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Abstract

This research investigates the utility and expected performance of a robotic servic-

ing CubeSat. The coupled orbit-attitude dynamics of a 6U CubeSat equipped with a

four-link serial manipulator are derived. A proportional-integral-derivative controller

is implemented to guide the robot through a series of orbital scenarios, including

rendezvous and docking following ejection from a chief spacecraft, repositioning the

end effector to a desired location, and tracing a desired path with the end effector.

Various techniques involving path planning and inverse differential kinematics are

leveraged. Simulation results are presented and performance metrics such as settling

time, state errors, control use, and system robustness are analyzed. Recommended

improvements to the system design and the model are discussed.
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13 Scenario 1: Base torque profile for ẏ0 = −2 m/s . . . . . . . . . . . . . . . . . . . . . 52
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COUPLED ORBIT-ATTITUDE DYNAMICS AND CONTROL OF A CUBESAT

EQUIPPED WITH A ROBOTIC MANIPULATOR

I. Introduction

1.1 Motivation

The proliferation of low Earth orbit (LEO) and the expansion of national space

architectures into the cis-lunar domain necessitates the advancement of space robotics

for a variety of missions [1, 2]. Robotic systems with varying degrees of autonomy are

necessary for in-space manufacturing and assembly, on-orbit servicing, and mainte-

nance of human exploration spacecraft, which are critical mission areas in the creation

of a permanent presence in space, on the Moon, and eventually on Mars. In recent

years NASA has matured automation and robotics technologies in support of these

mission areas [3, 4, 5, 6].

A particular concept of interest is the use of small robotic spacecraft for on-orbit

servicing missions. Small satellites, or smallsats, typically defined as those with less

than 600 kg of mass, are generally faster and cheaper to build as they can increas-

ingly leverage commercial-off-the-shelf (COTS) components. Launch opportunities

for smallsats have also increased with numerous commercial start ups entering the

market in recent years. Smallsats can therefore be proliferated in orbit and replaced

frequently as technology improves.

Smallsat capabilities have continued to improve in recent years with countless

COTS options for both fully integrated buses and for each subsystem [7]. The use

of smallsats has also increased dramatically over the last decade. Nearly 40% of all

1



smallsats launched between 2010 and 2020 were launched in 2020, where 94% of all

spacecraft launched into orbit were smallsats, accounting for 43% of the total upmass

[8]. While the surge in smallsats is largely attributable to commercial broadband

constellations in LEO, smallsats are used for a variety of missions including remote

sensing, science, and technology demonstration.

Very large satellites, or space stations, could benefit significantly from small

robotic servicing spacecraft as routine maintenance is typically necessary, especially if

these systems could alleviate the burden on astronauts having to perform risky space-

walks. Small free-flying spacecraft could offer significant power savings, increased

mobility, and could potentially access more regions of the space station compared to

existing robotic systems on the International Space Station (ISS). For example, the

Space Station Remote Manipulator System (Canadarm2) is 17 m in length, has a

mass of 1,497 kg, and must be attached to a power and data grappling fixture on

the exterior of the Station [9]. Similarly, the Special Purpose Dexterous Manipulator

(SPDM), also known as Dextre, draws an average power of 600 W with a peak of

2,000 W, and has a stopping distance of nearly 6 inches [10]. Therefore, a small

free-flying satellite may be better suited to perform delicate maintenance tasks.

CubeSats are a particular subset of smallsats that have gained popularity over the

last several years. With their standardized form factors, CubeSats can be designed,

built, and launched very quickly and can leverage a wealth of COTS subsystems.

Historically, CubeSats have been mostly used for academic purposes due to their

relative simplicity and low cost. However, enabled by the miniaturization of critical

space technologies, current and future CubeSat missions demonstrate their increasing

capability and utility.

NASA, as part of the Artemis program, plans to launch two CubeSats into lunar

orbit ahead of the Lunar Gateway module. The Lunar Flashlight mission will search

2



for ice deposits at the Moon’s south pole with a pulsed laser sensor on a 6U Cube-

Sat [11]. The Cislunar Autonomous Positioning System Technology Operations and

Navigation Experiment, or CAPSTONE, will measure the amount of fuel needed for

station-keeping in the intended orbit of the Lunar Gateway using a 12U CubeSat [12].

Both missions will leverage advancements in CubeSat propulsion systems. Research

conducted by the United States Naval Academy aims to demonstrate a 3U robotic

servicing CubeSat in the interior of the ISS [13, 14]. Other research efforts investigate

the use of CubeSats for asteroid sampling missions [15]. These missions demonstrate

the increasing capabilities of CubeSats.

In light of the need for autonomous robotic servicing technology and the potential

benefits of using smallsats for this mission, the question remains as to how small a

useful robotic servicing satellite can be. Can a CubeSat be used for robotic servicing?

NASA’s 2020 Small Spacecraft Technology State of the Art report identifies mission

modelling and simulation as a burgeoning area in the field of small satellite research

that requires further development [7]. This research models a notional robotic servic-

ing CubeSat and simulates the system in a series of mission scenarios to determine

its feasibility.

1.2 Problem Statement

This research aims to determine the feasibility of a robotic servicing CubeSat by

analyzing the expected performance of a notional system. In order to complete the

analysis, high fidelity, coupled orbit-attitude dynamics of the system are derived, and

the nonlinear relative orbital dynamics with respect to a chief spacecraft are modelled.

A controller is implemented to regulate errors of the nonlinear system.

The main challenge faced by a CubeSat with a robotic manipulator is the high

degree of coupling between the manipulator and base motion. Additionally, CubeSats

3



have relatively small propulsive capabilities. To address these challenges, this research

focuses on the following questions.

Given the state of the art in CubeSat propulsion and attitude determination and

control (ADACS) subsystems,

1. can a CubeSat successfully rendezvous and dock with a client spacecraft using

standard control methods?

2. can a CubeSat robot stabilize its base as the manipulator performs various

maneuvers?

3. can a CubeSat robot perform various tasks with its manipulator within accept-

able levels of error?

In modelling, simulating, and analyzing a notional system this research answers

the question of whether or not a robotic servicing CubeSat is feasible, and estimates

the performance of such a system. This research can also advise the mechanical design

of a future CubeSat robot as well as its trajectory planning and control strategies.

This work presents a significant contribution as many studies related to rendezvous

and proximity operations (RPO) use linear equations of motion [16, 17], or rely on

linearization techniques for control [18, 19]. Many studies also treat the orbital refer-

ence frame as inertial, since the duration of engagement scenarios tends to be short

relative to orbital periods, and the robot typically operates in very close proximity

to the serviced satellite [18, 20]. Several studies dealing with the trajectory planning

and control of space robotics systems focus on novel kinematic control methods and

thus ignore system dynamics altogether [13, 21]. The treatment of gravity in the

dynamics of multibody systems is inconsistent and often not thoroughly addressed.

This work addresses gravity directly through Kane’s Method by applying a Newtonian

gravitational force to each rigid body in the system. Finally, few studies that derive
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the dynamics of free-flying satellites with robotic manipulators focus on CubeSats

[19, 22], where the high degree of coupling between the manipulator and base motion

presents a unique challenge. This work applies well known methods of control to

demonstrate the feasibility of a novel system: a CubeSat with a robotic manipulator.

1.2.1 Research Scope and Assumptions

The notional system used in this research is a 6U CubeSat with a four-link serial

manipulator. Justification for this choice and for other characteristics of the system

is provided in Chapter III. The methods used in this research can be applied to

alternative system designs, but the results are specific to this system.

It is assumed that the propulsive capabilities of CubeSats limit their utility to close

proximity operations. In other words, CubeSats cannot rapidly perform large orbital

maneuvers to rendezvous with an arbitrary client spacecraft. Therefore the mission

scenarios simulated assume that the CubeSat robot begins in close proximity to the

client, eliminating the need for large translational maneuvers. However, the Keplerian

orbital motion of both the client and the CubeSat robot is fully incorporated in all

simulations. Orbital perturbations are ignored.

This research is limited to the case of servicing a cooperative target. Some robotics

missions, such as grappling a tumbling debris object or others involving large loads

on the manipulator, are clearly not suited to a CubeSat system. Therefore the client

in all scenarios is assumed to be three axis stabilized with no propulsion.

This research is limited to servicing spacecraft in Earth orbit. All mission scenarios

involve a client spacecraft in LEO, specifically the orbit of the ISS. Alternative Earth

orbits can be simulated, including highly eccentric orbits and those in different orbital

regimes. To investigate servicing missions in orbits much higher than GEO would

require a higher fidelity gravity model that incorporates the Moon.
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The dynamics of the CubeSat robot ignores contact forces on the manipulator.

The model only incorporates the coupled orbit-attitude motion of the CubeSat in the

free-flying case. Contact forces are an essential part of the dynamics in an on-orbit

servicing mission, and understanding the magnitudes of forces and torques capable of

being imparted by the manipulator is necessary to determine the types of servicing

missions the system is suited for. However, the ability to control motion in the free-

flying case is prerequisite to performing a servicing mission with physical contact, and

therefore this research is a necessary step in determining the feasibility of the system.

Finally, state estimation is not incorporated in the model and simulations. The

system has perfect knowledge of both its own state and that of the client. Any

spacecraft requires state estimation to perform its mission, especially those involving

RPO. Estimation is even more crucial for a robotics mission as trajectory planning

for the manipulator depends heavily on its configuration. The accuracy and precision

of the manipulator motion is likely determined by that of the state measurements.

Therefore estimation and sensors should be incorporated in future high-fidelity system

models. This research focuses solely on the system dynamics, motion planning, and

well-established methods of control. However, the robustness of the controller is

investigated by injecting random disturbance forces into the feedback control loop and

observing the system response. The incorporation of contact forces to the CubeSat

robot and state estimation are necessary future improvements to the model that are

discussed, along with other recommended follow-on research efforts, in Chapter V.

1.3 Organization of the Thesis

This research investigates the performance of a 6U CubeSat robot through a

series of representative orbital scenarios to determine the feasibility of such a system.

Chapter II presents, in greater detail, past and current robotics missions in space,
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along with present research in the field. It also introduces a requisite level of technical

information to understand the research methodology.

Chapter III details the CubeSat robot system used in the model, and outlines the

process of deriving the system dynamics. The simulation framework is thoroughly

described, including the dynamics, calculation of the relative states and state errors,

and the controller. Each scenario simulated is explained in detail, including the initial

states and the scenario objectives. The full simulation campaign is also explained.

Performance metrics used for each scenario are listed.

Chapter IV presents the results of the simulations and the analysis of the data

collected. The performance metrics and other relevant summarizing statistics are

presented and discussed. The effects of both the system design and the scenario as-

sumptions on the results are explored. Additional results are provided in Appendix A.

The thesis concludes with chapter V which summarizes the research conducted and

provides recommendations for improving the system design and the model. Beneficial

follow-on research efforts are also discussed.
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II. Background and Literature Review

This chapter begins with a summary of past and present robotics missions in space

to understand the conventions in the field and the state of the art. Current research

in the field as published in various conference proceedings and journal articles is then

discussed to determine the contributions of this research to the body of knowledge.

Specialized topics involving multibody kinematics, dynamics, and trajectory planning

are presented to prime the reader for the research methodology in Chapter III.

2.1 Past and Present Missions

Several robotic systems have already been demonstrated on orbit. The Japanese

Space Agency launched the Engineering Test Satellite VII (ETS-7) in 1997 and suc-

cessfully demonstrated an autonomous rendezvous and docking. ETS-7 also per-

formed several other tests that validated theoretical techniques for robot trajectory

planning [23]. The Shuttle Remote Manipulator System (SRMS), also known as

Canadarm, operated in space for over 25 years and was instrumental in the capture

and repair of numerous satellites, remote inspection of the Shuttle prior to re-entry,

and construction of the ISS in cooperation with its successor, Canadarm2 [24]. The

latter is still used on the ISS today for routine maintenance and capturing of unpiloted

cargo ships. The SPDM is another ISS platform that performs maintenance missions

on the exterior of the Station that require dexterity and precision. The SPDM has 15

degrees of freedom (DOF) and four interchangeable servicing tools [10]. It can work

in tandem with the Canadarm2 to reach different areas of the ISS, and is part of

NASA’s ongoing Robotic Refueling Mission (RRM), designed to mature technologies

needed for on-orbit refueling of satellites [3]. Both the Canadarm2 and Dextre are

teleoperated, either by astronauts inside the ISS or by operators on the ground.
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The interior of the ISS has also served as a valuable testbed for free-flying robotics

technology. The Synchronized Position Hold Engage and Reorient Experimental

Satellites (SPHERES) are a series of miniature satellites that operate in the interior

of the ISS and are used to test metrology, formation flying, rendezvous and docking,

and autonomy algorithms [25]. Astrobee, the successor platform to the SPHERES

with the same mission, comes equipped with electric fans for maneuvering and perch-

ing arms for grasping handrails to conserve energy while stationary. The Astrobee

platform will be used to test novel concepts such as automated assembly in the pres-

ence of obstacles and uncertainties [19], and thrust-free maneuvering through robotic

spacecraft “hopping” [22].

