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Abstract 

The Department of Energy is faced with the complex decision of selecting 

technologies for waste site remediation. This research focused on developing a decision 

support system to aid the decision maker in selecting the best strategy of remediation 

technologies. A decision analysis model was developed which incorporates life-cycle 

cost data, risk information, and user input, to analyze the technology choices. The 

research outlined the use of multiple attribute utility theory using exponential attribute 

utility functions with a simple additive objective function. The best available data was 

used to demonstrate the capabilities of the model. The model provides the decision 

maker with estimates of the cost and time distributions, and the associated utility. 

Cumulative and frequency distributions illustrate the dominance of technology choices 

and the variance in the results. Cost and time plots allow the decision maker to see the 

trade-offs inherent in the utility functions. The model also allows for sensitivity analysis 

in the form of rainbow and tornado diagrams to display the effects of changes in the 

values of the input variables. Overall, the model provides a generic technology selection 

tool that can be used to make better informed decisions and can be easily manipulated to 

reflect changes in the remediation process. 



Development of a Decision Support System for the Department of Energy's 
Selection of Waste Site Remediation Technologies 

I. Introduction 

1.1 Background 

The Department of Energy (DOE) is responsible for the remediation of an 

estimated 3.1 million cubic meters of hazardous and radioactive waste that is buried or 

stored at various locations across the U.S. [DOE/ID-10513, 1995: 4]. Unfortunately, 

most of this waste was disposed of when environmental regulations were less stringent. 

Because of this, sites may include mixtures of both hazardous and radioactive waste 

stored in forms ranging from steel 55-gallon drums to cardboard boxes. 

The DOE reports that $200 to $300 billion will be spent between the years 1995 

and 2070, to manage and remediate the waste sites [DOE/EM-0119, 1995: xiv]. Waste 

site remediation is a multi-step process. At each step, a decision must be made as to 

which technology should be selected for that process. The Landfill Stabilization Focus 

Area in EM-50 concentrates on developing and selecting technologies for five processes: 

Characterization, Stabilization, Retrieval, Treatment, and Containment. These processes, 

along with disposal and monitoring are illustrated in Figure 1.1 as outlined by the DOE 

[Mohiuddin, 1994] [DOE/ID-10513, 1995: 18-20]. Brief descriptions for each process 

are given as defined by the DOE [DOE/EM-0251, 1995: xiv-xvi]. 
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Figure 1.1 Remediation Decision Process 

Characterization is concerned with the identification, quantification, and 

location of waste within the site. In addition, characterization determines the 

size and type of items in the site. 

Stabilization involves the immobilization of contaminants in order to reduce 

their impact to the environment. 

Retrieval involves removing the waste and contaminated soil. Each method 

depends on the type and location of waste found during characterization. 

Treatment is the actual processing of the waste material. Again, waste types and 

desired residual waste form dictate the treatment options. 



- Disposal is concerned with how the treated waste form will be handled. These 

options include on-site storage, storage at an off-site location, and other options. 

The available choices depend on the volume and hazard level of the treated 

waste. 

- Containment confines the buried waste to a controllable area. This process 

prevents the migration of the waste, perhaps until an effective treatment is 

available, or until the waste becomes less volatile. 

- Monitoring considers methods to verify that the treated or contained waste is 

maintained in a conforming environment. 

For each process of remediation there exist several technology options which may 

be used. Additionally, new technologies are being developed and tested to improve each 

step in the process. Depending on the site location, technologies are chosen to 

characterize and assess the waste site. Once the characterization technology is 

determined, technologies are chosen to either treat or contain the waste. Technologies are 

then chosen to monitor the treated or contained waste form. The chosen technologies for 

each process make up the remediation strategy. 

Presently, the DOE lacks a formal tool to support the decision maker when 

selecting remediation technologies. In a previous study, a life-cycle cost (LCC) model 

was developed to calculate the LCC for remediation technologies [White et al., 1995]. 

This model uses stochastic cost inputs and simulation to determine the LCC for 

technologies.   Decision analysis techniques can use this information, combined with 



information about technology risk and probabilistic process times, to help the decision 

maker select the best mix of remediation technologies. 

1.2 Problem Statement 

The DOE requires a decision analysis (DA) model, which incorporates LCC, total 

process times, and risk information, to be used for the selection of a broad spectrum of 

technologies for landfill stabilization and remediation. The model will be tested using 

technology data gathered and estimated by MSE Inc. in Butte, Montana. This data will 

then be used to analyze the remediation of the Idaho National Engineering Laboratory 

(TNEL) test pit 9. 

1.3 Research Objectives and Scope 

This research has two primary objectives. The first is to develop a decision 

analysis model that uses data for cost, time, and risk, in order to compare technology 

strategies for landfill waste remediation. The second is to apply the DA model to the 

supplied technology data to demonstrate the analysis capabilities and techniques. The 

decision support system will take advantage of Multiple Criteria Decision Making 

(MCDM) techniques such as utility, dominance, expected value, and sensitivity analysis. 

Particular emphasis will be placed on the modularization of the model as well as 

graphical output to aid the decision maker. A generic model will allow future analysis 

efforts to include new technologies for new waste sites with minimum adjustment to the 

model. Using output such as cost and time distributions, rainbow diagrams, and tornado 



diagrams allows the decision maker to easily see optimal strategies and the relationships 

between the strategy objective function values and the input variable values. 

1.4 Approach 

The DA model requires input from the LCC model and a risk analysis module, as 

well as input concerning user preferences. The technology data is provided by MSE, and 

site data from the INEL test pit 9 is used as the hazardous waste to be remediated. 

The DA model will use the cost, time, and risk data to determine the total cost and 

remediation time distributions for specific technology strategies. To assist the decision 

maker, the attributes of cost and time can then be combined using utility theory. The 

utility functions will reflect the decision maker's risk attitude within the ranges of the two 

attributes. The different remediation strategies can then be compared using cost, time, 

and utility to the decision maker. Finally, sensitivity analysis will be performed and 

recommendations can be made as to the input variables and data. The ability to perform 

sensitivity analysis is critical to the DOE. The model will allow for sensitivity analysis of 

technology parameters, model variable values, and utility criteria, which can be varied to 

show how sensitive the resulting decision policy is to changes in the input. 

1.5 Overview 

In chapter 2, the current techniques for MCDM and utility theory are reviewed. 

Also, similar decision support analysis efforts are discussed, along with other decision 

analysis methods. Chapter 3 discusses methodology for developing the DA model. The 

utility functions, objective functions, and distributions are developed using the methods 



reviewed in Chapter 2. Chapter 4 discusses the analysis of the test data and the 

usefulness of the model using different analysis scenarios. In Chapter 5 conclusions are 

drawn and recommendations for follow-on work are presented. Detailed appendices are 

included to fully explain the elements of the DA model, the test technology database, and 

the analysis results. 



