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Abstract

The primary objective of this study is the creation of a prototype expert system called
EXMIS (EXpert Mlssile System) that performs the flight termination logic sequence of
the Autonomous Onboard Command System (AOCS). The AOCS is a proposed system
that would take the “man-in-the-loop” out of the self-destruct decision making process
and place the entire decision on the launch vehicle. Through the use of a six degree of
freedom trajectory program called BOOST, simulated flight data for four different flight
scenarioé is obtained. The launch vehicle selected for the simulations is the Peacekeeper

ICBM.

EXMIS is developed using an expert system shell called CLIPS (C Language Inte-
grated Production System) designed at the NASA/Johnson Space Center. CLIPS is a for-
ward chaining rule-based language that has inferencing and representation capabilities.
Once developed, the BOOST simulation data are used to evaluate EXMIS under different

scenarios involving nominal, errant, and unstable launch vehicle flight.

A recommendation is made for further testing of the prototype EXMIS system and to pur-

sue development of an advanced EXMIS program with the assistance of an expert in the

AQCS area.




EXMIS: AN EXPERT SYSTEM FOR

THE AUTONOMOUS ONBOARD

COMMAND SYSTEM (AOCS)

l. Introduction

The Launch Range System (LRS), which includes the Eastern Range (ER) at Cape
Canaveral, Florida and the Western Range (WR) at Vandenberg AFB, California, has been
undergoing a Range Standardization and Automation (RSA) program to modernize, stan-
dardize, and automate both ranges (3). The Autonomous Onboard Command System
(AOCS) is a proposed system tha£ would be a key part of this modernization effort. It
would effectively remove the “Man-In-The-Loop” from launch termination decisions and
replace it with an autonomous system located onboard the launch vehicle. As described in
the Spacelift Range Architecture Study , “The AOCS concept is to use the onboard navi-
gation and status, onboard GPS (Global Positioning System), possible optional inertial
sensors, and microprocessors with stored destruct criteria to implement real-time range

safety functions.” (9).

The main focus of this research effort was to evaluate the feasibility of using an expert

system to perform the flight termination logic for the AOCS should the launch vehicle




violate established pre-launch safety parameters. This task was accomplished through
several separate steps. First, simulated launch data were obtained using the BOOST pro-
gram developed by Martin Marietta Corporation. Second, an expert system dubbed EX-
MIS (for EXpert Mlssile System) was created through the use of the expert system lan-
guage CLIPS (C Language Integrated Production System) developed by NASA/Johnson
Space Center. Third, the launch data are processed by EXMIS to determine if the expert
system can recognize when pre-launch safety criteria have been violated and perform the
appropriate actions (e.g. self destruct). Four different scenarios were created in order to

test a range of possible realistic events.

Chapter 1 provides a background of current procedures, the AOCS, and the approach
of this research. Chapter 2 looks at the related efforts in the field of Expert Systems and
how they are being used in space applications. Chapter 3 develops the equations of mo-
tion for a rocket in three dimensions and focuses primarily on the BOOST program and
how it was used to obtain simulated launch data. Chapter 4 describes the EXMIS expert
system and how it was developed. Chapter 5 gives the results of testing EXMIS with the
BOOST data. Finally, Chapter 6 presents conclusions and recommendations for future
work. Appendices are provided for the entire EXMIS program and a list of variables used
in the BOOST program. It should be pointed out from the start that this research effort is
concerned with designing an expert system for the command logic portion of the AOCS.
It is not an attempt to criticize or justify current methods of operation but to present

studies and analysis of those operations that have led to the concept of the AOCS.




1.1 Current Procedures

General requirements for a Flight Termination System or FST are provided in the
Eastern and Western Range Regulation known as EWR 127-1 Range Safety Requirements
(2:sec 4-7 to 4-16). This regulation outlines the major objectives of an FST and how they
should be accomplished. These criteria must be adhered to at all times when developing

any proposed FST.

An overview of what is involved with range safety operations is appropriate at this
time. Currently, a ground-based Command Destruct system is employed for all launch
operations. This involves tracking of launch vehicles through Range C-band radars. The
radar data, or Metric as it has been known historically, are provided to the Mission Flight
Control Officers (MFCOs) who are directly responsible to the Range Directors for imple-
mentation and execution of actions required to comply with applicable public laws and
Department of Defense directives (2). MFCOs have the responsibility of monitoring the
progress of a launch vehicle and serve as the sole authority for determining if a launch ve-
hicle should be allowed to continue flight or be terminated. Although the MFCO has
some latitude when making decisions concerning the destruction of a launch vehicle, clear

guidance is provided in EWR 127-1.




As addressed in EWR 127-1 (2:sec 7.3), there are several situations that would nor-

mally result in flight termination action by the MFCO:
a. Valid data show the launch vehicle has violated established flight safety
criteria.

b. The performance of the vehicle is obviously erratic and the potential exists for
the MFCO to lose positive control. Termination action may be taken even
though the vehicle has not violated flight safety criteria.

c. The performance of the vehicle is unknown and the capability exists to violate
flight safety criteria.

As part of the Range Standardization and Automation (RSA) effort, a study was con-
ducted to report the feasibility of using a standardized range to vehicle interface that
would be used by both the ER and WR. In that study, the following observations were

made concerning methods employed during current range operations:

Current LRS Range Safety methods utilize a continuous UHF command uplink
of analog tones, interfaced to a vehicle equipped with dual command receivers
connected to UHF antennas. This methodology relies on an antiquated UHF
system comprised of redundant components on the Range and on the vehicle.
This Range Safety practice requires dual, independent, off-board systems, a sin-
gle point-of-failure concept, and a man-in-the-loop to monitor control flights.
This practice has considerable impact on the vehicle configuration, mission sup-
port configuration, Range equipment siting and the Range/Vehicle interface (3:4)

This study continues to describe problems with codes used to activate commands on-
board the launch vehicle and how the codes are not standardized to a single code for all
vehicles. Tt is suggested that three significant problems exist with the current method used
during range operations. One, a host of redundant equipment using antiquated UHF

techniques is needed. This is a costly method in both maintenance and equipment. Two,

the flight vehicle antenna composition is very complex. And third, there is no standard




code being used for the command process on all vehicles. These points are relevant when
considering whether to design a new command destruct system or stay with the current
system. Conclusions are made that new standards for Range-required real-time telemetry
data, metric data and command destruct functions are feasible, desirable and recom-
mended. It is further suggested that an AOCS is a candidate to accomplish this mission

and could replace the current UHF Command Destruct system by 2002.

1.2 What is the AOCS?

The AOCS concept was developed to meet the need for a standardized Command
Destruct process. This proposed solution is very controversial and represents a large de-
parture from the standard process previously described. The proposed design of the
AOCS would use onboard microprocessors which contain the programmed vehicle flight
profile and rocket performance parameters with permissible variances. The function of the
AOCS would be to monitor vehicle performance and control the destruct sequence of a
launch vehicle system. It is the destruct sequence or more specifically the flight termina-

tion logic of the AOCS that is the thrust of this research effort.

The AOCS could be developed to incorporate three data inputs consisting of Inertial
Guidance (IG) data, Global Positioning System (GPS) data, and Inertial Measurement
Unit (IMU) information. The onboard GPS receiver would provide position, velocity and
time data to the AOCS. Roll, pitch and yaw information would be obtained from the IG

or IMU systems. There would also be an optional “man-in-the-loop™ system provided by




the C-band radar that would allow the Flight Control Officer (FCO) to send a “safe” code
until errant vehicle behavior breaks the link. When the AOCS logic determines launch
vehicle data from two of the three onboard systems has exceeded established pre-launch
safety parameters and the optional Range/Vehicle “safe” link is broken, the vehicle auto-

matically destructs.

Potential benefits of the AOCS include:

1. There would be large cost savings through a major reduction of ground
equipment such as radar tracking systems and data relay devices.

2. GPS data provides an accuracy capability superior to ground-based radar.

3. Optional removal of “man-in-the-loop” procedures from flight termination
decisions would reduce the number of personnel needed to perform a launch.

1.3 Approach of this research effort

As stated previously, the main thrust of this research effort is the development of the
AOCS flight termination logic. The first step in accomplishing this task was generation of
launch vehicle information that could accurately simulate data obtained from a GPS re-
ceiver on a launch vehicle. Use of the trajectory simulation program BOOST was invalu-
able in obtaining this data. The Peacekeeper ICBM was the launch vehicle chosen for

simulation.

There are several reasons the Peacekeeper was used as a model for this research. One,

information from a 1990 test launch involving a GPS receiver onboard a Peacekeeper was




easily obtained. This information was used as a guideline to format data developed using
BOOST. Two, a BOOST constant thrust model for the Peacekeeper (see appendix C)
could generate simulated data consistent with real data. And three, data from previous
Peacekeeper launches are readily available and can be used to verify the accuracy of the

simulated data that are obtained through the BOOST program.

SHROUD
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Figure 1 Peacekeeper ICBM Diagram (18)

Figure 1 shows a detailed drawing of the Peacekeeper ICBM. The specific length and
thrust of each stage are listed in Table 1. Lengths are given in meters, thrusts are in
Newtons. The overall diameter is 2.35 meters. The thrust for Stage 4 and the Payload are

not used during this research and are therefor not included in the table.




Table 1

LENGTH AND THRUST PARAMETERS FOR THE PEACEKEEPER ICBM

Stage 1 Stage 2 Stage3  Stage4 Payload

Length 7.50 5.34 233 1.07 443

Thrust 2,187,538 1,226,766 304,178  N/A N/A

Although many options were available for developing the decision logic on the
AOQCS, the one chosen was the Expert System tool CLIPS. CLIPS is a forward chaining
rule-based language that has inferencing and representation capabilities. CLIPS was de-
signed at NASA/Johnson Space Center for the specific purposes of providing high port-

ability, low cost and easy integration with external systems (8:373).

Once simulation flight data are obtained from BOOST and the EXMIS program de-
veloped using CLIPS, four separate flight scenarios are evaluated. These evaluations are
reviewed with results and recommendations made in the final chapter. The specifics con-
cerning the development of both the BOOST data and EXMIS program are discussed in

detail within the following chapters.




Il. Related Efforts

2.1 Introduction

For approximately the past decade there has been widespread interest throughout the
aerospace community in utilizing developments, both scientific and technical, from the
area of Artificial Intelligence (AI). For instance, future NASA and U.S. Air Force activi-
ties in space will most likely rely on the effective use of some key Al components. Al-
though AI contains many components, there is one AI component in particular that is of |

concern to this research effort: Expert Systems.

Expert Systems is a unique branch of Al that makes extensive use of specialized
knowledge to solve problems approximating the level of a human expert. An expert is a
person who has expertise in a certain area. That is, the expert has knowledge or special
skills that are not known or available to most people (8:2). Expert systems, like human
experts, are designed to be experts in one domain area. An expert system designed to play
chess would not have knowledge about medicine just as a human chess expert would not
be expected to have expertise in medicine. Expertise in one problem domain does not

automatically carry over to another (8:3).

A source of invaluable information on the subject of expert systems and their uses in
the aerospace design environment is the proceedings of the annual Goddard Conference

on Space Applications of Artificial Intelligence. The following sections discuss research




projects presented at this conference during various years. These projects were conducted
in the area of expert systems with the intent of using them in aerospace applications. Al-
though these projects do not correlate exactly with what is accomplished during this re-
search effort, they do give a good background as to what has been attempted in the use of

expert systems for space applications.

2.2 MOORE and REDEX: Two Diagnostic Expert System

The use of expert systems as a diagnostic tool was one of the first areas where this
relatively new technology was found to be very useful. The two expert systems, MOORE
and REDEX, although designed for different space systems, perform similar tasks. Both
systems assist in diagnosing problems with their specific space systems. Each is discussed

in this section starting with the MOORE system.

2.2.1 The MOORE Expert System (11)

A general description of MOORE shows it as a rule-based prototype expert system
that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems.
This system assists spacecraft engineers at the TDRS ground terminal in troubleshooting
problems that are not readily solved with routine procedures, and without expert counsel
(11). The prototype system is used to diagnose antenna pointing problems that may occur

within the Attitude Control System (ACS). This is a critical area of concern with any

10




satellite system but is of particular importance to a tracking and data relay system where

accurate antenna pointing is crucial.

MOORE was designed by a team at the NASA/Goddard Space Flight Center and was
introduced as a proof of concept project in October 1986. It was foreseen as a system
that could reduce problem solving time, increase mission support time, and provide an
ideal operator training tool. The application of an expert system appeared to be more
feasible and beneficial to some of the TDRS subsystems than to others and the choice of
the ACS was made based upon several determining factors. The ACS is complex and
warrants the development of an expert system, and there is a history of well established

and understood ACS problems that could be used to develop an expert system.

The development process for MOORE can be broken down into several separate
steps. First, the problem domain of the system was chosen. As stated before, the ACS
was selected to fill this role. Then a qualified expert in the ACS area of the TDRS satellite
was needed for the purpose of obtaining a knowledge base from which to develop an ex-
pert system. Mr. Robert J. Moore of TRW was involved with the design, assembly, inte-
gration, test and operations of the ACS for TDRS and was therefore a logical choice.
Next, the researchers were faced with choosing a development tool that could meet the
criteria of cost, ease of assimilation, speed, size, and vendor support. The Personal Con-

sultant Plus (PC Plus) by Texas Instruments was chosen.

11




One of the main difficulties and time consuming processes involved with developing an
expert system is obtaining a knowledge base from the expert. This project was no differ-
ent as the researchers found difficulty in obtaining information due to the expert’s limited
available time. Once the initial knowledge acquisition interviews were conducted, a
skeletal structure of the entire anomaly resolution process became apparent. The research
team determined that a domain consisting of the entire TDRS ACS was too comprehen-
sive for a prototype expert system. The team decided to narrow the domain to a manage-
able subset of the ACS. The natural heuristic leaps that an expert would make when
dealing with a familiar anomaly were investigated in an effort to capture the expert’s

thought process when dealing with such problems.

After obtaining the proper knowledge base for the ACS subset, the MOORE expert
system was constructed. MOORE operates by querying the user for the spacecraft prob-
lem symptoms, then collecting and analyzing this data and, via forward chaining rules,
leaps of inference are made that provide intermediate conclusions (11). The successful
development of this prototype expert system proved that a diagnostic expert system was

feasible and had beneficial application to the TDRS program.

2.2.2 The REDEX Expert System (12)

One of NASA’s big challenges for the 1990’s is to contain operation and maintenance
costs for its mission operations. This challenge has prompted many NASA organizations

to evaluate expert systems technology as a means of capturing the specialized expertise of

12




operations and maintenance personnel. REDEX is one answer to this challenge. REDEX
is an advanced prototype expert system that diagnoses hardware failure in the Ranging
Equipment (RE) at NASA’s Ground Network (GN) tracking stations (12). The REDEX
system is designed to reduce troubleshooting time by helping the RE technician identify
faulty circuit cards or modules that need replacement. One of its main features is a
graphical user interface that uses color block diagrams and layouts to illustrate fault loca-

tions.

