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Abstract

This thesis is part of a research effort to investigate techniques to automate the task
of characterizing space objects or satellites based on a sequence of images. The goal is to
detect space object anomalies. Two algorithms are considered — the feature space trajectory
neural network (FST NN) and hidden Markov model (HMM) classifier. The FST NN was first
presented by Leonard Neiberg and David P. Casasent in 1994 as a target identification tool.
Kenneth H. Fielding and Dennis W. Ruck recently applied the hidden Markov model classifier
to a 3D moving light display identification problem and a target recognition problem, using
time history information to improve classification results. Time sequenced images produced
by a simulation program are used for developing and testing the anomaly detection algorithms.
Two data sets are tested. The first consists of 50 training and 50 test sequences, with 20 images
per sequence. The second set contains 23 training and 46 test sequences. Tests on the second
data set achieve 100% anomaly detection with no false alarms. The samples in the first data
set are more widely spaced making it more difficult to classify, with the best test achieving
a 5% false alarm rate with 100% anomaly detection. A variety of features are tested for
this problem. Features are derived from the two dimensional (2D) discrete Fourier transform
(DFT) with various normalization schemes applied. The FST NN is found to be more robust
than the HMM classifier. Both algorithms are capable of achieving perfect classification, but
when shot noise is added to the images or when the image sample spacing is increased, the
FST NN continues to perform well while the HMM performance declines. A new test is
presented that measures how well a test sequence matches other sequences in the database.
The FST NN is based strictly on feature space distance; but if the order of the sequence is

important, the new test is useful.

ix



SPACE OBJECT IDENTIFICATION

Using Spatio-Temporal Pattern Recognition

1. Introduction

1.1 Nature of the Problem

Space Object Identification (SOI) is one of the tasks performed by Air Force space
surveillance sites. SOI answers the following questions about man made space objects: (1)
Where is it? This is a function of orbital dynamics; (2) What is its behavior? This addresses
local dynamics, like spin, wobble, antenna and panel position; (3) What is it? This is an
analysis of size, shape, identification; and (4) What is its capability? This is determined based
on the previous three questions [19]. This thesis focuses primarily on “what is it,” and “what

is its behavior,” but may be useful in assessing capability also.

Currently, the task of identifying and analyzing space objects is performed by trained
analysts. Identifying space objects is generally not a problem since the object is usually known
by its orbital parameters before the images are obtained. The characterization of space object
behavior is a more difficult problem. Detection of unusual behavior or appearance (anomalies)

is dependent on the analyst’s experience.

1.1.1 Problem Statement.  Explore spatio-temporal pattern recognition techniques,
specifically, the feature space trajectory neural network (FST NN) [12, 13] and hidden Markov

model (HMM) algorithms, for detecting anomalous satellite behavior.

1.2 Scope

e Simulated data generated

— Low earth, sun-synchronous orbit



— Nadir pointing satellite (this means straight down towards the Earth)
- Sequences of 20 images spaced 8 to 10 seconds apart
— Poisson simulated noise

e Features extracted

— Wedge sampled 2D discrete Fourier transform (DFT)

* 8 vs 16 wedges

* With or without dc (Dc is the zero frequency coefficient or total energy cell.

It is the middle value of the 2D'DFT and is not counted in any wedges)

* Normalized or not
— Block of Fourier coefficients

* 18 low frequency coefficients
* Normalized or not

* Energy vs statistical normalization

e Algorithms explored

- FSTNN

* Distance test
* Sequence test
- HMM
* Ergodic and left-right models
* Continuous state distributions

* One and four Gaussian mixtures per state

* 1,2,5, 10 and 15 state models




13 Approach

If a satellite looked the same every time it passed overhead or if there were a finite
number of viewing angles, anomalous satellite behavior could be detected by simply checking

for a matching image sequence. Since this is not the case, a nearest neighbor or statistical type

of classifier is appropriate.

Leonard Neiberg and David. P. Casasent have developed a new technique for estimating
the pose of an object from 2D images [12]. This technique is called the feature space trajectory

(FST) neural network (NN). This technique is very similar to a nearest neighbor classifier,

" but performs better because it uses the distance to the nearest trajectory instead of nearest

neighbor. Neiberg and Casasent used the FST NN to classify images of military vehicles. In
order to classify a sequence rather than a single image, two variations of this algorithm are
presented. There is the distance test, which simply sums the feature space distance of the
images in the sequence, and the sequence test which measures how well the test sequence

matches the order of the nearest training sequence.

Kenneth Fielding and Dennis Ruck [6] have recently used Hidden Markov Models
(HMM) to classify images of 3D objects based on the way features change with viewing angle
over time. This is a statistical method that classifies a sequence based on the probability that a
test sequence was produced by a given model. This technique should also be able to classify

a sequence of images as normal or anomalous.

14 Organization of Thesis

The second chapter of this thesis provides a basic introduction to space object iden-
tification (SOI) and orbital mechanics in addition to background information on traditional
pattern recognition and the algorithms used in this research. Chapter III covers the methodol-
ogy, describing the simulated data that were used for the experiments in this thesis, how they
differs from real data, and some pre-processing that may be helpful on real data. Chapter IIT
also covers the feature selection and specific classification algorithms tested for this thesis.

The fourth chapter shows the results of the tests with a full analysis. The final chapter contains



concluding remarks suggesting possible areas where this research may be applied and areas

where further research could be pursued in spatio-temporal pattern recognition.




Il. Background

This chapter provides background information to help the reader understand this thesis.
Some basic orbital mechanics is presented to help the reader understand normal satellite
behavior and the orbital terminology used in this thesis. Next, some background information
is provided referencing the traditional pattern recognition techniques from which most pattern
recognition algorithms have evolved. The last sections of this chapter cover the feature space
trajectory neural network (FST NN), and hidden Markov model (HMM) algorithms to show
the reader the origin of the ideas that are applied to the SOI problem in Chapters III and IV.

2.1 Basic Orbital Mechanics

One of the first facts discovered about orbits is that they trace an elliptical path with the
Earth at one focus. This comes from Kepler’s First Law which states that the orbit of each
planet is an ellipse with the Sun at the focus, but this can be applied to satellite orbits as well.
Another important fact about orbits is that the orbit plane does not rotate with the Earth, but

remains in a fixed orientation in space, except for perturbations such as the force caused by

the oblateness of the Earth.

An orbit can be completely and accurately described either with the classical orbital
elements, or with a position and velocity vector. Both of these methods are based on a quasi-
inertial reference system with the Earth at the center. The principle direction (x-axis) is along
the intersection of the Earth’s equatorial plane and the Earth - Sun orbit plane, also known as
the ecliptic. This principle direction is also known as the vernal equinox or first point of Aries

[2] (Figure 1).

The classical orbital elements include two angles that define the plane, four measure-
ments that define the ellipse, and a time which is determined by the satellite’s position on the
ellipse. The two angles are right ascension (£2), which locates the orbit plane with reference
to the vernal equinox and inclination (i), which is the angle between the equatorial plane

and orbital plane. The ellipse is defined by a semimajor axis (size), eccentricity (shape),




TO THE FIRST
POINT OF ARIES (7T")

Figure 1. The vernal equinox or first point of Aries. [9]

and argument of perigee(w) (orientation of vector pointing to lowest altitude of orbit). The
position of the satellite is determined by epoch time, which is the time the satellite passes
either perigee or crosses the equatorial plane (this crossing point is known as ascending node)

(Figure 2).

The other method of determining an orbit is by location and velocity vectors. The
position is denoted by (z, y, 2), and the velocity is denoted by the change in position, or (z,
Y 2).

Atlower altitudes, a satellite moves faster. An orbit is considered low-earth if the period
is less than 360 minutes. The simulated satellite images used for testing the FST NN and
HMM classifiers in chapter 4 are from a low-earth orbit with a period of 90 minutes. Another
characteristic of this orbit is that it is sun-synchronous. Sun-synchronous means that the orbit
plane remains aligned with respect to the sun. This is a phenomenon that occurs in some high

inclination orbits, and it provides the benefit of the satellite passing over a point on the earth




n
Ascending node

C'r

First point of Aries

Figure 2. Some classical orbital elements: () - right ascension, w - argument of perigee, i -
inclination. [1]




at the same time of day throughout the year. This occurs because the orbit plane is perturbed

approximately one degree per day (Figure 3).

winter

summer

Figure 3. A Sun-synchronous orbit keeps the same orientation to the sun throughout the
year. [9]

The attitude of a satellite is also important. The attitude is normally described in terms
that are used for aircraft: roll, pitch, and yaw. For this research, a normal satellite will be

nadir pointing and 3 axis stable. Any roll, pitch, or yaw will be considered anomalous.

2.2 Traditional Pattern Recognition Approaches

One of the most basic approaches to pattern recognition is the statistical classifier. R. A.
Fisher [7] in 1936 was one of the first scientists to develop a statistical classification method
and apply it to a real problem. After the computer was invented, the uses for and types of
statistical classifiers have exploded. R. O.Duda[3] provided a thorough treatment of statistical

classification, with bibliographic references, in 1973.



Non-statistical classification methods include the k-nearest neighbor and the neural
network. The neural network approach to pattern recognition was developed in the late 1950s
beginning with Rosenblatt’s perceptron [17]. Since then, a large variety of techniques have

been developed for structuring and training neural networks.

Traditional pattern recognition approaches have been successful on many image recog-
nition problems, but the problem of recognizing images of 3D objects viewed from various

angles or illumination conditions has required some new approaches.

2.3 Feature Space Trajectory (FST) Neural Network (NN)

Neiberg and Casasent [12] developed a neural network that classifies images regardless
of 3D aspect distortions. It is very similar to a nearest neighbor classifier but it has the
ability to interpolate between training samples. For the experiments performed by Neiberg
and Casasent, it is shown to perform better than several other neural network classifiers and to
accurately reject non-object data [13]. This FSTNN is able to account for 3D aspect distortions

by describing each class as a trajectory in feature space.

2.3.1 FST NN Performance. Neiberg and Casasent tested the FST NN against
a simulated infrared military vehicle database (TRIM-2) which contains 126 objects. The
vehicles were present in scenes and had to be detected and enhanced prior to feature extraction.
The database contained 21 aspect views of six different vehicles. Eleven images per class, a

total of 66, were used for training and the remaining 60 were used for testing.

The feature space for their experiment was wedge-sampled magnitude-squared Fourier
features. The paper addressed whether to use the dc value, whether the features should be
normalized (so the total energy sums to 1.0 for each image), and whether the pixels surrounding
the dc value should be suppressed. Various combinations were tested and the best results were
achieved without normalization and without suppressing the values surrounding the dc value.
Comparison experiments with other classifiers were performed using these features. Fourier

rings were also tested with very good results. For both wedges and rings, 16 features per




image performed better than 32. More features, normalizing, or dc suppression requires a

larger training set to achieve the same results [12].