II. Literature Review 

2.1 Introduction 

In this literature review, the use of Multi-Criteria Decision Making (MCDM) 

techniques to model and analyze the DOE's remediation process will be documented 

along with the criteria and information used in the modeling and analysis effort. This is 

accomplished by reviewing the current procedures for similar decision analysis problems, 

discussing the different methods available, and assessing the objectives and metrics used 

in previous studies. 

2.2 Decision Analysis 

Choosing technologies for waste site remediation is a very complex decision. 

Clemen asserts that decisions are difficult when they deal with several issues, involve 

uncertainty, have multiple objectives, and are sensitive to their inputs [Clemen, 1991: 2]. 

Selecting remediation technologies involves all of these characteristics. Waste site 

remediation involves many complicated processes. Compounding the complexity is the 

fact that cost and time for each technology is unknown, cost and time are conflicting 

objectives, and changes in certain input variables like the interest rate can greatly affect 

the optimal decision policy. Decision analysis provides the decision maker (DM) with 

more useful information. When the DM is better informed, better decisions are made 

[Clemen, 1991:4]. 

Although there are numerous decision analysis tools and techniques, the decision 

analysis process generally remains the same. First, a model of the decision situation is 



developed. Options are then evaluated using the model. Finally, analysis is performed to 

ensure the validity of the results [Howard, 1988: 680]. 

A great deal of research has utilized decision analysis tools for technology 

selection. Most studies employ the same basic technique, with only slight variations for 

the particular problem. Buede et al. analyzed the U.S. Marine Corps' (USMC) 

acquisition of the mobile protected weapons system, a decision similar to the DOE 

remediation technology decision. They use the method of MCDM to determine the best 

weapons system based on the needs of the USMC. This decision involves several 

conflicting objectives including mobility, survivability, and transportability. Experts in 

the field provided an excellent source for determining the criteria to evaluate 

technologies. Once the objectives and the criteria were clear, Buede et al. determined 

weights which model the importance of each criteria [Buede et al., 1992: 112-113]. The 

weights represent the decision maker's view of the trade-off between the criteria. The 

criteria, or values, "provide the foundation for interest in any decision problem" [Keeney, 

1992: 55]. 

Technology evaluation is also performed extensively in the field of 

manufacturing. Competitive manufacturing firms must upgrade or change their 

equipment in order to improve their capabilities. Despite the differences in the apparent 

decision situation, the selection of manufacturing technologies can be a process very 

similar to the selection of military weapons systems. In 1993, Fine analyzed the selection 

of flexible manufacturing technology for manufacturing firms [Fine, 1993: 711-750]. In 

his study, Fine followed the same general process of Buede et al. The fundamental 



criteria such as capacity, flexibility, installation time, and upgradability for selecting a 

manufacturing technology are somewhat different than the criteria such as survivability, 

mobility, and firepower used to select a weapons system, but the decision analysis process 

is comparable [Fine, 1993: 724][Buede et al., 1992: 113]. Similarly, the objectives and 

criteria for selecting technologies to remediate waste sites may be different than those for 

other decisions. Although the criteria and trade-offs are specific to each study, the use of 

decision analysis and multiattribute techniques is a viable method for studying the 

selection of technologies. 

2.3 Multiattribute Analysis 

Multiattribute evaluation permits many issues to be evaluated simultaneously 

making it a useful tool for technology evaluation [Fine, 1993: 724]. Again, there is a 

basic process that most studies follow, but each makes slight changes in particular 

calculations [Corner and Buchanan, 1995: 109]. 

1. Develop objectives and criteria to meet the objectives 

2. Determine the form of the objective and utility functions 

3. Determine the importance of each attribute (weight) 

4. Evaluate alternative and perform sensitivity analysis 

One common discrepancy among researchers, is the method by which the weights 

for the criteria are calculated [Corner et al., 1995: 110]. Buede et al. uses weights that are 

determined simply by working with the decision maker and allowing experts to make 



suggestions as to the importance of each criteria [Buede et al., 1992: 114]. Although 

many methods use the decision maker's inputs directly, some methods involve 

mathematical calculation of the criteria weights. 

2.3.1 Additive Utility Functions. In most cases, the use of criteria weights 

implies an additive type of utility function. An additive utility function has the general 

form shown in equation (2.1). 

U(xi, x2,...xn) = kiU(xi) + k2U(x2) + ... + kiU(xi) (2.1) 

where U(xi,x2,...xn) = total utility, U(xO = utility for attribute i, 

kj = weight for attribute i, Xi = level of attribute I 

The lack of an interaction term in the previous function implies that there are no 

interactions between the criteria. Keeney and Raiffa explain this and other independence 

requirements for using an additive utility function. Keeney and Raiffa define the 

necessary and sufficient conditions for additive utility functions as additive independence. 

They assert that two attributes are additive independent if lotteries in one attribute can be 

compared independent of the other attribute. In graphical terms, attributes A and B are 

additive independent if the DM is indifferent between the two lotteries X and Y, shown in 

Figure 2.1. If additive independence holds for the criteria, then the additive utility 

function can be applied [Keeney and Raiffa, 1976: 229-230]. 

10 
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Figure 2.1 Additive Independence Lotteries 

The additive utility function is only one form of utility function. There are other 

more complicated forms for criteria that do not meet independence requirements and that 

exhibit other functional forms. In his 1995 study, Stewart shows that the additive utility 

function is usually appropriate and provides results similar to those found in more 

complicated utility functions. His results show that "there is very little to be lost in 

basing analysis for MCDM under uncertainty on a simple additive utility function" 

[Stewart, 1995: 255]. A simple utility function can be more intuitive to the user and can 

help to simplify the analysis of the model. Added to this, an additive utility function 

requires criteria weights that are generally simple to obtain and small in number [Stewart, 

1995: 251-256]. Based on discussion and interaction with the principals for this study, it 

appears that DOE decision makers are likely to relate to a simple additive function rather 

than a more complex utility function. 

2.3.2 Criteria Weights. Regardless of the complexity of the objective function, 

weights must be determined to represent the importance of each attribute to the decision 

maker. Clemen explains three methods for calculating the weight for each objective 

criteria. The first method is called pricing out the attributes. Pricing out requires that the 

11 



decision maker assess the nonmonetary attributes in terms of a cost attribute. Clemen's 

example involves the purchase of an automobile, where the criteria for evaluating the 

alternatives are price and life-span. In order to determine the weights for each criteria, the 

decision maker must assign a dollar amount to an increase in life-span. For example, the 

purchaser might be willing to pay $600 for an extra year of life-span. By transforming 

the attributes into common units, this price can then be used to determine the appropriate 

weights for each criteria [Clemen, 1991: 441]. Although pricing out criteria is a valid 

method for determining weights, it can become difficult for the decision maker to assign 

dollar amounts with all criteria. Added to this, dollars may not be applicable to some 

criteria which require other methods for determining criteria weights [Clemen, 1991: 

448]. 