The problem NASA was having involved the GN tracking stations that track the Space
Shuttle launches and various unmanned spacecraft. The RE is a principal equipment item
in the S-Band ranging system at the tracking stations. The RE is designed with a Ranging
Internal Monitor (RIM) with 74 test points that are distributed throughout the RE. A
fault is indicated when one or more of these points are red. The RE technician uses the
RIM point status to begin troubleshooting procedures. REDEX was designed to assist the
RE in the troubleshooting process by diagnosing the situation and identifying the faulty

circuit cards.

REDEX was developed using an overall framework involving a requirements defini-
tion, system design, implementation, and testing. The key component of the REDEX de-
velopment approach is iteration. The requirements were first informally defined, then
prototyped, and then formally documented (12). The design process followed the same

general sequence. This approach allowed the researchers to evaluate and validate the re-

13




quirements and design through prototyping prior to formal documentation. The research-
ers allowed the requirements and design to evolve throughout the prototyping sequence

thus ending with the best system available.

The knowledge base needed to develop REDEX was acquired through three main
sources; technical documentation (a study of design documents, circuit diagrams, opera-
tions manuals, etc.), training classes held by NASA to train new operators and technicians
how to operate, troubleshoot, and repair the RE, and interviews with experts in trouble-
shooting the RE. Once this base was achieved, the knowledge required to diagnose RE

faults was represented using rules in an IF THEN format.

REDEX was designed using five evolutionary prototype stages. The objective of the
first stage was to demonstrate the feasibility of representing one functional subset of the
RE through RE troubleshooting rules using the Prolog language. The second stage objec-
tive was to encode the knowledge to diagnose faults in the entire RE network. The third
stage had the objective of developing and evaluating the conce;;ts of the user interface de-
sign. The fourth stage fully implemented the user interface. The fifth and final stage cor-
rected diagnostic errors discovered during testing and added a capability to communicate

with the RE.
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2.3 ISTAR: A More Recent Application (16)

The development of the Intelligent System for Telemetry Analysis in Real-time
(ISTAR) was initiated in May of 1988 by the Air Force Space and Missile Systems Center
(SMC), Inertial Upper Stage (IUS) Office. This system was designed as an advanced ve-
hicle monitoring environment incorporating expert systems and analysis tools. Over a five
year period the system progressed from rapid prototype to operational system (16). The
prime developer for this project was the Aerospace Corporation, a federally funded re-

search and development contractor.

At the time of ISTAR’s development, several trends were taking place in the world of
defense spacecraft that were making the mission support task increasingly difficult. First,
defense spacecraft were becoming more and more complex. The massive amounts of data
received by ground personnel must be quickly and reliably interpreted through slow and
sometimes unreliable manual means. Second, the number of defense space vehicles and
booster launches that need support were increasing. Replacement satellites for existing
constellations and new satellite systems will place an even heavier burden upon mission
support operations in the future. Third, the number of qualified mission controllers were
diminishing because of retirements. Typically, the controllers with the greatest amount of
experience and expertise are the ones closest to retirement (16:329). Finally, the trend
towards downsizing and defense cutbacks have taken their toll on the number of qualified

personnel to accomplish the mission.
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2.3.1 The ISTAR System

ISTAR was foreseen as a solution to a majority of these problems. The system was
first designed to be operational with the Spacecraft Monitoring And Real-time Telemetry
(SMART) system within Mission Control Center #8 of the Air Force Consolidated Space
Test Center (CSTC). SMART is a real-time data acquisition and analysis system based on
the System-90 Product by Loral Data Systems (16:332). ISTAR is designed to run in the
background on existing workstations within the SMART system in either real-time or
playback mode. In real-time mode, the Expert System Process analyzes dynamic teleme-
try data and detects and diagnoses anomalous conditions. If an anomaly is detected, IS-
TAR is brought to the foreground, allowing the controller to investigate the problem fur-

ther.

Several Knowledge bases can be invoked by the user through the ISTAR system. A
Status Knowledge base can be used to provide general vehicle status information to the
user through certain status messages. One such message could alert the mission controller
to vehicle events such as significant changes or limit violations of voltages or currents
within a subsystem of the satellite. Another Knowledge base can monitor specific phases
of the mission such as deployment or solid rocket motor burns. Knowledge bases within
ISTAR monitor specific subsystems or components of the IUS. Such subsystems as the

Power Distribution Unit and Signal Conditioner Unit Multiplexer are monitored through

16




the entire mission. The Knowledge base is configured to detect anomalies that are most

likely to occur, or most critical to detect.

2.3.2 Testing ISTAR

Prior to its operational use, ISTAR went through extensive testing at CSTC to insure
that it would reliably operate on current SMART workstations, yield results consistent
with SMART, and function without adversely affecting the operation or performance of
the SMART network (16:335). A groundrule was established to insure the system would
function within these parameters. Simply stated, no expert system results would be used
without verification from an official Air Force telemetry data system. After several simu-
lations were completed, it became apparent that the ISTAR system would provide valu-
able and timely information to the mission support team. This performance generated

support from SMC and Aerospace Corporation for its continued development and use.

2.3.3 Lessons Learned

ISTAR represented the first significant attempt to acquire an expert system capability
for the Air Force SMC Space Launch Operations Program. Over the five years of devel-
opment and operation many lessons were learned (16:336). Some of the most significant
ones relating to this research effort follow.

Start with simple, rapid prototypes, and proof of concepts - By building a prototype

and showing the solution of a very limited subset of the entire problem, a new perspective
on program needs and problems to be solved will arise
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Use Commercial Off The Shelf (COTS) products whenever possible - Support costs
are lower, products are more adaptable, and COTS products are thoroughly tested.

Start with simple, well-defined knowledge bases first - Start simple and enhance the
knowledge base through an evolutionary process.

Tackle problems that are best suited for expert systems- Not every problem is suitable
for an expert system. Detecting combinations of vehicle events that indicate a problem is
an appropriate use of an expert system.

Deal with real-time data and control issues early - A technical challenge is determining
how to connect to and process a real-time data stream. It is important to demonstrate the

capabilities of the system in the operational environment early in order to increase the
credibility of the system.

2.4 Autonomous Power Expert System (21)

A good example of an expert system used in a space system application is the
Autonomous Power Expert (APEX) system. The APEX system was developed by the
Space Electronics Division at the NASA Lewis Research Center. It was designed to
monitor and diagnose fault conditions within the Space Station Freedom Electrical Power

System (SSF/EPS) through the use of a rule-based expert system.

Design of the expert system is based on a model that consists of objects organized into
frames which are combined to represent an integration of object-oriented programming
and frame-based knowledge representation (21:148). Through the use of forward and
backward chaining rules, expert reasoning is emulated and provides for fault detection and
isolation. A load profile is provided from a remote power scheduler program that contains

information about expected values and operating conditions for each load.
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The research team concluded that an expert system can check more test points, more
often than a human operator can, and do so without fatigue (21:156). They also found
that having expert knowledge continuously available to monitor and diagnose faults would
provide a great advantage over the current human methods. These were seen as valuable
benefits for a system such as a space station that requires continuous feedback and
autonomous control. It is foreseen that much of the burden that is currently placed upon

human operators can be relieved by expert systems such as APEX.

2.5 CLIPS as a Knowledge Based Language (10)

This study compares the CLIPS language with three other Al languages with regard to
the processing they provide for the implementation of Knowledge Based Systems (KBS).
The three other languages are LISP (LISt Processing language), Prolog (Programming in
Logic), and OPS5 (Official Production System, version 5). These languages were all de-
veloped to enhance the building of KBSs by providing a direct method of encoding both
data and procedural knowledge (10:33). The researchers determined that the most com-
mon language used for developing Al applications was LISP. CLIPS was the most re-

cently developed language of the set studied by the research group.

The researchers discussed the differences between a KBS language and a conventional
language such as Pascal, C, or FORTRAN. They describe a KBS language as one based
on a set of rules that act like functions in a conventional language. The rules are triggered

by data rather than program flow. This study determined that if the order of decisions can
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be predetermined and remains constant regardless of the data, then a conventional lan-
guage is a more appropriate selection. Another important difference is the way variables
are handled. In the Al languages the variable only has meaning within the particular rule

in which it is located. There are no global variables as in FORTRAN or Pascal.

The study finds several advantages to using CLIPS over the other four languages. For
instance, CLIPS is the only language of the set that was designed especially to be embed-
ded within another system. CLIPS also provides language constructs to perform algo-
rithmic tasks. Another feature that is useful in CLIPS is the ability to assign weights
(called salience Valués) to rules. The rule with the highest salience value is the rule that

fires next (10:38).
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lll. Missile Trajectory Model

3.1 Introduction

During the formulation of this research project, it was discovered that real GPS data
obtained during tracking o/f actual launch vehicles during flight were unavailable in the
quantities necessary to verify operation of the EXMIS program. Therefore, a different
means of obtaining missile trajectory information was needed. Computer simulation was
the desired method since many different scenarios would be possible and alteration of the
information could be performed easily. Using real GPS tracking data as a standard, sev-
eral options were investigated as to their utility of providing accurate simulated GPS and

inertial data.

The development of a missile simulation using Matlab® (14) was pursued but the
model developed could not provide a good approximation of the dynamics experienced by
a missile flying in 3-D space. The Matlab program was therefore dropped from consid-
eration. However, a program called BOOST was found to be more user friendly and ca-
pable of generating the types of data necessary to test EXMIS accurately. BOOST is used
by the Ballistic and Space Design Branch (TANB) at the National Air Intelligence Center
(NAIC) and was easily accessible for use during this research project. BOOST is ex-

plained in more detail during the following sections.
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3.2 Defining the Equations of Motion

A dynamics problem, such as the one investigated during this research effort, can not
be solved without first developing the equations of motion (EOM). Thorough and exten-
sive use of “BOOST: A General Six Degree of Freedom Powered Flight Trajectory
Simulation Computer Program” by Anderson (1) was made in order to accomplish this
task. This source gives great insight into the dynamics of a missile during flight and how

the BOOST program computes and develops certain equations.

3.2.1 Coordinate Systems

It is appropriate to describe the various coordinate systems used during this study.
The BOOST program has four basic coordinate systems available. Three are Earth-
oriented systems and the fourth is missile-oriented. The first is an Earth-centered system
that is fixed at the time of launch. The X and Z axes are in the equatorial plane. The X
axis passes through zero longitude where the Y axis is coincident with the polar axis and

the Z axis is perpendicular to the X-Y plane.

Figure 2 Earth-Centered Inertial System (1)
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The second system is an earth-centered system that rotates with the earth and is coin-

cident with the inertial system at the time of launch.

Figure 3 Earth-Centered Rotating System (j )

The origin for the last earth-oriented system is located by an input latitude and longi-
tude and the orientation is controlled by an input azimuth. This allows the user to specify
the exact launch location. The launch location specified for this study is Vandenberg AFB
with Latitude = 34.7 °, Longitude = 120.6 0 and an azimuth of 200 ° . The coordinate

system remains fixed with respect to the Earth during the entire missile flight.

Figure 4 Launch-Centered System (1)
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The missile coordinate system is centered at the missile center of mass. The 1 axis
represents the roll axis, the 2 represents the pitch axis, and the 3 represents the yaw axis.

Rates of rotation are also determined about each of these axes.

Figure 5 Missile-Coordinate System(1)

3.2.2 Initial Conditions

BOOST uses a numerical integration scheme to obtain inertial positions and velocities.
This scheme involves a Predictor-Corrector method wherein velocities and positions are
first predicted for the next point in the trajectory based on previous and current values of
acceleration, velocity and position (1). From the predicted velocities and positions,
BOOST is able to calculate the forces acting on the missile and determine its acceleration.
Certain initial equations must be computed to begin the process. These equations involve
the inertial position and velocity of the missile at the launch point and are used to develop
the equations of motion. The Predictor-Corrector method used by BOOST will be de-

scribed later in this chapter. Following are the initial equations that lead to the EOM.
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Inertial Position Inertial Velocity
r=R, +h, -

X, =02
X, , =X, =1c0s¢,, COSA, YLO 0 ¥
Y, =Y, =rsingd,, o

ZLO =_a)')(Lo

Z,.,=7Z, =1c088, sind,

Where the following list defines the variables used. (NOTE: All values used by BOOST
are in the English measuring standard but outputs are converted to SI units):

r = Radius to the missile

R, = Radius of the Earth

h, = Launch altitude

.‘XLo ,Y,,,Z,, = Inertial coordinates of launch point

¢, = Geodetic launch latitude

A, = Launch longitude

o = Angular rate of Earth rotation

The direction cosines for the missile orientation matrix that transforms missile coordinates

into earth-centered coordinates are also provided as a 3 X 3 matrix R below (1:7.1).

R, =cosi, cosg,

R, =sing,,

R, =sinA, cosi,,

R, =cosA,sing,, sinfB, +sini, cosf,
R, =—cosd,, sinpf,

R, =sinAd,sing, sinfi, —cosd, cosfB,
R, =—cosA,sing,, cosf, +sini,sinf,
R, =cos¢,, cosf,

R, =-sind,sing,, cosf, —cosi,sinf,
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The angles are defined below.

@, = Geodetic launch latitude
A, = Launch longitude
S, = Launch azimuth

3.2.3 Equations of Motion

From the given initial conditions and through the use of the previously described
equations, the equations of motion can now be developed. A simple representation of the
Equations Of Motion (EOM) are given here. For a more rigorous derivation of all pa-
rameters used by the BOOST program the reader should refer to the BOOST manual (1).
Using Newton’s fundamental equation, F = ma, the inertial components of acceleration are
solved. It is assumed there are only four forces acting on the missile at any given time:
the axial thrust, an axial aerodynamic force, the normal force, and the force due to gravity.

Each force will first be defined and then used to find the EOM.

The axial thrust is found by first finding the total thrust T, which BOOST finds using a
user input parameter known as the specific impulse or Isp . Thus, the general equation for
T is as follows (18:24):

m = mass flow rate

T=1I1
st/ €6 g, = acceleration of gravity 3217 .. or 98 /
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The axial thrust is then computed using input dimensions specified for the particular
launch vehicle selected by the user. These dimensions are input during the setup phase by
a model subprogram. The subprogram used for this research project is the Peacekeeper

constant thrust model (see Appendix C).

The equation for axial thrust is (1:2.1):

T= total thrust

L, = distance from nose to center of gravity
L = distance from nose to center of pressure
L, = length of missile

N, ,IN3 = aerodynamic forces along missile 2 and 3 axes
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Using the axial thrust, the acceleration for each direction can be obtained (1:2.1).

XL =.1\l—/1[(TAXR11)+ Ny -4, + WX]
Y "A!Z[(TAXRU)"'NY — 4, +VVY]
/ ﬁ[(TAXRls)+Nz —AZ +VVZ]

L

L

The individual equations, used to define the equations of motion, follow.

N=CNa qS
A‘1=CAqS A2=Nz=—_2_——_ A3=N3=

L-L,
X Y Z
Wy =-Mp—- Wy =-Mp— W, =~Mp—




The following symbols are defined for clarification.