The other classifiers used by Neiberg and Casasent for comparison were the three-
layer feedforward Backpropagation NN (BPNN), piecewise quadratic NN (PQNN), the direct
storage nearest neighbor (DSNN), and the condensed nearest neighbor (CNN) classifiers. The
FST NN was the only classifier to achieve 100% on the test set with the BPNN coming in
second at 93.3%. One of the primary advantages of the FST NN is that it generalizes better
than other classifiers and it doesn’t have a problem with memorization. Also, it doesn’t need
a large training set to ensure good generalization. Additionally, iterations are not required for
the FST NN unless the middle layer is pruned, while the BPNN requires more than 60,000
iterations. The BPNN performed best when the middle layer nodes were less than 15 (or

roughly 3 per class). The on-line computational load for the FST NN was about 34% higher
than the BPNN. |

Another capability of the FST NN is pose or aspect view estimation. This is accom-
plished by interpolating along the trajectory between the two nearest middle layer nodes.
Each middle layer node represents a training image with a known aspect view. A limitation
of the FST NN as applied by Neiberg and Casasent is that aspect estimation is limited to one
degree of freedom. Only azimuth was considered, and this could be a problem with some

applications. For the SOI problem two degrees of freedom are required.

In summary, Neiberg and Casasent have developed a technique that performed well on
the TRIM-2 database, acheiving 100% accuracy on some tests. This classifier appears to have
great potential in a variety of classification problems such as 3D aspect distortions, aspect

estimation, and motion characterization.

23.2 FST NN Description. The FST NN is very much like a nearest neighbor
classifier. The difference is that a nearest neighbor classifier uses the distance to the nearest

feature vector in the training database, but the FST NN classifier uses the distance to the

10




nearest trajectory (Figure 4). A segment of the trajectory represents the transition between

aspects represented in the training database.

1 1
08 08
...... X
06 06
04 04
0.2 0.2 .
x
0 0
0 05 1 0 05 1
1 1
0.8 08
06 X, 08
0.4 04
0.2 0.2
0 : 0 : *®
0 05 1 0 05 1

Figure 4. Examples of distance from point to trajectory in hypothetical 2D feature space.
Distance shown by dotted line.

Neiberg and Casasent used the FST NN to classify images of military vehicles, using
various aspect views of each vehicle as the training set. The closest trajectory determines the

class of the test vehicle, and the position on the trajectory determines the pose (Figure 5).

The satellite anomaly problem requires a slightly different approach for a couple of
reasons. Since the aspect view of a satellite can vary over a solid angle of 47, many more
training trajectories are required. Also, a single view of the test object is not adequate, since
motion and the change in aspect over time must be considered. Additionally, training data
from the anomalous class is not typically available, so the algorithm must be designed to

detect sequences from the normal class and all others are classified anomalous.

11



feature vectors

from training set
features from

test object N

Distance
Calculations ; L 3»-Class
(scalar : WTA > 0se
operations) > P
P, P,
Distances
Input Vector Inner Products

Figure 5. FST NN architecture. [13]

24 Hidden Markov Models

The Hidden Markov Model (HMM) is a statistical classification technique that has
been used for speech recognition since about 1975 [11]. Recently, Fielding and Ruck [6]
[5] demonstrated the use of the HMM as a spatio-temporal image sequence classifier. This

approach uses a sequence of images rather than a single look to improve classification.

24.1 HMM Performance. The HMM technique used by Fielding and Ruck
successfully classified moving light display images and simulated image sequences of military
vehicles. They used Fourier features from the 7 x 4 rectangle of low frequency, magnitude only,
coefficients. This produced a 28 D vector. Each feature vector component was statistically
normalized. The features from the training set were vector quantized into clusters that
represent various aspect angles. A sequence of images was transformed into a sequence of
feature vectors that would produce a trajectory on the aspect graph. The HMM algorithms

determine which class of vehicle most likely produced the trajectory.

A five class problem was considered and classification accuracies as high as 100% were

obtained. Tests were also performed to classify type of object and direction of motion. The

12




HMM classifier performed well even when noise was added and it consistently outperformed
the singlé look nearest neighbor classifier. Also, a real image sequence was successfully
classified using an HMM trained on synthetic data. Fielding and Ruck showed that an HMM

uses temporal information and will produce superior classification results when compared to

single frame techniques.

242 HMM Description.  Hidden Markov Model classifiers are not easy to under-
stand, but a good place to start is with a simple Markov process. Let us consider a simple
three state Markov process. The topic is car color and the three states for this example are
red, white, and blue. This is a discrete Markov process, since a car (for our purposes) is only
red, white, or blue, and not shades in between. If it were a continuous model, the cars could
be any shade of color, and the car’s state would be the color that is the closest match. The
transition probabilities represent the chance that the car will go from one state to another. A
transition occurs when the car is painted. The model shown in the figure is called ergodic

because any state can be revisited (Figure 6).

Figure 6. Example of an Ergodic hidden Markov model.

13




In the example shown in figure 6 there is a 0.4 probability that a white car will be painted
red. For two transitions, the probabilities are multiplied. The probability that a white car will

be painted white then later be painted red would be 0.08.

Another type of model is the left-right Markov process. For this example, let the state
be the side of the car being viewed. Let’s just consider three states: front, side, and back.
This process models the view of a car driving by in a normal manner. First you would see the
front, then the side, then the back. If a person records which side of the car is viewed at one

second intervals, the transition probabilities may look something like this (Figure 7).

0.7 0.5 1.0

0.3 0.5

Figure 7. Example of a left-right hidden Markov model.

In this model, once a state is left, it will never be revisited. A possible observation
sequence for this model may be: {front, front, front, front, front, side, side, side, back, back,
back, back}. From this model, there is a probability of 0.009 that this sequence would be
observed. Now, if a car was driving in reverse, a possible observation sequence may be: {back,
back, back, side, side, front, front, front, front, front, front}. From this model, the probability
of this sequence being observed is zero because right to left transitions cannot occur. If a car
were crashing, the observation sequence may be: {top, side, back, bottom}; and the probability
of this observation would also be zero because the model only accurately represents a normal
drive by. The key to the HMM classifier is to find a model that will maximize the probability
of an observation sequence for a given class, and observation sequences that are not from the

class should have a much lower probability.
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The Hidden part of the HMM comes from the fact that you may not be able to directly
observe the state. If one uses an infrared sensor to detect the car, the front, side and rear aspects
of the car may have different readings. A given reading may not relate directly to a given
aspect, but probability density functions could be derived to represent the various aspects.
One might guess that a three state model would work best, but a four or five state model may
perform better because the best states may not relate to front, side, and back aspects. Also,
one would expect a left-right model to work best, but if one of the states relates to front and

back corner views, an ergodic model would work better because this state would need to be

revisited.

There are algorithms to help one find the best Markov model for the problem. Starting
with a sequence of observations, one would use the Viterbi algorithm to find the best values for
each state. Next, one would use the Baum-Welch reestimation algorithm to find the transition
probabilities. These transition values would be selected to maximize the probability that the
observed sequences came from the model. Once the model is determined using Viterbi and
Baum-Welch, the forward or backward algorithm is used to find the probability of a given
observation sequence given the model. These algorithms are spelled out in Rabiner and Juang
[15], Poritz [14], and Rabiner [16]. Also, the commercial software package by Entropic
Research Laboratory called Hidden Markov Model Toolkit (HTK) has these algorithms [4].

For the satellite anomaly detection problem, the observation sequence is the sequence
of feature vectors that are derived from an image sequence, and the states are also vectors in
this feature space. The concept of states for this problem is not as clear as the car example

above, because one state may represent numerous aspect views.
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Ill. Methodology

This chapter covers the methodology, beginning with the production of simulated data
for the experiments, how it differs from real data, and some preprocessing that may be helpful
on real data. The second part of this chapter covers the specific classifier algorithms and

features tested for this thesis.

3.1 Simulated Images

3.1.1 SatTools. This satellite anomaly detection research is based on experiments
using simulated satellite images. These images were produced using a program called Sat-
Tools. SatTools allows the user to choose an orbit, a satellite model, an optical sensor, and
other parameters to produce a sequence of images that simulates real optical space surveillance
data. The SatTools software has three parts: stem, to produce the orbit; satsig, to perform ray

tracing, and satsim, to convert the data into an image.

With the stem input file, the user specifies the orbit using classical orbital elements or
position and velocity vectors. The user also specifies the attitude of the satellite, the start/stop
times and time step between image frames. The output file describes the motion of the satellite,
providing the user with azimuth, elevation and range from the viewer to the satellite, the angles
from the satellite to the viewer, and the angles from the satellite to the Sun for each frame.
Also, latitude, longitude, and altitude are given for the satellite at each frame in addition to

some other information not used in this thesis.

Satsig uses the stem motion file to determine the aspect of the satellite being viewed,
then performs ray tracing against the satellite model. The user specifies the number of ray
bounces, whether light is reflecting off the Earth (earthshine), and whether the Earth’s shadow

is considered.

Next, satsim takes the satsig output and transforms it into an image. The user can specify
the optical characteristics, including wavelength, detector size, sample time and aperture size.

The user can also specify atmospheric effects, noise, and jitter.
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3.1.2  Simulated Image Production. ~ Simulated image production takes a significant
amount of time. The SatTools program runs on Silicon Graphics workstations. To make
simulated daytime images, the earthshine setting is activated. This increases the runtime for
a sequence of 20 images from less than one hour to 10-20 hours, and 175 of these sequences

were produced.

Since the exact characteristics of the AMOS optical sensor are not available at this
classification level, the SatTools data was produced assuming ideal conditions using visible
wavelength, no atmospheric turbulence, no noise, and no jitter. Two batches of image
sequences were produced. The first batch (data set 1) covers a time frame of 17 days . The
images were produced using an orbit with a semi-major axis of 6771 km (which converts to an
altitude of about 400 km or a period of 92 minutes), inclination of 101 degrees, and eccentricity
of 0.0004 (nearly circular, so argument of perigee is not important). The epoch time and right
ascension were set so the satellite would have a descending pass (north to south) over the
site between 0200Z and 0400Z and an ascending pass (south to north) between 1400Z and
1600Z. This corresponds to an early morning ascending pass, and a late evening descending
pass. All passes were imaged as long as they were at least five degrees above the horizon.
Each sequence is made up of twenty images, created at 10 second intervals. This 200 second
window was centered on the highest elevation angle of the pass. For the training images, the
right ascension was not adjusted over the 17 day time frame, so the time of day was about
one hour off by the 17th day. For the purposes of this experiment, this is close enough to
sun-synchronous. After 17 days, with an average of three passes per day, the data covers a
broad range of possible viewing angles; and the orbit trace begins to repeat, so training data

production is stopped. This training set includes 50 image sequences (Figure 8).

The first test set included 20 normal sequences and 30 anomalous sequences. The
normal sequences were produced by using the same orbit parameters of the training set, but
perturbing the right ascension so the images would fall in a gap. If the sequence was not forced
to fall in a gap, the data would be very close to the training set and classification would be too

easy. The anomalous test set was produced with the same orbital parameters as the training
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set but with various amounts of rotation in the roll, pitch, and yaw axis. Sequence examples
are shown in figure 9 showing a couple of normal passes and an anomalous pass. Not all
anomalous passes were this obvious. The rotations were added at various rates between 0.2

and 3.0 degrees per second. These were added one axis at a time, and in some passes two axes

rotation was simulated.

