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Preface

The purpose of this research effort was to explore the usefulness of a new saliency

metric in a new saliency screening method. The new metric, the SN saliency metric, is

based upon signal-to-noise ratios and incorporates the neural network's treatment of a

reference noise feature into the calculation.

The SN saliency metric, in turn, was used in a new saliency screening method, the

SN saliency screening method, which attempts to identify salient features in one screening

run. This method actually interrupts the screening run at certain intervals, determines the

least salient feature, removes that feature and continues the screening run. A feature's

saliency is indicated by the order in which it is removed and the classification error rate's

reaction to its removal.

No statistical validation of this saliency screening method is developed, but

confidence in the method is bolstered empirically through its application to two example

problems: Fisher's Iris Classification problem and the XOR problem. A designed

experiment explores the consistency of the SN saliency metric across a range of neural

network architectures. The SN saliency screening method is then applied to several neural

network designs to assess the method's robustness both within a given neural network and

across a range of neural network designs.

The inspiration behind this effort came primarily from three people: Lt Col

Kenneth W. Bauer, who conceived the idea of the SN saliency metric and its potential

application in an 'on the fly' saliency screening method; Professor Daniel E. Reynolds,

who provided direction and invaluable feedback from a perspective not centered upon

ii



neural networks; and my wife, Dawn, who shouldered the weight of this effort along with

me, who never lost confidence when mine faltered, and who, with eyes fixed upon the goal

while mine were simply fixed, supported, encouraged and inspired me through to the very

last step. The completion of this project is primarily a consequence of their faith in my

ability.

David B. Sumrell
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AFIT/GOR/ENS/96M- 17

Abstract

A new saliency metric and a new saliency screening method are developed. This

new metric, the SN saliency metric, is based upon signal-to-noise ratios, where the signal

is provided by a sum of squared weights associated with a given feature, and the noise is

based upon a sum of squared weights associated with a reference noise feature which is

injected into the data. The resultant metric allows for a direct comparison of the feature

of interest with a reference noise feature which is known to be nonsalient.

The SN saliency screening method, which uses the SN saliency metric, offers the

potential of identifying salient features in one saliency screening run and is envisioned as

an economical rough screening tool to be used prior to more refined screening efforts or

more exhaustive training efforts. During the screening run, features are removed

individually based upon their rank as determined by the SN saliency metric. The

classification error rate's reaction to a given feature's removal helps confirm that feature's

saliency.

Efforts at empirical validation of the new metric and saliency screening method

center on application to two example problems: Fisher's Iris Classification problem and

the XOR problem. Both examples use a feed-forward, fully-connected perceptron with

one hidden layer and weight updates provided through back-propagation. These

applications suggest that both the SN saliency metric and the SN saliency screening

method produce consistent results across a range of neural network designs.
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An Investigation of Preliminary Feature

Screening Using Signal-to-Noise Ratios

I. Introduction

General Issue

The term GIGO, or garbage in garbage out, is familiar to many computer users.

It suggests a dependence between the quality of a computer's output and the quality of the

input. A similar dependence exists for classifiers between the quality of the input to the

classifier and the accuracy of the resultant classification. In this context, quality of the

input refers to that input's relevance to the classification problem, or to the predictive

power inherent in the input. For classifiers, the term saliency refers to the strength or

presence of this relevance or predictive power.

Identifying the salient input, or saliency screening, therefore, is an important step

in building an accurate classifier. Accurate classification is not the only desirable result of

successful saliency screening. The salient input will most likely be a smaller subset of the

original input, thus reducing the amount of the input required to be collected and stored.

Furthermore, reducing the amount of available input to the salient input reduces the

amount of data required for training the artificial neural network. Finally, the classification

accuracy may increase as nonsalient input, or noise, is eliminated from the training input.

1i



Saliency screening requires both a saliency metric, i.e. a way to measure saliency,

and a screening method based upon the saliency metric. Two current salient metrics are

Ruck's saliency [7] and Tafr's saliency [9], each of which are described in more detail in

Chapter 2. This study introduces a third saliency metric, the SN Saliency metric, which is

based upon signal-to-noise ratios. This new metric is described in detail in Chapter 3.

Each of these three saliency metrics can be used by two saliency screening

methods, the Belue-Bauer method [2] and the Steppe-Bauer method [8], each of which is

described in more detail in Chapter 2. Each of these methods uses multiple training runs

(30 and 10 recommended, respectively) of the neural network prior to assessing saliency

and removing any nonsalient input from the original input. A third saliency screening

method, introduced here as the SN Saliency Screening method, uses the signal-to-noise

ratio saliency metric to assess saliency. Although not yet statistically validated, the

potential for successful identification of salient variables in one training run enjoys

empirical support. The economy of this third method is evident in the reduction of the

recommended number of training runs with the original input set. The magnitude of the

savings, primarily in run time, depends upon the size of the original input set and the

particular neural network architecture.

If SN saliency screening is accomplished in only one run, the robustness of this

method is critical. Since both the Belue-Bauer method and Steppe-Bauer method use

multiple independent runs, they can calculate average saliency measures which should

prove more resistant to the effects of random deviations. How robust is the SN Saliency

Screening method in the face of these same random deviations?

2



A second consideration becomes the effect of neural network architecture on the

value of the SN saliency metric. Does the success of the SN Saliency Screening method

depend upon the structure of the neural network?

Confidence in this new method relies heavily upon the answer to those two

questions. Chapter 3 describes the approach used to determine the robustness of this

method both across independent training runs within a given neural network architecture,

and across independent training runs across a range of neural network architectures. A

finding that this method is robust in these two areas helps establish its credibility.

Due to time constraints, no direct comparison between the three saliency screening

methods was conducted. This direct comparison among the three methods could be the

subject of future research. Furthermore, the SN saliency screening method is not

envisioned as a replacement for either the Belue-Bauer method or the Steppe-Bauer

method. Each of these two saliency screening methods provides a finer, more rigorous

screening tool due to the reliance upon multiple runs and established statistical testing.

The SN saliency screening method, on the other hand, provides a less rigorous, though

empirically satisfying screening tool. The author envisions a sequential use of the SN

saliency screening method and either of the remaining two methods. The SN method

provides an economical, rough initial screening of the original input set in order to

eliminate the obvious noise, especially useful for rapid saliency screening for time critical

applications, while the subsequent use of either the Belue-Bauer method or the Steppe-

Bauer method provides a finer screening of the remaining input set in order to assess the

saliency of any questionable or borderline input. The advantage of this sequential

3



operation is that the original input set, i.e. the largest input set, is only used during one

run, while the multiple runs required by the secondary screening use a subset of the

original input set, a subset which has hopefully been significantly reduced in size. This

reduction in size speeds training in the secondary screening by allowing for a smaller

neural network. Additionally, since the reduced input set used during secondary screening

contains less noise than the original input set, the resultant classifier may be more

accurate.



H. Literature Review

This chapter covers definitions of terms commonly used when discussing neural

networks, a summary of multilayer perceptrons, a brief description of the backpropagation

training method, introductions to two saliency metrics (Ruck's saliency and Tarr's

saliency) as well as discussions of two saliency screening methods (Belue-Bauer method

and Steppe-Bauer) which use these saliency metrics. The two saliency metrics and two

saliency screening methods are offered as examples of the current state of the saliency

screening art.

Definitions

Back-propagation. A learning algorithm for updating weights in a multilayer, feed-

forward, mapping neural network that minimizes mean squared mapping error. [3]

Classifier. The decision-making system built by the neural network. In a sense,

the final set of weights. [7:7]

Ep h. A complete presentation of the data set being used to train the multilayer

perceptron; also called a training cycle. [7:7]

Exemplar. The input data to a neural network is a finite set of solved cases. Each

case is known as an exemplar or input vector. [7:7]

Feature. The individual measurements found in exemplars which contain

information useful for distinguishing the various classes. In other fields, features are

known as attributes or independent variables. [7:7]



Feedforward. Characterized by multilayer neural networks whose connections

exclusively feed inputs from lower to higher layers; in contrast to a feedback network, or

a recursive network, a feedforward network operates only until its inputs propagate to its

output layer. An example of a feedforward neural network is the mulitlayer perceptron.

[3]

Hidden Units. Those processing elements in multilayer neural network

architectures which are neither the input layer nor the output layer, but are located in

between these and allow the network to undertake more complex problem solving. [3]

Learning Algorithms. In neural networks, the equations which modify some of the

weights of processing elements in response to input and output values. [3]

Multilayer Perceptron. A multilayer feedforward network that is fully connected

(each node in any given layer is connected to every node in the next layer) and which is

typically trained by the back-propagation learning algorithm. [3]

Neural Network. An information processing system which operates on inputs to

extract information and produces outputs corresponding to the extracted information. [3]

Single-layer Perceptron. A type of neural network algorithm used in pattern

classification problems and trained with supervision. Connection weights and thresholds

in a perceptron can be fixed or adapted using a number of different algorithms. [3]

Supervised Training. A means of training adaptive neural networks which requires

labeled training data and an external teacher. The teacher knows the correct response and

provides an error signal when an error is made by the network. [3]



Weight. A processing element (or neuron or unit) need not treat all inputs

uniformly. Processing elements receive inputs by means of interconnects (also called

'connections' or 'links'); each of these connections has an associated weight which

signifies its strength. The weights are combined to calculate the activations. [3]

Multilayer Perceptron

Figure 1 shows a single-output perceptron. The perceptron receives a weighted

sum of the M features and the bias term. The perceptron then performs a mathematical

transformation on this weighted sum, and this transformation serves as the perceptron's

output. The superscripts associated with the weights and the output are not powers;

rather, they identify the layer with which the weight or output is associated. For example,

XI= f X XW 1'

X1  X~ ~2 f....... (I M i

Fit

Figure 1. Single-Output Perceptron
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Output

Nodes

Hidden I

bias X

Figure 2. Multilayer Network

the superscript '1' associated with the weights indicates that the weights connect the first

layer with its previous layer (by convention, the input layer is considered the 0 layer).

When associated with the perceptron's output, the superscript '1' indicates that the

perceptron is located in the first layer.

Figure 2 shows a feedforward, fully-connected multilayer perceptron with one

hidden, or middle, layer. Each node in the input layer receives its input from a specific

feature in the exemplar. Figure 2 shows M input nodes corresponding to M features. The

bias term is provided by the neural network, and its value is always 1. Each input node,

including the bias node, is connected to every hidden, or middle, node. In Figure 2 there

are H hidden nodes. The bias node in the middle layer is similar to that in the input layer,

and its value is also set to 1.

8



Each of the H middle nodes receives a weighted sum of the values associated with

the M features included in the current exemplar:

Xi =Iwx 1  (1)
i

where xJ is the input for thej-th node in the middle layer, w' is the weight connecting

the i-th input node with the j-the middle node and xi is the input from the i-th input node.

The actual output of each of the hidden nodes and each of the output nodes is

some transformation of the weighted sum shown in Equation (1). Although any of a

number of transformations may be used, this study uses the sigmoid function to transform

the weighted sums. Figure 3 provides a graphical representation of the sigmoid function

while Equation (2) shows the calculations associated with the outputs from the hidden and

output layers.

f(a) = 1
1 + e-a

1.0

0.5

a

Figure 3. The Sigmoid Function
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2

Zk 2) (2)
1 + exp(j w'xJ 1+ expfY WkZj

In Equation (2), zJ is the output of thej-th hidden node, w, is the weight connecting the

i-th input node with the j-th hidden node, xi is the value of the i-th feature, z2 is the

output of the k-th output node and wj2, is the weight connecting the j-th hidden node to

the k-th output node.

