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Abstract

Side-Channel Analysis (SCA) attacks aim to recover secret information, often a

cipher key, from a target device without direct interaction. Common attacks focus on

power-based leakage, or electromagnetic (EM)-based leakage. Deep learning and neu-

ral networks have recently gained in popularity as successful tools in SCA attacks and

research. Near-field EM probes with high-spatial resolution enable researchers and

attackers to isolate physical locations above the surface of a processor. This enables

attackers to exploit the spatial dependencies of algorithms processes due to the ge-

ometry of the attacked device. These spatial dependencies result in different physical

locations above a chip emanating different signal strengths related to the secret in-

formation. The strengths of different locations can be mapped using the performance

of a neural network trained to detect secret information on near-field leakage data.

The contribution focuses on using this mapping to identify ideal near-field leakage

collection locations from which to conduct an attack. This thesis demonstrates the

effectiveness of this technique in reducing the time needed to conduct a successful EM

SCA attack. The effectiveness of this technique is demonstrated first on the Chip-

Whisperer Lite Atmel XMEGA microcontroller, a platform designed as a teaching

device for SCA work, and then on the Xilinx Kintex-7 field programmable gate array

(FPGA) a device that makes power-based SCA less effective as it encrypts all plain-

text bytes simultaneously. An increase of effectiveness of the attacks is demonstrated

against the Atmel XMEGA target by 283%, and an increase in the effectiveness of

our attacks against the Xilinx Kintex-7 target by 33.4% by attacking the point cor-

responding to the greatest performance of the Convolutional Neural Network (CNN)

as opposed to the point with the worst performance of the CNN.
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CHARACTERIZING LOCATION-BASED ELECTROMAGNETIC LEAKAGE OF

COMPUTING DEVICES USING CONVOLUTIONAL NEURAL NETWORKS TO

INCREASE THE EFFECTIVENESS OF SIDE-CHANNEL ANALYSIS ATTACKS

I. Introduction

As part of their normal operation, electronic devices emit electromagnetic (EM)

energy that can be detected by, and interfere with, other electronic devices [2]. This

interference can cause unintended effects, and is why you are required to turn elec-

tronic devices off on airplanes prior to takeoff and landing. In the past decade there

has been increasing interest in these unintended emissions. Specifically there has been

increased interest in capturing these emissions and determining if any context can be

drawn from them. This increase in interest is the basis for EM Side-Channel Analy-

sis (SCA) attacks and has potentially severe implications for the physical security of

sensitive computing equipment, especially if the context drawn enables an attacker to

learn specific information about the underlying operations of the sensitive equipment,

including secret information such as a cryptographic key [3].

The field of SCA research is broad, however all SCA work focuses on the ability of a

researcher or an attacker to infer information from a device in a manner in which they

were not intended to. This information leakage can take many forms; radiated EM

emissions, observed power draw over time, the time a process takes to run, listening

to the vibrations created by an observed device, using the memory of a processor

to sniff sensitive information, or even simple shoulder surfing techniques [3]. SCA

attacks can target phone lock screen PINs, credit card numbers, passwords, cipher

keys, or any other sensitive information that a user or organization wants to keep

1



secret. A small subset of SCA research, and the focus of this thesis is to find faster

ways to ascertain a secret cipher key from the operations of a microcontroller or other

computing chip.

Many factors can influence the leakage model of a given target. These factors

include chip-set architecture, both physical and logical, manufacturing tolerances,

fabrications techniques, surrounding components, power draw and many others [3].

This means that the physical location from which an attacker chooses to collect

EM leakage data is important when conducting SCA attacks. Different electronic

components within a given architecture create different signals and different noise.

The point at which the leaked EM data provides the strongest signal is not obvious

and thus frameworks must be created to identify said point. This research uses a

neural network to identify the most effective location on the surface of a chip to

extract key information, and compares that to the relative signal strengths at each

collection point. This demonstrates that the identified hottest point does in fact

enable quicker key recovery for an attacker.

1.1 Security Implications of Side-Channel Leakage

Side-channel leakage is concerning to researchers, device developers, and end users,

as it presents an avenue for an adversary to gain access to a device or secretive infor-

mation that would otherwise be unavailable to them. Data leakage via side-channels

may include secret variables such as a cryptographic key, user passwords, or PIN num-

bers. It may also reveal information regarding the underlying implementation of the

device which would allow a competitor to reverse engineer proprietary algorithms or

other critical intellectual properties. For these reasons, side-channel leakage presents

a practical security threat to many electronic systems, especially systems that employ

cryptographic algorithms to protect information. This security threat means that de-

2



velopers can no longer operate under the naive assumption that only the input and

output variables are present. They must look to develop more secure platforms that

use side-channel countermeasures. Further, more research must be conducted into

developing countermeasures to side-channel leakage.

1.2 Motivation

Modern cryptographic algorithms such as Advanced Encryption Standard (AES)

operate under the assumption that the cryptographic key is completely secure. They

provide security in that an attacker cannot derive the key using the known input

plaintext and output ciphertext. This assumption holds true outside of the context

of side-channel leakage, either in the form of the power side-channel or the EM side-

channel [4]. Many researchers have already demonstrated the existence of both EM

and power side-channel information leakage that enables successful retrieval of cryp-

tographic keys [5, 6, 7, 2]. Much of current research is focused on both speeding up

the retrieval timeline of SCA attacks, as well as the success rate of SCA attacks by

improving side-channel attack methodologies. This includes using neural networks

and other algorithms that have allowed attackers to defeat more traditional coun-

termeasures that would have previously caused statistical analysis attacks such as

the Welch’s t-test or the Pearson’s χ2-test to give false negatives [8]. While power

SCA attacks typically perform better than EM attacks, as power traces often have

a higher signal-to-noise ratio (SNR), they also require physical modification to the

device under test (DUT). This physical modification may not always be possible,

and thus EM SCA attacks may be more viable in certain circumstances. Hardware

implementations of AES may also enable chips to perform encryption operations on

all bytes of a plaintext and key simultaneously, which would create extra noise and

can prevent success when performing power-based SCA attacks. Tied to the physical
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location of different computing components, the SNR of EM leakage will be different

in different locations above the chip. This suggests that if hardware implementations

of AES that encrypt different bytes simultaneously accomplish that encryption in

different physical locations, then perhaps EM SCA attacks may outperform power

SCA attacks in this instance. Additionally, most SCA attacks focus on one key byte

at a time. While this is time-consuming, if an attacker is able to successfully re-

trieve all key bytes, they can decrypt anything on the device that has been encrypted

with the secret key. However as mentioned, this is time-consuming. If it takes an

attacker hours to train a model for an attack, and there are 16 key bytes to retrieve,

then the process to retrieve an entire key is arduous and long. This leads researchers

to attempt different methods of identifying ideal collection locations to increase the

speed of and maximize the success rate of side-channel attacks. This research seeks to

further this specific area of SCA research. Can we identify points where the leakage

data at that point , enables both quicker and more successful key byte recovery?

1.3 Hypothesis

The hypothesis of this effort is that the performance of a neural network trained to

detect secret information leaked in near-field EM radiation is correlated to the relative

strength of the EM radiation associated with the secret information. As a result, this

property can be leveraged to construct a heatmap that will enable attackers to identify

optimal physical locations from which to collect the leaked signals and shorten the

time required to successfully attack the key.

1.4 Research Objectives

The primary goal of this research is to determine whether a Convolutional Neural

Network (CNN) can identify an ideal point or points to collect EM leakage in order
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to improve attack success. This will be investigated by collecting EM leakage data

in the form of traces in a grid pattern above a Xilinx field programmable gate array

(FPGA). The leakage traces are then combined into a single large training dataset and

a series of CNNs will be trained on the collective data. The resulting models will be

tested for classification accuracy using data collected at each of the collection points.

The results will then be combined into a heatmap and confidence intervals will be

created to identify the points that are statistically significant from one another. The

EM data from the identified points will then be used to conduct attacks to determine

if the attacks succeed more often at the points identified as having a higher accuracy.

This described framework can then be used by attackers and security professionals to

identify collection points from which to conduct SCA attacks more successfully.

1.5 Our Contribution

In this research, the main objective is to develop and demonstrate the effective-

ness of a framework designed to identify ideal leakage collection points against which

to conduct EM SCA attacks. This framework seeks only to demonstrate that neural

networks can be used, given enough input data, to classify points as being statistically

stronger or weaker, with regards to leaked signal strength, in the case of an EM SCA

attack. The initial research attacks a known leaky device, the ChipWhisperer Atmel

XMEGA using a software implementation of AES. Once the framework was demon-

strated as successful on a known target, the effort focused on a Xilinx Kintex-7 FPGA

using a hardware implementation of AES. There are likely better neural network ar-

chitectures for the problem, and perhaps there may be better means for determining

ideal EM leakage collection locations above a computing device. However, this work

demonstrates that the presented framework enables an attacker or security expert to

map out the EM leakage of a computing device to identify a point or points from
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which the collected leaked signal is stronger and leads to quicker SCA key recovery

attacks.

1.6 Document Organization

This document is organized as follows. Chapter II provides an overview of relevant

background information and previous research. Chapter III details the collection

process used to obtain our trace data, the architecture used to train the CNNs on

the collected data, and the methods used to compare the performance of the neural

network when tested at the various collection grid points. This chapter also describes

the techniques used in the SCA attack that enable individual key byte retrieval from

the model. Chapter IV presents the results of the training process, and the analysis

of the attack results. Finally, Chapter V discusses the conclusions drawn from the

results as well as areas of interest for future research.
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II. Background and Literature Review

Deep Learning-based Side-Channel Analysis (SCA) research is a multi-disciplinary

field that relies on techniques pulled from other research domains including; Cryp-

tography, Deep Learning, Electromagnetic Theory, Statistical Analysis, Profiling At-

tacks, Leakage Assessment.

The remainder of this chapter is outlined as follows. Section 2.1 outlines leakage

assessment methodologies, including statistical analysis tools such as the Welch’s t-

test and the Pearson’s χ2-test. Next, the idea of Perceived Information, and Mutual

Information is presented. Then,profiled SCA attacks are discussed in Section 2.2 to

demonstrate how two separate devices are used in many SCA attacks, including those

presented in this work. electromagnetic (EM) theory is briefly discussed in Section 2.3,

as this theory is what enables EM-based SCA work. Section 2.4 discusses cryptogra-

phy, including an introduction to and motivation for the use of the Advanced Encryp-

tion Standard (AES) encryption algorithm for this research, including the differences

between hardware-based and software-based encryption. Next, Section 2.5 discusses

relevant deep learning techniques and their use in leakage assessment. Finally, Sec-

tion 2.7 discusses various research that has already been accomplished regarding the

field of SCA work as well as the use of Convolutional Neural Network (CNN)s for the

purpose of SCA work.

2.1 Leakage Assessment

This section presents a set of techniques that can be used to assess a given target

for information leakage. A device is said to ”leak” information if a correlation can

be found between the data being processed and an observable external phenomenon.

This research focuses on information leaked through near-field electromagnetic ra-
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diation. Essentially, leakage assessment is the set of techniques used to determine

if a collected observed phenomena is data- or information-dependent. All electronic

equipment draws power in an amount that is dependent upon the operations occurring

on the device. Additionally, all electronic equipment emits some amount of EM signal

due to the nature of the manufacturing process and the physical implementation of

the underlying components making up the device under test (DUT).

Leakage assessment is used to determine if any information can be extracted from

a collected EM or power signal. The beginning of leakage assessment involved an

exhaustive verification of the ability of the DUT to resist known attacks while si-

multaneously covering a broad range of intermediate values and hypothetical leakage

models. This became less feasible over time as leakage models became more com-

plex and countermeasures were introduced to defeat known SCA attacks. Addition-

ally, this exhaustive approach often produced false negatives when applied to newer

leakage models [8]. At the National Institute of Standards and Technology (NIST)

Non-Invasive Attack Testing Workshop in 2011, the Welch’s t-test was suggested for

leakage detection [9]. The idea being that statistical analysis could determine much

more quickly and with fewer false negatives, if there was a difference between collected

leakage data generated with known input data and collected leakage data generated

with randomized input data. Seven years later, the Pearson’s χ2-test was suggested

to replace the Welch’s t-test [10].

