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Abstract

Compressed Sensing (CS) is a mathematical technique that can be applied to

sparse data sets to allow for sub-Nyquist sampling. Dropped-Channel PolSAR Com-

pressive Sensing (DCPCS) is a CS technique that recovers the signal from unmeasured

polarisation channels due to antenna crosstalk coupling the information onto the re-

maining channels. DCPCS reduces data storage/transmission and receiver hardware

requirements. This thesis examines the robustness of DCPCS to calibration errors on

the antenna crosstalk matrix. Although the antenna design problem is relaxed to a

large region of acceptable crosstalk values, very accurate calibration may be required

in a monostatic radar. This thesis also looks at the importance of properly setting

the basis pursuit denoising (BPDN) threshold ϵ in accordance with the expected

clutter and calibration error levels, showing that without any model mismatches it

is possible to accurately set ϵ using the estimated scene clutter. Finally, the validity

of using a simplified Point Spread Function (PSF) imaging operator to reduce the

computational complexity of simulations is shown.
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EFFECTS OF CALIBRATION ERRORS ON DROPPED-CHANNEL

POLARIMETRIC SYNTHETIC APERTURE RADAR

I. Introduction

1.1 Problem Background

Synthetic Aperture Radar (SAR) is a key remote sensing technology that is able

to provide all-weather day or night imaging, and has important civilian, military,

and scientific applications. Polarimetric SAR is an enhanced version of SAR that

makes it possible to ascertain additional target information about the reflectors in

the scene. The additional information comes at a trade-off of extra data that requires

processing, storage and transmission. In recent years, a technique called Compressive

Sensing (CS) has been leveraged to attempt to reduce the amount of data required

in Polarimetric Synthetic Aperture Radar (PolSAR) systems. Jackson and Lee-Elkin

developed a Dropped-Channel PolSAR Compressive Sensing (DCPCS) which uses the

inherent polarimetric crosstalk within an antenna to reduce the number of polarisation

channels that are required to be measured [1, 2]. Becker has extended the work on

DCPCS to show there is a robust design region available over which scene recovery can

occur [3,4]. The goal of this research is to determine the required calibration

accuracy of the antenna system in order for DCPCS to be successful.

In addition, this thesis will look at the importance of properly setting

the basis pursuit denoising (BPDN) threshold ϵ in accordance with the

expected noise and calibration error levels.
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1.2 Research Objectives

The research contributions of this work are as follows:

1. Determine the effect of calibration error in the antenna crosstalk model on scene

recovery and find a calibration accuracy level required to for successful scene

recovery using BPDN for DCPCS.

2. Explore the importance of properly setting the BPDN threshold ϵ with and

without model mismatches.

3. Validate the use of simplified imaging operators in place of higher fidelity models

to reduce computational loads.

1.3 Document Overview

The remainder of this thesis document is organised as follows. Chapter II presents

the relevant background information for the research topics covered and previous work

done in the field. Chapter III presents how antenna crosstalk is modelled, the effects of

calibration error on the DCPCS model and a recommended antenna calibration level.

Chapter IV introduces further research done as part of this thesis to investigate the

validity of using simplified imaging operators, the process of setting ℓ2-norm recovery

error threshold, ϵ, in BPDN, and the effects of calibration error on the setting of ϵ.

Finally, Chapter V presents the key conclusions from each of the studies, the relevance

of the studies, and recommendations for future areas of research.
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II. Background and Literature Review

2.1 Chapter Overview

The intent of this chapter is to provide the reader with the necessary information

to understand the concepts, results, and conclusions in the following chapters. It is

assumed that the reader is familiar with radar and signal processing concepts. The

topics discussed in this chapter include Synthetic Aperture Radar (SAR), Compressive

Sensing (CS), the Polarimetric Synthetic Aperture Radar (PolSAR) CS model, and

antenna calibration.

2.2 Synthetic Aperture Radar

A basic radar operates by transmitting Electromagnetic (EM) energy through

an antenna system towards a target. This energy then intercepts the target and is

reflected and scattered in all directions. A radar receive antenna (often the same as

the transmit) then receives some of the reflected energy. These signals are processed

and used to produce a radar output. The size and the shape of the antennas affect

the shape of the radar beam and in turn the performance of the radar system as a

whole. A larger antenna provides a narrower beamwidth, which in turn yields a finer

angular resolution. There are however a number of physical Size, Weight, Power, and

Cooling (SWaP-C) constraints that limit the size of antennas used [5].

In 1951 while working for the Goodyear Aircraft company, Carl Wiley invented

SAR whilst undertaking work to improve their missile guidance system. [6]. Wiley

did not however use the term SAR, he used the terminology of Doppler beam sharp-

ening [7]. SAR is a technique used to generate an artificially large antenna array

by using a series of returns from a much smaller antenna that is moving relative to

the target. As the SAR platform moves relative to the target the radar transmitter
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will periodically transmit pulses and store the returned signals into memory. Each

transmission behaves similarly to the elements in an electronic array. At the end of

the flight path the receiver will integrate the energy to create a synthetic aperture [5].

SAR radars are used to create radar images of scenes of interest. SAR has the abil-

ity to function irrespective of environmental and time factors, making it a key remote

sensing technology, critical to military, civilian, and scientific efforts. In the military

context SAR images can be used for detection, location, identification, and assess-

ment of targets [8]. Additionally, SAR has applications in agriculture, meteorology,

fire management, mapping, and monitoring land subsidence [9].

There are three main types of SAR: strip-map, spotlight, and scanning. In strip-

map SAR the antenna maintains a fixed look angle orthogonal to the flight path and

sweeps out a large swath on the ground [10]. In spotlight SAR the radar antenna

is steered to illuminate a single scene using pulses transmitted from many different

viewing angles [7]. In scan SAR the antenna beam is steered to sweep periodically

different range sub-swaths to image a larger ground patch than either spotlight or

strip-map SAR [11]. Spotlight SAR is the mode of SAR imaging discussed within this

thesis. This decision was made in order to maintain consistency with other works in

the field [1, 3, 4, 12–14]. Although spotlight SAR is the focus of this thesis, PolSAR

CS is compatible with all three types of SAR.

2.2.1 Spotlight SAR

Figure 1 shows the typical airborne spotlight SAR geometry in which the aircraft

illuminates a ground patch. The radar looks out the side of the aircraft along the

y-axis in Figure 1 in what is known as the range direction. The direction orthogonal

to the range is known as the cross-range direction. As the aircraft moves it peri-

odically transmits pulses of microwave energy that interact with targets within the

4



illuminated patch. Each pulse is then reflected back to the receiver on the aircraft and

demodulation procedure is performed. The assembling and preprocessing of data in

this fashion generates what is known as phase history data [7]. Phase history is then

converted into a SAR image by using an algorithm such as Polar Format Algorthm

(PFA) or back projection [15,16]. However, this thesis will take a linear algebra view

of image formation as will be outlined in Section 2.4.1.

Figure 1: Spotlight Synthetic Aperture Radar Geometry

2.2.2 Polarimetric SAR

Polarimetric SAR (PolSAR) is an enhanced version of SAR in which the radar

transmits and receives in multiple polarisations. By utilising different polarisations,

it is possible to discern additional information about the reflectors in the target scene.

Certain features of a target may provide a stronger return in one polarisation over

5



another. Thus, by examining the reflection in multiple received channels a more in-

formed picture of the scatterer may be developed. The process of examining multiple

polarizations of a target is called polarimetric decomposition [17].