M = Mass of the missile (an input value)
N = Total aerodynamic forces
N,,N,,N, = Aerodynamic forces along the X, Y, Z axes
N, ,N,,= Aerodynamic forces along the missile 2 and 3 axes
q = Dynamic pressure

A, A drag forces along the X, Y, and Z axes

A =
Y? Z
,A, = drag forces along the missile 1, 2, 3 axes
C, = A function of Mach number
C,, = Also a function of Mach number

W,., W, , W, = Components of gravity forces in X, Y, Z directions

b
1> %2

V,,V, = Components of relative wind in the missile 2 and 3 directions

X,,Y, ,Z, =Inertial coordinates of missile position
S = The Missile surface area

Some values used within the BOOST program are obtained through lookup tables that
have been developed using historical data from previous launches. An example is the val-

ues for Ca.

3.3 BOOST: A Trajectory Simulation Program

The BOOST program was selected for this research project because of its ease of use
and history of excellent performance. It is currently being used by the TANB Section of

the National Air Intelligence Center (NAIC) at Wright-Patterson Air Force Base, Ohio.
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This afforded an opportunity to work with individuals who were knowledgeable about

BOOST and had a wealth of documentation available on many different launch vehicles.

3.3.1 Description of BOOST

BOOST is described as a general six degree of freedom trajectory simulation program
capable of simulating a multi-staged launch vehicle (1). It was developed to provide a
preliminary design analysis and quick reaction capability for performance analysis of exist-
ing launch vehicles. The means available for controlling the vehicle attitude include a zero
lift method, predetermined pitch and yaw programs, inertial gravity turn, and Appazov
angle of attack steering. Only the pitch and yaw programs were used for attitude control

during this research effort.

The zero lift method involves calculation of a pitch rate and, if called for by the pro-
gram, a yaw rate that causes the missile to trim into the wind. This maneuver effectively
aligns the missile 1 axis with the relative wind velocity vector resulting in a zero total
normal force, hence no lift force. BOOST treats attitude rates independently making it
possible to fly a missile with zero lift in the pitch plane while changing the yaw rate
through use of the yaw rate control law. The pitch and yaw rate programs consist of
specifying missile rotations about the missile 2 and 3 axes, respectively, in the form of an

input rate versus time. The program applies the rate from a lookup table, determined by

30




the user, which corresponds to the current time. It is therefore possible to turn (that is

yaw) or adjust the pitch of a missile at a predetermined time during the flight program.

All inputs to BOOST are made through variables found in an input namelist. The user
must first find the correct input symbol for the type of function that BOOST is required to
perform. This is accomplished with the help of an appendix in the BOOST manual (1).
This appendix covers all input variables or symbols that are available to the user. Once the
user has found the correct input variable, it must be input into BOOST through a setup
model. A preprogrammed setup model was available and used for this research project
and is discussed in a later section. For a listing of input variables used during this research

effort, the reader should consult Appendix A.

In order to specify completely the nature of the missile whose trajectory is to be com-
puted, it is necessary for the user to input all pertinent data about the missile (1). This in-
cludes the missile configuration (thrust at each stage, weights, lengths, etc.), launch point
coordinates, missile control data (attitude rates, launch azimuth, etc.) and miscellaneous
values such as drag curves. Once this general information is provided to the program,

slight variations in certain variables can result in completely different flight scenarios.
BOOST calculates the path of the missile by solving the equations of motion in an in-

ertial coordinate frame. From the given inputs BOOST computes the trajectory of the

missile in a step by step method by resolving all of the forces acting on the missile, at any
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given time, into accelerations. The accelerations are integrated to give velocities, which in
turn are integrated to give positions. The missile orientation is calculated in the same
manner by integrating the rotations about each of the missile axes and relating the posi-
tions of the axes to the inertial frame. Through this step by step process, BOOST calcu-

lates the desired missile trajectory from launch to impact.

As mentioned previously, the integration scheme used by BOOST to obtain the inertial
positions and velocities is a predictor-corrector method. First, velocities and positions are
predicted for the next point in the trajectory based on prior values of acceleration, velocity
and position. From the predicted values, BOOST calculates the forces acting on the mis-
sile and determines the accelerations for each direction. With the new accelerations, a
velocity and position corrector equation is developed and applied. If the predicted and
corrected values agree within a specified tolerance, the values are accepted and used as a
point on the trajectory. If the values do not agree, the corrected velocities and positions
are used to obtain accelerations and then recorrected. The program allows a maximum of
10 recorrections. If the scheme fails to agree after the 10 iterations, trajectory computa-

tions are halted.

A general example of the equations used in the Predictor-Corrector method are given

in the BOOST manual (1:3.1) and are shown here for illustration. The equations for the

inertial X, ¥, and Z coordinates are identical and therefore only the X coordinate equations
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will be shown. The subscripts n-1, » and n+1 refer to time steps in the trajectory compu-

tation with #-1 being the previous time step, 7 the current one, and #+1 the next (1:3.1).

XP =X +MX, Discontinuous Predictor
XP =X +2MX, Continuous Predictor
XE =X + éz—t-(X r.+X)  Position Predictor
Xr=f(x5,.X PH) Equations of Motion

n+l n+l

X =X + —Az—t(X P+ X n) Velocity Corrector

x¢ =X,,+£(Xc
2

n+l n+l

+X ) Position Corrector

3.3.2 Peacekeeper Constant Thrust Model

The Peacekeeper constant thrust model was designed by Mr. Dale B. Witt of the
FASTC/TANB office at NAIC in June 1993. The model is normally a classified subpro-
gram for the BOOST trajectory simulation program, but, after eliminating certain pieces of
information it was unclassified for use during this research. The model supplies the input
informatidn needed by BOOST to begin trajectory simulation for the Peacekeeper ICBM.
By using this model, consistency was maintained since certain information utilized for this
research effort was specific to the Peacekeeper. For example, the GPS information,

adopted as a guide for input data to EXMIS, was obtained from a Peacekeeper launch.
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The complete structure of the Peacekeeper model can be found in Appendix C.
A short breakdown of the model is given here for clarification. The Post Boost Vehicle
(PBV) and Reentry Vehicle (RV) are removed to make tile model unclassified. The first
few lines give a background concerning the initial conditions of the simulated launch and
are for information purposes only. The launch height is specified as 0 ft and the tempera-

ture is 72° F.

The Peacekeeper is launched using a cold launch system that propels the missile out of
the launch tube. Vehicle motor ignition takes place approximately 2.7 seconds after cold
launch. The thrust for each stage is input using the T1(I) variable where I equals the stage
number. The total weight of the launch vehicle, including payload, is 195,444 Ibs or
88,652 kg and is put into BOOST through the W1(1) variable. Time of flight, weights at
each stage, and weight decay rates are controlled through the TF(I), W1(I) and WD(I)
variables. The AC(I) variable allows the user to designate the thrust gradient for each

stage.

The flight scenarios studied during this research project were accomplished by chang-
ing certain input variables at specified times during the simulation. The PSICV variable is
designed to control the missile yaw rate. The variable consists of two separate inputs:
time, in seconds, that specifies the start of the yaw rate, and the rate of yaw in deg/sec.
The THACYV variable accomplishes the same function for the missile pitch rate. These

two variables allowed the program to simulate missile tumbling about an axis resulting in
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an unstable launch vehicle profile. This simulation was vital for testing the capability of
the EXMIS program to detect accurately problems with the launch vehicle and then per-
form appropriate actions. The SDELT variable allows the user to specify the interval at
which trajectory data is computed and output from the program. The interval used for all
simulations was 1/10 sec. The last variable to be described is the PRTBL variable. This
variable defines the interval at which the outputs from the program are printed. The fre-
quency specified was 1/2 sec. This created a good data history for the simulated flight and

provided substantial information in which to test the EXMIS program.

3.4 Summary

The BOOST program was invaluable to this research project. The ease of use and
documentation support made it the perfect tool with which to obtain the trajectory infor-
mation needed for testing the EXMIS program. The input variables, described in this
chapter, allow the user to customize the trajectory program as needed. This makes the
program versatile and viable for many trajectory simulation projects. Therefore, this pro-
gram is recommended to any researcher looking for a trajectory simulation program with

these particular assets.
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I V. The Expert System

4.1 Introduction

Expert systems is a branch of Al that uses specialized knowledge to solve problems at
the level of a human expert. An expert is defined as a person who has expertise or knowl-
edge in a certain area that is not known to most people. Therefore, an expert system can
be defined as a computer system which emulates the decision-making ability of a human
expert (8:1). Usually, an expert’s knowledge is specific to one particular area or problem
domain as opposed to knowledge about general problem-solving techniques. Expert sys-
tems are similar in this respect since they are generally designed for use in one problem

domain.

4.1.1 Design of an Expert System

The development of an expert system is a time consuming and often rigorous under-
taking. The process has several stages that must be followed in order to create an effec-
tive and efficient system. The stages outlined in the next few paragraphs are a general
guide for developing an expert system. The specific process used during this research
project will be described later in the chapter. The first step in the process is to define the
task or problem and decide whether an expert system would be appropriate for solving the
problem. Tables 2 and 3 and give some characteristics of tasks suitable and not suitable

for expert system development.
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Table 2

SUITABLE TASK CHARACTERISTICS (13:130)

e The proposed system will save time and money.

e An expert for the problem domain is available.

¢ Nonexperts require the expertise.

e The task can be fully described with facts, rules, and algorithms.

e The expertise to be modeled is narrowly focused.

e The time required to perform the task is between a few minutes and a few days.

e The task may have a logical complexity such that no single human expert could

perform it without help from computers or manuals.

Table 3

NON- SUITABLE TASK CHARACTERISTICS (13:130)

e The task is based on hard-to-define knowledge, common sense, or intuition.

¢ The actions of the expert may require human skills that are difficult to computerize.
e An expert could not describe in detail, over the phone, how he performs the task.

e The task is performed by most people.

e It is unclear whether the intended users would employ the system.

When the task has been identified as a good candidate for an expert system, the
“knowledge engineer” must obtain a knowledge base about the problem. This can be ac-
complished by eliciting information from one or more experts in the field or from manuals
used in performing the task. The knowledge engineer must identify the key concepts and
facts about the problem and ways they are linked together to solve the problem. This is

often the most time consuming part of the expert system development process. It is often
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desirable to define a small piece of the problem to tackle first. This allows the knowledge
engineer to test some of the basic problem-solving strategies used by the expert when

performing the task.

Once a knowledge base is derived from the available sources, the knowledge must be
formalized into a set of rules and a structure built to organize them. A rule is similar to an
IF-THEN statement used in a procedural language such as Ada. The rules are used to
represent relationships in terms of condition-reaction pairs where IF is the condition part
and THEN the action part. The condition part (IF) of the rule is also referred to as the
premise, antecedent, or left-hand side (LHS). The action part is also referred to as the
conclusion, consequent, or right-hand side (RHS) (13:234). After all rules are developed,
they are programmed into an Al language such as Lisp or CLIPS. The knowledge engi-

neer must continually evaluate the rules to ensure they accurately represent the problem.

Now that the rules have been defined and entered into an Al language, they are used
to construct a workable prototype. The first-out or “rough draft” version of the prototype
is tested and experimented with to determine its utility. The rough draft prototype is re-
fined through an iterative process until it is determined to be acceptable by both the expert
and knowledge engineer. The prototype expert system is evaluated by a user in the field.
Refinements are made from user suggestions until all individuals involved are satisfied

with the prototype. The expert system is finally accepted and used on real cases.
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4.2 CLIPS: An Expert System Language

CLIPS was designed at the Johnson Space Center/NASA with the specific purpose of
providing a highly portable, low cost expert system language for developing expert sys-
tems. In keeping with these goals, NASA has provided CLIPS free of charge to Govern-
ment users and Government agencies. CLIPS is written in the C programming language
giving it speed and portability. Because of its portability, CLIPS has been installed on a
wide variety of computers ranging from PC’s to CRAY supercomputers (8:374). Some of
CLIPS’ characteristics are smooth integration with external systems and easy embedability

within a main system.

CLIPS is a forward chaining rule-based language. In a rule-based system, the infer-
ence engine determines which rule or rules are satisfied. The inference engine corresponds
to what is known as a cognitive processor within the human brain. The cognitive proces-
sor tries to find the rules that will be activated by the appropriate stimuli (8:13). Similarly,
the inference engine in an expert system controls the overall program execution by looking
for facts that will activate a particular rule. The forward chaining process involves steps
that go from the reasoning of facts on to the conclusions resulting from those facts. For
example, if you see that it is raining before you leave home (the fact), then you know you
should take an umbrella (the conclusion) (8:28). As mentioned before, the reasoning

process is performed by the inference engine.
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When designing an expert system, care must be taken to choose a development lan-
guage that will allow the expert system to perform it's intended task. Analysis of all avail-
able languages is one of the first steps in the design of an expert system. An incorrect
choice at this stage of development can cause many problems further down the line.
Matching the needs of the expert system with the characteristics of the available develop-

ment languages was a logical procedure for this research project.

When analyzing CLIPS for possible use as the expert system language, it was found
that CLIPS is well suited for writing control systems. According to one expert systems
researcher, “ The CLIPS language is a good choice for writing a control system or simu-
lation of a control system. The rule based nature of the CLIPS language provides an in-
tuitive and quick medium for developing control rules ” (10:39). It was determined that
the prototype expert system developed during this research project would integrate with
many external systems including GPS receivers and inertial measuring equipment. It will
also be imbedded within the AOCS system. These factors combined to make CLIPS an

excellent choice for developing EXMIS.

4.2.1 Structure of CLIPS

CLIPS consists of three basic components. These three components are: a fact-list,
knowledge base, and inference engine. In order to solve a problem, CLIPS must first have
information or data with which it can reason. Information is known as a fact within

CLIPS. A fact consists of one or more fields enclosed by parentheses. An example is:
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(day Monday) or (day Tuesday). In this instance, the two facts are explicitly related. The
first field of the facts (day), is used to describe the relationship of the following fields
(Monday) or (Tuesday). Now the facts are related by the field day. Each fact is placed in

a fact-list that will be used later in the program.

A set of facts can be entered into the fact-list using the deffacts construct. This is
particularly useful when facts are known to be true before running a program such as ini-
tial knowledge or conditions. The general format for a CLIPS deffacts statement is
(8:395):

(deffacts <deffacts name> [<optional comment>]
<< facts >>)

The keyword deffacts is first, followed by the name of the deffacts statement. An op-
tional comment is available to further describe the facts being asserted. Following the
name or optional comment are the facts that will be asserted in the fact-list by the deffacts
statement. Shown below is a specific example of a deffacts statement:

(deffacts initial-status “Initial conditions for the day”

(sun up)
(lights off))

The name of the deffacts statement is initial-status, with a comment following. There are
two facts in this deffact statement, (sun up) and (lights off). The facts are asserted and

placed on the fact-list by using the CLIPS reset command described later in this section.
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In order to accomplish it’s assigned task, an expert system must have rules to go with
it’s facts. Following is the general format for a CLIPS rule with the name of each part in
bold letters (8:386):

(defrule <rule name> [<optional comment™>] ; Rule header
<<patterns>> ; Left-Hand Side (LHS) of the rule

=>
<<actions>> ; Right-Hand Side (RHS) of the rule

In this format the entire rule must be surrounded by parentheses or CLIPS will not ac-
knowledge it as a rule. The rule header consists of three separate parts. The first part is
the keyword defrule, which indicates to CLIPS that a rule is about to be defined. Follow-
ing defrule must be the name of the rule. If a rule is entered that has a name which is the
same as an existing rule, the new rule will replace the old rule. CLIPS prévides for an op-
tional comment after the rule name that allows the programmer to provide additional in-

formation about the rule such as it’s purpose.