The second data set was produced after learning from experiments on the first data set.
The orbit parameters were basically the same except the right ascension was perturbed about
0.9 degrees per day to keep the orbit truly sun-synchronous. Only descending passes were
considered, and the pass elevation was limited to at least 10 degrees above the horizon. Also,
the time interval between images was reduced to 8 seconds. These changes result in a closer
sample spacing (Figure 10) and should lead to better classification results. The normal test
set was produced in a similar manner to the previous normal test data set, by forcing the orbit
to fall in gaps between training passes. The anomalous test set was produced by introducing
roll, pitch, and yaw based in a semi-random manner. This was to reduce chance alignments

that were evident in the first data set because of one axis rotation.

For the final test, shot noise is added to the second data set. Shot noise is the natural
phenomena caused by random arrival rate of photons on a sensor. This noise is simulated
using a Poisson rate scaled by the intensity of the original image (Figure 11). The calculation

requires normalizing the pixel values in the image matrix F, then scaling by the K value.
Fnorm = F|SF

Fscaled = Fnorm x K

Next, each element of the image matrix F'new is determined based on a poisson distribution

with a rate of F'scaled.

Frnew = poisson(Fscaled)
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Normal-low elev. Normal-high elev. Anomalous-med elev.

Figure 9. Samples of normal and anomalous image sequences.
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satellite image without noise image with shotnoise (Kbar=100000)
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Figure 10. Second set of training data.

Figure 11. Example of an image with various levels of shot noise.
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3.2 Real Images

Before SatTools was available, the real images were examined and studied to find what
problems may exist that would prevent accurate classification. Some possible problems and

suggested solutions are covered in this section.

The images provided by Air Force Maui Optical Station (AMOS) have a wide range of
brightness variation. The gray scale intensity of some of the images is so low that the space
objects were visually undetectable. Also, the noise in some images was higher than the object
pixels in other images. I made the assumption that a classifier would perform better if the
intensities could be adjusted to ‘normalize’ intensity levels. My goal in the pre-processing was
to produce an image that visually minimized noise or extraneous bright areas while bringing

the object to a level that could be easily detected.

3.2.1 Thresholding.  The brightness threshold is the approximate minimum pixel
intensity that defines the object. Pixels below the threshold are declared background, that for
these images should be black. A procedure was needed to pick the best threshold for each
image regardless of the quality or original brightness level of the original image. Methods
used by other researchers include mean or mean plus standard deviation [8]. By trial and error,
I found the best threshold for the AMOS data to be mean plus .07 times the variance (Figure
12). For producing binary images, pixels below the threshold were given a value of zero and

pixels above the threshold were given a value of one.

3.2.2  Hyperbolic Tangent Warping.  In order to keep gray levels, another method
of applying the threshold was developed using the hyperbolic tangent or tanh function. This
maps the original pixel values (0 to 255) in a non-linear operation to values between -1 and
1, with the threshold mapping to 0. Then the values are rescaled to fit the original pixel value

range of 0 to 255. (Figure 13). The equations for the tanh transformation follow:

t=p+0.070°
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Original images

Binary using threshold of mean

Figure 12. Examples of various thresholds.
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Figure 13. Examples of pixel values transformed by tanh function.
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7= (2/0)?
temp = (tanh(v(F — 1)) + 1)
temp2 = temp — min(temp)
newl’ = temp2 x 255 /max(temp?2)

Where ¢ is the threshold, 1 is the mean value of the pixels in the image matrix F', o is the
standard deviation of the pixels in /7, and v controls the slope of the tanh function. An
adaptive v based on a fraction of the variance was found to work best. The effect of this
tanh processing is histogram reshaping. It was compared to the ‘histeq’ command in Matlab
(Figure 14). Although this is a subjective assessment, the tanh process appears to work better.
Dim images, like GRO, are brightened better with tanh than with histeq; but good images,
like Hubblel, are nearly unchanged by tanh while histeq over brightens the image, bringing

out extra noise.

3.2.3 Filtering. After each image was thresholded, other methods of processing
were considered for ‘cleaning up’ the image. One that works well is median filtering. A 3 by 3
median filter smooths out irregularities in the image and fills in small gaps without significantly

changing the shape of the object (Figure 15); however, it is computation intensive.

3.3 Features

An important step in implementing any pattern recognition algorithm is to find features
that properly represent the data for classification. This section examines various magnitude
only Fourier features, beginning with a basic description of the candidates. The latter half of

this section covers the pros and cons of each type of feature considered.

3.3.1 Why Fourier Features? ~ Magnitude only Fourier features are good for image
pattern recognition because they represent the shape of an object but are shift invariant. Also,

they can be a powerful data reduction tool. For the larger components, or overall shape




Original images

GRO Hubble 1 Hubble 2

Images processed with tanh histogram reshaping

Images processed with Matlab’s histogram equalization

Figure 14. Comparison of using tanh versus Matlab’s histogram equalization.
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Original images

Binary images
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Binary images processed with median filter

*

Figure 15. Comparison of binary image with and without median filtering.
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of an object, the low frequency coefficients are known to perform well. For representing
orientations or alignments, wedge sampled features are known to work well. The next two

sections describe the types of Fourier features tested.

3.3.2 Wedge vs Block. The wedge Fourier feature space is a good candidate for
the satellite anomaly detection problem because it is shift, scale and brightness invariant (if
normalized), while still being sensitive to rotational changes. Wedge Fourier features are
obtained by first taking the 2D Discrete Fourier transform (DFT) of the image, then dividing
the space into wedge shaped regions. All the values within each wedge are summed and

divided by the number of pixels in the wedge (Figure 16). Only half of the wedges are used

Figure 16. The eight wedge DFT boundaries.

because the 2D DFT is symmetric. The value obtained from each wedge becomes an element
of the feature vector. Using many small wedges creates a very rotationally sensitive feature
space, while using few larger wedges creates less sensitive features. Neiberg and Casasent
[12] used 16 wedges very successfully on infrared images of military vehicles. For this thesis,

both 8 and 16 wedge features are tested.
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Another proven Fourier feature set is the 2D DFT low frequency coefficients. Fielding
and Ruck [6] used a 7 by 4 block of coefficients, for a 28 D feature vector. For this
thesis, however, only 18 coefficients are used (Figure 17). This is to keep the feature vector

approximately the same size as the 16 wedge features.

2D DFT of satellite image

Figure 17. The block of 18 DFT coefficients.

3.3.3 Normalization. Two types of normalization are applied to the features:
statistical and energy. Statistical normalization is a technique to keep the scale of the features
approximately equal. This is important when the mean and variance of the elements of
a feature vector are not of the same magnitude, especially when the distance measure is
Euclidean. Without statistical normalization, the feature elements with the largest variance
effect the outcome more than the elements with a small variance. The feature elements with a
small variance may even become useless. With block Fourier features, statistical normalization

is important because the coefficients closer to dc are much larger than the values farther out.

With wedge Fourier features statistical normalization is not required because each
element of the feature vector has approximately the same mean and variance; however, energy

normalization could be effective. Energy normalization is achieved by dividing each value of

29




a feature vector by the square root of the sum of the squares. The result is a feature vector that
is invariant to brightness. If DFT wedge features are energy normalized, they will be scale
invariant. This is not important for the data generated for this thesis, but it may be important

for real data if the images are not collected with a consistent field of view.

34 FSTNN

The FST NN algorithm from Neiberg and Casasent [12] had to be tailored to work
on the satellite anomaly problem. Instead one trajectory per class, there must be a set of
trajectories to represent the class, since the satellite can be viewed from many angles over the
entire aspect sphere, not just an aspect circle. Secondly, the test input must be not just one
image, but a sequence of images, so anomalous motion can be detected. Thirdly, instead of
just using feature space distance, there must be a measure for how well the test images follow
a normal sequence. The modified FST NN architecture is shown in figure 18.

sequence of
feature vectors

features from from training set
test sequence
limg g N
O\ . Get smallest
© total distance |—>> class
© O / (distance test)
Distance :
© O Calculations / or
© O (sum over \ Get sequence
© O sequence) \ statistic for > class
closest
(sequence test)
P3 P4
Input Vector Inner Products Distances Distance or

Sequence Statistic

Figure 18. The modified FST NN architecture.
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The FST NN algorithm was tested against the two sets of data. The first data set was

used to test many different approaches. And the second data set was tested with the most

promising combinations.

34.1 TheDistance Approach. The FST NN was applied using the summed distance
from the test sequence to the nearest normal sequence is used for classification. Appendix B
shows the Matlab [18] code for the algorithm. If the distance is below a certain threshold,
the object is classified as normal, and if the distance is exceeded, the object is classified as
anomalous. Anomalous training data is not used because for real applications, anomalous data
may be scarce. A problem exists about where to put the threshold since the training set does
not include sequences from the anomalous class. A threshold can be derived statistically from
the leave-one-out data, or by creating simulated anomalous statistics. For this expeﬁment,
I borrowed anomalous data from the other data set (a different orbit), to approximate using

anomalous data from different satellites.

34.2 The Sequence Approach. Another approach was tested which measures
how well the test trajectory matches the sequence of the nearest training trajectory. This is
accomplished by first selecting the best training trajectory based on the distance approach then
checking how well the test trajectory follows the sequence. If the sequence matches within
a certain limit, then the class is normal. A simple sequence test was developed that works
well. The actual sequence is subtracted from an ideal sequence, then the standard deviation
of the result is used for classification. If this value is below a certain threshold the sequence

is classified as normal. If the value is above this threshold, the class is considered anomalous.

Another sequence approach was tested where the feature space distance was ignored

and the lowest sequence test value was used, but this idea was abandoned because of poor

results.
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Both the distance approach and sequence approach were tested with the following six

feature types:

Feature type DC Normalization Vector length
16 wedge Fourier features yes Energy 17

8 wedge Fourier features  yes Energy 9

8 wedge Fourier features no  Energy 8

Block Fourier features yes None 18

Block Fourier features yes Statistical 18

Block Fourier features yes Energy 18

Non-normalized wedge features were initially considered but abandoned because of poor

results.

3.5 HMM

The HMM algorithm can be implemented many different ways. Any number of states
or mixtures per state can be used, only limited by the number of free parameters. This
research tests 1, 2, 5, and 10 state ergodic models, and 2, 5, 10 and 15 state left-right models.
Continuous observation distributions are used with both one and four Gaussian mixtures. For
the first data set, the best wedge features and block features from the FST NN experiment are
tested using all sixteen HMMs. For the second data set, only the two best ergodic and two

best left-right models are tested using both wedge and block features.

