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Abstract

Small Unmanned Aircraft Systems (sUAS) are an accessible technology that has

become an increasingly large threat to US critical systems. They are small, lightweight,

and challenging to detect, which has allowed sUAS to provide reconnaissance, drop

explosives, and even crash into sensitive targets. This threatening technology de-

mands using fault-tolerant, low-cost, replaceable, and accurate sensing resources,

which counter the ubiquitous nature of sUAS [1]. Therefore, the methods devel-

oped in this thesis detect and track sUAS using accessible sensing resources, such

as cellphones. This research effort stems from an Air Force Research Laboratory

(AFRL) data collection in which sUAS fly over a constellation of cellphones that

record timestamped acoustics data. In the first effort, we develop an acoustics sensor

network-based sUAS detection methodology. It uses an Ensemble Voting Pipeline

(EVP) that fuses time-synchronized, low-fidelity acoustics data from a constellation

of 28 cellphones scattered throughout an airfield to make real-time drone detection

decisions. This effort achieves a detection F1-Score of 0.846 in simulated test scenar-

ios. The pipeline also outperforms the sUAS detection performance of each individual

cellphone within the sensor network, which has an average detection F1-score of 0.582.

In the latter effort, a deep learning model is trained using acoustics data from the

collection to predict sUAS range from a cellphone. A 2-Dimensional Convolutional

Neural Network (2DCNN) predicts sUAS with a macro-F1 score of 0.7492 across

four distinct range classes. Combined, these two efforts demonstrate the merits of

using accessible sensing resources to achieve high-fidelity sUAS detection and tracking

results.

iv



AFIT-ENG-MS-23-M-017

To my wife. Without her support and encouragement, I would not be where I am

today.

v



Acknowledgments

I want to thank my advisor, Maj Richard Dill, for his continued support through-

out the entire thesis process and for enabling me to become a better writer, thinker,

and engineer. I would also like to thank my committee members, Dr. Douglas Hod-

son and Dr. Brett Borghetti for their aid and expertise throughout the entire thesis

process. Lastly, I would like to thank Dr. Peter Zulch, Dr. Darren Haddad, and

Dr. Brett Smolenski for their Escape II dataset, technical support, and expertise in

sUAS acoustics. This thesis would not have been accomplished without the help and

mentorship of these gentlemen.

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Threat of sUAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 sUAS Defense Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Research Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Effort 1: sUAS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Effort 2: sUAS Range Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Paper: Sensor Network-Based sUAS Detection using
Low-fidelity Audio from Cellphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

III. Paper: Cellphone-Based sUAS Range Estimation: A
Deep-Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix A. sUAS Cluster Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix B. sUAS Range Estimation: A Regression Approach . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



CELLPHONE-ACOUSTICS BASED SUAS DETECTION AND TRACKING

I. Introduction

This chapter introduces the research domain, briefly summarizes the research ob-

jectives, and outlines the thesis. Section 1.1 discusses the airspace threat Small Un-

manned Aircraft Systems (sUAS) pose, and Section 1.2 highlights counter-measures

for sUAS. In Section 1.3, the primary research efforts, hypotheses, and goals are

presented. Lastly, Section 1.4 provides an overview of the following chapters.

1.1 The Threat of sUAS

Within the past decade, the prevalence and accessibility of sUAS have changed

aerospace conflict forever. Before the influx of sUAS in the consumer market, un-

piloted aircraft were costly and primarily used in large-scale military operations [2].

However, due to recent rapid increases in innovation and manufacturing cost reduc-

tion, the same sUAS model can now be found anywhere from a child’s birthday party

to the front lines in the Russian-Ukrainian War. The exponentially increasing number

of sUAS presents a variety of security concerns that demand military solutions.

The security concerns of sUAS pose threats to infrastructure, airspace, and mil-

itary personnel. In 2015, an sUAS accidentally landed on the White House lawn,

forcing the surrounding area to be put on lockdown [3]. In 2017, an sUAS collided

with a commercial twin-propeller airplane while on the final descent, endangering the

lives of everyone within the aircraft [4]. In 2016, ISIS attached an explosive to a

sUAS during the battle of Mosul, demonstrating the first exploited use of hobbyist

sUAS in military combat [5]. However, in recent events, sUAS are no longer a tool
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used by non-state combatants or a confused amateur pilot but a powerful asset in a

large-scale conflict. During the Ukraine conflict, both sides have used commercially

accessible sUAS to provide reconnaissance, adjust artillery fire, and drop explosives

on unsuspecting troops on the ground (see Figure 1). Ukrainian forces have received

donations to try and create an sUAS army, while Russia has similarly put the assets

to use for military operations [6]. These threats highlight the US military’s challenges

in protecting critical infrastructure.

The threats that sUAS present have prompted leading Department of Defense

(DoD) Strategic Leaders to publish “Counter-Small Unmanned Aircraft Systems

Strategy.” The Doctrine highlights the changing domain of sUAS and the need for

the Joint Force to prepare to develop solutions that span the entire “Doctrine, Orga-

nization, Training, Materiel, Leadership and Education, Personnel, Facilities—Policy

(DOTMLPF-P) spectrum [1].” Additionally, the Doctrine emphasizes the need for

our Forces to “detect, identify, deter, and, if necessary, defeat threat sUAS [1].” How-

ever, to do so, sUAS defense methods must be established to accurately detect, locate,

Figure 1: sUAS carrying an explosive payload [7]
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classify, and, if necessary, overpower these systems.

The main goal of sUAS defense is to deny hostile sUAS access to contested

airspace. Nevertheless, active and passive defense methods must be employed to

achieve airspace protection. Military forces employ a variety of weaponry to defend

against sUAS threats. Electronic warfare weapons disrupt, jam, and take over sUAS

communications. In the Russian-Ukrainian conflict, Russian forces have jammed the

sUAS communication signal, forcing the vehicle to return home or hijacked the sUAS

link connected to the control systems mid-flight [6]. Other counter-sUAS weapons

include small rockets [8], Electronic weaponry (Figure 2), guns, and lasers [9]. How-

ever, for these technologies to effectively deny, disrupt, or destroy sUAS threats, sUAS

must be accurately detected and tracked.

Thus, the cornerstone of sUAS defense is accurate sUAS detection, classification,

and tracking. These three goals are the principal components by which sUAS can be

defeated. The US Air Force Science and Technology Strategy demands the need for

“lower-cost sensors integrated on distributed platforms that provide resilience through

Figure 2: Electronic-sUAS Weapon being employed by a US Marine during a training
exercise in 2018 [10]
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numbers and redundancy and complement more exquisite sensors on standoff plat-

forms [11].” Standard methods to achieve sUAS awareness rely on different sensing

methods, including radar, optics, Radio Frequency (RF), acoustics, or a combina-

tion of these techniques [9]. However, each sensing modality has inherent costs that

present unique challenges and fail to meet the objectives of the U.S. Air Force Science

and Technology Strategy. Radar-based methods can detect and track sUAS but are

expensive and may not reliably detect the shapes of various sUAS. RF-based solutions

can detect and classify sUAS communication when in perceivable range but cannot

track sUAS location. Optics-based methods can detect, track, and classify sUAS

but require line-of-sight to perceive an sUAS, thus being constrained to near-optimal

environmental conditions. Lastly, acoustics-based solutions can detect, classify, and

track sUAS; however, acoustic sensors may be hindered by low signal-to-noise ratios

and a lack of sensor platform mobility. Each of these sensing modalities is used for

counter-sUAS strategies, but these sensing platforms tend to be expensive, have a

centralized point of failure, and are difficult to mobilize. However, the future of war-

fare demands that the DoD develops resilient and fault-tolerant sensor networks to

complement these expensive sUAS sensing platforms. These systems can allow the

Joint Force to accelerate towards a warfare strategy that capitalizes on autonomous,

edge computing technology.

1.2 sUAS Defense Solution

The research presented in this thesis supports the US Air Force Science and Tech-

nology Strategy goals by developing data-driven methods to detect and track sUAS

using low-fidelity acoustics data from Commercial-off-the-shelf (COTS) cellphones.

The research is broken into two distinct efforts: a Machine learning (ML)-based En-

semble Voting Pipeline (EVP) that provides resilient, fault-tolerant sUAS detection

4



from a sensor constellation of 28 cellphones and a deep-learning model that is capable

of estimating sUAS range from a single cellphone.

1.2.1 Research Data

The data used throughout this research effort comes from the Escape II Data

Collection, conducted by Air Force Research Laboratory (AFRL), where multi-sensor

data is collected on various scenarios, including sUAS, vehicle and human movement

scenarios. Many radar-based, acoustics-based, electro-optics-based, and vision-based

sensors record the scenarios; however, this research effort specifically uses the acoustics

data from the cellphones that record acoustics data during the sUAS scenario. The

cellphones record the acoustics data using RedVox, a multi-modal data collection app

[12]. All cellphones record acoustics data with a sample rate of 8KHz and are time-

stamped to the microsecond. Additional details regarding the scenario can be seen

in Chapter II and Chapter III.

1.2.2 Effort 1: sUAS Detection

The first research effort, “Sensor Network-Based sUAS Detection using Low-

fidelity Audio from Cellphones,” demonstrates the merits of ensemble-based predic-

tions from inexpensive edge computing devices to achieve accurate sUAS detection

over large airspace. First, a ML model is developed using data from the data collec-

tion to distinguish sUAS presence from background noise. The data is formatted into

the Mel Frequency Cepstral Coefficients (MFCC) space and put into 256ms frames,

which returns 40 coefficients. The model is trained using a subset of data from the

data collection, which is partitioned to an sUAS and Noise class, determined by the

GPS range from an sUAS to a cellphone. Any acoustics frame in which the range

is within 80m of a cellphone is considered sUAS, whereas any frame with a range

5



outside of 80m is considered Noise. After model training, the model is copied to all

devices within the cellphone constellation. Then a EVP is implemented that aggre-

gates predictions from the constellation of sensors to determine sUAS presence. The

EVP consists of a Majority Voting Scheme, a Weighting Function, and erroneous

Prediction Finite State Machine (FSM). The EVP is evaluated using nine real-world

flights from the data collection. The distributed sensor network that uses the EVP

outperforms a single cellphone’s F1 scores by 0.264 (relative to the cellphone) and

resiliently detects sUAS despite sensor errors and dropout with an F1-score of 0.846.

This research effort establishes a real-time sUAS detection methodology that produces

resilient and accurate results.

1.2.3 Effort 2: sUAS Range Estimation

The second research effort, “Cellphone-Based sUAS Range Estimation: A Deep-

Learning Approach,” uses low-fidelity acoustics data to estimate sUAS range from

a single cellphone with a deep learning model. This effort presents a sUAS track-

ing method that is scalable across a large constellation of devices and provides an

accurate range estimation over a variety of sUAS types. Four sUAS datasets are

used in this research effort, IF, Matrice, Phantom, and Combined. The IF, Matrice,

and Phantom datasets contain data from single sUAS models, whereas the Combined

dataset is a superset of the three individual datasets. Each dataset has 500ms audio

samples with an associated sUAS range classification, which is separated into four

distinct range classes (y ≤ 40m, 40m < y ≤ 60m, 60m < y ≤ 80m, or y > 80m).

Twenty percent of each of the individual sUAS datasets is sequestered for performance

evaluation. Three different deep learning model architectures, 2-Dimensional Con-

volutional Neural Network (2DCNN), 1-Dimensional Convolutional Neural Network

(1DCNN), and 2-Dimensional Convolutional Recurrent Neural Network (2DCRNN),

6



are compared using the Combined dataset, and the best-performing model is further

evaluated using the sequestered testsets. The 2DCNN achieves an average macro-

F1 score of 0.7492 across the four range classes and on three different sUAS model

testsets. It demonstrates that sUAS model-agnostic range estimation features are ex-

tracted. This research effort establishes a low-cost sUAS tracking method that does

not require expensive, fixed acoustic sensing methods.

The current publication status of the two efforts is seen in Table 1. “Sensor

Network-Based sUAS Detection using Low-fidelity Audio from Cellphones” is await-

ing PA approval and “Cellphone-Based sUAS Range Estimation: A Deep-Learning

Approach” is currently in the review phase of conference publication. However, both

papers are completed works and are presented within the thesis as such.