2.1.1 Statistical Analysis

Statistical analysis is a process used to determine if two or more datasets have

the same or different statistical distributions. More broadly, this process tests if

the datasets differ significantly from one another. More specifically, the purpose of

statistical analysis tests is to find evidence that enables rejection of a null-hypothesis.

8



Null hypotheses can range from stating that two datasets are indistinguishable, to a

sample mean being the same as a population mean, to two different variables being

independent. The alternate hypothesis is the opposite of the null hypothesis. For the

examples, these would be that the two datasets are distinguishable, the sample mean

is not the same as the population mean, and the two variables are dependent.

2.1.2 Welch’s t-Test

The aim of the t-test is to provide a quantitative probability of whether or not the

mean µ of two sets are different. In this sense, the hypothesis for the t-test is that the

µ for the two sets is in fact different. This means the null hypothesis would be that

the µ for the sets is indistinguishable [11]. In the case of SCA, these two datasets are

the observed leakage traces compared when supplying the tested device with either

two sets of fixed input, or one set of fixed input and one set of randomized input. For

the t-test, we have sets Q0 and Q1 with means µ0 and µ1, standard deviations s0 and

s1, and cardinalities n0 and n1. The t-test statistic t and the degrees of freedom v is

calculated as:

t =
µ0 − µ1√

s20
n0

+
s21
n1

(1)

v =
(
s20
n0

+
s21
n1
)2

(
s20
n0

)2

n0−1
+

(
s21
n1

)2

n1−1

(2)

By using the calculated v, and the t-distribution table mentioned in 2.1.1 the

critical value for the t-test can be found. To determine the critical value, the degrees

of freedom v and the alpha level, or confidence level, α are intersected on the t-

distribution table. The most common alpha level is 5% or 0.05, indicating 95%

certainty in the result. The critical value is the value used to determine whether to
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reject the null hypothesis or not. If the absolute value of the test statistic |t| is greater

than the critical value returned by the t-distribution table, then the null hypothesis

can be rejected, leading to acceptance of the alternate hypothesis that the two sets

are distinguishable [8, 11].

2.1.3 Pearson’s Chi-Squared-Test

The Pearson’s χ2-test is a statistical analysis test that allows for higher-order

analyses and can provide evidence that one dataset is dependent on another dataset.

While the t-test captures information in a single moment and focuses on the difference

in means of two sets of data, the χ2-test can capture information that exists in multiple

statistical moments. A moment refers to a quantitative measure of a function’s graph.

The Pearson’s χ2-test is used to evaluate whether there is enough evidence to reject

the null hypothesis stating that two categorical variables are independent. Thus the

alternate hypothesis would be that the two categorical variables are dependent [8].

To calculate the χ2 test statistic, one must first construct a contingency table F

from the two (or more) sets Q0 and Q1.

F =

Q00 Q01 . . . Q0c

Q10 Q11 . . . Q1c

 (3)

The numbers of rows is the number of compared sets, and is denoted as r. The

number of columns is the number of bins in the histogram created from the compared

sets, and is denoted as c. This table enables a greater look into the variance of the

categorical variables. The test statistic χ2 and the degrees of freedom v are computed

as:

χ2 =
r−1∑
i−0

c−1∑
j=0

(Fij − Eij)
2

Eij

(4)
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v = (r − 1)(c− 1) (5)

Where Eij denotes the theoretical frequency for a cell, assuming the hypothesis

that each cell is independent. Eij is calculated

Eij =
(
∑

k = 0c−1Fik)(
∑r−1

k=0 Fkj)

N
(6)

The confidence p to accept or reject the null hypothesis for the χ2-test is given

from the χ2 probability density function, where Γ denotes the gamma function [8].

p =

∫ ∞

x

f(x, v)dx (7)

f(x, v) =


x
v
2−1e−

x
2

2
v
2 Γ( v

2
)

x > 0

0 otherwise

(8)

The benefit of the χ2-test is its ability to extend to more datasets than just the

two that the t-test can work with. Generally, the chi2-test outperforms the t-test in

cases where the DUT uses a masked implementation with low noise levels, or where

masking schemes cause leakage in multiple moments due to physical defects [8][10][12].

2.2 Profiled Side-Channel Attacks

This section discusses a form of SCA attack, known as a profiling attack. Profiling

refers to the ability of an attacker to identify points in a trace, be it power or EM, that

correspond to certain parts of a cryptographic algorithm. The attacker can separate

out parts of the trace with high variance as they are more data dependent, and parts

of the trace that have a low variance as they are more likely key dependent as the key

is constant. An attacker can then use this knowledge, or profile, to perform inferential
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power analysis. Inferential analysis takes a profile and extends it to characterize the

device in question. An attacker can reveal the location of key bit manipulations in a

trace by comparing the power consumption of the different rounds as opposed to the

power consumption of individual operations, and this can help them determine which

power level corresponds to which logic value of the key bit. In other words they can

profile a device and then build a template for the key bits [13].

Profiling SCA attacks are split into two phases: a profiling phase, and an attack

phase. These phases are also referred to as training and matching phases respectively.

During the profiling phase, the attacker entirely controls all operations occurring on

the profiled device and generates either EM or power traces by running randomized

plaintexts and keys through an encryption algorithm and observing the operations of

the profiled device. Profiling attacks can be broken down into the following steps:

• A set of Np profiling traces are gathered and are considered the realization of

the random variable Sp
∆
= {(x1, z1), (x2, z2), ..., (xNp , zNp)} where xi is the i.i.d.

realization of the observed random variable (X), and zi is the i.i.d. realization

of the discrete random variable, or the output of the cryptographic primitive

(Z). Sp is represented by the probability mass function Pr[X,Z]Np .

• The gathered observed traces Np are then used to build a model M that will

return a set of scores for each hypothetical Z. This model can then be used in

the attack phase.

• A set of Na attack traces are captured on the target device and these traces are

seen as a realization of Sa
∆
= (k∗, {(x1, p1), (x2, p2), ..., (xNa , zPa)}) where k∗ is

the correct key byte value, and k∗ ∈ K. K represents the set of all possible key

byte values. For all i ∈ [1, Na], the plaintext used in the ith trace pi ∼ Pr[P ],

and xi ∼ Pr[X|Z = C(pi, k
∗)] where C(pi, k

∗) represents the output of the
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cryptographic primitive given pi, and k∗.

• The model M is used to create a prediction vector for every attack trace, qi =

M(xi), i ∈ [1, Na]. For each trace, the model assigns a score to each possible

key byte value, that is, for every j ∈ [0, |K|], the value of the jth index in qi

corresponds to the likelihood assigned to that byte value by the model.

• The output scores are then combined over all given attack traces to output a

final likelihood for each key byte candidate inK. The candidate with the highest

final likelihood is the predicted correct key byte. This maximum likelihood score

for each key candidate is calculated l[k] =
∑Na

i=1 log(qi[zi]) where zi is the output

of the cryptographic primitive given pi and the key candidate k. Based upon

the final scores from the previous equation, the key candidates are then ranked

in decreasing order and the attacker chooses the candidate ranked first in the

sorted vector.

The goal during the profiling collection phase is to gather traces for as many

possible key and plaintext combinations as possible to ensure the attacker has a more

complete picture of the search space, and can create a model that better estimates

the probability distribution function for the leakage [2].

Models used in the profiling phase can range from t-distribution to trained neural

network models. As described in the equation in final step above, the most efficient

manner of determining the correct key byte is by following a maximum likelihood

strategy. This means the attacker generates a likelihood for each possible key byte

value and chooses the value that maximizes the likelihood. This is often performed

using Bayes’ theorem under the assumption that individual trace acquisition events

are independent [14].
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2.3 Electromagnetic Theory

Electromagnetic waves are created through the acceleration of charged particles.

More aptly, they are generated from the variation in electric currents over time. The

value of these waves can be derived from Maxwell’s equations [15]. These waves are

the combination of electric and magnetic fields moving through free space. These

waves are considered EM emissions. In some cases, such as radio broadcasting, WiFi,

and medical imaging, these emissions occur to serve a purpose. In other cases they

occur as a result of particles and electricity moving within an electronic component,

such as the charging and discharging of a capacitor, or a current passing through

a resistor. Modern computer technologies rely on a large number of components

that depend on electric pulses and alternating currents. These pulses and alternating

currents cause unintended EM waves to be generated.

There are two regions we consider with respect to EM radiation; near-field, and

far-field. In the near-field region the electric and magnetic fields can be measured

separately. Additionally, one field may dominate the other field based upon underly-

ing features and geometry. In the far-field the electric and magnetic fields equalize,

meaning it does not matter what type of antenna you choose to use to receive the

waves. All EM waves can be collected given the right equipment. Radio transceivers

enable the sending and receiving of purposeful EM waves. The transceivers are able

to take information, perhaps an audio source as input, encode that input into EM

waves, and send those waves out to receivers that subsequently decode the signal,

perhaps reproducing the audio that was originally captured. The unintended EM

waves generated by computing devices can be captured using EM probes. Based on

previous research an electric field probe was chosen to collect leakage data. In this

work, an EM probe captured the generated signals through digital sampling. The

sampling rate of the EM probe must be at least twice the frequency of the signals
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that must be captured [16]. The most common collection equipment uses EM probes

attached to high sample rate oscilloscopes that digitize the EM waves for further anal-

ysis by some software. The output of the oscilloscope is proportional to the electric

field strength at the tip of the probe.

2.4 Cryptography

Cryptography is the act of creating or solving codes. In computer terms this most

often refers to securing information by encoding it either during transport or while

at rest. The purpose of cryptography is to ensure that information is not accessed

by people who do not need to have access. Encryption is the process by which a

plain piece of information called a plaintext is converted to ciphertext by using an

encoding scheme, often composed of an high-level encryption algorithm with one or

more cryptographic primitives. A cryptographic primitive is a low-level encryption

algorithm that is used to build high-level encryption protocols. These include simple

one-way hashing functions, and encryption functions that perform simple swaps or

shifts in data [17]. High-level encryption algorithms include Rivest-Shamir-Adleman

(RSA), AES, and data encryption standard (DES).

2.4.1 Advanced Encryption Standard

The AES is a specification for a standard used for the encryption of electronic

data established by the U.S. NIST in 2001 and is widely used today [18]. AES is

a symmetric block cipher and uses key lengths of 128-bits, 192-bits, or 256-bits. A

symmetric encryption algorithm uses the same key for encryption and decryption.

A block cipher encrypts data in fixed-size blocks instead of one bit at a time like a

stream cipher would. AES-128 encrypts 128-bit blocks of plaintext with a 128-bit

key. Figure 1 is a diagram displaying the different operations within AES, and where
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they fall in order. AES-128 performs its encryption in 10 rounds, with each round

aside from the last including four cryptographic primitives: SubBytes, ShiftRows,

MixColumns, and AddRoundKey. The final round does not perform the MixColumns

operation. AES-128 performs each of its operations on a 4x4 matrix of bytes called

the state. The SubBytes operation is a non-linear substitution where each byte in

the state is replaced with another value according to a lookup table. With AES this

lookup table is called the SBox table. The ShiftRows operation is a transposition

step that shifts the rows in the state 0, 1, 2, or 3 times depending upon the row

number. The MixColumns step combines the four bytes in each column in a linear

mixing operation. The AddRoundKey operation occurs in each round as well as once

prior to the first round and combines a round key with each byte in the state using

a bit-wise XOR operation. The round key is derived from the encryption key and a

key schedule algorithm.

2.4.2 Hardware versus Software Encryption

Encryption can occur via software or hardware implementations. Software encryp-

tion is generally more cost effective for smaller manufacturers, however it typically has

lower performance as the processing will be shared between the encryption algorithm

and all other programs on the device. Hardware encryption is more cost effective for

larger manufacturers, typically involving a dedicated processor. This provides more

security over software encryption as the keys are not stored in main memory. Addi-

tionally, because it runs on a dedicated processor it does not need to share resources

with other programs which increases overall performance [19].