The HTK software [4] was used for this experiment. This requires the user to build a
prototype file of initial states and transition probabilities. The initialization algorithm clusters
the training data using k-means, then finds the best states and transition probabilities. The
Viterbi algorithm then finds the best states for the test data. The Baum-Welch algorithm
reestimates the model parameters. For the left-right model, the user also had to choose
whether a state can be skipped. Two different starting conditions are tested (appendix -

sample prototype files for the HMM).
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3.6 Classification Threshold

After the FST NN or HMM is trained, a classification threshold must be determined. An
ideal threshold would be found by testing much data from each class and selecting a threshold
that minimizes the number of missed classifications. This is impractical for space object
identification because anomalous data will probably not be available for training. Therefore,
the threshold must be derived from the normal data in the training set or borrowed from a set

where anomalous data exists.

Four methods are considered: (1) A threshold can be derived statistically from the
training data by leave-one-out tests. This approach is not perfect because there is a gap left in
the training set from the sequence being tested, and therefore the mean would be a better basis
for a threshold than the maximum. (2) One method of creating anomalous data is to borrow
anomalous data from another data set (a different orbit or different satellite). This is called the
borrowed anomalous method. (3) Another way to create anomalous data is to mix the data
from the training set (example, take the first image from the first sequence, the second from the
second sequence, etc). This is called the mix-up method. (4) For the FST NN sequence test,
anomalous statistics can be created by forcing the test sequence to match up with a training
sequence that is not close in feature space. This is the forced mismatch method. For the
anomalous methods (methods 2, 3, and 4), the threshold is based on the minimum value. Any
of these thresholds can be adjusted up or down depending on whether one wants to increase

the probability of false alarms or missed anomalies.
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1IV. Results

This chapter presents the results of the FST NN and HMM satellite anomaly detection
tests with a full analysis. Each of the first four major sections covers the results for specific
data sets, and the subsections cover the results by algorithm. All results are displayed in a
similar style so comparisons are easily made. Two types of graphs are used: one shows the
distribution of actual result values for each class; the other is a receiver operating characteristic
(ROC) graph, showing probability of false alarms (Pr4) versus the probability of anomaly

-detection (Pp). The ROC graphs and distributions show the type of results that are possible.
Actual classification results depend on the selection of an appropriate threshold. The fifth
section of this chapter covers the selection of a classification threshold and the last section

summarizes the results.

4.1 Anomaly Detection Tests on the First Data Set

The first data set as described on page 17 includes 50 training sequences and 50 test

sequences. Of the 50 test sequences, 20 are normal and 30 are anomalous.

4.1.1 FST NN. The FST NN anomaly detection tests were successful. Of the
combinations tested, the best results were achieved by the non-normalized block features

using the sequence test. (Figures 19 and 20).

Comparing block Fourier features to wedge Fourier features, there does not appear to
be an advantage to either feature set. Eight wedge features outperformed 16 wedge features
and adding a dc feature did not improve performance. Energy normalized wedge features
performed better than non-normalized or statistically normalized wedge features. This is good
since energy normalized wedge features have the benefit of being scale and intensity invariant.

For this data set there is little difference between the distance test and the sequence test.

4.12 HMM. For this data set, the HMM algorithm does not achieve the high

accuracy rates of the FST NN. Of the features tested, the eight wedge Fourier features worked
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8 wedge & dc, distance test
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8 wedge & no dc, distance test
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8 wedge & no dc, sequence test

50 100
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Figure 19. FST NN results on first data set using energy normalized wedge Fourier features.
(note: PD = probability of detection, PFA = probability of false alarm)




non-normalized block features, distance test non-normalized block features, sequence test
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PFA PFA
statical normalized block, distance test statistical normalized block, sequence test
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energy normalized block, distance test energy normalized block, sequence test
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PFA PFA

Figure 20. FST NN results on first data set using block Fourier features.
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best. Of the types of models tested, the one or two state models performed poorly, the five
state model was a little better and the ten state model performed best. A fifteen state left-right
model was found to perform slightly below the 10 state model, and more than one Gaussian
mixture always improved performance. A four Gaussian mixture was attempted for each case
but when the feature vector was large, or many states were used, the algorithm would not
work; so a two mixture model was used in those cases. For the 10 state models, a general

trend is observed that ergodic models perform better than left-right models (Figures 21 and
22).

Comparing the various features, the energy normalized features seem to work better.
The energy normalized block feature results are shown compared to other block features
(Figures 23, 24, and 25). The size of the feature vector has a significant impact on HMMs.
The Viterbi algorithm does not work when there are too many free parameters. A shorter
feature vector will work with less training data, but a longer feature vector requires more
training data. An example of this is that four mixture models could not be used with the 18
length block features except for the two state left-right model and one state model; but with

the 8 wedge feature vector, four mixtures worked on all left-right models tested.

4.1.3 Observations.  For the first data set, the sequence test with non-normalized
block features performed best. This was the only test capable of 100% correct classification.
However, the energy normalized 8 wedge Fourier features with the FST NN distance test
performed well with a much quicker calculation time. The 8 point wedge feature vectors also

take less storage than the 18 point block feature vectors.

4.2  Anomaly Detection Tests on the Second Data Set

The second data set was designed to increase classification accuracy. Using only
descending passes helps the distance test because there is not the possibility of a test sequence

matching up with a training sequence that moves in the opposite direction. Also the image
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Figure 21. HMM results on first data set using energy normalized 8 wedge Fourier features.
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Figure 22. More HMM results on first data set using energy normalized 8 wedge Fourier

features.
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Figure 23. HMM results for non-normalized block features.
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Figure 24. HMM results for statistically-normalized block features.
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Figure 25. HMM results for energy-normalized block features.

sample spacing was reduced so there is less ‘jump’ between frames and the space between

adjacent sequences is reduced to decrease the difference in aspect between adjacent sequences.

4.2.1 FST NN. The FST NN anomaly detection tests were successful. Of the
combinations tested, the best results were achieved by the distance test. The receiver operating

characteristic graphs show that 100% detection is possible in every feature space tested.

(Figures 26 and 27).

Comparing block Fourier features to wedge Fourier features, there does not appear to
be an advantage to either feature set. Eight wedge features outperformed 16 wedge features

in the sequence test and using a dc feature did not improve performance.

422 HMM.  For the second data set, the HMM algorithm performs much better
than with the first data set. Of the features tested, the block Fourier features worked best
(Figures 28 and 29). Of the types of models tested, the one or two state models performed
poorly, but the five state model in some cases performs better than the ten state model. The
ten and fifteen state left-right models did not perform as well as the ten state ergodic model,

and multiple Gaussian mixtures always improved performance compared to single Gaussian
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Figure 26. FST NN results on second data set using energy normalized wedge Fourier

features.
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Figure 27. FST NN results on second data set using block Fourier features.




states. A four Gaussian mixture was attempted for each case but in some cases the algorithm
would not work due to insufficient data. In these cases two or three Gaussian mixtures were

tried. Ergodic models did not work with the energy normalized block features.

4.2.3 Observations. For the second data set the choice of the best algorithm would
be a toss up between FST NN and HMM because both are capable of perfect classification.
In this experiment, the HMM computes faster, but it is not a fair compaﬁson because the FST

NN is run in Matlab.

4.3 Anomaly Detection Tests with Noisy Test Set (K=100,000)

Shot noise is added to the second data set. The experiments test performance when
noise is added to the test data. Adding shot noise had the side-effect of lowering the overall
intensity of the images. This is good as it will show how well these algorithms handle the
realistic possibility of different intensity levels in the training and test data. The real data
provided by AMOS show a definite difference in intensity between various image sequences

of the same object.

43.1 FST NN. The FST NN is successful testing noisy data with clean training
data. For this problem, feature normalization is found to be important. Energy normalized
features are most successful. The non-normalized and statistically normalized block features
which performed well on the original data, perform poorly on this data set (probably a result
of the lower intensity level of the noisy data). Of the combinations tested, wedge features
performed best on the distance test but the energy normalized block features performed best

with the sequence test. (Figures 30 and 31).

Comparing block Fourier features to wedge Fourier features, there does not appear to be
an advantage to either feature set. For the sequence test, eight wedge features outperformed
sixteen wedge features and adding a dc feature did not improve performance. The eight wedge
features probably performed better because the larger wedge averages out the variations caused

by the noise, and the higher resolution of 16 wedges is not required. Although the receiver
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Figure 28. HMM results on second data set using energy normalized wedge Fourier features.
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Figure 29. HMM results on second data set using block Fourier features.
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Figure 30. FST NN results on noisy test data (K=100,000) using clean training data and
energy normalized wedge Fourier features.
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Figure 31. FST NN results on noisy test data (K=100,000) using clean training data and

block Fourier features.
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operating characteristic graphs look the same, the results using wedge features with noisy data
were different from the results using original data, but the energy normalized block features

produced the same results in both noisy and original data sets (Figure 32). Tests with increased

shot noise (K=15,000) showed similar results.

clean data, 8 wedge features

noisy data, 8 wedge features

N

0.8}
X normal
0.6}|© anomalgus
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0.2t
0
-2 0 2 4 6 0 1 2 3
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Figure 32. FST NN results on clean versus noisy (K=100,000) test data set using energy

normalized features and distance test. The block feature results are practically
the same whether clean or noisy test data is used.

432 HMM. Some unexpected results were discovered when testing noisy data
with the HMM. For the tests using clean data, the ergodic models usually performed equal or
better than left-right models, but for the noisy data the left-right models worked much better
(Figures 33 and 34). All features tested had similar performance.

The distribution of the results of this test were interesting. The 8 wedge feature space

had one anomalous class outlier, but the 8 wedge with dc feature space had one normal class
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Figure 33. HMM results on noisy (K=100,000) data set.
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Figure 34. HMM results on noisy (K=100,000) data set using energy normalized block
features.

outlier (Figure 35). For the non-normalized and statistically normalized block features, the

distributions show there is a large difference between the training and test sets (Figure 36).

4.3.3 Using Noisy data in Training Set. One would expect that the results on
noisy test data would improve if noisy training data are used (K=100,000 for all results in this
section). Results show there is not much difference when using energy normalized features
(Figures 37, 38, and 39). The features that are not energy normalized perform much worse
with clean training data because of the difference in intensity levels between clean data and

noisy data (Figures 40).

434 Observations.  Overall, the FST NN distance test had the least degradation
when noisy data are introduced. The energy normalized features perform best because they
are intensity invariant. The 8 wedge Fourier features are the best choice for computational

efficiency.
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Figure 39. Comparison of FST NN results on noisy (K=100,000) vs clean training data with
energy normalized block features.
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Figure 40. Comparison of FST NN results on noisy (K=100,000) vs clean training data with
non-normalized block features.
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44 Anomaly Detection Tests on Noisy Test Set (K=15,000)

The previous sections show that some options are not worth pursuing. Table 1 summa-
rizes the options that are and are not evaluated in this section. Non-energy normalized features
are not considered because of their poor performance on tests where the noise levels differ
between training and test sets. Histogram equalization would compensate for this problem
but is not used because it is much more efficient to energy normalize a feature vector than to

process an entire image.

