4 80%, .

T r i v i a l 20%)
LSP Ve r i f i c a t i o n
Termination
Concurrency
−−
Total 260 8 (3%) 252 (97%) .

Figure 19: SPARK Analysis Report on Prim MST

51

based on the functional specifications listed in Section 4.4.1 in the form of loop in-

variants, predicates, preconditions and postconditions, then using SPARK to attempt

to prove that they are satisfied. After that, if SPARK is not able to prove that the

code satisfies the specifications automatically, then the developer would need to add

additional annotations in the code to guide the provers (see [20] for an example). At

the gold level, the code is currently guaranteed to have correct variable initialization,

data flow, no run-time errors, and has proven and functionally correct key properties,

which is a key step in demonstrating that the code is highly reliable.

4.6 Conclusion

In this chapter, we have given a brief overview of formal methods with an empha-

sis on SPARK for formal program verification. We have shown how to use SPARK to

develop and formally verify an implementation of Prim’s algorithm for constructing

MSTs, with an explanation of what types of analysis SPARK performs and how the

different levels of verification in SPARK are categorized. In this case, we formally ver-

ified that our implementation is free of variable initialization, data flow, and run-time

errors and has proven key functional properties within the graph and priority queue

on which the algorithm relies. This level of verification provides a solid foundation

for reliable code.

In the future, we would like to formally verify that our implementation satisfies

other key properties defined in the functional specifications of the algorithm in Sec-

tion 4.4.1, such as each iteration of Prim’s algorithm adding a vertex that is not in

the current MST but is connected to a vertex that is in the MST. This will require

writing additional loop invariants and additional preconditions and postconditions

that describe their desired behavior. If we are able to complete a proof of full func-

tional correctness with respect to the properties in the specification and also provide

52

enough additional functionality to form a graph library, we plan to make our code

available as a crate through the new Alire (Ada LIbrary REpository) distribution sys-

tem. Completing this proof will show that a full functional correctness proof of Prim’s

algorithm is possible with more-automated tools such as Why3, although it will prob-

ably still require a significant amount of manual proof, supporting Mohan’s prediction

that Why3 would not be able to prove full functional correctness automatically [48].

We suspect that a proof of a stronger property may be attained by leveraging ele-

ments of a purely algebraic proof of Prim’s algorithm presented by Höfner and Möller

in [55] but such a proof would probably be very complex in SPARK. Performance

factors such as an optimized min-priority queue that uses a formally verified heap

sort algorithm or using an adjacency list instead of an adjacency matrix can also be

considered.

53

V. Conclusions

This thesis provides three examples demonstrating the benefits and features of

safe and reliable software with an emphasis on SPARK and formal verification. The

contributions of each example are summarized in the results of the following research

questions.

RQ1: What are common attributes of highly reliable programming lan-
guages and how do those attributes and formal verification enhance the
quality of software?

This question is addressed in Chapter II by comparing the similarities and dif-

ferences between SPARK and Rust. Although the differences that are identified are

primarily stylistic, since SPARK is a language designed specifically to be verifiable

and Rust primarily focuses on data safety, the similarities suggest that strict type

safety, static typing, anti-aliasing, and memory checks help users develop more se-

cure code. Formal verification can ensure that code is reliable by mathematically

proving that codes satisfies properties described in its specifications. Combining a

security-focused language and formal verification tools makes creating safe and reli-

able software available to more developers with varying experience without too much

training.

With an understanding of the benefits of what a highly reliable language provides,

Chapter III gives a tutorial of the basic formal verification of a naive implementation

of Prim’s algorithm. This proof of Prim’s demonstrates how simple it can be to verify

code to a silver level and addresses the question:

RQ2: What qualities does an automatic proof of Prim’s algorithm have?

54

This question is addressed by showing that even without preconditions and post-

conditions, loop invariants, and other annotations, which may be considered difficult,

the code can be proven to be free of data initialization, data flow, and run-time er-

rors. These are the qualities and characteristics of any silver-level proof in SPARK.

These findings from Chapter III are encouraging because they suggest that beginners

to software verification can still verify meaningful properties in their code in a short

period of time.

Building on the naive implementation and proof of Prim’s algorithm in Chap-

ter III, Chapter IV provides an answer to the following question.

RQ3: How do you level up basic SPARK code to a meaningful proof of
functional correctness for Prim’s algorithm?

By using a clearly defined specification for Prim’s algorithm from a textbook [53],

a formally verified min-priority queue, and incorporating contracts, loop invariants,

and other annotations to prove stronger properties of Prim’s algorithm, a gold level

proof was implemented. This implementation ensures that the minimum edge is

always removed from the queue at each iteration. Additionally, the code provides

a solid foundation for proving stronger properties of the specification that were not

attained in this work.

In summary, this thesis has made three main contributions:

• Provides an overview of safe and reliable programming languages, namely SPARK

and Rust, and the benefits of their characteristics from a formal verification per-

spective.

• Demonstrates the simplicity and usability of formal verification in SPARK on

a naive implementation of Prim’s algorithm.

55

• Emphasizes the importance of having a well-defined specification by demon-

strating how to increase basic silver level SPARK code to a gold level SPARK

code.

5.1 Future Work

A natural direction for future research as a continuation of this thesis is to continue

to formally verify graph algorithms and properties in SPARK. This vein of research

is a great starting place for those that are beginning to investigate formal verifica-

tion because graph algorithms generally have a well-defined specification. Eventually,

this work could grow into a formally verified graph library, which could be a valu-

able contribution to enabling the development of more complex and formally verified

software.

56

Appendix A. Quaternion: Full Source Code

Listing A.1: main.adb

1 with Quaternion; use Quaternion;

2 with Vector; use Vector;

3 with Ada.Text_IO; use Ada.Text_IO;

4 with Math_Utils; use Math_Utils;

5 with Ada.Numerics; use Ada.Numerics;

6 with Ada.Numerics.Elementary_Functions;

7 use Ada.Numerics.Elementary_Functions;

8

9 procedure main with SPARK_Mode is

10 Q: Spark_Quaternion := Spark_Quaternion ’(

11 1.0, Vector3 ’(1.0, 2.0, 3.0));

12 V: Vector3;

13 S: Float;

14 N1: Float := -Float ’First;

15 begin

16 Put_Line("Float ’First: " & N1’Image);

17 Put_Line("Magnitude: " & Magnitude(Q)’Image &

18 " === " & Sqrt (15.0) ’Image);

19 V := Get_Q_Vector(Q);

20 Put_Line("Get Vector: " & V.X’Image & ", " &

21 V.Y’Image & ", " & V.Z’Image);

22 S := Get_Q_Scalar(Q);

23 Put_Line("Get Scalar: " & S’Image);

24 Put_Line("Running not operator on Quaternion ...");

57

25 Q := not Q;

26 V := Get_Q_Vector(Q);

27 Put_Line("Result Vector: " & V.X’Image & ", " &

28 V.Y’Image & ", " & V.Z’Image);

29 Q := not Q;

30 Put_Line ("Get angle: " & Get_Q_Angle(Q)’Image &

31 " === 2.0");

32 Q := Spark_Quaternion ’(2.0, Vector3 ’(2.0, 2.0, 2.0));

33 Put_Line("New Q is (2.0, 2.0, 2.0, 2.0)");

34 V := Get_Q_Axis(Q);

35 Put_Line ("Get Axis: " & V.X’Image & ", " &

36 V.Y’Image & ", " & V.Z’Image);

37 Q := Spark_Quaternion ’(

38 1.0, Vector3 ’(0.0000000000000000000001 ,

39 0.0000000000000000000001 ,

40 0.0000000000000000000001));