In a dual polarisation system the antenna may transmit and receive either a

horizontal (H) or vertical (V) polarised signal. In practice any two orthogonal polar-

isations are suitable; however, this thesis will only discuss horizontally and vertically

polarised signals. PolSAR can be performed by either alternating transmission on

multiple polarisations, receiving on multiple polarisations, or both. In the case in

which the system both transmits and receives on dual polarisation, there are four

received polarisation channels: horizontal transmit - horizontal receive (HH), hori-

zontal transmit - vertical receive (HV), vertical transmit - horizontal receive (VH),

and vertical transmit - vertical receive (VV).

A common polarimetric decomposition for radar is the Pauli basis [18]:

PPauli =
1√
2



1 1 0 0

0 0 1 −j

0 0 1 j

1 −1 0 0


(1)

where the first column corresponds to an odd-bounce scatterer and the second column

corresponds to even-bounce scatterers (for example, a dihedral with one plate on

horizontal ground and the other vertical). A dihedral oriented with its seam rotated

45◦ about the radar line of sight will result in cross-pol response given by the third

column of PPauli in (1). The fourth column of PPauli represents a helical scatterer [1].

Each row of (1) corresponds to each of the four polarisation channels listed above (HH,

HV, VH, and VV).

The benefits of gathering the extra information of PolSAR however comes with a
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cost. SAR imaging already generates large amounts of data that require processing,

storage and transmission. The requirements to manage the large amounts of data

increase the size, cost, and complexity of the radar system. PolSAR has four times

the received data in comparison to regular SAR. Thankfully, sometimes a SAR scene

can be represented as sparse in a certain basis. When SAR scenes can be sparsely

represented in some basis a technique known as compressed sensing, or compressive

sensing [19], can be used to restrict the amount of data that is required to be collected.

2.3 Compressive Sensing

The Shannon-Nyquist sampling theory states that in order to avoid information

loss when sampling a signal, samples must be taken at least twice as fast as the signal

bandwidth [20]. As the length and/or bandwidth of the signal increases the amount

of data required to be collected can rapidly increase. In many applications such as

digital cameras the Nyquist rate is so high that the data must be compressed prior to

storage or transmission. For applications such Magnetic Resonance Imaging (MRI),

radars, and high-speed analogue-to-digital converters, it can become very expensive

to increase the sampling rate [21].

The theory of CS, also referred to as compressive sampling or sparse recovery,

provides a different technique to data acquisition that allows for sub-Nyquist sampling

of certain signals. The goal of compressive sensing is to solve the problem

min
b

||b||0 s.t. y = Ab (2)

where y ∈ CM×1 is observed data, b ∈ CN×1 is the true, unknown scene data, and

A ∈ CM×N is an under-determined measurement matrix [22]. The ℓ0-norm(|| · ||0)

is the total number of non-zero entries in a vector. Solving the problem in (2) is
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both unstable and NP-Complete meaning that it would be impossible to solve using

classical linear algebra techniques. Thankfully, if b is assumed to be sparse then

the ℓ0-norm can be replaced with the ℓ1-norm(|| · ||1) and sparse signals and closely

approximate compressible signals can be recovered [21]. The relaxation to use the

ℓ1-norm produces a basis pursuit (BP) problem of the form

min
b

||b||1 s.t. y = Ab (3)

the ℓ1-norm is a convex optimisation problem that can be solved using fast and

efficient solvers [22]. This research uses a basis pursuit denoising (BPDN) algorithm,

which is an extension of the BP technique. The standard form of a BPDN problem

is

b̂ = argmin
b

||b||1 s.t. ||ỹ −Ab||2 ≤ ϵ, (4)

where ϵ is a positive constant that represents a tolerance. By restricting the difference

of the ℓ2-norm of the measured data ỹ and the productAb to be below some tolerance

ϵ, BPDN is better positioned to recover signals that have been contaminated by noise

than looking for purely the sparsest solution. Appropriate thought must be used

when selecting the tolerance level ϵ.

2.3.1 Previous Compressive Sensing in SAR

When applying CS to SAR a designer must consider in which domain(s) the

signal is sparse and over which domains they wish to compressively sense. Figure

2 shows that there are three domains that CS techniques can be applied: fast-time

range samples, slow-time pulse (or azimuth) samples, and the polarisation receiver

channels.
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Figure 2: Radar Data Cube

Slow-time CS involves measuring a sub-set of total number of pulses used in the

construction of the SAR image. The simplest version of slow-time CS is described in

which a random set of azimuth locations are not sampled [23]. Patel et al. suggest

a technique of under sampling in the slow-time domain by using a series of random

Pulse Repetition Intervals (PRIs). This allows them to measure fewer pulses than

regular SAR schemes [24].

Fast time CS involves under-sampling range samples within an individual pulse.

There are two main compression schemes that exist that have prototype hardware de-

veloped: Xampling (“compressed sampling”) and quadrature compressive sampling.

Xampling is a system architecture designed for CS for analog inputs whose underlying

structure can be modelled as a union of subspaces [25]. The Xampling methodology

uses an architecture that includes an analogue-to-digital conversion (ADC) which

performs pre-filtering of the signal before taking point-wise low rate samples in order

to generate sub-Nyquist Fourier coefficients within certain bands instead of the entire

wideband [26]. A non-linear detection algorithm then detects the signal subspace

prior to conventional signal processing. Quadrature CS (QuadCS) uses random mod-

9



ulation by chipping sequence, bandpass filtering, intermediate-frequency sampling

and digital quadrature demodulation to collect sub-Nyquist measurements [23,27].

The polarisation dimension is not typically considered in CS. The next section

will describe the scheme proposed by Jackson and Lee-Elkin for PolSAR. The work

in Chapters III and IV will concentrate only on PolSAR. In [3] Becker shows that it

is possible to combine fast-time, slow-time, and polarimetric compressive sensing into

a single model called highly compressed PolSAR.

2.4 Polarimetric Synthetic Aperture Radar Compressive Sensing

Prior to [1], SAR CS was performed on individual receive channels by sub-Nyquist

sampling in either the fast and/or slow time domains [24, 26, 28]. In [1, 2] Jackson

and Lee-Elkin propose a new CS scheme that allows fully polarimetric SAR imag-

ing while measuring a subset of the polarimetric channels. They call this technique

Dropped-Channel PolSAR Compressive Sensing (DCPCS). DCPCS utilises the previ-

ously undesirable crosstalk between polarimetric channels that occurs in an antenna

to completely recover the information from a channel(s) whose measurements have

been dropped. Channel dropping occurs prior to ADC, enabling hardware and com-

putational savings in the receiver.

2.4.1 Dropped-Channel Polarimetric Synthetic Radar Compressive Sens-

ing Model

This section introduces the DCPCS model from [1, 2]. The DCPCS technique

proposes measuring M of M ′ available polarisation channels. Let xm′ be an N ′ × 1

vector of unknown target reflectivity values in m′ = 1, . . . ,M ′ available channels. Let

ym be the corresponding N×1 vector of observed values for each of the m = 1, . . . ,M

measured channels. The observed signal for the mth channel can be represented as
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the discrete linear system

ym = Am(xm +wm) (5)

for operator Am and scene clutter vector wm. Am maps scene reflectivity to mea-

surements, e.g., a range profile, image, or phase history. Other measurement error or

noise sources are assumed to be negligible when compared with the scene clutter and

are therefore ignored. Expanding (5) for all possible measurement channels y can be

expressed as



y1

y2

...

yM ′


=



A1 0 0 · · ·

0 A2 0

...
...

. . .
...

0 0 . . . AM ′







x1

x2

...

xM ′


+



ω1

ω2

...