Table 1. Summary of results from previous sections

Combinations eliminated from consideration

Classifier | Feature Why

HMM all For each feature tested so far, the FST NN performed equal
or better

FST NN | stat- and non- ‘When noise level differs between test and train,

both normalized block | performance is terrible

FSTNN | wedge Pr 4 exceeds 25% when Pp is 100%

sequence

Remaining combinations

FSTNN | Energy normalized features (wedge and block)
distance

FSTNN | Energy normalized block features
sequence

44.1 Tests With Training Set Noise of K=100,000. All remaining combinations
achieve the same ROC graph results as they do at lower noise levels. The distance test
with wedge features, and sequence test with energy normalized block features achieve perfect
separation and the distance test with energy normalized block features gets one false alarm

(4% Pr 4) with 100% anomaly detection (Pp) — the same ROC as shown in figure 39.
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442 Tests With Training Set Noise of K=15,000.  With a noise level of K=15,000
in the test and training sets, the class separation performance decreases slightly for all combi-

nations except the energy normalized block features which remains at 100% Pp and 4% Pr 4

as in figure 39.

4.5 Classification Thresholds

The ROC graphs show that the FST NN with energy normalized features can separate
the classes. The difference in capability between wedge and block features is found when
applying the classification threshold or decision boundary. Four methods are tested and results
are summarized in tables 2, 3, and 4. The wedge features are all energy normalized and produce

similar results, so the comparisons in this chapter use 16 wedge (with dc) to represent the

wedge features.

Table 2. Threshold results for FST NN distance test with 16 wedge + dc Fourier features

(Pp/ Pr 4 in percent))

-Threshold type | DataSet1 | DataSet2 | DS2, DS2, DS2, DS2,

DS1) DS2) clean trn, K=100,000 trn, | K=100,000trn, | K=15,000 trn

K=100,000test | K=100,000test | K=15,000 test K=15,000 test

borrowed 97/10 100/4 100/0 91/0 39/0 0/0
mix-up 76 /0 100/0 100/0 100/9 100/30 100/9
mismatch N/A N/A N/A N/A N/A N/A
leave-one 90/0 100/0 {100/0 97/0 97/0 93/0

Table 3. Threshold results for FST NN distance test with energy normalized block Fourier

features (Pp/ Pr 4 in percent)

Threshold type

DataSet1 | DataSet2 | DS2, DS2, DS2, DS2,
(DS1) DS2) clean tmn, K=100,000 trn, | K=100,000trn, | K=15,000 tm
K=100,000test | K=100,000test | K=15,000test | K=15,000 test
borrowed 100/5 100/13 | 100/13 100/13 100/13 100/13
mix-up 70/0 9/0 96/0 9 /0 9 /4 9 /4
mismatch N/A N/A N/A N/A N/A N/A
leave-one 100/5 {100/13 | 100/13 100/13 100/13 100/13
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Table 4. Threshold results for FST NN sequence test with energy normalized block Fourier

features (Pp/ P4 in percent))

Threshold type | DataSet 1 | DataSet2 | DS2, DS2, DS2, DS2,
DS1) (DS2) clean trn, K=100,000 trn, | K=100,000trn, | K=15,000 trn
K=100,000test | K=100,000test | K=15,000test | K=15,000 test
borrowed 90/0 9 /0 96/0 9% /0 100/4 9/0
mix-up 90/0 65/0 65/0 65/0 65/0 78/0
mismatch 97/10 |91/0 91/0 91/0 91/0 91/0
leave-one 97/10 |100/4 }100/4 100/4 100/4 100/4

4.5.1 Borrowed Anomalous Method.  This approach assumes that anomalous data
can be acquired from another data set. Anomalous data from the first data set is used to find
a threshold for the second data set, and vice versa. This works well on clean data but does
not work well on the wedge features with noisy data. The results on energy normalized block
features, however, are not degraded by shot noise. The results are shown with a threshold
at 90% of the minimum value of the borrowed anomalous results. This method produces a

fairly consistent threshold for the block features but it degrades with noise when using wedge

features.

4.5.2 Mix-Up Method. Another approach is to make anomalous sequences by
mixing feature vectors from various training sequences. This method worked pretty well
and it also has the advantage of not requiring any data outside the training set. Once again
the energy normalized block features are not degraded as much as the wedge features. This

method is consistent across noise levels, but inconsistent between data sets one and two.

45.3 Forced Mismatch Method. A third approach, that only applies to the sequence
test (not possible with the distance test), is to force a mismatch within the training set then use
the resulting sequence statistics as anomalous data. This method worked pretty well on energy
normalized block features and it also has the advantage of not requiring any data outside the
training set. This method is consistent across data sets and noise levels, but only works with

the sequence test.
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454 Leave-One-Out Method. A fourth approach is based strictly on normal train-
ing data and uses the mean times 1.3 of leave-one-out results for the classification threshold.
This method worked pretty well and it also has the advantage of not requiring any data outside
the training set. With this threshold, the wedge features and energy normalized block features
performed well. This method produces consistent results across both data sets and the various

noise levels. It works well on the distance test as well as the sequence test.

4.5.5 Summary of Threshold Tests. ~ The leave-one-out method produces the best
results across both data sets and the various noise levels. It works on wedge features as well
as block features and on the distance test as well as the sequence test. The block features do
not degrade as noise levels are increased. However, it is not perfect. Data set one has a higher
level of missed anomalies and data set two has a higher level of false alarms. This indicates

that the leave-one-out threshold is sensitive to the spacing of the data in the training set.

4.6 Summary of Results

The winner is — FST NN sequence test with energy normalized block Fourier features

using leave-one-out threshold method.

There are trade-offs with this decision, however. The sequence test requires each
sequence of images to be the same length with the same time between frames, but the distance
test does not have this restriction. The block features are not scale invariant, so the wedge
features would be preferable in cases where scale invariance is required. Also, if varying noise
levels are not a problem, the 8 wedge features will compute much faster because the feature

vector is less than half the length of the block feature vectors.
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V. Conclusion and Recommendations

5.1 Conclusions

The basic findings of this research are:

e The FST NN performs as well or better than the HMM in all tests.

¢ Energy normalization performs much better when noise level is not consistent (varying

image intensity levels was probably the reason)

e The leave-one-out derived threshold works well on distance and sequence tests, and

across the various data sets and noise levels.

¢ Both wedge and block Fourier features can separate the data into classes, but results are

more consistent with energy normalized block features as the noise level increases.

The FST NN sequence test with energy normalized block Fourier features using leave-
one-out threshold method produced the best consistent results across the data sets and noise
levels (100% Pp / 4% Pr4, data set 2, all noise levels). The most important advantage of
the FST NN is performance. This is most evident in the first data set and the noisy data sets.
The energy normalized features have a definite advantage when classifying a test set where
the noise level is different from the training set. There are some limitations imposed by this
decision, however. The sequence test requires each sequence of images to be the same length

with the same time between frames and block features are not scale invariant.

In addition to accuracy, another consideration that favors the FST NN over the HMM is
simplicity. For the FST NN, the only decision to be made is where to place the classification
threshold and this can be determined from the training data using leave-one-out or simulated
anomalous data. The operator can adjust this value according to the relative importance of
missed detections versus false alarms. The HMM, on the other hand, requires a determination
of what type of model would work best. If too many states or mixtures are used, the algorithm

will not work, but if too few states or mixtures are used, the classification accuracy will suffer.
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The best model depends on the type of data being evaluated, so new applications would require

some experimentation to find the best model.

If operational flexibility is important, the FST NN distance test with wedge features is

the best choice. The results at lower noise levels are excellent. The energy normalized wedge

features perform well on clean data (100% Pp / 0% Pr 4, data set 2) but degrade slightly as
noise is added. The 8 wedge features compute much faster because the feature vector is less
than half the length of the block feature vector, and wedge features are scale invariant. Also,
the distance test is more flexible because it does not require a fixed number of images per
sequence or a fixed interval between images as the sequence requires. However, for a problem
where the sequence of images may appear in reverse order, the distance test would not detect

this difference, and the sequence test would be more appropriate.

The FST NN is a very effective algorithm for spatio-temporal pattern recognition. On
the more difficult first data set, the FST NN achieved 100% anomaly detection with one false
alarm (5%) using block features. On the second data set the FST NN achieved a perfect
100% anomaly detection with no false alarms using wedge features. The FST NN is simple to
implement and does not require iterative training or hidden layers like other neural nets. The
HMM is also an effective algorithm for spatio-temporal pattern recognition, but it is not as
accurate as the FST NN for the SOI problem. Also, it is more difficult to implement, requiring
more choices to find the optimal model (number of states, ergodic versus left-right, and initial

weights must be selected).

5.2 Possible applications of this research

The nadir pointing sun-synchronous satellites, as shown in this thesis, are well suited
for pattern recognition because the illumination is consistent for a given aspect view. Geosyn-
chronous satellites are also well suited for pattern recognition since the azimuth and elevation
remain basically constant, but the training data would need to cover a full year to cover the
full range of illumination conditions. Other SOI problems, where the aspect view and illumi-

nation change in a predictable manner, could also be approached with spatio-temporal pattern
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recognition. Satellites that are highly maneuverable or change configurations in an irregular

manner would not be good candidates for these algorithms.

5.3 Bottom Line

Many pattern recognition gurus are looking for more complex ways to build classifiers.
I am glad that Neiberg and Casasent developed the FST NN. This proves that sometimes a
new and better method is less complex than the old. The FST NN is an effective algorithm for
spatio-temporal pattern recognition. It is simple to implement and does not require iterative
training or hidden layers like other neural nets. It does not require selecting the best model or

Gaussian mixtures like HMMs. Is it a real neural net? Maybe not, but it works.
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Appendix A. FST NN Distance Calculations

Each image sequence is represented as a trajectory in feature space. Each vertex in a

trajectory represents an image.
each sequence in training set = trajectory = X

each image in training sequence —> vertez = ;

For each trajectory being tested, the closest training trajectory must be found. The
test trajectory distance is the sum of the distance from each vertex of the test trajectory, to

the nearest part of the training trajectory (Figure 41). Each trajectory being tested must be
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Figure 41. Example of distance from test trajectory to training trajectory (sum of dotted
lines).

compared to all trajectories in the database to find the closest one.

Each segment of the trajectory is represented by a length /; and direction v;.

li = ||lzips — il
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vi = (Tip1 — )/l

The inner products are also needed for distance calculations. The inner products are denoted
by c.

Cii+1l = &i* il
All calculations so far are based only on the training set. These are computed in advance.

Now we will consider the sequence being tested. Each test sequence will be represented

as a trajectory denoted as P with the vertexes denoted as p.
sequence to be tested = trajectory = P

each image in test sequence =— vertexr = p;

Let u denote the vector from z to p. The point p projects onto the segment v at p’ (Figure 42).

Let o denote the position of p’ on the vector v.
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If o is negative, the point p’ does not fall on the segment and the distance is calculated from

pto z.

d=||z; - p|

If o is positive but less than [, then p’ falls on the segment and the distance is calculated from
pto p'.
d=|p-7|

& =|p-p|

E=@p-p)(p-7p)

P=@—{0-Dmt T o)) {(1- P+ Fo))
v

d2 = (p - ary — b.’lfz) . (p— ary — bxz)
d=p-p—ap-x,—bp-z3—ap-z +a’zy -z +abzy -z —bp- g+ abxy - Ty + b2y - 2o
> =p-p—2ap-x;—2bp-zy + a®zy - 21 + 2abzy - T2 + B2y - 2

Using the precalculated inner products.
d*=p-p—2ap- 2, — 2bp - w2 + azcl,l + 2abcy 2 + b202,2

But if o is larger than [, p’ does not fall on the segment and the closest part of this segment is

the endpoint which will be considered with the next segment.