Table 1: Publication Results
Title Type Venue Status
Sensor Network-Based sUAS
Detection Using Low-fidelity
Audio from Cellphones

Journal
Proceedings of the ACM on Interactive,
Mobile, Wearable, and
Ubiquitous Technologies

Pending PA Approval

Cellphone-Based sUAS
Range Estimation:
A Deep-Learning Approach

Conference
World Congress In
Computer Science, Computer Engineering,
and Applied Computing

Pending Acceptance
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1.3 Research Objectives

This research aims to demonstrate a low-cost method for providing sUAS aware-

ness that is mobile, easily accessible, and resilient to device errors. The two research

efforts combine to demonstrate that cellphone acoustics can detect and track sUAS,

which is an essential part of sUAS defense. In alignment with Air Force Strategic

Goals for the coming decade, this research ensures that the DoD has low-cost sensors

that are scalable, fault-tolerant, and complement the results from high-fidelity sUAS

awareness sensors.

1.4 Document Overview

This document is organized as follows. Chapter II and Chapter III detail the two

research efforts and present the results from the two studies. Finally, Chapter IV

provides conclusions.
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II. Paper: Sensor Network-Based sUAS Detection using
Low-fidelity Audio from Cellphones

The following paper, “Sensor Network-Based sUAS Detection using Low-fidelity

Audio from Cellphones,” is waiting on PA approval to be submitted to the ACM

Journal on Interactive, Mobile, Wearable, and Ubiquitous Technologies.
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Sensor Network-Based sUAS Detection using Low-fidelity Audio from
Cellphones

RYAN CLENDENING, RICHARD DILL, BRETT BORGHETTI, and DOUGLAS HODSON, Air
Force Institute of Technology, USA

Due to their low-cost, accessibility, and hard-to-detect nature, small Uncrewed Aircraft Systems (sUAS) are at the forefront of
airspace security and military operations. They also offer an avenue by which malicious actors can undermine the safety and
security of critical systems, such as airports, sports stadiums, power plants, and other restricted areas. In this paper, we create
a novel cellphone acoustics-based ensemble voting pipeline (EVP) that fuses time-sync’d, independent machine learning (ML)
model predictions from a scattered network of cellphones’ audio sensors to detect sUAS presence. This proof-of-concept EVP
consists of an ML model copied onto all cellphones, a weighting function, and a Prediction Finite State Machine (PFSM). The
EVP provides resilient sUAS detection accuracy using real-world data in nine simulated test scenarios, achieving an sUAS
detection F1-score (a measure of both precision and recall) of 0.846. It outperforms the sUAS detection F1-Score of a single
cellphone within the sensor network by 45.6% and provides resilient sUAS detection despite cellphone mispredictions and
dropout.

CCS Concepts: • Computer systems organization→ Neural networks; Sensor networks; Fault-tolerant network topologies.

Additional Key Words and Phrases: sUAS Detection, Information Fusion, Deep Learning, Acoustics Processing

ACM Reference Format:
Ryan Clendening, Richard Dill, Brett Borghetti, and Douglas Hodson. 2023. Sensor Network-Based sUAS Detection using
Low-fidelity Audio from Cellphones. 1, 1 (February 2023), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Small Uncrewed Aircraft Systems (sUAS) pose security risks and have changed how malicious actors can achieve
desired goals. Following the 2022 Russian invasion of Ukraine, both sides used sUAS for tactical reconnaissance
and offensive missions. For example, the Ukrainian army used commercially available sUAS to complement their
more advanced weapon systems, and Russian forces used sUAS to "strike and provide reconnaissance" throughout
the conflict [25]. In response to the militarized application of commercial sUAS, state governments and private
companies have developed counter-sUAS platforms; however, these are often expensive, immobile, and present a
single-point of failure.
This research effort aims to address these weaknesses by accomplishing two objectives: first, evaluating

the merits of an ensemble-based approach to sUAS detection from sparsely scattered cellphone microphones,
and second, demonstrating how using edge computation devices can improve sUAS detection resiliency and
accuracy. We develop an ensemble voting pipeline (EVP) that makes sUAS detection predictions from 20 sparsely
scattered cellphones’ audio data. All cellphones collect time-synchronized, low-fidelity acoustics data from their
microphones to make independent sUAS presence decisions using a machine learning (ML) model. The EVP
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page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/2-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: February 2023.



2 • Clendening, et al.

receives, assesses, and weighs each independent decision, to ultimately yield a final group prediction. While
cellphone-to-EVP communications data was previously collected and then replayed offline, our novel method -
which combines various cellphones’ ML predictions to detect sUAS - can be used to implement a real-time wireless
acoustic sensor network (WASN) for applications beyond acoustics-based sUAS detection. Our results show that
an acoustic sensor network that uses the EVP for sUAS detection outperforms a single sensor’s detection F1 score
(a measure of both precision and recall) by over 45% and provides resilient sUAS predictions despite two sensors
producing entirely erroneous predictions.

This activity is conducted in two stages - model selection and ensemble performance evaluation. In the model
selection stage, a typical machine learning workflow is followed. Data is first collected and prepared for ingestion
by several models for acoustics-based sUAS detection. The dataset contains acoustic recordings of 22 sUAS flights
captured on 20 cellphone microphones. These recordings are partitioned into audio frames of length 256ms. Each
segment of acoustics data is processed into its 40 Mel-Frequency Cepstral Coefficients (MFCCs). Additionally,
GPS truth data from the cellphones and sUAS is captured for labeling the segment. Each frame is labeled with
either sUAS or Noise classes to indicate whether the sUAS is within 80m of the cellphone. This data is used to
train several models: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), a radial basis
function support vector machine (RBF-SVM), and a dense neural network (ANN) model. Once these models have
been trained, their performance is evaluated on an unseen portion of the data to obtain a performance ranking.
After the first stage, the EVP performance is determined - a process that consists of several steps. The best-

performing architecture is selected for use within the EVP, which has the following process. Each cellphone
receives a 256ms audio frame, converts the audio to the MFCC feature space, and inputs the MFCCs into a model
which makes a prediction (sUAS or Noise). The EVP gathers the independent cellphone predictions and applies a
weight to each representing the device’s average log energy relative to the sum of all devices’ log energy. Next, the
EVP aggregates the weighted votes to determine sUAS presence. This activity is repeated as the ensemble receives
and processes a temporally-ordered sequence of audio frames. A memory-based prediction finite-state machine
(PFSM) reduces the probability of transition from one label to another, improving the stability of sequential
predictions by lessening the system’s sensitivity to short-duration prediction errors. The ensemble’s output is a
time-series sequence of predictions of sUAS or Noise for each frame.

The outline of the paper is as follows. Section 2 details sUAS acoustics theory, multi-sensor fusion techniques,
and the MFCC transform. Section 3 discusses sUAS sensing modalities and acoustics-based detection methods.
Section 4 details the data collection, ML model selection experiment, pipeline design, and EVP evaluation
methods. Lastly, Section 5 reports the results from the ML model selection experiment and evaluates the detection
performance and resiliency for the EVP.

2 BACKGROUND
This section explains concepts necessary to understand the machine learning models and EVP proposed in
Section 4. The following topics are covered: sUAS acoustics, machine learning, information fusion theory, and
the Mel-Frequency domain.

2.1 sUAS Acoustics
sUAS emit sound from the rotating motors and propellers that produce lift and velocity. Sound is generated,
resulting in a fundamental frequency (or frequencies) between 0-2kHz range [21]. Additionally, the harmonics
produced from the propeller blade rotation help distinguish sUAS sounds from other noises. As shown in Equation
1, the fundamental frequency of an sUAS depends on the propeller rotations per minute, and the number of
blades on the sUAS propeller [21]. sUAS that have motors rotating at different speeds (e.g., auto-stabilizing) have
multiple fundamental frequencies due to the variations in propeller RPMs.

, Vol. 1, No. 1, Article . Publication date: February 2023.
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𝑓𝑓 𝑢𝑛𝑑 = 𝑅𝑃𝑀 · 𝐵𝑙𝑎𝑑𝑒𝐶𝑜𝑢𝑛𝑡60 (1)
The physical vibration of sUAS produces additional acoustic noise, which tends to be at high frequencies

(3KHz-4KHz) [13].
Figure 1 shows a spectrogram that illustrates the frequency of an sUAS. Harmonics are periodic from 400Hz to

nearly 1500Hz. Although other noises may appear similar, ML can be trained to detect sUAS from environmental
noises accurately.
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Fig. 1. Spectrogram of IF1200 sUAS

2.2 Machine Learning Algorithms
Four ML algorithms (ANNs, SVMs, LDA, and QDA) are evaluated to determine which model is suitable for the
EVP; thus, a brief background is presented on each of the four algorithms.

An artificial neural network (ANN) is a supervised deep learning algorithm used to detect, predict, or classify
a given phenomenon based on a dataset [1]. Neural networks, inspired by biological neurons in the brain, use
multiple layers of perceptrons to learn a phenomenon. Each network layer consists of several perceptrons with
an associated weight matrix containing the connection weights from the previous perceptrons in the layer.
Additionally, a bias vector and activation function ensure non-linearity between network layers, an attribute that
makes ANNs promising for learning complex decision boundaries [6].

SVMs are a family of ML algorithms in which a separating hyperplane maximizes the margins between points
in different classes (for example - sUAS produced sounds versus other noises). SVMs typically work well for
applications with input data with large feature spaces. In pattern recognition style problems, SVMs classify
complex phenomena well due to their use of Kernel functions. These functions quantify the similarity between
observations, mapping the original input space to a feature space where the data is linearly separable [10]. They
are used to enlarge the features from their original domain into a higher dimensionality domain, where the SVM’s
separating hyperplane can better linearly separate the classes in the data.
Radial Basis Function (RBF) kernels transform the data into an infinite-dimensional space without explicitly

working in the transformed feature space. This provides a computationally efficient kernel that can find the class
decision boundary on non-linear decision boundaries [10, 20].
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LDA and QDA are ML models that fit a classification discrimination boundary based on each class’s data.
However, each makes a different assumption about the nature of data feature distribution. LDA forces each class
to represent the features using the same co-variance among the distribution of feature values in the data. QDA
allows each class to have a different co-variance among the features. These techniques work well when the
relationship between the data features and class is simple, and these models are easier to interpret. Including
these model types in the model selection process helps researchers understand the nature of the data-to-class
relationship.

In our research, we implement ANN, RBF-SVM, LDA, and QDA and compare each performance to determine
which to use in the EVP. Section 4.4 further details the composition of the ML models, the model selection process,
and the results.

2.3 Multi-Sensor Fusion Technique: Ensemble Voting
Sensor data fusion is defined as "the combination of data from multiple sensors (either of the same or different
types)... to achieve more specific inferences than could be achieved by using a single, independent sensor" [14].
Although a variety of sensor fusion techniques exist to combine data from a constellation of devices, the research
in this effort uses information fusion (aka late fusion). In related wireless acoustic sensor fusion works, researchers
have fused data from acoustic sensors to detect and localize gunshots [5, 19]. The information fusion method
that is employed in this effort is ensemble voting.

Ensemble voting aggregates the predictions of multiple sources (e.g., independent ML models) to improve the
decision quality. Ensemble voting can be represented as a series of Bernoulli Trials, in which each trial represents
a predictor and has two possible outcomes: success or failure. Thus Equation 2 demonstrates the probability of at
least 𝑥 correct predictions with 𝑛 total predictors and a probability of correct prediction, 𝑝 , and the probability of
an incorrect prediction, 1 − 𝑝 .

𝑃 (𝑟 ≥ 𝑥) =
𝑛∑︁

𝑟=𝑥

𝑛𝐶𝑟 · 𝑝𝑟 · (1 − 𝑝)𝑛−𝑟 (2)

Therefore, assuming a network of better-than-chance models where all models predict the presence of an
sUAS based on independent decisions, the probability of success approaches 1 asymptotically as the number of
predictors increases [7]. In this effort, the EVP leverages ensemble voting of sUAS detection predictions from the
constellation of cellphone audio sensors. The EVP performs better than a single sensor while remaining scalable
and resilient, further demonstrated in Sections 4 and 5.

2.4 Feature Extraction
Designed in the early 2000s to represent how humans perceive sound, Mel-Frequency Cepstral Coefficients
(MFCCs) mathematically capture the acoustic variations between low and high frequencies in a low-dimensional
way [16]. Related research efforts have depended on MFCCs to distinguish the larger UAS, which emit higher
frequencies, from smaller UAS devices [13, 18, 20, 23, 26].

The Mel-scale spaces frequency bins linearly under 1kHz and logarithmically above 1kHz. Using the Mel-scale
has shown promise in machine learning applications where lower frequencies contain more information than
high-frequency components [13]. The approximation of a Mel from a frequency in Hz (f) to fmel is seen in equation
3.