In a 2007 mission established by the Defense Advanced Research Projects Agency

(DARPA) named Orbital Express, a spacecraft equipped with a six DOF robotic arm

demonstrated autonomous propellant transfer between spacecraft, replacement of a

battery module and backup computer, and rendezvous in LEO [26].

Many more missions involving space robotics are in the planning and development

stages. NASA’s On-Orbit Servicing, Assembly, and Manufacturing (OSAM) 1 satel-

lite, previously known as Restore-L, plans to rendezvous, grasp, and refuel Landsat

7, thereby extending its mission life. The OSAM-1 satellite will also host the Space

Infrastructure Dexterous Robot (SPIDER), which will assemble a functional, three

meter communications antenna, as well as a 10 meter lightweight beam to demon-

strate the ability to assemble large structures in orbit [4, 6]. The OSAM-2 mission

will take this concept one step further by assembling two 10-meter beams that will

unfurl functional solar panels [27].
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2.2 Present Research

Despite the progress made over the past several decades in space robotics, the

kinematics, dynamics, and guidance, navigation, and control (GNC) of free-flying

satellites with robotic manipulators remains a heavily researched topic due to the

complexity of such systems and their associated mission concepts. A wealth of re-

search has been published addressing one or more of the problems related to the use

of free-flying robotic satellites. Particularly, multiple studies address the dynamics

and control of such systems. Typical methods for deriving the dynamics include

Kane’s Method [28, 29, 30], the Lagrangian formulation [31, 32], direct application of

the conservation of momentum [20, 33], or by applying Newton’s Law [34]. Various

methods are employed to control spacecraft with robotic manipulators. Existing sys-

tems typically use some combination of proportional-integral-derivative (PID) control

[35, 36, 37], and many experimental or modelled systems analyze the expected per-

formance of PID control [17, 19, 28, 34, 38, 39, 40]. When sensor measurements, or

uncertainty in either the system dynamics or its environment, are considered, adap-

tive control methods [17, 20, 28, 41, 42] and robust control methods [19, 43] are used.

Several studies investigate the use of more novel control methods such as convex op-

timization [18, 44, 45, 46], pseudospectral methods of optimal control [31], genetic

algorithms [47, 48], or model predictive control (MPC) [25, 49].

Many of the aforementioned studies and existing orbital systems focus on larger

servicing satellites on the order of several hundred kilograms. These systems ben-

efit from the relatively small degree of coupling between the base and manipulator

motion. This study aims to analyze the feasibility of a robotic servicing CubeSat.

The small mass of the base relative to the manipulator makes the task of nulling

out disturbance forces and torques on the base due to the manipulator motion par-

ticularly challenging. To analyze the feasibility of a robotic servicing CubeSat, this
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research focuses on a notional 6U CubeSat model equipped with a four-link serial

manipulator. The dynamics of the system are derived using Kane’s method. Stan-

dard techniques for manipulator trajectory planning in physical and joint space are

applied, and a feedback PID controller is implemented. Three representative orbital

scenarios are simulated with the goal of determining the expected performance of a

robotic servicing CubeSat, and the magnitude of controls required for such a sys-

tem. The results can be used to determine the appropriate actuators for a real-world

system. Recommended improvements to both the system design, and the model are

discussed.

2.3 Technical Primer

Several concepts often used in robotics are leveraged for this research and require

introduction. These include Kane’s Method for deriving the dynamics of multibody

systems, methods for solving for the system kinematics, manipulability, and trajectory

planning. Each of these concepts is summarized in this section.

2.3.1 Kane’s Method

Kane’s Method is a well-established method for deriving the equations of motion of

a dynamical system [30, 50]. It is particularly useful for multibody systems subject to

kinematic and dynamic constraints [51]. Consider a system of N rigid bodies subject

to m constraints. Rather than computing the inertial acceleration of the center of

mass (COM) of each rigid body in the system and applying Newton’s Second Law,

resulting in 3N + m differential equations, Kane’s Method leverages a minimal set

of n generalized coordinates, as well as cardinal vectors, or directions of allowable

motion, to reduce the dynamics to just n second-order differential equations. This

is achieved by projecting Newton’s Second Law along the directions of the cardinal

vectors, also known as partial velocities.
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Let qk (k = 1, . . . , n) be the minimal set of generalized coordinates describing the

configuration of a system of j = 1, . . . , N rigid bodies, ~r j(t, qk) and ~v j(t, qk, q̇k) be

the position and velocity of the COM of body j, and ~ω j(t, qk, q̇k) its angular velocity.

The n+ 1 translational cardinal vectors for body j are:

~α j
0 (t, qk) =

∂~r j

∂t
,

~α j
k (t, qk) =

∂~r j

∂qk
.

(1)

And the n+ 1 rotational cardinal vectors for body j are:

~β j
k (t, qk) =

∂~ω j

∂q̇k
,

~β j
0 (t, qk) = ~ω j −

n∑
k=1

~β j
k q̇k .

(2)

Now one can compute a set of n scalar momentum rates, K]
k, also known as generalized

inertia forces, by projecting the time derivative of linear and angular momentum for

each body along their respective cardinal vectors, as shown below:

K]
k(t, qk, q̇k, q̈k) =

N∑
j=1

mj~̇v
j · ~α j

k + ~̇Lj · ~β j
k , (3)

where ~Lj is the angular momentum of body j. The next step is to project the external

forces and moments along the cardinal vectors for each generalized coordinate. Let

~F j be the sum of external forces on body j and ~T j be the sum of external torques

about that body’s COM, then the n generalized active forces are:

K[
k(t, qk, q̇k) =

N∑
j=1

~F j · ~α j
k + ~T j · ~β j

k . (4)
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The n equations of motion are then simply:

K]
k = K[

k . (5)

Equation 5 is one form of Kane’s dynamical equations. A detailed derivation,

starting from Newton’s Second Law, can be found in Kane’s original work [30, 50].

This method has reduced the number of differential equations from 3N +m to n,

and greatly simplified the treatment of the m constraints. The tedious part of this

method is identifying the resultant forces and torques on each body in the system

and computing the system kinematics.

2.3.2 Robot Kinematics

A useful concept for deriving the kinematics of coupled, multibody systems is

the generalized transformation matrix, which transforms a vector from one frame to

another through a relative rotation and translation. Consider the vector ~vA expressed

in the A frame: ~vA is transformed into the B frame as shown in Equation 6 below,

where ṽ i is the augmented vector formed by appending a 1 to the end of ~v i, TBA

and CBA are the transformation and rotation matrices from the A to the B frame,

respectively, and ~pB
A is the position of the A origin expressed in the B frame.

ṽB =

~vB

1

 = TBA ṽ
A =

CBA ~pB
A

~0T 1


~vA

1

 (6)

The transformation matrices can be used to determine the pose of the end effector

in the frame of any preceding joint, or in the base or inertial frames. Computing the

end effector pose from the base pose and manipulator joint angles is known as forward

or direct kinematics, and is a straightforward problem with a unique solution. The

reverse of this problem, determining the system configuration from the end effector

pose, is not straightforward and often has multiple or infinitely many solutions.
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However, given some starting configuration at time t0, the configuration space trajec-

tory that will produce some desired end effector trajectory can be determined through

inverse differential kinematics [52].

Differential kinematics begins with the end effector position in the inertial frame,

~rEE, or the solution to the forward kinematics problem. Taking the partial derivative

with respect to the generalized coordinates yields the analytical Jacobian matrix:

J =
∂~rEE

∂~q
=


∂r1
∂q1

∂r1
∂q2

· · · ∂r1
∂qn

∂r2
∂q1

∂r2
∂q2

· · · ∂r2
∂qn

∂r3
∂q1

∂r3
∂q2

· · · ∂r3
∂qn

 , (7)

where ~q is the column vector of generalized coordinates. The Jacobian maps changes

in the generalized coordinates to changes in the end effector velocity in the current

configuration:

~vEE = J~̇q . (8)

Equation 8 is known as the differential kinematic equation, and can be inverted

to yield:

~̇q = J−1~vEE , (9)

or the inverse differential kinematic equation. In the case of a system with redundant

DOF, or more generalized coordinates than spatial dimensions, the Jacobian is not

square and therefore cannot be directly invertible. In this case a pseudo-inverse of the

Jacobian can be used to yield an acceptable solution that also satisfies some desirable

criteria, such as singularity avoidance. The Moore-Penrose pseudo-inverse, J†, shown

in Equation 10 minimizes the
∣∣∣~̇q∣∣∣ that achieves the desired ~vEE:

~̇q = J†~vEE =
(
VS†U

)
~vEE , (10)
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where the singular value decomposition of the Jacobian is J = USVT . The pseudo-

inverse of S is determined by taking the reciprocal of the non-zero elements, leaving

the zero elements in place, then transposing the matrix.

Note that the Jacobian in Equation 7 only accounts for the translational velocity of

the end effector. However, this concept easily extends to include the angular velocity

if both the position and orientation of the end effector are of interest. With ~̇q known,

the required generalized coordinates are then:

~q = ~q0 +

∫ t

0

~̇q dt . (11)

2.3.3 Manipulability

Manipulability is a robotics concept that is useful for evaluating manipulator

performance. For a fixed-base manipulator, the reachable workspace includes every

point that the end effector can reach. At the edge of the reachable workspace, the

manipulator cannot move the end effector in a certain direction with changes in its

joints, namely across the boundary of the workspace. Therefore this configuration

is not manipulable. In a manipulable configuration, the manipulator can arbitrarily

change the pose of the end effector with changes in its joints. It is desired to determine

how manipulable a given configuration is. This information is captured in the velocity

manipulability ellipsoid [52], which represents the end effector velocities attainable

by a manipulator in a given configuration with certain magnitudes of joint speeds.

Consider a set of joint speeds with constant unit norm:

~̇q T ~̇q = 1 , (12)

which defines a sphere in joint velocity space. Note that the sphere’s radius can be

any positive number depending on the capabilities of the manipulator. Unity is used

for simplicity as the goal is to determine the relative manipulability of a configuration.
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Substituting Equation 10 for ~̇q yields:

~v T
EE

(
J†TJ†

)
~vEE = 1 . (13)

Equation 13 describes the points on the surface of an ellipsoid in end effector velocity

space that the manipulator can achieve with constant unit norm joint speeds. The

volume of this ellipsoid indicates the relative manipulability of the configuration. In

a singular configuration this three dimensional ellipsoid collapses down to a planar

ellipse or a line.

Note that in the case of a redundant manipulator the Jacobian has more columns

than rows, and its pseudo-inverse can be expressed as:

J†r = JT
(
JJT

)−1
, (14)

or the right pseudo-inverse. Substituting this expression into Equation 13 yields:

~v T
EE

(
JJT

)−1
~vEE = 1 . (15)

The volume of the ellipsoid is thus proportional to:

w =
√

det (JJT ) , (16)

which is termed the manipulability measure. Configurations with larger w are desired

as they have increased manipulability. A singular configuration will have w = 0.

This concept is not only useful for robot kinematics but for statics and dynamics as

well. The relation between joint forces and end effector forces is mapped through the

same Jacobian that relates joint and end effector speeds [52]. Therefore configurations

that are highly manipulable are also beneficial for imparting relatively large forces to

the end effector.
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2.3.4 Trajectory Planning

Trajectory planning is an important concept in robotics as any task requires, at

a minimum, the manipulator move from one configuration to another. This can ei-

ther be point-to-point motion, or motion through a series of points. In both cases a

suitable trajectory must be established, either in configuration (joint) or operational

(Cartesian) space, both of which have been heavily researched for decades [53]. Suit-

able trajectories for robotic manipulators might be ones that avoid obstacles in the

workspace and singular configurations, and prevent the joint actuators from saturat-

ing. The latter quality generally requires that the joint positions and velocities are

continuous functions of time, and the trajectories are smooth [52].