41 Put_Line("ew Q is (1.0,

42 0.0000000000000000000001 ,

43 0.0000000000000000000001 ,

44 0.0000000000000000000001)");

45 V := Get_Q_Axis(Q);

46 Put_Line ("Get Axis: " & V.X’Image & ", " &

47 V.Y’Image & ", " & V.Z’Image);

48

49

50 Put_Line("New Q is (1.0, 1.0, 2.0, 3.0)");

58

51 Q := Spark_Quaternion ’(1.0, Vector3 ’(1.0, 2.0, 3.0));

52 Q := Rotate_Q(Q, Q);

53 Put_Line ("Rotate Q: N=" & Q.N’Image &

54 " -- X, Y, Z = " & Q.V.X’Image & ", " &

55 Q.V.Y’Image & ", " & Q.V.Z’Image);

56

57

58 Put_Line("New Q is (1.0, 1.0, 2.0, 3.0)");

59 Q := Spark_Quaternion ’(1.0, Vector3 ’(1.0, 2.0, 3.0));

60 V := Vector3 ’(1.0, 1.0, 1.0);

61 V := Q_V_Rotate(Q, V);

62 Put_Line ("Rotate Q by V: " & V.X’Image & ", " &

63 V.Y’Image & ", " & V.Z’Image);

64

65

66 Q := Make_Q_From_Euler_Angles (1.0, 2.0, 3.0);

67 Put_Line ("Q from Euler (1.0, 2.0, 3.0): N=" &

68 Q.N’Image & " -- X, Y, Z = " & Q.V.X’Image &

69 ", " & Q.V.Y’Image & ", " & Q.V.Z’Image);

70

71 V := Make_Euler_Angles_From_Q(Q);

72 Put_Line ("Euler from Q: " & V.X’Image & ", " &

73 V.Y’Image & ", " & V.Z’Image);

74

75 end main;

59

Listing A.2: constants.ads

1 package Constants with SPARK_Mode is

2 -- numerical constants

3 TOL: constant := 0.000000000000001;

4 end Constants

Listing A.3: math utils.ads

1 with Constants; use Constants;

2 with Vector; use Vector;

3 with Ada.Numerics; use Ada.Numerics;

4 with Ada.Numerics.Elementary_Functions;

5 use Ada.Numerics.Elementary_Functions;

6

7 package Math_Utils with SPARK_Mode is

8 subtype Deg_Angle is Float range 0.0 .. 360.0;

9 subtype Rad_Angle is Float range 0.0 .. 2.0 * Pi;

10 --"The bounds for the input values can come

11 -- from the application context..."

12 function Degrees_To_Radians(deg: Deg_Angle)

13 return Rad_Angle;

14 function Radians_To_Degrees(rad: Rad_Angle)

15 return Deg_Angle;

16 end Math_Utils;

Listing A.4: math utils.adb

1 package body Math_Utils with SPARK_Mode is

60

2 function Degrees_To_Radians(deg: Deg_Angle)

3 return Rad_Angle is

4 begin

5 return deg * Pi / 180.0;

6 end Degrees_To_Radians;

7

8 function Radians_To_Degrees(rad: Rad_Angle)

9 return Deg_Angle is

10 begin

11 return rad * 180.0 / Pi;

12 end Radians_To_Degrees;

13 end Math_Utils;

Listing A.5: quaternion.ads

1 with Constants; use Constants;

2 with Vector; use Vector;

3 with Math_Utils; use Math_Utils;

4 with Ada.Numerics; use Ada.Numerics;

5 with Ada.Numerics.Elementary_Functions;

6 use Ada.Numerics.Elementary_Functions;

7

8 package Quaternion with SPARK_Mode is

9 --General Purpose Quaternion ---------------------------

10 type Spark_Quaternion is record

11 N: Scalar := 0.0; -- Scalar Part

12 V: Vector3; -- Vector Part

61

13 end record;

14

15 --Methods --

16 function Magnitude(Q: Spark_Quaternion) return Scalar;

17 function Get_Q_Vector(Q: Spark_Quaternion)

18 return Vector3;

19 function Get_Q_Scalar(Q: Spark_Quaternion)

20 return Scalar;

21 function Get_Q_Angle(Q: Spark_Quaternion)

22 return Rad_Angle;

23 function Get_Q_Axis(Q: Spark_Quaternion)

24 return Vector3;

25 function Rotate_Q(Q1 , Q2: Spark_Quaternion)

26 return Spark_Quaternion;

27 function Q_V_Rotate(Q: Spark_Quaternion; V: Vector3)

28 return Vector3;

29 function Make_Q_From_Euler_Angles(X, Y, Z: Scalar)

30 return Spark_Quaternion;

31 function Make_Euler_Angles_From_Q(Q: Spark_Quaternion)

32 return Vector3;

33

34 --Operators --

35 function "not" (Q: Spark_Quaternion)

36 return Spark_Quaternion;

37 function "+" (LEFT , RIGHT: Spark_Quaternion)

38 return Spark_Quaternion;

62

39 function "-" (LEFT , RIGHT: Spark_Quaternion)

40 return Spark_Quaternion;

41 function "*" (LEFT , RIGHT: Spark_Quaternion)

42 return Spark_Quaternion;

43 function "*" (LEFT: Spark_Quaternion; RIGHT: Scalar)

44 return Spark_Quaternion;

45 function "*" (LEFT: Scalar; RIGHT: Spark_Quaternion)

46 return Spark_Quaternion;

47 function "*" (LEFT: Spark_Quaternion; RIGHT: Vector3)

48 return Spark_Quaternion;

49 function "*" (LEFT: Vector3; RIGHT: Spark_Quaternion)

50 return Spark_Quaternion;

51 function "/" (LEFT: Spark_Quaternion; RIGHT: Scalar)

52 return Spark_Quaternion;

53 end Quaternion;

Listing A.6: quaternion.adb

1 package body Quaternion with SPARK_Mode is

2 --Methods --

3 function Magnitude(Q: Spark_Quaternion)

4 return Scalar is

5 begin

6 return Sqrt (Q.N * Q.N + Q.V.X * Q.V.X +

7 Q.V.Y * Q.V.Y + Q.V.Z * Q.V.Z);

8 end Magnitude;

9

63

10 function Get_Q_Vector(Q: Spark_Quaternion)

11 return Vector3 is

12 begin

13 return Q.V;

14 end Get_Q_Vector;

15

16 function Get_Q_Scalar(Q: Spark_Quaternion)

17 return Scalar is

18 begin

19 return Q.N;

20 end Get_Q_Scalar;

21

22 function Get_Q_Angle(Q: Spark_Quaternion)

23 return Rad_Angle is

24 begin

25 return 2.0 * Arccos (Cos(Q.N));

26 end Get_Q_Angle;

27

28 function Get_Q_Axis(Q: Spark_Quaternion)

29 return Vector3

30 is

31 V: Vector3 := Q.V;

32 M: Scalar := Magnitude(V);

33 begin

34 if M <= TOL then

35 return Vector3 ’(0.0, 0.0, 0.0);

64

36 end if;

37 return V/M;

38 end Get_Q_Axis;