The next method described by Clemen for determining the trade-off between 

criteria is swing weighting. As with the other methods, the decision maker's judgment is 

used to help calculate swing weights. The first step involves determining the worst 

possible alternative. This 'virtual' alternative would score the lowest on all criteria. 

Using the automobile example, the worst possible alternative would have the highest 

price and the lowest life-span. Next, the decision maker must decide which criteria, if 

increased to its best level, would yield the most increase in satisfaction, or utility. For 

example, the lowest price might be preferred to longest life-span. If price is decreased to 

the best level while life-span remains at its worst level, the decision maker gets some 

increase in utility. Once this is noted, we return to the worst possible case and increase 

the next criteria. Now price is high and life-span is increased to equal the longest actual 

12 



life-span. This setting results in some smaller increase in utility. Assuming the 

relationship is linear, the increase in utility is smaller because it was previously 

determined that a decrease in price was better than an increase in life-span. The weights 

are determined by comparing the increase in utility from swinging each criteria from its 

worst to best level. For example, having the longest life-span may have resulted in 75% 

of the improvement gained by decreasing price from worst to best. Using this, the 

weights for the two criteria can be calculated using the form in (2.2). 

ki = 0.75kp                3/4kp + kp=l (2.2) 

k, + kp=l kp = 4/7,ki=3/7 

where ki: weight for life span, kp : weight for price 

For convenience, the weights are forced to sum to one. This decreases the 

dimensionality of the problem because both weights do not have to be determined. 

Added to this, it ensures that the weights are relative to each other. One advantage to 

using swing weights is that they are sensitive to the value range of the criteria. For 

example, if the difference between the longest life-span and the shortest life span is 1 

year, then the decision maker would likely assess a small increase in utility from swinging 

life-span from its worst to best level. This would result in a small weight for life-span. 

Swing weights also allow for the best possible alternative to be considered if the decision 

maker cannot assess the worst possible case. In such a case, instead of an increase in 

utility, the decrease in utility is evaluated for each criteria [Clemen, 1991: 448-450]. 

13 



The last method that Clemen describes is the lottery assessment of weights. This 

method requires that a lottery be set up like the one shown in Figure 2.2. The figure 

shows two options where one is certain and the other involves uncertainty. In order to 

determine the weight for each criteria, the decision maker must assess the value of p for 

which he is indifferent between alternative A and alternative B. This value is used as the 

weight for the one attribute at its best level for alternative B. This process must be 

repeated for the remaining criteria. The final criteria weight will not require a lottery 

assessment if we assume that the weights sum to one. One important advantage to using 

the lottery technique is that it enables the decision maker to include his or her risk attitude 

in the assessment of the alternatives [Clemen, 1991: 451-452]. 

j <Tl  Best on all attributes 

(i-p) 
-<jWorst on all attributes 

_^--i   Best on one attribute, 
^^J     worst on all others 

Figure 2.2 Lottery Technique for Assessing Weights 

Another method of assigning weights to criteria, is called the analytical hierarchy 

process (AHP). Despite some shortcomings, AHP is one of the most popular methods 

applied to determine multiattribute weights [Ra, 1991: 595]. This method involves 

pairwise comparisons. The development below follows that of Winston; however, the 

14 



method was originally developed by Thomas Saaty [Winston, 1994:798-804]. To 

accomplish the pairwise comparisons, the decision maker creates a matrix consisting of 

values representing his preference between two criteria. These matrix elements are 

denoted ay and are generally based on a standard similar to the one shown on the 

following page. The actual scale and descriptions can be changed but a standard is 

necessary to evaluate the criteria consistently. 

ay =      1 : criteria i and j are equally important 

3 : criteria i is weakly more important than j 

5 : criteria i is strongly more important than j 

7 : criteria i is demonstrably more important than j 

9 : criteria i is absolutely more important than j 

2,4, 6, 8 : intermediate values 

For n number of criteria, the matrix is made up of n rows and n columns. Once 

the matrix is formulated, the weights for the criteria can be calculated. This is usually 

accomplished using eigenvector calculations. Complete calculations are shown in 

Appendix A. Weights can also be approximated by normalizing the columns of the 

matrix A, then taking the average value in each row. These averages provide 

approximations to the criteria weights [Winston, 1994: 801]. Once the criteria weights 

are calculated, they should be checked for consistency. 

It is important that the decision maker make consistent assessments of the criteria 

in order for the AHP to produce confident results. On the other hand, slight 

15 



inconsistencies are usually acceptable and are common in models that have a large 

number of criteria. Usually, a consistency index is calculated to determine how 

consistent the decision maker was in evaluating the criteria.   Complete calculations of 

this index are shown in Appendix B. If this consistency index is small, then the amount 

of inconsistency is acceptable [Winston, 1994: 798-802]. 

To deal with some criticism of the initially proposed approach, variations of the 

AHP have been developed. Ra describes a similar method that he calls the hierarchical 

decision process (HDP). This method changes the scale by which criteria are compared, 

the calculations for criteria weights, and the measure for inconsistency. Ra uses a ratio 

scale from the decision maker's scoring on a 100 point scale. If criteria A scores 60 and 

criteria B scores 40, then the ratio is 60/40 = 1.5. This scaling allows the decision maker 

more flexibility in his or her assessments. In order to compute weights, Ra recommends a 

logarithmic least squares method. The complete algorithm is shown in Appendix C. Ra 

uses this method because it is suitable for ratio scoring, obtains identical results to the 

eigenvector calculations once the ratios are determined, and allows for sensitivity analysis 

[Ra, 1991 : 595-599]. The AHP and HDP do share some of the same drawbacks in that 

they are sensitive to the changes in the alternatives and criteria. If an alternative is added 

or taken away then the complete AHP analysis has to be repeated. This is a major 

drawback for a generic decision support system. 

2.3.3 Criteria Scoring. Clemen also explains the different methods for 

determining the scores for particular criteria. One method is called proportional scores. 

It may be possible to use the actual values for cost and life-span, but scaling these values 
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can ease the calculation of the criteria weights and simplify the explanation of the 

problem. In the automobile example, if we know the best and worst prices, we can scale 

these values to a range of 0 to 1, where 1 is the best price and 0 is the worst price. If we 

assume proportional scores, then the slope of the line between the best and worst case 

allows for any alternative that falls in this range to be scored. Figure 2.3 shows an 

example for price. 