Many methods exist for forming smooth trajectories between points or through a

series of points. These typically involve polynomial or spline interpolation [54, 55].

In classical Euclidean spaces, Bézier curves are often used to generate smooth curves

through a series of points. The De Casteljau algorithm is a stable recursive method

for generating Bézier curves [56]. To generate a curve of degree n, the algorithm is

as follows:

1. Define n+ 1 control points (that determine the shape of the curve).

2. Connect the control points with straight lines to form a control polygon.

3. For some parameter t ∈ [0, 1] subdivide each segment of the polygon by the

ratio t : (1− t).

4. Connect each subdivided point to form a new polygon with one less side.

5. Repeat Steps 3 − 4 until there is a single point. This point lies on the Bézier

curve.

6. Vary the parameter t from 0 to 1 for the point to trace out the Bézier curve.
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This method has been extended to the group of rigid body motions in three

dimensional space, also known as the special Euclidean group SE(3), to form smooth

trajectories between two poses with boundary conditions on translational and angular

velocity [57]. The algorithm is reproduced here for completeness, with the theoretical

underpinnings omitted. More details can be found in references [57] and [58].

Consider the pose of a rigid body expressed as a generalized transformation matrix:

T =

C ~p

~0T 1

 , (17)

where C is the direction cosine matrix representing the body’s attitude, typically in

the inertial frame, and ~p is the position of the body COM. The generalized velocities

of the body can be represented as follows:

V =

[~ω×] ~v

~0T 0

 , (18)

where [~ω×] is the skew-symmetric matrix associated with the angular velocity of

the body, and ~v is the inertial velocity of the body COM. The following kinematic

equation holds:

Ṫ = TV . (19)

It is desired to generate a smooth curve in SE(3) connecting an initial and final

pose, T0 and Tf , with boundary conditions on the velocities, V0 and Vf . For sim-

plicity assume t ∈ [t0, tf ] = [0, 1]. For different t0 and tf the time vector and velocities

can be scaled. The De Casteljau algorithm on SE(3) is as follows:
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1. Calculate boundary conditions on Ṫ:

Ṫ0 = T0V0

Ṫf = TfVf

(20)

2. Transform boundary conditions into infinitesimal generators:

V1
0 =

1

3
T−10 Ṫ0

V1
2 =

1

3
T−1f Ṫf

(21)

3. Compute control points:

T1 = T0e
V1

0

T2 = Tfe
−V1

2

(22)

4. Find interior velocity that maps T1 to T2:

V1
1 = log(T−11 T2) (23)

5. Find the time-varying “polynomial” generating velocities:

V2
0(t) = log(eV

1
0(1−t)eV

1
1t)

V2
1(t) = log(eV

1
1(1−t)eV

1
2t)

V3
0(t) = log(eV

2
0(t)(1−t)eV

2
1(t)t)

(24)

6. Compute the pose matrix:

T(t) = T0e
V1

0teV
2
0(t) teV

3
0(t) t (25)
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This algorithm leverages the matrix exponential and logarithm to yield a smooth

curve in SE(3) between two arbitrary poses. The time history of the generalized

velocities can be computed with the kinematic relation in Equation 19. Note that the

resulting trajectory is smooth in terms of pose and velocities, but the accelerations are

only continuous - not necessarily smooth. Some robot applications desire trajectories

with continuous jerk, and therefore must use higher-order polynomial splines [55].

2.4 Summary

In this chapter several past and present space robotics missions were discussed,

along with current research in the field to highlight the unique contributions of this

research: the focus on CubeSat platforms, and the rigorous treatment of coupled

orbit-attitude motion in the dynamics model of the system. Several topics pertinent

to this research were introduced including Kane’s Method, robot kinematics, and

trajectory planning in order to understand the Methodology.
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III. Methodology

This chapter begins with a description of the CubeSat robotic system used in

simulations and subsequent analysis. The process of deriving the dynamics is then

discussed, followed by a description of the simulation framework used to evaluate the

system, with emphasis on the controller. Three types of scenarios are simulated to

demonstrate the system’s performance. Each scenario is presented along with the

performance metrics used in the analysis.

3.1 The System

To investigate the feasibility of a robotic servicing CubeSat, a notional 6U Cube-

Sat with a four-link serial manipulator is used. The 6U format is chosen as it is the

smallest base platform that could reasonably be expected to house both the manip-

ulator, and all additional subsystems needed for successful operation of the system,

particularly propulsion, ADACS, and navigation sensors. A computer-aided design

(CAD) model of the system structure is shown in Figure 1.

The four-link serial manipulator is inspired by the anthropomorphic geometry, a

common manipulator structure described in Section 1.2 of Siciliano’s textbook [52].

A diagram of the manipulator with its workspace, taken from this text, is shown in

Figure 2. Typically comprised of three links with revolute joints, where the axis of

rotation of the first is perpendicular to that of the other two, which are parallel, the

anthropomorphic manipulator is so named due to its similarity to the human arm: the

first two joints comprise the shoulder, while the third functions as an elbow [52]. The

fourth joint and link are added to this model to give the manipulator additional reach.

Notice the void at the top of the manipulator workspace in Figure 2. This is due the

fact that the manipulator has a kinematic singularity whenever the end effector lies

on the line extending out from the first link. This singularity has serious implications

for the system performance and trajectory planning, as discussed in Chapter IV.
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Figure 1: CAD model of 6U CubeSat robot structure

Figure 2: Anthropomorphic manipulator with workspace
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As the manipulator contains only four DOF, it cannot achieve an arbitrary pose for

the end effector in three dimensional space, as that would require six DOF. Therefore,

throughout the simulations the orientation of the end effector is ignored and only its

position and velocity is considered.

The CubeSat base and each of four links are modelled as solid, rigid bodies of

uniform density that are kinematically coupled. The base is a rectangular prism and

the links are thin cylindrical rods. The joint dimensions and masses are assumed to

be negligible. This is a reasonable assumption for a low fidelity robot model, as the

joints in a typical manipulator are small and light compared to the links. The mass,

dimensions, and inertia properties of each body in the system is shown in Table 1.

The inertia matrices are expressed in the principal frames of each body.

Table 1: 6U CubeSat Robot Specifications

Body Mass (kg) Dimensions (cm) Inertia Matrix (kg ·m2)
Base 10 10× 20× 30 10−2 · diag [4.17, 8.03, 10.83]
Link 1 0.5 10 10−4 · diag [4.17, 0.25, 4.17]
Link 2 1 15 10−4 · diag [0.50, 18.75, 18.75]
Link 3 1 15 10−4 · diag [0.50, 18.75, 18.75]
Link 4 1 15 10−4 · diag [0.50, 18.75, 18.75]

Figure 3 shows the relevant coordinate frames in the system, where N is the

Earth-centered inertial frame. The red vectors point in the direction of the x-axes of

each frame, y-axes are shown in green, and z-axes in blue. Joint 1 is coincident with

the base COM so that link 1 extends to the 10 × 30 cm face of the CubeSat that is

perpendicular to the ŷ axis of the base frame, B. Joint 1 rotates about the ŷ axis of

its frame, J1, while joints 2 - 4 rotate about ẑ of their respective frames.

The lengths of links 2 - 4 were chosen such that the manipulator can be stowed

alongside the CubeSat as shown in Figure 4. This configuration reduces the footprint

of the system, allowing it to be stored in and deployed from existing operational

systems, such as the NanoRacks CubeSat Deployer [59].
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Figure 3: 6U CubeSat robot reference frames

Figure 4: 6U CubeSat robot in stowed configuration
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The system is composed of 21 states, described below.

• ~rNB = [x, y, z]T is the base position expressed in the inertial frame.

• eBN = [e0, ~e
T ] = [e0, e1, e2, e3]

T is the quaternion describing the base attitude

with respect to the inertial frame, where e0 is the scalar portion.

• ~Θ = [θ1, θ2, θ3, θ4]
T is the vector of joint angles.

• ~̇rNB = [ẋ, ẏ, ż]T is the base velocity expressed in the inertial frame.

• ~ωB
BN = [ωx, ωy, ωz]

T is the base angular velocity relative to the inertial frame

expressed in the base frame.

• ~̇Θ = [θ̇1, θ̇2, θ̇3, θ̇4]
T is the vector of joint angular speeds.

The base is three-axis stabilized and has thrust capability in each axis of the B

frame. Additionally, each joint has an associated torque, for a total of 10 controls in

the system. The torques and forces on the base are assumed to be applied at the base

COM. The minimum and maximum value of each control is shown in Table 2, where

fB and τB are forces and torques on the base, respectively, and τi is the torque on

joint i. The controls can be applied continuously and assume arbitrarily small values.

Table 2: Control Bounds

Control Range
fB ±0.1 N
τB ±0.1 N·m
τi ±0.05 N·m

These bounds were chosen because they are within the ranges of thrust and torque

provided by many commercial off the shelf (COTS) subsystems for CubeSats. Ac-

cording to the NASA’s 2020 State-of-the-Art Small Spacecraft Technology report,

25



there are over 10 propulsion systems, either commercially available or in develop-

ment, that provide at least 0.1 N of thrust in the 1U to 2U form factor. The same

report identifies several reaction wheel systems for CubeSats with maximum torques

of 0.1 N·m. [7]. A different study investigating the feasibility of on-orbit robotic

assembly of small satellites identifies a commercially available motor commonly used

in robotic arms that delivers 0.05 N·m of torque with a mass of 0.11 kg [47], further

justifying the massless joint assumption.

3.2 Derivation of System Dynamics

The equations of motion of the system are generated with MotionGenesis Kane 5.9,

a software package that applies Kane’s Method to derive the dynamics of a multibody

system [60]. The user inputs simple commands to define the system and the relevant

coordinate frames, the generalized coordinates and kinematics governing the system

configuration, and the forces acting on the system. MotionGenesis applies Kane’s

Method to derive the dynamics, and auto-generates fast, memory-efficient MATLAB

code [61, 62, 63]. The list of commands used to generate the MATLAB dynamics

function is shown in Algorithm 1, where repeated commands are omitted.

The resulting MATLAB function takes in the system state and controls and out-

puts the acceleration-level variables:

~̈q = f( ~X, ~U) . (26)
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Algorithm 1 MotionGenesis Commands

1: NewtonianFrame N . Define inertial frame
2: RigidBody B, L1, L2... . Declare rigid bodies
3: Point J1(B) . Declare joint 1, coincident with base
4: Repeat for all joints
5: Constant G = 6.6732× 10−11 Nm2kg−2 . Define all system constants (masses,

lengths, etc.)
6: B.SetMass(mB) . Set the mass of each body
7: Constant I1,xx = 1

12
m1l

2
1 . Compute principal moments for each body

8: B.SetInertia(BCM , IB,xx, IB,yy, IB,zz, IB,xy, IB,yz, IB,xz) . Set inertia matrix for
each body about its COM

9: Variable x′′, y′′, ... . Declare all generalized coordinates at acceleration level
10: SetGeneralizedSpeeds(x′, y′, ...) . Set generalized speeds
11: Define rotational kinematics (Steps 12-15):
12: B.SetAngularVelocityAcceleration(N ,ωxb̂x + ωz b̂y + ωz b̂z) . Set base angular

velocity w.r.t. inertial frame
13: B.SetRotationMatrixODE(N ,Quaternion,e0,e1,e2,e3) . Set quaternion kinematic

equation
14: L1.RotateY(B, θ1) . Rotate Link 1 about b̂y by θ1
15: Repeat for all links
16: Define translational kinematics (Steps 17-19):
17: BO.Translate(NO,x n̂x + y n̂y + z n̂z) . Translate origin of base frame from

inertial origin
18: J2.Translate(LO1 , l1 l̂1,x) . Translate Joint 2 from Link 1 origin
19: Repeat for all link origins, COMs, and joints
20: ~rB = Express(BCM .GetPosition(NO),N ) . Get inertial position vector of the

COM of each body

21: BCM .AddForce

(
−GmEmB

|rB|3
~rB

)
. Add gravitational force to each body

22: Specified fx, fy, ..., τx, τy, ..., τ1, τ2, ... . Declare control forces and torques as
input variables

23: BCM .AddForce(fx b̂x + fy b̂y + fz b̂z) . Add control force to base

24: B.AddTorque(τx b̂x + τy b̂y + τz b̂z) . Add control torque to each body
25: Kane = System.GetDynamicsKane() . Get system dynamics
26: Code algebraic( Kane, [x′′ , y′′ , z′′ , ω′x , ω

′
y , ω

′
z , θ

′′
1 , θ

′′
2 , θ

′′
3 , θ4

′′ ] ) Dynamics.m
. Generate MATLAB Dynamics.m function with the specified outputs
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3.3 Simulation Framework

The dynamics function produced with MotionGenesis is incorporated into the

Robot Motion block of the Simulink model shown in Figure 5, which is used to

run several orbital scenarios. The Simulink model is broken into five subsystems: the

space station, or chief, orbital dynamics, the CubeSat robot dynamics and kinematics,

the relative states, the state errors, and the controller.