After the rule header are zero or more patterns or conditional elements consisting of
one or more fields. CLIPS attempts to match the patterns against facts in the fact-list. If
all the patterns of a rule match a fact, the rule is activated and put on the agenda, the
collection of activated rules (8:386). The => symbol that follows the patterns of a rule is
known as the arrow. The arrow signifies the beginning of the THEN part of an IF-THEN
rule described earlier in this chapter. The LHS is the part of the rule just before the arrow

and the RHS is just after the arrow. The right hand side consists of actions that will exe-
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cute when the rule fires. The term fires means that CLIPS executes the actions of a rule
from the agenda in the same manner that a nerve cell (neuron) transmits a nerve impulse

(fires) when the proper stimuli is present (8:387).

Often, computer programmers write their initial code for a program in a format known
as pseudocode. Pseudocode is used by CLIPS programmers as a way of writing rules in
an understandable English format that can later be converted into a CLIPS format. Fol-
lowing is an example of a pseudocode rule:

IF the sun has set
THEN turn on the lights

This rule could be entered into CLIPS as:

(defrule set-sun-now
(sun set)

=>
(assert (action turn-lights-on)))
Notice that the parentheses surrounding the patterns and actions must be balanced or a
CLIPS error will occur. In this rule, the pattern is (sun set) and the action asserted by the
rule is turn-lights-on. If the (sun set) fact is subsequently asserted by another rule or def-

facts statement it is placed on the fact-list, the rule set-sun-now will fire and the assertion

turn-lights-on will be made.
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When there are multiple rules on the agenda, CLIPS automatically knows which rule
to fire. CLIPS orders the rules on the agenda by increasing priority and will fire the rule
with the highest priority, or salience, first. Normally, the agenda acts as a stack with the
most recent activation placed on the agenda firing first. Salience allows the most impor-
tant rules to stay at the top of the agenda no matter when they were added. CLIPS has a
keyword called salience that allows the programmer to specify the priority of a certain
rule, thus controlling the execution of the expert system. Salience values can be specified
from 10,000 to -10,000. If a rule has no salience value assigned by the programmer,

CLIPS assigns a value of zero.

The reset command is the key method for starting an expert system in CLIPS. The
command removes all activated rules from the agenda and all facts from the fact-list
(8:396). The reset command will then assert all of the facts from existing deffacts state-
ments. A CLIPS program will not start running unless there are rules whose LHS are sat-
isfied, therefore, when CLIPS is initiaily started it automatically defines a deffact statement
known as the initial-fact statement. Thus, even though no deffacts statements have been
defined, a reset will assert the initial-fact and enable the expert system, written in CLIPS,
to operate. Following the reset command is the run command. The run command tells
CLIPS to start looking for rules on the agenda that have been satisfied and should there-

fore fire.
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The previous paragraphs give a brief outline of the general CLIPS language structure
and how it operates. For a more detailed description of the CLIPS environment and its
particular commands, the reader is encouraged to consult references 7 and 8. Both
sources are written by Joseph Giarrantano and delve into the finer issues of writing an ex-

pert system using CLIPS.

4.3 EXMIS: The EXpert Missile System

The EXMIS program is a prototype expert system designed to perfofm decision logic
tasks within the AOCS. The intent of the AOCS is to decrease the dependence that
launch vehicles have upon human decision makers. By incorporating an autonomous sys-
tem capable of performing trajectory analysis and self destruct determination, the need for
human expertise is decreased. The developmental nature of the AOCS project makes in-

vestigation of new technologies, such as expert systems, a logical step in the process.

4.3.1 Establishing Criteria for the AOCS and EXMIS

The AOCS can take advantage of some new technologies available in today’s envi-
ronment that were not available when the current system was developed. For one, it could
receive and process flight data from GPS and IMU sources. These data could be used by
EXMIS to ascertain if predetermined safety criteria are violated and, if so, take established

actions emulating steps a human expert would take in a similar situation. The steps in-
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volved with developing an expert system were outlined earlier in this chapter and every

effort was made to follow these steps during this research project.

The first step in developing an expert system is to investigate the problem or task and
decide whether an expert system is appropriate for that problem. Through discussions
with experts in the task area (4, 5), and following the guidelines of table 2, it was deter-
mined this task fit most of the criteria of a suitable candidate for an expert system. The

following observations were made:

e The proposed expert system would save time and money by replacing costly radar
tracking equipment in favor of using GPS and IMU data.

e An expert is available from which a knowledge base can be developed.
The task can be fully described with facts, rules, and algorithms and follows an estab-
lished procedure.
The expertise to be modeled is narrowly focused and unique to this task.

o The time required to perform the task is within the capabilities of an expert system.
Computers and regulations are used by more than one individual to perform the task.

4.3.2 Obtaining a Knowledge Base

Once it is established that the task is suitable for an expert system, a knowledge base
for the task is developed from interactions between the expert and the knowledge engi-
neer. This step was accomplished through telephone interviews with Mr. Allen Dumont, a
Senior MFCO for the 30th Space Wing (30 SW) at Vandenberg, CA., and Mr. Fred Fo-
erst, an Instrumentation Engineer also with the 30 SW (4,5). As a SMFCO, Mr. Dumont
monitors the performance of launch vehicles in flight and initiates flight termination when

required. He described the basic procedures involved with launching and controlling a
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missile and how these could pertain to an AOCS type system. Mr. Foerst has considerable
knowledge of the proposed AOCS and provided documentation invaluable to this research

project.

Using the main regulation governing range safety requirements, EWR 127-1, an in-
sight into the responsibilities of the MFCO was realized. Section 7.2.3 of this regulation
outlines these responsibilities. The development of an AOCS would affect the operations
and responsibilities of the MFCO but is not intended to totally replace these personnel.
Although the AOCS would replace most of the actions a MFCO performs during a missile
launch, there are many functions accomplished by the MFCO that need human involve-

ment.

The next step in the development process is to formalize the knowledge base into a set
of rules in which to build an organized structure. EXMIS is designed as a prototype,
proof-of-concept system in order to verify the appropriateness and utility of using an ex-
pert system for the AOCS task. Therefore, the design of EXMIS is based upon four sepa-
rate scenarios that entail a limited portion of the Flight Termination Policies outlined in
section 7.3.1 of EWR 127-1. Two of the flight conditions that normally result in flight
termination by the MFCO are used to evaluate EXMIS (2:7-4):

a. Valid data shows the launch vehicle has violated established flight safety criteria

b. The performance of the flight vehicle is obviously erratic and the potential exists
for the MFCO to lose positive control.
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The two conditions above were used as a guideline to develop three of the four flight
scenarios involving an erratic flight, that violates established flight criteria, and two uncon-
trollable flights. The fourth flight scenario is a nominal flight and was used as a baseline.

Each of the scenarios is discussed in detail in chapter 5.

4.4 Structure of EXMIS

EXMIS can be broken down into five separate modules plus an Initial States section.
The five modules are Control, Input, Analysis, Trends, and Decision. Each module per-
forms a separate and vital function for the overall program. The program code developed
for each module and the function it has within EXMIS is discussed in the following para-
graphs. The structure designed in this process is by no means the only possible structure

available for this expert system, but, for a prototype system it is sufficient.

4.4.1 Initial States

The Initial States section of EXMIS establishes the initial conditions under which the
expert system will run. It consists of four deffacts that define the initial facts to be added
to the fact-list upon program startup. Each fact will first be displayed and then described.
The first deffact is:

(deffacts gps-information
(gps long on)
(gps lat on)
(gps alt on)
(imu yawrate on)
(imu pitchrate on))
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This deffact establishes that the GPS receiver and IMU sensors are on and working.
For simplification of the task, only minimal GPS and IMU data are simulated and used
during the development and testing of EXMIS. Other sources of information can be in-

corporated in later versions of EXMIS.

The next deffact is:

(deffacts destruct-line-and-rate-information
(longline 120 122 123)
(latline 20 28 40)
(altline -10 1000 100000000)

(yawrate .001)
(pitchrate .001))

This deffact establishes the destruct line, yaw rate, and pitch rate limits that are al-
lowed for the launch vehicle. These limits are represented in a low, nominal, and high
format. For instance, the limits for the longitude destruct line are: low, 120° West; nomi-
nal, 122° and high 123°. The limits are established by the user during pre-launch activities

and can be changed at any time before launch.

The next deffact establishes where EXMIS begins:
(deffacts cycle-start

(data-source file)
(cycle 1))

In EXMIS, timing of the system is tracked as a cycle process. When all appropriate

functions have been performed by EXMIS, the current cycle ends and the next begins.
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The cycle number is also used by EXMIS to establish how many times a particular event

has happened. This will be discussed further when we investigate the Decision phase.

The last deffact of the initial section is:

(deffacts startup-phase-information
(phase-after input analysis)
(phase-after analysis trends)
(phase-after trends decision)
(phase-after decision input)
(phase input))

This deffact is important since it establishes the order in which the phases are proc-
essed. The phases work with the cycle to control the flow of the program. The phases
correspond to the modules and progress in order from Input to Analysis, Analysis to

Trends, Trends to Decision, and Decision back to Input were the process begins over.

4.4.2 CONTROL Module

Once all initial information has been input through the Initial State section, EXMIS
proceeds to the Control Module. Here we see the first use of the defrule construct to de-
fine the rules of the system. Through this module, the program controls the phase changes
and updates the cycle number. Without this module, it would not be possible to cycle

through each input from the GPS receiver and IMU.

The first defrule construct is:

(defrule CONTROL-change-phases
(declare (salience -10))
?phase <- (phase ?current-phase)
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(phase-after ?current-phase ?next-phase)
=>

(retract ?phase)

(assert (phase ?next-phase)))

Notice that this rule has the word CONTROL as the first word for the rule name. This
is to indicate that this is a rule for controlling execution of the program. Throughout
EXMIS other rules will have INPUT, ANALYSIS, TRENDS, or DECISION as the first
word of the rule name to indicate their applicable phase. This rule is used to cycle be-
tween the four phases.

The next rule in the Control phase is:
(defrule DECISION-assert-next-cycle
(declare (salience -5))
(phase decision)
?f <- (cycle ?cycle)
=>

(retract ?f)
(assert (next-cycle =(+ 1 ?cycle))))

This rule is part of the Decision phase and removes the old cycle of execution and as-
serts a new fact that indicates the next cycle of execution. Notice that a salience value of
-5 is given to this rule. This is done so that the rule does not fire until all other rules
within the Decision phase have fired.

The last rule in the Control phase is:
(defrule INPUT-process-next-cycle
(phase input)
?f <- (next-cycle ?cycle)
=>

(retract ?f)
(assert (cycle ?cycle)))
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This rule performs an update of the cycle number. As EXMIS moves from cycle to
cycle, the fact that represents the current cycle must be updated to the next cycle. The
rule effectively removes the next-cycle fact during the INPUT phase and asserts the up-
dated cycle fact. This is of vital importance since many of the rules within EXMIS depend

upon this fact.

4.4.3 INPUT Module

The next step in EXMIS is to obtain the raw data from the GPS and IMU systems.
This is done through the INPUT phase. Although it’s possible for EXMIS to read data
from actual GPS and IMU systems, for the purposes of this study, the data are provided
from a BOOST output file. The INPUT phase consists of only two rules which are de-

scribed below.

The first rule of the INPUT phase is:

(defrule INPUT-get-file-name-from-user
(phase input)
(data-source file)
(not (fit-dat-open))
=>
(bind ?flag file-closed)
(while (eq ?flag file-closed)
(printout t "What is the name of the file?'')
(bind ?file-name (readline))
(if (open ?file-name flt-dat "'r'"")
then (bind ?flag true)))
(assert (flt-dat-open)))
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The first process the INPUT phase must handle is to open the applicable BOOST data
file. This is accomplished with the above rule. This rule has three simple conditions that
must be satisfied. First, the current phase must be the INPUT phase (phase input). This is
to ensure that EXMIS has the proper execution timing, as described in section 4.4.1.
Second, the data source must be a file (data-source file). In this particular situation it is a
BOOST output file. Third, the data file must not have previously been opened by the
user (not (flt-dat-open). If these three conditions are satisfied, then the RHS of the rule

will open a data file whose name is supplied by the user.

The while loop is used in conjunction with the ?flag variable in order to set up a con-
venient way to insure the file has been opened successfully. If the file has not been opened
or if the file name is not a proper file, the user will be repeatedly prompted for the name of
a source data file until a suitable one is supplied. Once a file has been successfully opened,

the flt-dat-open fact is asserted.

The second INPUT phase rule is:

(defrule INPUT-read-gps-values-from-file

(phase input)
(data-source file)
(fit-dat-open)
(cycle ?time)
=>
(bind ?long (read flt-dat))

(if (eq ?long EOF) then (halt))
(bind ?lat (read flt-dat))

(if (eq ?lat EOF) then (halt))
(bind ?alt (read flt-dat))

(if (eq ?alt EOF) then (halt))
(bind ?yaw (read flt-dat))

53




(if (eq ?yaw EOF) then (halt))

(bind ?pitch (read flt-dat))
(if (eq ?pitch EOF) then (halt))
(assert (gps-long-value ?long ?time))
(assert (gps-lat-value ?lat ?time))
(assert (gps-alt-value ?alt ?time))
(assert (imu-yaw-value ?yaw ?time))
(assert (imu-pitch-value ?pitch ?time))
(assert (data-values-read)))

This rule is not as complicated as it might first seem. If the LHS patterns are satisfied,
the rule reads all of the data values from the user specified data file until the End-Of-File
(EOF) is reached. The BOOST output file is formatted in a manner to support this proc-
ess. The file has data arranged in five columns pertaining to longitude, latitude, altitude,
yaw rate, and pitch rate respectively. The rule binds the data from the first column with
the variable ?long. The second column data is bound to the variable ?lat, and so forth for
each of the other data values. The rule also asserts the facts as long, lat, alt, yaw, pitch,
and GPS or IMU values with the appropriate variable and cycle time (i.e. gps-long-value
?long ?time). The data-values-read fact is asserted to act as a flag indicating that the data

file has been read for this cycle.