39

40 function Rotate_Q(Q1 , Q2: Spark_Quaternion)

41 return Spark_Quaternion is

42 begin

43 return Q1 * Q2 * (not Q1);

44 end Rotate_Q;

45

46 function Q_V_Rotate(Q: Spark_Quaternion; V: Vector3)

47 return Vector3

48 is

49 T: Spark_Quaternion := Q * V * (not Q);

50 begin

51 return T.V;

52 end Q_V_Rotate;

53

54 function Make_Q_From_Euler_Angles(X, Y, Z: Scalar)

55 return Spark_Quaternion

56 is

57 Roll: Scalar := Degrees_To_Radians(X);

58 Pitch: Scalar := Degrees_To_Radians(Y);

59 Yaw: Scalar := Degrees_To_Radians(Z);

60

61 Cyaw: Scalar := Cos (0.5 * Yaw);

65

62 Cpitch: Scalar := Cos (0.5 * Pitch);

63 Croll: Scalar := Cos (0.5 * Roll);

64

65 Syaw: Scalar := Sin (0.5 * Yaw);

66 Spitch: Scalar := Sin (0.5 * Pitch);

67 Sroll: Scalar := Sin (0.5 * Roll);

68

69 CyawCpitch: Scalar := Cyaw * Cpitch;

70 SyawSpitch: Scalar := Syaw * Spitch;

71 CyawSpitch: Scalar := Cyaw * Spitch;

72 SyawCpitch: Scalar := Syaw * Cpitch;

73 begin

74 return Spark_Quaternion ’(

75 CyawCpitch * Croll + SyawSpitch * Sroll ,

76 Vector3 ’(CyawCpitch * Sroll - SyawSpitch * Croll ,

77 CyawSpitch * Croll + SyawCpitch * Sroll ,

78 SyawCpitch * Croll - CyawSpitch * Sroll));

79 end Make_Q_From_Euler_Angles;

80

81 function Make_Euler_Angles_From_Q(Q: Spark_Quaternion)

82 return Vector3

83 is

84 R12: Scalar;

85 R13: Scalar;

86

87 Q00: Scalar := Q.N * Q.N;

66

88 Q11: Scalar := Q.V.X * Q.V.X;

89 Q22: Scalar := Q.V.Y * Q.V.Y;

90 Q33: Scalar := Q.V.Z * Q.V.Z;

91

92 R11: Scalar := Q00 + Q11 - Q22 - Q33;

93 R21: Scalar := 2.0 * (Q.V.X * Q.V.Y + Q.N * Q.V.Z);

94 R31: Scalar := 2.0 * (Q.V.X * Q.V.Z - Q.N * Q.V.Y);

95 R32: Scalar := 2.0 * (Q.V.Y * Q.V.Z + Q.N * Q.V.X);

96 R33: Scalar := Q00 - Q11 - Q22 + Q33;

97

98 Tmp: Scalar := Abs (R31);

99 begin

100 if Tmp > 0.999999 then

101 R12 := 2.0 * (Q.V.X * Q.V.Y - Q.N * Q.V.Z);

102 R13 := 2.0 * (Q.V.X * Q.V.Z - Q.N * Q.V.Y);

103 return Vector3 ’(

104 Radians_To_Degrees (0.0), --roll

105 Radians_To_Degrees(

106 -(Pi/2.0) * R31/Tmp), --pitch

107 Radians_To_Degrees(Arctan(

108 -R12 , (-R31 * R13))) --yaw

109);

110

111 end if;

112 return Vector3 ’(

113 Radians_To_Degrees(Arctan(R32 , R33)), --roll

67

114 Radians_To_Degrees(Arcsin(Sin(-R31))), --pitch

115 Radians_To_Degrees(Arctan(R21 , R11))); --yaw

116 end Make_Euler_Angles_From_Q;

117

118

119 --Operators --

120

121 function "not" (Q: Spark_Quaternion)

122 return Spark_Quaternion is

123 begin

124 return Spark_Quaternion ’(Q.N, -Q.V);

125 end "not";

126

127 function "+" (LEFT , RIGHT: Spark_Quaternion)

128 return Spark_Quaternion is

129 begin

130 return Spark_Quaternion ’(LEFT.N + RIGHT.N,

131 (LEFT.V + RIGHT.V));

132 end "+";

133

134 function "-" (LEFT , RIGHT: Spark_Quaternion)

135 return Spark_Quaternion is

136 begin

137 return Spark_Quaternion ’(LEFT.N - RIGHT.N,

138 (LEFT.V - RIGHT.V));

139 end "-";

68

140

141 function "*" (LEFT , RIGHT: Spark_Quaternion)

142 return Spark_Quaternion is

143 begin

144 return Spark_Quaternion ’(

145 LEFT.N * RIGHT.N - LEFT.V.X * RIGHT.V.X -

146 LEFT.V.Y * RIGHT.V.Y -

147 LEFT.V.Z * RIGHT.V.Z,

148 Vector3 ’(

149 LEFT.N * RIGHT.V.X + LEFT.V.X *

150 RIGHT.N + LEFT.V.Y * RIGHT.V.Z -

151 LEFT.V.Z * RIGHT.V.Y,

152 LEFT.N * RIGHT.V.Y + LEFT.V.Y *

153 RIGHT.N + LEFT.V.Z * RIGHT.V.X -

154 LEFT.V.X * RIGHT.V.Z,

155 LEFT.N * RIGHT.V.Z + LEFT.V.Z *

156 RIGHT.N + LEFT.V.X * RIGHT.V.Y -

157 LEFT.V.Y * RIGHT.V.X));

158 end "*";

159

160 function "*" (LEFT: Spark_Quaternion; RIGHT: Scalar)

161 return Spark_Quaternion is

162 begin

163 return Spark_Quaternion ’(

164 LEFT.N * RIGHT , LEFT.V * RIGHT);

165 end "*";

69

166

167 function "*" (LEFT: Scalar; RIGHT: Spark_Quaternion)

168 return Spark_Quaternion is

169 begin

170 return Spark_Quaternion ’(

171 LEFT * RIGHT.N, RIGHT.V * LEFT);

172 end "*";

173

174 function "*" (LEFT: Spark_Quaternion; RIGHT: Vector3)

175 return Spark_Quaternion is

176 begin

177 return Spark_Quaternion ’(

178 -(LEFT.V.X * RIGHT.X + LEFT.V.Y *

179 RIGHT.Y + LEFT.V.Z * RIGHT.Z),

180 Vector3 ’(

181 LEFT.N * RIGHT.X + LEFT.V.Y *

182 RIGHT.Z - LEFT.V.Z * RIGHT.Y,

183 LEFT.N * RIGHT.Y + LEFT.V.Z *

184 RIGHT.X - LEFT.V.X * RIGHT.Z,

185 LEFT.N * RIGHT.Z + LEFT.V.X *

186 RIGHT.Y - LEFT.V.Y * RIGHT.X));

187 end "*";

188

189 function "*" (LEFT: Vector3; RIGHT: Spark_Quaternion)