Hardware encryption is generally more secure than software. Software encryp-

tion can be disabled by users or malware, however hardware encryption is on a

separate device and all information on the device is always encrypted. Further, soft-
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Figure 1: String Diagram displaying the rounds in AES, including the steps in each
round, and the round keys used in each round.

ware encryption uses pseudo-randomly generated numbers to create asymmetric keys,

whereas hardware encryption generates asymmetric keys using physical attributes of

the device. Pseudo-randomly generated keys can be vulnerable to a sophisticated

and dedicated enough attacker, where keys generated from some physical attribute

are much more secure1 [19].

Hardware encryption is also often implemented as part of a processors instruction

set. For example, AES can be implemented using the AES instruction set on multiple

architectures including the x86 architecture and the ARM architecture. One advan-

tage of being implemented in this way is the ability of hardware encryption to process

the encryption sets for all bytes simultaneously in each round. This is opposed to

software encryption, which must perform encryption in a byte-wise manner during

each round due to the performance trade off of software encryption. The ChipWhis-

perer Lite XMEGA microcontroller uses a software implementation of AES2 and the

1https://oa.mo.gov/sites/default/files/CC-CryptoHardwarevsSoftwareEncryption041304ARCapp.pdf
2https://github.com/newaetech/chipwhisperer/blob/develop/hardware/victims/firmware/cry-

pto/mbedtls/library/aes.c
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ChipWhisperer Bergen Board setup, which uses a Xilinx FPGA, implements a hard-

ware version of AES3 From a side channel perspective, this makes software encryption

easier to observe and attack as the information in each clock cycle pertains to an in-

dividual byte. Hardware becomes harder to attack as there is more information being

processed at each clock cycle and thus the noise increases.

2.5 Machine Learning

For much of computing history and traditional programming, devices were created

with a set of rules. Those devices were then fed information and the rules calculated

a set of output which was returned to the user. Machine learning is a paradigm

that instead gives a computing device inputs with no explicit instructions, and then

asks the device to analyze and draw inferences based upon recognized patterns in the

input data. There are three types of machine learning; supervised, unsupervised, and

reinforcement learning. In supervised learning, inputs and outputs are given to an

algorithm, and the algorithm is expected to learn rules that enable it to get from the

given input to the given output. The output is usually in the form of a label, and the

amount of error between the given label and the label generated by the algorithm is

used to shift the algorithm to ensure it does better next time. Unsupervised learning

is often used in predictive models as the algorithm is only given input data and

asked to draw conclusions or to group input by patterns it finds in the data. This

form of machine learning is often used to create predictive models and is used when

output data does not exist. An example might be giving an algorithm information

regarding weather patterns using historical examples, and then asking it to predict

tomorrow’s weather based upon current information and the historical examples.

Reinforcement learning closely mirrors human learning in that depending upon how

3https://github.com/newaetech/cw310-bergen-board
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close the algorithm is to being correct, it gets a positive or negative reward. Using the

previous example with weather prediction, if the algorithm correctly predicts it will

be sunny and in the mid 70s tomorrow, then it will be met with a positive reward.

However if it predicts that warm sunny day and instead it is overcast and in the low

40s, then the algorithm receives a negative reward [20]. Figure 2 shows a comparison

between traditional programming and the three forms of machine learning. This

research uses supervised machine learning to perform SCA work.

Figure 2: The differences between Traditional Programming, Supervised, Unsuper-
vised, and Reinforcement Machine Learning

All supervised machine learning efforts require at least four essential elements:

input data, expected output data, a computational tool, and a way to measure the

effectiveness of the algorithm in order to update its rules. Through these rules,

updates, and measures of effectiveness, the algorithm ”learns”. The central problem

in supervised machine learning is for a computer to learn meaningful transformation
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of data, or to learn useful representations of the input data that allows the algorithm

to get to the expected output [1]. In this case, a representation simply refers to a

manner in which data is represented, or encoded. Supervised machine learning looks

to represent raw data in a way that helps to classify the input into an output. However

machine learning can only search through a given space of representations, known as

a hypothesis space.

2.5.1 Deep Learning

Deep Learning is a sub-field of machine learning that places an emphasis on suc-

cessive layers of data transformations that attempt to create increasingly meaningful

representations of input data. The number of layers included in the model is called

the model depth. Deep learning can include anywhere from tens to hundreds of layers.

These layers are stacked on top of one another in a model called a neural network.

The concept of a neural networks arises from a reference to neurobiology, however

they do not pretend to represent the actual inner workings of a human brain. In

neural networks, all of these many layers between the input and output layers are

called hidden layers. Each hidden layer of a neural network is made up of a matrix

of neurons that take input from the previous layer, and perform nonlinear transfor-

mations on the input to create output for the next layer. In short, the output of a

hidden layer becomes the input for the following layer.

Figure 3 visually demonstrates how these layers learn data representations to

classify the input, a hand drawn number 7. As you can see, the representations

become increasingly different from the original image, however they also become

increasingly more effective at informing the output layer of the nature of the input

in question. The specific transformations that occur in each layer of a deep learning

model are calculated from the layer inputs, or the outputs of the previous layer, and
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the weight stored in each neuron. The job of the neural network is to determine

weights for each neuron that allow the model to turn input data into output data

that accurately classifies the inputs.

In order for a deep learning algorithm to learn during training, there must be a

metric that measures the error, or how far off the predicted output was from the truth

value. This metric is called loss, and the task of calculating the loss is accomplished

by including a loss function. A loss function takes the truth value and the output

determined by the model, and calculates the loss between the two. This loss value,

or loss score is then used by the model, in a process known as backpropagation to

calculate the gradient of the loss function with respect to the weights of the network.

Then, an optimization function takes the calculated gradient, learning rate, and other

factors and updates the weights of the neurons in the models. At the initiation of

training of a neural network, all neuron weights are initialized with random values.

This means that for the first training cycle, called an epoch, the accuracy of the

model will be equal to the probability of randomly guessing the output for each input

as during this first epoch, the model has learned nothing yet and will be randomly

guessing. Each successive epoch, the model will update the weights and the loss

value should decrease and the accuracy should increase. Note that training accuracy

does not directly translate to overall model accuracy. During training, models can

be fed two sets of data; training data that is used to learn and update weights, and

validation data that is not used for training and instead used to demonstrate how

much the model has learned about data it has not yet seen. Models that begin

to memorize the training data will see their training accuracy go up, however their

validation accuracy may stagnate or even begin to decrease. Once validation accuracy

hits this stagnation point or begins to decline, training should be terminated.
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Figure 3: Data representations learned in a deep learning neural network. This
figure is based on a figure found in the book Deep Learning with Python by François
Chollet [1]

2.5.2 Convolutional Neural Networks

CNNs are a deep learning algorithm that include convolutional layers. Convolu-

tional layers use a mathematical operation called a convolution that takes a larger

matrix and places a moving filter, called a kernel, on that matrix and performs

element-wise multiplication within the kernel area, summing the results and plac-

ing the sum into an element of a smaller matrix. This convolutional layer allows for

sharing of weights between neurons and reduces the number of parameters in the

final model. Essentially, the convolutional layer summarizes the features present in

an input. CNNs also often have pooling layers that perform down-sampling. These

two features, feature summarization and down-sampling, give CNNs their most im-

portant property; translation invariance. A CNN is able to learn features that appear

in different locations across a given input.

CNNs also include pooling layers, non-linear activation functions, batch normal-

ization functions, and fully connected dense layers to assist with classification. CNNs

22



are typically organized in blocks of layers. These blocks will often feature a con-

volutional layer, a non-linear function, a pooling layer, and a batch normalization

function. However each block may be organized differently. Pooling layers are used

to down sample the input features. Down sampling is a process that creates a lower

resolution version of the given input. However despite being lower resolution, the key

structural elements of the features are maintained. Pooling layers accomplish down

sampling by sliding a two-dimensional filter over the feature map. This filter sliding

summarizes the underlying feature map to assist with feature recognition regardless

of feature size. Non-linear activation functions apply a non-linear activation function

such as rectified linear unit (ReLU), Leaky ReLU, or a tangential sigmoid function.

This function is applied to the entire feature map in an element-wise fashion, which

means that the input and output of the non-linear layer will always have the same

dimension Non-linear activation functions allow the model to learn non-linear repre-

sentations of the data. The fully connected, otherwise known as dense layers in a CNN

are always placed after the convolutional blocks and prior to the output. These dense

layers are used to enable the final classification decision. In CNN models, prior to the

dense layers, there is usually a flattening function that takes the multidimensional

feature maps and flattens them into a one-dimensional vector that will be used by the

dense layers for the final classification. The output layer of a CNN is a one-dimension

vector with a size determined by the number of possible classification decisions. For

the example in Figure 3, the size is ten as there are ten possible digits that can be

handwritten. The value output in each of the vector’s indices is the probability of

the classification being the correct classification according to the trained model [21].
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2.5.3 Adam Optimization Function

The Optimization function in machine learning determined how much to adjust

the weights in a model based upon several factors. These factors include the error

gradient calculated by the backpropagation algorithm, the learning rate, and training

momentum. The purpose of these weight updates is to decrease the loss, and thus

increase the accuracy of the model. Gradient descent algorithms are commonly used in

neural network optimization. Gradient descent algorithms use calculus to determine

the gradient, or the direction in one axis in which the greatest change will occur

in the other axis. These algorithms continually move the weights in the direction

determined by the gradient to find a local or global minima. The stochastic gradient

descent (SGD) algorithm improves upon normal gradient descent by introducing a

learning rate and only searching through a portion of the dataset instead of the entire

dataset. Searching through only a portion of the data at each iteration results in

an increase in the number of iterations to reach the minima, however the overall

computational cost of SGD is lower in cases where the dataset is large.

Adam is an extension of the stochastic gradient descent optimization algorithm.

Where SGD uses first, second, and other high order gradients, Adam only uses first

order gradients. This reduces the memory requirement of the neural network. The

Adam algorithm computes estimates of the first and second moments of the gradients

and uses those estimates to perform backpropagation. Advantages of Adam are the

parameter updates are invariant to the scaling of the gradient, step sizes are bounded,

it works with sparse gradients, and it naturally does step size annealing [22].

2.5.4 Softmax Activation Function

When working with convolutional neural networks, the softmax function is often

used as a final layer classification function. The softmax activation function converts
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a vector of real numbers with length N into a probability distribution of N possible

outcomes. Prior to this conversion to a probability distribution, the output vector of a

neural network may include positive numbers greater than one, negative numbers, or

the sum of the vector may be greater than one. After applying softmax, the resulting

distribution will cause each index of the vector to fall between zero and one, and all

the sum of all indices will be one. This means the output vector can be interpreted

as the probability of that output being the correct output according to the model.

These probabilities are easier to work with in CNN models.

2.5.5 Negative Log Likelihood Loss Function

In Convolutional Neural Network (CNN), one oft-used case involves categorical

classification. This classification seeks to have a one-hot encoded vector of each of the

potential classes. However, the output layer of a model does not produce a one-hot

vector. Note, you can think of a one-hot encoded vector as a probability distribution

where there is no uncertainty. When using the softmax activation function, the

output layer of a model will instead output the probability distribution determined

by the model for all possible classes. The goal in categorical classification is to

maximize the likelihood of correctly categorizing the input given a model and a set

of parameters. The likelihood of guessing the correct classification in this sense can

be calculated by summing the unit-wise multiplication of the one-hot encoded vector

corresponding to the correct output, and the probability distribution vector output

by the model. Maximizing the likelihood of guessing the correct category can be

accomplished by minimizing the loss function. One such loss function is negative log

likelihood (NLL), which uses likelihood and the negative logarithm of small numbers

to create a loss function. This can be represented in the following equation: NLL =∑j
i=0 kisi where j is the number of possible classes, k is the one-hot encoded vector,
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and s is the probability distribution output by the model. This summation function

can be reduced to taking the probability output by the model for the correct class.

This results in a small number, and the logarithm of a small number, such as the

probabilities of each category produced by a model that all need to sum to 1, will be

negative, so taking the negative will produce a positive number where the higher the

resulting number, the lower the probability produced by the model for that specific

category. Herein lies the need to minimize. The NLL can be calculated by taking the

negative natural log of the likelihood. The lower the result, the closer the model is

to correctly classifying the input data.

In neural network training, minimizing NLL loss has been demonstrated as being

asymptotically equivalent to maximizing the perceived information (PI) [2]. The PI

serves as a lower bound for the Mutual Information (MI). The MI is the true statistical

distribution model of the leakage of the DUT, and is computationally intractable.