The backpropagation training algorithm updates these weights, either after each

exemplar (instantaneous updating) or after each epoch (batch updating). For the

multilayer network shown in Figure 2, the weights between the input layer and the hidden

layer update in the following manner:

w,(t + 1) = w'(t)±+ ri8xi + a[wt)-w(,(t- 1)] (3)

where i is associated with the i-th input node, j is associated with the j-th hidden node,

w(t + 1) refers to the updated weights, w, (t) refers to the current weights and w,.(t - 1)

refers to the previous weights. The term 8' designates the error derivative of the j-th

hidden unit. Assuming that each hidden unit output is a sigmoid transformation of its sum

of weighted inputs, 8' is calculated by Equation (4):

l= 0 - 4 _kW (4)

10



where ! is the j-th hidden node's output, 8k is the error derivative for the k-th node in

the output layer (associated calculation shown by Equation (6)), and U?2 is the weight

connecting thej-th hidden node with the k-th output node.

The weights connecting the hidden and output layers update in a similar manner.

Equation (5) shows the actual weight updates:

Wkk(t ±1) Wk(t) + 1W+ c k(t)- W2(t - 1)] (5)

wherej refers to the j-th hidden node, k refers to the k-th output node, 8' is the error

derivative of the k-th output node, and the sequence of updated, current and previous

weights is analogous to the sequence described for Equation (3). Equation (6) shows the

calculation of the error derivative of the k-th output node:

=(1 - Z~k - Zk (6)

where z k is the actual output for the k-th output node and dk is the desired output of the

k-th output node.

In Equations (3) and (5), the terms r and cc refer to the learning rate step size and

the momentum rate, respectively. The learning rate step size moderates the amount of the

error derivative which will be included in the updated weight, while the momentum rate

determines how much the updated weight will depend upon the magnitude and direction

of previous weights. In a way, the learning rate step size determines how large a step the

updated weight will take in a given direction, while the momentum rate determines how

much the direction will change.

11



Saliency Metrics

This section describes two saliency metrics: Ruck's saliency and Tarr's saliency.

Both of these saliency metrics provide an ordering of the given features, based upon the

value of the metric calculation, which indicates relative saliency among the features.

Ruck's Saliency. Ruck's metric measures the saliency of a given feature by

summing the partial derivatives of the network outputs with respect to that given feature.

The formula is shown below:

A1 = Z Z 8k (Imr)ir) (7)
P M R K ax,

P is the number of exemplars, M is the number of features, R is the number of steps that

the range of each feature is uniformly divided into, and K is the number of network

outputs. The vector with which the partial derivative is calculated is the p-th exemplar

with its m-th feature replaced by the value associated with that feature's r-th step. The

weights are the final estimates produced by the trained network.

This saliency metric orders the features from most salient to least salient based

upon the features' metric values. Higher values indicate higher relative saliency, while

lower values indicate lower relative saliency.

Tarr's Saliency. Tarr's metric measures the saliency of a given feature by summing

the squared values of the weights connecting that feature's input node to the middle

nodes. The calculation is shown below:

Ti = (8)
Vmim2=

12



The following discussion of weight updates contains the philosophy behind this metric:

When a weigh is updated, the network moves the weight a small amount
based on the error. Given that a particular feature is relevant to the
problem solution, the weight would be moved in a constant direction until a
solution with no error is reached. If the error term is consistent, the
direction of the movement of the weight vector, which forms a hyper-plane
decision boundary, will also be consistent. . . If the error term is not
consistent, which can be the case on a single feature out of the input
vector, the movement of the weight attached to the node will also be
inconsistent. In a similar fashion, if the feature did not contribute to a
solution, the weight updates would be random. In other words, useful
features would cause the weights to grow, while weights attached to non-
salient features would simply fluctuate around zero. [10:44]

As with Ruck's saliency, large values of this metric indicate high relative saliency,

while small values indicate low relative saliency.

Saliency Screening Methods

This section describes two saliency screening methods: the Belue-Bauer screening

method and the Steppe-Bauer screening method. Both of these methods inject a known

noise feature into the original data set, then use the saliency measure of the injected noise

feature as a baseline against which the saliency of the features of interest is determined.

Belue-Bauer Saliency Screening. Recognizing that the then current method of

saliency screening retained features subjectively based upon relative saliency metrics,

Belue and Bauer set out "to develop a method which takes into consideration the saliency

of a feature relative to the saliency of a known irrelevant feature." [1:115] The resultant

method is summarized below:

(1) Introduce a noise feature to the original set of feature vectors.
(2) Train the network.
(3) Compute the saliency of all features (using either Ruck's Saliency or

Taff's Saliency).

13



(4) Repeat steps 2 and 3 at least 30 times (with weights being randomly
initialized and training and test sets being randomly selected at the
beginning of each training cycle).

(5) Assume the average saliency of noise is normally distributed and find
the upper one-sided (a X 100) percent confidence interval for the
mean value of the saliency of noise.

(6) Choose only those features whose average saliency value falls outside
this confidence interval.

(7) Retrain the network with the salient features. [1:115-116]

In their conclusions and recommendations, Belue and Bauer report that "the introduction

of noise as a feature input provides a method for determining the significance of a set of

features by comparing their saliency to the saliency of the injected noise." [1:119] After

the nonsalient features were removed "the multilayer perceptron trained quicker and

exhibited a lower output error and classification error." [1:119] Furthermore, a

comparison of Ruck's saliency and Tarr's saliency showed that they "ordered the features

similarly with the same conclusions reached even though the measurement scales were

different." [ 1:119]

Steppe-Bauer Saliency Screening. Building upon the work begun by Belue and

Bauer, Steppe and Bauer develop a "saliency screening procedure for identifying noisy

features.., based on statistically comparing the mean saliency of candidate features to the

mean saliency of a noisy feature." [9:181] The procedure is summarized below:

(1) Augment feature set with a noise feature, xn.
(2) Train neural net to minimize training-test set error.

All nets should ideally use a minimal network structure with no
redundant middle nodes or features.
All nets should ideally converge to a local minimum and not a saddle
point.

(3) Compute the feature saliency [modified Ruck's saliency]:

14



,&d. = P-_ - k XP, 9
ZZ Z * (9)
p=1 k i

for each of the features, including x.
(4) Repeat steps (2) and (3) a minimum of ten times (N = 10), using

random initialization of weight parameters and random data set
partitioning.

(5) Select 'family' significance level, a.
(6) For each feature do an individual hypothesis test as follows [see

Chapter 3: Paired t-Test]
(a) Compute D1 and S2

5i

(b) Compute the test statistic t*
(c) Determine the Bonferroni critical value B = tC

(d) Evaluate the test statistic as follows:
" If t * < B, the null hypothesis can not be rejected for feature i.

Conclusion: feature i is nonsalient, since the difference between
the i-th feature's saliency and the noise feature's saliency is not
statistically different from zero at the a 'family' significance
level.

" If t* > B, reject the null hypothesis for feature i.
Conclusion: feature i is salient, since there is a statistical
difference at the a 'family' significance level between the
saliency of the i-th feature and the saliency of the noise feature.

(7) Eliminate the nonsalient features and retrain the network with only the
salient features.

Steppe writes that "conservative results are common with this procedure. That is, a

nonessential feature, having little or no bearing on the classification accuracy, may be

identified as salient if it is statistically different from noise." [9:126] For this reason,

Steppe recommends that "features with relatively low test statistics may warrant further

consideration in the context of a feature selection process." [9:127]
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III. Methodology

This chapter will introduce both the new saliency metric, based on signal-to-noise

ratios, and a saliency screening method which uses this metric. In order to investigate the

robustness of this saliency screening method both across a range of neural network

architectures and across different runs at a particular architecture, an experimental design

region will be developed. The results of the runs generated by this design region will be

analyzed both statistically and graphically in an attempt to answer four research questions

presented in this chapter. The specific statistical tests to be employed are also discussed.

Screening with Signal-to-Noise Ratios

A New Saliency Metric. The saliency metric proposed in this study resembles

Tarr's saliency metric in that they both rely upon a sum of squared weights. However,

this metric differs from both Tarr's saliency metric and Ruck's saliency metric in that the

saliency metric for a given feature is actually a direct comparison of that feature to an

injected noise feature.

Equation (10) shows the calculation of this saliency metric:

SNi = 10 log x (10)

/'=1

where SNi is the value of the saliency metric for the i-th feature, J is the number of hidden

nodes, and wl represents the set of weights connecting the injected noise feature, xN, to
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the hidden nodes. The transformation of the ratio converts the saliency metric to a decibel

scale.

The philosophy behind this metric is similar to that expressed by Tarr in Chapter 2.

Salient features should produce larger weights and, therefore, larger sums of squared

weights. The ratio of a salient feature's sum of squared weights to XN's sum of squared

weights should be significantly larger than one, and the final value of the metric should be

significantly larger than zero.

A nonsalient feature, on the other hand, will likely generate weights that are closer

in value to those generated by xN, so the ratio of the respective sums of squared weights

will be closer to one, perhaps less than one, and the subsequent transformation would

produce an SN value close to zero, perhaps less than zero.

Salient features, therefore, will likely generate SN values significantly larger than

zero, while nonsalient features will likely generate SN values not significantly larger than

zero, and perhaps even less than zero. Furthermore, these SN values should rank the

features in the same way that both Tarr's saliency and Ruck's saliency do. These

anticipated characteristics are employed in the following saliency screening method.

SN Saliency Screening Method. The following saliency screening method uses the

SN saliency metric to distinguish between salient and nonsalient features:

(1) Add a noise feature, XN, to the original feature set.

(2) Begin training the neural network.

(3) Interrupt training after the saliency metric values have stabilized.

(4) Identify the feature with the lowest SN value and remove it from further training.
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(5) Continue training the neural network.

(6) Repeat steps (3) - (5) until all of the features in the original set have been removed.

(7) Finish/discontinue training the neural network.

(8) Compare the reaction of the test set classification error rate to the removal of the

individual features.

(9) Retain the first feature whose removal caused a significant increase in the test set

classification error rate, as well as all features which were removed after that first

salient feature.

This method depends heavily upon robust feature ranks provided by the SN

saliency metric. If the rank proved to be inconsistent from one run to the next at a given

neural network architecture, or if the ranks generated by different network architectures

proved to be inconsistent, then this method would be unreliable at best. In order to

investigate the issue of robust rank, this study exercised this method over an experimental

design region, described in the next section.

Experimental Design

This section introduces the experimental design used by this study and the specific

research questions used to guide this effort. Additionally, this section provides a brief

description of the specific statistical tests and graphical analysis used to answer each

question.

Experimental Design Region. Table 1 summarizes the design region used in this

study. The resultant full-factorial 33 design contains 27 different design points, each
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Table 1. Experimental Design Region

Level
Low Middle High

Number of Middle Nodes N 2N 3N
Factor (N = Number of Features)

Learning Rate Step Size 0.1 0.5 0.9
Momentum Rate 0.1 0.5 0.9

corresponding to a different neural network architecture, across which the robustness of

the feature rank provided by the SN metric will be investigated. The designed experiment

includes ten independent runs, or replicates, at each design point, which will aid in

determining feature rank robustness across independent runs at a given point. Since the

focus of this designed experiment is feature rank robustness, the SN Saliency Screening

method is not applied during these runs. Instead, each neural network trains for 2000

epochs, and the final set of trained weights provides the input for statistical and graphical

analysis.

This experimental design holds other neural network architecture parameters

constant or in a constant range. Table 2 summarizes these factors and their settings. Each

of the 270 runs in the design region uses a different random number seed, which generates

the random numbers used to randomly initialize the weights, randomly partition the data

set into training and test sets, and randomly order the presentation of the training data.