Figure 2.3 implies that the worst price has a utility of 0 while the best price has a 

utility of 1. Now any alternative price that falls between these values can easily be scaled 

to a utility value. The major drawback of using proportional scoring is that it assumes 

risk neutrality. In some instances, the utility curve for price may not be a straight line. 

This leads to the utility function method of scoring criteria. 

Figure 2.3 Proportional Score for Price 

Unlike the above situation, the DOE selection of remediation technologies 

involves a great deal of uncertainty concerning the actual cost and time for each 

technology. Clemen recommends the utility function method of scoring criteria when the 
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decision involves uncertainty and trade-offs [Clemen, 1991: 474]. This method requires 

that the model assess the decision maker's risk attitude so that an appropriate function can 

be used to score the criteria. There are several methods for doing this. One option is to 

have the decision maker evaluate a certain value that is equivalent to a given gamble with 

probabilities for different criteria situations. A similar method involves evaluating 

probabilities for a given certainty equivalent. Another approach requires that a 

mathematical function be used. The exponential utility function is widely used to 

incorporate risk into the scoring of alternatives for criteria [Clemen, 1991: 382]. The 

equation for the exponential utility function is shown in (2.3). 

U(x) = 1 - e -X/R (2.3) 

where R is the risk tolerance measure 

Larger values of R imply that the decision maker is willing to accept more risk. 

The risk tolerance level must be determined in order to use the exponential utility 

function. Different methods can be used to determine the risk tolerance for a decision 

maker. Lottery assessments can be used, as well as general guidelines that relate risk 

tolerance to measures like net income, sales, and equity [Howard, 1988: 689-670]. 

Clemen demonstrates that the exponential utility function exhibits constant risk 

aversion, which means that the decision maker's attitude toward risk never changes 

regardless of his or her level of wealth. Because of this constant risk aversion, the 

exponential utility function is usually more applicable to large companies than 

18 



individuals. If this assumption holds, the exponential utility function can be applied 

[Clemen 1991: 382]. 

The scoring methods above can be applied when the criteria involve actual 

numeric values. However, another method may be preferred when the criteria is more 

qualitative. The ratio method of scoring requires the decision maker to compare 

outcomes and determine scores for each outcome. These scores are then scaled to a range 

of 0 to 1. The ratio scoring technique allows for any type of criteria to be scored which 

enables cardinal or ordinal data to be used [Clemen, 1991: 439-447]. Equation (2.4) 

shows the general form for ratio scoring. 

Score(x) = a + b-(x), where a and b are found by solving: (2.4) 

0 = a + b- (worst score) 

1 = a + b(best score) 

Once a and b are calculated, any alternative score can be calculated. These scores 

all range from 0 to 1. Ratio scoring allows both cardinal and ordinal data to be scored. 

Ordinal data values can be used while cardinal data can be given subjective values. For 

example, if a blue car is worth twice as much as a yellow car, then Blue = 100 and 

Yellow = 50. Because of this, ratio scoring provides a method to evaluate any type of 

alternative [Clemen, 1991: 447]. 

Finally, the AHP can be used for scoring alternatives on criteria. The process is 

almost identical to the weighting procedure. It requires the decision maker's assessments 

and uses this to create a matrix. This matrix is then used in eigenvalue calculations to 
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determine the normalized score given to each alternative. Once this is done, the results 

can be checked for consistency [Winston, 1994: 802-804]. 

2.4 Sequential Decisions 

In their 1993 article, Cook et al. address the problems of sequential decisions 

containing ordinal and cardinal criteria. Concurrently, they present a new method for 

calculating the weights for criteria in a multiattribute decision. In their study, Cook et al. 

use an example of a mining company that is trying to choose a production design and a 

supplier for that design [Cook, Johnston, and Kress, 1993: 130]. This example involves 

sequential decisions for production and supplier, which is similar to the DOE technology 

selection decisions for each sequential process. A decision tree representation of the 

example is shown in Figure 2.4, and shows that the supplier decision is influenced by the 

previous decision. 

New Production 
Configuration 

New Miner 

Supplier 
Selection 

Supplier! <l 
Supplier2 

Supplier! 

New Miner & Conveyor 

New Conveyor 

Suppliers2&3 

Suppliers'! &3 

Suppliers2&3 

<3 

<] 

Figure 2.4 Decision Tree for Sequential Decision Example 
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2.4.1 Sequential Model. In order to frame their decision process, Cook et al. use 

a decision tree structure. The exact structure used is very similar to the one shown in 

Figure 2.4. When a decision involves several stages that produce their own outcomes, a 

decision tree can provide a useful means of viewing the problem [Cook et al., 1993: 133]. 

The structure of their decision tree incorporates the general structure used in decision 

analysis with decision nodes, event nodes (chance nodes), and outcome nodes. Cook et 

al. make two assumptions for their decision tree structure, which may apply to the DOE 

decision process. Specifically, each level of decision has its own set of criteria,and all of 

the decisions are made before events occur [Cook et al., 1993: 135]. 

2.4.2 Model Calculations for Cook et al. The first decision is to determine the 

production system design. This decision is based on three qualitative criteria. The 

second decision is to choose a supplier, which is based on both qualitative and 

quantitative criteria. It is important to note that they assume that the criteria are known in 

advance. In order to choose alternatives based on the criteria, Cook et al. use a ranking 

method similar to an AHP approach. The method ranks alternatives based on each 

criteria. For objective data, actual values are used where more is assumed to be better. 

For cardinal data, the alternatives must be given ranks for each criteria, and the decision 

maker must assess the importance of being ranked at a given position for each criteria. 

The criteria are then ranked in order of importance to the decision maker. Once this 

scoring is complete, a linear programming optimization model is used to determine the 

weights given to each criteria [Cook et al., 1993: 129-133]. 
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The model that is used to calculate the weights is similar to a data envelopment 

approach [Cook et al., 1993: 136]. The objective function in the model has a goal of 

maximizing the total worth of each alternative subject to some implied constraints on 

these values [Cook et al., 1993: 136]. The importance of this model is that it allows for 

the rank of alternatives and criteria to be considered [Cook et al., 1991: 193]. In order to 

solve the multi-level decision tree, weights must be calculated for the criteria involved in 

each decision. Cook et al. work backwards in the case of sequential decisions and use the 

optimization model to determine the weights at each step. This type of model is very 

complex to implement and difficult for the decision maker to assess. However, this 

model is flexible in that it allows for ordinal and cardinal data without a utility 

assessment, and it can be applied to dependent decisions [Cook et al., 1993: 141-144]. 

2.5 DOE Objectives and Criteria 

In order to assure that the decision model for the DOE is valid, the appropriate 

criteria must be determined. As previously discussed, determining the criteria for making 

decisions which represent the true values of the decision maker is a fundamental step in 

the decision analysis process. 