Check each segment of the trajectory keeping the minimum distance value. Note the

segment of the trajectory with the minimum distance because this holds aspect information.

Repeat the process for each point of the test trajectory. The sum distance (Figure 41) is
found to each trajectory of the training set. The closest one determines the class. The segment

of the training trajectory where each distance projection falls holds the aspect information.
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Appendix B. Feature Space Trajectory (FST) Neural Network (NN) User’s
Manual

B.1 Introduction

This manual applies to the FST NN algorithm written by Gary W. Brandstrom as
installed on the MHPCC. This algorithm is designed to run in Matlab version 4.2c, and Unix,
but may work on other Matlab versions as well. The user must have a basic knowledge of

Matlab and know how to start a Matlab script or function.

This FST NN is designed to detect satellite anomalies from image sequences. The
algorithm is designed for low Earth satellites in sun-synchronous orbits. The image sequences
must contain the same number of frames and have the same time between frames. Also the

images must be collected in a consistent manner (i.e., highest part of pass, same telescope

mount and swivel).

B.2  Setup

All the data and Matlab m-files are in a directory named FSTNN*, The ‘*’ represents a
satellite identification code to identify which satellite data occupies the FSTNN* directory and
it can be a number or a name (Figure 43). Some Matlab m-files not directly executed by the
user are located in the user’s mat lab directory. One FSTNN* directory contains a database of
image sequences of one particular satellite, and is designed to test new image sequences of
that satellite. If another satellite is to be tested, the FSTNN* directory and all subdirectories

must be copied and loaded with the new image sequence database.

The database must be loaded with images. These must be in a Matlab readable format,
Tiff files (uncompressed or with packbits compression), or Khoros files can be converted using
tconvert.mor kconvert .m. These scripts can be modified to convert GIF, PCX, or BMP
images to Matlab format. Binary files or unix commands can be added to and executed from

the Matlab scripts if the user needs to convert images from other formats.
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User’s home directory

matlab

FSTNN1
data
features td101
td102
td103
etc.

Figure 43. Directory structure for the Matlab FST NN.

B.3 FST NN Procedure

The procedure is broken down into two major parts — training and testing. Training

is performed in advance, and takes some time and effort. Testing is a one step process and is

very quick and easy.

B3.1 Training.

1. Load the normal image sequences (training set) into the database. — Place the

images for each sequence in a numbered data/td* subdirectory. The tconvert.m

script will convert tiff images and kconvert .m script will convert khoros images to

Matlab format. Run these conversion scripts from the data/td* directory where the

images are located. The tiff images must have sequentially numbered filenames. After

starting Matlab, type ’help kconvert’ or ’help tconvert’ for assistance. The matlab file

will be called mot ion.mat with the variables ‘F1, F2, F3, ...’ for each image.
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2. Get features from the training set images. — Run the t features.m script. This
is a batch job and the number of the first and last directory of the training set must be

entered, with a text editor, before running this script.

3. Train the FST NN. —Run train.m. This file must be edited to set the number of the
first and last directory in the training set. These are the variables *1o” and *hi’. This
is a batch job that must include all the training database sequences. The script is set

up to perform the FST NN distance test using 8 wedge features and the leave-one-out

classification threshold.

Option: The code for the sequence test is in the script but commented out. If the user
wishes to implement the sequence test, each training and test sequence must have a

consistent number of images.

Option: A map can be displayed that geographically shows the passes in the training
set. This is so the user can determine if there are significant gaps in the training
database. In order for this option to be used the following information must be included
in a file named data/td*/motion.out: latitude, longitude, TGT lat. The latitude
and longitude numbers must be the first two fields on the line and the text ‘TGT lat’ can
occur anywhere on the line. For example,

4543 2053 TGTlat TGT lon

The map is then saved to a file named map . eps.
B.3.2 Testing.

1. Load the image sequence to be tested into the database. — Place the image sequence

in a directory numbered ‘td201” or higher. Convert to matlab format if necessary.

2. Test the image sequence — Run fstnn.m. You will be prompted for the three digit
number for the directory where the test image sequence is stored. Classification results

will be displayed.
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3. Interpret the results — The results not only give the normal/anomalous classification,
but also show how close the results are to the threshold. If the option is enabled and the
motion.out files exist, a map is displayed showing where the test pass is located with
respect to the training passes. If it falls in a large gap, there is a good chance of being

incorrectly classified as an anomalous pass.

B4 Files and directories used:

e Directory

— Filename— Description

e matlab

— dupstop.m — This function eliminates duplication in features as they are re-
trieved. This is necessary because the £st _t rn.mfunction will not run if duplicate

features exist in a sequence.

— fst_trn.m — This function takes the features from the training set and pre-

calculates some of the values that will be used in fstnn.m.
- fst_tst.m— This function performs the FST NN distance calculations.

— fst_tst2.m — This function performs the FST NN distance calculation on the

closest trajectory and returns the sequence information.
- tconvert .m— This function converts images from tiff to matlab

- wedge.m — This m-file calculates the 8 wedge feature vector. The 2D DFT is
calculated, the values for the 8 wedges are obtained, then the feature vector is

energy normalized.

e FSTNN*

- fstnn.m— This is the basic FST NN algorithm that tests an image sequence and

classifies it as normal or anomalous.

68



tconvert .m— Converts a sequence of images from tiff to matlab format.

kconvert .m— Converts a sequence of images from khoros viff to matlab format.

pfeature.m— Calculates features for test set. Can work in batch or one image

sequence at a time.

tfeatures.m — Calculates features for training set. Can work in batch or one

image sequence at a time.

train.m— A batch training algorithm. Loops through the training feature data,
executes £st_trn.m, and calculates thresholds for the distance and sequence tests.
If latitude and longitude information is available, a plot of the satellite passes can

be produced.

e FSTNN*/data/td### — these are the directories where all the image sequences are
stored. Each sequence is in a separate directory named “/t d###” where the numbers
are sequential for the training set (known normal sequences) starting with 101. For the
test set, the numbers start with 201 and do not need to be sequential unless a batch of data

is tested simultaneously. The file containing the image sequence is called mot ion .mat.

e FSTNN*/data/features — this directory holds the training and test set feature vec-
tors. Each training sequence is named T+### .mat and each test set is named P### .mat.

The numbers correspond to an image sequence from t d### with the same number.

e FSTNN*/data/wedg8.mat — this file holds the template for the 8 wedge features.

B.5 Matlab m-files (alphabetical)

¢ compress.m

G A EE AR A AR AR R R R L PR LR T TR L

%
% The script file is ../matlab/compress.m

This script will compress images by making each pixel value an integer.
% The images must be in variables F1, F2, etc., and the variable ’'n’ has
% the number of images. This script doesn’t load or save.
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f T*T’, where VIPs are held

1X 0

inner product matx
matrix where each row represents a segment between

c =
v =

o® of of of

points on a trajectory
len= length of segment between points on a trajectory

o® o° o o

%% -- to train fstnn

=fst trn (T)

[c,v, len]

function

in trajectory,

in

ts (samples)

in

% s = number of poi

.
!

(T)

size
% dim = length of feature vector

[s,dim]

T*T’ ;

Cc=

=1l:s-1,

for i

(x2-x1)

is

% this

temp=T (i+1, :) =T (i, :);
v{i, :)=temp/sqrt (temp*temp’)

.
2

is |[x2-x1]|

% this

sqrt (temp*temp’) ;

len(i)

end

o fst_tst.m

../matlab/fst tst.m

le is

fi

The function
usage

%

fst tst (c,;,len,T,P,ss)
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here each row represents a feature vector

a matrix w

len= length of segment between points on a trajectory
from a known
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image sequence.
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a matrix where each row represents a feature vector

P
from a unknown

o

image sequence.
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0.0 000000 000000000 Q 0000000 00000000000000600000000 000000

i T e L R R L L PR PR R PR R L R L L L e R TR
.

function [D,Pp] = fst tst (c,v,len,T,P,ss)

[s,dim]=size(T); % s = number of points (samples) in trajectory,
% dim = length of feature vector
Pptemp = zeros(s,dim); $%$initialize matrix

for n=1:ss, % 1:s loop once for each test point (P)
u=T(1l,:)~P(n,:); % distance of nth test point to first point of trajectory
d(n,1)=sqrt (u*u’);
Pptemp (1, :)=T(1,:); %% Pptemp is P prime

%%% next find distance of nth test point to each segment
ef=T*P’; %% e is (i,n) and f is (i+l,n)

for i=l:s-1; % for each segment
u=P(n, :)-T(i,:);
alpha=u*v(i,:)’;

if alpha<=0,
d(n, i+1)=realmax; %realmax;

elseif alpha>len(i),
temp=P(n, :)-T(i+l,:); %% new temp is (P-x2)
d(n, i+1l)=sqrt (temp*temp’) ;
Pptemp (i+1l, :)=T(i+1,:);

else,
a=l-alpha/len(i);
b=alpha/len (i) ;
d(n,i+1)=P(n, :)*P(n, :)’ - 2*a*ef(i,n) - 2*b*ef(i+l,n)

+ 2*a*b*c(i,i+l) + a*a*c(i,i) + b*b*c(i+l,i+l);

d(n,it+l)=sqrt(d{n,i+1));
Pptemp (i+l, :)=a*T (i, :) +b*T (i+1,:);

end

end

7 oo

[D(n),ind]=min{d(n,:)); % min distance from P to trajectory
Pp(n, :)=Pptemp(ind, :); % point on traj corresp to min dist
end

Q0 Q09 000000000 Q 00000000000060600 0000000002000 000000000
R R R T e R R R R LR R R PR R R R PR R L L
fst_tst2.m

090 000 09000 9 000 0.0 000000000, 0000004000 0000000000000000090

T R R R R L LR R R PR E L LR T LT A

o . . .

% The function file is ../matlab/fst tst2.m

Q —

% usage [s,D,Pp,d] = fst tst2 (c,v,len,T,P,ss)

% This is the same as fst_tst.m except it returns sequence info

00000000 0.0000 0000 L) ] 0.0.000000000040 0.0 0.0 Q
FITLIVLLL5%55%%%%%% variables in 3%%%%%%%%%%%%5959%%%%%%
Q
%
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(9]
I

inner product matrix of T*T’, where VIPs are held

v = matrix where each row represents a segment between
points on a trajectory

len= length of segment between points on a trajectory

T = a matrix where each row represents a feature vector
from a known image sequence.