This use of independent random number seeds ensures that each of the 270 runs is an

independent event. [9:112]
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Table 2. Remaining Architecture Factors

Factor Setting

Range of Weight Initialization -0.5 to 0.5

Type of Learning Rate Constant

Type of Data Normalization Gaussian

Number of Epochs 2000

Research Questions. The experimental design described in the previous section

aims to answer four specific questions. The associated statistical test for each question is

described in the following section (Statistical Testing).

(1) Are the signal-to-noise ratio distributions identical for all features? If they are,

this suggests that the SN metric is unable to distinguish between salient and nonsalient

features. If the distributions are different, this metric is detecting some difference among

the features, and this difference is most likely a difference in saliency.

Associated statistical test: Kruskal-Wallis H-Test for Comparing k Population

Distributions

Additional analytical test: Graphical analysis of each feature's rank distribution

(2) If the distributions are different, how does each feature's distribution compare

to that of XN, the injected noise feature? Salient features should generate larger SN values

than that generated by xN. Therefore, salient features should generate a SN distribution
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which is shifted to the right of the SN distribution for xN. Nonsalient features, on the

other hand, will not likely generate consistently larger SN values than that generated by

xN. As a result, nonsalient features will not likely generate a SN distribution which is

shifted to the right of the SN distribution for xN. An SN distribution which in not shifted

to the right of the SN distribution for xN suggests that the associated feature is nonsalient.

Associated statistical test: Paired I-Test

Additional analytical tools: 'Scree'-type plot of t-Test null hypothesis rejections

by feature

(3) Are the feature ranks obtained from the signal-to-noise ratios consistent, both

across differing neural network architectures and across repeat runs at a constant neural

network architecture? This specifically addresses the robustness issue. If the ranks are

not consistent, then the saliency screening method must be considered unreliable in those

architectural design regions which produce the inconsistent ranks.

Associated statistical test: Spearman's Rank Correlation Test

(4) Does network architecture affect the results? The results of the 270 runs

specified in the designed experiment may yield some general guidelines for which

architectures to use and which to avoid when using this saliency screening method

Associated statistical test: Kruskal-Wallis H-Test for Comparing k Population

Distributions, Paired t-Test, Spearman's Rank Correlation Test

Additional analytical tools: graphical analysis of factor effects on individual

feature rank
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Statistical Testing. Each of the research questions makes use of one or more of

the following statistical tests.

Kruskal-Wallis H-Test for Comparing k Population Distributions. [5:697-

700] This test compares the population distributions of the ranks of all of the features in

the original data set and the injected noise feature. The ranks are ascending ranks, i.e. the

feature with the lowest SN value receives the lowest rank, or '1', while the feature with

the highest SN value receives the highest rank, or k, where k is the number of features.

This assignment of an ascending rank applies across all statistical tests and graphical

analyses which consider rank. A helpful memory aid is 'bigger is better.'

Furthermore, any ties are broken by assigning an average rank to each of the tied

features. For example, if two features have the same SN value and tie for a rank of 15,

then they each would receive a rank of 14.5 (the average of 15 and 14, the next lower

rank). This tie-breaking method is also consistent across all of the statistical tests used in

this study which use rank.

This test uses the following hypotheses:

H0 : The k population distributions are identical.
Ha: At least two of the population distributions differ in location.

As described in the previous section, this study hopes to reject H and conclude that at

least two of the population distribution differ in location. The test statistic calculated to

test H0 is given by Equation (11):

12 R (
Test Statistic: H= nn (1n1)

n(n + I
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where

ni = Number of measurements in sample from population i.
Ri = Rank sum for sample i, where the rank of each measurement if
computed according to its relative size in the overall set of n = n1 + n2 +

nk observations formed by combining the data from all k samples.

The test statistic value is compared to the following rejection region:

Reject H0 ifH > X2 with (k - 1) degrees of freedom.

The test uses the following assumptions:

The k samples are randomly and independently drawn.
There are five or more measurements in each sample.

Unfortunately, our application does not meet these assumptions. The SN values within a

given run are not independently drawn. Therefore, no inference can be drawn from the

results of this test. However, with the violation of the assumption in mind, the results of

this test might be used for a less rigorous purpose, such as a simple illustration.

The Paired t-Test. [4:312-315] This test is a special case of the two-

sample t-test where the observations are collected in pairs. While it is assumed that

conditions are homogeneous within pairs of observations, the conditions are allowed to

vary between pairs of observations. The key to this test is the difference between the

observations within each pair. If each observation within the pair comes from the same

distribution, than the mean difference should approach zero. A mean difference which is

significantly different from zero suggests that the observations do not come from the

same, or identical, or even similar distributions.

This test will be run on the ten replicates associated with each design point, and on

the 270 runs associated with the overall design region. This is a paired test, pairing the
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injected noise variable with each of the original features in turn. If there are k original

features, this necessitates a 'family' of k paired t-tests at each design point and for the

overall design region. According to Bonferroni, in order to infer conclusions based on the

test result at a 'family' confidence level of a, the k individual tests included in the 'family'

must be conducted at a confidence level of a. [6:164-165]
k

The hypotheses used in this test are given below:

H: 9Dt = 0

Ha: gD>0

where ltD = E( SNi - SNN) = E(SNi) - E(SNN) where SNi is the signal-to-noise ratio for the

i-th feature, and SNN is the signal-to-noise ratio for the injected noise feature, XN. The

one-tailed test is used to detect a positive mean difference, which suggests that the SN

distribution for the given feature is shifted to the right of the SN distribution for XN, which

indicates that the feature is more salient than XN.

Equation (12) shows the test statistic:

to- (12)

where the sample mean is given by:

n

Sj=' (13)
n

the sample variance is given by:
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V = Dj-[1DJ (14)

n-1

and the difference is given by:

D1 =SNIj - SNN= SNi - 0= SNY (15)

where Dj is the difference for the j-th run, SNij is the signal-to-noise ratio for the i-th

feature for thej-th run, and SNNj is the signal-to-noise ratio for the injected noise feature

for thej-th run. For this test, reject H0 : tD = 0 (implying that P.D > 0) if to > t.lk ,n- 1.

This test assumes that the observations are paired and that, within pairs, the

observations are taken under homogeneous conditions, although this is not required

between pairs. Assume that SNi - N( i, a 2 ) and SNN -N( JN, O N2 ). In this case, SNN

is not normally distributed; in fact, it is a constant. However, this does not affect the

assumption that the differences (Dj) are normally distributed.

Spearman's Rank Correlation Test. [5:715-719] This test aims to answer

the third research question by taking a pair of runs and calculating the correlation between

the ranks assigned for each given feature, using the hypotheses shown below:

Null Hypothesis: H0 : There is no association between the rank pairs.
Alternative Hypothesis: Ha: There is an association between rank pairs (a
two-tailed test). Or Ha: The correlation between the rank pairs is positive
(or negative) (a one-tailed test).

A positive correlation between the rank pairs suggests that the rank consistent across the

tested space. Therefore, this study uses the one-tailed test. Equation (16) shows the test

statistic:
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nZ xiyi - IXi

-" ,(16)
n=' n2 X= 2 n-i [ Yi

where xi and Yi represent the ranks of the i-th pair of observations (in this case, the ranks

assigned to the i-th feature).

The rejection region is described below:

For a two-tailed test, reject H if r. -> r0 or r, < ro, where r0 is the critical
value of Spearman's rank correlation coefficient for the given sample size
and confidence level (a12). For a one-tailed test, reject H0 if r. >_ ro (for an
upper-tailed test) or rr _ r0 (for a lower-tailed test), where r0 is the critical
value of Spearman's rank correlation coefficient for the given sample size
and confidence level (a).

This study uses the rejection region associated with an upper-tailed test.

The Spearman Rank Correlation Test assumes that the paired observations have

been randomly selected and are independent. As described in the Experimental Design

Regio section, the use of separate random number seeds for each run ensures

independence between the runs and satisfies this test's independence assumptions.

Example Problems

The experimental design and statistical tests are run with two example problems:

Fisher's iris data and the exclusive-or, or XOR, problem.

Fisher's Iris Classification Problem. This problem contains data from three distinct

types of irises: iris setosa, iris versicolor, and iris virginica. The data measures four

characteristics: sepal length, sepal width, petal length and petal width. During this study,
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these four characteristics are known as Variable 1, Variable 2, Variable 3 and Variable 4,

respectively.

In order to add some nonsalient features to this data set, each individual

characteristic is resorted randomly and reinserted into the data set as a corresponding

noise variable. For example, the data associated with Variable 1, or sepal length is

resorted randomly, and this new feature is labeled Noise 1 and reinserted into the original

data set. This process expands the data set to eight features (Variables 1-4 and Noise 1-

4).

The last feature added to the data set is the injected noise feature against which the

saliency of the other eight features will be measured. This injected noise feature, known

as Noise, is a uniformly-distributed random variable with a range of(0, 1). Thus, the final

data set contains nine features.

Since there are three groups into which each iris may be classified, three binary

classification variables are included in the data set. If the iris belongs to a given group, the

associated classification variable takes the value '1'; otherwise, the classification variable

has a value of '0'. This final addition boosts the data set to nine features and three

classification variables.

XOR Problem. The XOR problem is most easily described by Figure 4. The two

groups are determined by the values of Variable 1 and Variable 2. If the product of the

two variables is positive, the object belongs to Group 1. If the product of the two

variables is negative, the object belongs to Group 2.
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Figure 4. The XOR Problem

The data set consists of five features, each of which is a uniformly-distributed (-

1,1) random variable. The first two features, Variable 1 and Variable 2, determine the

object's correct classification, as described above. The remaining three features, Noise 1,

Noise 2 and Noise 3, serve as the nonsalient features. A sixth uniformly-distributed (-1,1)

random variable is inserted as the reference noise variable, Noise, against which the

saliency of the original five features is measured. Finally, two binary classification

variables, Group 1 and Group 2, are added. If the object belongs to Group 1, then the

value of Group 1 is '1'; otherwise, the value of Group 1 is '0'. Group 2's values are

determined in the same way. Thus, the final data set has six features ( Variables 1 and 2,

Noise 1 - 3, and the injected noise feature, Noise) as well as two classification variables

(Group 1 and Group 2).
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Exercising the SN Saliency Screening Method

After the experimental design is accomplished and associated analysis is

completed, the SN Saliency Screening method is applied using both Fisher's Iris

Classification problem and the XOR problem. The method is run ten times at a given

neural network architecture and one time each at three different neural network

architectures to allow an examination of the robustness of the method both within a

specific architecture and across different architectures. The analysis focuses on differences

in the subset of salient features retained by the method both among the ten replicates at a

given neural network architecture and across the runs accomplished at the different neural

network architectures. Retention of a consistent subset of salient features suggests

robustness of the SN Saliency Screening Method.
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IV. Results

This chapter is divided into two sections, corresponding to the designed

experiment and the application of the SN Saliency Screening method. Each of these

sections addresses both the Fisher Iris Classification problem and the XOR problem. The

first section confirms the robustness of the features' ranks assigned by the SN metric

within and across most neural network architectures. The second section assesses the

robustness of the SN Saliency Screening method both within and across neural network

architectures.

Experimental Design

This section presents the various calculations and analyses performed on the data

obtained from the designed experiment using both the Fisher Iris Classification problem

and the XOR problem. The results suggest that for both problems, the feature ranks

assigned by the SN Saliency metric exhibit robustness within and across most neural

network architectures. Certain architectures, especially those characterized by high

momentum rates, produce inconsistent feature ranks, suggesting that high momentum

rates should be avoided when applying the SN Saliency metric.