2.5.1 Objective Criteria. In decisions that involve the selection of technologies, 

cost is usually included as a primary criteria. In order to determine the other appropriate 

criteria, it is important to elicit the decision maker's values. The challenges given to the 

DOE in remediating waste sites were to remediate: 1) faster, 2) better, 3) cheaper, and 4) 

safer [Mohiuddin, 1995]. Thus, the DOE's goals for this study are primarily concerned 
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with risk prediction for cost, time, and safety; cost savings; and developing better 

technologies [Mohiuddin, 1995]. This plan, along with the DOE's agreements to meet 

milestones, make cost and time reasonable objective criteria to select waste remediation 

technologies [DOE/ID-10513, 1995: 6]. Other objectives like safer and better 

remediation require more subjective criteria. 

2.5.2 Subjective Criteria. Although cost and time are important to the DOE, 

other measures such as safety and technology transferability are influential in choosing a 

remediation technology. In 1995, a study was done for the Westinghouse Savannah River 

Company. This study developed criteria for the selection of new treatment technologies 

and for the prioritization of waste streams. The Savannah River Site study treatment 

technology criteria are given below. 

1) System implementability 

2) System maintainability 

3) Secondary waste generation 

4) Health and process hazards 

5) Final waste form 

6) Cost 

Although the above criteria were developed for treatment technologies, they can 

all be applied to each remediation process. All of the criteria were scored subjectively, 

with the exception of cost [WSRC-RP-95-0576, 1995: 1-7]. 
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2.6 Summary 

The literature indicates that multiple criteria decision making techniques are 

appropriate for evaluating problems similar to the DOE's selection of technologies for 

waste site remediation. The selection of technologies for waste site remediation involves 

many influencing factors such as money, safety, and government regulations. Added to 

this there are risks of failure and of exceeding budget and time constraints. Using 

conflicting attributes such as cost and time also warrants the use of decision analysis and 

multiattribute techniques. Finally, this problem involves many variables, examples of 

which would be interest rates, and process overlaps that greatly affect the results of the 

study. To utilize multiattribute analysis, utility functions for each criteria must be 

determined. The exponential utility function has been shown to be applicable to similar 

situations particularly with large companies and government agencies where constant risk 

aversion can be used. Determining the exact form of this function can be accomplished 

through the lotteries and other discussed techniques. There are also computer programs 

that can aid in developing these functions. Provided that the appropriate conditions are 

met, the additive utility function has proven to be an accurate and simple form to be used 

for the overall utility function. Assessing the weights for this function can be done using 

lotteries or other methods, and there are also computer programs available to calculate 

these values. Time and cost have been shown to be viable objective criteria for selecting 

technologies. More subjective criteria can also be used to choose technologies for 

remediation. 
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III. Methodology 

3.1 Introduction 

Based on an examination of the literature and the DOE problem, multiattribute 

utility analysis was selected as the best method for modeling the selection of waste site 

remediation technologies. Utility theory provides a mathematical function to capture the 

decision maker's revealed preferences toward each attribute and the risk involved. Utility 

functions not only provide a straightforward way to score alternatives, but they also 

incorporate the decision maker's attitude toward risk. Due to the uncertainty and trade- 

offs involved in selecting technologies, utility functions provide the best method for 

modeling the decisions [Clemen, 1991: 445]. In particular, the constant risk aversion 

exhibited by most companies and governments lends naturally to the exponential utility 

function. 

Research also suggests that an additive value function is an appropriate objective 

function for most cases of multi-attribute utility analysis. It is relatively simple to 

formulate and analyze. For studies that involve uncertainty, like the DOE's selection of 

remediation technologies, Stewart concluded that the additive value function can perform 

as well, or better than other more complicated value functions [Stewart, 1995: 255-256]. 

3.2 Decision Analysis Model 

A model for the DOE decision process for selecting remediation technologies was 

developed based on the findings of the literature review, field visits, and discussions with 

key stakeholders. The complete formulations are explained in the following sections. 
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Figure 3.1 diagrams the flow of information between the different modules that make up 

the decision support system. The model incorporates all of the assumptions and 

capabilities outlined by the DOE. It uses cost, time, and risk input for each individual 

technology. This input data is from the life-cycle cost and risk modules, and is stored in a 

spreadsheet. The DA model uses this information to model the uncertain time and cost of 

individual technologies which are then combined to allow computation of total cost and 

time for feasible strategies of technologies. Using these attributes, the decision maker can 

apply the model to determine the best strategy on the basis of cost, time, or a combined 

utility of both attributes. 

Cost/Time 
Technological Risk 

Module 

Risk Parameters 
Subjective 

sRisk Data 

Life Cycle Cosl/Time Module 
Technologies for 

Characterization Stabilization 
Retrieval Containment 
Treatment Monitoring 

Disposal 

P(Tech Success) 
Technology 
Distributions 

Cost&Time 

Logical 
Restrictions 

for each 
Technology 

Decision 
Analysis 
Module 

Recommended 

Alternatives with 
CostandTime 

Risk Profiles 

Figure 3.1 Decision Support System 
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Basically, the model follows the sequential remediation decisions and determines 

the total time required for each feasible strategy of technologies. Using this information, 

the present value of the total cost for the strategy can be calculated. The model calculates 

when a technology is to be utilized and when it is available for use. The DA model can 

therefore calculate the cost of using it at that point in time. Constraints for total cost and 

time are used to eliminate strategies that exceed budget and schedule limitations, while 

compatibility constraints ensure that the technologies can be used together. A value 

function that relates the decision maker's preference and utility for time and cost enables 

the model to choose strategies based on the combination of both attributes. The 

following sections completely detail the development of the decision analysis model. The 

code for the complete DA model is in Appendix D. 

3.2.1 Model Development. In developing the model, the decision process and 

relationships had to be determined. The basic decision process was provided by the 

DOE. This structure is shown in Figure 3.2.   Each block represents a decision. All but 

two of these decisions involve the selection of a technology to perform the specified 

process represented by the block. Only the Stabilize and the Treat/Contain blocks are 

yes/no decisions that determine how the waste site is remediated. 

Figure 3.2 shows the seven different processes that can be involved in remediating 

a waste site. Explanations for each process were given previously in Chapter 1. Each 

process involves a technology that implies a cost and time. The individual processes 

combine sequentially to make up the entire remediation process. The model is structured 

27 



in this same fashion. Each process involves the calculation of cost and time for a 

particular technology, which are then combined together to calculate the total expected 

cost and time for a strategy of technologies. 