ωM ′




(6)

which is defined as

y = ÃM ′(x+w) (7)

where x,w ∈ CM ′N ′×1. In practice, the observations y have cross-channel coupling,

or crosstalk, causing mixing of the reflectivity channels xm′ in the observations ym′ .

The ideal block-diagonal structure of ÃM ′ does not capture such mixing. To model

crosstalk a M ′ × M ′ crosstalk matrix C is defined. Crosstalk matrix C contains

coefficients specifying what mixture of the M ′ pure channels is observed in each of

the 1, . . . ,M ′ contaminated channels. The Kronecker product (⊗) of the C matrix

is taken with a N ′ × N ′ identity matrix, IN ′ , and used to include channel coupling
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in (7). Additionally, a M ×M ′ indicator matrix, J , is introduced to represent which

channels are measured. J is formed by dropping the unmeasured rows from aM ′×M ′

identity matrix. This gives the discrete linear system model radar model as

ỹ = ÃM ′(JC ⊗ IN ′)(x+w). (8)

The scene reflectivity x can be represented by a sparse set of coefficients b in

terms of a dictionary D ∈ CM ′N ′×QS′
of scene polarisation responses P ∈ CM ′×Q and

dictionary of possible spatial responses S ∈ CN ′×S′
. Let the dictionary be

D = P ⊗ S (9)

and define

A = ÃM”(JC ⊗ IN ′); (10)

then,

ỹ = ADb+Aw. (11)

For the research in this study the Pauli basis in (1) is used as the polarisation

dictionary P and a point target spatial dictionary S is defined by an N ′×N ′ identity

matrix. The CS recovery problem is to solve for a sparse set of coefficients b from

measurements ỹ. The BPDN problem is
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b̂ = argmin
b

||b||1 s.t. ||ỹ −ADb||2 ≤ ϵ. (12)

Positive constant ϵ is chosen such that the ℓ2-norm of the imaged clutter falls within

the “error ball” with 95% probability [1].

Using ideal simulations [1] shows that when dropping the HH channel BPDN is

able to simultaneously recover the dropped channel, conduct point spread deconvo-

lution and channel de-coupling to generate SAR images of both point and GOTCHA

scenes. Jackson and Lee-Elkin also show with point target scenes that objects can be

recovered when dropping the two channels that the target responses lie in.

2.4.2 Other Work on DCPCS

Since the introduction of the DCPCS in [1, 2] research into the field has ex-

tended the DCPCS model in the following ways: new spatial dictionaries, super-

resolution, combining CS techniques, and identification of a robustness region of an-

tenna crosstalk values.

In [29] Becker and Jackson show that the spatial dictionary S in (9) can include

any spatial dictionary. Of particular interest they show that by using a spatial dic-

tionary that is well matched to the scatterers in the scene, a sparser representation

of the scene can be achieved. In [13] it is shown that the BPDN algorithm is capable

of super-resolution of SAR images. Assuming an image pixel is equal in size to a res-

olution cell, super-resolution seeks to reconstruct an image at a sub-pixel level. The

introduction of additional pixels aids in the classification of objects within a scene.

Using the measured Air Force Research Laboratory (AFRL) GOTCHA 2006 public

data set [30], single and double bounce scattering responses are able to be recovered

when a channel has been dropped [13].
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In [3] Becker shows that it is possible to combine the fast and slow time CS

techniques from Section 2.3.1 with the DCPCS in what he refers to as a “highly

compressed PolSAR model”. Using the highly compressed PolSAR model he was

able to recover a GOTCHA-like scene with a recovery error only approximately 0.14

above baseline while only using 60.75% of the fully sampled data.

Finally, in [3] Becker conducts an analysis on crosstalk levels over which the

DCPCS model can provide acceptable recovery performance. The aim of his study is

to determine whether there are acceptable system tolerances to facilitate the design

and construction of a suitable antenna. Using Monte Carlo trials over random scenes

and simulated scenes based on the GOTCHA data set [30] and by employing the

BPDN technique, Becker is able to identify a region of crosstalk values that produce

acceptable scene recovery.

The primary metric used to evaluate the performance of scene recovery of the

BPDN approach is the relative recovery error on b defined as

eb = E

[
||btrue − b̂||22
||btrue||22

]
. (13)

Using three different Point Spread Functions representing aperture sizes of 2.5◦, 5◦,

and 10◦ to explore across 11 different antenna crosstalk magnitudes, Becker found the

relative recovery error of DCPCS for varying antenna designs. Figure 3 is reproduced

(with permission) from [3] and shows the average relative recovery, eb, over 400 Monte

Carlo simulations for each of the three antenna apertures and for scenes with sparsities

of 1%, 5%, and 10%.

Each of the plots within Figure 3 includes four red dots. The red dots indicate

the corners of a region of acceptable robustness. Becker defines the threshold of a

successful recovery of an eb ≤ 0.1. The 0.1 threshold was chosen based on qualitative
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Figure 3: Average of relative recovery error eb across Monte Carlo Simulations. Target
Density levels of 1%, 5%, 10% [3].

observations as the point at which more significant errors such as polarimetric shifts

and false positives are seen. Table 1 identifies the crosstalk magnitudes and their

average relative recovery performances for each of the four identified corners of the

robustness region. Becker also notes that above a 3% scene sparsity, recovery per-

formance degrades above the 0.1 threshold. Figure 3 is defined in terms of crosstalk
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parameters δ1 and δ2. Crosstalk parameters and how they are used in the DCPCS

model are discussed further in Chapter III.

Figure 4 highlights the robustness region identified above on the 2.5◦ aperture

with a 1% sparsity. The corners correspond to crosstalk magnitudes between -18 dB

and -6 dB. The identification of such a large robustness region of appropriate crosstalk

levels allows for the loosening of antenna design tolerances which in turn enables the

practical implementation of the DCPCS method. Unfortunately, these values are

much smaller than the typical crosstalk design goals of -30 dB [31]. In order for the

DCPCS to work, a novel high crosstalk antenna must be designed and built. In [3,4]

a high crosstalk antenna is designed and constructed and measured. The results

from these studies demonstrate sufficient performance of the DCPCS method without

sacrificing antenna gain, bandwidth, or radiation pattern. Although Figure 4 indicates

small manufacturing errors will not greatly affect BPDN recovery performance of

antennas within the red outlined robustness region. However, BPDN recovery also

depends on accurate knowledge of the coupling matrix C which is typically gained

via system calibration.

Table 1: Crosstalk Pairs to Define Robustness Region [3]

Pair # δ1 δ2 1% Target Density ϵb
1 0.1259 0.1259 0.0448
2 0.5012 0.5012 0.0794
3 0.5012 0.0126 0.0381
4 0.0126 0.5012 0.0386
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Figure 4: BPDN achieves average relative recovery error eb less than 0.1 for crosstalk
values within the red outline region, corresponding to δ1 and δ2 between -18 dB and
-6 dB [3].

2.5 Antenna Calibration

Antenna calibration is the process in which the performance of the antenna is

verified and the antenna properties are measured. Antenna calibration is important

to ensure that repeatable and reliable data is captured from an antenna. There are

a number of different antenna properties to consider when calibrating an antenna

including: antenna pattern, polarisation, gain, and polarisation crosstalk [32]. In

The United States the following standard is used when calibrating an antenna in

the near field: ANSI C63.5 - American National Standard for Electromagnetic Com-

patibility—Radiated Emission Measurements in Electromagentic Interference (EMI)

Control—Calibration of Antennas (9 kHz to 40 GHz) [33]. In this thesis the primary

element of antenna calibration that we are interested in is the polarisation crosstalk.
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III. Robustness of PolSAR CS to Calibration Error

3.1 Chapter Overview

This chapter builds on the concepts introduced in Chapter II and introduces the

concepts of antenna crosstalk design. Next, there is a discussion on how Gaussian

calibration errors are added to the Dropped-Channel PolSAR Compressive Sensing

(DCPCS) from previous studies in order to determine the required radar calibration

levels for scene recovery. Finally, the effects of adding different magnitudes of cali-

bration error will be shown empirically through the measure of relative recovery error

and implicitly through visual representations of a sample scene.