The results associated with the two problems are organized below according to the

research questions and associated statistical testing and graphical analysis described in

Chapter 3.
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Fisher Iris Classification Problem

(1) Are the signal-to-noise ratio distributions identical for all features? The

statistical test associated with this question is the Kruskal-Wallis H-Test for Comparing k

Population Distributions. Table 3 begins the calculation of the test statistic by presenting

the values of the SN Saliency metric at design point 9 - 0.1 - 0.1 (i.e. nine middle nodes, rj

= 0. 1, a = 0. 1).

Table 3. SN Saliency Values for Design Point 9 - 0.1 - 0.1

Nodes 9 Learning Rate Step Size 0.1 Momentum Rate 0.1
Replicates

1 2 3 4 5 6 7 8 9 10
Noise 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Noise 1 4.98 -0.19 -0.17 -1.69 8.24 4.82 -1.21 -10.75 -8.64 -4.90
Noise2 4.31 2.11 0.94 4.59 8.61 6.38 3.47 -0.93 -3.18 -2.52
Noise 3 -0.01 -3.76 -5.24 1.53 1.61 -3.16 -1.08 -1.70 -1.68 -2.42
Noise 4 4.01 1.38 -0.50 -3.32 9.08 6.10 -0.95 -3.45 -7.19 -3.82

Bias 18.69 11.42 11.64 13.38 18.99 17.15 12.22 10.26 11.53 9.43
Variable 1 5.14 -0.13 1.00 0.28 7.85 4.77 1.54 -0.97 1.01 -2.23
Variable2 10.52 5.60 4.41 4.62 12.31 9.55 5.76 2.51 2.54 1.59
Variable3 18.27 10.82 11.17 11.80 18.25 17.14 11.84 8.39 10.00 7.61
Variable4 16.24 10.98 10.46 11.22 18.07 16.77 11.58 8.62 10.56 8.74

In order to calculate the test statistic, each feature must receive a rank, assigned in

ascending order ('bigger is better') according to the associated SN Saliency value. These

ranks, along with the rank sum calculations (Ri) appear in Table 4.
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Table 4. Feature Ranks for Design Point 9 - 0.1 - 0.1

Nodes 9 Learning Rate Step Size 0.1 Momentum Rate 0.1
Replicates

Feature 1 2 3 4 5 6 7 8 9 10 R,
Noise 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 325

Noise 1 58 24 25 16 66 57 18 1 2 5 272
Noise 2 52 47 39 54 68 63 50 22 10 12 417
Noise 3 27 7 4 43 46 11 19 15 17 13 202
Noise 4 51 42 23 9 71 62 21 8 3 6 296

Bias 99 83 86 91 100 95 89 75 84 72 874
Variable 1 59 26 40 38 65 56 44 20 41 14 403
Variable 2 77 60 53 55 90 73 61 48 49 45 611
Variable 3 98 79 81 87 97 94 88 67 74 64 829
Variable 4 92 80 76 82 96 93 85 69 78 70 821

The ranks in Table 4 allow the calculation of the test statistic for design point 9 -

0.1 - 0.1. Similar calculations for every design point and for the overall design region are

summarized in Table 5:

Table 5 Kruskal-Wallis H Test Statistic Values

Learning Rate Step Size

0.05 0.1 0.5 0.9

2 Momentum Rate

16.919 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

9 70.40 71.45 41.50 76.50 77.28 52.72 81.70 77.38 41.87

Node 18 88.15 85.98 17.76 80.82 67.68 49.98 82.54 78.43 39.94

27 84.23 75.35 16.79 80.27 74.80 31.73 80.18 78.81 22.90

Overall 2696.293
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Please recall that due to the violation of the independence assumption, no inference

may be drawn based upon these results. However, the large values of the test statistic at

almost every design point supports the assertion that the distributions of the SN Saliency

metric across all of the features are not identical.

The shaded value in Table 5 is the lowest value of the test statistic, and the only

case where the test statistic does not exceed the critical value, while the underlined value

in Table 5 corresponds to design point 9 - 0.1 - 0.1, which provides the values in Table 3

and Table 4.

Further evidence is provided by graphically comparing the rank distributions across

all of the features. Figure 5 presents histograms of each "nonsalient" feature's rank across

the entire design region while Figure 6 presents similar histograms for the "salient"

features. A quick comparison of these histograms certainly suggests that the distributions

of the ranks across the features are not identical, and since the ranks are based upon the

SN Saliency values, the distributions of the SN Saliency values across the features are

definitely not identical.
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(2) If the distributions are different, how does each feature's distribution compare

to that of the injected noise feature? Table 6 summarizes the Paired t-Test results. The

rank distributions of the features shown in Table 6 are shifted to the right of the rank

distribution for Noise, the injected noise feature. The rank distributions for the remaining
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Table 6. Paired t-Test Summary

Learning Momentum Number of Middle Nodes
Rate Rate 9 18 27

0.1 Variable 2 Variable 2 Variable 2
Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4

Noise 2
0.1 0.5 Variable 2 Variable 2 Variable 2

Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4

0.9 Variable3 'Variable 4 Variable 4
Variable 4 .. .. _

0.1 Variable 2 Variable 2 Variable 2
Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4

Noise 2
0.5 0.5 Variable 2 Variable 2 Variable 2

Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4
Variable__ _______ 4l Noise 2

0.9 Variable-3 Variable 3 Vaiabe4
Variable 4 Variable 4
______ ___ ,_Noise 2 _ ,_

0.1 Variable 2 Variable 2 Variable 2
Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4

Noise 2 Noise 2
0.9 0.5 Variable 2 Variable 2 Variable 2

Variable 3 Variable 3 Variable 3
Variable 4 Variable 4 Variable 4

0.9 Variable 3 Variable 3 Variable 4
[Variable 4 Variable 4 1______

features are either collocated with or shifted to the left of the rank distribution for Noise.

Figure 7 provides further summary of the Paired t-Test results. This scree plot

shows the number of design points, out of a total of 27, in which a given feature rejects
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Figure 7. Scree Plot of Paired t-Test H0 Rejections (by Feature)

the null hypothesis, resulting in a conclusion that the feature's rank distribution is shifted

to the right of the injected noise feature's rank distribution. A high number of rejections

suggests the feature is salient, while a low number of rejections suggests the feature is

nonsalient. Only those features which generate any rejections are labeled.

(3) Are the feature ranks obtained from the SN saliency values consistent? Table

7 shows the results of Spearman's Rank Correlation Test for design point 9 - 0.1 - 0.1,

while Table 8 summarizes the results across the entire design region. This summary shows

the percentage of Spearman's Rank Correlation Tests, by design point, which reject H0 ,

leading to the conclusion that the paired ranks are consistent. These percentages should

not be confused with a family confidence level, for each test is treated individually; none

are treated as simultaneous tests. Nevertheless, high percentages do provide an indication

that the ranks generated by the SN Saliency metric are fairly robust both within and
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Table 7. Spearman's Rank Correlation Coefficients for Design Point 9 - 0.1 - 0.1

a = 0.05 Middle Nodes 1 Learning Rate Step Size 1 Momentum Rate
r 9J 0.1[ 0.1

0.564 Replicate
Relct,2 F 3- 4 i5 6 7 8 9 10

1 0.806 0.939 0.770 0.867 0.891 0.842 0.733 0.770 0.721
2 0.867 0.782 0.891 0.939 0.927 0.879 0.770 0.782
3 0.855 0.782 0.855 0.952 0.891 0.879 0.855
4 0.733 0.770 0.903 0.891 0.867 0.855
5 0.976 0.806 0.673 0.636 0.612
6 0.867 0.745 0.661 0.648
7 0.939 0.891 0.879
8 0.939 0.964
9 0.988

across the associated design points, while low percentages indicate that the associated

design points might not produce robust ranks and ought to be avoided.

The high percentages associated with most design points in Table 8 suggest that,

across and within these design points, the ranks are consistent. This increases the

confidence that one run of the neural network in any of these design points will provide a

reliable feature rank base upon the SN saliency metric.
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Table 8. Percentage of Spearman's Rank Correlation Tests
which reject H0 .

Learning Rate Step Size

0.1 0.5 0.9

Momentum Rate

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

9 100 100 62.2 100 100 68.9 100 100 51.1''

Node 18 100 100 15.6 100 100 68.9 100 97.8 53.3

27 100 100 4.4 100 100 46.7 100 100 26.7

Overall 75.4

(4) Does network architecture affect these results? A quick review of Tables 5, 6

and 8 reveals that the lowest H0 rejection rates for each of these tests seem to be

associated with a momentum rate of 0.9, suggesting that this momentum rate should be

avoided when preparing for SN Saliency Screening.

Figures 8 provides graphical support of this suggestion. Each graph allows

comparison of the rank distributions produced by a given level of each factor. For two of

the factors, Number of Middle Nodes and Learning Rate Step Size, changing from one

level to another changes the rank distribution only marginally. For Momentum Rate,

however, changing to a level of 0.9 causes a significant shift in the rank distribution,

resulting in a wider distribution. Wide distributions suggest that the neural network has
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difficulty determining the relative saliency of the associated feature, while narrow

distributions suggest the neural network has little difficulty determining the saliency of the
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Figure 8. Design Factor Effect on Rank Distribution

associated feature; therefore, narrow rank distributions are preferred, and the Momentum

Rate plot suggests that a momentum rate of 0.9 should be avoided, which is consistent

with the results generated by Kruskal-Wallis' H-Test, the Paired t-Test, and Spearman's

Rank Correlation Test. Although Figure 4.4 only shows Noise, the results are similar for

the other features.
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XOR Problem.

(1) Are the distributions of the SN Saliency values identical for all features? The

calculation of the Kruskal-Wallis H Test Statistic begins with the SN Saliency values.

Table 9 shows these values at design point 6 - 0.1 - 0.1. Note that Noise 1, Noise 2 and

Noise 3 tend to have the lower values, indicating low relative saliency, while Variable 1

and Variable 2 tend to have the higher values, indicating high relative saliency.

Table 9 SN Saliency Values for Design Point 6 - 0.1 - 0.1

Nodes 6 1 Learning Rate Step Size 0.1 F Momentum Rate 0.1
Replicates

1 2 3 4 5 6 7 8 9 10
Noise 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Noise 1 -5.33 3.60 2.42 -4.71 -4.07 3.16 -5.15 -6.04 -4.35 -2.81
Noise 2 -6.44 4.00 -5.80 -1.04 -7.55 6.84 -0.20 1.65 -3.83 6.01
Noise 3 -3.54 -1.70 1.49 -0.46 -3.55 3.40 1.93 -8.82 -6.80 -6.12

Bias 8.32 15.53 13.76 11.36 7.82 12.16 11.63 5.83 6.74 9.74
Variable 1 9.07 15.48 14.52 12.44 8.65 12.73 12.50 7.08 5.98 10.27
Variable2 8.49 15.78 13.62 11.66 7.71 13.21 12.90 7.65 6.42 11.01

The next step in the test statistic calculation is to convert the SN Saliency values to

ranks, and then to sum these ranks for each feature. Table 10 contains these ranks and Ri,

the rank sum for the i-th feature. Note that Noise, the injected noise feature, receives an

average rank for each replicate in order to break the ties caused by its constant SN

Saliency value. Remember that the features are ranked in ascending order ('bigger is

better') and across all ten replicates in the design point. Note how much larger the ranks
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Table 10. Feature Ranks for Design Point 6 - 0.1 - 0.1

Nodes 6 Learning Rate Step Size 0.1 Momentum Rate 0.1
Replicates

1 2 3 4 5 6 7 8 9 10 Ri
Noise 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 255

Noise 1 8 37 34 10 12 35 9 6 11 16 178
Noise 2 4 38 7 18 2 44 20 32 13 41 219
Noise 3 15 17 31 19 14 36 33 1 3 5 174
Bias 49 69 66 56 48 59 57 39 43 53 539

Variable 1 52 68 67 60 51 62 61 45 40 54 560
Variable 2 50 70 65 58 47 64 63 46 42 55 560

and rank sums are for Variable 1 and Variable 2 compared to Noise, Noise 1, Noise 2 and

Noise 3.