Figure 5: Simulink model flow diagram

The model uses the ode45 solver with relative tolerance 10−12 and absolute tol-

erance 10−14. Lengths are expressed in meters rather than the more common unit

of kilometers used for orbital dynamics for several reasons. The first is that all sce-

narios investigated involve close proximity operations, where relative positions and

velocities are small and more intuitively expressed in meters and meters per second.

Additionally, the use of meters for lengths avoids small physical dimensions for the

CubeSat robot on the order of 10−4. Finally, the use of meters avoids confusion

with the dimensions of the feedback controls, where Newtons and Newton-meters are

desired for forces and torques, respectfully.

28



3.3.1 Space Station Dynamics

The chief spacecraft is modelled as a point source that moves under the gravita-

tional attraction of a spherical Earth, as shown in Equation 27:

~̈rc =
−Gme

r3c
~rc , (27)

where rc = |~rc|. The chief acceleration is integrated twice to yield its position and

velocity. These can be used to determine the rotation between the inertial and LVLH

frames, CLN , as shown in Equation 28:

CLN =


r̂ T
c

t̂T

ĥT

 , (28)

where r̂c =
~rc
|~rc|

is the radial unit vector, ~h = ~rc × ~̇rc is the chief’s specific angular

momentum vector, and t̂ = ĥ × r̂c is the orbital tangent, or in-track, vector that

completes the right-handed coordinate system.

Non-spherical effects such as J2 are ignored, as the duration of the simulations are

short with respect to any Earth orbital period, and since the chief and CubeSat remain

in close proximity, any ellipticity effects would perturb each to a similar degree. The

chief spacecraft is not modelled as an extended rigid body for simplicity. However, this

does not reduce the generality of the results, since the operational concept assumes

the chief spacecraft is three-axis stabilized and aligned with the LVLH frame, and

therefore any location on the spacecraft exterior that requires servicing would be

stationary with respect to this frame. In this case, any servicing location on the

spacecraft would serve as a stationary target for the CubeSat to rendezvous and dock

with, no different than the LVLH origin.
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For chief spacecraft with a specific structure, the rigid body motion could easily be

incorporated into the model. As the orbital dynamics are modelled with Newtonian

gravity, perturbing forces such as aerodynamic drag, solar radiation pressure, and J2

would be straightforward to include.

3.3.2 Dynamics and Kinematics

As mentioned in Section 3.3, the dynamics function for the CubeSat robot takes

in the state and controls and outputs the acceleration-level variables:

~̈q =
[
ẍ, ÿ, z̈, ω̇x, ω̇y, ω̇z, θ̈1, θ̈1, θ̈3, θ̈4

]
. (29)

The translational acceleration and joint angular accelerations are integrated twice to

yield their respective velocity- and position-level states. The base angular acceleration

is integrated once to yield the base angular speed, which is fed into Equation 30 to

yield the time derivative of the quaternions.

ėBN =
1

2



−e1 −e2 −e3

e0 −e3 e2

e3 e0 −e1

−e2 e1 e0


~ωB
BN =

1

2

 −~e T

[~e×] + e0I

 ~ωB
BN (30)

ėBN is then integrated and fed back into Equation 30. All CubeSat states are fed

back into the dynamics function, and passed on to a subsequent block to calculate

the relative states with respect to the chief.
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3.3.3 Relative States

The states of interest are those relative to the orbital frame of the chief, or the

LVLH frame, and therefore the CubeSat states must be converted to this frame. The

Relative States block takes in the inertial states of the chief, and the states of the

CubeSat from its dynamics and kinematics block and outputs the relative states of

the CubeSat. The relative translational states of the CubeSat expressed in the LVLH

frame are calculated with Equations 31 and 32.

~ρ L = CLN

(
~rN
c − ~rN

B

)
(31)

~̇ρ L = CLN

(
~̇rN
c − ~̇rN

B

)
− ~ω L

LN × ~ρ L (32)

The relative quaternion between the CubeSat base and the LVLH frame is calcu-

lated as follows:

eBN → CBN → CBL = CBNCNL → eBL , (33)

where Simulink’s built-in functions are used to convert between quaternions and di-

rection cosine matrices.

The relative angular velocity between the CubeSat base and LVLH frame, ex-

pressed in the base frame, is:

~ωB
BL = ~ωB

BN −CBL~ω
L
LN . (34)

The joint angles and angular speeds simply pass through this block, as they are

measured with respect to the base frame. Given the other relative states, the position

and velocity of the end effector in the LVLH frame can be calculated through forward

kinematics.
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3.3.4 State Errors

The relative states are passed into a subsystem block to calculate the state errors,

defined as the difference between the desired state, Xd, and the current state, X:

Xe = Xd −X . (35)

Equation 35 applies to all states except the quaternion. The quaternion error is

determined by Equation 36.

e e =



e0 −e1 −e2 −e3

e1 e0 e3 −e2

e2 −e3 e0 e1

e3 e2 −e1 e0





ed,0

−ed,1

−ed,2

−ed,3


, (36)

where e d is the desired quaternion. The prescription of the desired states depends on

the state in question and on the scenario, which will be discussed in Section 3.4.

3.3.5 Controller

The state errors are passed into the Controller block, where they are converted to

generalized forces requested of the actuators. As the actuators are not modelled, the

requested controls are fed directly back into the CubeSat dynamics. The translational

state errors are regulated with a PID controller of the following form:

~f L = Kp,t~ρ
L
e + Ki,t

∫ t

0

~ρL
e dt+ Kd,t~̇ρ

L
e , (37)

where Kp,t, Ki,t, and Kd,t are 3 × 3 diagonal, positive definite gain matrices on the

position, integral of position, and velocity errors, respectfully. Notice the resulting

force is expressed in the LVLH frame. The CubeSat thrusters are assumed to be

fixed in the base frame, and therefore ~f L must be rotated back into the base frame:

~f B = CBL
~f L.
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The attitude errors are regulated with a quaternion feedback control law:

~τ B = −Ke~eBL,e + Kω~ω
B
BL,e , (38)

where Ke and Kω are 3 × 3 diagonal, positive definite gain matrices on the vector

portion of the quaternion error, and the angular velocity error, respectfully.

The errors in the joint states are also regulated with a PID controller:

~τJ = Kp,j
~Θe + Ki,j

∫ t

0

~Θe dt+ Kd,j
~̇Θe , (39)

where Kp,j, Ki,j, and Kd,j are 4 × 4 diagonal, positive definite gain matrices on

the joint angle, integral of joint angle, and joint angular speed errors, respectfully.

As mentioned in Section 3.1, the controls are bounded, and therefore the requested

controls pass through a saturation block before feeding into the dynamics.

3.3.5.1 Controller Tuning

The values of the controller gains vary with the scenario, although effort is made

to minimize the number of different sets of gains. Ultimately, one set of gains is used

when relatively large translations are performed, and another set is used when the

CubeSat is within one meter of having the LVLH origin in its reachable workspace.

In both cases the gains are tuned manually. In some instances the response is very

sensitive to changes in the gain. In others, one set of gains that produced an ac-

ceptable response for a given set of initial conditions yields an unacceptable response

when the initial conditions change. In these instances, the process requires extensive

trial and error. The general process follows the steps below:

1. Kp and Kd are set to identity, while Ki is set to zero.

2. Simulation is ran to observe the error responses.
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3. Kp and Kd are increased or decreased by one order of magnitude. Generally Kd

is one order of magnitude greater than Kp to yield responses with no overshoot.

4. Repeat Steps 2 and 3 until the error responses are acceptable in terms of sta-

bility, settling time, and overshoot.

5. Set the integral gain to roughly Kd × 10−6 and repeat Step 2.

6. Adjust Ki until the steady state error is acceptable.

7. If settling time or overshoot have worsened, make small adjustments to Kp and

Kd to retain those response characteristics.

8. Make small adjustments to all gains to improve the error response.

Step 8 can be repeated indefinitely. However, in this research the gains are only fine-

tuned a handful of times as the intent is to estimate the level of controls needed for

a robotic servicing CubeSat, rather than to optimize the performance of a notional

system.

3.4 Simulation Scenarios

Three different scenarios are simulated to analyze the performance of the system.

The first scenario models the process of deploying the CubeSat robot from the chief

spacecraft, stabilizing the attitude of the CubeSat, rendezvousing with the chief, and

deploying the manipulator to dock with the chief. The second and third scenarios

involve performing prescribed motions with the manipulator while attempting to keep

the CubeSat base stationary in the LVLH frame.

In all scenarios the chief reference orbit is that of the ISS. The orbital parameters

are based off the following two-line element (TLE) set taken from the Amateur Radio

on the ISS live tracker [64]:
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ISS (ZARYA)

1 25544U 98067A 21313.73829955 .00004352 00000-0 87154-4 0 9991

2 25544 51.6454 343.0140 0003216 189.4812 283.0096 15.48986629311154

The mean motion, eccentricity, inclination, right ascension of the ascending node, and

argument of perigee are taken directly from the TLE. The mean anomaly at t = 0 is

selected randomly from a uniform distribution over 0 to 2π.

3.4.1 Scenario 1: Rendezvous and Docking

In the first scenario, the CubeSat robot is deployed from the chief spacecraft, and

must match the position and velocity of the chief while placing the end effector on

the LVLH origin. The initial state of the CubeSat robot is as follows:

• ~ρL = [0, 0, 0]T m (base begins at the LVLH origin)

• eBL = [1, 0, 0, 0] (base aligned with LVLH frame)

• ~Θ = [0, π, −π, 0]T rads (the stowed manipulator configuration from Figure 4)

• ~̇ρL = [0, ẏ, 0]T m/s (non-zero relative velocity along the in-track direction of the

LVLH frame)

• ~ωB
BL = [ωx, ωy, ωz]

T rads/s (non-zero relative angular velocity between the base

and LVLH frames)

• ~̇Θ = [0, 0, 0, 0]T rads/s (manipulator is stationary)

Notice that the initial attitude and position are expressed relative to the LVLH frame.

Necessary transformations are performed to express these in the inertial frame as

required by the dynamics function.
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ẏ0 varies between −0.5 and −2 m/s, and the components of ~ωB
BL vary from 2 to

5◦/s. These values are chosen as they are the quoted deployment velocities and tip-off

rates in the Nanoracks CubeSat Deployer Interface Definition Document [59].

The rendezvous and docking maneuver is split into two phases. In the first phase

the manipulator remains in the stowed configuration while the base stabilizes its

attitude and approaches the rendezvous position. When the base is within 1 m of

the desired final position and remains there for 10 seconds, it switches to phase two,

deploying the manipulator to a predetermined docking configuration and regulating

all remaining errors in the states.

The desired final states of the CubeSat robot for phase two in this scenario are:

• ~ρL = [0.0207,−0.4138,−0.0207]T m (predetermined position)

• eBL = [1, 0, 0, 0] (base aligned with LVLH frame)

• ~Θ = [45◦, 146.25◦, −45◦, −67.5◦]T (predetermined docking configuration)

• ~̇ρL = [0, 0, 0]T m/s (stationary in the LVLH frame)

• ~ωB
BL = [0, 0, 0]T rads/s (zero relative angular velocity between the base and

LVLH frames)

• ~̇Θ = [0, 0, 0, 0]T rads/s (manipulator is stationary)

The final state of the CubeSat robot is chosen to place the end effector on the

LVLH origin, with the base attitude aligned with the LVLH frame. The docking

configuration for the manipulator, ~Θ, is chosen to maximize the manipulability while

minimizing the distance of the end effector from the y-axis of the base frame, d.

Maximizing manipulability is desired so that the CubeSat robot can achieve relatively

fast velocities and large forces for the end effector. Minimizing d is desired because

for subsequent scenarios the base is assumed fixed in the LVLH frame, and the end
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effector reachable workspace is considered the circle in the xz-plane, centered on the

LVLH origin, with maximum radius. In other words, docking configurations with

end effector positions far from the y-axis of the base frame have smaller reachable

workspaces in the LVLH frame.