𝑓𝑚𝑒𝑙 = 2595 · 𝑙𝑜𝑔10 (1 + 𝑓

700 ) (3)
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The MFCCs for a time series audio frame can be calculated through the following transformation steps. First, a
windowing function is applied to the data frame to reduce the effects of spectral leakage (e.g., Hanning window).
Next, the Discrete Fourier Transform (DFT) is applied to the frame to transform it into the magnitude spectrum.
Equation 4 calculates the DFT, which yields the magnitude spectrum, X(k), where N is the frequency points used
in the DFT, and k is the number of bins between 0 and N-1 [17].

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑥 (𝑛)𝑒
( − 𝑗2𝜋𝑛𝑘

𝑁

)
; 0 ≤ 𝑘 ≤ 𝑁 − 1 (4)

After the conversion to the magnitude spectrum, 𝑋 (𝑘) is multiplied by a series of overlapping triangular filter
banks, where Hm(k) represents the weight given to the kth energy spectrum bin, corresponding to the mth output
band. Equation 5 presents the calculation of the Mel Spectrum from the Magnitude Spectrum. Again, N is the
frequency points used in the DFT transform, and M is the total number of triangular Mel weighting filters [17].

𝑠 (𝑚) =
𝑁−1∑︁
𝑘=0
|𝑋 (𝑘) |2 · 𝐻𝑚 (𝑘); 0 ≤ 𝑚 ≤ 𝑀 − 1 (5)

The Discrete Cosine Transform (DCT) is then applied to the transformed Mel Frequency Coefficients, 𝑠 (𝑚),
resulting in Mel Frequency Cepstral Coefficients representing the overall power spectral envelope shape of the
signal. Equation 6 presents the calculation to convert from Mel Frequency Coefficients to MFCCs, in which C is
the number of MFCCs, M is the number of triangular filters, and 𝑐 (𝑛) are the cepstral coefficients [17].

𝑐 (𝑛) =
𝑀−1∑︁
𝑚=0

𝑙𝑜𝑔10 (𝑠 (𝑚)) · 𝑐𝑜𝑠
(
𝜋 · 𝑛(𝑚 − 0.5)

𝑀

)
; 𝑛 = 0, 1, 2, ...,𝐶 − 1 (6)

Equation 6 results in a fixed number of Mel Frequency Cepstral Coefficients, representing the power spectral
envelope of a given acoustic frame [17].
This section establishes the necessary foundations for sUAS acoustics, ML, ensemble learning, and the ML

feature format. Next, we present related sUAS detection works.

3 RELATED WORKS
Acoustic-based approaches exploit the produced sUAS noise for sUAS detection, tracking, and localization. Due
to the persistent propeller noise, acoustic-based methods can distinguish sUAS acoustic footprints and localize
the sounds using statistical and ML methods. However, most acoustics-based approaches are susceptible to noise
pollution, have range limitations, and usually require high-fidelity microphones to achieve positive results. In
addition, many efforts report results from test scenarios that do not fully represent real-world conditions. In
contrast, our research focuses on acoustic-based sUAS detection using sparsely scattered, low-fidelity microphones
across a large amount of airspace to achieve resilient sUAS detection. Current acoustic-based sUAS detection
methods are now presented to demonstrate the research gap that our effort fills.

3.1 Detection Methods
Jeon et al. compared the detection accuracy of Gaussian Mixture Models (GMM), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) in noisy, urban environments [11]. The researchers formatted
the acoustic data with the Mel-frequency spectrogram. They discovered that the RNN model achieved the best
detection accuracy in noisy urban environments, with an F1-score of 0.8009 for known sounds.
Shi et al. investigated using hidden Markov models (HMM) for sUAS detection in noisy environments [23].

The researchers used MFCCs to extract feature vectors for the HMM. Experimentally, Shi et al. discovered that
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even at a low Signal-to-Noise Ratio (SNR), their model detected sUAS more than 80% of the time. Shi et al.’s main
contribution is the usefulness of HMM for sUAS detection. They also demonstrated the ability to detect sUAS in
noisy environments (5dB SNR).

Sedunov et al. developed an sUAS detection and localization system using an array of microphone nodes [21].
Their primary research emphasized long-range sUAS detection and localization using high-fidelity, directional
microphones. Instead of using ML for sUAS detection, Sedunov et al. exploited the fact that multi-rotor UASs
spin each rotor at different rotations per minute (RPM). Without the need for a database, their algorithm detected
sUAS based on if there is more than one set of harmonics. Their algorithm achieved up to 97% sUAS detection
accuracy compared with other types of aircraft (i.e., planes and helicopters). This research achieved high-level
detection without bearing the cost of ML and showed that high-fidelity acoustic sensors could accurately localize
sUAS targets.
Seo et al. developed a CNN to detect COTS sUAS using normalized Short-time Fourier transform (STFT) to

create 2-dimensional images from sUAS acoustic data [22]. The researchers recorded outdoor sUAS data from
two hovering sUAS and split the data into 2ms segments with 50% overlap. They then injected white Gaussian
noise into the data for testing. Seo et al. achieved a 98.97% detection rate with a 100-epoch CNN and favorable
SNR conditions. They demonstrated that STFT could be used for a CNN to achieve high detection rates.
Emadi, et al. researched sUAS detection and classification with different deep learning techniques [1]. Due

to the lack of audio samples, the researchers augmented training data by recording audio from a smartphone
in an indoor setting and creating additional training data with a Generative Adversarial Network (GAN). Their
best-performing model was a CNN that used 1s spectrograms and achieved a detection F1-score of 0.9590. Their
effort demonstrated the advantages of using augmentation techniques for sUAS detection and sUAS classification.

Casabianca et al. developed a late data fusion ensemble voting scheme of CNNs and CRNNs for sUAS detection
[4]. The researchers arbitrarily adjusted the different neural network hyperparameters to create an ensemble of
10 predictors. The researchers trained the models using a training dataset taken entirely from online sources in
which they then artificially mixed background noise (e.g., airplane sounds) to simulate real-world data. After
training the various models, they evaluated the ensemble on unseen real-world data from a single cellphone
positioned 1 meter from a hovering sUAS. They achieved an ensemble detection rate of 91.044% on this unseen
data.

Lastly, Kolamunna et al. developed a recurrent neural network (RNN) for both sUAS detection, and classification
[13]. The researchers addressed the lack of sUAS data by augmenting sUAS and noise data from online resources.
Their augmentation technique of using online sources inspired the YouTube Video augmentation technique in
this research effort. The researchers use a cascaded deep learning approach, where a model is first trained to
detect an sUAS; once seen, it is prepared to classify the make and model of the sUAS. In evaluation, their detection
model achieved F1-scores between 0.96-0.98 for closed set (types of sUAS seen by the model) performance and
an open set F1-score performance of 0.88. Their work demonstrated the merits of a cascaded approach to sUAS
detection and a rigorous dataset engineering process (augmentation, peak normalization, Doppler shifting, MFCC
concatenation).
These research efforts demonstrate various machine-learning-based sUAS detection methods, summarized

in Table 1. However, all efforts rely on high-fidelity audio from online sources or near-optimal recording
environments. In contrast, this research uses cellphones that sample at 8KHz from an omnidirectional microphone.
The sUAS are recorded from a wide range of distances and a considerable variation in cellphone type. Additionally,
the data collection takes place at an airfield where there is environmental noise (i.e., airplane propellers). Our effort
also deploys the ML model to a constellation of different cellphones in various real-world sUAS flights. Therefore,
this effort seeks to demonstrate that despite these non-optimal environmental conditions, sampling rates, and
sensing devices, low-fidelity cellphones can be aggregated into an EVP to achieve high-fidelity acoustic-based
sUAS detection results.
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Table 1. Performance of Related Works

RW and Citation Sample Rate Preprocessing Model Type Capabilities Deficiencies
Jeon et al. [11] 44.1KHz MFCC RNN Resilient in noisy environments Not generalized across different microphones
Shi et al. [23] 44.1KHz MFCC HMM Resilient in noisy environments Reliant on high-fidelity data

Sedunov et al. [21] 48KHz - Spectrogram No ML model or database Requires extremely high-fidelity equipment
Seo et al. [22] 44.1KHz STFT CNN CNN for sUAS detection Unable to distinguish between similar noises

Al-Emadi et al. [1] 16KHz Spectrogram CNN GAN for sUAS augmentation Not tested in real-world scenarios
Casabianca et al. [4] 44.1KHz Mel-Spectrogram CNN/CRNN Ensemble Voting Method Trained and evaluated on unrealistic scenarios
Kolamunna et al. [13] 44.1KHz MFCC RNN Cascaded Approach to sUAS detection and classification Only evaluated with synthetically mixed audio

4 METHODOLOGY
In this section, all research methods are presented. First, the data collection, data collection scenarios, and the
training dataset are discussed. We then explain the two stages of the research effort: the ML model selection and
then the EVP design. Lastly, the EVP performance and resiliency experiment methodology are detailed.

4.1 Data Collection
The acoustics dataset is sourced from the Escape II data collection, a multi-week effort conducted by Air Force
Research Labs [27]. The data collection transpires at an active airfield; thus, environmental noise (e.g., airplanes,
cars, crickets) is present throughout the data collection.
Two different sUAS aircraft are flown during the data collection, and both aircraft have notable features that

make them distinguishable. The Da-Jiang Innovations (DJI) Matrice 600 is a hexacopter and weighs approximately
20 pounds. The other, the DJI Phantom 4, is a quadcopter that weighs three pounds. Therefore, the two sUAS
have very different acoustic footprints.
Twenty-eight cellphones (Samsung Galaxy S Series and Apple iPhones) are labeled and positioned along the

flight path in three distinct clusters. The cellphones record acoustic, infra-sound, accelerometer, and gyroscopic
sensor data via the RedVox application[24]. The multi-sensor data is captured and timestamped at microsecond
intervals; however, this research is limited to GPS and acoustic data [9]. Table 2 lists the software and hardware
configurations used throughout the collection.

Table 2. Sensor Configuration

Sensor Configuration
Device Count 13 Apple iPhone

15 Samsung Androids
Apple App Version 4.0.2.4
Android App Version 3.3.1.2
Filetype Redvox API 1000
Sampling Rate 8KHz
Bitrate 192Kbps
Audio Format PCM Floating Point

4.2 Data Collection Scenarios
The data collection is separated into two distinct scenarios: short flight (SF ) and long flight (LF ). The SF scenario
consists of 16 passes, where an sUAS flies approximately 410m paths from one end of the runway to the other, seen
in Figure 2. Each sUAS is at 30.48m and travels 10-20 knots along the flight path. Each pass takes approximately
1-minute to complete. Although the sUAS speed varies between passes, the variation is consistent within each
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Flight Path
Phone Locations

200 m

Fig. 2. Short Flight Scenarios

Flight Path
Phone Locations

200 m

Fig. 3. Long Flight Scenarios

pass. The Matrice flies 6 passes while the Phantom flies the other 10 passes in the SF scenario. The LF scenario
consists of 18 passes, in which an sUAS flies roughly 1.5km. The sUAS is at 30.48m above ground level (AGL) and
remains at a consistent 15 knots throughout each pass. The Matrice and Phantom complete the LF scenario, with
8 passes from the Phantom and 10 from the Matrice. The sensor configuration is adjusted for this scenario, and
the cellphone clusters are spread over 300m, seen in Figure 3. Six passes from the LF are used in the training
dataset, while 12 are used for tuning and evaluating the EVP on the cellphone constellation. In figures 2 and 3,
the red circles represent each cellphone’s class separation between sUAS and Noise classes.

4.3 Training Dataset
The ML training dataset, composed of .wav files sampled at 8KHz, contains all SF passes and six LF passes.
Additionally, the training dataset includes cellphone audio data from 24 of the 28 devices used in the collection.
The remaining four phones never cord usable audio due to software issues during the collection. Since the
objective is to generalize sound across different internal microphones (Android and iPhone), the dataset includes
the acoustic recordings from all 24 usable cellphones.
In preparation for ML model training, the .wav files are first converted to time-series arrays, then divided

into 256ms audio frames. The class boundaries are generated using the GPS range 1 from each cellphone to the
sUAS for a given 256ms acoustics audio frame. All acoustics frames where the sUAS falls within 80m range of a
cellphone are labeled sUAS, whereas every frame where the sUAS is outside of 80m is labeled Noise. Assuming
that each sUAS flies at 15Kn, an sUAS traverses each cellphone’s 80m detection area in approximately 10 seconds.
Additionally, any frame where the sUAS is within +/−2m from the class separation boundary is removed (the
intuition is that the sUAS flies on average 15Kn, which equates to 1.975m in 256ms). Finally, the dataset is
partitioned into a 20% training-test-split, and the dataset is then z-transformed (zero-mean and unit variance)
based on the distributions of the training data. Each frame is then converted to MFCC format (discussed in Section
2.4), returning a 40 × 1 coefficient vector.