190 return Spark_Quaternion is

191 begin

70

192 return Spark_Quaternion ’(

193 -(RIGHT.V.X * LEFT.X + RIGHT.V.Y *

194 LEFT.Y + RIGHT.V.Z * LEFT.Z),

195 Vector3 ’(

196 RIGHT.N * LEFT.X + RIGHT.V.Y *

197 LEFT.Z - RIGHT.V.Z * LEFT.Y,

198 RIGHT.N * LEFT.Y + RIGHT.V.Z *

199 LEFT.X - RIGHT.V.X * LEFT.Z,

200 RIGHT.N * LEFT.Z + RIGHT.V.X *

201 LEFT.Y - RIGHT.V.Y * LEFT.X));

202 end "*";

203

204 function "/" (LEFT: Spark_Quaternion; RIGHT: Scalar)

205 return Spark_Quaternion is

206 begin

207 return Spark_Quaternion ’(

208 LEFT.N/RIGHT , LEFT.V/RIGHT);

209 end "/";

210 end Quaternion;

Listing A.7: vector.ads

1 with Constants; use Constants;

2 with Ada.Numerics; use Ada.Numerics;

3 with Ada.Numerics.Elementary_Functions;

4 use Ada.Numerics.Elementary_Functions;

5

71

6 package Vector with SPARK_Mode is

7 subtype Scalar is Float range -2.0**24 .. 2.0**24;

8 --"In general large positive and negative

9 -- floating -point inputs need to be excluded"

10

11 --General Purpose 3-element vector ---------------------

12 type Vector3 is record

13 X: Scalar := 0.0;

14 Y: Scalar := 0.0;

15 Z: Scalar := 0.0;

16 end record;

17

18 --Methods --

19 function Magnitude(V: Vector3) return Scalar;

20 function Normalize(V: Vector3) return Vector3;

21 function Cross_Product(U, V: Vector3) return Vector3;

22

23 --Operators --

24 function "+" (LEFT , RIGHT: Vector3) return Vector3;

25 function "-" (LEFT , RIGHT: Vector3) return Vector3;

26 function "*" (LEFT , RIGHT: Vector3) return Scalar;

27 function "/" (LEFT: Vector3; RIGHT: Scalar)

28 return Vector3;

29 function "*" (LEFT: Vector3; RIGHT: Scalar)

30 return Vector3;

31 function "-" (V: Vector3) return Vector3;

72

32 end Vector;

Listing A.8: vector.adb

1 package body Vector with SPARK_Mode is

2 --Methods --

3 function Magnitude(V: Vector3) return Scalar is

4 begin

5 return Sqrt (V.X * V.X + V.Y * V.Y + V.Z * V.Z);

6 end Magnitude;

7

8 function Normalize(V: Vector3) return Vector3 is

9 M : Scalar := Magnitude(V);

10 Return_V : Vector3;

11 begin

12 if M <= TOL then

13 M := 1.0;

14 end if;

15 Return_V.X := V.X / M;

16 Return_V.Y := V.Y / M;

17 Return_V.Z := V.Z / M;

18 if abs (V.X) < TOL then

19 Return_V.X := 0.0;

20 end if;

21 if abs (V.Y) < TOL then

22 Return_V.Y := 0.0;

23 end if;

73

24 if abs (V.Z) < TOL then

25 Return_V.Z := 0.0;

26 end if;

27 return Return_V;

28 end Normalize;

29

30 function Cross_Product(U, V: Vector3) return Vector3 is

31 begin

32 return Vector3 ’(U.Y * V.Z - U.Z * V.Y,

33 -U.X * V.z + U.Z * V.X,

34 U.X * V.Y - U.Y * V.X);

35 end Cross_Product;

36

37 --Operators --

38 function "+" (LEFT , RIGHT: Vector3) return Vector3 is

39 begin

40 return Vector3 ’(LEFT.X + RIGHT.X,

41 LEFT.Y + RIGHT.Y,

42 LEFT.Z + RIGHT.Z);

43 end "+";

44

45 function "-" (LEFT , RIGHT: Vector3) return Vector3 is

46 begin

47 return Vector3 ’(LEFT.X - RIGHT.X,

48 LEFT.Y - RIGHT.Y,

49 LEFT.Z - RIGHT.Z);

74

50 end "-";

51

52 function "*" (LEFT , RIGHT: Vector3) return Scalar is

53 begin

54 return LEFT.X * RIGHT.X + LEFT.Y * RIGHT.Y +

55 LEFT.Z * RIGHT.Z;

56 end "*";

57

58 function "/" (LEFT: Vector3; RIGHT: Scalar)

59 return Vector3 is

60 begin

61 return Vector3 ’(LEFT.X / RIGHT ,

62 LEFT.Y / RIGHT ,

63 LEFT.Z / RIGHT);

64 end "/";

65

66 function "*" (LEFT: Vector3; RIGHT: Scalar)

67 return Vector3 is

68 begin

69 return Vector3 ’(LEFT.X * RIGHT ,

70 LEFT.Y * RIGHT ,

71 LEFT.Z * RIGHT);

72 end "*";

73

74 function "-" (V: Vector3) return Vector3 is

75 begin

75

76 return Vector3 ’(-V.X, -V.Y, -V.Z);

77 end "-";

78 end Vector;

76

Appendix B. Naive Prim’s Algorithm Implementation: Full
Source Code

Listing B.1: main.adb

1 with Ada.Text_IO; use Ada.Text_IO;

2 with MST_Prim; use MST_Prim;

3

4 procedure Main is

5 -- G: MST_Prim.Graph := ((0, 2, 0, 6, 0),

6 -- (2, 0, 3, 8, 5),

7 -- (0, 3, 0, 0, 7),

8 -- (6, 8, 0, 0, 9),

9 -- (0, 5, 7, 9, 0));

10 G: MST_Prim.Graph :=

11 -------a---b---c---d---e---f---g---h---i-------+

12 ((0, 4, 0, 0, 0, 0, 0, 8, 0),---- a

13 (4, 0, 8, 0, 0, 0, 0, 11, 0),---- b

14 (0, 8, 0, 7, 0, 4, 0, 0, 2),---- c

15 (0, 0, 7, 0, 9, 14, 0, 0, 0),---- d

16 (0, 0, 0, 9, 0, 10, 0, 0, 0),---- e

17 (0, 0, 4, 14, 10, 0, 2, 0, 0),---- f

18 (0, 0, 0, 0, 0, 2, 0, 1, 6),---- g

19 (8, 11, 0, 0, 0, 0, 1, 0, 7),---- h

20 (0, 0, 2, 0, 0, 0, 6, 7, 0));--- i

21 mst : MST_Prim.MST;

22 begin

23 mst := MST_Prim.Mst_Prim(G, 1);

77

24 Put_Line(" Edge Weight");

25 for I in MST_Prim.Vertex loop

26 Put_Line(mst.Edges(I)’Image & " -" & I’image &

27 " " & mst.Weights(I)’Image);

28 end loop;

29 end Main;

Listing B.2: mst prim.ads

1 package MST_Prim with SPARK_Mode is

2 Subtype Weight

3 is Integer range 0 .. Integer ’Last;

4 Subtype Extended_Vertex

5 is Integer range 0 .. 9;

6 Subtype Vertex

7 is Extended_Vertex range 1 .. 9;

8 type Destinations is array(Vertex) of Extended_Vertex;

9 type Weights_List is array (Vertex) of Weight;

10 type MST is record

11 -- Weights: Weights_List;

12 -- Edges: Destinations;

13 Weights: Weights_List := (others => Integer ’Last);

14 Edges: Destinations := (others => 0);

15 end record;

16 type Visited_Set is array(Vertex) of Boolean;