Using NLL loss enables neural network models to efficiently and effectively estimate

the PI, which then allows said models to closely approximate the MI [23]. As NLL

enables us to closely approximate the true leakage distribution of a target device,

NLL may be preferable to Categorical Crossentropy, a loss function commonly used

in image classification problems, in SCA work.

2.6 Field Programmable Gate Arrays

Field programmable gate array (FPGA)s are silicon semiconductor devices created

to be configurable by the customer or other end user after the manufacturing process

is complete. FPGAs are often configured using hardware design language (HDL) and

the chip is able to be reconfigured as it contains an array of programmable logic units

and re-configurable connections, allowing the units to be wired together as desired.

The configurable nature of an FPGA may serve as a passive SCA countermeasure,

26



if it can be demonstrated that modifying the layout of the components responsible

for performing encryption algorithms causes side-channel leakage to become less con-

sistent when attacked using a model trained on data pulled from a device with a

different configuration. The target of this research is an FPGA device, however no

effort was made to obfuscate the encryption algorithm using alternate bitstreams.

This can become a direction for future work.

2.7 Previous Research

Much of recent SCA research focuses on retrieving the correct key or key byte in as

few traces on the DUT as possible with some papers demonstrating successful attacks

using as little as one trace [7][5]. Deep learning techniques have been demonstrated

as quite effective when used in SCA work [8]. They showed deep learning to be more

successful in detecting leakage over more traditional statistical analysis attacks such

as the t-test and the χ2-test. Specifically they found deep learning outperforms such

statistical analysis attacks when the leakage is non-trivial, that is the leakage data is

misaligned or the leakage model exhibits a multivariate distribution [8].

Additional research considered the effectiveness of multi-device profiling attacks,

in which the profiling phase consists of training a neural network on leakage traces

captured from multiple devices. One paper demonstrated the effectiveness of a neural

network model trained on power data traces captured both from multiple homoge-

neous devices and multiple non-homogeneous devices [7]. With the same number of

traces captured either all from one board, or split equally across nine homogeneous

boards, they demonstrated an increase from 39.95% to 86.07% success rate when

executing an attack with only one trace. They discussed the accuracy drop that oc-

curs when attacks occur against a device that is different than the profiled device

and demonstrated the effectiveness of training a model on data pulled from multiple
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non-homogeneous devices. They showed that attack accuracy can be improved from

under 14% to over 55% in such cases [7]. Their research is based upon the idea that

increasing signal and noise diversity can help lead to higher classification accuracy

as the neural network has been given more diverse data to learn information from.

If a network is trained on traces collected from only one device, the resulting model

will be largely unable to correctly classify trace data collected from another dissimilar

device. However if the model is trained on data pulled from multiple devices, it will

have been exposed to more of the total sample population and have a better change

of correctly classifying data it has not seen before. This diversity principle is also

demonstrated using EM trace data [6]. This research trained a Deep Neural Net-

work (DNN) on EM traces pulled from 10 homogeneous microcontroller devices and

achieved an average success rate across 10 attack devices of 91.5% [6]. Both papers

demonstrate the effectiveness of diversity in attack success rate.

Other investigators have sought to identify an ideal location to collect EM leakage

data to lower the number of required traces and ensure a higher likelihood of attack

success. Schlösser et al. demonstrated a technique to identify the SRAM location

accessed during the activation of the SBox lookup operation of the AES algorithm.

They analyzed photonic emissions collected using a silicon-based charged coupled

device during the SBox lookup operation and successfully located the physical location

of SRAM containing the SBox lookup table. They were able to do so because the

spatial resolution of the emissions collected allowed them to clearly identify memory

access locations even when they are adjacent [24].

Andrikos, et al. extended this idea of identifying memory access locations, using an

information-based approach to retrieve the AES key-byte after performing sequential

accesses to a continuous region of SRAM by loading data from all memory positions.

This was accomplished by accessing 4096 32-bit words in order to load the entire
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16KB region of SRAM. They divided the resulting traces into two classes, those

collected using the first 2048 words and those collected using the last 2048 words.

They then performed a Welch’s t-test and found the location on the chip that had

the most significant location-based leakage. This allowed them to identify the SRAM

location of the SBox lookup table and determine the secret key [25]. Das & Sen used

the signal-to-noise ratio (SNR) or test vector leakage assessment (TVLA) methods,

such as the Welch’s t-test or Pearson’s χ2-test, to identify a possible ideal leakage

collection location from which to perform an SCA attack. They used a framework

called SCNIFFER [26] in conjunction with either the TVLA or the SNR to perform

a greedy gradient-search heuristic that converges on an ideal point to collect EM

leakage traces. This framework is intended to reduce the correlational EM leakage

analysis time by a factor of n where the chip dimension is n× n [4].

2.8 Conclusion

This chapter introduced key concepts this research is built on. It discussed leakage

assessment through statistical analysis, profiling SCA attacks and how they work,

the EM theory that makes EM-based SCA attacks possible, cryptography, and the

AES algorithm attacked in this research, machine learning, deep learning, and key

deep learning concepts such as CNNs, the Adam optimization function, the Softmax

activation function, and NLL as a loss function. These specific functions and terms

represent the functions used in this research. Finally, the chapter presented research

conducted by several different authors with the main goal being the advancement

of SCA techniques. This includes the introduction of CNNs for leakage assessment,

using heterogeneity of devices when collecting leakage signals, and a system for finding

an ideal location from which to collect EM leakage to conduct SCA attacks.
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III. Methodology

This chapter describes the research methodology used to perform electromagnetic

(EM) Side-Channel Analysis (SCA) using Convolutional Neural Network (CNN)s to

identify ideal points from which to conduct SCA attacks. The chapter is laid out as

follows: Section 3.1 discusses the collection methodology, Section 3.2 discusses the

architecture of the CNNs, Section 3.4 discusses methodology used to identify the ideal

points. Finally, Section 3.5 presents the attack methodology used for determining the

success rate for the models trained at each of the identified points.

The research consists of three phases. The first phase is a pilot study to deter-

mine whether a CNN can identify points that enable an attacker to extract a key byte

more quickly. This study uses the ChipWhisperer-Lite platform and an XMEGA mi-

crocontroller, designed to leak information as a teaching tool for those interested in

SCA work 1, and commonly used in side-channel research [5, 7]. Once results demon-

strated the effectiveness of this methodology, additional research is accomplished to

determine if the experiment can be accomplished with less data, thereby reducing

the time required to train CNN models. The final experiments involve utilizing the

demonstrated framework’s effectiveness on a more secure device. The device cho-

sen is a Xilinx Kintex-7 410T field programmable gate array (FPGA), fitted on the

ChipWhisperer 310 platform2.

Python is used with multiple specialized libraries throughout this work mainly for

its compatibility with the TensorFlow and Keras libraries which perform much of the

underlying work for the CNNs3. Additionally, python is the language used by the

United States Air Force (USAF) in their collection tool named WarChest. WarCh-

1https://www.newae.com/chipwhisperer
2https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
3https://www.python.org/
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est uses several python libraries including ChipWhisperer4, python-ivi5, h5py6, and

PySerial7. These libraries enable WarChest to send instructions to each of the com-

ponents in the collection process. For the collection, we use an three axis linear

translation stage connected to a Duet WiFi translation stage controller, an oscillo-

scope, a ChipWhisperer target, and a local data-store8. WarChest connects to the

Duet WiFi via serial connection, and sends commands via a serial bus. WarChest

generates the keys and plaintexts used in the cryptographic operations and passes

them to the ChipWhisperer target using a separate serial connection. WarChest also

communicates via Ethernet to the oscilloscope and sets the collection parameters us-

ing the python-ivi library to ensure collection is consistent across all collection points

and collection runs. The oscilloscope connects via a coaxial cable to the EM probe.

When the ChipWhisperer board is ready to perform the cryptographic operations,

it sends a trigger pulse to the oscilloscope to begin the collection and performs the

operation. The captured trace is then passed back via the Ethernet connection to the

WarChest platform which then saves them on the local data storage.

The research uses profiled SCA attacks, as mentioned in Section 2.2. As a brief

refresher, this form of SCA attack uses two phases, a profiling phase and an attack

phase. The profiling phase consists of an adversary first collecting leakage data from

a device equivalent to the target device, but which the adversary has full control

over, during operations of interest, such as encryption operations. Following which,

the adversary trains a model on the collected leakage data. For the attack phase, the

adversary collects leakage data on a target device over which they do not have full

control. The adversary collects this data by observing the device while it performs an

4https://www.newae.com/chipwhisperer
5https://github.com/python-ivi/python-ivi
6https://www.h5py.org/
7https://pyserial.readthedocs.io/en/latest/
8https://www.duet3d.com/DuetWifi
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operation. In many cases this operation is an encryption algorithm. During the attack

phase the secret information is assumed to be fixed. The attack data is fed into the

previously trained model and an attempt is made to extract the secret information.

In many cases, to include this case, the secret information is a cipher key.

3.1 Side-Channel Leakage Collection Methodology

This section presents6 the collection processes used during each of the collection

phases of the research. Section 3.1.1 discusses the setup used during the preliminary

research, conducted using the ChipWhisperer-Lite and an XMEGA ARM micropro-

cessor using a software implementation of Advanced Encryption Standard (AES).

Section 3.1.2 details the collection setup used for the main body of research, using

the ChipWhisperer 310 platform and a Xilinx FPGA performing hardware-based AES

encryption. A full diagram for the collection setup, used for both stages of research,

is displayed in Figure 4.

3.1.1 ChipWhisperer XMEGA Collection Setup

A collection setup for initial research into the effectiveness of CNNs for identi-

fying ideal leakage collection locations consists of an three-axis translation station,

a Riscure Version 4 EM probe connected to a LeCroy WavePro 725Zi oscilloscope

with a maximum sampling rate of 40 giga-samples per second (GS/s), set above a

ChipWhisperer-Lite ARM board attached to a 16-bit Atmel XMEGA D4 microcon-

troller utilizing a software implementation of the AES algorithm 9. The EM probe is

configured to move in a grid pattern, demonstrated in Figure 5, above the XMEGA

microcontroller. The XMEGA microcontroller is 10mm × 10mm in size and the pat-

tern consisted of 25 collection points arranged in an 5 × 5 grid with each point set

9https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVR-
microcontroller-ATxmega16D4-32D4-64D4-128D4 datasheet.pdf
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Figure 4: Full collection setup diagram displaying the connection types between dif-
ferent components in the setup and the protocols and libraries used to control the
system.
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2.5mm apart. The probe moved in a raster scan manner, moving across five collec-

tion points before moving to the next row and collecting at the next five points in

the opposite direction. At each point, the EM probe collected 33,000 traces, each

with 500,000 samples. The first 30,000 traces are allocated for training and testing a

profile model, and 3,000 are reserved for the attack. The training and testing traces

are collected with randomized plaintext and randomized keys. This is done to ensure

the trained models are exposed to a larger set of possibilities within the search space.

The 3,000 attack traces are collected with randomized plaintext and constant key.

The attack traces use a constant key as in a real world SCA attack the key would

change according to a key schedule. This key schedule makes it imperative that an

attacker be able to retrieve the correct key byte in as few traces as possible.

To collect leakage data, the microcontroller must execute the AES encryption al-

gorithm and use a trigger timer to synchronize the oscilloscope and the microcontoller

to capture the leakage data during the course of the encryption operation. This en-

tire process is performed using the WarChest tool developed by the USAF. WarChest

sets the plaintext and key metadata, loads the firmware onto the device, then issues a

command to the microcontroller to trigger the key update and encryption operations,

all using a .hex file created using instructions found on the ChipWhisperer website10.

Then WarChest sets the trigger for both the microcontroller and the oscilloscope.