In order to determine the docking configuration for the manipulator, over one mil-

lion configurations are considered, spanning all combinations of joint angles. For each

configuration, the forward kinematics are calculated to determine if the configuration

is acceptable, defined as meeting the following criteria:

1. yBEE ≥ yBEE,min = 0.3m

2. yBEE > yBJ3

3. yBEE > yBJ4

These criteria omit configurations where the end effector is too close to the Cube-

Sat base, or is closer to the base than either joint 3 or 4. The edge of the chief

spacecraft is assumed to lie in the +y hemisphere of the LVLH frame, and therefore

no portion of the CubeSat robot can extend beyond the y = 0 plane. Thus, end

effector positions with yBEE < 30 cm would place the leading edge of CubeSat base

< 20 cm from the border of the chief, which is only 5 cm more than the lengths of

links 2 - 4, making it difficult for the manipulator to move freely. If 2. and 3. above

were not true, that would permit docking configurations with either link 2, 3, or 4

penetrating the wall of the chief spacecraft.

For all acceptable configurations, the distance of the end effector from the y axis

of the base frame, d, is computed. Those with distances of 1 − 15 cm are selected,

and the manipulability measure is computed from Equation 16, reproduced here:

w =
√

det (JJT ) . (40)
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Given the design of the manipulator, configurations with the end effector exactly on

the y axis of the base frame have a singular Jacobian, and therefore zero volume for

the manipulability ellipsoid as shown in Figure 6. This makes intuitive sense since,

in such a configuration, rotation of joint 1 would produce zero velocity of the end

effector. For this reason, any configuration with d < 1 cm is omitted. Finally, a score

is calculated for each remaining configuration as:

S =
w

d
. (41)

Equation 41 is chosen for simplicity, since large w and small d increase the score,

and the configuration with the maximum score is selected. Figures 6 - 8 below show

the CubeSat robot in several configurations with the resulting manipulability ellipsoid

in green. The ellipsoids are computed in the same manner discussed in Section 2.3.3,

assuming constant unit norm joint speeds. The physical dimensions of the CubeSat

robot are expressed in meters, while the ellipsoid has dimensions of meters per second.

Notice in Figure 6 the manipulability ellipse lies in the xy-plane, since no joint

movement can induce end effector velocity in the z direction. The manipulability

measure tends to increase as the manipulator moves further from the base y-axis, as

seen in Figure 7, since joint 1 speed can then induce larger end effector speeds.

Given that manipulability and distance from the base y axis are proportional,

a balance must be struck for the docking configuration, as seen in Figure 8. This

configuration maximized the score in Equation 41, having decent manipulability and

a short end effector distance from the base y axis, and thus a large workspace.

The controller gains for each phase of the scenario are shown in Table 3. Notice

the gains for the attitude and joint controllers are the same in each phase, and the

translational controls are all larger in phase 2 than in phase 1. This is expected since

the magnitude of the translational errors are much larger in phase 1, and therefore a

smaller gain is required to induce a sensible control response.
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(a)

(b)

(c)

(d)

Figure 6: CubeSat robot with manipulability ellipsoid in a singular configuration:
~ΘT = [0◦, 45◦, 90◦, −45◦]

Table 3: Controller Gains for Scenario 1

Gain Phase 1 Phase 2
Kp,t 0.4× I(3×3) 20× I(3×3)
Ki,t 10−6 × I(3×3) 10−3 × I(3×3)
Kd,t 40× I(3×3) 200× I(3×3)
Ke I(3×3) I(3×3)
Kω I(3×3) I(3×3)
Kp,j I(4×4) I(4×4)
Ki,j 10−3 × I(4×4) 10−3 × I(4×4)
Kd,j I(4×4) I(4×4)
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(a)

(b)

(c)

(d)

Figure 7: CubeSat robot in a manipulable configuration: ~ΘT = [0◦, 135◦, −60◦, 60◦]

Ten simulations are ran for scenario 1, each with different values of ejection speeds

and tip-off rates for the CubeSat. In the best case scenario, ẏ0 = −0.5m/s, and ~ωB
BL =

2◦/s× [1, 1, 1]T , which are the lower bounds for the Nanoracks CubeSat Deployer [59].

In the worst case scenario, ẏ0 = −2m/s, and ~ωB
BL = 5◦/s× [1, 1, 1]T . Values between

the best and worst cases, with equal increments, are simulated.

The best and worst case scenarios are also re-run with random disturbance forces

and torques added to each individual feedback control. The random disturbances are

sampled from a standard normal distribution at a rate of ts = 0.1 s, and scaled by

either 1, 5 or 10% of the respective maximum control. For example, in the 10% case

the random disturbance in each of the thrust axes is sampled fromN (µ, σ2) = N (0, 1),

then multiplied by 0.1× 0.1 N = 0.01 N, with the effect of sampling from N (0, 10−4).
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(a) (b)

(c)
(d)

Figure 8: CubeSat robot with manipulability ellipsoid in docking configuration: ~ΘT =
[45◦, 146.25◦, −45◦, −67.5◦]

This is a generous estimate of the magnitude of disturbance forces expected on orbit.

Solar radiation pressure and atmospheric drag would impart forces on the order of

10−6 and 10−5 N, respectively, to a CubeSat in LEO, according to approximate models

[65]. J2 perturbations are larger, with magnitudes as high as 10−2 N according to

calculations from J2 models [66, 67]. However, both the chief and CubeSat would

experience similar effects from J2 perturbations due to their close proximity, so the

effect over the duration of the engagement scenario would be negligible.
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The metrics used to analyze the system performance in this scenario are the

settling time, defined as the time required for the end effector to reach the origin of

the LVLH frame and remain within ±1 mm of error, and total control usage from

t = 0 to tsettle. For the disturbed cases, statistics on state errors and controls after

tsettle are computed.

3.4.2 Scenario 2: End Effector Placement

In scenario 2 the CubeSat robot begins in the docking configuration, or final state,

from scenario 1, with the end effector at the origin of the LVLH frame, and is tasked

with moving the end effector to a random location in its reachable workspace while

keeping the base attitude and position fixed in the LVLH frame.

The reachable workspace is considered to be a circle in the y = 0 plane of the

LVLH frame with maximum radius that the end effector can reach with the base fixed

at the docking position. The maximum radius is calculated with the Pythagorean

theorem, using the maximum reach of links 2− 4 and the base LVLH position:

Rmax =
√

(0.45)2 − (yLB − 0.1)2 −
√

(xLB)2 + (zLB)2 ,

Rmax =
√

(0.45)2 − (0.3138)2 −
√

(0.0207)2 + (0.0207)2 ,

Rmax = 0.2933 m .

(42)

The new desired position of the end effector is chosen by selecting a random radius

R from a uniform distribution between 0 and Rmax, and a random phase angle φ from

a uniform distribution between −π and π. Then the desired end effector position is:

~r L
EE,d =


R cosφ

0

R sinφ

 . (43)
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The objective of the task is to place the end effector at the desired location with

the system at rest. Rather than specifying the new joint angles for the manipulator,

the end effector trajectory is generated using the De Casteljau algorithm on SE(3)

described in Chapter II, and inverse differential kinematics is used to determine the

joint angles and angular speeds required to achieve the end effector trajectory. As

mentioned in Section 3.1, the orientation of the end effector is ignored, and only the

position portion of the interpolating curve from the De Casteljau algorithm is used.

The desired initial and final velocity for the algorithm is zero.

Once the end effector trajectory is determined, the desired joint speeds are com-

puted at each time step by:

~̇Θ = J†~vEE , (44)

where J is the 3 × 4 analytical Jacobian that converts joint speeds to end effector

velocities in the base frame, and J† is the Moore-Penrose pseudo-inverse. The 3 × 4

Jacobian assumes that the base is fixed in the LVLH frame, and thus velocities in

the LVLH frame are identical to those in the base frame. This assumption is valid as

long as the controller can maintain the desired base pose. Once ~̇Θ is calculated, the

desired joint angles are simply:

~Θ = ~Θ0 +

∫ t

0

~̇Θ dt . (45)

The controller gains used for this scenario are shown in Table 4. The translational

gains are the same as those from phase 2 of scenario 1. The gains on the attitude and

joint controllers are all greater than those of scenario 1. This makes intuitive sense

since the errors in every state are expected to be smaller than those in scenario 1, and

so the gains must be higher to produce an adequate control response and maintain

near-zero error in these states.
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Table 4: Controller Gains for Scenario 2

Gain Value
Kp,t 20× I(3×3)
Ki,t 10−3 × I(3×3)
Kd,t 200× I(3×3)
Ke 10× I(3×3)
Kω 300× I(3×3)
Kp,j 100× I(4×4)
Ki,j 10−2 × I(4×4)
Kd,j 100× I(4×4)

Ten different points in the workspace are selected, and three simulations are ran for

each point. The three simulations differ in the desired time to perform the maneuver,

as summarized in Table 5. The manipulator attempts to traverse the interpolated

curve connecting the initial position of the end effector to its desired position in either

5, 10, or 15 seconds, and an additional 5 seconds is granted for the system to null out

any disturbances to the base caused by the manipulator motion.

Table 5: Scenario 2 Simulation Times

Simulation Maneuver Settling Total
# Time (s) Time (s) Time (s)
1 5 5 10
2 10 5 15
3 15 5 20

For the 10 second cases, the simulations are re-ran with random disturbance forces

produced in the same manner as in scenario 1, except the sampling time is decreased

to tsamp = 0.01 s. The metrics used to analyze the system performance in this scenario

are total control usage and the magnitude of the end effector position error at tfinal.
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3.4.3 Scenario 3: End Effector Path Tracing

As in scenario 2, scenario 3 begins with the CubeSat robot in the docking config-

uration, or final state, from scenario 1, and it is then tasked with tracing a circular

path, counterclockwise at a constant speed, in the y = 0 plane of the LVLH frame

with the end effector while keeping the base attitude and position fixed. The circular

path is centered on the origin, and its radius, R, is selected randomly from a uniform

distribution between 10 and 29 cm, or just under the maximum possible radius.

In order to trace the prescribed circular path, the end effector must first be moved

from the origin to the path. To accomplish this an entry point is determined randomly

by selecting a phase angle, φ, from a uniform distribution between −π and π. The

entry point is then:

~rentry =


R cosφ

0

R sinφ

 . (46)

To eliminate instantaneous changes in the desired velocity of the end effector, it

is desired to match the velocity at the entry point between the circular path and the

entry trajectory. The desired position of the end effector during the circular motion

is:

~rcirc =


R cos [ω(t− tentry) + φ]

0

R sin [ω(t− tentry) + φ]

 =


R cos

[
2π

Tcirc
(t− tentry) + φ

]
0

R sin

[
2π

Tcirc
(t− tentry) + φ

]
 , (47)

where tentry is the time it takes for the end effector to move from the origin to the

circular path, and Tcirc is the desired period of the circular motion. The velocity of

the end effector at the entry point (t = tentry) is then:
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~ventry =


−R

(
2π

Tcirc

)
sinφ

0

R

(
2π

Tcirc

)
cosφ

 . (48)

The initial state of the end effector and the desired entry position and velocity

are used in the De Casteljau algorithm to produce a smooth entry trajectory from

the origin to the circular path. The resulting trajectory is combined with the circular

path and the desired joint speeds and angles are then computed with the Jacobian

pseudo-inverse, as in scenario 2. The controller gains used in scenario 3 are identical

to those in scenario 2.

Ten different circular paths are selected, and three simulations are ran for each

path. The three simulations differ in the desired time to perform the maneuver, as

summarized in Table 6. For the 30 second cases, the simulations are re-ran with

random disturbance forces as in scenario 2. The metrics used to analyze the system

performance in this scenario are total control usage, and the average effector position

error over the length of the simulation.

Table 6: Scenario 3 Simulation Times

Simulation Entry Maneuver Circular Motion Total
# Time (s) Period (s) Time (s)
1 5 15 20
2 7.5 22.5 30
3 10 30 40

46



3.5 Summary

In this chapter the CubeSat robotic system used in subsequent simulations is de-

scribed and illustrated. The process of deriving the system dynamics is outlined.