17 type Adj_List is

18 array (Vertex) of Weight;

78

19 type Graph is array (Vertex) of Adj_List;

20 function Extract_Min

21 (Weights: Weights_List; Visited: Visited_Set)

22 return Vertex;

23 function Mst_Prim (G: Graph; r: Vertex) return MST;

24 end MST_Prim;

Listing B.3: mst prim.adb

1 package body MST_Prim with SPARK_Mode is

2 function Extract_Min(

3 Weights: Weights_List; Visited: Visited_Set)

4 return Vertex is

5 min: Weight := Weight ’Last;

6 min_Index: Integer;

7 begin

8 min_Index := 1;

9 for I in Vertex loop

10 if Weights(I) < min

11 and Visited(I) = False

12 then

13 min := Weights(I);

14 min_Index := I;

15 end if;

16 end loop;

17 return min_Index;

18 end Extract_Min;

79

19

20 function Mst_Prim (G: Graph; r: Vertex) return MST

21 is

22 M : MST;

23 Visited: Visited_Set := (others => False);

24 u: Vertex;

25 begin

26 M.Weights(r) := 0;

27 M.Edges(r) := Extended_Vertex ’First;

28 for I in Vertex loop

29 u := Extract_Min(M.Weights , Visited);

30 Visited(u) := True;

31 for V in Vertex loop

32 if G(u)(V) > 0 and Visited(V) = False

33 and G(u)(V) < M.Weights(V)

34 then

35 M.Weights(V) := G(u)(V);

36 M.Edges(V) := U;

37 end if;

38 end loop;

39 end loop;

40 return M;

41 end Mst_Prim;

42 end MST_Prim;

80

Appendix C. Textbook Prim’s Algorithm Implementation:
Full Source Code

Listing C.1: main.adb

1 with Ada.Text_IO; use Ada.Text_IO;

2 with MST_Prim; use MST_Prim;

3

4 procedure main is

5 G: MST_Prim.Graph :=

6 -------a---b---c---d---e---f---g---h---i-------+

7 ((0, 4, 0, 0, 0, 0, 0, 8, 0),---- a

8 (4, 0, 8, 0, 0, 0, 0, 11, 0),---- b

9 (0, 8, 0, 7, 0, 4, 0, 0, 2),---- c

10 (0, 0, 7, 0, 9, 14, 0, 0, 0),---- d

11 (0, 0, 0, 9, 0, 10, 0, 0, 0),---- e

12 (0, 0, 4, 14, 10, 0, 2, 0, 0),---- f

13 (0, 0, 0, 0, 0, 2, 0, 1, 6),---- g

14 (8, 11, 0, 0, 0, 0, 1, 0, 7),---- h

15 (0, 0, 2, 0, 0, 0, 6, 7, 0));--- i

16 mst : Graph(9, 8);

17 begin

18 Prim_MST(G_CLR , 1, mst);

19 Print_Graph(mst);

20 end main;

Listing C.2: mst prim.ads

1 with Ada.Containers.Formal_Vectors; use Ada.Containers;

81

2 with Ada.Numerics.Big_Numbers.Big_Integers;

3 use Ada.Numerics.Big_Numbers.Big_Integers;

4

5 package MST_Prim with SPARK_Mode is

6 Subtype Extended_Vertex is Natural range 0 .. 100;

7 Subtype Vertex is Extended_Vertex range

8 1 .. Extended_Vertex ’Last;

9 Subtype Weight is Natural range 0 .. 1000;

10 type Edge is record

11 From: Extended_Vertex;

12 To: Vertex;

13 W: Weight;

14 end record

15 with Dynamic_Predicate =>

16 From /= To;

17 package Vertices is new Formal_Vectors(

18 Element_Type => Vertex , Index_Type => Positive);

19 use Vertices;

20 package Edges is new Formal_Vectors(

21 Element_Type => Edge , Index_Type => Positive);

22 use Edges;

23 package Weights is new Formal_Vectors(

24 Element_Type => Weight , Index_Type => Positive);

25 use Weights;

26 type Adj_Matrix is array(

27 Positive range <>, Positive range <>)

82

28 of Weight

29 with Dynamic_Predicate =>

30 Adj_Matrix ’First (1) = 1 and

31 Adj_Matrix ’Last (1) >= Adj_Matrix ’First (1) and

32 Adj_Matrix ’First (2) = 1 and

33 Adj_Matrix ’Last (2) >= Adj_Matrix ’First (2) and

34 Adj_Matrix ’Last (1) = Adj_Matrix ’Last (2);

35 type Graph (Num_Vertices , Num_Edges: Count_Type)

36 is record --Def 1.1

37 V: Vertices.Vector(Num_Vertices);

38 E: Edges.Vector(Num_Edges);

39 end record

40 with Dynamic_Predicate =>

41 Num_Vertices >= 0 and

42 Num_Edges >= 0;

43

44 --Functions and Procedures -----------------------------

45 procedure Prim_MST(

46 G: Adj_Matrix; r: Integer; MST: in out Graph)

47 with

48 Pre =>

49 G’Length <= 100 and then

50 G’Length = Capacity(MST.V) and then

51 r in G’Length and then

52 Is_Tree(MST) and then

53 MST.Num_Vertices = MST.Num_Edges + 1;

83

54 procedure Print_Graph(M : Graph);

55

56 --Min-Priority -Queue -----------------------------------

57 type Queue_Item is record

58 ID: Vertex;

59 Value: Edge;

60 Priority: Weight;

61 end record

62 with Dynamic_Predicate =>

63 Value.To /= Value.From and

64 ID in Vertex and

65 Value.From in Extended_Vertex and

66 Value.To in Vertex and

67 Value.W = Priority and

68 Priority in Weight;

69 Package PQ is new Formal_Vectors(

70 Element_Type => Queue_Item , Index_Type => Positive);

71 use PQ;

72 procedure Update_Item(

73 Q: in out PQ.Vector; new_item: Queue_Item);

74 procedure extract_min(

75 Q: in out PQ.Vector; pair: out Queue_Item)

76 with

77 pre =>

78 not PQ.Is_Empty(Q) and then

79 Integer(Length(Q)) in Vertex ,

84

80 Post =>

81 Did_Queue_Decrease(Q’Old , Q) and

82 Is_Min(Q, pair) and

83 Is_First_Extracted(Q’Old , Q, pair);

84 function Is_In_Queue(Q: PQ.Vector; V: Vertex)

85 return Boolean is (for some I of Q => I.ID = V);

86 function Get_Item_Priority(Q: PQ.Vector; V: Vertex)

87 return Weight

88 with

89 pre =>

90 Is_In_Queue(Q, V);

91

92 --Ghost Code ---

93 function Is_Tree(G: Graph) return Boolean is

94 (

95 G.Num_Vertices <= 100 and then

96 G.Num_Edges <= 99 and then

97 Length(G.V) = Length(G.E) + 1 and then

98 Capacity(G.V) = Capacity(G.E) + 1 and then

99 (for all I of G.E => I.From /= I.To))

100 with Ghost;

101

102 ---Min-Priority -Queue Ghost Code -----------------------

103 function Is_Min(

104 Orig_Queue: PQ.Vector;

105 Min_Priority_Found: Queue_Item) return Boolean

85

106 with Ghost ,

107 Pre => Min_Priority_Found.ID in Vertex;

108 function Did_Queue_Decrease(

109 Orig_Queue , Result_Queue: PQ.Vector)

110 return Boolean

111 with Ghost;