The traces collected are 5ms in length, and the oscilloscope collected samples at a

rate of 100mega-samples per second (MS/s). This results in 500,000 samples per

trace. These 500,000 samples included 150,000 samples prior to the beginning of the

AES encryption process, and 130,000 traces following the completion of the encryp-

tion process. This leaves 220,000 samples related to the AES process. However, due

to the rounds used in the AES encryption algorithm, the region between samples

10https://wiki.newae.com/index.php?title=V4:Tutorial B1 Building a SimpleSerial Project
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Figure 5: Atmel XMEGA D4 microcontroller displaying 25 grid points used for leak-
age collection. The lines between points demonstrate the raster scan movement of
the collection probe

150,000 and 180,000 are identifiable as the time period in which the first round of the

algorithm occurred. The region corresponding to the time the algorithm begins and

the end of the first round is chosen for the attack point, as shown in Figure 6. This

attack point is chosen because the time between the initiation of the AES algorithm

and then completion of the first round is the only time in which the original key is

exposed, as the key undergoes a key expansion heuristic during each round of the

algorithm. This isolation ensured that only 30,000 samples per trace are needed to

retrieve the key byte, and can be seen in Figure 8 by the red bounding box displaying

the first round.

The collected traces are separated out into three groups. The first group contained

30,000 traces where both the plaintexts and keys are randomly chosen. This group

is then split into groups of size 27,000 traces and 3,000 traces. The first 27,000 are

used for model training, and the last 3,000 are used for individual point testing, once

a model is trained. The 27,000 training traces collected at each of the 25 points
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Figure 6: String Diagram displaying the chosen attack point for the AES algorithm.
This attack point is chosen due to it being the only period where the cipher key is
exposed in the clear before being modified by the Key Expansion algorithm.

Figure 7: Oscilloscope output for the Atmel XMEGA microcontroller demonstrating
the location of the isolated samples. Notice the 10 spikes corresponding to the 10
rounds of encryption.
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are combined into a single large training set consisting of 675,000 traces. This large

training set is provided to the neural networks to train the models. The 3,000 points

are then used for testing to determine the accuracy of the model at each of the

individual points.

3.1.2 Xilinx FPGA Collection Setup

The collection setup consists of the three-axis linear translation station, a Riscure

Version 4 EM probe connected to a LeCroy WavePro 760Zi-A oscilloscope with a

maximum sampling rate of 40 GS/s, set above a ChipWhisperer CW310 fitted with

a Xilinx Kintex-7 410T FPGA. The EM probe is programmed to move in a grid

pattern, shown in Figure 8 above the FPGA. The pattern consists of 80 collection

points set up in an 8× 10 grid with each point set 2mm apart. The probe is moved

across the shorter axis of the board from point to point until it reached the edge

of the chip. Once it reached the edge of the chip, the translation table moved the

probe back to the initial edge. Then it moved one point along the longer axis and

began working across the shorter axis once more. It continued this E -shaped scanning

pattern in order to ensure each collection point is reached from the same direction.

The intermediary research discussed in Section 3.8 demonstrated that it is possible

to train the CNN models with fewer traces. Thus, at each point above the Xilinx

Kintex-7 FPGA, the EM probe collected 23,000 traces split into 20,000 samples with

randomized plaintexts and keys, and 3,000 with randomized plaintexts and a single

constant key. Each collected leakage trace has 20,000 samples. However, the number

of testing and attack traces between both phases of the experiment is held constant.

To collect leakage data, the FPGA is observed during the AES encryption algo-

rithm and with a trigger signalling the oscilloscope to capture the leakage data during

the course of the encryption operation. This entire process is performed using the
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Figure 8: Xilinx Kintex-7 410T FPGA device with 80 leakage collection points. The
lines between points demonstrate the pattern of collection

WarChest tool developed by the USAF. WarChest sets the plaintext and key meta-

data, directs the microcontroller to perform the encryption operation based upon a

bitstream generated by the code shown in Appendix A, and sets the trigger for both

the operation and the oscilloscope. The oscilloscope captured a window of 1,000ns,

however data is collected during the 50ns before and the 75ns following the AES

encryption process. The oscilloscope captured samples at a rate of 20GS/s which

resulted in a total of 20,000 samples per trace. As with the XMEGA experiment, the

focus is on the window of time between the beginning of the algorithm and the end of

the first round as it is the only window containing the original key. Figure 9 displays

this region of interest, which corresponds to the samples between the 1,000th and

the 3,000th samples. This results in 2,000 samples per trace required to successfully

retrieve the key.

As with the preliminary research, the collected traces are separated out into three
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Figure 9: Oscilloscope output for the Xilinx Kintex-7 FPGA demonstrating the loca-
tion of the isolated samples.

groups. The 20,000 traces with randomized plaintexts and keys are split into groups

of size 17,000 traces and 3,000 traces. The first 17,000 are used for model training,

and the last 3,000 are used for individual point testing, once a model had been

trained. The 17,000 training traces collected at each of the 80 points are combined

into a single large training set consisting of 1,360,000 traces. The 3,000 points used

for testing enable determination of the accuracy of the trained model at each of the

individual collection points.

3.2 Convolutional Neural Network Architecture

This section will discuss the architectures used for both major phases of the re-

search. The neural network architecture is based on the architecture used in the

research published by Prouff, Strullu, Benadjila, Cagli, and Dumas (2018) [14]. This

model has been proven successful when used in EM SCA research. The model is
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scaled down for these attacks as the input layer size causes a larger parameter count

which initially led to overfitting. The model architectures used against the different

targets differ slightly due to changes in device hardware, newly discovered research,

and size of the input.

The neural network architecture consisted of five convolutional blocks of increasing

filter size. Each block consisted of a convolutional layer build using Tensorflow’s built-

in Conv1D()11 with a kernel size of 11, followed by a batch normalization function, an

activation function, and a one-dimension average pooling layer built with Tensorflow’s

built-in AveragePooling1D12 function with a pool size of 2 and a stride of 2. Following

these convolutional blocks, the output of the last convolutional block is flattened to

create a one-dimensional vector and then sent into two dense layers used to assist final

classification. As the goal is to retrieve an individual key byte with a value ranging

from 0 to 255, softmax is employed as a final layer activation function to output the

probabilities of each key byte candidate. The labels are converted from integer form

to a categorical one-hot encoded vector of length 256 used for comparison.

In the initial research on the XMEGA target, ReLU is used as the activation

function as it is a commonly used activation function for neural networks used in

SCA research. Categorical Crossentropy is employed as the loss function as it is also

commonly used in SCA research, and we had not yet discovered the research pointing

to negative log likelihood (NLL) as the better loss function [2]. Adam is chosen as

the model optimizer and softmax as the activation function for the final dense layers.

Upon pivoting to research on attacking the Xilinx FPGA, the network architec-

ture changed slightly. The five convolutional block architecture of increasing size is

retained with most of the same parameters, kernel size of 11, pool size of 2 and stride

of 2, however a leaky ReLU activation function is implemented at each layer. The

11https://www.tensorflow.org/api docs/python/tf/keras/layers/Conv1D
12https://www.tensorflow.org/api docs/python/tf/keras/layers/AveragePooling1D
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built-in Tensorflow LeakyReLU activation function13 is again used, as opposed to the

normal ReLU activation function, to allow negative values to impact training, instead

of removing them entirely as the normal ReLU function does. It would have been

desirable to study the effects of using the LeakyReLU activation function versus the

normal ReLU function, however there was not enough time to test this hypothesis.

Following the convolutional blocks, the output data is flattened and sent as input

into two dense layers consisting of 512 neurons each. The filter sizes for this phase

of research are increased due to the decrease in the input layer size. The size of the

Dense layer is also increased, again this is due to the decrease in size of the input

layer which decreases the overall parameter count and enables a larger network with-

out the fear of overfitting. The output layer is the same as the output layer from the

previous research. The output needed to consist of a one-hot encoded vector where

the hot value represented the expected label value. Figures 10 and 11 display the

architectures with the differences noted.

13https://www.tensorflow.org/api docs/python/tf/keras/layers/LeakyReLU
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Figure 10: CNN Architecture used on the XMEGA microcontroller dataset. The
network consists of five convolutional blocks, each with a convolutional layer, a batch
normalization function, an activation function, and an average pooling function. The
output of the final block is flattened and then used as input to two dense classification
layers and the final layer is a one-hot encoded vector of length 256, corresponding to
the 256 possible values of an individual key byte. Categorical Crossentropy is used
as the loss function and Softmax is used as a final layer activation function.
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Figure 11: CNN Architecture used on the Xilinx FPGA dataset. The network consists
of five convolutional blocks, each with a convolutional layer, a batch normalization
function, an activation function, and an average pooling function. The output of the
final block is flattened and then used as input to two dense classification layers and
the final layer is a one-hot encoded vector of length 256, corresponding to the 256
possible values of an individual key byte. Negative Log Likelihood is used as the loss
function and Softmax is used as a final layer activation function.
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3.3 Convolutional Neural Network Training

To train the models, Tensorflow is chosen for its neural network training flexibility,

and its ability to use the Keras Functional API. It performs all training within a

Docker container. To build and train the CNNs used for the research, a graphics

processing unit (GPU)-cluster device is fitted with four GPUs. While training models

on the data from the XMEGA microcontroller and performing attacks on the target,

the cluster is set up with four TITAN V GPUs14. Training is performed using the

built-in Tensorflow Mirrored Strategy which enables the use of all four GPUs at once

to train a single model15. This enables much quicker training for the models, however

due to the input size and the scale of the models, even with all of the processing

power from these GPUs, training took roughly four and a half hours per model. This

is one of the driving factors in the number of models used in the statistical analysis

during the initial research on the XMEGA target. We ran out of time to train more

networks. During the second phase of the research, attacking on the Xilinx Kintex-7

FPGA, the GPU cluster is upgraded to have four Quadro A5000 GPUs16. Unlike

with the data collected from the XMEGA microcontroller, a mirrored strategy is not

employed. Instead training occurred with one model per GPU, which enabled training

of up to four models at once.

After training a few models initially, it was observed that the heatmaps did not

always reveal a similar pattern. One hypothesis is that this may be a result of

the stochastic initialization of weights and order of input data when using CNNs.

A number of models are then trained in order to better identify the ideal leakage

location using statistical analysis of the performance of the many models. While

training models on the XMEGA microcontroller data, 10 models are trained as a

14https://www.nvidia.com/en-us/titan/titan-v/
15https://www.tensorflow.org/api docs/python/tf/distribute/MirroredStrategy
16https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
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result of time constraints. Training on data captured from the Xilinx FPGA includes

40 models to get a better idea of the statistical distribution of the leakage at each

collection point.

During training on the XMEGA dataset, a batch size of 200 is used, and during the

training on the FPGA dataset, a batch size of 100 is used. The batch size is lowered

in the second phase of training because training is much faster due to the increase

in computing power from the newer GPUs and the decrease in model size. Smaller

batch sizes help to increase the ability for a model to generalize about the input

data. To build the batches, rather than relying on the built-in ability of Tensorflow

to randomly assign traces to batches, a custom generator is created, which normalizes

the input data and turns the integer labels into a categorical one-hot encoded vector

using the to categorical function within the utilities library of Keras.

Training on the XMEGA dataset included a learning rate of 0.00001 over 50

epochs. Training on the Xilinx FPGA target used a learning rate of 0.000003 over

100 epochs.

3.4 Model Testing and Heatmap Analysis

The 40 trained models are then tested against the 3,000 testing traces gathered

at each of the leakage collection points. The tests are accomplished by loading the

trained models into Tensorflow using a generator similar to the one described in

Section 3.2, the data is loaded, the integer labels are transformed into a one-hot

encoded vector, and the signal data is normalized, after which model.evaluate() is

executed using the generator. The results for each test point for a given model are

saved in an h5 file the entire test results are saved in an array format according to

the number of testing points in the grid, e.g. 5× 5 for the XMEGA tests and 8× 10

for the Xilinx tests.
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The heatmap analysis for both research phases is relatively similar. The main

difference being the number of models used for the analysis. The heatmaps are gen-

erated first by running the 3,000 testing traces, mentioned in Sections 3.1.1 and 3.1.2

through the trained models using the tensorflow model.evaluate() function. Once the

accuracies are returned, the 10 and 40 accuracies for each of the collected points for

the XMEGA and Xilinx FPGA respectively are averaged and plotted using python’s

plotly Version 2.17 17. This provides a visual representation to identify and areas that

present with higher averaged accuracies.