4.4.4 ANALYSIS Module

This phase of EXMIS gets to the heart of the process. During this module, the values
input from the BOOST file are analyzed and compared to the initial values for the destruct
lines and rotation rates that were provided in the initial states section. Since analysis rules

for longitude, latitude and altitude are similar in format, to decrease redundancy only the
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rules pertaining to longitude will be described. There are three separate cases analyzed for
each parameter; nominal flight, out-of-bounds-low destruct line, and out-of-bounds-high
destruct line. Along these same lines, since rules for yaw and pitch are similar, only those
for yaw will be described with two cases analyzed; nominal yaw-rate and high-yaw-rate.
The first rule in the ANALYSIS module is:
(defrule ANALYSIS-long-nominal-flight

(phase analysis)

(cycle ?time)

(gps-long-value ?long ?time)

(longline ?long-low-destruct-line ?

?long-high-destruct-line )
(test (and (> ?long ?long-low-destruct-line)

(< ?long ?long-high-destruct-line)))
=>

(printout t "Nominal Longitude" crif)
(assert (long-state ?long nominal ?time)))

The first pattern ensures that the rule applies during the ANALYSIS phase of EXMIS
and the second pattern retrieves the current cycle. The third pattern retrieves the longi-
tude value that was input during the INPUT phase. The INPUT phase has produced one
fact of this type for each of the parameters. The fourth pattern retrieves the valid ranges
(or destruct lines) for the longitude. As stated previously, these values are in the format of
low destruct line, nominal, and high destruct line. A test is performed to determine if the
value for the variable ?long is above the low destruct line value and below the high de-
struct line value. If the test is true, the LHS patterns are all satisfied and the rule fires.
EXMIS will print the messeage “Nominal Longitude” to let the user know the missile

status. EXMIS will also assert the fact that the state of the missile longitude is nominal
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(i.e. long-state ?long nominal ?time). This will become useful during the TRENDS phase.
Analysis of the yaw and pitch rate are similar to the analysis performed on the longitude
value with just minor differences. The yaw and pitch rate are only tested against the initial
high yawrate and high pitchrate given during the initial states section. The yaw and pitch

rate are also simulated to be derived from the IMU and not the GPS as with the longitude.

The next rule in the ANALY SIS module is:
(defrule ANALYSIS-long-low-destruct-line
(phase analysis)
(cycle ?time)
(gps-long-value ?long ?time)
(longline ?long-low-destruct-line ? ?)

(test (<= ?long ?long-low-destruct-line))
=>

(printout t "Longitude out of bounds LOW" crlf)
(assert (long-state ?long long-low-destruct-line ?time)))

This rule has much the same look as the previous rule and does incorporate a very
similar structure. The first three patterns are identical to the previous rule but the fourth is
somewhat different. This pattern retrieves the longitude destruct line values but only
names the low destruct line value while making the other two values wild cards with the ?
identifier. The wild card identifier means that these values are not known and can be

anything (i.e. wild).

The test performed is also somewhat different. In this case, the ?long variable is

tested against the ?long-low-destruct-line variable. If the value for ?long is less than the
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value for the other variable, then EXMIS determines that the missile has crossed the low
destruct line and the LHS patterns are satisfied. EXMIS prints a message to this affect
and the long-state is set to long-low-destruct-line. Similar rules are written to test the

high destruct line values for each parameter.

The next rule involves the yaw rate:
(defrule ANALYSIS-yaw-high-destruct-rate
(phase analysis)
(cycle ?time)
(imu-yaw-value ?yaw ?time)
(yawrate high-yaw-destruct)
(test (>= ?yaw ?high-yaw-destruct))
=>
(printout t "Yaw Rate is over Max rate allowed" crif)

(assert (yaw-state ?yaw high-yaw-destruct
?time)))

Once again, the format for this rule is very similar to the previous one. The patterns
on the LHS are the same except that the values are taken from IMU data and not GPS.
The test performed checks the ?yaw variable value against the yawrate value that was
input during the initial states section. If the ?yaw value is higher than the yawrate value
EXMIS determines that the rate is outside of established allowable limits. The LHS pat-
terns are satisfied and EXMIS prints the “Yaw Rate is over Max rate aliowed” warning.
The yaw-state high-yaw-destruct is asserted. Information gained within the ANALYSIS
phase is passed on to the TRENDS phase. Of particular importance to the TRENDS
phase is the state information, such as the long-state or lat-state, that will be used to de-

termine if a trend is occurring.
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4.4.5 TRENDS Module

As the name implies, the TRENDS module performs the task of detecting trends in the
behavior of the missile flight. This is accomplished by first defining some initial facts
through the deffacts construct shown below:

(deffacts start-trend-analysis
(long-trend 0 unknown 0 0)
(lat-trend 0 unknown 0 0)
(alt-trend 0 unknown 0 0)

(yaw-trend 0 unknown 0 0)
(pitch-trend 0 unknown 0 0))

The rules which update the trend information will depend upon the long-trend fact,
and the facts for the other parameters, that exist within the fact-list. The starting state for
each parameter is indicated by the word unknown to indicate that the trend information is
not valid at this time. The other values for the long-trend fact are set to zero and will also

be updated through the TRENDS phase.

AQ with the previous modules, the rules developed for the TRENDS module follow a
similar format for each of the parameters. Once again, only the rules for the longitude will
be used to describe the TRENDS phase. There are, however, two distinct rule types used
within the TRENDS phase. One is used to monitor a trend that has not changed since the

last cycle and the other will monitor a trend that has changed since the last cycle.
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The first rule for the TRENDS module is:

(defrule TRENDS-Long-state-has-not-changed
(phase trends)
(cycle ?time)
?long-cycle <- (long-trend ? ?Ingstate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))
(long-state ?long ?Ingstate ?time)
=>
(retract ?long-cycle)
(assert (long-trend ?long ?Ingstate ?start-cycle ?time)))

As this rule implies, it is used to determine if the state of the missile has changed since
the last cycle. The first two patterns establish both the correct phase and cycle. The next
pattern and the test that follows, are used to find the long-trend fact from the previous
cycle. The next pattern checks that the state from the previous cycle is the same as the
state for the current cycle. The value for the ?Ingstate variable and the ?end-cycle time

are updated.

The second rule performs the opposite function:

(defrule TRENDS-Long-state-has-changed
(phase trends)
(cycle ?time)
?long-cycle <- (long-trend ? ?Ingstate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))
(long-state ?long ?new-long-state&~?Ingstate ?time)
=>
(retract ?long-cycle)
(assert (long-trend ?long ?new-long-state ?time ?time)))
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The first four patterns are the same as the previous rule. The conditional pattern
?new-long-state&~Ingstate performs exactly the opposite task as the pattern used in the
previous rule. Here, the pattern checks to make sure the state has changed from the last
cycle. Since the state has changed, the ?Ingstate variable is updated to the ?new-long-

state and both the ?start-cycle time and ?end-cycle time are as well.

4.4.6 DECISION Module

The last module for EXMIS, but certainly not the least, is the DECISION module.
The DECISION module takes the state of the missile, established during the TRENDS
phase, and determines whether the missile has violated any pre-defined destruct criteria.
The process involves two separate steps. The first step is to determine if the missile is
outside the destruct criteria and, if so, issue a warning to that effect. The second step is to
determine if the missile has been outside the destruct criteria for an established period of
cycles and, if this is the case, issue a self-destruct command. The first part of the DECI-
SION module is:

(deffacts trend-limits
(trend-long 6)
(trend-lat 6)
(trend-alt 6)
(trend-yaw 4)
(trend-pitch 4))
This deffact is defined by the user and establishes a period of cycles in which the mis-

sile can be outside the preidefined destruct criteria. This is done to allow for the possibil-

ity of an erroneous datum point that could be outside the criteria but does not reflect the
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actual situation of the missile. The number of cycles can be increased or decreased de-

pending on the level of constraint the user desires.

The rules used within the DECISION module are of two basic designs. The first rule
uses a test pattern to check if the missile has been outside the destruct criteria for a period
less than that established in the deffacts construct. In this case, a warning is issued that
notifies the user that the missile is outside the established destruct criteria. The second
rule is similar to the first with the exception that the test determines if the missile state has
been outside the established criteria for a period equal to or greater than the period de-
fined in the deffact. Once again, to avoid duplication only the rules for the longitude pa-
rameter are described.

The first rule is:
(defrule DECISION-warn-long-over-bounds
(phase decision)
(cycle ?time)
(long-trend ?long ?Ingstate&long-high-destruct-line[long-low-destruct-line
?start ?end)
(trend-long ?long-length)

(test (< (+ (- ?end ?start) 1) ?long-length))
=>

(printout t ""Missile has crossed " ?Ingstate crif)
(printout t "During Cycle " ?time crlf))

The first two patterns establish the phase and cycle number. The third pattern deter-
mines whether the missile state ?Ingstate has violated the long-high-destruct-line or the
long-low-destruct-line. The fourth pattern retrieves the trend-long fact for the number

of cycles the user wants to allow the criteria to be violated by the missile. The fifth pat-
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tern is a test pattern, described earlier, that checks if the missile has been outside the de-

struct criteria for a period less than that established in the deffacts construct. When EX-
MIS determines this to be the case, a warning message is issued to that effect. The cycle
number is included so the user knows when the destruct criteria was violated.

The second rule is:

(defrule DECISION-destroy-long-over-bounds
(phase decision)
(cycle ?time)
(long-trend ?long ?Ingstate&long-high-destruct-line|long-low-destruct-line
?start ?end)
(trend-long ?long-length)
(test (>= (+ (- 7end ?start) 1) ?long-length))
=>
(printout t "Missile has crossed " ?Ingstate "' for more than 6 cycles " crif)
(printout t "'Self Destruct is Initiated during Cycle " ?time crlf)
(halt))

This rule acts as the complement of the first rule. The test pattern now checks that if
missile state ?Ingstate has violated the long-high-destruct-line or the long-low-destruct-
line for a period equal to or longer than the established period. If this rule fires, EXMIS
will print a message that the missile has crossed the destruct criteria for more than the al-

lowed cycles and will subsequently issue a self-destruct order to the AOCS.

The last rule is basically a cleanup step where all of the flags and values are retracted
to allow for the next cycle to begin.

(defrule DECISION-remove-old-values-and-flags
(phase decision)
(cycle ?time)
(or ?f <- (gps-long-value ? ~?time)
?f <- (gps-lat-value ? ~?time)
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?f <- (gps-alt-value ? ~?time)
f <- (imu-yaw-value ? ~?time)
?f <- (imu-pitch-value ? ~?time)
?f <- (long-state ? ? ~?time)
?f <- (lat-state ? ? ~?time)
?f <- (alt-state ? ? ~?time)
?f <- (yaw-state ? ? ~?time)
?f <- (pitch-state ? ? ~?time)
f <- (fit-dat-read))

=>

(retract ?f))

4.5 Summary

By using a module type structure to develop EXMIS the flow of the program is easily
understood. This enhances EXMIS’ capability to be customized by future users. Al-
though the EXMIS prototype is developed as a proof-of-concept program only, its adapt-
ability to new environments will make follow-up design work much easier. If an advanced
EXMIS system is undertaken in the future, the basic system design developed during this

research effort will provide a good base from which to start.
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V. Test Results

5.1 Introduction

Having obtained simulation data from the BOOST program and development of the
EXMIS prototype complete, the next logical step in this research project is to test EXMIS
using the BOOST data. This step will determine if EXMIS can perform the tasks it is de-
signed to perform. As with any computer language or simulation, some adjustments were
needed once this testing was under way. The adjustments to EXMIS were necessary to
accommodate different scenarios. As stated many times previously, there are four differ-

ent flight scenarios used to test EXMIS with each scenario being run for 180 seconds.

The process for using BOOST data to test EXMIS was consistent throughout each
scenario. To start the process, the CLIPS version 6.0 program is initiated on a personal
computer. Under the FILE menu, the Load Constructs command is initiated. A dialog
box appears and selection of the exmris.clp program is made by the user. The screen will
show several lines defining the deffacts and defrules within EXMIS. EXMIS is now
loaded into the CLIPS 6.0 program. Under the EXECUTION menu, the Reset and Run
commands are selected in order. The user is prompted by EXMIS for the BOOST data
file name of the particular flight scenario to be run. Once the user has input a proper file
name, EXMIS runs the scenario to the end of the data file or until a safety parameter is

violated.
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Tt should be reiterated that conditions for flight termination action can be found in
EWR 127-1 section 7.3.1 (2:7-4). Under currently used procedures, the MFCO will fol-
low these guidelines to determine if and when flight termination is initiated. Since EXMIS
seeks to emulate the actions of the MFCO, the first two conditions were adopted for de-

veloping the four scenarios used to test the EXMIS prototype.

The first scenario establishes a criterion by simulating a nominal flight. The nominal
flight gives a baseline from which to describe the other three scenarios. The second sce-
nario uses the flight termination condition where valid data shows the launch vehicle has
violated established flight safety criteria. This is interpreted to mean the launch vehicle has
violated established destruct lines. Once the vehicle violates these lines, self-destruct is

initiated by EXMIS as it would be by the MFCO.

The third and fourth scenarios follow the guidelines for a condition where launch ve-
hicle performance is obviously erratic and the potential exists for the MFCO to lose posi-
tive control. These two scenarios are similar in that they simulate an excessive rotation
rate around the yaw and pitch axes respectively. In other words, the third scenario simu-
lates the missile tumbling around the yaw axis and the fourth simulates the missile tum-
bling around the pitch axis. The four scenarios are described separately and in greater

detail within this chapter.
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5.2 Nominal Flight Scenario

The nominal ﬂigﬁt scenario gives a guideline from which the other three scenarios are
developed. This scenario was the simplest to construct since parameters for the BOOST
data generation were basically in place by the Peacekeeper constant thrust model. Only
minor adjustments were needed to obtain the desired simulation conditions. Since the
nominal flight scenario is the basis for all other scenarios, the variables changed within the
Peacekeeper model for the nominal flight are common to each of the scenarios. Table 4
shows the variables and their values. A complete description of each variable can be

found in Appendix A.

Table 4

VARIABLES USED BY THE PEACEKEEPER MODEL (1)

Variable Value Purpose

SDELT = 0.1 Integration time step

PRTBL =0.5,180.0 Print interval specified at one point every 0.5 sec for 180 sec.
OMEG =1 Flag for rotation of earth at 0.0000729211 rad/sec.
OBLATE=1 Flag for oblate earth vs. spherical earth option.

BETAO0 =200.0 Earth-relative launch azimuth from true north.

PHIGO =347 Launch latitude of Vandenberg AFB, CA.

LAMDO =120.6 Launch longitude of Vandenberg AFB,CA.

The BOOST trajectory simulation program made it possible to obtain the data neces-
sary to test the EXMIS prototype. Each BOOST simulation was run for 180 seconds with
data printouts every 1/2 second. This accurately simulates data that would be received

through use of the GPS and IMU systems. The initial conditions for each scenario are:
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rotating earth; oblate earth; predetermined drag curve, thrust, kick angle program, and
ignition time for each stage. In conjunction with these parameters, the nominal flight had

zero yaw and zero pitch (not counting the predefined pitch rate program).