112 function Is_First_Extracted(

113 Orig_Queue , Result_Queue: PQ.Vector;

114 extracted_pair: Queue_Item)

115 return Boolean

116 with Ghost ,

117 Pre => Length(Result_Queue) = Length(Orig_Queue) - 1;

118 end MST_Prim;

Listing C.3: mst prim.adb

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 package body MST_Prim with SPARK_Mode is

4 --Functions and Procedures -----------------------------

5 procedure Prim_MST(

6 G: Adj_Matrix; r: Integer; MST: in out Graph)

7 is

8 u : Queue_Item;

9 w : Weight;

10 Q : PQ.Vector(G’Length);

11 begin

86

12 for I in 1 .. G’Length loop

13 Q.Append ((I, (0, I, Weight ’Last), Weight ’Last));

14 pragma Loop_Invariant(Integer(Length(Q)) = I and

15 I <= Integer(Capacity(Q)));

16 pragma Loop_Invariant(

17 for all J in 1 .. I =>

18 Q.Element(J).ID = J and

19 Q.Element(J).Value.To = J);

20 end loop;

21 Update_Item(Q, (r, (0, r, 0), 0));

22 while not PQ.Is_Empty(Q) loop

23 extract_min(Q, u);

24 pragma Assume(if Length(MST.V) >= 1 then

25 Length(MST.E) = Length(MST.V) - 1);

26 pragma Assume(u.ID = u.Value.To);

27 pragma Assume(u.Value.From /= u.Value.To);

28 pragma Assume(if u.ID = r then

29 u.Value.From = 0 else u.Value.From > 0);

30 pragma Assume(if u.ID /= r then u.Priority > 0);

31 pragma Assume(if u.ID = r then

32 Length(MST.V) = 0 and Length(MST.E) = 0);

33 pragma Assert(if Integer(Length(MST.V)) <= 1 and

34 Length(MST.E) = 0 then Is_Tree(MST));

35 pragma Loop_Invariant(

36 for all I of Q => u.Priority <= I.Priority);

37 if Length(MST.V) < Capacity(MST.V) then

87

38 MST.V.Append(u.Value.To);

39 end if;

40 if u.Value.To /= r and

41 Length(MST.E) < Capacity(MST.E) and

42 u.Value.From /= u.Value.To

43 then

44 MST.E.Append(

45 (u.Value.From , u.Value.To, u.Priority));

46 end if;

47 for I in 1 .. G’Length loop

48 pragma Assume(u.Value.To <= G’Length);

49 w := G(u.Value.To , I);

50 pragma Assume(Is_In_Queue(Q, I));

51 if w > 0 and w < Get_Item_Priority(Q, I) and

52 I /= u.Value.To then

53 Update_Item(Q, (I, (u.Value.To , I, w), w));

54 end if;

55 end loop;

56 end loop;

57 end Prim_MST;

58

59 procedure Print_Graph (M : Graph) is

60 begin

61 Put ("Vertices: [");

62 for I in 1.. Vertices.Length(M.V) loop

63 Put(Vertices.Element(

88

64 M.V, Integer(I))’Image & " ");

65 end loop;

66 Put_Line ("]");

67

68 Put ("Edges: [");

69 for I in 1.. Edges.Length(M.E) loop

70 Put ("(" & Edges.Element(

71 M.E, Integer(I)).From ’Image & "<->" &

72 Edges.Element(

73 M.E, Integer(I)).To ’Image & ")");

74 end loop;

75 Put_Line ("]");

76

77 Put ("Weights: [");

78 for I in 1.. Edges.Length(M.E) loop

79 Put(Edges.Element(M.E,Integer(I)).W’Image & " ");

80 end loop;

81 Put_Line ("]");

82

83 end Print_Graph;

84

85 --Min -Priority -Queue -----------------------------------

86 procedure Update_Item(

87 Q: in out PQ.Vector; new_item: Queue_Item) is

88 begin

89 for I of Q loop

89

90 if I.ID = new_item.ID then

91 PQ.Replace_Element(

92 Q, Q.Find_Index(I), new_item);

93 end if;

94 end loop;

95 end Update_Item;

96

97 procedure extract_min(

98 Q: in out PQ.Vector; pair: out Queue_Item)

99 is

100 min_index: Vertex := 1;

101 begin

102 for I in 1 .. Integer(Length(Q)) loop

103 if Q.Element(I).Priority <

104 Q.Element(min_index).Priority

105 then

106 min_index := I;

107 end if;

108 pragma Loop_Invariant(min_index in 1 .. I);

109 pragma Loop_Invariant(

110 for all E in 1 .. I =>

111 Q.Element(E).Priority >=

112 Q.Element(min_index).Priority);

113 pragma Loop_Invariant(

114 for all E in 1 .. min_index -1 =>

115 Q.Element(E).Priority >

90

116 Q.Element(min_index).Priority);

117 end loop;

118 pair := Q.Element(min_index);

119 PQ.Delete(Q, min_index);

120 end extract_min;

121

122 function Get_Item_Priority(Q: PQ.Vector; V: Vertex)

123 return Weight

124 is

125 Res: Weight := Weight ’Last;

126 begin

127 for I of Q loop

128 if I.ID = V then

129 Res := I.Priority;

130 end if;

131 end loop;

132 return Res;

133 end Get_Item_Priority;

134

135 ---Min-Priority -Queue Ghost Code -----------------------

136 function Is_Min(

137 Orig_Queue: PQ.Vector;

138 Min_Priority_Found: Queue_Item) return Boolean

139 is

140 (for all I of Orig_Queue =>

141 I.Priority >= Min_priority_Found.Priority);

91

142

143 function Did_Queue_Decrease(

144 Orig_Queue , Result_Queue: PQ.Vector)

145 return Boolean is

146 (Length(Result_Queue) = Length(Orig_Queue) - 1);

147

148 function Is_First_Extracted(

149 Orig_Queue , Result_Queue: PQ.Vector;

150 extracted_pair: Queue_Item) return Boolean

151 is

152 (for some I in 1 .. Integer(Length(Orig_Queue)) =>

153 extracted_pair = Orig_Queue.Element(I)

154 and then (for all X in 1 .. I - 1 =>

155 (Result_Queue.Element(X).Priority >

156 extracted_pair.Priority))

157 and then (for all J in 1 .. I - 1 =>

158 Orig_Queue.Element(J) =

159 Result_Queue.Element(J))

160 and then (for all J in I .. Integer(

161 Length(Result_Queue)) =>

162 Orig_Queue.Element(J + 1) =

163 Result_Queue.Element(J)));

164 end MST_Prim;

92

Bibliography

1. Nikolai Kosmatov, Claude Marché, Yannick Moy, and Julien Signoles. Static

versus dynamic verification in Why3, Frama-C and SPARK 2014. In Interna-

tional Symposium on Leveraging Applications of Formal Methods, pages 461–478.

Springer, 2016.

2. AdaCore. Introduction to SPARK. https://learn.adacore.com/courses/

intro-to-spark/index.html, 2021. (accessed: 05.19.2022).

3. AdaCore. SPARK user’s guide: Applying SPARK in practice. https://docs.

adacore.com/spark2014-docs/html/ug/en/usage_scenarios.html, 2022.