The ChipWhisperer XMEGA had only 10 trained models, weakening the statisti-

cal analysis as compared with the testing on the Xilinx FPGA, which used 40 trained

models. Unfortunately, the time required to train a model with an input size of

30,000 is too long and as a result only 10 models are trained. Despite this, two points

were discovered to be statistically significant from one another when discussing test

performance. Further the intent of using multiple models, averaging the accuracies,

and using statistical significance, is to remove any noise that can cause issues with

classification and reduce the variance that may be created as a result of the stochastic

nature of neural networks.

Heatmaps can be created by executing each of the trained models against each of

the 25 and 80 testing trace datasets collected on the XMEGA microcontroller and the

Xilinx FPGA respectively. Accuracy metrics for each specific pairing could then be

obtained by processing each of the traces in the model and calculating the accuracy

for a given model and a given dataset.

Confidence intervals are calculated to determine if the average accuracies returned

for all points from all trained models are distinguishable from one another. This may

allow rejection of the null hypothesis in which the location of EM collection is not

17https://github.com/plotly/plotly.py
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important, indicating that all points leak similarly. To determine if the resulst of data

collected from one point is statistically significant from another point of collection,

confidence intervals are calculated on the returned accuracies for each point over the

trained models, using the t-distribution table and a confidence level of 95%18. If the

entirety of the two-tail confidence intervals for a given confidence level do not overlap,

then the two datasets are considered statistically significant from one another which

provides enough information to either accept or reject the null hypothesis. Confidence

intervals are calculated according the following equation, where CI is the confidence

interval, x̄ is the sample mean, n is the number of samples tα/2 is the confidence level

value, provided by the t-distribution table by using the degrees of freedom (n-1 ) and

the confidence value (in this case, 95%), and s is the standard deviation of the sample

population:

CI = x̄± tα/2s/
√
n (9)

The t-test statistic is used to determine whether the null hypothesis can be re-

jected in favor of the alternate hypothesis. The t-test uses a confidence value, t1−α,n

retrieved by using the table referenced above to identify a confidence threshold. Above

this threshold the t-value can be calculated for the desired point using the following

equation, where x̄ is the population mean, µ0 is the sample mean, S is the population

standard deviation, and n is the degrees of freedom, or the number of observations

minus 1:

t0 =
x̄− µ0

S√
n

(10)

The null hypothesis can be rejected if t0 > t1−α,n.

18Table can be found in Design and Analysis of Experiments by Douglas C. Montgomery
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3.5 Side Channel Attack Methodology

The attack methodology between the two experiments is very similar. Two new

neural networks are trained, one at the identified ”stronger leakage” point and one

at the point identified as being statistically significant from the ”stronger leakage”

point. The same architecture is used to identify the points, with an increase in the

number of epochs by a factor of two. Following training of these two networks, the

attacks are executed. However during the research attacking the FPGA, the point

identified with its average accuracy being the median of all average accuracies also

has a model trained on its leakage data and is also attacked.

3.6 XMEGA SCA Attack

The attack began with training two models, one with the 30,000 collected traces

from the point identified as having statistically better leakage, and one with the

30,000 traces collected from the point identified as having statistically worse leakage.

As mentioned in Section 3.5 the epoch count is doubled while training in order to

increase the total accuracy of the model. This results in an epoch count of 100.

Execution of the attack includes sending the 3,000 attack traces, all with the same

key, through the two point-wise trained models in a randomized order. The order of

the traces is randomized in each attack to prevent a situation where attacks always

succeed or fail based upon the predetermined order of the traces used in the attack.

Each trace is then run through the trained model using Tensorflow’s model.predict()

function. The output of this function is a list of probabilities corresponding to the

likelihood of different key byte values being the true key byte.

Once the model has output a list of the probabilities of each of the key byte values,

the probabilities are used in Bayesian analysis until the correct key byte is determined

to be the most probable result. Bayesian analysis is a process by which the predicted
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output of a system is updated as more information is presented to the system. In this

case, this increase of information is the addition of more leakage traces. The Bayesian

process only works if the individual leakage events, traces, are independent.

Once the predictions are created, the traces are randomized and split into 10

groups of 300 traces, enabling 10 attacks, as opposed to one. Cursory analysis de-

termined that if the model did not converge on the correct key byte after 300 traces,

it would not converge at all. In each of these attacks, an individual traces is used

to determine the ranking of each of the key byte possibilities. In order to perform

the Bayesian part of the analysis, the logarithm of each of the probabilities is taken.

If the probability of a key byte candidate is 0, then the logarithm of a number near

zero (1e−76) is substituted instead, as the logarithm of 0 is undefined. The log of

the probabilities is then added to the summation of the logged probabilities of all

previous traces. The array of key byte candidates is sorted and a result is returned.

If at the end of the 300 trace attack, the predicted key byte is the correct key byte,

then the attack is considered successful.

3.7 Xilinx FPGA SCA Attack

The attacks against the Xilinx FPGA are similar to the attack against the Atmel

XMEGA. Two models are trained on leakage data collected from the points identified

as having statistically better and statistically worse leakage. However, unlike with

the Atmel XMEGA, the number of traces used at each of the points is deliberately

increased to 65,000, and an additional model is trained on leakage data collected from

the point with it’s mean leakage being in the median of all eighty points. With 65,000

traces 99% of the search space is observable for a single key byte and plaintext byte

combination. As the values for each byte can be from 0 to 256, that yields a search

space of 256× 256 or 65, 536. This increase could have been chosen as 216 (65,536),
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but was not, just to keep it as a round number that would more easily fit into batches.

Once again, as mentioned in Section 3.5 the number of epochs used in training the

large point identification model is doubled. In other words, 200 epochs are used to

train these three models to achieve higher accuracies and increase the effectiveness of

the attacks.

With three trained models, all three models undergo the same attack process.

The process begins with randomly separating the 3,000 attack traces into 10 sets of

300 traces. This is to avoid a situation where the order of the traces being fed into

the model affects the likelihood of success. The 300 attack traces, again generated

with random plaintext and constant key, are presented to the trained models using

the Tensorflow library’s model.predict() function. This function outputs an array of

size 256, representing the predicted probability of each index value being the true key

byte according to the model and the given input trace.

Bayesian analysis is then performed on these probability arrays, leading to maxi-

mum likelihood guessing for each key byte value, given more information over time.

Each time a trace is provided for analysis, the logarithm of the probabilities of each

of the key byte values is added to the summed logarithms of the key byte candidate

from previous traces. These summed log probabilities are then sorted to provide the

most likely key byte candidate. Note, if the probability of a key byte candidate is

zero, the logarithm of a number very close to zero (1e−76) is taken instead, thereby

preventing an error. The sorted array is then returned. If, after all 300 attack traces

are fed through the Bayesian process, the correct key byte is returned as the most

likely key byte candidate, then the attack is considered a success.
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3.8 Intermediate Research Methodology

The first round of research using the Atmel XMEGA was accepted for publication

in International Conference on Cyber Warfare and Security (ICCWS) detailing the

results. The success rates and accuracy metrics were slightly lower than desired.

Given more time, the CNN design could have been altered further to see if better

results could have been achieved. Prior to beginning the research on the Xilinx

Kintex-7 FPGA, more CNNs were trained using different parameters and lower trace

counts to determine if the results would suffer given 10,000 traces per point as opposed

to 27,000 traces per point. The model test accuracies produced by models trained

with fewer traces were not noticeably different than the test accuracies produced

by the models trained with more traces. This enabled further model training time

reduction, from four hours per model to 30 minutes per model. This further enabled

training more models to achieve better statistical results during the research using

the Xilinx FPGA.
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IV. Results and Analysis

Preamble

This chapter discusses the results from both phases of research, including the

neural network training, the heatmap analyses, and the results of the attacks based

upon the heatmap analysis. Of note, our neural networks have an output layer size

of 256, coinciding with the 256 possible classes. The likelihood of randomly guessing

the correct class, or key byte is 1
256

, or 0.3906%. This is why you will see accuracy

values that seem low.

4.1 Atmel XMEGA Training Results

The training accuracies of each of the ten trained models is displayed in Table 1.

The average of all 10 models was 0.862% with a variance of 2.265e−8. Figures 12

and 13 display the losses and accuracies of each model respectively. All 10 plots are

superimposed over one another. More training may have been required, as the loss

curve does not appear to level off on any of the plots.

Table 1: Final Training Accuracy for each of the 40 CNN Models Trained on the
XMEGA microcontroller leakage data

Model Accuracy (%)
1 0.854
2 0.867
3 0.863
4 0.869
5 0.858
6 0.860
7 0.874
8 0.859
9 0.829
10 0.891
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Figure 12: Loss plots for each of the 10 CNN models trained over 50 epochs on the
leakage data from the XMEGA microcontroller superimposed over one another

Figure 13: Loss plots for each of the 40 CNN models trained over 100 epochs on the
leakage data from the XMEGA microcontroller superimposed over one another
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4.2 Xilinx Kintex-7 FPGA Training Results

The training accuracies of each of the forty trained models is displayed in Table 2.

The average of all 40 models was 0.752% with a variance of 1.45e−7. Figures 14

and 15 display the losses and accuracies of each model respectively. All 40 plots are

superimposed over one another. More training may again be needed as the loss curve

here also does not appear to level off.

Table 2: Final Training Accuracy for each of the 40 CNN Models Trained on the
Xilinx Kintex-7 FPGA leakage data
Model Accuracy (%) Model Accuracy (%) Model Accuracy (%) Model Accuracy (%)

1 0.587 11 0.743 21 0.73 31 0.756
2 0.72 12 0.851 22 0.75 32 0.761
3 0.777 13 0.767 23 0.786 33 0.729
4 0.718 14 0.769 24 0.738 34 0.732
5 0.783 15 0.727 25 0.774 35 0.715
6 0.778 16 0.758 26 0.797 36 0.725
7 0.792 17 0.783 27 0.736 37 0.742
8 0.74 18 0.728 28 0.721 38 0.773
9 0.76 19 0.784 29 0.76 39 0.735
10 0.747 20 0.765 30 0.757 40 0.784
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Figure 14: Loss plots for each of the 40 CNN models trained over 100 epochs on the
leakage data from the Xilinx Kintex-7 FPGA superimposed over one another

Figure 15: Accuracy plots for each of the 40 CNN models trained over 100 epochs on
the leakage data from the Xilinx Kintex-7 FPGA superimposed over one another
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4.3 Atmel XMEGA Microcontroller Heatmap Results

With ten neural network models trained on the collected electromagnetic (EM)

data, models were tested for accuracy against the 3,000 traces set aside collected

from each point. These accuracies for each of the 10 models were then averaged and

displayed in the heatmap in Figure 16.

Note that point 6 has the highest average accuracy and point 10 has the lowest

average accuracy. Their accuracies were 0.45% and 0.33% respectively. Recall that

the likelihood of a random guess of the key byte being correct is 0.39%. However, these

numbers alone aren’t helpful; the statistical significance must also be determined, that

is that they did not occur by chance. When using the t distribution to determine if the

results are statistically significant, points 6 and 10 were indeed statistically significant

from one another. This is demonstrated in Figure 17, by considering at the confidence

intervals of points 6 and 10, and observing no overlap. Additionally, points 8 and 12

have confidence intervals that do not overlap with point 10, thus demonstrating that

location does indeed matter when collecting leakage data for side-channel purposes.

As displayed in Figure 17 no single point has it’s entire confidence interval above the

random guess line. This make it impossible to determine with 95% confidence that

any of the points are guaranteed to do better than random guessing given a model

trained on data gathered from all 25 collection points. However this does not imply

that a model trained on data collected only from a single point will not be guaranteed

to perform better than random chance. One interesting finding, after collecting all

250 accuracies, is that the overall average accuracy of all data points over all models

was 0.391% with a variance of 1.391e−6. This average corresponds to the likelihood

of success from randomly guessing the key byte. This test accuracy comes despite

the average final training accuracy of the models being 0.862% with a variance of

2.265e−8. This may point to overfitting, but another hypothesis is that this may
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Figure 16: Heat map using averaged accuracies from each of the 10 trained models
reflecting the average accuracy at each of the 25 collection points above the Atmel
XMEGA Microcontroller

come as a result of the model learning generalized information from the points that

have higher average accuracies during testing, and simply memorizing information

from the point that have average accuracies lower than the likelihood of randomly

guessing. However there is no data to support this claim, which may be a meaningful

research objective to explore in future research.