Table 11 shows the test statistic values for each design point in the entire design

region. The underlined value belongs to design point 6 - 0.1 - 0.1 used in Table 9 and

Table 11. Kruskal-Wallis H-Test Statistic Values

aLearning Rate Step Size

0.05 0.1 0.5 0.9

(X 2Momentum Rate

12.592 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

6 50.82 49.13 15.30 50.05 49.75 43.28 50.57 48.66 40.14

Node 12 57.06 52.94 22.27 53.35 50.13 48.83 53.71 52.64 37.00

18 49.29 59.67 32.77 53.15 55.32 37.56 53.12 55.88 26.57

Overall 1883.49
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Table 10. The shadowed value shows the lowest value of the test statistic across the

entire design region. This lowest value (15.30) is still greater than the critical value

(12.592), and even though no statistical inference may be drawn from this test due to the

violation of the independence assumption, the magnitude of the test statistic values

throughout the design region indicates that the rank distributions are not identical across

the features.

Figure 9 and Figure 10 provide further evidence in support of this assertion. A

quick comparison of the distributions in these two figures reveals a significant difference
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Figure 9. Rank Distributions of"Nonsalient" Features
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among the locations of the rank distributions, especially between the "nonsalient" and the

"salient" features.

(2) If the distributions are different, how does each feature's distribution compare

to that of the injected noise feature? Table 12 provides a summary of the Paired I-Tests

run in each design region. Rejecting the null hypothesis associated with these upper-tailed

I-tests supports the conclusion that the associated feature's rank distribution is shifted to

the right of the injected noise feature's rank distribution. This shift to the right indicates
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Table 12. Paired I-Test Summary

Learning Rate Momentum Number of Middle Nodes
Step Size Rate 6 12 18

0.1 Variable 1 Variable 1 Variable 1
Variable 2 Variable 2 Variable 2

0.1 0.5 Variable 1 Variable 1 Variable 1
Variable 2 Variable 2 Variable 2

0.9 Variable 2 Variable I
.. ..______ ......_ _ : Variable 2

0.1 Variable 1 Variable 1 Variable I
Variable 2 Variable 2 Variable 2

0.5 0.5 Variable 1 Variable 1 Variable 1
Variable 2 Variable 2 Variable 2

0.9 Variable 1I Variable i Variable 1
Variable 2 Variable 2 Variable 2

Noise 2 Variable_
0.1 Variable 1 Variable 1 Variable 1

0.9_0.5 Variable 2 Variable 2 Variable 2
0.9 0.5 Variable 1 Variable 1 Variable 1

Variable 2 Variable 2 Variable 2
0.9 Variable 1 Variable 1 Variable 1

________ ______Variable 2 Variable 2 Variable 2

that the associated feature is more salient than Noise, the injected noise feature. Table 12

shows the features in each design point which rejected the null hypothesis.

The rank distributions for Variable 1 and Variable 2 are consistently shifted to the

right of the rank distribution for Noise, suggesting that Variable 1 and Variable 2 are

salient features. The consistent failure of the other features to reject the null hypothesis

suggests that these remaining features are not salient (note: the Bias feature is not

included in these tests).
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Additional evidence indicating differences in rank distribution locations is provided

by a quick review of Figures 9 and 10. The graphs for Noise 1, Noise 2, Noise 3,

Variable 1 and Variable 2 each contain a secondary linear plot which corresponds to the

rank distribution of Noise. A quick comparison of each feature's primary histogram plot

to the secondary linear plot shows that Variable 1 and Variable 2 have definitely shifted to

the right, Noise 1 and Noise 3 have not shifted to the right, and Noise 2 is inconclusive.

Figure 11 provides a scree plot of the number of null hypothesis rejections attained

out of 27 total tests by each feature. This plot divides the features into two distinct

groups. The first group, containing Variable 1 and Variable 2, is characterized by a high

number of rejections, strongly suggesting saliency. The second group contains Noise 1,

Noise 2 and Noise 3 (Noise 1 and Noise 3 are not labeled since they produced no

rejections), each of which produced few or no rejections, strongly suggesting nonsaliency.

(3) Are the feature ranks obtained from the SN Saliency values consistent?

Spearman's Rank Correlation Test investigates this issue of consistency. Table 13 shows

30

. 25 * Variable 2 * Variable 1
20

P15

0

Z 0 * Noise 2

Feature

Figure 11. Scree Plot of Paired t-Test H0 Rejections (by Feature)
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Table 13. Spearman's Rank Correlation Coefficients for Design Point 6 - 0.1 - 0.1

aL = 0.05 Middle Nodes Learning Rate Step Size Momentum Rate

6O [ 0.1 J0.1
0.714 Replicate _

1 I:.7:1 0.821---0.964 0.964 :064 0.893 0.714 0.714 .0.714 i
2 O10607,, 0.607- 0.536' 0.857 0.643 0,929 0.857 0.929

! 3 0.1 0.857 Ai0643 0.79:----- 0.571 : 0.:6071057

4 0.929 0.714 0.929 0.786 0.75:10.786 i
5 ,0.571, 10.821 ;0,643' 0.75[1,.4
6 0.2 0.857 0.643 1 0.857 i

S 7 0.75 ,0.679-'l 0.75
8 0.857 1

9 0.857

the correlation coefficients calculated for each pair of replicates in design point 6 - 0.1 -

0.1. The shaded values do not exceed the critical value (0.714), leading to the conclusion

that the paired replicates involved in the particular test do not provide consistent feature

ranks. The critical value shown above corresponds to a single test. No family confidence

level is offered for making simultaneous inferences from more than one test. On the other

hand, the percentage of these tests which reject Ho, both within a given design point and

across design points, provides some indication of the consistency of these ranks. Higher

rejection percentages support the conclusion that the feature ranks are consistent, while

lower rejection percentages suggest that the ranks are not consistent.

With this in mind, Table 14 shows these rejection percentages both within and

across design points. Overall, the percentages seem to be lower than those produced by

the Fisher Iris Classification problem. The scree plot in Figure 11 may provide a reason.
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Table 14 Percentage of Spearman's Rank Correlation Tests which Reject H

Learning Rate Step Size

0.1 0.5 0.9

Momentum Rate

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

6 57 100 23 90 62 52 71 90 43

Node 12 95 100 14 81 71 67 81 76 33

18 71 100 f 29 76 81 43 86 76 24

Overall 64.296

Though the distinction between the two groups of features (based on the number of Paired

t-Test rejections of H0) seems fairly significant, the distinction between the features within

the groups may be insignificant, perhaps due to similar a priori saliencies within each

group. If the neural network does not distinguish well between the saliencies of Noise 1,

Noise 2 and Noise 3, it may well produce inconsistent ranks of these three features,

leading to a low percentage of Ho rejections by Spearman's Rank Correlation Test.

Most likely, the SN saliency metric ranks Variable 1 and Variable 2 consistently

higher than Noise 1, Noise 2 and Noise 3, which is the desired consistency. Table 15

shows the percentage of replications within each design point and overall in which

Variable 1 and Variable 2 are ranked higher than Noise, Noise 1, Noise 2 and Noise 3.

The high percentage rates associated with most of the design points suggest that the SN
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Table 15 Percentage of Replications which rank Variable 1 and Variable 2 above Noise,

Noise 1, Noise 2 and Noise 3

Learning Rate Step Size

0.1 0.5 0.9

Momentum Rate

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

6 100 100 50 100 100 90 100 100 90

Node 12 100 100 50 100 100 90 100 100 100

18 100 100 60 100 100 100 100 100 90

Overall 93.3

saliency metric consistently ranked the 'salient' features higher than the 'nonsalient'

features, which is the desired result.

(4) Does network architecture affect results? Figure 12 shows the changes in the

rank distribution of Noise due to changes in the level of one of the three neural network

design factors. Each graph corresponds to a different design factor (e.g. Number of

Middle Nodes), and the three plots within the graph are each associated with a different

level of that design factor (e.g. 6 nodes, 12 nodes, 18 nodes). Significant differences

caused by changing the level of the design factor are easily recognized by comparing the

plots associated with the three levels of that design factor.
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Of the three design factors (Number of Middle Nodes, Learning Rate Step Size

and Momentum Rate), setting the momentum rate to 0.9 appears to cause the biggest shift

in the rank distribution, although this shift may or may not be problematic. The tightest

distributions seem associated with neural networks which use 18 middle nodes, a learning

rate step size of 0.5 and avoid a momentum rate of 0.9.

40 __

306 30 0.

01220 20 00.5

K 10* 10 00.9

00

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Noise Noise
Number of Middle Nodes Learning Rate Step Size

50
40O

,~E3 0.130h tri o-00.
S20

NO0.9U10 nEt11m1
1 2 3 4 5 6 7

Nokise
Momentum Rate

Figure 12. Design Factor Effect on Rank Distribution

The three statistical tests each provide some support for avoiding a high

momentum rate. A quick review of Tables 11, 12, 14 and 15 reveals that the lowest test
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statistic values consistently correspond to the highest momentum rate, while in Table 12,

the only spurious results of the Paired t-Test correspond to the highest momentum rate.

All of this seems to suggest that the neural network has more difficulty sorting features

according to saliency at the highest momentum rate, and that this momentum rate should

be avoided.

SN Saliency Screening

This section explores the robustness of the SN Saliency Screening method, both

within and across design points, by examining the results obtained when applying the

method to two example problems: the Fisher Iris Classification problem and the XOR

problem. This section is divided into two parts, each devoted to a particular example

problem.

The results obtained through application of the SN saliency screening method to

each of the two example problems indicate that the method is robust both within and

across design points. Each SN saliency screening run identified similar (in the Fisher Iris

Classification problem) or identical (in the XOR problem) subsets of salient features. The

variation in the subset of salient features identified for the Fisher Iris Classification

problem indicates redundancy among the salient features, which allows the neural network

to retain either of the two most highly salient features with negligible effect on the

classification error rate.

Fisher Iris Classification Problem. In order to explore the robustness of the SN

saliency screening method across design points, one screening run, using the method
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described in Chapter 3, is accomplished at three separate design points: 9 - 0.1 - 0.1, 18 -

0.5 - 0.5 and 27 - 0.1 - 0.9. Figures 13, 14 and 15 summarize the saliency screening by

showing when each feature is removed and the classification error rate's response to that

removal.

The classification error chart shows the test set error rate, for it provides a more

accurate approximation of the actual error rate. A lower classification rate is better than a

larger classification error rate. Notice how the classification error rate is reasonable stable

until approximately 1600 epochs, at which time it leaps up significantly. A feature is

removed about every 200 epochs, and this point corresponds to the removal of the eighth,

i.e. the last, of the original features in Fisher's Iris data set. This suggests that the neural

network only needs one of the features to maintain a reasonably small classification error

rate. The graph directly beneath the classification error rate graph shows which of the

features is retained until last.

The lower graph shows the signal-to-noise ratios, or SN saliency values, for the

eight original features, Noise and Bias. The legend shows the eight original features in the

order in which they are removed. For example, Figure 13 shows that Noise 2 is removed

first, Noise 3 is removed second, and so on. The feature which is removed at a given

point has the lowest signal-to-noise ratio of all of the candidate features at that point.

Remember, bigger is better for signal-to-noise ratios. Bias and Noise are not removed

during the saliency screening. Noise is retained for calculation of the SN saliency value,

while Bias is supplied directly by the neural network and is not subject to removal.
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In comparing these three saliency screenings, note that the classification error rate

reacts fairly consistently to feature removal across the three design points; the error rate is

not significantly altered until the last of the original eight features is removed. Notice the

difference in the magnitudes of the signal-to-noise ratios between design points. This

complicates the problem of trying to identify salient features based simply upon the

magnitude of the signal-to-noise ratios. However, even if the magnitudes of the signal-to-

noise ratios vary significantly from design point to design point, the feature ranks provided

by these values seem fairly consistent across the three design points. This supports a

saliency screening method based upon the relative rank provided by the saliency metric.