3.2 Antenna Crosstalk Design

Typical antenna designs seek to minimize cross-channel coupling [34–37]. How-

ever, in (11), crosstalk matrix C must be designed such that sufficient mixing of

channels occurs to enable basis pursuit denoising (BPDN) recovery of dropped chan-

nels. Too much crosstalk will drown out the signal information from the measured

channels. Too little crosstalk will not preserve the information from the dropped-

channels. Fortunately, as shown in [3, 4], there is a wide range of suitable crosstalk

values, enabling much flexibility in the antenna design as well as robustness to man-

ufacturing error.

Crosstalk matrix C captures channel coupling that occurs at both the transmit

and receive antenna as well as over the hardware channels. Using the notation from [3],
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the transmitter and receiver crosstalk matrices are

T =

 tHH√
|tHH |2+|δ1|2

δ1√
|tHH |2+|δ1|2

δ2√
|tV V |2+|δ2|2

tV V√
|tV V |2+|δ2|2

 (14)

R =

 rHH√
|rHH |2+|δ3|2

δ3√
|rHH |2+|δ3|2

δ4√
|rV V |2+|δ4|2

rV V√
|rV V |2+|δ4|2

 (15)

where δi, i ∈ [1, 2, 3, 4] are crosstalk parameters. The total power of each row of

(14)-(15) is normalised to one to ensure conservation of power in the system. A

linear polarization basis with H horizontal and V vertical is assumed, though other

polarization bases may be used. The total system crosstalk is

C = T ⊗RT (16)

=

o tHH√
|tHH |2+|δ1|2

δ1√
|tHH |2+|δ1|2

δ2√
|tV V |2+|δ2|2

tV V√
|tV V |2+|δ2|2

⊗

 rHH√
|rHH |2+|δ3|2

δ3√
|rHH |2+|δ3|2

δ4√
|rV V |2+|δ4|2

rV V√
|rV V |2+|δ4|2


T

(17)

If we assume a monostatic radar (17) can be simplified to

C = T ⊗ T T (18)

=

 tHH√
|tHH |2+|δ1|2

δ1√
|tHH |2+|δ1|2

δ2√
|tV V |2+|δ2|2

tV V√
|tV V |2+|δ2|2

⊗

 tHH√
|tHH |2+|δ1|2

δ1√
|tHH |2+|δ1|2

δ2√
|tV V |2+|δ2|2

tV V√
|tV V |2+|δ2|2


T

(19)

=



t2HH

t21

δ2
t2

tHH

t1

δ1tHH

t21

δ1
t1

δ2
t2

δ1tHH

t21

tHH

t1

tV V

t2

δ21
t21

δ1
t1

tV V

t2

tHH

t1

δ2
t2

δ22
t22

tHH

t1

tV V

t2

δ2tV V

t22

δ1
t1

δ2
t2

δ2tV V

t22

δ1
t1

tV V

t2

t2V V

t22


(20)
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where t1 =
√

|tHH |2 + |δ1|2 and t2 =
√

|tV V |2 + |δ2|2. The columns and rows of C

represent the polarisation channels (HH, HV, VH, and VV) in the reflectivity and

measurement domains, respectively. The elements along the diagonal represent the

signal response in each channel, and the off-diagonal entries represent the channel

crosstalk. For example, the first row of C represents data on the HH channel and

data from the HV, VH, and VV channels that are mixed into the HH measurement.

The values in C may be complex to capture both the magnitude and phase of the

crosstalk behaviour. As in [1, 3], we assume for simplicity that the coupling is not

dependent on frequency, time, or angle.

In [3] Becker found the region of crosstalk parameters in which acceptable scene

recovery occurs. The points that represent the corners of Becker’s crosstalk robustness

region are listed in Table 1. To produce the transmit/receive crosstalk matrices for

Points 1-4 shown in Figure 4, set tHH = tV V = 1 and use the δi values shown in the

Table 1. The four normalised matrices are [3]

T1 = R1 =

0.9922 0.1249

0.1249 0.9922

 (21)

T2 = R2 =

0.8940 0.4481

0.4481 0.8940

 (22)

T3 = R3 =

0.9999 0.0126

0.4481 0.8940

 (23)

T4 = R4 =

0.8940 0.4481

0.0126 0.9999

 . (24)

In [4] a high crosstalk S-band patch antenna is designed, with design goal of Point
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2 (δ1 = δ2 = 0.5012 = −6 dB) in Figure 4. After calibration and measurement using

principle plane analysis, the antenna crosstalk is

Tmeas = Rmeas =

0.6169− 0.5287i 0.5830 + 0.0001i

0.7028 + 0.5039i 0.5016 + 0.0245i

 (25)

The measured crosstalks are δ1 = −1.4404 dB and δ2 = −2.3606 dB at the centre

frequency. Despite higher than desired crosstalk, examples in [4] and Section 3.4

indicate sufficient BPDN recovery performance is possible. The crosstalk phase aids

recovery compared to the real-valued crosstalk matrices in Figure 4 [3]. These five

crosstalk matrices (21)-(25) will form the basis of the monostatic radars that will be

evaluated throughout the remainder of this thesis.

Results in [3,12] indicate improved recovery can be achieved by using two different

antennas (with different crosstalk values) for transmit and receive. One such crosstalk

pair that resulted in reasonable recovery results for a Pauli polarisation dictionary

are the crosstalk matrices from [1]:

TJackson = 0.78

1 0.8 3.03

0.91 0.29 0.91


=

0.78 −0.62+j0.07

0.68+j0.20 0.71

 (26)

RJackson = 0.93

1 0.4 −1.63

0.4 −1.63 1


=

0.93 −0.02−j0.37

−0.02−j0.37 0.93

 . (27)
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Crosstalk matrices (26) and (27) were arbitrarily selected and do not exactly

follow the δi format defined in (14) and (15). Crosstalk (26) and (27) correspond to

|δ1| ≈ 0.8|tHH |, |δ2| ≈ |tV V |, |δ3| ≈ 0.4|rHH |, and |δ4| ≈ 0.4|rV V |. Plugging in values

of tHH = tV V = 1 as in (21)-(24) yields crosstalk values of approximately 0.4 to 0.8,

which are inside or near the upper right corner of the outlined robustness region.

3.3 Introduction of Calibration Error

In all previous DCPCS research, a priori knowledge of the crosstalk matrix has

been assumed. In practice, the true values are known only within the uncertainty of

the antenna measurement/calibration equipment. Even accurate pre-flight calibration

can drift during radar operation due to vibrations or thermal drift [38]. Crosstalk

model inaccuracy leads to inaccuracy in the signal mapping matrix A (10) used

in BPDN recovery (12). Here and in [14], we introduce calibration error to the

system by adding independent, identically distributed complex white Gaussian noise

to each of the four terms in T and R. Modeling error in this fashion assumes the

same measurement equipment is used for calibration of both the co-pol and cross-pol

channels. A Gaussian distribution of errors is supported by [39] reporting their errors

as the standard deviation of the calibration accuracy of the radar system.