For all scenarios tested during this research project, the longitude destruct line has
been set with an upper value of 123 ® and a lower value of 120 ° The latitude destruct
line has an upper value of 36.5 ° and a lower value of 30.5 ®  The maximum yaw and pitch
rate are both set at 0.05236 rad/sec or just over 3 deg/sec. These parameters have been
chosen for testing purposes only and are not known to be parameters used during actual
launch activities. The altitude portion of the EXMIS program is not used during this re-
search project but is included with EXMIS in order to facilitate future development of the

EXMIS prototype.

The nominal flight scenario is designed to simulate a missile flying within a predeter-
mined launch corridor boﬁnded on each side by destruct lines. The destruct lines are de-
termined during pre-launch activities. EXMIS can be modified by the user to establish
new destruct lines for different flight scenarios. Figure 6 gives a good visual interpretation

of the launch trajectory and destruct lines for the nominal flight scenario.
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Figure 6 Launch Trajectory from Vandenberg AFB (15)

In order to test EXMIS, BOOST output data is generated by running the Peacekeeper
constant thrust model for 180 second. During this time, BOOST simulates a nominal
flight for the Peacekeeper ICBM. Although BOOST is capable of outputting a variety of
information only the longitude, latitude, altitude, yawrate, and pitchrate are needed to test

EXMIS. These parameters are saved within a text file named pkprrom.txt.

EXMIS is initiated within the CLIPS program to start the testing phase of the research
project. When EXMIS prompts the user for the name of the file to be used, pkprnom.ixt
is entered. Under this scenario, EXMIS is considered to have run successfully when no
warnings or self-destruct commands are initiated. The last two pages of the EXMIS out-
put for this scenario can be found in Appendix D. As can be seen from this output, EX-

MIS does indeed run successfully.
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5.3 Errant Missile Scenario

The scenario for an errant missile is very much like the scenario for a nominal flight.
The difference between the two is that in the latter case the missile travels within a prede-
fined flight trajectory. With the errant missile case, the launch vehicle develops a small
rotation rate in the yaw direction that propels the missile off its predefined trajectory.
Since predetermined destruct lines are in place to ensure the safety of personnel and mate-
rial in the launch range, the situation becomes an emergency. Once the missile crosses a
destruct line, EXMIS detects the situation and makes a decision to initiate the self-destruct
command. As designed, EXMIS emulates the actions of a human operator, specifically

the MFCO in this situation. Figure 7 graphically depicts this situation.
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Figure 7 Ervant Missile Trajectory from Vandenberg AFB (15)
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The introduction of a yaw rate can be caused by many factors. It is assumed, for this
simulation, that the adverse yaw experienced by the missile is caused by a malalignment
thrust (6:202). This force is sufficient enough to affect the predefined trajectory of a
missile. The malalignment thrust can be caused by manufacturing inaccuracies in the
structure of a solid propellant rocket or by abnormal fuel flow in a liquid fueled rocket.
These inaccuracies can be hard to detect and many times occur without warning. Unless
there is an attitude control device located on the missile that is capable of correcting the

effects of the adverse yaw, not much can be done by the operator.

The variable used to simulate this effect in the BOOST program is the PSICV vari-
able. With this variable the user can specify a yaw rate for a designated period of time
thus causing the missile to deviate from it’s intended course. For this simulation, a yaw
program is specified that causes a yaw rate of 0.052359 rad or approximately 3 degrees.
Under this situation, EXMIS detects if the missile deviates from the path far enough to
cross either destruct line. When the missile has crossed the destruct line a warning is is-

sued. The last two pages of the EXMIS output are in Appendix E.

5.4 High Yawrate Scenario

To fully test the capabilities of the EXMIS program, a simulation incorporating a
high rotation rate in the yaw direction is necessary. This scenario will test EXMIS’ ca-
pability to detect abnormal flight characteristics and its ability to provide the appropriate

response in this situation. The simulation involves running the EXMIS program in the
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CLIPS environment and providing the file name of the BOOST scenario that simulates a
missile with a high yawrate. The file name is once again provided by the user when
prompted by EXMIS and is named pkpryaw.xt. The simulation data is obtained through
the use of the PSICV variable, the same variable used in the scenario described in the pre-
vious section. This variable is extremely useful in this situation since a yaw program can
be defined at any time during the flight of the missile being modeled. Once the start time,
stop time, and amount of yaw are determined, it is a simple matter of altering the PSICV

variable in the appropriate manner.

To simulate an event that could actually occur doing a missile’s flight, the scenario is
developed in a manner consistent with a real, physical predicament. There are several
phases during a missile’s flight where crucial events transpire. In the Peacekeeper model
one of those events is the initiation of an attitude hold maneuver. It is at this point in time,
when the missile’s thrust changes, that problems can arise. The attitude hold maneuver
occurs at 117.5 seconds into the missile flight. To simulate a problem with the missile
during this thrust change, we configure the PSICV so that a yaw rate of 0.087266 rads (or
5 degrees) begins at 120 seconds. In effect we are simulating the missile tumbling out of
control around the yaw axis. Because of the complex dynamics involved, this event is not

uncommon during launch vehicle flights. Figure 8 provides a rocket diagram.
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Figure 8 Rocket diagram with misaligned thrust and resulting rocket direction(Yaw Scenario) (1)

5.5 High Pitchrate Scenario

The basis for the high pitchrate scenario is very similar to the yawrate scenario except
for the direction in which the missile is rotating. In this situation, the missile has a rotation
induced about the pitch axis that causes the missile to rotate in an undesirable manner.
Therefore, the missile is acting in a way that is commonly known as tumbling end-over-
end. During an actual launch vehicle flight, this tumbling action would cause the MFCO
much concern. The MFCO’s actions are based upon the guidelines given in EWR 127-1

(2), discussed previously. EXMIS is designed to emulate these actions.
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The scenario is developed by building a pitch rate program for BOOST in a similar
manner as the yaw rate program was developed. This involves altering a predefined vari-
able named THACV. The THACY variable can be programmed to cause a pitch rate at
any given time in the missile’s flight. As with the PSICV variable, the start time, stop

time, and rate value are needed to define the pitch program.

For the pitchrate scenario, a start time of 120 seconds and a rate of 0.087266 rads
(the same values used for the yaw program) were defined. As can be seen, the pitch rate
program also coincides with the initiation of the attitude hold maneuver. This was done to
give a common reference for the yawrate and pitchrate scenarios and is not intended to
indicate that this circumstance is necessary for these two events to occur. Figure 9 shows

the simulated misaligned thrust force that causes the pitch rotation condition.
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Figure 9 Rocket diagram with miscfligned thrust and resulting rocket direction (Pitch) (1)

5.5 Summary

The four scenarios described in this chapter are used to test the accuracy and effec-
tiveness of the EXMIS prototype. Since the scope of this thesis was the development of a
prototype expert system, it was felt that testing only four scenarios would give sufficient
feedback as to whether EXMIS was a viable system for the AOCS. Every effort was
made to develop scenarios that accurately portrayed events which could occur during a

launch vehicle’s flight. It was felt that developing simulations based upon real-world
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situations would lend to greater credibility and acceptance of EXMIS as a useable system.
The BOOST program helped achieve this objective by providing useful and accurate
simulation data necessary to test the correctness of the EXMIS prototype. The BOOST
program is user friendly and is highly recommended for any research involving launch ve-

hicle trajectory simulation.

Although the high pitchrate scenario and high yawrate scenario define only a pitch and
yaw respectively, it is easily conceivable that rotations about both axes at the same time is
a likely condition. Although it is not a scenario tested during this research project, there is
every confidence that EXMIS would detect this situation and perform the appropriate ac-

tions necessary to alleviate the problem.
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VI. Conclusions and Recommendations

6.1 Conclusions

The main thrust of this research project was the development of the flight termination
logic sequence for the AOCS. Although this problem has many possible solutions, it was
determined that an expert system could perform this task aptly. In order to accurately
depict the environment a launch vehicle experiences while in flight, it became necessary to
obtain flight data through means of a simulation. The BOOST trajectory simulation pro-
gram is well suited for this particular purpose. The learning curve for the BOOST pro-
gram was very steep and it was a short matter of time before the skills necessary to un-

derstand and run the program were achieved.

The CLIPS 6.0 expert system shell was an excellent choice in which to write the de-
sired expert system. Its portability made it possible to work from a PC thus eliminating
the time spent sharing hardware with other researchers. Since CLIPS was developed us-
ing the C programming language, it has the inherent quality of being easily integrated with
other systems. This fact made it possible to develop the EXMIS prototype with the es-
sential ability to be embedded into the AOCS structure. Once in the AOCS, EXMIS can
be modified by the user during pre-launch activities in order to cover a wide variety of

distinct launch vehicles.
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Through this research project, the EXMIS prototype was tested and evaluated utiliz-
ing four separate flight scenarios. These scenarios are intended to represent a cross-
section of the possible flight scenarios that a launch vehicle is likely to encounter. The
complexity of the scenarios are in-line with the objectives of the EXMIS prototype devel-
opment. EXMIS’ responses to these scenarios are an indication of how EXMIS will re-
spond to real-world flight situations. The outcomes from the tests verify that EXMIS will
provide task performance on a scale needed for the assigned tasks. As EXMIS and the
AOCS are integrated into the operational environment, the users of the system will be-

come more and more familiar with the intricacies of these programs.

6.2 Recommendations

Developing an expert system can be difficult but it is more so when the experts from
which the knowledge bases are derived are not easily accessible. This was the case for this
research project. The experts for both the AOCS and the current launch procedures were
located over 2000 miles away. Communications between the experts and the researcher
were limited to telephone conversations. This situation caused problems when trying to
obtain even the smallest procedure and self-sufficiency became a necessity. As the re-
search project progressed, more knowledge relating to launch operations was obtained
and the role of the AOCS became clearer. This made the task of developing an expert

system easier and more intuitive.
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To help correct this shortcoming it is recommended that development of an advanced
EXMIS prototype be conducted at a location where access to several experts on the
AOCS and current launch procedures is readily available. This will alleviate any problems
the researcher may have in obtaining information on the subject and will enhance the sys-
tem development environment. As an advanced prototype progresses, a wider problem
domain can be covered until all aspects of the AOCS environment are taken into consid-

eration.

If possible, every effort should be made to incorporate the use of actual GPS and IMU
data when testing an advanced version of EXMIS. This will lend credibility to the testing
process and could help the developer incorporate real-world parameters into EXMIS. It
could also convince skeptics of EXMIS and the AOCS that the system is capable of per-
forming the required task at or above the level of current procedures. The final process
should involve in-flight testing of the EXMIS prototype on a limited bases with optional

phase-in of the system over a specified period of time.
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APPENDIX A: BOOST Variable List

Following is a list of variables that are used within the BOOST program. These vari-
ables allow users of BOOST to alter certain aspects of the program to develop unique
trajectory simulations. The variables shown here are only those that were altered for use
during this research pfoj ect. For the entire list of variables, the reader should consult the
manual “BOOST:; A General Six Degree of Freedom Powered Simulation Computer Pro-
gram” by Anderson (1). A short explanation of each variable and the units of the variable

are included.

BETAO (deg)
Earth-relative launch azimuth measured from true north. The default value is 31 deg.

BETAF (deg)
Orientation azimuth for the AFMTC (Air Force Missile Test Center, Vandenburg AFB,
CA) coordinate system

CA2T (unitless)
Phase number where you switch from CACV to CACV2. The default is 2.

CA3T (unitless)
Phase number where you switch from CACV2 to CACV3.

CACV. (Mach #, Cd)

This is the first curve for the axial force coefficient. For typical trajectories, this is a good
approximation of the drag coefficient, and is exactly the same when the missile is flying a
"zero-lift" trajectory. After the first point, the data comes in (Mach Number, Cd) pairs.
This curve is usually used to represent drag for the first stage. Ifthe CACV2 curve is
used, this is limited to 35 pairs. If this is the only CACV curve used, up to 96 (Mach,Cd)
pairs can be entered.

The default curve (also known as the Witt generic drag curve) is:

CACV =-23., 0.0,.2400, 0.4,.2400, 0.6,.2400, 0.7,.2441, 0.8,.2736,
0.9,.3365, 1.0,.4535, 1.1,.4944, 1.2,5162, 1.3,.5118,
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14,5016, 1.6,4725, 18,4422, 2.0, 4155, 2.5,3625,
3.0,3276, 3.5,3084, 4.0,3023, 5.0,.2839, 6.0,.2923,
8.0,.2889, 10.0,.2574, 1E10,.2570,

CACV2 (Mach #,Cd)
This is the second curve for the axial force coefficient. For typical trajectories, this is a
good approximation of the drag coefficient, and is exactly the same when the missile is
flying a "zero-lift" trajectory. After the first point, the data comes in (Mach Number, Cd)
pairs. The curve can be interpreted as follows:
1st index: # of (mach, Cd) pairs

< 0: use linear interpolation

>=0; use highest order interpolation possible (up to cubic)
2,4,...last even number: mach number
3,5,...,]ast odd number: coefficient of axial aerodynamic force

This curve is usually used to represent drag for the second stage. If CACV3 is specified,
this curve is limited to 35 (Mach,Cd) pairs. If not, then up to 58 pairs are possible.
The default curve (also known as the Witt generic drag curve) is:

CACV2=-18., 00,5434, 18,5434, 2.2,4591, 2.70,3911, 3.05,.3576,
43,2721, 57,2283, 7.1,2034, 8.25,1902, 9.50,.1836,
10.8,.1795, 12.1,.1753, 13.5,.1715, 14.70,.1697, 15.70,.1692,
16.9,.1672, 20.0,.1590, 1.E10,.1590,

CACV3 (Mach #,Cd)
This is the third curve for the axial force coefficient. For typical trajectories, this is a good
approximation of the drag coefficient, and is exactly the same when the missile is flying a
"zero-lift" trajectory. After the first point, the data comes in (Mach Number, Cd) pairs.
The curve can be interpreted as follows:
1st index: # of (mach, Cd) pairs

< 0: use linear interpolation

>=0: use highest order interpolation possible (up to cubic)
2.4,...last even number: mach number
3,5,...,last odd number: coefficient of axial aerodynamic force

This curve is usually used to represent drag for either the reentry vehicle on a ballistic
missile, or a third stage for a space-launch vehicle. It is limited to 20 (Mach,Cd) pairs, and
can only be specified if CACV2 is given.

GO (ft/sec"2)
Acceleration of gravity at sea level. Default =32.174 ft/sec”2.

HO (ft)
Launch altitude above sea level. Default = 1 ft.
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IIPTB (sec,sec)
Table of times for which to calculate the instantaneous impact points.

L1@) (ft)
Length of missile during phase i, where i=1,12.

LAMDO (deg)
Launch longitude, where positive is West.

LC (ft)
Length of conical section of nose/RV.

OBLATE (unitless)
Flag to call oblate earth option.

=0: use spherical earth

=1: use oblate earth model

OMEG,OMEGA. (rad/sec)

Flag to control rotation of earth.

=0: Non-rotating earth

=1: rotating earth (rate = .00007292115 rad/sec)

This is the same value and serves the same purpose as OMEGA.

PHICV (sec,deg/sec)

Table of roll rates as a function of time, where the table is treated as a series of step func-

tions rather than a contiuous curve.