Table 3 lists the training dataset composition. The dataset contains an equal amount of both classes, which is
chosen to ensure that the model properly learns both the sUAS and Noise classes. A 20% testset is sequestered
before ML model training to evaluate the performance of the various ML models. Section 4.4 provides additional
information on the model training process.

1Although GPS positioning has limitations, in this effort, we assume that the GPS positions are accurate.
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Table 3. Dataset Composition

Type Time (s) Frames
sUAS 3,497.2s 13,661
Noise 3,784.4s 14,783
Total 7281.6s 28,444

These design decisions ensure that the dataset provides enough variation to allow the ML model to properly
generalize sUAS noise across different sUAS types, recording devices, detection distances, and SNRs. Although
other efforts have used augmentation techniques like frequency shifting and injecting noise into training samples,
we determine that these are not required because the different cellphone perspectives have inherent frequency
shifts caused by the Doppler effect and the environmental noise (i.e., airplanes flying over the runway) provides
sufficient SNRs.

4.4 Stage One: Model Selection
In the first stage of our effort, we make an initial ML model selection. The selected ML model should be
computationally efficient and achieve sUAS detection results with low-dimensional input representations so
that the model can be copied to cellphones and used in a real-world environment. Additionally, a null model
is evaluated as a baseline and predicts the majority class of the training dataset (Noise). All models use the
40-dimensional MFCCs that are discussed in Section 2.4. Additionally, we evaluate the models using a sequestered
20% test-set, and the best-performing model based on the established criteria is selected for use in the EVP.
Both LDA and QDA are selected as extremely fast-performing models. The more complex but likely higher-

performing models are a tuned RBF-SVM and an ANN. The tunable parameters of the SVM are C and gamma. A
low value of C introduces more bias but decreases the variance of the model. In contrast, a high value of C does
the opposite by introducing additional variance but decreasing bias. The gamma parameter dictates the influence
of a single point; thus, a high gamma value suggests each point has a small amount of influence, which results in
overfitting, whereas a small gamma indicates that each point has a lot of influence, thus causing the model to
under-fit [15].
Additionally, three variations of the ANN compare a variety of network configurations, as seen in Tables 4,

5, and 6. ANNs are selected as the neural network architecture because the Mel coefficients are assumed to be
independent and thus do not have temporal and spatial dependencies that may warrant more complex deep
learning architectures (i.e., convolutional neural networks and recurrent neural networks). Version One is a wide
but shallow ANN, which requires a large number of trainable parameters. Version Two is a shallow but deep
ANN, which requires a small number of trainable parameters but has many layers. Lastly, ANN Version Three is
a mixture of the two other networks and has deep and wide network characteristics. All three dense networks
are exclusively made of scaled-exponential linear unit (Selu) activation functions, which is a type of activation
function that produces linear mappings when an input value is above zero but a non-zero mapping when an
input value is below zero. Equation 7 shows the Selu activation mapping with scaled-value 𝜆.

𝑠𝑒𝑙𝑢 (𝑥) = 𝜆

{
𝑥 𝑖 𝑓 𝑥 > 0

𝛼𝑒
𝑥 − 𝛼 𝑖 𝑓 𝑥 ≤ 0 (7)

This activation function reduces the vanishing gradient problem that Rectified Linear Units encounter and allows
deep networks to converge to a solution. Additionally, all dense layers kernel weights are initialized to a LeCun
Normal distribution. The LeCun Normal distribution has a zero mean and variance seen in Equation 8, where
𝑓 𝑎𝑛𝑖𝑛 equals the number of input units to the dense layer. Combined, these hyper-parameters guarantee that
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Table 4. ANN Version One

ANN Architecture Size Activation Trainable Parameters
Input 40 Selu
Dense 1024 Selu 41984

Alpha Dropout 0.5 - -
Dense 512 Selu 524900

Alpha Dropout 0.4 - -
Dense 256 Selu 131328

Alpha Dropout 0.3 - -
Output 1 Sigmoid 257

Table 5. ANN Version Two

ANN Architecture Size Activation Trainable Parameters
Input 40 - -
Dense 80 Selu 3280

Alpha Dropout 0.3 - -
Dense 80 Selu 6480

Alpha Dropout 0.2 - -
Dense 80 Selu 6480
Dense 40 Selu 3240
Dense 20 Selu 820
Dense 20 Selu 420
Dense 20 Selu 420
Dense 10 Selu 210
Dense 10 Selu 110
Dense 5 Selu 55
Output 1 Sigmoid 6

the outputs of all dense layers in the network will self-normalize, alleviating the vanishing gradient problem
[6, 12]. Therefore, this Selu activation-LeCun kernel initialization is in all layers of the three varieties of ANNs,
as this commonly outperforms other activation functions. Additionally, alpha dropout regularizes each network
by randomly setting input activations to the Selu activation low threshold, 𝛼 ′. However, alpha dropout preserves
the mean and standard deviation of the inputs to a layer, ensuring self-normalization is not violated [12].

𝑚𝑒𝑎𝑛 = 0, 𝜎 2
=

1
𝑓 𝑎𝑛𝑖𝑛

(8)

The ML model selected for use in the EVP is the ANN Version Three. The rationale for selection and further
results are presented in Section 5.1.

4.5 Stage Two: Ensemble Voting Pipeline Design
The second stage of the effort is the EVP. An overview of the ensemble voting pipeline (EVP) design flow is
provided in the following paragraphs. The EVP begins by collecting audio information from all usable cellphones
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Table 6. ANN Version Three

ANN Architecture Size Activation Trainable Parameters
Input 40 - -
Dense 160 Selu 6560

Alpha Dropout 0.3 - -
Dense 80 Selu 12880

Alpha Dropout 0.2 - -
Dense 40 Selu 3240
Dense 20 Selu 820
Dense 20 Selu 420
Dense 10 Selu 210
Output 1 Sigmoid 11

. .  .

N 
Cellphones

ML

Prediction 
FSM

Distributed Model Predictions

Output 
Prediction

Ensemble Voting Pipeline

0th MFCC Values

Voting Scheme

Sensor Weights

Cell #N Mic Reading

sUAS

Noise

Cell #2 Mic Reading

Cell #1 Mic Reading

Predict N

Predict 2

Predict 1

ML 

ML
Current 

Prediction

N 
Predictions

Onboard Centralized 
Processing Node

Onboard Individual 
Cellphones

 Weighting 
Function

Fig. 4. sUAS Ensemble Voting Pipeline System Design

(𝑁 ) in the constellation. Every 256ms, each cellphone records the local audio environment at its current location.
Each device then converts the audio into the MFCC feature space, z-transforms the audio frame, and makes a
prediction with the onboard ML model (sUAS or Noise). In real-world applications, this can be implemented via a
WASN, a proven method for communicating audio-related information in various research efforts [2, 3]; however,
the EVP simulates the data acquisition step. The EVP, serving as a centralized processing node, aggregates
the results, weights each device’s vote using the zeroth MFCC, calculates the weighted sum of the cellphones’
predictions, and then makes a prediction using the voting scheme. The output passes through the erroneous
prediction finite state machine (PFSM), which acts as a de-noising filter that ensures mispredictions caused by
noisy or faulty sensor readings do not routinely affect EVP predictions. The finite state machine then produces
the final prediction (sUAS or Noise). The following paragraphs discuss the design and EVP data flow process in
more detail.

4.5.1 Distributed Model Predictions. The first sub-component of the pipeline gathers predictions from each
cellphone every 256ms. Each phone records 256ms of audio, transforms the audio frame to a z-transformed
MFCC format, and then makes an independent prediction using the ML model confidence threshold determined
through tuning (see Section 5.2.1). These predictions are gathered and passed to the ensemble voting component.
Additionally, the z-transformed zeroth MFCC of each cellphone is relayed to the Weighting Function.
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4.5.2 Weighting Function. TheWeighting Function sub-component’s goal is to weight the predictions of cellphones
that are likely correct. The mobile device constellation is sparse; consequently, only a minority subset of the
phones can detect the sUAS during any given frame. The weighting function assumes cellphones that perceive a
high energy level likely have a more valuable sUAS detection prediction. The zeroth MFCC coefficient represents
the average log energy of the acoustic signal; thus, large zeroth coefficients suggest high sound levels.

All sensors’ MFCC values pass through a Softmax function, which normalizes the sensor’s weight log energy
level relative to other devices in the constellation such that all values are positive, between zero and one. The
sum of the normalized values is one. Equation 9 displays the softmax calculation, where 𝑥𝑖 represents the 𝑖𝑡ℎ
cellphone’s Zeroth MFCC [8].

𝜎 (𝑥𝑖 ) = 𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥𝑗
(9)

4.5.3 Voting Scheme. After all the cellphones have made predictions and been weighted, the Voting Scheme sub-
component aggregates the predictions to determine the system’s overall prediction. Each cellphone prediction is
multiplied by the cellphone’s weight, as determined by the Weighting Function. Therefore, cellphone microphone
readings with lower energy levels than others provide lower weight and vice versa. The current sUAS prediction
is determined in Equation 10, in which 𝜎 (𝑥𝑖 ) represents the voting weight and 𝑣𝑜𝑡𝑒𝑖 is either 1 (sUAS) or 0 (Noise).
A value above the threshold signifies that an sUAS is present, and a value below the threshold signifies noise. The
sUAS prediction threshold is an EVP hyper-parameter tuned to the cellphone constellation and environmental
characteristics. More threshold tuning information is in sub-Section 4.7.

𝑝𝑟𝑒𝑑𝑐𝑢𝑟𝑟 =
𝑛∑︁
𝑖=1
(𝜎 (𝑥𝑖 ) ∗ 𝑣𝑜𝑡𝑒𝑖 ) > 𝑡ℎ𝑟𝑒𝑠ℎ (10)

The voting scheme increases the overall probability of sUAS detection through the benefits of binomial
probability. If cellphone predictions are treated as weak learners with detection accuracy above 50%, the aggregated
sum of the predictions provides more accurate results than any individual cellphone. Therefore, the voting scheme
is designed to ensure that the constellation of devices provides more accurate sUAS prediction results than any
individual cellphone’s predictions.

4.5.4 Prediction Finite State Machine. The final sub-component of the sUAS prediction pipeline is the PFSM,
designed to reduce erroneous predictions. The PFSM adds temporal stability to the EVP’s prediction and reduces
the chances of erroneous predictions from the voting scheme in a sequence of predictions. The PFSM method is
developed using the heuristic that an sUAS detected in one 256ms frame is likely to be the same one present in
the subsequent frame, and vice versa for noise. Therefore, assuming the PFSM is at a steady state, the EVP must
predict sUAS or Noise four times before the PFSM allows a transition to the alternate prediction.

The PFSM has eight states representing the system’s output prediction. This number is determined during the
EVP tuning in Sub-section 4.7. The PFSM input is the prediction of the voting scheme sub-component, and the
output is the final EVP prediction. Figure 5 presents the PFSM, where each arrow represents the EVP’s current
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 that is passed from the voting scheme, and the states in Figure 5 represent the EVP’s𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.
The PFSM is designed to reduce the prediction variance caused by spurious short-duration prediction errors, thus
requiring repeated identical predictions to transition from one prediction state to the other.

4.6 Test Scenarios and Truth Data Determination
Nine real-world flights from the LF scenario evaluate the EVP. Additionally, three passes from the LF scenario
tune the confidence threshold value for the ML model, the voting threshold for the EVP, and the number of PFSM
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Fig. 5. sUAS Prediction FSM: Arrows demonstrate what most recent prediction is, whereas circles represent the actual EVP
prediction.
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states. Each of the LF passes are approximately 90-115s in length; thus, the pipeline is evaluated using a total of
3,188 256ms frames. Additionally, the network confidence threshold is tuned using 1,594 256ms frames.
Truth labels are produced for each cellphone in the LF scenarios to evaluate and tune the EVP system. The

distance from a cellphone to the sUAS during a given pass determines the truth label. An sUAS less than 80m
from a cellphone is labeled sUAS, and one outside the 80m range is labeled Noise. Each cellphone’s score metrics
are evaluated using only its truth data. The EVP system is evaluated using the combined truth data from all
cellphones, which means that an sUAS within 80m of any cellphone is labeled as sUAS for the EVP system.
The truth data distribution of the nine test scenarios of an individual device compared to the overall EVP is in
Figures 6 and 7. Although the distribution of Noise to sUAS data is not equal in comparison, we evaluate the EVP
performance using distribution-agnostic metrics (i.e., F1 score) to ensure that truth data imbalance between the
EVP and individual devices does not imply misleading results.