The simulation framework is introduced, and the various components of the Simulink

model are detailed, including the chief orbital dynamics, the dynamics and kinematics

of the CubeSat robot, the relative states and state errors, and the controller. Three

representative scenarios that are simulated in this study are described in detail, in-

cluding the overall concept of each, the assumptions and goals, how the desired states

are determined, the controller gains used, and how the simulation campaign is con-

ducted. The results of the simulations are presented and discussed in the following

chapter.
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IV. Results and Analysis

4.1 Scenario 1: Rendezvous and Docking

In the absence of disturbance forces the settling time and total control usage for

each simulation are shown in Table 7, where FB is the total impulse and is calculated

as follows:

FB =

∫ tsettle

0

|fB,x|+ |fB,y|+ |fB,z| dt , (49)

and TB is the total angular impulse, calculated the same as Equation 49 except with

τB replacing fB.

Table 7: Rendezvous and Docking Results

ẏ0 ωB
BL,0 tsettle FB TB T1 T2 T3 T4

(m/s) (◦/s/ax) (s) (N·s) (N·m·s) (N·m·s) (N·m·s) (N·m·s) (N·m·s)
-0.5000 2.0000 431.31 13.9372 0.2931 0.0294 0.1594 0.3413 0.0980
-0.6667 2.3333 520.08 19.7873 0.3387 0.0296 0.1873 0.4532 0.1260
-0.8333 2.6667 596.37 26.2911 0.3891 0.0299 0.2176 0.5745 0.1563
-1.0000 3.0000 665.10 33.3188 0.4427 0.0303 0.2496 0.7024 0.1883
-1.1667 3.3333 728.68 40.7984 0.4989 0.0306 0.2927 0.8351 0.2555
-1.3333 3.6667 788.45 48.6581 0.5567 0.0309 0.3167 0.9712 0.2555
-1.5000 4.0000 844.15 56.8528 0.6184 0.0313 0.3513 1.1099 0.2901
-1.6667 4.3333 892.30 65.3841 0.6860 0.0317 0.3864 1.2505 0.3253
-1.8333 4.6667 924.34 74.1956 0.7588 0.0321 0.4219 1.3926 0.3608
-2.0000 5.0000 903.76 83.2816 0.8371 0.0324 0.4576 1.5359 0.3966

The settling times vary from about 7.2 minutes in the best case scenario to about

15.4 minutes in the worst. Interestingly, the worst case settling time occurred for the

second to largest ejection speed. This is likely attributable to the increased errors

inducing a larger control response for the largest ejection speed, causing the system

to settle faster. These times are reasonable but may be longer than desired in a

real world system. However, these ejection speeds were taken from the NanoRacks

CubeSat Deployer, which is meant to eject the CubeSat so that it drifts a safe distance
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from the ISS. A berthing system for a CubeSat meant to rendezvous with the chief

spacecraft could produce a much smaller ejection speed, allowing the CubeSat to

rendezvous and dock faster and with less fuel.

The total impulse, FB, and total angular impulse, TB, increase almost linearly

from the best to worst cases, as shown in Figure 9. The values are well within the

capabilities of COTS propulsion and ADACS subsystems for CubeSats [7].

Figure 9: Total impulse and angular impulse applied to the base versus ejection speed.

The total angular impulses applied to the joints also increase almost linearly with

ejection speed, as shown in Figure 10. The increase in total angular impulse on joint

1 is nearly indistinguishable, as the reaction torque on joint 1 due to the in-track

acceleration of the base is zero. Therefore the increase is attributable solely to the

increase in the base tip-off rate at ejection, which is slight. Joints 2 - 4 see a much

steeper increase in total angular impulse because as thrust is applied to the base in

the in-track direction, these joints must apply torque in order to maintain the stowed

configuration from Figure 4. As the thrust duration increases with increased ejection

speed, the total angular impulse to these joints increases proportionately.

49



Figure 10: Total angular impulse applied to the joints versus ejection speed.

For all cases in this scenario the state error responses are reminiscent of a first

order system, where after a short period of growth the state errors decay to zero with

no overshoot. This is intentional as overshoot in this scenario is akin to colliding with

the chief spacecraft. Figure 11 shows the end effector position error in the LVLH

frame over time for the best and worst case ejection speeds. In all cases the CubeSat

base does not drift far from the chief spacecraft - less than 300 m in the worst case

scenario. However, the rendezvous takes a significant amount of time due to the

bounds on the thrust and the zero-overshoot requirement.

The translational states take the longest time to settle, as expected. In all cases the

initial angular velocity at ejection is stabilized within 20 seconds, with no significant

effect on the base attitude error. Once the CubeSat crosses the threshold into phase

2 of the maneuver, the manipulator is deployed and the joint angles settle to within

1◦ of error in less than 8 seconds. The manipulator deployment imparts a torque on

the CubeSat base, but the attitude controllers are able to counteract the disturbance

with little to no effect on the attitude error.

50



Figure 11: End effector position error in the LVLH frame for the best (left) and worst
(right) case ejection speeds

The control histories that produce these responses are reminiscent of bang-bang

control, as shown in Figures 12 - 14 for the worst case ejection speed. The control

histories and state errors for an intermediate case, with ẏ0 = −1.667 m/s, are shown

in Appendix A. Each figure includes the control history for the entire rendezvous and

docking on the left, with a closer look at the transition into phase 2 of the maneuver

on the right.

Figure 12 shows that the thrust is often saturated, particularly in the in-track

direction, during the rendezvous. The disturbance imparted to the base from the

manipulator motion also causes the thrusters to saturate temporarily. Figure 13 shows

that the attitude controls never saturate during the maneuver. A small amount of

torque is applied during the rendezvous to counteract the disturbance caused by the

thrusters. In phase 2, the magnitude of torque applied to the base to counteract the

manipulator motion is relatively much larger, but still only about half the saturation

limit.
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Figure 12: Thrust profile for ẏ0 = −2 m/s.

Figure 13: Base torque profile for ẏ0 = −2 m/s.

The joint torque profile during the rendezvous in Figure 14 is similar to the atti-

tude controls. Some of the joint torques saturate for several seconds at the beginning

of phase 2 before quickly settling.
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Figure 14: Joint torque profile for ẏ0 = −2 m/s.

In the presence of disturbance forces and torques the system remains stable and

completes the rendezvous and docking maneuver in nearly the same time as the

undisturbed case. Figure 15 shows the end effector position error in the LVLH frame

from the best case ejection speed for both the undisturbed and the most heavily

disturbed case. Notice on the left side of Figure 15 the error response appears the same

between the two cases. As state estimation in the model is ignored, the continuous

controller is able to respond to changes in the state errors induced by the disturbance

forces near instantaneously, and therefore counteract their effect. This does, however,

require more control than in the undisturbed cases.

Table 8 below shows the total control usage for each disturbed case. The percent

disturbance column refers to the percent of the maximum control that the random

disturbance signal is scaled by. For both cases, increasing this scaling leads to an

increase in total control usage for all actuators.
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Figure 15: End effector position error for ẏ0 = −0.5 m/s.

Table 8: Undisturbed Versus Disturbed Rendezvous and Docking Results

ẏ0 ωB
BL,0 % FB TB T1 T2 T3 T4

(m/s) (◦/s/ax) dist (N·s) (N·m·s) (N·m·s) (N·m·s) (N·m·s) (N·m·s)
-0.500 2.000 0 13.9372 0.2931 0.0294 0.1594 0.3413 0.0980
-0.500 2.000 1 14.3552 0.8095 0.1413 0.2316 0.3903 0.1903
-0.500 2.000 5 16.6159 3.1003 0.5922 0.6440 0.7174 0.6939
-0.500 2.000 10 19.9932 5.9995 1.1565 1.1868 1.1895 1.3466
-2.000 5.000 0 83.2816 0.8371 0.0324 0.4576 1.5359 0.3966
-2.000 5.000 1 95.2071 2.0177 0.2842 0.5197 1.5768 0.4822
-2.000 5.000 5 127.4348 6.9999 1.2426 1.3039 1.8883 1.4324
-2.000 5.000 10 142.1345 13.0859 2.4275 2.4407 2.6907 2.7693

While the settling time is largely unaffected by the disturbances, the system re-

quires non-negligible control after settling in order to counteract the disturbances.

Additionally, the error in the end effector position exhibits random fluctuations in

the steady state as large as 7 mm, as seen on the right side of Figure 15. Therefore,

the total controls in Table 8 are computed with the undisturbed settling times.

The mean and standard deviation of the controls and of the end effector position

error after tsettle for each of the disturbed cases are shown in Table 9. All axes

are considered together in computing mean thrust and mean torque on the base.
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Similarly, all joints are considered together when computing the mean torque on the

joints. In other words, fB is the mean thrust in each base axis, τB is the mean torque

about each base axis, and τJ is the mean torque in each joint.

Table 9: Mean Controls and End Effector Error After tsettle

ẏ0 ωB
BL,0 % fB ± σ τB ± σ τJ ± σ |ρe| ± σ

(m/s) (◦/s/ax) dist (mN) (mN·m) (mN·m) (mm)
-0.500 2.000 1 0.0360± 1.5466 0.0418± 0.4605 0.0208± 0.3691 0.6525± 0.1232
-0.500 2.000 5 0.1951± 7.7541 0.2060± 2.3085 0.1028± 1.8422 1.2095± 0.6392
-0.500 2.000 10 0.3935± 15.5673 0.4115± 4.6308 0.2048± 3.6837 2.0897± 1.4092
-2.000 5.000 1 0.0245± 1.6095 0.0283± 0.4754 0.0138± 0.3821 0.6168± 0.1184
-2.000 5.000 5 0.2932± 8.1944 0.3041± 2.4301 0.1504± 1.9338 1.1350± 0.5997
-2.000 5.000 10 0.5797± 16.4181 0.6028± 4.8692 0.2997± 3.8640 2.0119± 1.2898

Clearly as the disturbances increase in magnitude more control is needed in the

steady state to counteract them. The values for |ρe| indicate that there is some steady

state error in the end effector position both with and without disturbances, mostly

attributable to errors in the base position. These could be mitigated by increasing the

integral gain on the base position error. The standard deviations on the end effector

position error are indicative of the errors one could expect for different magnitudes

of disturbance forces on orbit.

4.2 Scenario 2: End Effector Placement

Figure 16 shows the randomly-generated desired positions for the end effector,

along with the workspace boundary. Each position is given a case number as shown

in the legend. Figure 17 shows a typical end effector trajectory generated by the De

Casteljau algorithm, in this case for the target position (x, z) = (0.2691,−0.0592) m.

Notice the velocity curves are continuous and the position curves are smooth.

Figure 18 shows the end effector position error for each case as a function of the

maneuver time. The cases can be traced back to the positions in Figure 16. Recall

that for all cases the system was given an additional 5 seconds of settling time. In

four out of ten cases the system is able to place the end effector on the desired point

within 1 mm of error with a 5 second maneuver. In all but two cases, this error
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decreases to 0.1 mm for 10 and 15 second maneuvers. Notice the logarithmic y-axis

scale, which is necessary to display all of the results due to the wide range of values,

especially for the 5 second maneuvers. For each target location the final end effector

position error decreases when the system is given more time to perform the maneuver.

The improvement in performance is greater for the cases with relatively high errors.

Figure 16: Random locations in the workspace used for scenario 2.

Figure 17: Typical position (left) and velocity (right) profile generated by the De
Casteljau algorithm.
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Figure 18: End effector position error versus maneuver time.

Two cases stand out with over 7 cm of position error after the 5 second maneuver.

In these cases the joint speeds required to perform the maneuver, given the initial

configuration of the system, are much higher than in the other cases. Figure 19 shows

the joint speeds for the 5 second repositioning in case six. Joint 1 reaches speeds of

over 2.5 rads/s in less than 2 seconds.

The controls required to achieve this maneuver are shown in Figure 20. Nearly

all controls are saturated for the first several seconds of the maneuver. The rapid

manipulator motion imparts significant disturbances to the base, leading to large

control usage. The controllers are unable to completely regulate the state errors,

as shown in Figure 21. The base position errors in particular account for several

centimeters of error in the end effector position by the end of the maneuver. The

base attitude also does not recover from the initial disturbance.
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Figure 19: Joint speeds for the 5 second repositioning in case six.

Figure 20: Controls for the 5 second repositioning in case six.
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Figure 21: State errors for the 5 second repositioning in case six.

Part of the reason for the aggressive joint trajectories is that the manipulator

passes close to a singular configuration near the start of the maneuver, namely a

configuration with the end effector lying on the y-axis of the CubeSat body frame.