To test the null hypothesis and determine if the accuracies returned by points 6

and 10 were statistically different, a right-tailed t-analysis is performed with an α

of 0.05, 9 degrees of freedom, and means of 0.45% for point 6 and 0.33% for point

10. Using the critical value table introduced in Section 3.4 along with this alpha

and degrees of freedom, results in a critical value of 1.833. Using the right-tailed

t-test results in a t value for this test of 2.828 which is higher than the critical value.

Therefore, the null hypothesis, that position does not matter when collecting EM

Side-Channel Analysis (SCA) leakage data, is rejected.
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Figure 17: Confidence intervals for the accuracies at each of the 25 collection points.
The horizontal line displays the likelihood of success when randomly guessing.

4.4 Atmel XMEGA Microcontroller Attack Results

Determining average test success does not adequately demonstrate the success

of a methodology to identify ideal leakage collection points. SCA attacks are also

required to determine if the points with higher test accuracy on the larger model

indeed retrieve the key byte more successfully than the points identified as having

lower test accuracy. To this end, the models trained on data collected from points 6,

identified as having more effective leakage, and 10, identified as having less effective

leakage did not perform the same when used in SCA attacks. After training these

models, the model trained on data from point 6, henceforth referred to as model 6,

had a final training accuracy of 2.98%. The model trained on data from point 10,

henceforth referred to as model 10, had a final training accuracy of 2.28%. Figure 18

displays the loss over each epoch of model 6, and Figure 19 displays the accuracy over

each epoch. Figure 20 displays loss over time of model 10, and Figure 21 displays

the corresponding accuracy over time for model 10. These two trained models were
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then tested using the same 3,000 trace test data used to determine the best and worst

points for the large whole microcontroller model. The test results had model 6 return

an accuracy of 3.56% and model 10 return an accuracy of 2.40%.

After running a few attacks, it was observed that if the model was unable to suc-

cessfully retrieve the key byte prior to the 300th trace, it was never able to retrieve

the correct key byte at all. Thus, the attacks were modified to randomly separate

the 3,000 collected attack traces into 10 sets of 300 traces, with 10 attacks executed

simultaneously. The intent was not just to see which model could return its first

successful attack, or which successful attack returned the key byte in fewer traces.

Rather, the intent was to increase overall understanding of the model accuracy when

running attacks with a variety of traces, input in random order. Thus, attacks con-

tinued until each model had executed 30 successful attacks. Model 6 was able to

garner 30 successes in 194 attacks, and model 10 was able to garner 30 successes in

549 attacks. This translates to a success rate of 15.49% for model 6 and 5.46% for

model 10. Further, this translates to the model trained on data pulled from point

6 successfully retrieving a key byte 2.83 times more often than the model trained at

point 10. From this, and from the data demonstrating that points 6 and 10 performed

statistically significantly from one another when data was fed into our large model,

it is reasonable to conclude that the location of EM collection does matter when

performing SCA attacks on the Atmel XMEGA Microcontroller.
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Figure 18: Loss plot for the model trained on the leakage data pulled from point
number 6. Note that the loss does not appear to level off toward the last epochs,
indicating that a lower loss could have been achieved with more epochs.

Figure 19: Accuracy plot for the model trained on the leakage data pulled from point
number 6. Note that the loss does not appear to level off toward the last epochs,
indicating that a more accuracy model could have been achieved with more epochs
given enough time.
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Figure 20: Loss plot for the model trained on the leakage data pulled from point
number 10. Note that the loss does not appear to level off toward the last epochs,
indicating that a lower loss could have been achieved with more epochs.

Figure 21: Accuracy plot for the model trained on the leakage data pulled from point
number 10. Note that the loss does not appear to level off toward the last epochs,
indicating that a higher accuracy model could have been achieved with more epochs
given enough time.
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4.5 Xilinx Kintex-7 FPGA Heatmap Results

After training 40 Convolutional Neural Network (CNN) models on the accumu-

lated data from all 80 leakage collection locations, each was tested on the test data

set aside previously, and discussed in Section 3.1.2. These 80 data sets consisted of

3,000 traces, and the average accuracy for each point across all 40 models is displayed

in Figure 22.

While it is not immediately obvious from this heatmap, point 61 has the highest

average accuracy and point 25 has the lowest average accuracy. Additionally point

40 has an average accuracy that is the median average accuracy of all 80 collection

points. The average accuracies for each of these three points is 0.339%, 0.389%, and

0.427% for points 25, 40, and 61 respectively. However, as mentioned in Section 4.3,

these numbers alone are not particularly significant, as the statistical significance of

the averages and the accuracy data from each point have not yet been determined.

The t-distribution was used to determine whether the results given by the models

and the tests had any statistical significance; and the results conclude that they were

indeed statistically significant. As seen in Figure 23, there are several points that are

statistically significant from point 25; 6 points in fact. Points 10, 53, 61, 70, 72, and

76 all performed statistically better than point 25. Point 61 had the highest average,

and point 76 had its entire confidence interval perform better than the likelihood of

success when randomly guessing, which once again is 0.39%. Despite this point 61

was still chosen as the attack point, as it offered the highest demonstrated average

accuracy.

As was the case with the test results for the Atmel XMEGA microcontroller,

after collecting all 3,200 accuracies for all 80 points across all 40 models, the overall

average accuracy for all 3,200 data points was 0.385% with a variance of 1.244e−6.

This average accuracy fell once again right around the percent likelihood of randomly
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Figure 22: Heat map using averaged accuracies from each of the 40 trained models
reflecting the average accuracy at each of the 80 collection points above the Xilinx
Kintex-7 FPGA
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guessing the correct key byte. This average testing accuracy is reported despite the

average accuracy of each of the 40 trained models at the end of training being 0.752%.

Again this may point to overfitting, but this is likely a result of the model learning

generalized information about the signals that enable classification from the traces

at the points that perform well during testing, and memorizing the signal data at

the points the perform poorly when tested. This generalizability and memorization

combine to result in an overall testing accuracy of 0.385%. However as stated before,

there is no data to back up this hypothesis and this is left as a potential research

objective in the future.

To test the null hypothesis further and to determine if point 61 or point 76 are

statistically different from the population mean, a right-tailed t-test analysis was

performed with an α of 0.05, 39 degrees of freedom, and a population mean of 0.385%.

The sample mean of point 61 was 0.428%. Using the critical value table introduced

in Section 3.4 leads to a critical value of 1.685. Using the right-tailed t-test results

in a t value of 2.551 which is higher than the critical value. Therefore the null

hypothesis, that position does not matter when collecting EM SCA leakage data, is

rejected. Further, when comparing to points, point 25 and point 61, a two-sample

t-test reveals a p of 0.001, which is smaller than the alpha of 0.05 which again leads

to rejecting the null hypothesis that the two points have the same mean. Again this

points to position being important when collecting EM leakage data. If instead, a

two-sample t-test is performed on point 61 and point 40, where 40 is the median point

with respect to its average accuracy over 40 trained models, this leads to a p of 0.1

which is too high to reject the null hypothesis that points 40 and 61 have different

means. The obvious conclusion is that some points perform better than one another

definitively, but many other points do not.
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Figure 23: Confidence intervals for the accuracies at each of the 80 collection points
above the Xilinx Kintex-7 FPGA. The horizontal line displays the likelihood of success
when randomly guessing.
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Figure 24: Confidence intervals for the accuracies for the lower performing 40 points
above the Xilinx Kintex-7 FPGA. The horizontal line displays the likelihood of success
when randomly guessing.
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Figure 25: Confidence intervals for the accuracies for the upper performing 40 points
above the Xilinx Kintex-7 FPGA. The horizontal line displays the likelihood of success
when randomly guessing.
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4.6 Xilinx Kintex-7 FPGA Attack Results

Despite having test successes that demonstrate certain points do leak a stronger

signal, the average test successes do not adequately demonstrate the effectiveness of

our framework in identifying ideal attack locations. Actual attacks are required to

determine if the points with higher or lower test accuracy perform similarly when

under attack. That is, do the points with higher test accuracy retrieve the key

byte correctly more often? To do so, models are trained on data pulled from the

three identified points. Point 25, identified as having the lowest accuracy, point 40,

identified as having the median average accuracy across all 80 collection points, and

point 61, identified as having the highest average accuracy. Once these models had

been trained on the 65,000 collected traces for each point, the model trained at point

25, henceforth referred to as model 25, had a final training accuracy of 5.82%. The

model trained at point 40, henceforth referred to as model 40, had a final training

accuracy of 5.05%. And the model trained at point 61, henceforth referred to as model

61, had a final training accuracy of 5.13%. Figure 26 displays the loss over each epoch

of model 25, and Figure 27 displays the accuracy over each epoch. Figure 28 displays

loss over time of model 40, and Figure 29 displays the corresponding accuracy over

time for model 40. Figure 30 displays the loss over each epoch of model 61, and

Figure 31 displays the accuracy over each epoch. Each trained model was then tested

with the same test data used to determine the best and worst points on the model

trained on data from all 80 points, and the test results had model 25 return an

accuracy of 0.27%, model 40 return an accuracy of 0.53%, and model 61 return an

accuracy of 0.57%.

When executing these attacks, it was observed that by 300th trace, the model

converged on a singular guess. Armed with this observation, the attacks were then

modified to randomly separate the 3,000 collected attack traces into 10 sets of 300
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Figure 26: Loss plot for the model trained on the leakage data pulled from point
number 25. Note that the loss does not appear to level off toward the last epochs,
indicating that a lower loss could have been achieved with more epochs.

Figure 27: Accuracy plot for the model trained on the leakage data pulled from point
number 25. Note that the loss does not appear to level off toward the last epochs,
indicating that a more accuracy model could have been achieved with more epochs
given enough time.
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Figure 28: Loss plot for the model trained on the leakage data pulled from point
number 40. Note that the loss does not appear to level off toward the last epochs,
indicating that a lower loss could have been achieved with more epochs.

Figure 29: Accuracy plot for the model trained on the leakage data pulled from point
number 40. Note that the loss does not appear to level off toward the last epochs,
indicating that a higher accuracy model could have been achieved with more epochs
given enough time.
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Figure 30: Loss plot for the model trained on the leakage data pulled from point
number 61. Note that the loss does not appear to level off toward the last epochs,
indicating that a lower loss could have been achieved with more epochs.

Figure 31: Accuracy plot for the model trained on the leakage data pulled from point
number 61. Note that the loss does not appear to level off toward the last epochs,
indicating that a more accuracy model could have been achieved with more epochs
given enough time.
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traces and thus execute 10 attacks simultaneously. An attack was considered success-

ful if after all 300 traces were input, the model had converged on the correct key byte.

The intent is not just to see which model could return a successful attack first, or the

fewest number of traces required by each model for a successful attack. Instead was

extract understanding of each of the models’ abilities to run successful attacks when

executing attacks with traces input in random order. As a result attacks executed

until each model had executed 40 successful attacks. Model 25 was able to execute

40 successful attacks after 419 attacks, model 40 was able to execute 40 successful

attacks after 347 attacks, and model 61 was able to execute 40 successful attacks after

only 314 attacks. This translates to a success rate of 9.546% for model 25, 11.527%

for model 40, and 12.739% for model 61. Further, the number of traces required for

the models to converge on the correct key byte for each model is 78.025 for model 25,

84.2 for model 40, and 54.925 for model 61. This demonstrates that model 61 suc-

cessfully retrieves the key byte more often and more quickly during individual attacks

than both the median point and the worst point. From this it is clear that physical

location of EM collection does matter when performing SCA attacks on the Xilinx

Kintex-7 field programmable gate array (FPGA) running a hardware implementation

of the Advanced Encryption Standard (AES) encryption scheme which encrypts each

byte of the plaintext simultaneously.

4.7 Conclusion

Both the research focusing on the XMEGA microcontroller and the research focus-

ing on the Xilinx FPGA device demonstrated that a heatmap can be created and used

to determine an attack location that speeds up key retrieval times. The framework

used CNNs to create the heatmap and to perform the attacks. The CNN architecture

used could have certainly been improved as the final results were not astounding,
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however these results do demonstrate that the hypothesis holds true; a device can

be analyzed and a heatmap can be generated using a CNN trained on leakage data.