Design point 9 - 0.1 - 0.1 recommends retaining Variable 3, while the other two

points recommend retaining Variable 4. Why the difference, and why do they not

recommend keeping both features, since previous tests seem to indicate that both features,

as well as Variable 2 and possible Noise 2, are salient? Table 16 shows that Variable 3

and Variable 4 are highly correlated with each other and have similar linear correlations

with the classification groups. Basically, the neural network receives the same

information, the same value, from each feature; in other words, they are redundant.

Hence, the neural network needs to retain only one of these two features to achieve

similar classification accuracy.

Variable 2, on the other hand, is only moderately correlated with the second

classification group. The high correlation of Variable 3 and Variable 4 with the first and

third classification groups may be more valuable for accurately classifying an iris into the

second group than the information given by Variable 2. Variable 3 and Variable 4
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accurately predict when an iris does not belong to the first and third groups, in which case,

by default, it must belong to the remaining group. If the classifier created by the neural

network is able to deduce this, then the information provided by Variable 3 and Variable

4 is definitely more valuable than that provided by Variable 2 for classifying irises into the

second group. The suggestion that a neural network operates this way qualifies as pure

conjecture, although the suggestion does provide a convenient explanation.

Table 16. Correlation of Features and Classification Groups

Var 1 Var 2 1Var 3 Var 4 Noise Noise 2 Noise 3 Noise 4 Group I Group 2 Group 3
Noise -0.09 0,03 -0.11 -0.12 -0.01 0.07 -0.12 0.05 -0.14 0.07 0.07
Var I -. 087T082 0.06 0.00 0.11 -0.09 0 ,-'A64 0.08 -0.72
Va-0.43 -0.37 0.06 -0.10 -0.03 0.07 -0.14 -0,47 0.60' ,
Var09 0.04 0.03 0.08 -0.12 0.72 0.20 -0.92
Va40.07 0. 0.0 -0.10 0,77 0.12 -0.89
Nois0 .06 -0.06 -0.01 0.06 -0.05
Nois-0.04 -0.05 -0.04 0.12 -0.08

-Nois _0.06 0.11 -0.03 -0.08
Nois-0.14 0.06 0.08

In order to examine the robustness of the SN Saliency Screening method within a

design point, ten saliency screenings are accomplished at design point 9 - 0.5 - 0.5. Figure

16 shows the average signal-to-noise ratios generated by these runs. The legend shows

the average order in which the features are removed. This order is consistent with those

produced by the single screenings at design points 9 - 0.1 - 0.1, 18 - 0.5 - 0.5 and 27 - 0.1

- 0.9. A feature is removed approximately every 200 epochs, and when a feature is

removed, its SN saliency value goes to zero.
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Figure 16. Average Signal-to-Noise Ratios
(Design Point 9 - 0.5 - 0.5, 10 Replicates)

Figure 17 shows the average classification error rate generated during these ten

runs. This average is calculated for the epoch just prior to feature removal. Since eight

features are removed, eight averages are calculated. These eight averages are connected

by lines for readability and trend analysis. The lines between the eight points do not

represent averages. The dashes immediately above and below the eight points represent

adding and subtracting one standard deviation to the average. This range does not

represent a confidence interval. However, the relative width of this range indicates

relative variance of the classification error rate at each point of feature removal.

This plot is similar to the classification error rate plots for the previous three

design points. Feature removal generates no significant change in the classification error
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rate until the last of the eight original features is removed. (Note: no ninth feature is

removed; this point corresponds to the end of training.)

Figure 18 shows the average feature rank during these ten replications. The rank

determines when the feature is removed. Once again, bigger is better, and the rank's

range starts at one (first feature removed) and ends at eight (last feature removed). As

expected, Variable 4 and Variable 3 occupy the two highest spots, with Variable 4 mildly

preferred over Variable 3. Once again, the dashes represent adding and subtracting one

standard deviation to the average rank. The relative width of the resultant interval

provides some indication as to the certainty with which the neural network assesses the

feature's relative saliency. The smallest interval belongs to Variable 4, while the largest

59



belongs to Noise 4, which indicates that the neural network is much more certain about

Variable 4's rank, and hence its saliency, than it is about Noise 4's rank.
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bVariable3
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Figure 18. Average Feature Rank (Design Point 9 - 0.5 - 0.5, 10 Replications)

The XOR Problem. In order to investigate the robustness of the SN saliency

screening method within and across design points, three single screenings are

accomplished at design points 6 - 0.1 - 0.1, 12 - 0.5 - 0.5 and 18 - 0.9 - 0.9. Figures 19,

20 and 21 plot the classification error rate and average signal-to-noise ratios produced by

each screening.

A quick scan of these three graphs reveals that the removal of either Variable I or

Variable 2 causes a significant increase in the classification error rate, indicating that both

of these features should be retained as salient. The SN saliency values tend to divide the

features into two groups, one containing Variable 1 and Variable 2, and the second
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containing Noise 1, Noise 2 and Noise 3. Since the removal of any of the features in the

second group caused no significant increase in the classification error rate, they are

identified as nonsalient.

Figure 22 shows the results produced by ten saliency screenings at the design point

12 - 0.3 - 0.7. The average signal-to-noise ratios shown here are consistent with those

shown in Figures 19, 20 and 21.
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Figure 22. Average Signal-to-Noise Ratios
(Design Point 12 - 0.3 - 0.7, 10 Replications)

Figure 23 shows the average classification error rates at feature removal for the ten

screening runs. This plot shows how well-behaved the XOR problem is. Removal of the

nonsalient features causes a decreasing trend in the average classification error rate; i.e.

the neural network is becoming more accurate. Furthermore, the variability of the
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classification error rate, as indicated by the interval bounded by the dashes, decreases

throughout the removal of the nonsalient features. When the first of the two salient

features is removed, the classification error rate increases significantly, both in magnitude

and in variability.
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Figure 23. Average Classification Error Rate at Feature Removal
(Design Point 12 - 0.3 - 0.7, 10 Replications)

Figure 24 shows the features' average ranks. Recall that bigger is better, and since

only five features are eligible for removal, the highest rank is five. Note that not only are

the features ordered as expected (Noise 1, Noise 2 and Noise 3 in the first group, Variable

1 and Variable 2 in the second group) but the variability associated with the ranks of

Variable 1 and Variable 2 is much smaller than that associated with the ranks of Noise 1,
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Noise 2 and Noise 3. The neural network has no confusion regarding the relative saliency

of Variable 1 and Variable 2.
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Figure 24. Average Feature Rank
(Design Point 12 - 0.3 - 0.7, 10 Replicates)
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V. Final Results and Recommendations

Final Results

This thesis effort introduces a new saliency metric, the SN saliency metric, which is

based upon signal-to-noise ratios, and explores its use in a new saliency screening method,

the SN saliency screening method. Confidence in the SN saliency screening method

depends largely upon consist feature order when ranked according to the SN saliency

metric.

Chapter Three presents a designed experiment which aims at determining the

consistency of the feature ranks provided by the SN saliency metric, both within and

across a range of neural network architectures. Chapter Four uses the results of this

designed experiment to answer four questions:

(1) Are the distribution of the signal-to-noise ratios identical for all features?

Identical distributions across the features suggest that the neural network is unable to

distinguish relative saliency among the features using the SN saliency metric. In that case,

feature ranks based upon the SN saliency metric are highly unlikely to be consistent.

For both example problems, however, both the Kruskal-Wallis H-Test and

histograms of each feature's rank suggest that the distributions are not identical. Due to

violation of the independence assumption, the Kruskal-Wallis H-Test allowed no inferred

conclusion and was used for illustration only.

(2) If the distributions are different, how does each feature's distribution compare

to that of the injected noise feature? Salient features should generate larger SN saliency
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values than nonsalient features. The injected noise feature, Noise, is a known nonsalient

feature used as a reference against which to assess the saliency of the remaining features.

Salient features should produce larger SN saliency values than those produced by Noise,

so the SN saliency metric distribution should be shifted to the right of the same

distribution for Noise. An upper-tailed Paired t-Test identifies features whose

distributions are shifted to the right.

For the XOR problem, Variable 1 and Variable 2 are consistently identified by the

Paired t-Test, while for the Fischer Iris Classification problem, Variable 2, Variable 3 and

Variable 4 are consistently identified, while Noise 2 is occasionally identified. These

results suggest that the identified features are salient.

(3) Are the feature ranks obtained from the signal-to-noise ratios consistent? If

the feature ranks are not consistent, then the results of the SN saliency screening method

are not reliable. Spearman's Rank Correlation Tests suggest that the feature ranks are

consistent.

(4) Does network architecture affect these results? The results of the Kruskal-

Wallis H-Tests, Paired t-Tests, and Spearman's Rank Correlation Tests suggest that a high

momentum rate (0.9) might adversely affect feature relative saliency assessment, which

might adversely affect the reliability of the SN saliency screening method. The test results

suggest this more strongly for the Fischer Iris Classification problem than for the XOR

problem.

Furthermore, graphical analysis of the effect of neural network architecture on

rank distribution supports this suggestion; once again, the graphs suggest this more
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strongly for the Fischer Iris Classification problem than for the XOR problem. Either way,

neural networks with high momentum rates might be avoided when using the SN saliency

screening method.

After answering the preceding four questions, several SN saliency screenings are

accomplished to investigate this method's robustness, both across multiple screenings with

a given neural network and across single screenings using different neural networks.

These screenings produced consistent results within both the Fischer Iris Classification

problem, after accounting for redundant features, and the XOR problem.

Overall, the SN saliency screening method seems to reliably select salient features

from the data sets used with the two example problems. It seems fairly robust to the

different neural network architectures included in the design region. The method shows

promise as a rough saliency screening tool, allowing the user to reduce the size of a data

set, in one or a small number of runs, in anticipation of further screening using a finer tool.

While this effort establishes no statistically validity for this method, it suggests empirical

validity, warranting further research and development.

Recommendations

Recommended areas of further study include the following:

(1) Direct comparison of the SN Saliency Screening method to both the Belue-Bauer and

Steppe Bauer Saliency Screening methods;

(2) Use of the SN Saliency metric in both the Belue-Bauer and Steppe-Bauer Screening

methods;
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(3) Statistical validation of the SN Saliency Screening method;

(4) Application of the SN Saliency Screening method to real-world problems.
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Appendix A: Fisher Iris Classification Data

Table 17. Fisher Iris Classification Data.