Let the calibration error terms ∆T and ∆R be 2× 2 matrices with each element

distributed as ∼ CN (0, σ2
err). The resulting matrix is re-normalized such that the

measured antenna matrix representation obeys conservation of power laws. Then,

the measured crosstalk matrix Ĉ is represented as

Ĉ =
(

̂T +∆T

)
⊗
(
R̂+∆R

)T
(28)

where the wide hat notation indicates the normalization of matrix rows. For the
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single antenna, monostatic case, the same error realisation (∆R = ∆T ) is added to

both the transmit and receive crosstalk matrices. Although this study considers a C

that is not dependent on frequency or angle, such variations could be thought of as

calibration error in a particular snapshot.

If the measured crosstalk Ĉ is used in place of the true crosstalk in the measure-

ment model, then the A matrix becomes

Â = ÃM(JĈ ⊗ IN ′) (29)

Furthermore, using the measured crosstalk Ĉ for BPDN recovery yields

b̂ = argmin
b

||b||1 s.t. ||ỹ − ÂDb||2 ≤ ϵ. (30)

The ℓ2 fit is impaired by both the measured clutter Aw and model mismatch A− Â:

||ỹ − ÂDb||2 = ||(A− Â)Db+Aw||2 (31)

In the next section, we show BPDN recovery results as a function of calibration

error variance σ2
err. The ℓ2 radius ϵ is set according to the clutter, as in previous

work, since the model mismatch term in (31) depends on the unknown coefficients b.

Forcing ℓ2 fit may increase the ℓ1 norm of solution b̂, potentially increasing relative

recovery error eb. Thus, the following analysis is somewhat pessimistic. In Chapter

IV epsilon setting in the face of calibration errors is discussed and the appropriateness

of relaxing ϵ is explored.
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3.4 Results

In order to investigate the effects of calibration errors on relative recovery error,

simulations of a small 5 × 5 pixel point target scene are randomly generated. The

results of this study will inform us on the resilience of DCPCS to calibration errors.

The crosstalk matrix C used in the experiment is formed using the various crosstalk

designs from Section 3.2 in Equations (21)-(27). The measured crosstalk Ĉ used in

BPDN recovery is generated as described in Section 3.1, and solved using the spgl1

algorithm [40,41], with the calibration error variance σ2
err. The Point Spread Function

(PSF) used in the construction of the image formation operator ÃM is the simplified

PSF from [1]:

PSF =


0 0.5 0

0.5 1 0.5

0 0.5 0

 ;

the mth block of ÃM is a two-dimensional convolution of the scene reflectivity in the

mth polarisation channel with the PSF. Although the simplified PSF was not used

in the study that the crosstalk matrices were developed, Chapter IV will show that

it is valid to make this substitution. The target dictionary D is comprised of the

Pauli polarisation basis P (1) and a point target spatial dictionary S = I. Target

dictionary coefficients b are randomly set to zero or one according to the desired

sparsity. The HH channel is chosen as the channel to be dropped.

Figures 5 and 6 show an example scene with sparsity of 3%, signal to clutter ratio

SCR=40 dB, and varying levels of calibration error for crosstalk matricesC = T2⊗T T
2

and C = TJackson ⊗RT
Jackson, respectively. The pixels in the scene are numbered from

top to bottom and from left to right. The scene consists of an even bounce reflected

in the 7th pixel location, which has half its reflected energy in the horizontal plane

and half in the vertical plane, and an object in the 19th pixel location with a purely

24



Reference
Observed
40 dB SCR

Recovered
σ2
err = 0

Recovered
σ2
err = 0.001

Recovered
σ2
err = 0.01

H
H

H
V

V
H

V
V

Figure 5: Reference, Observed, and Recovered images of point targets at 40 dB SCR,
using crosstalk C = T2 ⊗ T T

2 and calibration errors of σ2
err = 0, 0.001, and 0.01.

horizontal plane return.

In Figure 5, the PSF can be clearly seen in all three of the observed measurement

channels. The dropped channel is mostly recovered, and all the channels are unmixed

to some degree. However, the high levels of crosstalk present in the antenna make it

difficult for the BPDN algorithm to determine whether the object in the 19th pixel

is a cross talk artifact or not. The introduction of calibration error appears to have

had very minimal effect on the recovered scene at a level of σ2
err = 0.001. Additional

false returns begin to be faintly visible at σ2
err = 0.01.
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Reference
Observed
40 dB SCR

Recovered
σ2
err = 0

Recovered
σ2
err = 0.001

Recovered
σ2
err = 0.01

H
H

H
V

V
H

V
V

Figure 6: Reference, Observed, and Recovered images of point targets at 40 dB
SCR, using crosstalk C = TJackson ⊗ RT

Jackson and calibration errors of σ2
err =

0, 0.001, and 0.01.

Figure 6 again shows the PSF in the observed measured signals. The Jackson

antennas have near perfect scene recovery even in the presence of calibration errors.

There are faint artifacts visible in the co-pol channels at higher calibration error

levels but the magnitude of these returns are approximately five times fainter than

the weakest true return.

The remainder of this section analyses random scenes to more fully characterize

performance recovery for different crosstalk matrices as a function of scene sparsity,

Signal-to-Clutter Ratio (SCR), and calibration error variance σ2
err.
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Figure 7: Median Relative Error versus SCR for sparsity = 0.01 and crosstalk C =
Tmeas⊗T T

meas. HH Channel dropped. Error bars indicate the 10th and 90th percentiles.

Monte Carlo trials are conducted on 100 randomly generated scenes (draws of b)

and 100 random draws of calibration error ∆T , ∆R, resulting in 10,000 trials per

parameter set. Figure 7 shows the median relative error (replace mean operator E

with median in (13)) versus SCR for various amounts of calibration error on the

measured antenna values in (25). The scene sparsity is 1%, and the HH channel is

dropped. As the SCR increases the relative error decreases, indicating a higher quality

image recovery. In [3,4] eb < 0.1 is selected as a “successful recovery” threshold, above

which it is qualitatively observed that more visually significant errors begin to occur.

This (eb < 0.1) is the threshold that will be used for the remainder of the thesis. In

Figure 7, successful recovery (eb < 0.1) is achieved for moderate to high SCRs for

calibration errors less than σ2
err < 0.001. Thus, antenna crosstalk calibration error

less than −30 dB is desired for the high crosstalk antenna Tmeas (25).
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(a) C = T1 ⊗ T T
1 (b) C = T2 ⊗ T T

2

(c) C = T3 ⊗ T T
3 (d) C = T4 ⊗ T T

4

(e) C = Tmeas ⊗ T T
meas (f) C = TJackson ⊗RT

Jackson

Figure 8: Median relative error versus calibration error σ2
e for SCR = 40 dB and

HH channel dropped for crosstalks (21)-(27). Error bars indicate the 10th and 90th
percentiles. 28



Table 2: Calibration accuracy required for succesful recovery (eb < 0.1) with
SCR=40 dB and 1% sparsity (best case scenario)

Antenna T1 T2 T3 T4 Tmeas TJackson

10 log10 σ
2
err (dB) -25.9 -27.7 -25.4 -25.2 -29.0 -24.6

Figures 8a-8f show the median relative error versus the calibration error for the

crosstalk antennas in (21)-(27). Sparsity is varied, and SCR is 40 dB. A slight differ-

ence in imaging operators results in a small difference in relative error when σ2
err = 0

as compared to [3]; however, the trends are similar. Recovery error increases as

both calibration error and scene target density (sparsity value) increase. Figures 8a-

8d indicate that calibration accuracy to achieve eb < 0.1 should be approximately

σ2
err < 0.003 for sparse scenes or σ2

err < 0.002 for less sparse scenes, corresponding to

-25 dB and -27 dB antenna calibration error standard deviation. Antenna Tmeas is

outside of the robustness region, so recovery performance and required calibration er-

ror is on average slightly worse than for T2; however the phase crosstalk in Tmeas makes

its performance less variable. The curves in Figure 8f show C = TJackson ⊗RT
Jackson

is more robust to calibration error than the single antenna crosstalk’s tested. Using

separate antennas for transmit and receive improves performance and can relax the

calibration requirement to σ2
err < 0.003 (calibration error −25 dB) for all sparsities;

optimizing the design of the T and R combination could further improve results.
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Figure 9: Median Relative Error versus calibration error for 1% sparsity and
SCR=40 dB. Comparison of different antenna designs. HH channel dropped. Er-
rors bars indicate the 10th and 90th percentiles.