P = a matrix where each row represents a feature vector
from a unknown image sequence.

d° OC OF 0 Jd° A° O I o O o° o° of
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the number of images in a sequence

number in training sequence
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: 0000 o 00000000000
variables out %%%%%%%%%%%%%%%%%%%%

D = vector representing distance from each point of P to
the trajectory

o¢ o° o° o° de

Pp = nearest point on trajectory where each point P projects

oe

% S = vector representing sequence of line segment projections %*
%

$this version is just run for the winning trajectory

%$added lines identified by %*

5355525555 2555553 5500550055 03%5539553338895%999%599%%%99%%%

function [S,D,Pp,d] = fst tst2 (c,v,len,T,P,ss)

[s,dim]=size(T); % s = number of points (samples) in trajectory,
% dim = length of feature vector
Pptemp=zeros (s,dim); $initialize

for n=1:ss8, % loop once for each test point
u=T(1,:)-P(n,:); % distance of nth test point to first point of trajectory
d(n,1)=sqrt (u*u’);
Pptemp(l,:)=T(1,:); %% Pptemp is P prime

$%% now find distance of nth test point to each segment
ef=T*P’; %% e is (i,n) and f is (i+1,n)
for i=l:s-1; % for each segment
u=P(n, :)-T(i,:);
alpha=u*v(i,:)’;

if alpha<=0,
d(n, itl)=realmax; %realmax;
elseif alpha>len(i),
temp=P (n, :)-T(i+l,:); %% new temp is (P-x2)
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d(n,i+1)=sqrt (temp*temp’);
Pptemp (i+1, :) =T (i+1, :);
else,
a=l-alpha/len(i);
b=alpha/len(i);
d(n,i+l)=P(n, :)*P(n,:)’ - 2*a*ef(i,n) - 2*b*ef(i+i,n),...
+ 2*a*b*c(i,i+l) + a*a*c(i,i) + b*b*c(i+l,i+l);
d(n,i+l)=sqrt(d(n,i+1));
Pptemp (i+l, :)=a*T (i, :) +b*T(i+1,:);
end
end

[D(n),ind]=min(d(n,:)); % min distance from P to trajectory

Pp(n,:)=Pptemp(ind, :); % point on traj corresp to min dist
S(n)=ind; % segment where Pp projects FrAE KKK

% The script file is ./fstnn.

m
% This is the feature space trajectory neural net (fstnn) algorithm
% that tests an image sequence and classifies it as normal or anomalous.
% Before this script is executed, features must be available
% in directory ’data/features’ and training must have been
% accomplished.
% THIS IS SET UP FOR THE FST NN DISTANCE TEST WITH LEAVE-ONE-OUT THRESHOLD.
% Sequence test may be implemented by changeing this and train.m
% this script calls the functions ’fst tst.m’ and ’fst tst2.m’
BT AR LLLLLLTLLLS52%5%%%%
clear
cd data

load range % this tells the algorithm what is the range of training image directories
cd features

[What sequence would you like to test?’]

j = input ('Enter the three digit number --- 7);

eval([’load P’ int2str(j)]) % load test sequence, features in matrix P
[ss,dim]=size(P); % each row of P represents an image feature vector

eval([’load T' int2str(i)]) % this loads trained data, that was stored in
% files T1, T2,... each with variables T,c,v,& len that will run
% against the test sequence P
[D,Pp}] = fst_tst (c,v,len,T,P,ss); GRK Ak
Dist (i-100)=mean(D); % this variable will hold total distance to each training
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end % sequence

[cDist,k]=min(Dist); % this will find which trajectory was closest

$%%%%% this stores the distance ***%
results={results;cDist];

% now a decision must be made on whether these numbers are acceptable
end

o0

oe
de
o
4
oe
oe
e
o°
oe
o
oe
e
o°
o°
oe
oe
o°
de
oe
e
e
e
oe
o
o
oe
o°
e
o
o
de
o°
e
oe

this section runs the sequence test. If sequences are various lengths
comment out the following lines

P d° o° o

a9 o o

% Reload that trajectory to test sequential match
$eval ([’ load T’ int2str(k+100)])
%[s,D,Pp,d] = fst_tst2 (c,v,len,T,P,ss); gFhxk%

$%%%%% this stores the sequence ***%
=[Seq; 8] ¢

$best=1:s5; %

$for k=1:length(results),

% Sdif(k,:)=Seq(k, :)-best;

$end

$result2=std(Sdif’); % sequence test results ’'result2’ would be compared
% to SeqSt instead of DistSt

Rt L R R LR L L Rt L L L L T R R

%% this makes results show up

load DistSt

[" KKkKKKkKkKkKkAkKkhkKkhkAkkhkkhkkkkkkkkkkk/ ]

if results < 1.3 * mean(DistSt), % <<<====== MAY ADJUST THE THRESHOLD HERE
text=[’ *x*kkkx*k* Normal **¥*xkkkxk%/ ]

else,

text = [/**%xkx* Anomalous **kkkkkk*/

end

[’*****************************’]

threshold = 1.3 * mean(DistSt)}

results

eval([’save tstrslt’ int2str(j) ’ results text’l)

cd ../..

R R Rt e R R e Lt T et E R E Rt R L L L L T

%% The following section is optional

%% If a map was produced in train.m, then you can produce a

%% map here to help evaluate the results. If the test images come
%% from a gap in the training data, this will show up here.
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e kconvert.m
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¥%%%

script kconvert.m  ***%* to convert khoros movie files to matlab **kkxx

e
oe
o

000 Q 000
$55%%%%%%

e e de o

User must edit the mfile to set up the image filename.
Execute the script in the directory where the khoros file is located.

00000090009080000090000
FEEETILLLLLLLL55%%%%%

ae de

o
o
e
o
oe
oe

8000000000
FEI5REN%%

oe

vconvert -i atn67477_M 0002 -o temp -t "float" -b 0 $<<===EDIT FILENAME HERE
!/apps/Khoros/toolboxes/osutools/bin/viff2mtlb -il temp -o movie.mat ,...
-num_inputs 1

x=gize (movie, 1) ;

clear
load movie

if x==462,

movie=movie (104:359,:);
end
clear x;

%$%%% breakup movie into frames
%%%% assumes images are 128x128
n=length (movie) / 128;

for i=1:n;
j=1%128;

eval (['F’ int2str(i) ' = movie(129:256,3-127:9);"'1);
end

%%%F1 will be variable name for frame 1; F2 for frame 2, ..., etc
clear i j temp movie
save motion

cd .. % back out of dir

end

o pfeature.m

e
N
oe
oe
oae
o
oe
o
e
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o
e
oe
oe
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e
oe
oe
o
o
o°
oe
o
L
oe
oe
de
oe
o
e
oe
o
e
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The script file is ./pfeature.m

This is an algorithm that calculates features for the test set.
It can be used on individual image sequences by setting the low
and hi numbers in the mfile.

de o@ d@ oe de

oe

THE USER MUST SET THE LOW AND HI NUMBERS OF THE IMAGE
DIRECTORIES TO BE PROCESSED BY EDITING THIS MFILE

de P de oe de




el

% How it works:

% 1Images to be processed must be in directories named data/td201,

% td202, td203, ....

% The test data numbers range from 201 to 999 and do not need to be
% used sequentially unless the features are calculated in batch.

% The images should be saved in a file named ‘motion.mat’ with the

% variable names F1l, F2, ..., F20 --- one variable per image.

% The variable 'n’ in motion.mat denotes the number of images in the
$ sequence.

% The calculated features are saved in the directory ’'data/features’
% 1in files P201, P202, etc., matching the file number of the image

% directories (i.e. td201).

%

S R e e R R R L R R R B R R T A T

clear
lo=251 % ————
hi=255 % <<==== SET THESE TO COVER TRAINING SET RANGE!!!!

O —_—

o
e

9000800099000009900080000000000000800008900090600000000000606000
R Rt R R R L R T R R R LR L L LR P LR R L E R LR L P

for i=lo:hi,

dirname=[’data/td’ int2str(i)];

eval([’cd ' dirname])

load motion

cd .. %back to 'data’ dir%

clear x
for k=1l:n, %for each image, get wedge features$%
eval(['F (k, :)=wedge (F’ int2str(k) ’);’1)
eval([’clear F’ int2str(k)])
end

[P]=dupstop (F);

cd features
eval([’save P’ int2str(i} ' P’])
clear PTLI TF

tconvert.m

A R R T L R L R R R PR TR L
%script tconvert.m - ***** to convert tiff files to matlab **¥%xx

%

% User must edit the mfile to set up the image filenames.

% Execute the script in the directory where the tiff files are located.
% This only works with tiff files that are uncompressed or packbits

compressed

.
290008000000 0000906988080000000009000000
R At Rt R AR LR R R L R R L Lt o

o° o
o
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lo=1 3 S ——
hi=20; 3 <<==== SET THESE TO COVER SET RANGE of images!!!!

x=['td81’]; %input(’Name the sat: ’,’s’);%<== EDIT THIS part
% of filename ’td81’ *?
for i=lo:hi,

if i==10, break

end

$ EDIT THIS!! /.p.tif’
eval({’ [F’ int2str(i) ’',mapl=tiffread(’’’ x ’.00’ int2str(i) ’.p.tif’’);’])
end

if i==10,
for i=10:hi
% EDIT THIS!! ’.p.tif’
eval([’ [F’ int2str(i) ’,mapl=tiffread(’’’ x ’.0’ int2str(i) ’.p.tif’’);’])
end
end

clear map 1 xx

$deci % script to decimate image by 1/4 -- saves storage space
clear hi jkw

The script file is ./tfeature.

=]

% This is a batch algorithm that calculates features for the
% training set. It can be used on individual image sequences
% by setting the low and hi numbers in the mfile.

%

% THE USER MUST SET THE LOW AND HI NUMBERS OF THE IMAGE

% DIRECTORIES TO BE PROCESSED BY EDITING THIS MFILE

% How it works:

% Images to be processed must be in directories named data/td101,
$ td102, td103,

% The training data numbers range from 101 to 199 and must be

% wused sequentially. The images should be saved in a file named

$ 'motion.mat’ with the variable names Fl, F2, ..., F20 -—-
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one variable per image. The variable ‘n’ in motion.mat
denotes the number of images in the sequence.
The calculated features are saved in the directory ’'data/features’

e o° oe

% in files T101, T102, etc., matching the file number of the image
% directories (i.e. td101).

%

AR I e R R R R R PR T PP PP

clear

lo=101 §—-- - e e e
hi=105 % <<==== SET THESE TO COVER TRAINING SET RANGE!!!!

for i=lo:hi,;

dirname=[’data/td’ int2str(i)];

eval([’cd ’ dirnamel)

load motion

cd .. %back to 'data’ dir$

clear x
for k=1:n, %for each image, get wedge features$%
eval (['F(k, :)=wedge(F’ int2str(k) ’);’1)
eval ([’clear F’ int2str(k)])
end

[T]=dupstop (F);

cd features
eval(['save T’ int2str(i) ' T'])
clear TI T F

train.m

S R A R S R EE E E R L R P L P PP D P DD DD 1

% The script file is ./train.m

$

% This is a batch training algorithm that calculates some values

needed for the fstnn. Features from the mat files T, T2, ...
are loaded, processed and saved to the same files.