4. Matt Bishop, Brian Hay, and Kara Nance. Applying formal methods informally.

In 2011 44th Hawaii International Conference on System Sciences, pages 1–8.

IEEE, 2011.

5. Laura Humphrey, Ryan Baity, and Kenneth Hopkinson. Formal verification of

safety-critical software using SPARK. IET, 2021.

6. Aaron Dutle, Mariano Moscato, Laura Titolo, César Muñoz, Gregory Anderson,

and François Bobot. Formal analysis of the compact position reporting algorithm.

Formal Aspects of Computing, 33:65–86, 2021.

7. Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-craft

controller using SPIN. IEEE Transactions on Software Engineering, 27(8):749–

765, 2001.

8. John A Van der Poll. Formal methods in software development: A road less

travelled. South African Computer Journal, 2010(45):40–52, 2010.

93

https://learn.adacore.com/courses/intro-to-spark/index.html
https://learn.adacore.com/courses/intro-to-spark/index.html
https://docs.adacore.com/spark2014-docs/html/ug/en/usage_scenarios.html
https://docs.adacore.com/spark2014-docs/html/ug/en/usage_scenarios.html

9. Quentin Ochem. Rust and SPARK: Software reliability for everyone. Electronic

Design - Industrial Automation, 4 2017.

10. Steve Klabnik and Carol Nichols. The Rust Programming Langauge. 1 edition.

11. Department of Defense requirements for high order computer programming lan-

guages. ’Ironman’. Technical Report ADA100403, OUSE R&E, Washington, DC,

January 1977.

12. Claire Dross and Johannes Kanig. Recursive data structures in SPARK. In In-

ternational Conference on Computer Aided Verification, pages 178–189. Springer,

2020.

13. Maroua Maalej, Tucker Taft, and Yannick Moy. Safe dynamic memory manage-

ment in Ada and SPARK. In Ada-Europe International Conference on Reliable

Software Technologies, pages 37–52. Springer, 2018.

14. Docs.rs. Crate contracts. Accessed Jun. 10, 2022 [Online].

15. Vytautas Astrauskas, Aurel B́ılỳ, Jonáš Fiala, Zachary Grannan, Christoph

Matheja, Peter Müller, Federico Poli, and Alexander J Summers. The Prusti

project: Formal verification for Rust. In NASA Formal Methods Symposium,

pages 88–108. Springer, 2022.

16. John W McCormick and Peter C Chapin. Building high integrity applications

with SPARK. Cambridge University Press, 2015.

17. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – where programs meet

provers. In European Symposium on Programming (ESOP), pages 125–128.

Springer, 2013.

18. Prusti. Prusti user guide. Accessed Jun. 11, 2022 [Online].

94

19. Prusti. Prusti. Accessed Jun. 11, 2022 [Online].

20. Ryan Baity, Laura R Humphrey, and Kenneth Hopkinson. Formal verification of

a merge sort algorithm in SPARK. In AIAA Scitech 2021 Forum, 2021.

21. Roderick Chapman and Florian Schanda. Are we there yet? 20 years of indus-

trial theorem proving with SPARK. In International Conference on Interactive

Theorem Proving, pages 17–26. Springer, 2014.

22. MITRE. Common Weakness Enumeration (CWE). https://cwe.mitre.org,

2021. (accessed: 05.19.2022).

23. Roderick Chapman and Yannick Moy. Cyber security. https://www.adacore.

com/uploads/books/pdf/AdaCore-Tech-Cyber-Security-web.pdf, 2018.

24. David M Bourg and Bryan Bywalec. Physics for Game Developers: Science,

math, and code for realistic effects. ” O’Reilly Media, Inc.”, 2013.

25. AdaCore. SPARK user’s guide: How to view GNATprove output.

https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_

to_view_gnatprove_output.html#the-analysis-results-summary-file,

2022.

26. Claire Dross and Johannes Kanig. Making proofs of floating-point programs

accessible to regular developers. In Software Verification, pages 7–24. Springer,

2021.

27. John Rushby. Formal methods and their role in the certification of critical sys-

tems. In Safety and reliability of software based systems, pages 1–42. Springer,

1997.

28. Gerard O’Regan. Concise guide to formal methods. Springer, 2017.

95

https://cwe.mitre.org
https://www.adacore.com/uploads/books/pdf/AdaCore-Tech-Cyber-Security-web.pdf
https://www.adacore.com/uploads/books/pdf/AdaCore-Tech-Cyber-Security-web.pdf
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.html#the-analysis-results-summary-file
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_view_gnatprove_output.html#the-analysis-results-summary-file

29. Ghada Bahig and Amr El-Kadi. Formal verification of automotive design in

compliance with ISO 26262 design verification guidelines. IEEE Access, 5:4505–

4516, 2017.

30. Davide Basile, Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi, Franco

Mazzanti, Andrea Piattino, Daniele Trentini, and Alessio Ferrari. On the indus-

trial uptake of formal methods in the railway domain. In International Conference

on Integrated Formal Methods (iFM), pages 20–29. Springer, 2018.

31. RTCA. Formal methods supplement to DO-178C and DO-278A. Technical Report

DO-333, RTCA Special Committee 205 (SC-205) and EUROCAEWorking Group

71 (WG-71), 2011.

32. Jennifer A Davis, Matthew Clark, Darren Cofer, Aaron Fifarek, Jacob Hinchman,

Jonathan Hoffman, Brian Hulbert, Steven P Miller, and Lucas Wagner. Study

on the barriers to the industrial adoption of formal methods. In International

Workshop Formal Methods for Industrial Critical Systems, pages 63–77. Springer,

2013.

33. Aifheli Nemathaga and John Andrew van der Poll. Formal Methods Adoption in

the Commercial World. PhD thesis, University of South Africa, 2020.

34. Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. How Amazon web services uses formal methods. Communi-

cations of the ACM, 58(4):66–73, 2015.

35. Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman,

Colm MacCárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran,

et al. Continuous formal verification of Amazon s2n. In International Conference

on Computer Aided Verification (CAV), pages 430–446. Springer, 2018.

96

36. John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,

Kasper Luckow, Neha Rungta, Oksana Tkachuk, and Carsten Varming. Semantic-

based automated reasoning for AWS access policies using SMT. In Formal Meth-

ods in Computer Aided Design (FMCAD), pages 1–9. IEEE, 2018.

37. John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J

Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, et al.

Reachability analysis for AWS-based networks. In International Conference on

Computer Aided Verification (CAV), pages 231–241. Springer, 2019.

38. AdaCore. Download GNAT Community Edition. https://www.adacore.com/

download, 2022. (accessed: 05.19.2022).

39. Christophe Garion. SPARK by example. https://github.com/tofgarion/

spark-by-example, 2019. (accessed: 05.19.2022).

40. Artur Mariano, Dongwook Lee, Andreas Gerstlauer, and Derek Chiou. Hardware

and software implementations of Prim’s algorithm for efficient minimum spanning

tree computation. In International Embedded Systems Symposium, pages 151–158,

2013.

41. Maarten van Steen and Andrew S. Tanenbaum. Distributed systems. https:

//www.distributed-systems.net/index.php/books/ds3/, 2017.

42. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-

noles, and Boris Yakobowski. Frama-C. In IEEE International Conference on

Software Engineering and Formal Methods (SEFM), pages 233–247. Springer,

2012.