This negative effect could be mitigated by introducing an alternative Jacobian psuedo-

inverse that maximizes distance from singular configurations, or by redesigning the

system to remove kinematic singularities in the desired workspace.

Ultimately these results are informative for the trajectory planning problem - end

effector trajectories that require excessive joint speeds should be avoided in order

to achieve high accuracy in end effector positioning. For a specific desired position,

ample time should be given to perform the maneuver to limit the joint speeds. The

control histories and state errors for a typical case, a 10 second maneuver to the

location ~rEE = [0.0784, 0, 0.1028]T , are shown in Appendix A.
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As expected, the control requirements decrease as the maneuver time increases.

Table 10 shows the mean and standard deviation of the percent decrease in total

impulse and angular impulse relative to the 5 second maneuver. Notice the percent

decrease from 5 to 10 seconds is much larger than that from 10 to 15 seconds. This

indicates that there is a diminishing marginal benefit of increasing the maneuver time.

Table 10: Mean Percentage Decrease in Control Use Relative to 5 Second Maneuver

Mean % Decrease
Maneuver Time (s) ∆FB ± σ ∆TB ± σ ∆TJ ± σ

10 40.69± 12.06 44.71± 6.80 47.38± 3.10
15 56.24± 15.40 60.90± 9.25 63.03± 5.87

The final end effector position error is correlated with the total control use, as

shown in Figure 22. The total impulse is for all thrust axes, and the total angular im-

pulses are either for all base axes or for all joints. The maneuver time is incorporated

in the color and shape of the data points.

Figure 22: Control use versus end effector position error.
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The end effector position error tends to increase exponentially as the control re-

quirements for the maneuver increase. The trend is less noticeable when the control

requirements are relatively small, as seen by the cluster of data points for the 10 and

15 second maneuvers. The two outlying cases (cases 5 and 6) indicate that control

use is a stronger determinant of end effector position errors than maneuver time.

The 10 and 15 second maneuvers for these cases still exhibit larger errors than the 5

second maneuvers for most other cases, since they require more control. Ultimately,

maneuvers that require large amounts of control to achieve rapid joint accelerations

will induce the largest errors.

Disturbance forces have little effect on the end effector position error at the end

of the maneuver. Table 11 shows the average and standard deviation of the difference

in end effector position error between the disturbed and undisturbed cases for each

magnitude of disturbance. Recall that the disturbances are included for the 10 second

maneuvers.

Table 11: Disturbed Versus Undisturbed End Effector Position Error

Disturbance Mean Difference
Magnitude (%) (µm)

1 0.6279± 35.6374
5 13.9123± 23.0355
10 52.3851± 111.6607

The disturbed cases tend to have higher position error but by an insignificant

amount, on the order of 10−5 m. Generally the greater the disturbance the greater

the position error, but again the increase is negligible. In some instances the dis-

turbed case even have a smaller error than the undisturbed case. Therefore the effect

of disturbances on the end effector position error is more random than definitively

negative.
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However, as with the rendezvous and docking scenario, disturbances increase the

controls required to perform the maneuvers. Figure 23 shows the total control use

in the presence of disturbances relative to the undisturbed case. The top left plot is

translational control, top right is attitude control, and the bottom is total angular

impulse on all joints. The three magnitudes of disturbances are shown for each case.

Figure 23: Control use with disturbances relative to undisturbed cases.

Across all cases the inclusion of disturbances increases the required control. The

relative increase in control use when increasing the magnitude of the disturbances

is also very consistent. Notice the different y-axis scales in each plot. Disturbances

have a much smaller effect on the translational control than on the attitude and joint

controls. This suggests that the manipulator motion has a large effect on the base

translation that eclipses that of the external disturbances. In contrast, disturbances

with magnitudes of 5% and 10% of the maximum torques often dominate the total

angular impulse for both the attitude and joint control. This suggests that the ma-

neuvers themselves are not very strenuous on the attitude and joint actuators, at

least for the 10 second maneuvers.
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Cases five and six stand out as the inclusion of disturbances has a relatively much

smaller effect on total control use than in all other cases. The reason is that these

maneuvers cost significantly more control in the undisturbed case. Not coincidentally,

these cases are the same as those with large end effector position errors. In sum,

disturbances have a smaller effect on maneuvers that require more control.

4.3 Scenario 3: End Effector Path Tracing

Figure 24 shows a typical desired end effector trajectory in the LVLH frame for

the path tracing scenario, along with the associated velocity profile. The end effector

begins at the origin and moves to trace the circular path counterclockwise. Notice

the velocity profiles are continuous but not smooth at the entry point to the circular

path, which occurs here at t = 5 seconds.

Figure 24: Desired end effector position (left) and velocity (right) profiles.

In nearly all cases the system is able to achieve the desired end effector trajectory

within 5 mm of position error. The mean and standard deviation of the end effector

position error for each case is shown in Table 12.
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Table 12: Mean End Effector Position Error

re ± σ (mm)
Case # tf = 20 s tf = 30 s tf = 40 s

1 2.5636± 1.4472 0.5840± 0.2156 0.3788± 0.1836
2 3.7947± 1.9222 1.4075± 0.7589 0.4974± 0.2636
3 2.2891± 0.9396 0.6919± 0.3573 0.4404± 0.2465
4 4.3867± 2.5254 1.6951± 1.0348 0.4577± 0.2362
5 5.7738± 3.3583 1.3409± 0.8756 0.3620± 0.1399
6 0.7649± 0.2998 0.4698± 0.2433 0.3309± 0.1934
7 39.6515± 9.9465 9.3064± 5.2563 3.0419± 2.9539
8 22.8916± 7.0979 7.5288± 3.3507 2.0061± 1.9595
9 1.0216± 0.4929 0.4582± 0.2130 0.3244± 0.1676
10 19.9560± 5.3930 4.1065± 3.0247 1.4040± 1.1555

The mean and standard deviation decrease as the maneuver time increases, as

expected. Several cases exhibit significantly higher errors than the rest, especially for

the 20 second maneuvers. In these cases the error spikes during the entry trajectory

onto the circular path, and the system is unable to fully dampen out the error while

performing the circular maneuver. This is demonstrated in Figure 25 which shows

the end effector position error over time for case seven.

Figure 25: End effector position error versus time with large errors.
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As the end effector moves onto the circular path its position error jumps to over 5

cm. The disturbances imparted to the base are not fully dampened and the position

error remains above 3 cm throughout the circular motion. An interesting effect occurs

around 10 seconds when, given the errors in the base pose, the desired end effector

velocity forces the manipulator to the reachable workspace boundary. This causes

the manipulator to oscillate until the desired trajectory re-enters the workspace.

The state errors and controls resulting in this end effector trajectory are shown in

Figures 26 and 27. The large jump in all state errors in the first 5 seconds is clearly

evident. The base attitude and joint errors largely dissipate by the end of the 20 sec-

ond maneuver, while those in the base position remain relatively high. The control

use is very chaotic during this maneuver, with many of the controls saturating con-

sistently for the first 12 seconds. The faulty trajectory planning is evident in Figure

27 between 10 and 12 seconds, where all controls oscillate between their maximum

and minimum values as the manipulator traces its workspace boundary.

Figure 26: State errors for case seven shown in Figure 25
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Figure 27: Controls for case seven shown in Figure 25

This phenomenon can be avoided in several ways. The simplest would be to limit

the joint speeds and accelerations in the trajectory planning. If the manipulator mo-

tion was less aggressive, the base would be able to regulate its errors successfully,

and the end effector would not be driven to the edge of its workspace. Another sim-

ple mitigation strategy would be to implement singularity avoidance in the Jacobian

pseudo-inverse differential kinematics algorithm. As the manipulability is zero at the

edge of the workspace, these configurations would be avoided as long as the relative

importance of singularity avoidance is high. Finally, the base states could be included

in the Jacobian, and therefore included in the inverse differential kinematics. The ef-

fect would be to allow both the base and the manipulator to move to achieve a desired

end effector trajectory. This may be difficult in practice since the base translational

motion is not very precise. However, allowing the base to move slightly may benefit

overall performance and would certainly avoid issues with the manipulator reaching

the workspace boundary. This may also be necessary for real-world tasks that require

large movements extending beyond the workspace of a stationary-base system.
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Across all cases the end effector position error is almost entirely due to errors in

the position of the CubeSat base. Joint angle errors are typically bounded by ±10−5

rads, and the elements of the base quaternion deviate from the desired attitude by a

similar amount. Meanwhile, the order of magnitude of the base position error matches

that of the end effector throughout the simulations. This can be seen in Figures 50

- 56 in Appendix A, which shows the control histories and state errors for a typical

case, the 30 second maneuver for case two.

The total control usage consistently decreases with maneuver time, as shown in

Figure 28. The relative decrease in total impulse with time is very similar in each case

due to the similarity of the maneuvers. While the different entry trajectories onto the

circular paths require varying amounts of control, the circular path constitutes the

majority of the maneuver and requires a similar control profile for each case, which

serves to equalize the relative control use. For this reason, the correlation between

total control use and end effector position error is not as strong as in scenario 2. For

this scenario the end effector position error is predominately driven by control use

during the entry trajectory.

Disturbance forces once again have little to no effect on the average end effector

position error, but did increase the required total control use. Figure 29 shows the

total control use with disturbances relative to the undisturbed cases. Notice the

increases across all actuators are much smaller than those seen in scenario 2, where

the 10% disturbances resulted in as much as a six-fold increase in total angular impulse

imparted to the CubeSat base. The relatively small increases shown in Figure 29 are

in agreement with the previous finding that the larger the control use required for the

maneuver, the smaller the effect of disturbances. A comparison of Figures 22 and 29

shows that the path tracing maneuvers require about twice as much control as the

simple end effector repositioning maneuvers of scenario 2.
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Figure 28: Total control use versus maneuver time.

Figure 29: Control use with disturbances relative to undisturbed cases.
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4.4 Summary

The CubeSat robot was able to perform each orbital scenario, indicating that the

system is feasible in the free-flying case. The rendezvous and docking maneuvers were

lengthy, but used achievable levels of control and settled within an acceptable error.

The stationary tasks were successful in general, with end effector position errors less

than 1 mm in many cases. Across all scenarios disturbance forces had little effect on

the error responses, as the controllers were able to counteract the effects. Disturbances

did, however, increase the control required to perform the maneuvers.

The most common issue with performance seen in the stationary tasks involved

kinematic singularities. When the desired end effector trajectory brought the ma-

nipulator near a singularity, the Jacobian pseudo-inverse algorithm often resulted in

excessively large joint speeds. In attempting these joint trajectories, the manipulator

imparted large disturbance forces on the CubeSat base that the base controllers were

unable to counteract, resulting in excessive control use and poor overall performance.

These cases are informative for the trajectory planning of a real-world system.

A common thread in all cases with large errors was large joint accelerations, partic-

ularly in joint 1. In the rendezvous configuration with the manipulator extended,

movement in joint 1 imparts the largest disturbance forces on the base. But joint

1 movement is necessary for all motions spanning three dimensions. One solution is

to design the system to remove kinematic singularities in the workspace. Another is

to bound the joint accelerations. All of the poor performance cases exhibited joint

1 accelerations in excess of 0.75 rad/s2, with the worst cases approaching 2 rad/s2.

A reasonable mitigation strategy would be to limit both the joint speeds and accel-

erations. More simulations and analysis would need to be performed to determine

appropriate bounds on each. Many other recommendations for follow-on research

efforts, as well as potential alternative investigations, are discussion in Section 5.1.
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V. Conclusions

In this research the coupled orbit-attitude dynamics of a 6U CubeSat with a

four-link serial manipulator were derived. Relative orbital dynamics between the

CubeSat and a chief spacecraft were implemented in a Simulink model, and a PID

controller was used to guide the CubeSat through a series of scenarios representative

of an on-orbit servicing system. The scenarios included a rendezvous and docking

following ejection from a chief spacecraft, repositioning the manipulator to place the

end effector on a desired location, and tracing a prescribed path with the end effector.

The simulation results indicate that, for the free-flying case, a CubeSat with a

robotic manipulator is feasible. In other words, given the state of the art in CubeSat

ADACS and propulsion subsystems, a CubeSat is capable of both rendezvousing and

docking with a chief spacecraft after ejection, and controlling the base motion while

maneuvering the manipulator.