THE USER MUST SET THE LOW AND HI NUMBERS OF THE ‘T’

FEATURE FILES BY EDITING THIS MFILE

e de

This is set up for the FST NN distance test and leave-one-out threshold
Sequence test may be implemented by editing this script and ’fstnn.m’

P P O 0 I° o0 o° Jo e

this script calls the functions ’fst trn.m’ and ’fst tst.m’

oe
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clear
cd data

1o=101 3 S —
hi=105; % <<==== SET THESE TO COVER TRAINING SET RANGE!!!!

save range hi lo
cd features

0.0.0,0.0.00 200000000000
I R e Lt R Lt R LR T

o0

oe
e
oe

200
k]

o
de

R R et R L R L R T T e e Lt £ L
This section is to precalculate some variables needed for
testing %

a0 o°

for i=lo:hi,
eval({’load T’ int2str(i)]) % loads feature matrix
[c,v,len]=fst_trn (T):
eval([’save T’ int2str(i) ' T c v len’])
clear T ¢ v len

end
0.00000000000000 000000 000000 0.0.0 0.0 000000000000000000000000
R R Rt R R R R R R R L P L LR PR L PR PR L P LR LR LR PR LT LR R R LR

This section does the leave-one-out test so
a classification boundary can be found

e

oe o

for j=lo:hi,
eval([’load T’ int2str(j)]) % load test sequence, features should be in matrix P

[

% each row of P is an image feature vector

P=T; % this is if test features were saved as variable T
[ss,dim]=size(P);

for i=lo:hi, % this will repeat for each training trajectory
if i==j, % this will cause a set to skip itself

Dist(i-100)=realmax;
else,

eval (['load T’ int2str(i)]) % this load trained data, stored in
% files T1, T2,... each with variables T,c,v,& len that

will run against the test sequence P

[D,Pp] = fst_tst (c¢,v,len,T,P,ss); gk

Dist (i-100)=mean(D); % this variable will hold total distance to each
% training sequence
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end %if
end %i loop

[cDist,k}=min{Dist); % this will find which trajectory was closest

tj_t]_e=["]_‘estj_ng td’ intzstr(j) 7 ****‘k*‘k*****‘k********‘k**********************************‘k*’]

)

%%%%%% this calculates the sequence info ****

% reload that trajectory to test sequential match
$eval([’load T’ int2str(k)1])

%[s,D,Pp,d] = fst_tst2 (c,v,len,T,P,ss); 5%5%%%
%Seq=[Seq;S};

results=[results;cDist];
end

$%%%%%%% Sequence test %$3%%%%%%
best=1:ss;
for k=1:23,
Sdif (k, :)=Seqtlk, :)-best;
end

e o©

e o

L

%result2=std(Sdif’);

DistSt=results;
%SeqSt=result?2;

save DistSt DistSt
%save SeqSt SeqSt

cd ../..
‘
$OPTIONAL:
SRR R R e e e R e T e Tt PR R R R R R T R R L TR
% This section produces the optional map of training set passes.
% If lat long data is not available, comment out this section,
% or make backup and delete this section
%cd data
$clear i
%close

%$aplot=zeros (20,2); %<<== THIS IS FOR INITIALIZING A 20 IMAGE SEQUENCE

for i=lo:hi,
eval([’cd td’ int2str(i)])
unix(’grep ’’TGT lat,’’ motion.out >../aplot.all’);
cd ..
unix(’awk '’ {print $1,$2}’’ aplot.all >aplot.num’);
load aplot.num
A=[A;aplot];

end

d° P o o° @ d° of o

$plot (A(:,2),A(:,1),’.")
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(array)

frame of imagery

F =

input:

oe

does 8

wedges, left half and uses the template ’8wedg.mat’ to speed processing

1S version

s

function for wedge sampled DFT feature vector, th

de oe

oa° o

% variables

% feat

feature vector out

(becomes dft left half)

in,

(array)

imagery

F =frame of
$h

[)
o

ht of frame

=heig

width of frame
r =max radius of values

w =

%

in temp sum

luded
lues of fft with

inc

%

in wedge

:

ing va

temp =vector summi

%

mber of values summed

count =vector counting nu

%

[}
]
m (2}
()
58
[T ]
(S
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]
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% [0
> 8
-
[=]
M|
-— o
e oe

ians

in rad

idth
wed =vector of wedge b

we =wedge w

%

ins

%

wedge templates loaded from ’data/wedg8.mat’

% template#

.
’

wedge (F)

function[feat]

&&&&EEE

load desired wedge templates here

4
ae
o°
o°

@

load wedg8

.
’

=zeros (1,n+1)
zeros({l,n); %

%feat
feat

nitialize

i

[+ X)
%%

%% make fourier transform matrix
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F=fftshift (abs (fft2(F)));
tempdc = F(hh+l,w+l); % get dc value, just in case it is needed
F=F(:,1:w); % cut fft image in half

$%%%%%%%% find total values in each wedge bin
for i=l:n,
eval ([’ temp=F.*template’ int2str(i) ’;’1)
feat (i) =sum (sum(temp)) /count (i) ;

o0
oe
oe
e
e
o°
oe

end

$%5%%%%%%% add feature for dc? FEEE5555535%%%%

%% note —- for even length and width, the dc value is located at
%% length/2 + 1 and width/2 + 1, for odd it’s the middle

3

°

$feat (n+1) =tempdc/mean (count); %% <<==IF YOU WANT DC, include this line.

%% now normalize feature vector, if desired
tot=sqrt (sum(feat."2’))’;
n=length(tot);

for i=1:n,

feat (i, :)=Ffeat (i,:)/tot(1,:);

end

o

00000.00000600004 003000 0000 0000000000000000000000000000 0
R Rt Lt R e T e e R LR R R R L LR L LT L

oe

83




Bibliography

1. Bate, Roger R, et al. Fundamentals of Astrodynamics. Dover Publications, Inc., 1971.

. Buglia, James J. Compilation of Methods on Orbital Mechanics and Solar Geometry.

reference publication 1204, NASA, October 1988.

. Duda, R. O. and P. E. Hart. Pattern Recognition and Scene Analysis. Wiley, New York,

1973.

. Entropic Research Laboratory, Inc., “Hidden Markov Model Toolkit (HTK),” 1992.

5. Fielding, Kenneth H. Spatio-Temporal Pattern Recognition using Hidden Markov Mod-

10.

11.

12.

13.

14.

15.

16.

els. PhD Dissertation, Air Force Institute of Technology, June 1994,

. Fielding, Kenneth H. and Dennis W. Ruck. “Spatio-Temporal Pattern Recognition using

Hidden Markov Models,” IEEE Transactions on Aerospace and Electronic Systems
(1995). Accepted for publication.

. Fisher, R. A. “The use of multiple measurements in taxonomic problems,” Annals of

Eugenics, 7:179-188 (1936).

. Hamanadi, Naser A. Automatic Target Cueing in IR Imagery. Masters Thesis, Air Force

Institute of Technology, 1981.

. Hand, Maj Richard, et al., editors. Space Handbook: An Analyst's Guide, 2. Air

University Press, Maxwell Air Force Base, Alabama, December 1993. prepared by Maj
Michael J. Muolo.

Lee, Chulhee and David Landgrebe. “Decision boundary feature extraction for nonpara-
metric classification,” IEEE Transactions on Systems, Man, and Cybernetics, 23(2):433—
444 (March 1993). Lee and Landgrebe - nonparametric.

Levinson, S. E., et al. “An introduction to the applications of the theory of probabilis-
tic functions of a Markov process to automatic speech recognition,” The Bell System
Technical Journal, 62(4):1035-1074 (1983).

Neiberg, Leonard and David. P. Casasent. “Feature space trajectory (FST) classifier
neural network,” Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), 2353:276-292 (1994).

Neiberg, Leonard and David P. Casasent. “Feature space trajectory neural network
classifier,” Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE), 2492:361-372 (1995).

Poritz, Alan B. “Hidden Markov Models: A guided tour.” Proceedings of the ICASSP.
7-13. 1988.

Rabiner, L. R. and B. H. Juang. “An Introduction to hidden Markov models,” IEEE
ASSP Magazine, 4-16 (January 1986).

Rabiner, Lawrence R. “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, 77(2):257-286 (1989).

84




17. Rosenblatt, F. The perceptron—a perceiving and recognizing automaton. Technical
Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca N.Y., January 1957.

18. The Mathworks, Inc., “Matlab, version 4.0,” 1993.
19. Unknown. “Maui AMOS brief.” from Phillips Lab, 1994.

85




Vita
Gary W. Brandstrom {Jj |} S E::cd 2 B.S. in Geology from
Hardin-Simmons University, Abilene TX, 1982. Worked for Crown Exploration Company,

Abilene, TX, 1982-1984. Earned M.S. in Geology from Texas A&M University, 1986.
Entered US Air Force in 1986.

First duty assignment in the Air Force was as an imagery intelligence analyst at the
12th Tactical Intelligence Squadron. Was selected to attend Undergraduate Space Training in
1990. Second assignment was at USSPACECOM/J3 from 1990-94. Next assignment will be
at AF Space Command/DO.

R -

86




Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is esumated 10 average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of information, including suggestions for reducing this burden. to Washington Headguarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1995 Master’s Thesis

4. TITLE AND SUBTITLE
SPACE OBJECT IDENTIFICATION Using Spatio-Temporal Pattern

Recognition

5. FUNDING NUMBERS

6. AUTHOR(S)'
Gary W. Brandstrom, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GSO/ENG/95D-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Capt Bruce Stribling, Phillips Lab/OL-YY
535 Lippoa Pkwy, Ste 200

Kihei, Maui, HI 96753

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis is part of a research effort to automate the task of characterizing space objects or satellites based
on a sequence of images. The goal is to detect space object anomalies. Two algorithms are considered — the
feature space trajectory neural network (FST NN) and hidden Markov model (HMM) classifier. The FST NN
was first presented by Leonard Neiberg and David P. Casasent in 1994 as a target identification tool. Kenneth H.
Fielding and Dennis W. Ruck recently applied the hidden Markov model classifier to a 3D moving light display
identification problem and a target recognition problem, using time history information to improve classification
results. Time sequenced images produced by a simulation program are used for developing and testing the
anomaly detection algorithms. A variety of features are tested for this problem. Features are derived from
the two dimensional (2D) discrete Fourier transform (DFT) with various normalization schemes applied. The
FST NN is found to be more robust than the HMM classifier. Both algorithms are capable of achieving perfect
classification, but when shot noise is added to the images or when the image sample spacing is increased, the
FST NN continues to perform well while the HMM performance declines. A new test is presented that measures
how well a test sequence matches other sequences in the database. The FST NN is based strictly on feature
space distance; but if the order of the sequence is important, the new test is useful.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Pattern Recognition, Space Object Identification, Spatio-Temporal Analysis, Feature 97
Space Trajectory Neural Net, Hidden Markov Models, Image Processing, Neural Nets 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescnibed by ANSE Std. Z39-18
298-102




	Space Object Identification Using Spatio-Temporal Pattern Recognition
	Recommended Citation

	tmp.1695841306.pdf.EdqPg