Figure 9 compares the six different antennas for the best case scenario of SCR =

40 dB and 1% scene sparsity. Interpolating the data in Figure 9 the calibration

accuracy required to achieve successful recovery eb < 0.1 is approximately −25 dB

for all of the antennas except T2 and Tmeas; values for each antenna are listed in

Table 2. Reduced performance of T2 and Tmeas is expected from Figure 4, as Design

Point 2 error is more than twice that of points within the robustness region, and

Tmeas lies outside the robustness region toward the upper right. Thus, improved

performance and a more relaxed calibration requirement can be achieved by using

Design Points 1, 3, 4, or others within the robustness region. The dual antenna case

generally outperforms all of the single antenna design points, though the calibration
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requirement is approximately the same.

3.5 Conclusions

We have shown that radar calibration accuracy on the order of −25 dB or better

is needed for successful recovery of scenes using BPDN for DCPCS in a single an-

tenna system. However, there is room for improvement. The use of separate antennas

for transmit and receive improves recovery; such designs should be studied further.

Also, as noted in Section 3.3 relaxation of the ℓ2 fit setting ϵ may improve recovery

and will be further explored in Chapter IV. Finally, it should be studied whether

self-calibration methods such as [42, 43] that estimate unknowns in the A matrix in

addition to estimating b can overcome limitations in calibration measurement accu-

racy.
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IV. Further investigations

4.1 Section Overview

This chapter builds on the concepts introduced in Chapter II and offers an expan-

sion on some topics identified in Chapter III. First, the effects of using a simplified

imaging operator in the modelling of calibration error will be explored. This will tie

in neatly with previous work done by Becker in [3]. We will then introduce the math

behind setting the ϵ value to account for scene clutter. Finally, we investigate how

the introduction of calibration error may necessitate and adjustment to the setting

of ϵ due to effects of model mismatches contributing to residual error.

4.2 Change of Imaging Operator

4.2.1 Section Overview

Synthetic Aperture Radar (SAR) images can be thought of as the output of the

imaging operator performed on the scene reflectivity to produce measurements in the

form of a range profile, image, or phase history [44]. Spotlight SAR image formation

can be thought of as the convolution of the scene reflectivity and the Point Spread

Function (PSF) of the radar in the image domain. A PSF takes the form of a two-

dimensional sinc function. The shape of the sinc is defined by the aperture extent in

the cross-range direction and by the radar bandwidth in the range direction. Exam-

ples of PSFs with 2.5◦, 5.0◦, and 10◦ aperture extents from [3] can be seen in Figure

10.

Figure 10 demonstrates that by increasing the aperture extent of the radar sys-

tem, a much narrower PSF can be achieved. It can be clearly understood that by

convolving these three different PSF with the same scene reflectivity will result in

three different sets of measured data. In the Dropped-Channel PolSAR Compressive
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Figure 10: PSF for 2.5◦, 5.0◦, and 10◦ Apertures [3]

Sensing (DCPCS) model these imaging operators are referred to as AM ′ in (7) for

each polarisation channel. In Chapter III a simplified version of a PSF was used

in the evaluation of calibration errors. The next section will explore whether this

substitution was valid.

4.2.2 Simplified Point Spread Function Comparison

In [3] Becker defines three different PSF’s with a bandwidth of 622 MHz and

aperture extents of 2.5◦, 5.0◦, and 10◦. These three PSF’s are shown in Figure 10.

The robustness region found in [3] and shown in Figures 3 and 4 appeared consistent

over a range of different imaging operators. Thus, it was decided to use a simplified

PSF for computational efficiency in Chapter III. While conducting the Monte Carlo

Simulations for the calibration error study, an error in the implementation of the ϵ

setting code was discovered. The error in setting ϵ resulted in the constraint on the

basis pursuit denoising (BPDN) problem in (4) being an order of magnitude larger

than expected. The combination of using a new imaging operator and the different

BPDN constraint led to a desire to want to verify the results from Becker’s research

are applicable.

Figures 11 and 13 reproduce the results, with incorrect ϵ, from [3] for 400 Monte
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Carlo simulated random scenes at each crosstalk level, aperture extent, and 1% target

density. Figure 11 shows the average relative error for each of the three PSF’s. As

the Aperture extent increases the relative recovery error decreases. Figure 13 shows

the total number of trials that produce a recovery error eb ≤ 0.1.

Figure 12 shows the average relative recovery error for the PSF’s of 2.5◦, 5.0◦, and

10◦ apertures and simplified PSF at 1% scene sparsity with the updated ϵ settings.

Comparing Figures 12a through 12c to Figure 11, the effect of changing the ϵ value

does not appear to have had a material difference on the relative recovery error of

the scene or where the robustness region should be drawn. Design points 1, 3, and 4

all fall below the good recovery threshold of eb ≤ 0.1 with point 2 marginally above

it. When using the corrected ϵ value the relative error on b was found for each of

the four corners of the robustness region to be 0.058 at point 1, 0.126 at point 2,

0.044 at point 3, and 0.051 at point 4. Table 3 shows the comparison of eb for each of

the corners of the robustness region for the old and corrected ϵ. For each of the four

corner points the corrected ϵ has led to an increase in the relative error on b. The

average increase in eb across the four corner points is 34%.

Figure 11: Average of relative recovery error eb across Monte Carlo Simulations.
Target Density levels of 1% [3]
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(a) Average of relative recovery error eb across
Monte Carlo Simulations for 2.5◦ Aperture PSF
with corrected ϵ

(b) Average of relative recovery error eb across
Monte Carlo Simulations for 5◦ Aperture PSF
with corrected ϵ

(c) Average of relative recovery error eb across
Monte Carlo Simulations for 10◦ Aperture PSF
with corrected ϵ

(d) Average of relative recovery error eb across
Monte Carlo Simulations for Simplified PSF with
corrected ϵ

Figure 12: Average of relative recovery error eb across Monte Carlo Simulations for
PSF’s of 2.5◦, 5.0◦, and 10◦ Apertures and Simplified PSF at 1% Sparsity. Corrected
ϵ value

Figure 14 shows the total success rate over 400 Simulations for PSF’s of 2.5◦, 5.0◦,

and 10◦ Apertures and Simplified PSF at 1% sparsity using the corrected ϵ. Similar

to the relative error figures discussed above when comparing Figures 14a through 14c

to Figure 13 there does not appear to be a material difference on the total number
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Table 3: Comparison of eb for old and corrected ϵ at 1% Sparsity

Pair #: δ1 δ2 Old eb Corrected eb Percentage Change (%)
1 0.1259 0.1259 0.0448 0.0583 +30.1
2 0.5012 0.5012 0.0794 0.1259 +58.6
3 0.5012 0.0126 0.3081 0.0436 +14.4
4 0.0126 0.5012 0.0386 0.0513 +32.9

Figure 13: Total Success Rate of 400 Simulations for PSF’s of 2.5◦, 5.0◦, and 10◦

Apertures at 1% Sparsity [3]

of successful trials at each design point. No material change in the success rate is

what was expected when observing that the average relative error remained the same.