Figure 9 shows the truth-labeled detection area for the EVP and individual cellphones. The red circle represents
the 80m area around a cellphone. Additionally, the overlapping regions of the circles demonstrate multiple devices
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Table 7. Hyper-parameter Tuning Values

Hyperparameter Name Possible Value Set
ML Confidence Threshold [0.40-0.92]
EVP Voting Threshold [0.15-0.5]

PFSM States 0,2,4,8

within 80m of the sUAS. Figure 8 shows the distribution of overlapping detection areas in the truth data. On
average, six cellphones detect the sUAS simultaneously, with a maximum of 10 and a minimum of one detectable
device.
It is worth noting that although all phones are positioned to record during every scenario, software errors

caused a subset of the phones not to record acoustics data. Therefore, the unusable cellphone data is not included
during each test scenario. On average, 17 of the 28 cellphones record usable acoustics data for the given test
scenarios, with a maximum of 20 and a minimum of 15.

4.7 EVP Hyper-parameter Tuning
Before testing the pipeline performance on nine LF test scenarios, the hyper-parameters of the pipeline are
tuned to ensure that the confidence threshold of the ML model, ensemble vote threshold, and PFSM are set
to the near-optimal values. The EVP is tuned to maximize accuracy using the truth-labeled sUAS detection
values from Sub-Section 4.6. The tuning values are seen in Table 7. Three LF passes are exclusively used for
hyper-parameter tuning. Then, the pipeline repeatedly runs from these scenarios over all possible confidence
thresholds, voting thresholds, and state pairings. The F1-score of the EVP is used as the tuning metric to determine
which hyper-parameter configuration to use.

4.8 System Evaluation
The EVP is evaluated on real-world flights from the Escape II LF scenario to measure EVP performance and
resiliency against sensor dropout and erroneous predictions. All experiments report the averaged accuracy,
precision, recall, F1-score, and F1 performance improvement compared to individual cellphone predictions. The
equations for each metric used throughout the evaluation are in Table 8.
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Table 8. Metric Equations

Metric Equation

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

F1 2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

4.8.1 EVP Performance Versus Individual Cellphones. The first experiment compares the EVP performance to the
individual cellphones’ predictions over the nine test scenarios. The test methodology is straightforward. The
EVP’s performance is evaluated using truth data (e.g., sUAS within 80m of any cellphone is labeled sUAS, and
outside of 80m is Noise). These results are compared to the average performance of all individual cellphones’
predictions. Independent truth data is used for each cellphone within the constellation that records audio and
makes predictions. All results are conveyed in terms of averaged F1-score, accuracy, recall, and precision. These
metrics compare the aggregated individual cellphones’ performances to the performance of the EVP. The EVP
aims to outperform the average F1-score of individual cellphones by over 25%.

4.8.2 EVP Sub-component Comparison. The second experiment evaluates the benefits of the weighting and
PFSM sub-components. The experiment methodology is identical to the first experiment, except that the EVP
baseline performance is compared to the EVP configurations without Weighting, without the PFSM, and without
either Weighting or PFSM. The results are recorded in terms of averaged F1-score, accuracy, recall, and precision.
Without the weighting function, the ensemble vote threshold is set so that if 20% of the total amount of cellphones
predict sUAS, the EVP predicts sUAS. The 20% threshold can also be seen as the null weighting value, meaning
that all devices are equally weighted. Only the current prediction is considered in the configuration without
the PFSM, and there is no prediction momentum. Without either sub-component, the EVP makes predictions
based solely on the ensemble voting scheme without weighting or temporal stability. We expect the full EVP to
outperform all EVP configurations with sub-components removed, as the sub-components are vital to ensuring
that accurate sUAS detection is achieved.

4.8.3 EVP Resiliency Evaluation. The last experiment measures the EVP resiliency against cellphone dropout
and mispredictions. Resiliency is vital because sensors are prone to failure, errors, and potentially malicious
attacks. We measure this in two ways: cellphone dropout and cellphone mispredictions. We evaluate both using
Algorithm 1. In the dropout experiment, we artificially remove a random subset of cellphones from each test
scenario and re-evaluate the EVP without those devices included but with the EVP truth labeling remaining
fixed. In the seven test conditions, we remove various quantities of cellphone devices 𝑐 ∈ {1, 2, 3, 4, 5, 6, 10} from
the constellation. We then re-evaluate the EVP on the test scenarios five times to reduce outlier situations. In
the dropout test, the 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑦𝑑𝑟𝑜𝑝 function returns the EVP F1 score of the test scenario, 𝑡 , with 𝑐 cellphones
removed from the constellation. The expectation is that a slight decrease in the number of functioning cellphones
does not yield a noticeable variation in EVP performance because the cellphones operate independently and
there are usually overlapping devices within 80m of sUAS during the detection frames.
The second part of Experiment #3 assesses resiliency against malicious ML model mispredictions, such as

data or cyber-attacks. A subset of the cellphone predictions are inverted during each test scenario to mimic this
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situation. The mispredicting cellphone case quantities are taken from 𝑐 ∈ {1, 2, 3, 4, 5, 6, 10} mispredicting devices.
In each of these cases, the cellphones which predict incorrectly are randomly selected, and each LF scenario used
for EVP evaluation is re-evaluated five times. The algorithm for this test is identical to the last, in Algorithm
1. However, now the 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑖𝑠𝑝𝑟𝑒𝑑 is a function that evaluates the EVP with 𝑐 random phones’ predictions
inverted during the test scenario, 𝑡 , and returns the EVP F1 score for that pass. The presumption is that the EVP
will remain accurate while the number of mispredicting devices averages less than one per the median number of
capable of detecting devices (6), as seen in Figure 8. However, as the number of incorrect predictors nears the
median number of detectable devices, performance is expected to decrease due to the Bayesian nature of the
ensemble-based approach.

Algorithm 1 Resiliency Test Algorithm
𝑐𝑎𝑠𝑒𝑠 ← [1, 2, 3, 4, 5, 6, 10]
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← {1 : [], 2 : [], 3 : [], 4 : [], 5 : [], 6 : [], 10 : []} (𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
for 𝑐 ∈ 𝑐𝑎𝑠𝑒𝑠 do
𝑐𝑎𝑠𝑒𝑓 1 ← []
for 𝑡 ∈ 𝑡𝑒𝑠𝑡𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 do
𝑝𝑎𝑠𝑠𝑓 1 ← []
for 𝑘 ∈ [1, . . . , 5] do

if 𝑇𝑒𝑠𝑡𝑑𝑟𝑜𝑝𝑜𝑢𝑡 == 𝑇𝑅𝑈𝐸 then
𝑝𝑎𝑠𝑠𝑓 1.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑦𝑑𝑟𝑜𝑝 (𝑐, 𝑡))

else
𝑝𝑎𝑠𝑠𝑓 1.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑦𝑚𝑖𝑠𝑝𝑟𝑒𝑑 (𝑐, 𝑡))

end if
end for
𝑐𝑎𝑠𝑒𝑓 1 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎𝑣𝑔(𝑝𝑎𝑠𝑠𝑓 1))

end for
𝑟𝑒𝑠𝑢𝑙𝑡𝑠{𝑐} ← 𝑎𝑣𝑔(𝑐𝑎𝑠𝑒𝑓 1)

end for

5 RESULTS
In this section, we present the research results. We break the results into our two research stages. First, we present
the research effort’s first stage: the ML model selection tuning and results. Then, stage two evaluates the ML
model within the EVP. The EVP tuning results are detailed, and then the EVP evaluation results are presented,
including the EVP performance evaluation, sub-component evaluation, and the EVP resiliency test.

5.1 Stage One: Model Selection Results
After tuning the SVM and training all models, the four ML models are compared using a 20% sequestered testset
from the training dataset established in Section 4.3. The model is selected by considering performance, prediction
speed, and memory usage, as these are all essential characteristics to consider if the ML model would be copied
onto devices in a real-world environment.
Table 9 reports the performance of all models. The RBF-SVM, tuned using 5-fold cross-validation to have a

C-value of 100 and a gamma-value of 0.1, outperforms all other models, with the ANN (Version 3) performing
second best. Therefore, these two models are further compared using prediction speed and memory usage.
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Table 9. Performance Evaluation Results

Model Accuracy Precision Recall F1 Score

Null 0.506 0.00 0.00 0.00
LDA 0.678 0.691 0.630 0.659
QDA 0.708 0.748 0.616 0.675

RBF-SVM 0.882 0.889 0.898 0.892
ANNv1 0.830 0.877 0.763 0.816
ANNv2 0.823 0.844 0.786 0.814
ANNv3 0.841 0.849 0.824 0.837

Table 10. Performance Evaluation Results

Model Memory Usage Prediction Time
RBF-SVM 6,714KB 2.17ms
ANNv3 294KB 0.125ms

The ANN performs predictions 2.045ms faster than the SVM on the evaluation machine. The prediction speed is
calculated using a program-based timer that records each ML model’s total time required to predict N test frames
and divided by the N frames. Additionally, the ANN uses 6,420KB less storage than the RBF-SVM. The memory
usage is determined by saving both models to disk and comparing the reported memory usage in kilobytes (KB).
The results of these comparisons are in Table 10.

After a decision analysis, it is determined that the RBF-SVM’s slow and large memory footprint is not worth
the slight improvement in performance compared to the ANN. Therefore, the ANN (Version 3) is used as the ML
model distributed across the constellation of cellphones and integrated into the fusion pipeline.

Compared to related works that have developed ML-based sUAS detection models, the model performs worse
than some models that use much higher fidelity audio while performing similarly to others. However, the ANN
uses a low-dimensional representation of the input data (40 Coefficients) and low-fidelity audio (8KHz). Still, it
achieves accurate detection results that are comparable to STFT and spectrogram-based models (e.g., [1] and
[22]) that have a higher-dimensional input representation. This comparison demonstrates that the low-fidelity
audio from commercial-off-the-shelf cellphones can produce high-fidelity sUAS detection models. Next, the ANN
is added to the EVP. The following sub-section discusses the EVP performance results and resiliency results.

5.2 Stage Two: EVP Evaluation
After selecting ANNv3 for implementation within the EVP, ANNv3 is copied to the EVP, and EVP performance is
evaluated. First, we present the EVP hyper-parameter tuning results and then examine the EVP performance,
sub-component, and resiliency evaluation results. Combined, these experiments demonstrate the value of using
an ensemble-based approach for sUAS detection that is resilient against microphone errors and dropout and
capable of making real-time sUAS detection decisions.

5.2.1 Pipeline Hyper-parameter Tuning. The results from tuning the EVP hyper-parameters determine that the
best confidence threshold is 0.90 with a 0.20 voting threshold. Additionally, the PFSM tuning results set the FSM
to 8 states, which means that if the EVP has been predicting Noise, the voting scheme would need to predict sUAS
four consecutive times (1.024s) to change the EVP output prediction. The high confidence threshold signifies
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Table 11. Individual versus Full EVP Performance Comparison (Average across 9 test scenarios)

- Accuracy Recall Precision F1
Individual 0.936 0.623 0.572 0.582
Full EVP 0.926 0.829 0.884 0.846
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Fig. 10. Histogram of EVP F1 Performance on Test Scenarios
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Fig. 11. Histogram of Cellphones’ F1 Performances on Test
Scenarios

that the ML model must make extremely confident predictions to predict the sUAS class (thus reducing the false
positive rate). The values for the confidence level, voting threshold, and PFSM states remain set for the remainder
of the pipeline evaluation process.

5.2.2 EVP Performance Results. Across the nine test scenarios, the EVP outperforms the averaged F1-score of
individual devices by 25%. Additionally, these results show that the ensemble of weak predictors improves overall
sUAS detection. Table 11 shows the EVP results and individual cellphones. Figures 10 and 11 show the histograms
of the F1 performance distributions of all individual cellphones and the EVP in the test scenarios.
Table 12 demonstrates the EVP performance compared to related sUAS detection works. The EVP achieves

comparable detection results while relying on lower-fidelity data from cellphone microphones and is resilient
against individual cellphone errors. Additionally, the EVP is evaluated using unseen testing scenarios recorded in
a real-world testing environment. Thus, the performance results provide a realistic perspective on how the EVP
would perform in the real world.