Stabilization 

yes j 

Removal > Treatment Disposal 
yes    « k. /                          \ 

Characterization 

& Assessment 

/*                                                                                     1 
Stabilize 

Y/N 

Tie at 
Y/N 

Monitoring 

no 

no     ^^^ 

Containment 

Figure 3.2 Waste Site Remediation Decision Process 

The decision structure in Figure 3.2 can easily be translated into a decision tree. 

The decision tree in Figure 3.3 is the complete structure used by the DA model. The 

technology decision nodes are followed by the uncertainty nodes for technology failure, 

cost, and time, within each process. Each technology in the given decision path has a cost 

and time element represented by an uncertainty node. Figure 3.4 is the structure for the 

decision nodes shown in Figure 3.3. This structure is identical to the DOE decision 

process. In this illustration, there are three technology choices for each process. Each 

path through the tree represents a different technology strategy for remediating a given 

waste site. This situation was adopted for the present study. 
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In order to calculate the costs and times, the decision process has to be expanded 

so that each element and relationship can be modeled. The influence diagram provides a 

graphical representation of the relationships between the key elements of the decision 

process. Figure 3.5 shows the complete influence diagram for the DA model. The 

diagram is divided into the processes involved in remediation. Each process is modeled 

almost identically to the others. The process models calculate the cost and process time 

associated with using a chosen technology for the particular process. The influence 

diagram shows the elements and relationships in each decision, while the decision tree 

shows the timing and structure of the entire process. 

Figure 3.5 Influence Diagram for DA Model 

30 



3.2.1.1 Individual Process Models. Each process model uses similar 

structure and calculations. The result of each individual model is to calculate the cost of 

using the chosen technology for that process and to determine the time for the next 

process to begin. An influence diagram for a single process model is shown in Figure 

3.6. Again, this model structure is identical to the ones for the other processes. 

Disposal 

Figure 3.6 Individual Process Influence Diagram 
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Figure 3.6 shows an influence diagram representation for Disposal. In the 

influence diagram, the rectangular node represents the technology decision. Uncertain 

events are displayed as circles, and deterministic variable values are shown as round- 

cornered rectangles. When the disposal technology is selected, the R&D and O&M costs 

are determined, as well as the time required for R&D and O&M. If the technology is 

developed then it can be selected for immediate use. Otherwise the process is delayed 

until the technology is released from R&D and field testing. The time for O&M 

determines when the next process can begin. However, the remediation processes can 

overlap for some processes. It is realistic for a process to begin before the preceding 

process ends. For example, disposal is overlapped by monitoring because monitoring 

begins before disposal is complete. In this case, the time overlap is 100%, meaning that 

monitoring is required as soon as disposal begins. 

The value nodes that follow the technology selection decision reference data from 

the spreadsheet containing the LCC and risk data. The cost and time values are used as 

parameters for the probability distributions which model the uncertain events for cost and 

time. The distribution output is then used to calculate cost and time. When a technology 

is selected, there is a possibility that the technology will fail. If this occurs, then 

additional cost and time will be required to complete the process. The DA model 

calculates the cost and time if the technology is successful, and the cost and time if the 

technology fails. When a failure occurs, a portion of the cost and time required for the 

failed technology is charged plus an additional penalty cost and time to complete the 

process. The probability of technology failure, which is supplied by the Risk module, is 
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then used in the uncertain events for total cost and time. The complete explanation and 

calculations for each variable are shown in Appendix E. 

3.2.1.2 Complete Decision Model. The complete model of the decision 

process is built by combining the seven different process models. The basic decisions 

follow the same structure that was previously shown in Figure 3.4. The model calculates 

the expected value for cost and time. Therefore, technology decisions are made first, then 

the resulting cost and time for each strategy can be calculated. This is done by placing 

the decisions at the beginning of the decision tree followed by the resulting chance events 

used for the calculations of the technology strategy. 

The DA model keeps track of the attributes for cost and time, as well as for the 

category of each technology in the strategy. The categories are used to ensure that the 

technologies in the strategy are compatible. If the technologies in the strategy are not 

compatible the strategy is excluded, otherwise the model continues. This compatibility 

constraint allows for technology relationships to be modeled. A specific treatment 

technology may require a specific disposal technology. By categorizing these 

technologies, the model only analyzes strategies that utilize compatible technologies. A 

complete explanation of the Boolean logic-based compatibility constraint is given in 

Appendix F. 

The total cost and time values are also used to constrain the model. Budgets and 

schedules limit the amount of money and time allocated to remediate a waste site. A 

constraint can be used to penalize strategies that exceed these limit values by assigning 

the strategy a penalized objective function value, such as an extremely high cost, time, or 
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Utility value. If the user wishes to exclude these strategies then the penalty can be 

increased to an extreme value. However, because the output is simulated, a strategy may 

exceed the limits on one trial while averaging below the limits. In this case, the more 

trials over the limits, the more penalized a strategy would be. The simulation method 

used for the DA model is called distributed sampling. This approach is explained in 

Appendix G. 

3.2.2 Utility Functions. The DA model analyzes each possible combination of 

technologies and calculates the present value for cost and time for each strategy. 

Although the model can compare technologies based on cost or time, utility functions 

enable the decision maker's revealed preferences to be used as the basis for 

recommending technologies. Utility functions developed for each attribute can be 

combined in an objective function so that the trade-off between cost and time can be 

considered. These functions transform a value for cost or time into utiles, which is the 

utility to the decision maker. Utiles range from 0 to 1, where 1 is the highest utility and 0 

is the lowest. For this model, the utility functions will change depending on the decision 

maker and the considered site. 

3.2.2.1 Attribute Utility Functions. In order to develop an objective 

function, utility functions for the cost and time attributes must be determined. These 

attribute utility functions transform an expected cost or time for a strategy of technologies 

into utiles, numbers that represents the worth of that cost or time to the decision maker. 

As Clemen suggests, the exponential utility function provides a robust and relatively 

simple functional form [Clemen, 1991: 382]. Determining the actual function and 
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parameters to use is made easier by the use of computer software like Logical Decisions 

[1993]. 

Logical Decisions® allows the decision maker to customize a utility function by 

manipulating a graphical representation. The decision maker can make adjustments to the 

graph until he or she is satisfied that it represents his or her beliefs. For this model, the 

decision maker uses a best, worst, and target value. The DA model provides the best and 

worst case simply by calculating the best and worst outcomes using both cost and time. 

The target value comes from the input to the life-cycle cost module, regulations, or 

contracts. These three values determine the basis for the utility function and the decision 

maker can then change the shape of the graph until satisfied with its accuracy. 

Utility 

2.8 
worst case target +10% = 7.7 

Time (Years) 

15.5 
best case 

Figure 3.7 Example Attribute Utility Curve 

Using the recommendations from the Landfill Stabilization Focus Area, a general 

utility function shape was determined. The best case outcome has the highest utility (1) 
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and the worst case has the lowest utility (0). DOE has a high utility for costs and times 

that are below the target value plus a 10% error factor. On the other hand, the DOE has 

very little utility for costs and times that exceed this value [Geiger: 1995]. This 

philosophy results in a utility function similar to the graph shown in Figure 3.7. 