Further that map can then be used to identify ideal attack locations.
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V. Conclusions

In this research, a framework was introduced to map the surface of a comput-

ing device which can be used to identify ideal Side-Channel Analysis (SCA) attack

points. This framework used convolutional neural networks trained on trace data

captured above the target devices. Using this framework, this research has been able

to demonstrate that neural networks can be used to develop a heatmap that can

identify points with a leaked signal more strongly correlated to the secret information

being processed by the device in question. It further demonstrates that certain points

over two different ChipWhisperer platforms, the Atmel XMEGA microcontroller and

a more advanced Xilinx Kintex-7 FPGA, emit stronger SCA leakage and that this

leakage can be mapped using a tool such as a Convolutional Neural Network (CNN).

Further the maps created using this method can be used by an attacker to iden-

tify points from which collecting leakage data and conducting an attack can enable

quicker and more successful key recovery. However, even the points identified as hav-

ing weaker leakage were able to perform successful attacks. This points to a need for

an increase in the effectiveness of SCA countermeasures.

5.1 Future Work

This research demonstrated the ability to map out ideal locations for collecting side

channel leakage using a neural network. However as referenced in Section 2.7, another

method for identifying an ideal leakage collection location has already been created in

the SCNIFFER framework [26]. Further, despite demonstrating that leakage collected

from different points perform differently when tested against a model trained on

leakage data collected from all points, the average success rate for all points when

tested for a given model always hovered right around the likelihood of randomly
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guessing the correct key. Along this same line of thought, even points that ended

with high average accuracies over all models, sometimes performed incredibly poorly

on a single model. This may be due to the stochastic nature of CNNs, and is why

multiple models were constructed to get a better idea of the distribution. This line

of effort should be explored in future work.

This framework was only tested on the first byte of a secret key. However, as the

field programmable gate array (FPGA) encrypts all bytes at once, there is a potential

for each byte to be encrypted in such a way that the ideal leakage collection point

may be different. As FPGA devices can be modified using constraints included in the

bitstream to change the bank locations for certain operations, it may be possible to

alter the device in such a way that the ideal leakage collection location is different for

each FPGA depending upon the bitstream used.

Additionally, while the samples in each trace correspond to the entirety of the

first round of Advanced Encryption Standard (AES) encryption, it is not known

whether that full time period is necessary to retrieve the secret key. As mentioned

in Section 2.2 an attacker must determine which parts of a trace are important in

retrieving the secret key. In this case, a neural network was able to perform this

task, however it is not clear what exactly the neural network focused on. Perhaps the

samples in both experiments could have been trimmed if it were possible to identify

the exact window of time that the neural network learned from. Perhaps of the 30,000

and 2,000 samples used in each experiment, only 5,000 and 400 respectively actually

mattered. If this is the case then research focusing on identifying the location of the

information of importance in the actual trace could be beneficial.

Based upon all of the above, the following are suggestions for future work regarding

this field of research:

• A comparison between the framework presented in this thesis to map out the
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ideal leakage locations against the SCNIFFER framework.

• A deep dive into the reason that a model trained on data from all collection

points with a training accuracy above that of random chance, performing exactly

at random chance in test cases.

• Why average top performing points may perform poorly on a given trained

model.

• Do different bytes cause different leakage patterns that would result in a different

leakage heat map, and thus can an attacker potentially collect from 8 points

simultaneously to reduce the time needed to retrieve the entire key?

• Does modifying an FPGA with constraints cause the heat map to change? Or

is the leaked signal based more upon physical pin locations than logic operation

locations?

• A sensitivity study to determine the location of the critical information related

to the secret key in each trace or in each round of encryption. This could speed

up training as the input size drops, or allow for models with a larger set of

hyper-parameters as the parameter count would not balloon up as fast with a

smaller input size.

5.2 Conclusion

The purpose of SCA attacks is to recover secret information from a target device.

This research looked to improve this attack process by providing a framework that can

be used to map a given device to identify ideal points for collecting electromagnetic

(EM) leakage data using a near-field EM probe. The spatial resolution of EM probes

enable such a mapping. This framework used the relative performance of a CNN
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model trained to detect leakage on data collected from the target device to create a

leakage heatmap. This heatmap has been demonstrated as successful in enabling an

attacker to identify ideal attack points from which to collect leakage on the target de-

vice. The effectiveness of this framework is demonstrated both on the ChipWhisperer

Lite Atmel XMEGA microcontroller, and the Xilinx Kintex-7 FPGA. This framework

can enable an attacker to see an increase in attack effectiveness of 283% and 33.4%

on the XMEGA microcontroller and the Xilinx FPGA targets respectively. This in-

crease in effectiveness comes as attackers attack points corresponding to the highest

accuracy as opposed to attacking the point with the lowest accuracy performance of

the CNN models.
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Appendix A. FPGA Bitstream Generation Code

This is the code originally created with Vivado to generate the bitstreams required

to perform the AES encryption on the Xilinx Kintex-7 FPGA device:

#*********************************************************************

# Vivado (TM) v2019.2 (64-bit)

#

# cw310-aes128.tcl: Tcl script for re-creating project ’cw310-aes128’

#

# Generated by Vivado on Wed Nov 17 15:33:10 -0500 2021

# Modified by Matthew Dallmeyer - AFIT

# IP Build 2700528 on Thu Nov 7 00:09:20 MST 2019

#

# This file contains the Vivado Tcl commands for re-creating the

# project to the state when this script was generated. In order to

# re-create the project, please source this file in the Vivado Tcl

# Shell.

#

# * Note that the runs in the created project will be configured the

# same way as the original project, however they will not be launched

# automatically. To regenerate the run results please launch the

# synthesis/implementation runs as needed.

#

#*********************************************************************

# Set the reference directory for source file relative paths (by

# default the value is script directory path)
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set origin_dir "."

# Set the project name

set _xil_proj_name_ "cw310-aes128"

variable script_file

set script_file "cw310-aes128.tcl"

# Set the directory paths

set orig_proj_dir "[file normalize "$origin_dir/../vivado"]"

set src_dir [file normalize "${origin_dir}/../src"]

set constr_dir [file normalize "${origin_dir}/../constraints"]

set sim_dir [file normalize "${origin_dir}/../sim"]

set fpga_part "xc7k410tfbg676-2"

# Create project

create_project ${_xil_proj_name_} $orig_proj_dir -part $fpga_part

-force

# Set the directory path for the new project

set proj_dir [get_property directory [current_project]]

# Set project properties

set obj [current_project]

set_property -name "default_lib" -value "xil_defaultlib" -objects $obj
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set_property -name "enable_vhdl_2008" -value "1" -objects $obj

set_property -name "ip_cache_permissions" -value "read write" -objects

$obj

set_property -name "ip_output_repo" -value

"$proj_dir/${_xil_proj_name_}.cache/ip" -objects $obj

set_property -name "mem.enable_memory_map_generation" -value "1"

-objects $obj

set_property -name "part" -value $fpga_part -objects $obj

set_property -name "sim.central_dir" -value

"$proj_dir/${_xil_proj_name_}.ip_user_files" -objects $obj

set_property -name "sim.ip.auto_export_scripts" -value "1" -objects $obj

set_property -name "simulator_language" -value "Mixed" -objects $obj

# Create ’sources_1’ fileset (if not found)

if {[string equal [get_filesets -quiet sources_1] ""]} {

create_fileset -srcset sources_1

}

# Set ’sources_1’ fileset object

set obj [get_filesets sources_1]

add_files -fileset $obj $src_dir

# IP

create_ip -name xadc_wiz -vendor xilinx.com -library ip -module_name xadc_wiz_0

set obj [get_ips xadc_wiz_0]

set_property -name CONFIG.XADC_STARUP_SELECTION -value "channel_sequencer"
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-objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_CALIBRATION -value "false" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_TEMPERATURE -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_TEMPERATURE -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VCCINT -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VCCINT -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VCCAUX -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VCCAUX -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VP_VN -value "false" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VBRAM -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VBRAM -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VAUXP0_VAUXN0 -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VAUXP0_VAUXN0 -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VAUXP1_VAUXN1 -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VAUXP1_VAUXN1 -value "true" -objects $obj

set_property -name CONFIG.CHANNEL_ENABLE_VAUXP8_VAUXN8 -value "true" -objects $obj

set_property -name CONFIG.AVERAGE_ENABLE_VAUXP8_VAUXN8 -value "true" -objects $obj

set_property -name CONFIG.ENABLE_VBRAM_ALARM -value "true" -objects $obj

set_property -name CONFIG.SEQUENCER_MODE -value "Continuous" -objects $obj

set_property -name CONFIG.EXTERNAL_MUX_CHANNEL -value "VP_VN" -objects $obj

set_property -name CONFIG.SINGLE_CHANNEL_SELECTION -value "TEMPERATURE"

-objects $obj

# Set ’sources_1’ fileset properties

set obj [get_filesets sources_1]

set_property -name "top" -value "cw310_top" -objects $obj
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set_property -name "top_auto_set" -value "0" -objects $obj

# Create ’constrs_1’ fileset (if not found)

if {[string equal [get_filesets -quiet constrs_1] ""]} {

create_fileset -constrset constrs_1

}

# Set ’constrs_1’ fileset object

set obj [get_filesets constrs_1]

add_files -fileset $obj $constr_dir

# Create ’sim_1’ fileset (if not found)

if {[string equal [get_filesets -quiet sim_1] ""]} {

create_fileset -simset sim_1

}

# Set ’sim_1’ fileset object

set obj [get_filesets sim_1]

add_files -fileset $obj $sim_dir

# Set ’sim_1’ fileset properties

set obj [get_filesets sim_1]

set_property -name "top" -value "cw310_top" -objects $obj

set_property -name "top_lib" -value "xil_defaultlib" -objects $obj
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# Create ’synth_1’ run (if not found)

if {[string equal [get_runs -quiet synth_1] ""]} {

create_run -name synth_1 -part $fpga_part -flow {Vivado Synthesis

2019} -strategy "Vivado Synthesis Defaults"

-report_strategy {No Reports} -constrset constrs_1

} else {

set_property strategy "Vivado Synthesis Defaults" [get_runs synth_1]

set_property flow "Vivado Synthesis 2019" [get_runs synth_1]

}

set obj [get_runs synth_1]

set_property set_report_strategy_name 1 $obj

set_property report_strategy {Vivado Synthesis Default Reports} $obj

set_property set_report_strategy_name 0 $obj

set obj [get_runs synth_1]

set_property -name "part" -value $fpga_part -objects $obj

set_property -name "strategy" -value "Vivado Synthesis Defaults" -objects $obj

# set the current synth run

current_run -synthesis [get_runs synth_1]

# Create ’impl_1’ run (if not found)

if {[string equal [get_runs -quiet impl_1] ""]} {

create_run -name impl_1 -part $fpga_part -flow {Vivado Implementation

2019} -strategy "Vivado Implementation Defaults" -report_strategy

{No Reports} -constrset constrs_1 -parent_run synth_1
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} else {

set_property strategy "Vivado Implementation Defaults" [get_runs impl_1]

set_property flow "Vivado Implementation 2019" [get_runs impl_1]

}

set obj [get_runs impl_1]

set_property set_report_strategy_name 1 $obj

set_property report_strategy {Vivado Implementation Default Reports} $obj

set_property set_report_strategy_name 0 $obj

set obj [get_runs impl_1]

set_property -name "part" -value $fpga_part -objects $obj

set_property -name "strategy" -value "Vivado Implementation Defaults" -objects

$obj

set_property -name "steps.phys_opt_design.is_enabled" -value "1" -objects

$obj

set_property -name "steps.write_bitstream.args.readback_file" -value "0" -objects

$obj

set_property -name "steps.write_bitstream.args.verbose" -value "0" -objects

$obj

# set the current impl run

current_run -implementation [get_runs impl_1]

# generate the bitstream

launch_runs impl_1 -to_step write_bitstream -jobs 4
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#generate bin for flash chip

wait_on_run impl_1

write_cfgmem -format bin -interface SPIx1 -size 32 -loadbit "up 0x0

$proj_dir/${_xil_proj_name_}.runs/impl_1/cw310_top.bit"

-file cw310_top.bin -force
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