These results also highlight a few key findings. The first is the performance degradation of the individual
cellphones compared to the initial ML model test-set performance. Although the test-set-split performance
reported in Table 9 suggests that the ANN can achieve an F1-score of 0.837, in real-world test scenarios, the
ANN copied onto the cellphones achieves an average of 0.582 F1-score. The degradation rationale is due to the
variation in training and testset range distributions. Figures 12, 13 demonstrate the sUAS class range distributions
for the training dataset versus the test scenarios. Although all data that is used for training, testing the ML
models, and evaluating the EVP comes from the same data collection, most of the training data frames are at
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Table 12. Performance compared to Related Works

Model Type Features Data Quality Accuracy Precision Recall F1-Score
Jeon [11] RNN MFCC 44.1KHz - 0.7953 0.8066 0.8009
Shi [23] HMM MFCC 44.1KHz 1.00 - - -

Salman [20] RBF-SVM Mult. Feat. Types 44.1KHz 0.9990 1.00 0.9980 0.9990
Seo [22] CNN STFT 44.1KHz 0.8997 0.7938 0.9638 0.8706

Al-Emadi [1] CNN Spectrogram 16KHz 0.9638 0.9624 0.9560 .9590
Casabianca [4] CNN Mel-Spectrogram 44.1KHz 0.91044 - - 0.91747
Kolamunna [13] RNN MFCC 44.1KHz 0.94-0.97 - - 0.96-0.98

EVP ANN MFCC 8KHz 0.926 0.829 0.884 0.846
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Fig. 12. Histogram of Training Dataset sUAS Ranges (sUAS
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Fig. 13. Histogram of Test Scenario sUAS Ranges (sUAS Class)

fixed intervals (30m and 50-60m ranges), leading to a non-uniform distribution in the training dataset. However,
in the continuous nature of the test scenarios, there is a much more uniform distribution of ranges.2
Another key finding that explains the performance variation is the cellphones themselves. Although the ML

model trains on all cellphones, Figure 14 shows the variability in cellphones’ predictions. Eight cellphones fail to
record audio or correct GPS values during test scenarios; thus, they are omitted. Others record audio but have
erroneous results.

5.2.3 Sub-component Comparison Results. We now evaluate the performance improvements after adding sub-
components to the EVP. Table 13 shows the performance of the EVP without the Weighting Function, the
PFSM, or both. These results show that without weighing the EVP votes by the log energy of each cellphone’s
acoustic frame, the EVP makes less precise predictions. Additionally, without the PFSM, the EVP makes less
stable predictions, decreasing performance. Without either sub-component, the ensemble voting scheme slightly

2A large variety of data augmentation techniques were used to try and reduce this variation in performance (pitch-shifting training data,
amplitude-shifting training data, and supplementing additional audio from online sources) [13]. However, all augmentation techniques did
not improve EVP (tested using QDA, SVM, and ANN) performance in the evaluation scenarios. We suspect this is caused by the variation in
internal microphones and the low-fidelity data provided.
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Table 13. Sub-component Performance Comparison (Average across test scenarios)

Weighting FSM Accuracy Recall Precision F1
N Y 0.868 0.512 0.969 0.649
Y N 0.902 0.809 0.813 0.806
N N 0.877 0.537 0.976 0.681
Y Y 0.926 0.829 0.884 0.846

improves the performance. Combined, these results demonstrate the value of the weighting function and PFSM
in the EVP.

5.2.4 Resiliency Evaluation Results. The EVP resiliency results are now presented. We first demonstrate the EVP’s
performance despite cellphone dropout and then examine the EVP’s performance despite erroneous predictions.

Figure 15 presents the F1 performance of the EVP when cellphones are disabled. This figure demonstrates that
cellphone dropout (which in a real-world scenario could be caused by software errors or malicious destruction of
sensors) does not cause a significant decrease EVP performance. The EVP can withstand cellphone dropout and
make accurate sUAS detection predictions for the constellation. Even with the loss of 10 unusable cellphones, the
F1 performance only degrades slightly below 0.75.
Likewise, Figure 16 demonstrates that EVP performance remains resilient when up to two of the predicting

cellphones consistently make incorrect predictions. In contrast, the average F1-score of individual cellphones
linearly decreases as the number of incorrect predictors increases. However, three incorrectly predicting cellphones
severely decrease the EVP performance. This critical point can be explained using the Bernoulli Trial equation,
seen in Equation 11. Assuming the mean number of sUAS detecting cellphones during any given sUAS labeled
0.256ms frame is six and the mean number of cellphones within a test scenario is 17, three mispredicting devices
suggest that roughly one out of six devices is likely mispredicting. Assuming cellphones detect sUAS with 66%
balanced accuracy and a simple majority of these devices are required to predict sUAS, this yields a 47.5% detection
rate. Thus, performance degradation rapidly occurs as the probability of detection decreases beyond 50% (i.e., the
number of mispredicting cellphones approaches the number of detectable devices for a truth-labeled sUAS frame).
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Fig. 15. EVP Performance Despite Cellphone Removal
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Fig. 16. EVP Performance Despite Erroneous Predictors

𝑃 (𝑛 ≥ 3) =
6∑︁

𝑛=3
6𝐶𝑛 · 0.65𝑛−1 · 0.35 · 0.356−𝑛 = 0.475 (11)

These results show that the EVP performs with an average F1-score of 0.846, which rivals other sUAS detection
works that require high-fidelity audio sensors and have achieved limited testing in real-world environments.
Additionally, our methods can remain accurate when up to two sensors consistently make incorrect predictions
or when six cellphones are disabled during the test scenarios. Overall, these results suggest the value of using
low-fidelity sensors to achieve both accurate and resilient sUAS detection.

6 CONCLUSION
sUAS pose a dangerous threat from state and non-state actors that demand that easily accessible and fault-tolerant
sensing methods be developed to match the low-cost and available nature of sUAS. This article presents a novel
cellphone acoustics-based sUAS detection method, Ensemble Voting Pipeline. The proposed, tested, and evaluated
EVP produces accurate sUAS detection results with acoustics data from cellphone microphones. The pipeline is
composed of an ML model copied across all cellphones and three additional sub-components (Ensemble Voting
Scheme, weighting function, and an erroneous prediction FSM). Using nine real-world test scenarios, the pipeline
achieves an average F1-score of 0.846 sUAS detection which outperforms the performance of individual cellphones’
average F1-score of 0.582. These results confirm the overall research hypothesis that using the EVP with the
distributed cellphone sensor network allows for improved sUAS detection compared to individual cellphone
microphones and is resilient against sensor disruptions and errors. These results demonstrate the EVP’s ability to
achieve resilient and accurate sUAS detection while remaining scalable, fault-tolerant, and not having a single
sensor point of failure. In turn, these methods can provide resilient airspace awareness in real-world settings that
suppress the threat of sUAS in sensitive areas.

6.1 Future Work
Future work anticipates re-collecting data with more standardized devices and higher fidelity audio to try and
mitigate this issue. However, the inaccurate nature of the cellphones helps to demonstrate further the power of
an ensemble-based detection methodology that is resistant to individual errors by any single predictor.
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ABSTRACT
Small Unmanned Aircraft Systems (sUAS) are accessible platforms
that pose a security threat. These threats warrant affordable and ac-
curate methods for tracking sUAS. We apply neural network-based
methods to predict sUAS range from cellphone acoustic recordings;
the data comes from twenty-eight cellphones recording three differ-
ent sUAS that fly over the devices. The timestamped acoustics data is
transformed into 0.5s Mel-spectrograms frames and 0.5s raw audio
frames. Truth values are calculated using euclidean distance from
the sUAS to a cellphone and split into four range classes. The data
is sequestered into an 80/20 training-test split and is used to train
three different architectures. The 2DCNN architecture outperforms
the other architectures (1DCNN and 2DCRNN). The 2DCNN is then
re-trained to generalize sUAS range with various sUAS models and
achieves an average Macro-F1 score of 0.7492 across different sUAS
models. The results show that deep-learning-based sUAS ranging
with cellphones is an effective and low-cost method for accurately
tracking sUAS.

Index Terms— sUAS Ranging, Deep-Learning, Acoustics Pro-
cessing, Sound Source Tracking

1. INTRODUCTION

The accessibility of small Unmanned Aircraft Systems (sUAS)
presents significant security risks to the public and military opera-
tions. In 2017, a Canadian passenger jet collided with a hobbyist
drone, causing damage to the wing and risking passenger lives [1].
In the Russian-Ukraine Conflict, sUAS played a significant role in
reconnaissance collection and artillery attacks [2]. The low pro-
file and highly accessible nature of sUAS demands sUAS defense
strategies that are affordable, scalable, and accurate. Although other
more expensive tracking methods exist, this effort attempts to use
affordable and scalable sensing devices to counter the ubiquitous
nature of sUAS. These methods can be used to protect, defend, and
track sUAS throughout restricted airspace.

This research investigates how cellphones can provide sUAS
tracking capabilities by estimating the sUAS range from a mobile
device’s microphone. sUAS emit sound from the rotating motors
and propellers that produce lift and velocity. Sound is generated,
resulting in a fundamental frequency (or frequencies) between 0-
2kHz range and its harmonics [3]. Additionally, the physical vi-
bration of sUAS produces additional acoustic noise, which tends to

∗The views expressed in this document are those of the author and do
not reflect the official policy or position of the United States Air Force, the
United States Department of Defense or the United States Government. This
material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

be at high frequencies (3KHz-4KHz) [4]. We use four datasets of
recorded sUAS flights, named after the recorded sUAS, with cor-
responding range truth data: IF, Matrice, Phantom, and Combined.
Combined is the superset of the single sUAS datasets. A portion of
the single sUAS datasets is sequestered for evaluation later. The
acoustics data converts into 0.5s Mel-spectrogram format for the
2-dimensional models and 0.5s raw audio for the 1D model. The
2D convolutional neural network (2DCNN), 1D convolutional neu-
ral network (1DCNN), and the 2D convolutional recurrent neural
network (2DCRNN) are each trained from Combined. The best-
performing architecture is then re-trained using all four datasets and
evaluated on three sequestered testsets. The hypothesis is that the
2DCNN is the best-performing architecture and can achieve greater
than 70% balanced accuracy on all testsets. Additionally, we hy-
pothesize that the 2DCNN trained using Combined outperforms each
model trained from only a single sUAS dataset and can achieve an F1
score over 80% when an sUAS is within 40m. The additional metric,
within 40m, is chosen because a cellphone needs to recognize when
an sUAS is close to a sensor and in high-threat airspace.

Although other researchers have achieved accurate sUAS local-
ization results from high-fidelity acoustic arrays, this research con-
tributes a method to locate sUAS from low-fidelity acoustic sensors
within cellphones that is scalable and accurate. The paper is orga-
nized as follows: Section 2 presents related sUAS tracking research.
Section 3 offers the research methodology and model architectures.
Lastly, Section 4 provides the results.

2. RELATED WORKS

Researchers commonly employ two acoustics source localization
methods: Direction of arrival (DoA) and time difference of arrival
(TDoA) [5]. DoA is calculated using multiple signal classification
(MUSIC). TDoA is calculated using generalized cross-correlation
(GCC) and can produce highly accurate localization results for
systems with multiple nodes [6]. Researchers have proposed us-
ing deep-learning to supplement TDoA calculation; however, these
techniques require fixed sensor locations [7]. A summary of sUAS
localization efforts follows.

Sedunov et al. developed an sUAS detection and localization
system using a collection of acoustic arrays [3]. Each array consisted
of 15 custom-built microphones, and the arrays were spaced at a dis-
tance of 80-120m. The researchers applied the Steered-Response
Phase Transform (SRP-PHAT) to produce the direction-of-arrival
(DoA). Sedunov et al. achieved an average 4.7 degree DOA pre-
cision and 200m range.

Kyritsis et al. developed an sUAS localization technique us-
ing DoA estimation from a four-element acoustic array [8]. The



researchers determined that the maximum detectable range of the
sUAS in a rural environment was 77m and that they could achieve
accurate DoA estimation (≤ 5◦).

Additionally, previous contributions have investigated sUAS
ranging with a high-fidelity microphone. These efforts used high-
quality recording equipment with relatively large bit depths and
sample rates to achieve accurate sUAS range estimation [9, 10, 11].

Although limited, previous efforts on sUAS localization rely on
sophisticated acoustic sensors and arrays to produce impressive re-
sults. In contrast, this research is the first effort to estimate sUAS
range from ordinary cellphones void of sophisticated microphones.
Furthermore, we introduce a machine learning method to estimate
sUAS location without explicitly calculating TDoA or DoA.

3. METHODOLOGY

This section describes a novel method to estimate sUAS range with-
out requiring statistical methods like TDoA or DoA. These meth-
ods provide a deep-learning network capable of estimating sUAS
range from a single acoustic device (i.e., a cellphone). This contribu-
tion enables constellations of cellphones to provide persistent sUAS
awareness without being limited to fixed, high-fidelity acoustic sen-
sor configurations. We first state our research assumptions; then ex-
amine the dataset used. We then explain the features extracted as
the inputs to the networks and the deep-learning models used in the
experiments. Finally, we present an overview of the experiment de-
sign and objectives demonstrating that cellphone-based sUAS range
estimation is achievable with a deep-learning-based approach.