The utility function in Figure 3.7 was developed in Logical Decisions®. It uses 

the best and worst case for the endpoints, and assigns a utility of 0.75 to the target value 

plus 10%. The midpoint utilities for the two sections, 0.875 and 0.375, are then assigned 

to values. The target value of 7 years was assigned a utility of 0.875, and the target value 

plus 25% (7*1.25 = 8.75) was assigned a utility of 0.375. Using a 3-point heuristic such 

as this enables a utility function to be formulated from the three known values. Logical 

Decisions® can then produce the functional form of the utility curve. The exponential 

function, which was discussed in Chapter 2, is used to form the curves between the 

endpoints and the midpoints. The formula for the utility function in Figure 3.7 is given in 

Equation (3.1). 

Ux(x) = 1.002 - 0.0001348e09784x       for x < 7.7 (3.1) 

Ux (x) = -0.004582 + 116.4e-°'6544x      for x > 7.7 

where Ux (x) is the utility of a strategy requiring x years 

Once this function is known, it can be input into the DA model and used to choose 

technology strategies based on the highest utility. A similar function is developed for the 

cost attribute. This function can also be calculated using a best case, worst case, and 

target values. A 3-point heuristic like the one used for the time attribute makes the 
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formulation simple. When the utility functions for both attributes are determined, they 

can be combined in one objective function using parameters to represent the importance 

of each attribute. The additive objective function discussed in Chapter 2 is used to 

combine the utility functions for cost and time. 

3.2.2.2 Objective Function. Before using an additive value function as 

suggested, tests for independence must be done to ensure that the two attributes exhibit 

additive independence. Two attributes are additively independent if preferences for 

lotteries in one attribute do not depend on the other attribute. For this model, the decision 

maker must be indifferent to the following lotteries X and Y: 

Low cost, Long time / —   Low cost, Short time 
0.5 '       6 ^-v    / 0.5 

   High cost, Short time N —   High cost, Long time 
0.5 6 0.5 

If this condition holds for both attributes, then the decision maker's objective 

function can be represented by an additive value function [Keeney and Raiffa, 1976: 109- 

111]. If this is the case, then a parameter, k, is used to represent the decision maker's 

preference between the two attributes. This simple additive form is shown in (3.2). 

U(x,y) = kUx(x) + (l-k)Uy(y) (3.2) 

where: U(x,y) is the total utility, Ux(x) is the utility for a cost x, Uy(y) is the 

utility for a time y, and k is the weight given to cost 

For the DOE, cost and time are treated as independent attributes. Based on 

discussions with the DOE and MSE, cost and time satisfy the condition of additive 
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independence provided that constraints are met [Geiger: 1995] [Antonioli: 1996]. 

Therefore, when cost and time are less than the maximum constraint values, the decision 

maker should feel indifferent to the lotteries of one attribute, regardless of the other 

attribute. This makes cost and time mutually preferentially independent, and thus allows 

an additive value function to be used as the objective function. Some decision makers, 

however, may argue that cost and time are not independent. Even without additive 

independence, the additive utility function can be used as a baseline approximation 

[Clemen, 1991: 483]. Along with this, the additive utility function can provide good 

results even when more complex models provide a better representation of the decision 

maker's preferences [Stewart, 1995: 256]. 

To use the additive value function, the weight parameter (k) must be determined. 

This weight can represent the decision maker's preference toward one of the attributes. If 

k is forced to fall between 0 and 1, then (1-k) can be used for the weight of the other 

attribute. This model uses k as the weight for cost. 

Software, such as Logical Decisions®, can be used to help a decision maker 

determine k. Logical Decisions® uses a sliding bar that allows the user to determine k by 

sizing bars which represent the importance of each attribute. However, with only two 

attributes the value can usually be easily determined. If cost is twice as important as time, 

then k = 0.667 and (1-k) = 0.333. Regardless, once the complete additive value function 

is developed, it must be input into the DA model. This objective function is then used to 

select the technologies. 
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When the model uses this value function as the objective function, technology 

strategies are selected based on how well they meet the decision maker's assessment of 

cost and time. The strategy's total cost and time is still calculated in the model, but these 

values are then transformed into utility using the objective function. Therefore, the 

strategy with the highest expected utility is the one that should be optimal for an expected 

value decision maker. 

3.2.3 Modeling Assumptions. Certain assumptions were made in order to 

assemble the DA model. These assumptions are listed and followed by an explanation: 

1) Considered technologies are applicable to the given waste site 

2) Cost and time distributions are modeled using the gamma distribution 

3) The decision to stabilize is made before running the model 

The first assumption requires that all of the technologies used in the model be 

applicable to the given waste site. This assumption is important because the DA model 

does not eliminate technologies that cannot be used for specific sites and waste streams. 

The validity of this assumption greatly depends on the preliminary site characterization, 

which must be done in order to determine which technologies are applicable. If this 

initial characterization is incorrect, then the technologies used in the model may not be 

appropriate. 

The next key assumption is that the cost and time values for O&M and R&D 

follow gamma distributions. If life-cycle cost and time data is available, then a more 

precise distribution and parameters can be calculated from this sample. When the actual 

LCC data is produced, the data can be fitted to an empirically best distribution, which 
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may not necessarily be a gamma distribution. If the gamma distribution is more 

applicable, however, then the parameter values can be determined using the actual LCC 

sample data. The gamma distribution was chosen, however, because: 1) The gamma 

function masses the probability near the mean, but it also has a right-hand tail that allows 

for greater values. This shape is a reasonable representation for contract situations, where 

the time and cost involved is very likely to meet or exceed the deadline, but not likely to 

be extremely under-budget or ahead of schedule. 2) The gamma function is always 

nonnegative, which is necessary for cost and time variables. 3) The gamma distribution 

uses only two parameters which allow the shape to be changed to fit different needs. 4) 

The sum of independent gamma distributions is a gamma distribution. 

It should be noted that the model can support the use of any of 21 common 

distributions, provided the appropriate parameters are calculated. In order to use gamma 

distributions, the parameters must be determined. The data that is input into the model 

provides only the mean and standard deviation for cost and time. The parameters for the 

gamma distribution are the shape and scale parameter. The density function for the 

gamma distribution is given in (3.3). 