When using the corrected ϵ value the success rate for each of the four corners of the

robustness region was found to be 82.5% at point 1, 50.25% at point 2, 88.5% at

point 3, and 85.25% at point 4. The minor growth in eb has not translated to a

corresponding decrease in the success rate. The lack of change to the success rate can

be attributed to the mean relative error across the region still falling well below the

0.1 threshold.

In Figures 12 and 14 the results of the simplified PSF appear to closely mirror

those of the 5◦ sub-aperture. On the surface the similarity of results seems strange as
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(a) Total Success Rate of 400 Simultations
for 2.5◦ Aperture PSF with corrected ϵ

(b) Total Success Rate of 400 Simultations
for 5◦ Aperture PSF with corrected ϵ

(c) Total Success Rate of 400 Simultations for
10◦ Aperture PSF with corrected ϵ

(d) Total Success Rate of 400 Simultations
for Simplified PSF with corrected ϵ

Figure 14: Total Success Rate over 400 Simulations for PSF’s of 2.5◦, 5.0◦, and 10◦

Apertures and Simplified PSF at 1% Sparsity. Corrected ϵ value

the 5◦ sub-aperture PSF has a much higher fidelity versus the 3× 3 simplified PSF.

Figure 15 shows a comparison between the magnitudes of the center 3× 3 points

of the 2.5◦ sub-aperture PSF, 5◦ sub-aperture PSF, 10◦ sub-aperture PSF, and the

simplified PSF. Comparing the simplified PSF to the other three PSFs, it is clear

that the 5◦ sub-aperture PSF is visually the most similar. In the cross range direction

the 5◦ sub-aperture PSF and the simplified PSF are almost identical. In the range
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direction the 5◦ sub-aperture PSF has less energy than the simplified PSF, however

on the whole the two PSF’s are very similar. Looking at the complete 5◦ sub aperture

PSF in Figure 10 it can be seen that there is much more energy in the outer range

sidelobes versus the cross-range sidelobes which explains the observations in Figure

15.

(a) 2.5◦ Aperture PSF (b) 5◦ Aperture PSF

(c) 10◦ Aperture PSF (d) Simplified PSF

Figure 15: Comparison of the centre of the 2.5◦ aperture PSF, 5◦ aperture PSF, 10◦

aperture PSF, and the simplified PSF
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4.2.3 Conclusions

In conclusion through the comparison of the results in this section with those

in [3] it appears that the error in ϵ setting in previous work was minor, representing

a 34% increase in average recovery error across the four corners of the robustness

region. This minor error therefore should not invalidate the results or conclusions

from previous work.

The simplified PSF used in Chapter III and [1] takes on very similar characteristics

as the centre of the 5◦ sub-aperture PSF used in [3]. The similarity between the

simplified PSF and the 5◦ sub-aperture PSF can also be seen in the comparison of

results of the total success rate and average relative recover error eb with only a small

difference in the results. The similarity in the two PSFs affirms that the substitution

of the simplified PSF in Chapter III was valid.

4.3 Epsilon setting in Basis Pursuit Denoising

4.3.1 Section Overview

In the BPDN problem in (12) (repeated below) ϵ is a positive constant that is

chosen to loosen the ℓ2 constraint.

b̂ = argmin
b

||b||1 s.t. ||ỹ −ADb||2 ≤ ϵ

In DCPCS the ϵ value is chosen in accordance with the characteristics of the

imaged clutter [1]. The threshold of which represents the radius of a Gaussian Proba-

bility Density Function (PDF) spheroid inM×N -dimensional space, or as colloquially

referred to as an “Error Ball”. This section will look at the math behind setting ϵ in

a zero calibration error environment. We will then explore how the introduction of a
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model mismatch drives the ϵ value to deviate from purely considering the expected

image clutter.

4.3.2 Setting Epsilon without errors

The BPDN ℓ2 constraint for solution estimate b̂ in (12) is (Dr Julie Jackson,

personal communication, October 2022)

||ỹ −ADb||2 ≤ ϵ. (32)

If we substitute in (11) for our observed data we get

||ADb̃+Aw −ADb||2 ≤ ϵ. (33)

When b̂ = b, the imaged clutter term must satisfy

||Aw||22 ≤ ϵ2. (34)

In simulations knowledge of the clutter power is intrinsic in the model; however,

for real world data an estimate for imaged clutter can be taken [45]. If we assume that

clutter in each pixel is Independent and Identically Distributed (IID) complex Gaus-

sian, then the imaged clutter w̃ is a matrix A multiplied with a complex Gaussian

vector w (w̃ = Aw), which produces a complex Gaussian vector. According to Lan-

caster a chi-squared random variable is a sum of squares of independently distributed

standard normal random variables [46]. A chi-squared random variable which is the
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sum of k standard normal variables is said to have k Degrees of Freedom (DoF). Then

the power of the imaged clutter,

||w̃||22 =
MN∑
i=1

|w̃|2 (35)

is the sum of squares of M × N complex random variables, each with variance σ2
w̃i
.

In terms of unit normal Gaussian random variables, ni ∼ CN (0, 1)

||w̃||22 =
MN∑
i=1

Re{w̃}2 + Im{w̃}2 (36)

=
MN∑
i=1

σ2
w̃i

2
n2
i +

MN∑
j=1

σ2
w̃j

2
n2
j (37)

Supposing that σ2
w̃i

≈ σ2
w̃∀i, j, then

||w̃||22 ≈
σ2
w̃

2

2MN∑
i=1

n2
i , (38)

and the sum term is chi-squared distributed with 2MN DoF. We seek to select the

random variable value where the chi-squared distribution reaches a desired level γ,

in this case when γ = 0.95. If we recall the definition of a Cumulative Distribution

Function (CDF) for a random variable Z is defined as

F (z) = P [Z ≤ z]. (39)

From the BPDN constraint and (38)
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P [||w̃||2 ≤ ϵ] = γ (40)

P [||w̃||22 ≤ ϵ2] = γ (41)

P [
σ2
w̃

2

2MN∑
i=1

n2
i ≤ ϵ2] = γ (42)

P [
2MN∑
i=1

n2
i ≤ 2

ϵ2

σ2
w̃

] = γ. (43)

If we then take the inverse CDF of (43)

2
ϵ2

σ2
w̃

= F−1
χ2,2MN(γ) (44)

ϵ =

√
σ2
w̃

2MN
F−1
χ2,2MN(γ) (45)

It remains to determine if the clutter variance in the image domain σ2
w̃ ≈ σ2

w̃i
.