This research makes the following assumptions.

• sUAS targets have different acoustic signatures

• sUAS acoustic signatures change in predictable ways depend-
ing on the range that their acoustic emissions propagate

• Accuracy decreases with an increase in environmental noise

• 80m is the maximum detection range for an sUAS

Three sUAS flight scenarios source the datasets. There are ten
hover passes, 36 short passes, and 19 long passes. The sUAS fly
at 100ft AGL (above ground level) for each flight, move between
10-20 kn, and fly directly over the sensor constellation during every
pass. The sensor constellation contains three clusters of cellphones
that span a range of approximately 300m. In hover flights, an sUAS
hovers at 33m. In short flights, a single sUAS flies in a straight line
for 410m. Lastly, in long flights, an sUAS flies 1.5km across the
constellation of cellphones. The entire data collection is conducted
at an active airfield; thus, environmental noise (i.e., propeller noise
from airplanes) is present throughout all the data.

Twenty-eight cellphones are positioned across the sUAS flight
path. The cellphone positioning ensures that the sUAS range is gen-
eralized for varying doppler effects, internal microphones, and de-
vice orientations. The phones capture acoustic data using RedVox,
a multi-modal data collection tool [12]. RedVox records acoustic
data with microsecond granularity. All acoustic data is sampled at
8KHz and converted to audio (i.e., .wav) files. Table 1 displays the
cellphone and app configurations.

The cellphones collect acoustic data for three different sUAS:
Inspired Flight 1200 [13], DJI Matrice 600 [14], DJI Phantom 4 Pro
[15]. These sUAS differ in shape, weight, and acoustic signatures.
The DJI Phantom 4 flies short and long flights, the Inspired Flight
flies hover and short flights, and the Matrice flies hover, short, and
long flights. Therefore, the range distributions across each sUAS
vary slightly.

20%
 Split

Compare 
Performance

Combined Dataset

Train 

Evaluate

20% Split

IFTrain 
best 

model

Best performing model

Phantom Testset

IF Testset

Matrice Testset

2DCNNCRNN1DCNN

2DCNNCRNN1DCNN

Validation Set

PhantomMatriceIF

IF Phantom Combined

IF Testset Matrice Testset Phantom Testset

Matrice

ML Model

Dataset

Action

Key

Experiment #2

Experiment #1

Fig. 1. Methodology Flow Diagram

Table 1. Sensor Configuration
Device Count 13 Apple Iphones

15 Samsung Androids
Apple App Version V4.0.2.4

Android App Version V3.3.1.2
File Type Red Vox API 1000

Audio Format PCM Floating Point

This research uses four datasets. Each dataset contains 0.5s raw
audio samples and a range class for that given frame. Although
frame length is fixed for this effort, we expect the sUAS range truth
data to become more ambiguous as frame length per sample in-
creases. Therefore, an increase in frame length would likely cause a
decrease in classification performance. The first three datasets con-
sist of flights flown by each sUAS model, the Inspired Flight 1200
[13], DJI Matrice 600 [14], and DJI Phantom 4 Pro [15]. Each of
the three individual sUAS datasets has a 20% testset split that is se-
questered before training. To maintain evaluation integrity, the train-
ing data of Combined exclusively contains the training data from the
three other datasets (and vice versa for test data). The truth data is
separated into four classes by distance in meters: y ≤ 40 (Class 0),
40 < y ≤ 60 (Class 1), 60 < y ≤ 80 (Class 2), or y > 80 (Class
3). These classes are chosen to represent valuable proximity dividers
for an sUAS in flight. If an sUAS is over 80m away, the cellphone
receives little to no acoustic noise from the sUAS. However, if an
sUAS is directly above a cellphone, the distance is less than 40m
away (all flights are conducted at an altitude of 33m). Truth data
within two meters of the class separations are removed to account
for sUAS movement within the 0.5s frames. Table 2 provides class
breakdown and dataset sizes.

The research effort conducts two experiments to evaluate if
sUAS range estimation is achievable with convolutional deep-
learning networks. These methods are outlined in the methodology
flow diagram in Figure 1. The methodology depicted is as fol-



Table 2. Dataset Sizes and Class Distributions
Dataset <40m 40-60m 60-80m >80m Total Time

IF 590.5s (40.5%) 250.5s (17.2%) 187.5s (12.9%) 429.5s (29.4%) 1458s
Matrice 1929.5s (37.6%) 657s (12.8%) 1048.5s (20.44%) 1493s (29.0%) 5128s

Phantom 1045s (25.7%) 850s (21.0%) 676s (16.7%) 1485.5s (36.6%) 4056.5s
Combined 3565s (33.5%) 1757.5s (16.5%) 1912s (18.0%) 3408s (32.0%) 10,642.5s

lows. Prior to the first experiment, a 20% testset is taken from each
dataset. Then, Experiment One is conducted. The first experiment
determines which model architectures best classify sUAS range from
the Combined dataset. This experiment uses Combined as the base-
line dataset to train and evaluate the 2DCNN, 2DCRN, and 1DCNN.
Each architecture’s score is reported in terms of macro F1-score, the
arithmetic mean of each class’s F1-score, which is a combination
of recall and precision ( TP

TP+ 1
2
(FP+FN)

). Three different model

architectures are used throughout the experimentation process. The
first is a 2DCNN, a specific type of neural network that has shown
particular strength in sUAS acoustics tasks [16, 17]. The second
architecture is a 2DCRNN, which has shown promise in various
sound localization tasks and combines the strengths of a CNN with
the temporal memory of recurrent neural networks [18, 19]. The
last architecture is a 1D convolutional neural network (1DCNN). A
1DCNN exhibits similar performance compared to RNNs in various
time series prediction tasks; however, a 1DCNN trains in a fraction
of the time. 1DCNN is chosen for this research effort as it is much
more computationally efficient to train than other RNN architectures
while achieving positive results in raw audio classification problems
[20].

The model architectures have different input formats. The
2DCNN and 2DCRNN receive data input in Mel-Spectrogram
format, whereas the 1DCNN has raw formatted input. The Mel-
spectrogram represents raw acoustics data in the frequency domain
while preserving the time-domain. In line with previous research
efforts [18, 21], Librosa, [22], converts the 0.5s raw acoustic frames
as input into the 2DCNN and 2DCRNN. Each data frame size is
8x128, which contains 128 Mel-frequency bins with an FFT length
of 2048 and a hop length of 512. However, the 1DCNN input is raw
0.5s audio clips (4000x1 array); thus, the data is not transformed
into the Mel-Spectrogram form before inputting into the network.
A 20% validation set split is used to determine the best-performing
architecture. All architectures’ validation results are compared to a
naive alternative in which the model predicts the majority class in
the training dataset. The architecture with the highest validation set
performance is selected for Experiment Two.

Tables 3, 4, and 5 display the three model architectures; each
layer of the respective networks is ordered sequentially from top to
bottom. The convolution layers in the model architecture tables are
represented by (number of filters)@(receptive field). Additionally,
BN stands for batch normalization, which is applied prior to the ac-
tivation function. In the dense layers, the number in the size column
signifies the number of perceptrons within the layer.

Experiment Two determines how accurately the best-performing
model generalizes across the three different sUAS types and eval-
uates if the model meets the hypothesized criteria established in
Section 1. The best model is trained on each of the four datasets,
and then each of the individual sUAS-trained models is compared
to the Combined trained model. Three tests evaluate the testset
performance of each individual sUAS-trained model to the model
trained using Combined. F1 and balanced accuracy (the arithmetic
mean of the recall scores of the four range classes) are used to com-
pare the performance of the deep-learning models. The Individual
sUAS dataset’ testsets are withheld from Combined and preserved

for model evaluation. These tests determine if the model trained us-
ing multiple sUAS models can extract model-agnostic sUAS range
features that enhance the network’s ability to generalize across the
different sUAS models. Additionally, this experiment assesses the
merits of deep-learning-based sUAS ranging with cellphones.

4. RESULTS

Experiments one and two evaluate the research objective of deter-
mining if acoustics-based sUAS range estimation is achievable us-
ing deep-learning. Additionally, these experiments demonstrate if
deep-learning-based sUAS range prediction is generalizable across
multiple sUAS targets. The first experiment reports that the 2DCNN
deep-learning architecture best achieves sUAS range prediction. The
second experiment’s objective is to determine if the 2DCNN model
generalizes sUAS range across various sUAS types and to evaluate
how accurately our model predicts range. Experiment Two also as-
sesses the guiding research hypothesis that a deep-learning model
can achieve over 70% balanced accuracy and an F1 score within 40
meters above 80%.

Table 6 shows the validation set performance of the three model
architectures. The 2DCRNN and the 1DCNN have similar valida-
tion set performance, while the 2DCNN outperforms both other ar-
chitectures. These results confirm the hypothesis that the 2DCNN
is best equipped for sUAS ranging. Thus, the 2DCNN is used in
Experiment Two. The results of the 2DCRNN also confirm that
the dimensionality of the input data does not effectively allow the
2DCRNN to learn time-based dependencies in the Mel-spectrogram.
Other researchers that have developed 2DCRNNs for acoustics deep-
learning have input shapes that are much wider in the time domain
(128x128) [18, 23]; thus, there is much more information available
in the time-domain axis of the Mel-spectrogram. Unfortunately,
the acoustics data used in our experiment has an 8KHz sampling
rate and does not have the time-domain resolution available to re-
searchers with high-fidelity audio. Additionally, the dimensionality
of a 4000x1 audio frame inherently presents challenges that make
machine learning much more challenging than a concise represen-
tation of audio data. From Dai’s paper that developed the 1DCNN
for raw audio, the researchers concluded that, at best, the 1DCNN
performed similarly to a 2DCNN on sound event classification tasks
[20].

Experiment Two evaluates how effectively the 2DCNN gener-
alizes sUAS range across various sUAS models through three dif-
ferent comparisons. The first result of Experiment Two compares
the 2DCNN trained with the IF dataset and the 2DCNN trained with
Combined on the IF testset. Table 7 presents the Balanced Accu-
racy and F1 scores of the two models’ performances. The 2DCNN
trained on Combined improves IF range accuracy across all four
classes. Additionally, massive mispredictions with 2DCNN (Com-
bined dataset) are reduced (e.g., predicting 80m+, but the sUAS is
within 40m). It achieves an F1 score within 40m of 0.90 and a bal-
anced accuracy of 0.824, which is beyond the hypothesized success
thresholds.

The second result compares the 2DCNN trained with the Ma-
trice dataset and the 2DCNN trained with Combined on Matrice test-
set. Table 8 presents the balanced accuracy and F1 scores of the two
models’ performances. The 2DCNN trained with Combined out-
performs the classification capability of the model trained with the
Matrice dataset. It achieves an F1 score within 40m of 0.91 and a
balanced accuracy of 0.793, which exceeds the performance thresh-
olds.

The third result compares the 2DCNN trained with the Phantom



Table 3. 2DCNN Architecture
2DCNN Architecture Size Activation Strides
Input 128x8x1 - -
Batch Norm - - -
2DConv 8@4x4 BN/Relu -
Max Pooling 2x2 - -
2DConv 16@2x2 BN/Relu 2x2
Dropout 0.3 - -
2DConv 32@2x2 BN/Relu 2x2
Dropout 0.3 - -
Flatten - - -
Dense 512 Relu -
Dense 256 Relu -
Dropout 0.5 - -
Output 4 Softmax -

Table 4. 2DCRNN Architecture
2DCRNN Architecture Size Activation Strides
Input 128x8x1 - -
Batch Norm - - -
2DConv 8@2x2 BN/Relu 1x1
2DConv 16@4x4 BN/Relu 3x1
Dropout 0.3 - -
2DConv 32@4x4 BN/Relu 4x1
Max Pooling 12x1 -
Dropout 0.3 - -
Reshape - - -
GRU 32 - -
Dense 64 Relu -
Dropout 0.5 - -
Output 4 Softmax -

Table 5. 1DCNN Architecture
1DCNN Architecture Size Activation Strides
Input 4000x1 - -
1DConv 64@80 BN/Relu 4
Max Pooling 4 - -
1DConv 64@3 BN/Relu 2
Max Pooling 4 - -
Dropout 0.3 - -
1DConv 128@3 BN/Relu -
Max Pooling 4 - -
1DConv 256@3 BN/Relu -
Max Pooling 2 - -
Reshape - - -
GAP 1 - -
Output 4 Softmax -

Table 6. Model Architecture Validation Set Performance
Architecture Input Type Macro F1-Score
2DCNN Mel-Spect 0.72
2DCRNN Mel-Spect 0.63
1DCNN Raw Audio 0.58
Naive - 0.13

Table 7. IF Testset Performance
2DCNN Trained w/ IF Combined
<40m F1 0.89 0.90
40-60m F1 0.69 0.79
60-80m F1 0.65 0.73
80m+ F1 0.82 0.84
Balanced Accuracy 0.769 0.824

dataset and the 2DCNN trained with Combined on the Phantom test-
set. The Balanced Accuracy and F1 scores of the two models’ perfor-
mances are in Table 9. The model does not achieve the performance
goals with an F1 score of less than 0.80 within 40m and a balanced
accuracy score of less than 0.70. This performance degradation is
likely caused by the design of the DJI Phantom. The Phantom is
a small sUAS with low rotor power that yields a smaller acoustic
footprint than the other sUAS have.