PHIGO (deg)
Launch latitude (geodetic), positive North of equator. The default is 45.9 deg N.

PRTBL-- (sec,sec)

<DT>Print interval table. It is interpreted as follows:
1,3,...1ast odd number: print interval (sec)

2,4,.. last odd number: time to end usage of print interval.(sec)
Up to 15 points can be used. The default is :

PSICV (deg)

Yaw rate program. The curve is not a continuous function, but instead a series of step
functions. The curve can be interpreted as follows:

1: # of points in curve (no interpolation)

2.4,.... Time to begin next yaw rate/program

<0: Use zero side force mode

>0: Use next value as a yaw rate

3,5,... yaw rate (deg/sec)
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RELT ' (f)
Equatorial radius of oblate earth. Default = 20925738. ft.

SDELT (sec)

Integration time step for powered flight. The default is 1 sec.
T1(1) (Ibf)

Vacuum thrust for phase number i (i =1,12)

TF1(j ) (sec)

End of phase time time for phase 1 (1= 1,12)

THACV (sec, deg/sec)

Pitch rate program.
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APPENDIX B: EXMIS Program

The following pages provide the complete EXMIS program code. EXMIS is devel-
oped using CLIPS (C Language Integrated version 6.0 designed by the NASA/ Johnson
Space Center. CLIPS is intended to provide a highly portable, low cost, easily integrated
expert sytem shell that can be used to develop complex expert systems. Two sources
were invaluable in the creation of EXMIS. One is “Expert Systems: Principals and Pro-
gramming” by Giarratano and Riley (6). The second is “CLIPS Users Guide: CLIPS Ver-

sion 6.0” by Giarrantano (5).

;;  Expert System for the Autonomous Onboard Command System (AOCS)

;o EXMIS: The Expert System for Missile Self-Destruct

s This program is desinged to show the utility and

3 feasability of using an expert system to monitor

3 the flight parameters of a launch vehicle given

o Global Positioning System (GPS) data. This system
3 is capable of issuing a self-destruct command if flight
3 parameters fall outside established safety areas

3 (i.e. cross destruct lines).

<ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
25

-k s e R ok s ok ok o ok R oK KR S KRR R o ok sk ok ok ok ok ok ok ok
;¥ INITIAL STATE
oo ok Kok o o ook ko

ba4

(deffacts gps-information

(gps long on)

(gps lat on)
(gps alt on)

(imu yawrate on)
(imu pitchrate on))
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(deffacts destruct-line-and-rate-information
(longline 120 122 123)
(latline 20 28 40)
(altline -10 1000 100000000)
(yawrate .001)
(pitchrate .001))

(deffacts cycle-start
(data-source file)

(cycle 1))

(deffacts startup-phase-information
(phase-after input analysis)
(phase-after analysis trends)
(phase-after trends decision)
(phase-after decision input)
(phase input))

o 3k ok ok ok sk ok sk ok ok ok ok ok sk ok ok ok ok
>3

”* CONTROL Module sk sk ok 3k ok 3k 3K ok ok ok sk 3k sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk stk ok ok skosk skok ok skeokosk sk ok sk skokok ok ok

cokdokskokokokkokkkkkkokk ok
ED

(defrule CONTROL-change-phases
(declare (salience -10))
?phase <- (phase ?current-phase)
(phase-after 7current-phase 7next-phase)
=>
(retract ?7phase)
(assert (phase 7next-phase)))

(defrule DECISION-assert-next-cycle
(declare (salience -5))
(phase decision)
2 <- (cycle ?cycle)
=>
(retract 7f)
(assert (next-cycle =(+ 1 7cycle))))

(defrule INPUT-process-next-cycle
(phase input)
1 <- (next-cycle ?cycle)
=>
(retract 7f)
(assert (cycle ?cycle)))
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+ % ok o ok ok ok ok ok ok ok ok ok ok ok ok
3

Lok 3k %k 3k sk 3K 3 ok ok ok ok sk ok ok ok sk ok ok ok ok sk ok sk s ok ok ok ok ok sk sk ok ok ok ok ok ok skok ok skok sk sk skok ok ok skokskok ok
-* INPUT Module
oo ok ok ok ok ok ok ok ok ok kok kok ki k

(defrule INPUT-file-name-from-user

(phase input)

(data-source file)

(not (flt-dat-open))

=>

(bind ?flag file-closed)

(while (eq flag file-closed)
(printout t "What is the name of the file?")
(bind ?file-name (readline))

(if (open 7file-name flt-dat "r")
then (bind ?flag true)))
(assert (flt-dat-open)))

(defrule INPUT-read-gps-values-from-file

(phase input)
(data-source file)
(flt-dat-open)
(cycle 7time)
=>
(bind ?long (read flt-dat))

(if (eq Nong EOF) then (halt))
(bind ?lat (read flt-dat))

(if (eq Nat EOF) then (halt))
(bind ?alt (read flt-dat))

(if (eq ?alt EOF) then (halt))
(bind ?yaw (read flt-dat))

(if (eq 7yaw EOF) then (halt))
(bind ?pitch (read flt-dat))

(if (eq ?pitch EOF) then (halt))
(assert (gps-long-value ?long ?time))
(assert (gps-lat-value ?lat 7time))
(assert (gps-alt-value ?alt 7time))
(assert (imu-yaw-value 7yaw ?time))
(assert (imu-pitch-value ?pitch ?time))
(assert (data-values-read)))
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+ 3k ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok
EH)

Sk s ok s ok ko ok ok ook oK 3R o KK R o R ok ok sk ook o ok oo
;¥ ANALYSIS Module
ok ok ok o R KKK R Ko K

2

(defrule ANALY SIS-long-nominal-flight

(phase analysis)

(cycle ?time)

(gps-long-value ?long ?time)

(longline ?long-low-destruct-line ?

?long-high-destruct-line )

(test (and (> ?long ?long-low-destruct-line)
(< 7long MNong-high-destruct-line)))

=>

(printout t "Nominal Longitude" crif)

(assert (long-state ?long nominal ?time)))

(defrule ANALY SIS-lat-nominal-flight
(phase analysis)
(cycle ?time)
(gps-lat-value ?lat ?time)
(latline ?lat-low-destruct-line ?

Nat-high-destruct-line )
(test (and (> ?lat ?lat-low-destruct-line)
(< MNat ?lat-high-destruct-line)))

=>
(printout t "Nominal Latitude" crlf)
(assert (lat-state ?lat nominal ?time)))

(defrule ANALY SIS-alt-nominal-flight
(phase analysis)
(cycle ?time)
(gps-alt-value ?alt ?time)
(altline ?alt-low-destruct-line ?

?alt-high-destruct-line )
(test (and (> 7alt ?alt-low-destruct-line)
(< ?alt ?alt-high-destruct-line)))

=>
(printout t "Nominal Altitude" crlf)
(assert (alt-state 7alt nominal ?time)))

(defrule ANALY SIS-yaw-nominal-flight
(phase analysis)
(cycle ?time)
(imu-yaw-value ?7yaw ?time)
(yawrate ?high-yaw-destruct)
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(test (< ?yaw ?high-yaw-destruct))

=>

(printout t "Nominal Yaw Rate" crlf)
(assert (yaw-state ?yaw nominal ?time)))

(defrule ANALY SIS-pitch-nominal-flight
(phase analysis)
(cycle ?time)
(imu-pitch-value ?pitch ?time)
(pitchrate 7high-pitch-destruct)
(test (< 7pitch ?high-pitch-destruct))
=>
(printout t "Nominal Pitch Rate" crlf)
(assert (pitch-state ?pitch nominal ?time)))

(defrule ANALYSIS-long-low-destruct-line
(phase analysis)
(cycle ?time)
(gps-long-value ?long ?time)
(longline ?long-low-destruct-line 7 ?)
(test (<= ?ong ?long-low-destruct-line))
=>
(printout t "Longitude out of bounds LOW" crlf)
(assert (long-state ?long long-low-destruct-line ?time)))

(defrule ANALY SIS-lat-low-destruct-line
(phase analysis)
(cycle 7time)
(gps-lat-value ?lat ?time)
(latline ?lat-low-destruct-line ? 7)
(test (<= Nat 7lat-low-destruct-line))
=>
(printout t "Latitude out of bounds LOW" crlf)
(assert (lat-state ?lat lat-low-destruct-line
2time)))

(defrule ANALY SIS-alt-low-destruct-line
(phase analysis)
(cycle ?time)
(gps-alt-value ?alt ?time)
(altline 7alt-low-destruct-line 7 7)
(test (<= ?alt 7alt-low-destruct-line))
=>
(assert (alt-state ?alt alt-low-destruct-line
7time)))
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(defrule ANALY SIS-long-high-destruct-line
(phase analysis)
(cycle ?time)
(gps-long-value ?long ?time)
(longline ? ? long-high-destruct-line)
(test (>= 7long ?long-high-destruct-line))
=>
(printout t "Longitude out of bounds HIGH" crlf)
(assert (long-state ?long long-high-destruct-line
7time)))

(defrule ANALY SIS-lat-high-destruct-line
(phase analysis)
(cycle ?time)
(gps-lat-value ?lat ?time)
(latline ? ? MNat-high-destruct-line)
(test (>= ?lat ?lat-high-destruct-line))
=>
(printout t "Latitude out of bounds HIGH" crlf)
(assert (lat-state ?lat lat-high-destruct-line
time)))

(defrule ANALY SIS-alt-high-destruct-line
(phase analysis)
(cycle ?time)
(gps-alt-value ?alt ?time)
(altline ? ? ?alt-high-destruct-line)
(test (>= 7alt ?alt-high-destruct-line))
=>
(assert (alt-state ?alt alt-high-destruct-line
Nime)))

(defrule ANALY SIS-yaw-high-destruct-rate
(phase analysis)
(cycle 7time)
(imu-yaw-value 7yaw ?time)
(yawrate ?high-yaw-destruct)
(test (>= ?yaw ?high-yaw-destruct))
=>
(printout t "Yaw Rate is over Max rate allowed" crlf)
(assert (yaw-state ?yaw high-yaw-destruct
Ntime)))
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(defrule ANALY SIS-pitch-high-destruct-rate

>
2

>

(phase analysis)
(cycle ?time)
(imu-pitch-value ?pitch ?time)
(pitchrate ? ?high-pitch-destruct)
(test (>= 7pitch ?high-pitch-destruct))
=
(printout t "Pitch Rate is over Max rate allowed" crlf)
(assert (pitch-state ?pitch high-pitch-destruct
time)))

<k ok ok ok ok ok sk ok ook skok skokokok ok ok
»

;* TRENDS Module s 3k sk ok ok sk ok ok ok ok sk sk sk sk ok sk sk sk sk okok ok ok ok ok ok ok sk ok sk skokok sk sk okokokok sk skockokkok ok sk sk kokok

+ 3k ok ok ok ok koK ok skok skok sk okokok ok ok
2

(deffacts start-trend-analysis

(long-trend 0 unknown 0 0)
(lat-trend 0 unknown 0 0)
(alt-trend 0 unknown 0 0)
(yaw-trend 0 unknown 0 0)
(pitch-trend 0 unknown 0 0))

(defrule TRENDS-Long-state-has-not-changed

(phase trends)

(cycle ?time)

?long-cycle <- (long-trend ? ?Ingstate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))

(long-state ?long ?Ingstate ?time)

=>

(retract ?long-cycle)

(assert (long-trend ?long ?Ingstate ?start-cycle ?time)))

(defrule TRENDS-Long-state-has-changed

(phase trends)

(cycle 7time)

?long-cycle <- (long-trend ? ?Ingstate ?start-cycle 7end-cycle)
(test (= 7end-cycle (- 7time 1)))

(long-state ?long ?new-long-state&~?Ingstate ?time)

=>

(retract ?long-cycle)

(assert (long-trend ?long 7new-long-state ?time ?time)))

(defrule TRENDS-Lat-state-has-not-changed

(phase trends)
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(cycle 7time)

?lat-cycle <- (lat-trend ? ?ltstate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- 7time 1)))

(lat-state ?lat ?ltstate ?time)

=>

(retract ?lat-cycle)

(assert (lat-trend ?lat ?ltstate ?start-cycle ?time)))

(defrule TRENDS-Lat-state-has-changed
(phase trends)
(cycle 7time)
7at-cycle <- (lat-trend ? ?ltstate ?start-cycle 7end-cycle)
(test (= 7end-cycle (- 7time 1)))
(lat-state 7lat 7new-lat-state&~7ltstate ?time)
=>
(retract ?lat-cycle)
(assert (lat-trend ?lat Pnew-lat-state ?time ?time)))

(defrule TRENDS-Alt-state-has-not-changed
(phase trends)
(cycle 7time)
7alt-cycle <- (alt-trend ? ?astate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))
(alt-state 7alt ?astate 7time)
=>
(retract ?alt-cycle)
(assert (alt-trend ?alt ?astate ?start-cycle ?time)))

(defrule TRENDS-Alt-state-has-changed
(phase trends)
(cycle 7time)
7alt-cycle <- (alt-trend ? ?astate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))
(alt-state ?alt 7new-alt-state&~7astate ?time)
=>
(retract ?alt-cycle)
(assert (alt-trend 7alt 7new-alt-state ?time ?time)))

(defrule TRENDS-Yaw-state-has-not-changed
(phase trends)
(cycle time)
Pyaw-cycle <- (yaw-trend ? ?ystate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- ?time 1)))
(yaw-state 7yaw ?ystate ?time)
=>
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(retract 7yaw-cycle)
(assert (yaw-trend ?yaw ?ystate ?start-cycle ?time)))

(defrule TRENDS-Yaw-state-has-changed
(phase trends)
(cycle ?time)
9yaw-cycle <- (yaw-trend ? ?ystate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- 7time 1)))
(yaw-state ?yaw Tnew-yaw-state&~?ystate ?time)
=>
(retract ?yaw-cycle)
(assert (yaw-trend ?yaw ?new-yaw-state ?time ?time)))

(defrule TRENDS-Pitch-state-has-not-changed
(phase trends)
(cycle 7time)
9pitch-cycle <- (pitch-trend ? ?pstate ?start-cycle ?end-cycle)
(test (= ?end-cycle (- 7time 1)))
(pitch-state ?pitch ?pstate ?time)
=>
(retract ?pitch-cycle)
(assert (pitch-trend ?pitch ?pstate ?start-cycle ?time)))

(defrule TRENDS-Pitch-state-has-changed
(phase trends)
(cycle ?time)
?pitch-cycle <- (pitch-trend ? ?pstate ?start-cycle 7end-cycle)
(test (= ?end-cycle (- ?time 1)))
(pitch-state ?pitch 7new-pitch-state&~?pstate ?time)
=>
(retract ?pitch-cycle) _
(assert (pitch-trend ?pitch ?new-pitch-state ?time ?time)))

ook ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

2
ok s ke ok ok sk ook ok ok ok ook o s ko kR o ok ok sk sk ok sk sk ok ok sk koo ok
;;¥ DECISION Module