97

https://www.adacore.com/download
https://www.adacore.com/download
https://github.com/tofgarion/spark-by-example
https://github.com/tofgarion/spark-by-example
https://www.distributed-systems.net/index.php/books/ds3/
https://www.distributed-systems.net/index.php/books/ds3/

43. Eduardo Brito and Jorge Sousa Pinto. Program verification in SPARK and ACSL:

A comparative case study. In International Conference on Reliable Software Tech-

nologies, pages 97–110, 2010.

44. Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwenger.

Verified Rust monitors for Lola specifications. In International Conference on

Runtime Verification, pages 431–450. Springer, 2020.

45. Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The KRAKATOA

tool for certification of JAVA/JAVACARD programs annotated in JML. The

Journal of Logic and Algebraic Programming, 58(1-2):89–106, 2004.

46. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Formal deriva-

tion of spanning trees algorithms. In International Conference of B and Z Users,

pages 457–476, 2003.

47. ClearSy. Atelier B user manual version 4.0. https://www.it.

uu.se/edu/course/homepage/bkp/ht13/AB/documentation/manual/

ManuelUtilisateurAtb4/uk/user_uk.pdf, 2022.

48. Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor. Functional correctness

of c implementations of dijkstra’s, kruskal’s, and prim’s algorithms. In Inter-

national Conference on Computer Aided Verification, pages 801–826. Springer,

2021.

49. Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In In-

ternational Conference on Computer Aided Verification (CAV), pages 171–177.

Springer, 2011.

98

https://www.it.uu.se/edu/course/homepage/bkp/ht13/AB/documentation/manual/ManuelUtilisateurAtb4/uk/user_uk.pdf
https://www.it.uu.se/edu/course/homepage/bkp/ht13/AB/documentation/manual/ManuelUtilisateurAtb4/uk/user_uk.pdf
https://www.it.uu.se/edu/course/homepage/bkp/ht13/AB/documentation/manual/ManuelUtilisateurAtb4/uk/user_uk.pdf

50. Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout.

Alt-Ergo 2.2. In International Workshop on Satisfiability Modulo Theories

(SMT), pages 1–11, 2018.

51. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R.

Ramakrishnan and Jakob Rehof, editors, Int. Conf. Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 337–340. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

52. AdaCore. SPARK user’s guide: Overview of SPARK language. https:

//docs.adacore.com/spark2014-docs/html/ug/en/source/language_

restrictions.html, 2022.

53. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2022.

54. R. M. Baity. Formal verification for high assurance software: A case study using

the SPARK auto-active verification toolset. Master’s thesis, Air Force Institute

of Technology, AFIT Scholar, 2021.

55. Peter Höfner and Bernhard Möller. A new correctness proof for Prim’s algorithm.

http://www.Informatik.Uni-Augsburg.de, 2019.

56. Claire Dross and Johannes Kanig. Recursive data structures in SPARK. In

International Conference on Computer Aided Verification (CAV), pages 178–189.

Springer, 2020.

57. AdaCore. SPARK 2014. https://github.com/AdaCore/spark2014, 2023. (ac-

cessed: 01.17.2023).

99

https://docs.adacore.com/spark2014-docs/html/ug/en/source/language_restrictions.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/language_restrictions.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/language_restrictions.html
http://www.Informatik.Uni-Augsburg.de
https://github.com/AdaCore/spark2014

58. Brian Wheelhouse, Laura Humphrey, and Kenneth Hopkinson. Formal verifica-

tion of prim’s algorithm in spark. In 56th Hawaii International Conference on

System Sciences (HICSS), pages 6695–6703, 2023.

59. AdaCore. SPARK user’s guide: Formal containers library. https:

//docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/

source/spark_libraries.html#formal-containers-library, 2022.

100

https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/spark_libraries.html#formal-containers-library
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/spark_libraries.html#formal-containers-library
https://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/spark_libraries.html#formal-containers-library

Acronyms

ACSL ANSI/ISO C Specification Language. 20, 38

ADS-B Automatic Dependent Surveillance-Broadcast. v, 5

AFRL Air Force Research Laboratory. iv, 1

AoRTE absence of runtime errors. 16

AWS Amazon Web Services. 19

CPR Compact Position Reporting algorithm. v, 5

CWE Common Weakness Enumeration. 12, 20, 38

MC/DC modified condition/decision coverage. 11, 20, 38

MSF minimum spanning forest. 21, 39

MST minimum spanning tree. 1, 2, 19, 21, 24, 25, 27, 28, 29, 30, 37, 39, 42, 43, 44,

48, 52

NaN not a number. 16

SHOLIS Ship Helicopter Operating Limits Information System. 11, 20, 38

SMT satisfiability modulo theories. 5, 9, 21, 41

VC verification condition. 9, 21, 41

VST Verified Software Toolchain. 21, 34, 39

101

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2023 Master’s Thesis Sept 2021 — Mar 2023

SAFE AND RELIABLE SOFTWARE AND THE FORMAL
VERIFICATION OF PRIM’S ALGORITHM IN SPARK

Brian S. Wheelhouse, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-23-M-070

AFRL, Aerospace Systems Directorate, Autonomous Controls Branch
Building 146, Rm 300
WPAFB OH 45433-7765
DSN 713-7032, COMM 937-713-7032
Email: laura.humphrey@us.af.mil

AFRL/RQQA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Despite evidence that formal verification helps produce highly reliable and secure code, formal methods, i.e.,
mathematically based tools and approaches for software and hardware verification, are not commonly used in software
and hardware development. The limited emphasis on formal verification in software education and training suggests that
many developers have never considered the benefits of formal verification. Despite the challenging nature of their
mathematical roots, software verification tools have improved; making it easier than ever to verify software. SPARK, a
programming language and a formal verification toolset, is of particular interest for the AFRL, and will be a primary
focus of this thesis. This thesis provides an overview of two safe and reliable languages with verification tools, namely
SPARK and Rust. Then, to demonstrate the benefits of modern software verification tools, two examples of software
verification in SPARK are presented. These examples include a verified implementation of the quaternion data structure
and two implementations of Prim’s algorithm, to further demonstrate the usability and methodology of the SPARK
verification toolset.

formal methods, software verification, spanning trees, minimum spanning trees, highly reliable software

U U U UU 112

Dr. Kenneth M. Hopkinson, AFIT/ENG

(937) 255-3636, ext 4579; kenneth.hopkinson@afit.edu

	Safe and Reliable Software and the Formal Verification of Prim's Algorithm in SPARK
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Background
	Research Objectives

	SPARK and Rust: An Overview of Safe and Reliable Software
	Introduction
	Safe and Reliable Languages
	Formal Verification Tools for Rust and SPARK
	Prusti
	SPARK

	Example: Quaternion Data Type
	Conclusions
	Additional Work

	Formal Verification of Absence of Runtime Errors of Prim's Algorithm in SPARK
	Introduction
	Related Work
	SPARK
	Example
	Prim's Algorithm
	Prim's Algorithm in SPARK at the Silver Level

	Results
	Conclusion

	Formal Verification of Functional Properties of Prim's Algorithm in SPARK
	Introduction
	Related Work
	SPARK
	Example
	Prim's Algorithm
	Prim's Algorithm in SPARK at the Gold Level

	Results
	Conclusion

	Conclusions
	Future Work

	Quaternion: Full Source Code
	Naive Prim's Algorithm Implementation: Full Source Code
	Textbook Prim's Algorithm Implementation: Full Source Code
	Bibliography
	Acronyms