Although the 2DCNN trained using Combined only confirms
the hypothesis on two of three sUAS models, there are important
takeaways from the testset performances regarding the generalizabil-
ity of sUAS range estimation and the usefulness of deep-learning-
based sUAS tracking. The first is that sUAS ranging is generalizable
across different sUAS types. The performance increase from train-
ing the model with Combined versus a single sUAS implies that the
2DCNN learns sUAS type-agnostic features in the convolution lay-
ers that improve ranging performance across all sUAS types. This
concept challenges the notion of how humans perceive sound and
further demonstrates the power of using deep-learning to recognize
patterns that are not easily recognizable by human perception. These

Table 8. Matrice Testset Performance
2DCNN Trained w/ Matrice Combined
<40m F1 0.89 0.91
40-60m F1 0.60 0.64
60-80m F1 0.73 0.75
80m+ F1 0.81 0.84
Balanced Accuracy 0.768 0.793

Table 9. Phantom Testset Performance
2DCNN Trained w/ Phantom Combined
<40m F1 0.73 0.72
40-60m F1 0.57 0.60
60-80m F1 0.46 0.52
80m+ F1 0.75 0.75
Balanced Accuracy 0.626 0.647

results demonstrate that deep-learning is an effective method to lo-
calize sUAS with cellphones when presented with low-fidelity data
and a sub-optimal data collection environment. These results imply
that if given a large constellation of cellphones, an sUAS range esti-
mation model distributed across all devices effectively distinguishes
which devices are close (within 40m), moderately close (40-60m),
moderately far (60-80m), and far (farther than 80m) of the sUAS.
Combining the results, the sUAS can be effectively tracked within
the constellation of cellphones. These methods provide an effective
sUAS defense strategy that is de-burdened from relying exclusively
on expensive sensing methods.

5. CONCLUSION

The threat of sUAS by state and non-state actors demands sUAS
countermeasures with equally accessible defense resources. To meet
this need, the research effort develops a deep-learning-based sUAS
ranging method that can be used for sUAS tracking within a constel-
lation of low-cost sensing devices. First, three different model archi-
tectures are trained and the best-performing model, the 2DCNN, is
selected for further testing. Testsets from each of the three individual
sUAS dataset evaluate the performance of the 2DCNN trained using
Combined and the 2DCNN trained on individual sUAS datasets. The
results from this test demonstrate that additional data from various
sUAS help the model better achieve sUAS ranging on each sUAS
model. The balanced accuracies and F1 scores within 40m for both
the IF and Matrice sUAS models are above 0.70 and 0.80, respec-
tively; however, the balanced accuracy and F1 score for the Phan-
tom sUAS are not above either threshold. Despite this, these results
demonstrate that a deep-learning-based approach to cellphone-based
sUAS ranging is attainable and can be employed to track and detect
sUAS without the burden of expensive, immobile sensing resources.
In future efforts, the effects of background noise on classification
performance will be analyzed. Additionally, more complex model
architectures will be explored.
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IV. Conclusions

In this thesis, two efforts use accessible equipment (i.e., cellphone microphones) to

track and detect Small Unmanned Aircraft Systems (sUAS). The first research effort

evaluates the benefits of aggregating sUAS detection predictions from a constellation

of cellphones. Using an Ensemble Voting Pipeline (EVP), persistent sUAS detection is

achieved throughout a noisy, fault-ridden Wireless Acoustic Sensor Network (WASN).

The second effort uses a deep learning model to predict sUAS range using cell-

phone audio data formatted into Mel-Spectrograms. The effort determines that a

deep learning model can predict the sUAS range (across four range classes) with a

macro-F1 score of 0.7492. Additionally, the effort demonstrates that a deep learning

architecture trained with various sUAS models can extract sUAS-agnostic features in

the convolutional layers that enhance predictions on each sUAS.

Combined, these concepts help to enhance the Joint Force’s ability to detect

sUAS threats with inexpensive, accessible sensing equipment. As warfare continues

to evolve, the rapidly developing threats of sUAS require awareness solutions that

are just as agile, replaceable, and effective. Although other sUAS sensing methods

exist, the efforts in this thesis evaluate sensing methods that complement the US’s

more “exquisite systems on stand-off platforms” [11]. Redundant and mobile sensor

systems, such as these, can accelerate the Joint Force towards a future that uses

low-cost edge computing and autonomous technology to keep situational awareness

in adverse environments.

4.1 Future Work

In future work, we desire to investigate the value of inexpensive acoustic sensing

equipment in the sUAS detection, tracking, and classification domain. The work
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in this thesis demonstrates proof-of-concept methods that, if enhanced, could be

employable in the real world to defend against sUAS threats. Additionally, the EVP

developed in this thesis can be trained to detect and recognize more threats than just

sUAS, allowing a sensor constellation to provide resilient battle-space awareness for

air and ground targets (i.e., troop movement, gunshots, and fixed-wing aircraft).

In future efforts, the research accomplished in this thesis will be enhanced in

several ways.

• Conduct a new data collection with standardized omnidirectional microphones

on-board devices (e.g., Raspberry Pis with GPS and microphone hats or cell-

phones with a higher sampling rate). This sensor standardization and re-

collection of data will allow access to higher-fidelity audio data and a larger

variety of different sUAS flights, improving Machine learning (ML) model per-

formance while remaining a low-cost sUAS defense method.

• Investigate the ability of a deep learning model to recognize other sUAS char-

acteristics: azimuth and elevation angle in relation to the sensor constellation,

type of sUAS, or approximate weight of the payload that an sUAS carries. This

effort will improve the specificity of deep-learning-based sUAS localization and

flight characteristics.

• Enhance sUAS detection performance by fusing multi-modal sensors (such as

imagery, radar, or radio frequency sensors). This will improve the resiliency of

predictions in non-optimal sensing environments, as each sensing modality has

inherent strengths that complement one another.

• Integrate the EVP from Effort 1 into a real-world WASN system to enable real-

time sUAS recognition across a large area. This additional effort will turn the

proof-of-concept EVP into a system that the Joint Force can use to further our
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strategic sUAS and sensor objectives.
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Appendix A. sUAS Cluster Estimation

In the main body of work, sUAS tracking is limited to a cellphone-agnostic per-

spective of estimating sUAS range from a cellphone. However, we now present an

additional perspective on sUAS tracking, which uses a deep learning-based early data

fusion approach to estimate which portion of the cellphone constellation is closest to

the sUAS. We develop a 2DConvolutional Neural Network (CNN) that takes the en-

tire constellation’s cellphone audio as the input and predicts which cellphone cluster

is closest to the sUAS at a given data frame. This method is effective in achieving

accurate sUAS location prediction but requires strict assumptions that must be met

to train a neural network. First, the cellphone cluster positions must remain the same

(i.e., cellphones must remain within their cluster). Additionally, the flight path of the

sUAS must cross all three cellphone clusters to have valuable data for model training.

The data used for this research effort comes from the Escape II Data Collection.

All three scenarios, H, SF, and LF, are used because the cellphone cluster membership

remains constant across all three scenarios.

The truth labeling for the neural network is determined by calculating the average

range to the sUAS from all cellphones within each of the three cellphone clusters. The

range from each cellphone to the sUAS is already known due to work conducted in

“sUAS Ranging: A Deep Learning Approach,” so calculating which portion of the

constellation the sUAS is a trivial task. The target values for the network take

on three possible values, each mutually exclusive, representing the cellphone cluster

that the sUAS is closest to. Figure 3 shows a visualization of the class boundaries,

which depicts the class separations between the clusters with blue lines. Additionally,

Figure 4 depicts the class distribution of the three clusters. The data distribution is

unbalanced because the H scenario takes place on top of cluster class two, and the

middle cluster, cluster 1, is only the closest to an sUAS when the sUAS is in transit
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over top of cluster 1. In training and score reporting, the class unbalance is accounted

for by adding class weight penalties to the neural network training and reporting all

scores in distribution-agnostic measures (e.g., balanced accuracy).

The data is formatted in a 28-channel deep, Mel-Spectrogram format, with 0.5s

frames (4000 samples) that have a hop length of 512 samples, Fast Fourier Transform

(FFT) length of 2048 samples, and overall dimensionality of 28x128x8. Additionally,

the three clusters are grouped within the input data; thus, all cluster 1 cellphones are

in channels 0-7, cluster 2 cellphones are in channels 8-15, and cluster 3 cellphones are

in channels 16-27. This data is then fed into a 2-dimensional CNN.

The CNN architecture is created to demonstrate that an early data fusion ap-

proach to sUAS ranging is possible; thus, the model is not tuned and evaluated to

the same levels of rigor as the primary research efforts. However, it follows a similar

structure to the other neural networks built throughout this research effort. Table 2.

Flight Path
Cluster #1
Cluster #2
Cluster #3

200 m

Figure 3: Early Data Fusion Approach Class Separation
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Figure 4: Early Data Fusion Class Distribution

displays the model architecture.

The model is tested using a 20% test-set split that is partitioned before model

training. After training the model, the testset evaluation yields 96.29% accuracy

across the three cluster classes and a balanced accuracy score of 94.39%. Figure 5

displays the confusion matrix of the predictions. These results demonstrate that the

model can determine where an sUAS is in relation to the three distinct cellphone

clusters. Although not as precise as methods such as Time Difference of Arrival

(TDoA), the model accurately determines sUAS location relative to the constellation

of devices.
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Table 2: Early Data Fusion Neural Network
2DCNN Architecture Size Activation Strides
Input 28x128x8x1 - -
Batch Norm - - -
2DConv 8@3x3 BN/Leaky Relu -
2DConv 16@3x3 BN/Leaky Relu 2x2
2DConv 32@3x3 BN/Leaky Relu 2x2
Dropout 0.3 - -
Flatten - - -
Dense 256 Leaky Relu -
Dense 128 Leaky Relu -
Dropout 0.5 - -
Output 3 Softmax -

C
lu
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 #
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lu
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er
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Figure 5: Early Data Fusion Confusion Matrix
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Appendix B. sUAS Range Estimation: A Regression
Approach

In Chapter III, sUAS range estimation is split into four range classes. However,

prior to shifting to a multi-class classification approach for sUAS range estimation,

we first designed a regression output layer for the CNN, as this seemed like a valid

method for training the network.

The ML model design and the data used to train the regression model are a

modified version of the Combined dataset from ”Cellphone-Based sUAS Range Esti-

mation: A Deep Learning Approach.” The dataset only contains ranges up to 100m

as distance estimations become ambiguous when an sUAS is not detectable. Addi-

tionally, a 20%-split is taken from the dataset to be used as a testset. Although

class imbalance is an issue for training the network when presented as a multi-class

classification model, it is even more apparent in the continuous domain. Figure 6

demonstrates the dataset data distribution which is (roughly) a three-peaked normal

distribution. The non-uniformity of the data causes severe issues that result in the

machine learning performance degradation of the regression model. These issues are

now highlighted via an ML model comparison between a regression 2-Dimensional

Convolutional Neural Network (2DCNN) and the multi-class classification 2DCNN

used in “Cellphone-Based sUAS Range Estimation: A Deep Learning Approach.”

The regression 2DCNN is trained using the modified Combined dataset and a

loss function of Mean Squared Error (MSE). After training, the regression model is

evaluated using the testset. These continuous valued predictions are then converted

into pseudo-range classification bins to compare the regression model performance to

the 4-class classification model performance.

Figures 7 and 8 demonstrate that the regression model performs significantly worse

than the multi-class classification model. This is likely because to minimize loss, the
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regression model is driven to a local minimum that makes conservative predictions

(i.e., class 2 or class 3). The training data has a distribution with an average value of

around 60m, and the network is driven to make conservative predictions to minimize

MSE. If presented with a more even distribution of training data and high-quality

audio, a regression network would likely outperform the capabilities of the multi-

class classification network. However, this exploration demonstrates that due to the

dataset constraints, a regression model is insufficient for estimating sUAS range.
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Figure 6: Combined Dataset Distribution
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