Noise Var 1 Var 2 Var 3 Var 4 Noise 1 Noise 2 Noise 3 Noise 4 Group Group Group
1 2 3

0.022045 50 33 14 2 63 24 37 15 0 0 1
0.381408 64 28 56 22 55 30 46 2 1 0 0

0.3454 65 28 46 15 55 25 49 20 0 1 0
0.19256 67 31 56 24 51 29 13 14 1 0 0
0.15263 63 28 51 15 48 30 45 2 1 0 0
0.202112 46 34 14 3 55 32 19 23 0 0 1
0.245901 69 31 51 23 55 30 42 10 1 0 0
0.929237 62 22 45 15 57 30 17 4 0 1 0
0.019012 59 32 48 18 52 27 52 18 0 1 0
0.417046 46 36 10 2 59 30 39 21 0 0 1
0.056329 61 30 46 14 52 35 59 15 0 1 0
0.080322 60 27 51 16 65 35 41 2 0 1 0
0.886047 65 30 52 20 50 36 52 1 1 0 0
0.16553 56 25 39 11 49 36 16 2 0 1 0
0.923119 65 30 55 18 65 25 45 16 1 0 0
0.029805 58 27 51 19 63 31 40 15 1 0 0
0.30158 68 32 59 23 59 25 44 23 1 0 0
0.384288 51 33 17 5 57 26 61 11 0 0 1
0.648017 57 28 45 13 52 24 39 20 0 1 0
0.396847 62 34 54 23 56 27 13 2 1 0 0
0.868973 77 38 67 22 58 37 17 15 1 0 0
0.963004 63 33 47 16 71 32 40 13 0 1 0
0.55725 67 33 57 25 61 30 47 2 1 0 0

0.447546 76 30 66 21 58 34 40 3 1 0 0
0.900543 49 25 45 17 64 30 43 23 1 0 0
0.460105 55 35 13 2 44 30 48 17 0 0 1
0.229432 67 30 52 23 67 25 50 16 1 0 0
0.370636 70 32 47 14 67 28 15 23 0 1 0
0.969775 64 32 45 15 52 30 40 13 0 1 0
0.966679 61 28 40 13 69 35 47 24 0 1 0
0.668441 48 31 16 2 50 27 15 18 0 0 1
0.411206 59 30 51 18 58 28 55 20 1 0 0
0.554037 55 24 38 11 47 36 15 2 0 1 0
0.228525 63 25 50 19 54 22 61 23 1 0 0
0.197843 64 32 53 23 57 27 13 12 1 0 0
0.893289 52 34 14 2 63 29 49 2 0 0 1
0.217766 49 36 14 1 69 36 51 23 0 0 1
0.752164 54 30 45 15 63 31 14 4 0 1 0
0.390443 79 38 64 20 46 33 45 4 1 0 0
0.11019 44 32 13 2 67 30 51 1 0 0 1
0.799705 67 33 57 21 50 25 58 13 1 0 0
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Table 17 (Continued). Fisher Iris Classification Data

Noise Var 1 Var 2 Var 3 Var 4 Noise 1 Noise 2 Noise 3 Noise 4 Group Group Group
1 2 3

0.41794 50 35 16 6 70 28 47 23 0 0 1
0.012878 44 30 13 2 51 26 56 11 0 0 1
0.550127 77 28 67 20 56 32 14 2 1 0 0
0.190646 63 27 49 18 68 28 17 15 1 0 0
0.272679 47 32 16 2 60 26 15 2 0 0 1
0.989417 55 26 44 12 57 31 15 13 0 1 0
0.218794 50 23 33 10 64 35 58 2 0 1 0
0.757459 72 32 60 18 67 29 54 3 1 0 0
0.391665 48 30 14 3 55 34 50 12 0 0 1
0.964584 51 38 16 2 46 32 42 2 0 0 1

0.459093 61 30 49 18 58 40 15 24 1 0 0
0.872543 48 34 19 2 46 30 49 19 0 0 1
0.344737 50 30 16 2 50 31 14 2 0 0 1

0.5635 50 32 12 2 50 26 39 19 0 0 1
0.372503 61 26 56 14 50 30 48 4 1 0 0
0.483572 64 28 56 21 61 41 35 18 1 0 0
0.966834 43 30 11 1 54 23 45 2 0 0 1
0.333953 58 40 12 2 62 35 15 15 0 0 1
0.416162 51 38 19 4 58 32 51 18 0 0 1
0.786499 67 31 44 14 63 38 61 15 0 1 0
0.643883 62 28 48 18 43 32 41 22 1 0 0
0.889974 49 30 14 2 63 37 44 18 0 0 1
0.620373 51 35 14 2 69 32 10 13 0 0 1

0.944141 56 30 45 15 51 28 15 21 0 1 0
0.584842 58 27 41 10 60 37 47 2 0 1 0
0.899539 50 34 16 4 77 31 50 3 0 0 1

0.701322 46 32 14 2 47 29 16 15 0 0 1
0.594694 60 29 45 15 62 27 33 10 0 1 0
0.804132 57 26 35 10 57 31 51 18 0 1 0
0.637877 57 44 15 4 61 30 60 24 0 0 1
0.742738 50 36 14 2 65 30 15 10 0 0 1
0.240559 77 30 61 23 64 22 49 10 1 0 0
0.52612 63 34 56 24 51 28 55 3 1 0 0
0.218645 58 27 51 19 60 34 66 12 1 0 0
0.830161 57 29 42 13 49 28 14 14 0 1 0
0.53005 72 30 58 16 57 27 63 1 1 0 0
0.432066 54 34 15 4 64 29 64 2 0 0 1
0.4736 52 41 15 1 67 28 57 10 0 0 1

0.888938 71 30 59 21 66 28 60 1 1 0 0
0.35543 64 31 55 18 77 33 14 13 1 0 0
0.970588 60 30 48 18 50 25 56 3 1 0 0
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Table 17 (Continued). Fisher Iris Classification Data

Noise Var 1 Var 2 Var 3 Var 4 Noise 1 Noise 2 Noise 3 Noise 4 Group Group Group
1 2 3

0.907215 63 29 56 18 72 28 13 14 1 0 0
0.539629 49 24 33 10 68 39 44 23 0 1 0
0.743644 56 27 42 13 55 38 15 12 0 1 0
0.448921 55 42 14 2 57 35 15 2 0 0 1
0.066035 57 30 42 12 49 27 16 18 0 1 0
0.30239 77 26 69 23 61 30 14 3 1 0 0

0.033611 60 22 50 15 46 34 35 13 1 0 0
0.544835 54 39 17 4 58 30 47 21 0 0 1
0.316499 66 29 46 13 79 25 41 1 0 1 0
0.608095 52 27 39 14 67 32 14 2 0 1 0
0.306119 60 34 45 16 61 38 56 15 0 1 0
0.28664 50 34 15 2 65 31 46 14 0 0 1

0.798603 44 29 14 2 53 32 15 21 0 0 1
0.929802 50 20 35 10 56 39 17 2 0 1 0
0.724236 55 24 37 10 49 29 53 19 0 1 0
0.584209 58 27 39 12 64 34 67 2 0 1 0
0.653943 47 32 13 2 67 33 14 10 0 0 1
0.849551 46 31 15 2 72 34 16 16 0 0 1

0.13162 69 32 57 23 65 28 16 22 1 0 0
0.867521 62 29 43 13 50 38 14 16 0 1 0
0.842547 74 28 61 19 48 30 67 4 1 0 0

0.567013 59 30 42 15 77 31 59 2 0 1 0
0.647119 51 34 15 2 51 27 14 15 0 0 1
0.857391 50 35 13 3 50 30 13 13 0 0 1
0.342801 56 28 49 20 66 30 56 4 1 0 0
0.505257 60 22 40 10 60 44 38 13 0 1 0
0.437562 73 29 63 18 54 34 69 14 1 0 0
0.622567 67 25 58 18 49 34 51 14 1 0 0

0.137502 49 31 15 1 54 34 43 3 0 0 1
0.61439 67 31 47 15 74 29 56 25 0 1 0
0.764627 63 23 44 13 64 30 45 18 0 1 0
0.822172 54 37 15 2 48 26 12 5 0 0 1

0.404298 56 30 41 13 68 34 45 6 0 1 0
0.60006 63 25 49 15 56 20 12 21 0 1 0
0.186782 61 28 47 12 64 23 42 18 0 1 0
0.554727 64 29 43 13 49 23 30 25 0 1 0

0.574824 51 25 30 11 51 31 57 12 0 1 0
0.261008 57 28 41 13 61 30 13 2 0 1 0
0.157423 65 30 58 22 51 33 14 13 1 0 0
0.983194 69 31 54 21 69 38 19 19 1 0 0
0.677505 54 39 13 4 62 29 48 18 0 0 1
0.896494 51 35 14 3 72 32 13 20 0 0 1
0.691955 72 36 61 25 67 28 51 20 1 0 0

73



Table 17 (Continued). Fisher Iris Classification Data

Noise Var 1 Var 2 Var 3 Var 4 Noise 1 Noise 2 Noise 3 Noise 4 Group Group Group
1 2 3

0.110934 65 32 51 20 63 30 45 4 1 0 0
0.431005 61 29 47 14 48 34 54 21 0 1 0

0.726018 56 29 36 13 56 23 11 13 0 1 0
0.45133 69 31 49 15 59 32 44 2 0 1 0

0.336345 64 27 53 19 60 29 14 14 1 0 0
0.571441 68 30 55 21 60 33 50 2 1 0 0

0.673593 55 25 40 13 57 31 48 25 0 1 0

0.893948 48 34 16 2 51 31 14 18 0 0 1

0.192514 48 30 14 1 73 28 40 2 0 0 1

0.663474 45 23 13 3 56 30 51 22 0 0 1

0.71871 57 25 50 20 48 34 49 15 1 0 0

0.880614 57 38 17 3 50 30 33 15 0 0 1
0.763229 51 38 15 3 54 25 16 14 0 0 1

0.512937 55 23 40 13 45 27 53 11 0 1 0

0.127309 66 30 44 14 54 30 51 19 0 1 0

0.30831 68 28 48 14 62 30 58 18 0 1 0

0.020578 54 34 17 2 58 22 42 13 0 0 1

0.67425 51 37 15 4 51 32 16 20 0 0 1
0.40357 52 35 15 2 44 42 56 17 0 0 1

0.881294 58 28 51 24 76 29 46 2 1 0 0
0.723314 67 30 50 17 77 38 15 13 0 1 0
0.06308 63 33 60 25 55 32 45 2 1 0 0

0.488632 53 37 15 2 63 33 55 2 0 0 1
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Appendix B: XOR Classification Data

Table 18. XOR Classification Data

Noise Variable Variable Noise Noise Noise Group Group
1 2 1 2 3 1 2

-0.3207 -0.3438 0.3951 0.3716 0.0476 0.0908 0 1
-0.4727 0.4342 -0.2489 -0.0131 -0.069 -0.8866 0 1
0.1647 -0.6473 0.0224 0.4967 0.618 -0.9706 0 1
0.2865 -0.3052 0.23 -0.9012 0.4726 -0.6751 0 1
0.3985 0.7185 -0.633 -0.4905 -0.4538 0.3337 0 1
0.5439 0.0181 -0.5299 0.3239 -0.5213 0.0216 0 1
0.1544 0.8304 -0.7728 0.7054 0.6681 -0.2308 0 1
-0.181 0.4922 -0.771 0.7707 -0.9853 0.4334 0 1
-0.93 0.7999 -0.2749 0.5235 0.1763 0.4262 0 1

0.5665 0.0362 -0.1976 0.0363 0.5994 0.1086 0 1
-0.4034 -0.65 0.9569 -0.3082 -0.3947 0.5913 0 1
0.5414 -0.8746 0.0332 0.7607 0.8394 -0.9111 0 1
-0.8526 0.3035 -0.5517 0.3742 -0.2504 0.9364 0 1
0.3549 -0.4809 0.7476 0.2692 0.9663 -0.7978 0 1
-0.0319 -0.5848 0.371 -0.018 0.6774 0.7371 0 1
-0.3009 0.4845 -0.5842 -0.9161 -0.5019 0.8058 0 1
-0.3012 0.4994 -0.8499 -0.3154 -0.4209 0.9874 0 1
0.0991 -0.9364 0.7694 -0.8905 -0.4757 0.2223 0 1
-0.6187 -0.6927 0.5857 0.6848 0.2447 -0.9645 0 1
0.5982 -0.0512 0.0906 0.27 -0.6106 -0.1088 0 1
0.2753 0.7003 -0.9421 -0.0364 0.7919 0.313 0 1
-0.7117 0.014 -0.3179 0.0849 0.0798 -0.4482 0 1
-0.7124 0.1642 -0.1129 -0.7806 -0.3442 -0.7788 0 1
0.4145 -0.3602 0.3625 0.728 -0.1739 0.9005 0 1
-0.3615 0.5011 -0.206 -0.6123 0.9687 -0.1116 0 1
0.0434 0.6386 -0.5731 -0.4276 -0.3779 -0.1033 0 1
0.5688 -0.4039 0.8917 -0.5468 0.8999 0.1988 0 1
-0.5865 0.0686 -0.0841 0.2135 -0.6587 0.6161 0 1
0.6612 0.6533 -0.0234 0.7759 -0.5144 0.7753 0 1
0.937 -0.5806 0.9703 -0.5317 -0.3151 0.2479 0 1