CokoR ok ok o R ok oK ok ok ok ok ok

2>

(deffacts trend-limits
(trend-long 6)
(trend-lat 6)
(trend-alt 6)
(trend-yaw 4)
(trend-pitch 4))
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(defrule DECISION-warn-long-over-bounds
(phase decision)
(cycle 7time)
(long-trend ?long ?Ingstate&long-high-destruct-line[long-low-destruct-line
?start 7end)
(trend-long ?long-length)
(test (< (+ (- 7end ?start) 1) ?long-length))
=>
(printout t "Missile has crossed " ?Ingstate crlf)
(printout t "During Cycle " ?time crlf))

(defrule DECISION-destroy-long-over-bounds

(phase decision)

(cycle ?time)

(long-trend ?long ?Ingstate&long-high-destruct-linejlong-low-destruct-line
start ?7end)

(trend-long ?long-length)

(test (>= (+ (- 7end 7start) 1) ?long-length))

=>

(printout t "Missile has crossed " ?Ingstate " for more than 6 cycles " crlf)

(printout t "Self Destruct is Initiated during Cycle " ?time crlf)

(halt))

(defrule DECISION-warn-lat-over-bounds

(phase decision)

(cycle 2time)

(lat-trend ?lat ?ltstate&lat-high-destruct-line|lat-low-destruct-line
start ?end)

(trend-lat ?at-length)

(test (< (+ (- 7end ?start) 1) ?lat-length))

=>

(printout t "Missile has crossed " ?ltstate crlf)

(printout t "During Cycle " ?time crlf))

(defrule DECISION-destroy-lat-over-bounds

(phase decision)

(cycle ?time)

(lat-trend 7lat ?ltstate&lat-high-destruct-line|lat-low-destruct-line
start 7end)

(trend-lat ?lat-length)

(test (>= (+ (- 7end 7start) 1) ?lat-length))

=>

(printout t "Missile has crossed " ltstate " for more than 6 cycles" crlf)

(printout t "Self Destruct is Initiated during Cycle " ?time crlf)

(halt))
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(defrule DECISION-warn-yaw-over-bounds
(phase decision)
(cycle ?time)
(yaw-trend ?yaw ?ystate&high-yaw-destruct

start ?end)

(trend-yaw ?yaw-length)
(test (< (+ (- 7end 7start) 1) 7yaw-length))
=>
(printout t "Missile has crossed " ?ystate crlf)
(printout t "During Cycle " 7time crlf))

(defrule DECISION-destroy-yaw-over-rate
(phase decision)
(cycle ?time)
(yaw-trend ?yaw ?ystate&high-yaw-destruct
start ?end)
(trend-yaw ?yaw-length)
(test (>= (+ (- 7end 7start) 1) ?yaw-length))
=>
(printout t "Missile has crossed " ?ystate " for more than 4 cycles" crlf)
(printout t "Self Destruct is Initiated during Cycle " ?time crlf)
(halt))

(defrule DECISION-warn-pitch-over-bounds

(phase decision)

(cycle 7time)

(pitch-trend ?pitch ?pstate&high-pitch-destruct
?start 7end)

(trend-pitch ?pitch-length)

(test (< (+ (- 7end 7?start) 1) ?pitch-length))

=>

(printout t "Missile has crossed " ?pstate crlf)

(printout t "During Cycle " ?time crlf))

(defrule DECISION-destroy-pitch-over-rate
(phase decision)
(cycle 7time)
(pitch-trend ?pitch ?pstate&high-pitch-destruct
?start 7end)
(trend-pitch ?pitch-length)
(test (>= (+ (- 7end 7start) 1) ?pitch-length))
=>
(printout t "Missile has crossed " ?pstate " for more than 4 cycles" crlf)
(printout t "Self Destruct is Initiated during Cycle " ?time crlf)

93




(halt))

(defrule DECISION-print-end-of-cycle

(declare (salience -1))

(phase decision)

(cycle 7time)

(test (> ?time -1))

=>

(printout t "¥¥¥¥¥#kxxk%xx Cycle number " 7time " has ended ****¥*x¥Hkx¥*t crlf))

(defrule DECISION-remove-old-values-and-flags
(phase decision)
(cycle 7time)
(or 7f <- (gps-long-value ? ~?time)
f <- (gps-lat-value ? ~?time)
?7f <- (gps-alt-value ? ~7time)
o <- (imu-yaw-value ? ~?time)
?7f <- (imu-pitch-value ? ~?time)
?7f <- (long-state ? ? ~7time)
2 <- (lat-state ? ? ~?time)
2 <- (alt-state ? 7 ~7time)
7f <- (yaw-state ? 7 ~?time)
7f <- (pitch-state ? ? ~7time)
2 <- (fit-dat-read))
=>
(retract 7f))
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APPENDIX C: Peacekeeper Constant Thrust Model

This appendix shows the Peacekeeper ICBM constant thrust model designed by Mr.
Dale Witt for use in the BOOST program. By changing selected variables (see appendix
A) it is possible to obtain different flight scenarios for the Peacekeeper ICBM. This par-
ticular file is for the nominal flight scenario.

*** Peacekeeper (constant thrust model) ***

% 3k ok ok ok ok K UNCLAS SIFIED o 3k %k ok ok Kk
Modeler; Mr. Dale B. Witt, FASTC/TANB DSN 787-2654
Date: June 1993
PBV and RV weights removed to make model unclassified.
LAUNCH ALT O FT / TEMP 72 DEG F
PK CONSTANT THRUST MODEL

k¥ *x %% Gabot *** coast before ignition ** ¥ #x*

TFI(1)= 127, 27,
WI(1) = 195444, -1,
TI(1) = 727652, 0.,
WDI(1)= O, 0,
ACI(D)= O, 0.,

DI(1) = 0, 7677,

*kRRKEK Grage ] ¥HFHHE Grage ) *¥HH* Qrage 3 Hkkk Payload ***

TF1(3)= 593, 117.5, 187.0, 200.,
wi3) = -1, 87948, 27002, 9000.,
T1(3) = 491778, 275788, 68382,

WDI1(3) = 1742714, 934962,  224.870,

ACI(3)= 2913, 4704, 3789,

DI3) = -1, -1, -1, -1,

TITLE = Jettison shroud (747 1b) at 128.5 seconds
WITB 128.5, 747
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% ok ok ok ok ok ok ok ok ok Guidance Secﬁon K oK 3k ok ok ok ok ok ok ok ok %k

Time (sec)

0-1.27 : Sabot Launch

1.27 . Coast',

2.7 : Powered Vertical Takeoff'
3.1 : Initiate gravity turn

117.5 . Initiate attitude hold.

PSICV =-2., 0.0,0.0, 9999, 0,
THACV =-2.,-3.1,0., 9999, 0,

TILTM =3.1, RTOL =01,

SDELT = 0.1, GAMT = 7.2029856, DELGAM =55,
GAMT =68,

*%%* 1st Stage Drag Curve ***

CACV=-18,,
0,727, 1,717, 2,270, 3,213, .6,.198, .8,.194, .9,.230,
1.0,.353, 1.08,.408, 1.15,.428, 1.3,.412, 1.5, 382, 2.0,.337,
275,291, 3.5,256,4.5,222,5.5,201, 1000.,.201,

*¥% 2nd stage drag curve ***

CA2T=4,
CACV2=-5,,
0.,.205, 4.52,205, 5.52,.195, 25.0,.200, 1000,.200,

CA3T=5.,
CACV3=-2,
0.,.094, 1000, .094,

PRTBL = .5, 180.0, 1000., 1E10, FFTH=000
OMEG=1.,0BLATE=1., MAXRAN =0

HO = 0.0, BETAO = 200.0, PHIGO = 34.7, LAMDO = 120.6
HRNTY = 393700.8

IIPTB = 10.,20.,30.,40.,50.,60.,70.,80.,90.,100.,110.,120.,130.,140
ITMAX=20

NOITR=0, ITSIGN=0, MAX=15

FAI(1) =11

INDVAR(1)= GAMT

DEPVAR(1)= GAMR

DCBOI(1) = -25.00

TOLI(1) =0.01

o ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok PeaceKeeper Fllght 3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

ENDRUN = 9999.
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APPENDIX D: Nominal Scenario Output

The following pages were taken from the optional output file produced by the EXMIS
prototype. It is evident from the output data that EXMIS does not perform actions to
terminate this flight scenario and atlowed the simulation to run for the entire time of 180
seconds or 360 cycles. This scenario proves that EXMIS is capable of allowing a nominal

flight to continue without interruption.

sk ok ok ok sk ok ok ok ok kk Cycle number 351 haS ended sk 3k 3k ok ok ok K ok sk ok ok %k sk ok sk sk sk sk sk koK k
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

skokook koK sk kosk sk ksk sk Cycle number 352 haS ended sk 3k 3 3k 3K 3k ok ok ok ok ok ok ok ok sk ok ok ok skok sk ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

sk ok ok ok ok sk ok sk kok ke k Cycle number 353 haS ended sk 3k 3k sk ok oK ok ok ok ok ok ok ok ok ok ok ok ok sk skok sk
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

% % ok ok ok ok sk ok kosk kk Cycle number 354 haS ended sk ok 3k ok 3k sk ok 3k ok ok ok ok ok ok o kok sk ok sk oskook
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

% ok ok ok 3k ok %k ok ook Kk Cycle numbef 355 haS ended sk sk ok ok 3k ok ok ok ok ok sk sk sk ok ko sk kokok ok ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate
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Nominal Pitch Rate

Rkkkkskkkkkkk Cycle number 356 haS ended 3 ok ok ok ok 3k ok ok o ok ok ok ok ok ok ks dk sk sk k %k
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

ok kok ok ok k kok k k% Cycle number 357 haS ended % sk ok ok ok kok ks kk ok ks ok skok ki k sk sk k
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

% 3k ok ok ok ok sk ok ok ok k k CyCle number 358 has ended % sk ok ok ok ok ok ok ok ok ok ok ok ok ok ook sk ok sk ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Kk kkKkkkkkkkk Cycle number 359 haS ended kokkokokokskskokokokkskkkokkkkkokok
- Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

kK oskokokok sk okok ok Cycle number 360 haS ended skkskkokokkkokskokokkokokkokskkkkk
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APPENDIX E: Errant Missile Output

The following pages were taken from the optional EXMIS output file for the errant
missile scenario. Inspection of the output data shows the missile did not cross the destruct
line until cycle 299 or at approximately 150 seconds into the flight. EXMIS issues two
warning messages, one stating the missile is out of longitude bounds and the other that it
has crossed the long-high-destruct-line during cycle 299. If the missile continues on this

course for more than 6 cycles (or 3 seconds) EXMIS issues a self-destruct command.

ok 3k ok ok ok %k 3k ok sk ok sk ok Cycle number 296 haS ended kokkokkkokokokokskokkkokdkokkkkkx
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

sk ok 2 ok ok ok ok ok sk sk ok ok Cycle number 297 has ended sk 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok sk kR ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

sokokskokskkokskkokk Cycle number 298 has ended sk sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ko ook ok ok
Nominal Longitude

- Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

% ok e ok kook sksk sk ksk ok Cycle number 299 haS ended sk sk ok ok 3k ok ok ok ok ok ok ok sk ok sk skok sk ok sk kok
Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line

During Cycle 300

s ok ok ok ok ok ok okokok ok ok Cycle number 300 haS ended ok s ok sk ok ok ok ok ok sk ok skok sk kok skok sk kok ok
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Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line

During Cycle 301

sk ok sk ok ok sk ok sk ok sk sk ok Cycle number 301 haS ended % % 3k 3k ok 3k ok 3k ok ok ok % ok ok ok ok kok sk sk ok ok
Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line

During Cycle 302

ok ok ok ok ok ok ok ok kok ok ok Cycle number 302 haS ended o 3k 3k ok ok sk ok ok ok ok ok ok %k ok ok ok ok ok ok sk ok ok
Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line

During Cycle 303

3 ok ok ok ok ok ok ok ok sk ok ok Cycle number 303 haS ended sk ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk sk skokok
Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line

During Cycle 304

sk o ok ok ok ok ok ok ok ok k% Cycle number 304 haS ended 3k ok ok o ok ok ok ok sk ok ok ok ok ok ok ok ok okok ok ok ok
Longitude out of bounds HIGH

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

Missile has crossed long-high-destruct-line for more than 6 cycles

Self Destruct is Initiated during Cycle 305
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APPENDIX F: High Yawrate Output

The following pages were taken from the optional EXMIS output file for the high
yawrate scenario. Although the yawrate and pitchrate scenarios are separate, they are
similar enough that both may be represented by this output file. During cycle 120, EX-
MIS detects a yaw rate that is out of the established parameters for the missile flight. Two
warnings are issued alerting the user to this fact. If the missile continues at this yaw rate
for more than 4 cycles or 2 seconds, EXMIS issues a self-destruct command and termi-
nates the flight.

% ok 3k % ok ok ok ok ok ok ook CyCle number 1 15 has ended ok 3k ok ok ok ok ok ok kok kR sk kk sk ksk kR ok ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

ok sk sk ok o ok ok ok Kk kok ok Cycle number 1 16 haS ended ok ok 3k ok sk >k ok ok ok ok ok ok sk ok sk ok sk ke sk ok ok ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

% ok 3k sk ok ok ok ok % %k ok %k Cycle number 117 haS ended ok 3k 3k ok ok o sk ok sk sk ok ksk ksk ok kR sk k ok k
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

ok ok sk sk ok ok ok ok k ko ok Cycle number 1 18 has ended 3k ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk k ki k
Nominal Longitude

Nominal Latitude

Nominal Altitude

Nominal Yaw Rate

Nominal Pitch Rate

kokkkokkkkkkkk Cycle number 119 haS ended o ok sk ok ok ok ok ok ok ok ok ok skook ko ok sk kokk sk
Nominal Longitude

Nominal Latitude
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Nominal Altitude

Yaw Rate is over Max rate allowed

Nominal Pitch Rate

Missile has crossed high-yaw-destruct

During Cycle 120

ok ok sk ok ok ok ke sk ok ok sk k Cycle number 120 has ended Sk sk sk 3k 3k sk ok Ak ok ok o ok ok ok ok ok sk ok ki sk ok ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Yaw Rate is over Max rate allowed

Nominal Pitch Rate

Missile has crossed high-yaw-destruct

During Cycle 121

ok sk ok ok ok ok ok ok sk kok ok Cycle number 121 haS ended sookoskokook ok ok skookoskok ok ok k sk sk sk k ko k ok
Nominal Longitude

Nominal Latitude

Nominal Altitude

Yaw Rate is over Max rate allowed

Nominal Pitch Rate

Missile has crossed high-yaw-destruct

During Cycle 122

% 3K 3k ok 3k ok ok ok %k 3k %k k Cycle number 122 haS ended skoske skook skook ok skeosk sk sk ok ksk skosk sk sk k ke
Nominal Longitude

Nominal Latitude

Nominal Altitude

Yaw Rate is over Max rate allowed

Nominal Pitch Rate

Missile has crossed high-yaw-destruct for more than 4 cycles

Self Destruct is Initiated during Cycle 123
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