Since the clutter is zero mean,

σ2
w̃i

= E[|w̃i|2]. (46)

Under a spatial ergodicity assumption that all clutter maps through the PSF the

same way and that the clutter is dense enough that all image pixels end up with a

similarly-distributed clutter,
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σ2
w̃i

= E[|w̃i|2] ≈
1

MN

MN∑
i+1

|w̃i|2 (47)

≈ 1

MN

MN∑
i+1

|[Aw]i|2 (48)

≈ σw̃. (49)

Thus, without any error present ϵ is set as

ϵ =

√√√√F−1
χ2,2MN(γ)

2MN

MN∑
i=1

|[Aw]i|2 (50)

4.3.3 Setting Epsilon with calibration errors

If there are calibration errors in the radar system, the measured crosstalk matrix

Ĉ is the true antenna crosstalk C plus calibration error Ce

Ĉ = C +Ce. (51)

As shown in Section 3.3 in (28) the errors of each calibration measurement is dis-

tributed as ∼ CN (0, σ2
err). Due to normalisation of each of the rows in the individual

antenna crosstalk matrices and the kronecker products of these terms, the elements

within Ce are not distributed as ∼ CN (0, σ2
err). Ce is the driver of a model mismatch

A − Â. Therefore ℓ2 fit is impaired by both the measured clutter Aw and model

mismatch A− Â:
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||ỹ − ÂDb||2 ≤ ϵ (52)

||(A− Â)Db+Aw||2 ≤ ϵ. (53)

By the triangle inequality,

||(A− Â)Db+Aw||2 ≤ ||(A− Â)Db||2 + ||Aw||2 (54)

The right hand side of the triangle inequality is not required to be less than ϵ, but

defining an ϵ based on the right hand side of the triangle inequality is convenient and

will probabilistically guarantee the residual error is less than the defined constraint

variable, γ. Thus, we seek to find ϵ such that

P [||Aw||2 + ||(A− Â)Db||2 ≤ ϵ] = γ (55)

A convenient approximation is to ensure

P [||Aw||2 ≤ ϵ1] = γ (56)

and

P [||(A− Â)Db||2 ≤ ϵ2] = γ (57)

hold. Then let ϵ = ϵ1 + ϵ2. The ϵ1 term should be set as outlined in Section 4.3.2.
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The ϵ2 can be set similarly, but ||(A− Â)Db||2 will need to be estimated for various

sparsity levels and levels of calibration error.

Due to the complex interactions of the calibration errors with the true antenna

parameters a numerical approach to estimating the value of ϵ2 was not deemed prac-

tical. Instead, we decided to look at the ratio of residual error due to the model

mismatch |ADb| and the imaged clutter |Aw| as a function of sparsity. Figures 16

and 17 show that even at the lowest values of calibration error the residual error

due to model mismatch is twice as large as that caused by the imaged clutter. As

expected, as the scene becomes less sparse the ratio between the model mismatch and

the imaged clutter increases. Figures 16 and 17 also appear to show that the ratio

of residual error due to model mismatch and imaged clutter does not vary for either

the monostatic or dual antenna case.

With the ratio of |AeDb|
|Aw| ≥ 2 for a σ2

err = 0.001 indicating that the ϵ value is being

over constrained. If we infer that ϵ2 = 2ϵ1 then it appears ϵ should be set at least

three times higher for when sparsity is at 1%. If from Figures 16 and 17 we select

Figure 16: Ratio of model mismatch to imaged clutter against sparsity for σ2
err = 0.001

for C = T2 ⊗ T T
2
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Figure 17: Ratio of model mismatch to imaged clutter against sparsity for σ2
err = 0.001

for C = TJackson ⊗RT
Jackson

ϵ2 = 4ϵ1 which is approximately the ratio for sparsities up to about 5%, the results

are shown in Figure 18.

(a) C = TJackson ⊗RT
Jackson (b) C = T2 ⊗ T T

2

Figure 18: Median relative error versus calibration error σ2
e for SCR = 40dB and

HH channel dropped for crosstalks C = TJackson ⊗ RT
Jackson and C = T2 ⊗ T 2

2 .
Unadjusted ϵ and ϵ = 5ϵ1. Error bars indicate the 10th and 90th percentiles.

Figure 18 contrasts the relative error versus calibration error for when ϵ is left
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unadjusted or set to be five times the imaged clutter alone for the crosstalk matrices

in (22) and (26). For small σ2
err values the adjusted ϵ = 5ϵ1 mean relative error is

greater than the unadjusted case. The worse recovery performance is likely due to

the over relaxation of ϵ as Figures 16 and 17 show that ϵ = 3ϵ1 would be a more

appropriate fit. As the calibration error increases the ϵ = 5ϵ1 matches closely with

the unadjusted line. An interesting observation is the relaxed ϵ appears to have

greatly reduced the size of the error bars for the 1% sparsity case. At 3% sparsity,

the adjusted ϵ = 5ϵ1 adjusted curve falls exactly over the unadjusted curve.

4.3.4 Conclusions

In this section we have shown that in a zero calibration error environment it is

possible to set the BPDN constant ϵ to meet a given “error ball” probability predicted

by imaged clutter, as outlined in (50). However, in the presence of calibration error,

which produces a model mismatch, the residual error of the ℓ2 norm of the BPDN

equation is very quickly dominated by model mismatch. Adjusting the ϵ value to

loosen the constraint does not appear to have an appreciable beneficial impact on

relative recovery error eb.
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V. Conclusions

5.1 Key Conclusions

The addition of polarimetry to Synthetic Aperture Radar (SAR) has the affect

that more information about the scene can be collected, with the trade-off of extra

data that requires processing, storage, and transmission. Dropped-Channel PolSAR

Compressive Sensing (DCPCS) provides a method to reduce the amount of data

required to be collected without sacrificing the additional information. Previous re-

search on DCPCS defining the required antenna crosstalk levels and constructing a

prototype antenna for a DCPCS system. The goal of this research was to de-

termine the required calibration accuracy of the antenna system in order

for DCPCS to be successful. In addition, this thesis looked at the impor-

tance of properly setting the basis pursuit denoising (BPDN) threshold in

accordance with the expected clutter and calibration error levels.

In Chapter III, a Gaussian calibration error was added to a range of different

crosstalk matrices representing the corners of Becker’s robustness region representing

a monostatic radar, as well as a pair of antennas with different transmit and receive

characteristics. It was shown that a radar calibration accuracy on the order of −25 dB

or better is needed for successful recover using BPDN for DCPCS in a single antenna

system. However, this is room for improvement with the use of different antennas for

transmit and receive improving recovery.

In Chapter IV, the robustness region of a simplified Point Spread Function (PSF)

was verified to be the same as the one discussed by Becker. By showing that the

simplified PSF has the same robustness region as the more complex PSF’s used in

Becker’s work the validity of the results in Chapter III were confirmed. Being able to

use a simplified PSF in place of a more detailed imaging operator allows for quicker
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trials to be conducted during future DCPCS studies. Chapter IV also shows the

proper way to set ϵ in accordance with the expected clutter levels.

5.2 Significance of the Research

Using the results from Chapters III and IV, DCPCS has been shown to have

a significant reliance on the accuracy of calibration equipment both in terms of ϵ

setting and scene recovery. Identification of the importance of this relationship has

the potential to direct future studies in the direction of possible self-calibration signal

processing techniques. With a correctly designed high-crosstalk antenna the results

in Chapter III show that it should be possible to have successful scene recovery at 3%

sparsity for a monostatic system and even higher for a system with different receive

and transmit antennas.

5.3 Future Studies

The results of this study could be extended by:

� Extending the simulations from this work to include extended scatterers or real

world data such as that provided by the GOTCHA Data Set.

� Extending the study of crosstalk robustness regions past the monostatic assump-

tion to include transmit and receive antennas with different crosstalk charac-

teristics.

� Investigation into whether self-calibration techniques that can estimate the un-

knowns in the A matrix in addition to estimating b can account for some

calibration errors and loosen the requirements on calibration measurement ac-

curacy.
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� Collect laboratory measurements using different crosstalk antennas to verify

simulated results for monostatic radar systems.
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