0.7585 -0.8137 0.4918 0.0211 -0.4356 -0.9853 0 1
0.3347 0.3475 -0.5494 -0.889 0.0797 0.7607 0 1
-0.8357 0.789 -0.534 0.485 0.8462 -0.7891 0 1
-0.3361 -0.5197 0.1475 -0.7969 0.3144 0.631 0 1
-0.4056 -0.5044 0.1056 -0.2702 0.6518 0.3993 0 1
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Table 18 (Continued). XOR Classification Data

0.6133 -0.2088 0.7834 0.6078 0.2078 -0.1937 0 1
0.0989 0.0395 -0.4349 -0.7286 -0.795 0.7811 0 1
-0.3076 -0.5126 0.7378 0.3904 0.2954 0.0999 0 1
-0.5895 -0.3628 0.4459 -0.6382 -0.7452 -0.7733 0 1
-0.871 -0.22 0.1245 0.6976 0.058 -0.3287 0 1
0.1432 0.299 -0.1477 -0.1777 -0.4409 0.6587 0 1
0.672 -0.7658 0.7635 0.3921 -0.1046 -0.6544 0 1

0.1889 0.7548 -0.0294 -0.427 0.5141 -0.7239 0 1
-0.6156 -0.9245 0.9954 0.347 -0.953 0.6112 0 1
0.7215 -0.7919 0.3899 -0.2433 0.9099 0.6846 0 1
0.2055 -0.0699 0.7829 0.9385 0.1917 -0.5503 0 1
0.3733 -0.1733 0.9466 0.7269 -0.5664 0.2741 0 1
0.9483 0.4314 -0.3319 0.8096 -0.1985 -0.6921 0 1
-0.4764 0.8225 -0.1494 -0.4578 -0.7725 0.5042 0 1
-0.2706 0.2043 -0.9815 0.7128 -0.247 0.8288 0 1
0.523 -0.3248 0.8413 0.63 0.3467 0.4133 0 1

-0.0888 0.0028 -0.6916 0.2368 -0.1889 0.3619 0 1
-0.0923 0.6141 -0.2804 0.8481 -0.8132 -0.393 0 1
-0.3508 0.7995 -0.3425 0.6666 -0.4619 0.5378 0 1
-0.8783 0.149 -0.8412 0.591 -0.3809 -0.2529 0 1
-0.9681 -0.0137 0.2119 -0.4643 0.0939 0.3053 0 1
-0.6519 -0.7495 0.9102 -0.0176 -0.3332 -0.827 0 1
0.0627 0.4931 -0.8917 -0.8833 -0.3101 -0.8444 0 1
0.0651 0.375 -0.4276 0.9831 0.9707 -0.3431 0 1
-0.2927 0.7211 -0.3766 -0.5202 -0.4024 0.401 0 1
0.207 0.9749 -0.7212 -0.7524 0.6984 0.819 0 1

0.3593 -0.5726 0.9543 0.551 0.355 -0.5948 0 1
-0.1237 -0.7888 0.323 0.1993 -0.2713 -0.5148 0 1
-0.185 0.4899 -0.4094 -0.7546 0.6538 0.0456 0 1
-0.4652 0.1682 -0.8528 -0.502 -0.2938 0.772 0 1
-0.6674 0.2614 -0.8452 -0.0898 0.8419 -0.5924 0 1
-0.398 -0.3781 0.3439 -0.6011 0.6776 -0.762 0 1

-0.0445 0.4357 -0.8722 0.5617 -0.4356 -0.745 0 1
-0.9901 -0.404 0.9566 -0.9078 0.5602 0.9507 0 1
0.8858 -0.2806 0.8611 -0.4713 -0.0651 -0.9231 0 1
-0.5884 0.6328 -0.3075 0.677 -0.4657 -0.9833 0 1
0.5104 -0.1472 0.1586 -0.3882 -0.4879 0.4834 0 1
0.7609 0.339 -0.2293 0.5197 -0.9079 -0.1185 0 1
-0.1408 0.9286 -0.7147 -0.6844 -0.9643 -0.0604 0 1
-0.499 -0.4581 0.7671 -0.229 0.085 -0.6055 0 1
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Table 18 (Continued). XOR Classification Data

0.1576 0.0451 -0.1202 -0.2276 -0.6333 -0.8513 0 1
-0.1153 -0.4004 0.7903 0.0214 0.7662 -0.2703 0 1
-0.3891 -0.6353 0.3547 0.3021 -0.5114 0.8196 0 1
-0.1823 0.1761 0.1646 -0.9225 0.1283 0.0622 1 0
0.8917 -0.4054 -0.2004 0.3323 0.1559 0.5693 1 0
-0.5389 -0.3217 -0.2696 -0.8776 -0.273 0.8677 1 0
-0.9269 -0.0926 -0.6453 0.6108 -0.3659 -0.6608 1 0
-0.4483 0.3844 0.9998 -0.305 -0.8642 -0,8744 1 0
-0.3656 0.9352 0.8664 -0.2544 0.6247 0.5672 1 0
-0.1839 0.5261 0.1536 0.891 0.0613 0.8216 1 0
-0.0531 -0.9997 -0.635 0.0741 0.7382 -0.0059 1 0
0.8289 -0.66 -0.7642 -0.352 0.3797 0.4634 1 0
-0.471 -0.5249 -0.8349 0.6632 -0.8406 -0.8778 1 0

-0.5896 -0.8409 -0.3275 -0.0953 -0.5993 -0.5169 1 0
0.9039 -0.9846 -0.8121 -0.7448 -0.9454 0.7714 1 0
0.8203 0.083 0.642 -0.7611 0.3321 -0.5577 1 0
0.7313 -0.8519 -0.6884 -0.3862 0.2806 -0.1668 1 0
0.6865 -0.0665 -0.389 0.3695 0.1109 0.87 1 0
0.1679 -0.849 -0.9097 0.6086 -0.7727 0.6331 1 0
0.8907 -0.3606 -0.3024 0.9413 -0.2811 0.6132 1 0
0.5459 -0.0974 -0.0492 0.8526 -0.5258 0.0096 1 0

-0.4808 0.5801 0.1066 -0.5855 0.2593 -0.4845 1 0
0.8791 -0.1934 -0.1573 -0.366 -0.7449 -0.688 1 0
-0.2173 -0.576 -0.3753 0.2778 0,7095 -0.9209 1 0
0.0531 0.0158 0.463 -0.6815 -0.3141 -0.7275 1 0
-0.0425 -0.6564 -0.4311 0.5233 -0.2269 0.2229 1 0
0.6127 0.9401 0.4005 -0.4685 -0.0027 -0.7518 1 0
-0.3003 0.5842 0.9718 0.7086 -0.2763 -0.5242 1 0
0.2378 -0.6246 -0.4257 -0.4178 -0.5264 0.2689 1 0
-0.2399 -0.475 -0.7777 0.2528 0.4403 -0.453 1 0
0.4069 -0.5793 -0.379 0.6031 0.353 -0.6263 1 0
0.5199 -0.8059 -0.3021 -0.2872 -0.399 -0.0586 1 0
0.7994 -0.6771 -0.4305 0.5268 0.2745 0.8132 1 0
-0.9327 0.9171 0.4205 0.2317 0.0076 -0.5235 1 0
0.355 0.2076 0.497 -0.9196 0.815 -0.9283 1 0

0.6401 -0.8852 -0.6779 0.6242 0.2856 0.5286 1 0
-0.2965 -0.4585 -0.4532 -0.4408 0.1266 -0.6969 1 0
-0.7495 -0.919 -0.1059 0.6452 -0.8293 -0.8899 1 0
-0.7618 0.833 0.4735 0.5941 -0.4412 -0.3377 1 0
-0.9926 0.1994 0.891 0.4922 0.9791 0.7353 1 0
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Table 18 (Continued). XOR Classification Data

-0.5399 -0.1275 -0.2263 0.2757 0.6092 -0.2447 1 0
-0.1276 0.9356 0.5549 0.2313 -0.28 0.5784 1 0
-0.911 0.8981 0.0235 0.7904 0.8437 0.4684 1 0

-0.2695 0.1781 0.7904 0.8606 0.8513 -0.2233 1 0
-0.6636 0.0731 0.3571 -0.4533 -0.2875 0.4773 1 0
0.9935 0.1532 0.5018 0.8172 0.8974 -0.7721 1 0
0.8922 -0.1754 -0.6651 0.7649 0.0553 -0.454 1 0
-0.0617 -0.0256 -0.3691 -0.6798 -0.9585 -0.8156 1 0
-0.9229 0.8401 0.1388 -0.5639 0.6544 0.921 1 0
-0.7383 0.3322 0.0534 0.8452 -0.7723 -0.5729 1 0
0.9536 -0.4805 -0.1914 -0.9499 -0.4389 -0.1251 1 0
0.9631 0.4717 0.8687 0.2782 -0.7399 0.7264 1 0
0.6798 0.4337 0.5954 0.0432 0.8878 -0.2678 1 0
0.9298 0.3394 0.6821 -0.1907 -0.9678 -0.5892 1 0
-0.0123 -0.5569 -0.8104 -0.2052 0.0342 -0.7574 1 0
0.0209 -0.0165 -0.9735 -0.5543 0.4767 0.1343 1 0
0.2392 -0.1024 -0.2209 -0.8122 0.6845 0.2924 1 0
-0.9763 -0.5912 -0.5132 0.4391 -0.4879 0.306 1 0
-0.9494 -0.8562 -0.6583 -0.8846 0.5606 -0.3017 1 0
-0.2336 0.4334 0.1204 0.676 -0.5054 0.7048 1 0
-0.1623 0.6303 0.3886 0.4157 0.7527 0.8091 1 0
0.6854 0.6488 0.8034 0.5925 0.7065 0.4623 1 0
0.3339 0.0242 0.2018 0.1503 -0.8691 0.5174 1 0
-0.4653 -0.3967 -0.4882 -0.2609 -0.8796 0.1616 1 0
-0.8214 -0.4844 -0.3983 -0.8921 0.9582 -0.4049 1 0
0.9801 0.0851 0.6796 0.9963 0.8416 -0.2775 1 0
-0.3369 0.9954 0.659 0.1454 -0.4061 0.0849 1 0
-0.4738 0.2006 0.5809 -0.8448 -0.3217 0.6124 1 0
-0.6458 0.3577 0.2922 -0.2822 -0.3738 -0.5482 1 0
-0.9204 -0.279 -0.3688 -0.0029 -0.0827 0.1813 1 0
-0.3438 -0.998 -0.2363 -0.1231 0.1435 0.6049 1 0
0.3477 -0.7284 -0.4753 0.0994 -0.2503 -0.9569 1 0
-0.5216 0.9481 0.7547 -0.1315 -0.2637 0.0042 1 0
-0.357 -0.6946 -0.5994 -0.5846 0.5808 0.8003 1 0
0.5131 0.2127 0.5883 -0.1298 0.217 -0.2127 1 0
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