Rendezvous and docking required a significant amount of time, anywhere between

7.2 and 15.4 minutes depending on the ejection speed. However, as discussing in

Section 4.1, these times could be reduced significantly by using a berthing system

more appropriate for this application. In the stationary tasks, the CubeSat was

able to regulate errors in the base states and follow the prescribed motion of the end

effector, often with sub-millimeter accuracy. In a handful of outlying cases the system

exhibited large errors in the states due to kinematic singularities. These cases could

easily be mitigated with several measures discussed in Sections 4.2 and 4.3. Across

all scenarios the inclusion of random disturbance forces had little effect on the system

error responses, but did increase the control required to perform the maneuvers.

The results of this research are limited to the system detailed in Section 3.1 and

to the scenarios simulated - namely RPO with a three-axis stabilized, cooperative

chief spacecraft in LEO. However, reasonable assumptions regarding similar systems
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and different orbits can be drawn from these results. For example, it can be assumed

that a 12U system could exhibit performance similar to, or even better than, the 6U

system in this study. A 12U system would have a more massive base and therefore

less coupling between the base and manipulator motion, and it would have a larger

volume budget for more sophisticated actuators. Additionally, it can be assumed that

this system could perform similarly in all Earth orbital regimes. Highly eccentric

orbits may negatively impact the performance, particularly that in the rendezvous

and docking scenario where orbital motion is most important. However, the chief

orbit in this study, or the ISS orbit, is one of the lowest operational orbits with the

largest gravitational forces and orbital speeds. Therefore the orbital motion in any

other regime would likely have a smaller impact on the coupled base-manipulator

motion, potentially improving the system stability and performance.

These results are also limited to a free-flying CubeSat robot, as contact dynamics

were not included in the model. However, the success of the system in performing

several free-flying tasks warrants further investigation into the expected capabilities

of a CubeSat robot, to include the addition of contact dynamics in the model and

simulations.

Designing a real-world system would be a significant systems engineering chal-

lenge, as this work assumed six thrusters each capable of 0.1 N, which is currently

available in the 1U form factor [7]. A real-world system would also require signifi-

cant volume budget for power, navigation, structures, thermal control, command and

data handling, flight software, and communications subsystems. Therefore, advances

in miniaturized propulsion systems would be necessary to realize the performance

seen in these results.
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The contribution of this work is significant for many reasons. Few studies in space

robotics have investigated the dynamics and control of a nanosat-scale system. Most

research in space robotics focus on larger systems and do not thoroughly address

gravity or coupled orbit-attitude motion, as discussed in Section 1.2. Not only is the

concept of a robotic servicing CubeSat novel, but the derivation of its dynamics using

Kane’s Method, with the inclusion of Newtonian gravity, and the direct control of the

nonlinear system presents a unique contribution to the present body of research.

The methods of deriving the system dynamics, integrating the dynamics into an

RPO simulation framework, and implementing trajectory planning techniques for on-

orbit servicing tasks can be applied to any other robotic servicing spacecraft. The

results of this research can inform the mechanical design of a future real-world system,

specifically designing a manipulator with no kinematic singularities in the spacecraft’s

desired workspace.

Ultimately this research indicates that a robotic servicing CubeSat is feasible,

and follow-on research, discussed in the next section, should be conducted to advance

this concept. If realized, robotic servicing CubeSats could contribute to the space

logistics infrastructure, which is a key component of the DOD and NASA’s vision of

a permanent presence in cis-lunar space [1, 6].

5.1 Recommendations

Several follow-on research efforts are recommended to more thoroughly investigate

this concept. Perhaps most important is improving the fidelity of the model, which

can be accomplished in several ways. First and foremost, the chief spacecraft can be

modelled as its own multibody system with representative features such as solar panels

and communications antennas. This would enable more challenging scenarios, such

as docking with a specific point on the spacecraft while avoiding all other structures.

72



Next, contact dynamics between the manipulator and a chief spacecraft should

be incorporated in the model to accurately simulate docking and servicing tasks.

Contact dynamics are necessary to determine the types of servicing tasks a CubeSat

could perform, and can leverage existing techniques in force compliance control [37].

Estimation is another critical aspect of any real world system that should be in-

corporated in the model to more accurately analyze the expected performance and

robustness of the system. Traditional spacecraft sensors, such as those for navigation

and attitude determination, can be incorporated to capture uncertainty in the base

states. Sensors unique to robotic systems, namely proprioceptive sensors to measure

the manipulator internal states, and exteroceptive sensors to characterize the manip-

ulator interaction with the orbital environment, such as force, distance, and visual

sensors, can be added to thoroughly capture all uncertainties related to the manip-

ulator and the client spacecraft. Numerous studies are dedicated to both the design

of space sensors for autonomous rendezvous and docking [68], and pose estimation of

spacecraft during RPO [69]. Incorporation of the sensor dynamics into the simulation

framework would require accurate sensor models, as well as a hybrid Simulink model

to mate the continuous CubeSat dynamics with the discrete sensor measurements.

Finally, actuator models can be included to improve the fidelity of the simulations.

Pulsed thrusters with minimum impulse bits rather than continuous, arbitrarily-small

thrusts would greatly improve the fidelity of the translational controls and likely de-

crease the overall system performance. Modelling the base reaction wheels or control

moment gyroscopes as distinct bodies in the multibody system would improve the

fidelity of the attitude control scheme. Incorporating joint actuation systems would

capture the true dynamics of the manipulator and likely improve the stability of

the system. Dynamic parameters such as friction in the joint servomotors can be

deliberately chosen to decouple the joints and linearize the manipulator motion [52].
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Note that incorporating accurate sensor and actuator models, to include their

power requirements, in the overall system model would enable systems engineering

and design studies to determine the solar array size and battery storage requirements

for a CubeSat robot’s power subsystem.

In addition to improving the fidelity of the model, several additional capabilities

could be added to the simulation framework to enable more thorough and complete

investigations of system performance. For example, allowing for alternative Jacobian

pseudo-inverses in the inverse differential kinematics algorithm could create new met-

rics for performance analysis, such as obstacle and singularity avoidance, and distance

from mechanical joint limits. Incorporating the full end effector pose into the trajec-

tory planning algorithm, rather then solely its position, would enable the simulation

of more specific manipulator tasks.

As discussed in Section 4.3, allowing the system to leverage its base DOF to

achieve desired end effector trajectories would increase the flexibility and maneuver-

ability of the system, and enable the simulation of a broad range of tasks spanning

large, complex motions. This would involve expanding the Jacobian to include the

base states, and devising an appropriate Jacobian pseudo-inverse. Modelling the ac-

tuators would increase the benefits of this addition as one could accurately weight the

relative costs of using each DOF of the system to achieve a task based on the power

requirements of the controllers, thereby producing a power-optimized trajectory.

The task of tuning the controller gains for the simulations in this research was

laborious. Therefore, it would be worthwhile to develop an optimizing tool that could

automatically compute optimal gains for the controller given a specific task and the

performance metrics of interest. Developing this tool would be a challenge given the

sensitivity of the system error responses to changes in the gains. Balancing the various

performance metrics, such as settling time, control use, and steady-state error, while
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ensuring an acceptable response with zero overshoot across the full range of initial

conditions, would require significant logic. However, an auto-optimizing tool would

greatly reduce the burden on the researcher when simulating new scenarios.

Beyond improvements to the model and additions to the simulation, there are

several alternative studies that can be conducted to advance the robotic servicing

CubeSat concept. For example, given the long settling times for the rendezvous and

docking maneuvers in this research, it would be worthwhile to investigate the design

parameters of a berthing system for this specific application. This investigation could

seek to determine the range of ejection speeds that allows time- and control-optimal

rendezvous and docking maneuvers while maintaining system safety.

Given the issues with kinematic singularities encountered in this study, it would be

useful to investigate the performance of systems with different designs. These could

involve different form factors for the CubeSat base, manipulators with more DOF,

or even a dual-manipulator system. Different manipulator designs could enable the

inclusion of end effector orientation in the path planning algorithms and alleviate

issues with singularities. A trade study aimed at determining the designs best suited

to perform specific tasks would greatly benefit the state of the art.

Given the systems engineering challenge associated with designing the CubeSat

robot of this research, it would be useful to investigate the performance of under-

actuated systems. For example, instead of using six thrusters aligned with the Cube-

Sat base axes, perhaps the system could have two thrusters oriented at different angles

to achieve controllability in two dimensions, or a single thruster with an adjustable

thrust angle. This study could leverage existing work in the autonomous rendezvous

and docking of an under-actuated system where attitude control is used to allow a

single, body-fixed thruster to achieve arbitrary three dimensional translations [49].
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Finally, countless investigations into alternative control methods can be conducted

to evaluate the impacts on performance. For example, adaptive control is a very

common method used when uncertainties exist in the dynamics, and applying it to

this system would be a worthwhile study. While PID control has heritage in space

robotic systems and was successful in this research, it would be valuable to compare its

performance to optimal controllers with both minimum time and minimum control

objectives. However, formulating the scenarios in this research as optimal control

problems would be challenging given the number of variables and constraints in the

system, and the complexity of the dynamics. Additionally, an on-orbit servicing

system would likely use some form of feedback control, rather than feed forward,

given the reliance on noisy sensor measurements, uncertainty in client spacecraft

dynamics, and the likelihood of disturbances on orbit, both from unmodelled effects

on the dynamics and from obstacles that must be avoided. Regardless of the control

methods used, it would be valuable to accurately model the system actuators in order

to intelligently weight the various controls.
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Appendix A. Additional Results

1.1 Scenario 1: Rendezvous and Docking

ẏ0 = −1.667 m/s; ωB
BL,0 = 3.3333 ◦/s/axis

Figure 30: Scenario 1 End effector position error in the LVLH frame.

Figure 31: Scenario 1 CubeSat base position error in the LVLH frame.
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Figure 32: Scenario 1 CubeSat base velocity error in the LVLH frame.

Figure 33: Scenario 1 CubeSat quaternion error relative to the LVLH frame.
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Figure 34: Scenario 1 CubeSat base angular velocity error relative to the LVLH frame.

Figure 35: Scenario 1 Joint angle errors.
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Figure 36: Scenario 1 Joint angular speed errors.

Figure 37: Scenario 1 Thrust profiles.
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Figure 38: Scenario 1 Base torque profiles.

Figure 39: Scenario 1 Joint torque profiles.
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1.2 Scenario 2: End Effector Placement

r̃EE,des = [0.0784, 0, 0.1028]T m, tmaneuver = 10 s

Figure 40: Scenario 2 End effector position error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).

Figure 41: Scenario 2 CubeSat base position error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).
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Figure 42: Scenario 2 CubeSat base velocity error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).

Figure 43: Scenario 2 CubeSat quaternion error relative to the LVLH frame. Undis-
turbed (left), maximum disturbances (right).
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Figure 44: Scenario 2 CubeSat base angular velocity error relative to the LVLH frame.
Undisturbed (left), maximum disturbances (right).

Figure 45: Scenario 2 Joint angle errors. Undisturbed (left), maximum disturbances
(right).
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Figure 46: Scenario 2 Joint angular speed errors. Undisturbed (left), maximum
disturbances (right).

Figure 47: Scenario 2 Thrust profiles. Undisturbed (left), maximum disturbances
(right).
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Figure 48: Scenario 2 Base torque profiles. Undisturbed (left), maximum disturbances
(right).

Figure 49: Scenario 2: Joint torque profiles. Undisturbed (left), maximum distur-
bances (right).
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1.3 Scenario 3: End Effector Path Tracing

r̃EE,entry = [−0.0740, 0, 0.2724]T m, tmaneuver = 30 s

Figure 50: Scenario 3 End effector position error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).

Figure 51: Scenario 3 CubeSat base position error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).
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Figure 52: Scenario 3 CubeSat base velocity error in the LVLH frame. Undisturbed
(left), maximum disturbances (right).

Figure 53: Scenario 3 CubeSat quaternion error relative to the LVLH frame. Undis-
turbed (left), maximum disturbances (right).

88



Figure 54: Scenario 3 CubeSat base angular velocity error relative to the LVLH frame.
Undisturbed (left), maximum disturbances (right).

Figure 55: Scenario 3 Joint angle errors. Undisturbed (left), maximum disturbances
(right).
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Figure 56: Scenario 3 Joint angular speed errors. Undisturbed (left), maximum
disturbances (right).

Figure 57: Scenario 3 Thrust profiles. Undisturbed (left), maximum disturbances
(right).
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Figure 58: Scenario 3 Base torque profiles. Undisturbed (left), maximum disturbances
(right).

Figure 59: Scenario 3 Joint torque profiles. Undisturbed (left), maximum distur-
bances (right).
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