/ D a     „a-1    „~x$ \ 

f(*) = 
ßa-xa-' -e~x 

V 
for x > 0 (3.3) 

r(a) 

where: shape parameter (a) > 0, and scale parameter (ß) > 0, T(a) as defined on 

page 99 in Appendix G 
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In order to determine the parameters, a and ß, the first two moments were used 

from the data to match to the first two moments for the gamma distribution. Although 

this only approximates the distribution, the maximum likelihood estimator equation is 

iterative and complex to solve. The iterative maximum likelihood estimator equations 

must be solved simultaneously. These equations can be found in Appendix H. Matching 

moments, however, provides an adequate representation for the distribution, especially 

given that only three states are used for each uncertain event in the DA model, which 

means that only the first two moments can be matched regardless. In order to show this 

relationship, an example mean and variance are given, and the moments are then matched 

to a gamma distribution in the DA model. 

The following example uses the equations for the DPL® gamma distribution 

[ADA, 1995: 409]. The parameter values are not derived using the maximum likelihood 

estimator, therefore the parameter estimates are biased. However, the first two moments 

are used to match the mean and variance for the gamma distribution, which provides a 

close approximation for the parameter values. 

For |i = 10 and a2 = 4 

a = (\i2/a2) = 25 and ß = (uVa2) = 2.5 

Using the given parameters, the DA model creates a discrete gamma distribution 

with three states. The example gamma distribution would generate the probability 

frequency graph, shown in Figure 3.8, to assign probabilities to discrete values. For this 

case, the discrete values of 7.3, 10.5, and 14.6, are assigned probabilities of 0.28, 0.63, 
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and 0.08. This discrete distribution approximates the gamma distribution with the given 

parameters. Because the moments were matched to get the parameters, the mean and 

variance for the approximated distribution are identical to the input values for the mean 

and variance. Therefore, the mean of the gamma distribution for this example remains 

10, and the variance remains 4. 
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Figure 3.8 Frequency Graph for Example Gamma Distribution 

Another key assumption requires that the decision to stabilize be made before the 

model is run. The decision to stabilize a waste site is dictated by environmental issues. 

As directed by DOE, this model does not account for environmental issues, therefore, the 

model is not set up to determine if stabilization is necessary. If stabilization is required, 

then the user must reflect this in the model. This can easily be done by controlling the 

path in the decision tree. Along with this, the model assumes that the technologies are 

input in accordance with the stabilization decision. Therefore, if stabilization is used, the 

other technologies in the model should be compatible with stabilized material. 

42 



3.2.4 Data Structure. The data that is used in the DA model is stored in a 

spreadsheet which is linked to the model. The data for each technology is generated by a 

life-cycle cost model simulation of the cost and time elements. The data for the 

technologies, which is input into the spreadsheet, consists of the mean and standard 

deviations for the cost and time simulated distributions. The spreadsheet for the example 

used in this thesis allows three technology choices for each of the 7 processes, but there is 

no limit to the number of technologies available for each process. The data set for this 

analysis is shown and explained in Appendix I. The values given were taken from DOE 

literature, technology principle investigators, and MSE estimates. These values are not 

attributable and are only used to demonstrate the DA model's capabilities. 
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IV. Analysis of Results 

4.1 Introduction 

The analysis of the DA model and technology data is presented using four analysis 

scenarios. The scenarios include a typical analysis of the given data to determine the best 

overall remediation strategy, a scenario to compare treatment and containment options, 

and a similar scenario to compare technology choices for a single process. In each case, 

the alternatives are compared on the basis of total cost, total time, and utility to the 

decision maker. The risk (cost, schedule, and implementation) has been implicitly 

considered for all technologies through the use of individual utility functions. 

Table 4.1 

Characterization 
Stabilization 
Retrieval 
Treatment 
Disposal 
Containment 
Monitoring 

Overlap     Stop_Time Fix Cost 
0% 
0% 

90% 
100% 
100% 
0% 

N/A 

100% 
100% 
25% 
25% 
10% 
50% 
10% 

$34,687.33 
$21,685,186.67 
$17,833,333.33 
$43,317,900.00 
$29,330,333.00 
$6,923,633.33 
$243,809.00 

FixJTime 
0.03724 yrs 
0.88877 yrs 

0.656917 yrs 
2.812497 yrs 

Oyrs 
0.83333 yrs 

Oyrs 

The scenarios use the same values for most of the variables in the DA model. 

These constant values are listed in Table 4.1, and any changes are explained in the 

analysis for each scenario. The values in the table are estimates from the DOE and MSE 

[Geiger, 1995][Antonioli, 1996]. As discussed in Appendix E, the Overlap variables 

represents the percentage of overlap between processes, and the Stop_Time variables 

represent the proportion of O&M until technology failure. The Fix_Time and Fix_Cost 
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values represent the average O&M cost or time of the technology choices for each 

process, and are used as penalties in the case of technology failure. 

4.2 Utility Functions 

In order to compare the alternatives, a set of utility functions for cost and time are 

determined using the 3-point heuristic described in Chapter 3. The DA model can 

determine the best and worst case values of cost and time. The best case values are 

assigned the 5th percentile of the cost and time distributions, while the worst case values 

are assigned the 95th percentile. These values, along with target estimates, provide 

sufficient information to form the individual attribute utility functions. Because of the 

different analysis scenarios, the utility functions were calculated for a stabilized 

remediation strategy and for a strategy without stabilization. The graphs of the utility 

functions are given in Figure 4.1a-b. The values used for these functions are shown with 

the graphs and formulas in Appendix J. 

Utility Utility 

2.2203e+O7 1.9946e+08 

Cost ($ ) 

1.6802 30.521 

Time (Years) 

Figure 4.1a Attribute Utility Functions With Stabilization 
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Utility Utility 

6.5636e+06 2.1443e+08 

Cost ($ ) 

0.8022 30.202 

Time (Years) 

Figure 4.1b Attribute Utility Functions Without Stabilization 

For each scenario the weight given to cost is (k=0.6667). This translates to cost 

being twice as important to the decision maker as time. This assumes however, that the 

remediation strategy does not exceed the limiting values for total cost and time 

(Max_Cost, Max_Time). For each scenario, the maximum cost is $100,000,000.00 

(Max_Cost = 100,000,000), and the maximum time constraint is 10 years (Max_Time = 

10). If a strategy exceeds one of these values it is given a utility value of zero. The 

resulting objective function is given in (4.1) 

If (Total_Cost < Max_Cost and Total_Time < Max_Time) then, (4.1) 

Utility(strategy) = 0.6667*U(Total_Cost) + 0.3333*U(Total_Time) else, 

U(strategy) = 0 

4.3 Scenario 1: Complete Strategy Analysis 

The first scenario involves analyzing the complete remediation process. The 

scenario is designed to approximate a decision maker's need to determine a complete 

remediation strategy for the INEL test pit 9. The DA model is will help the decision 
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maker select the best remediation strategy for this scenario using the applicable 

technology choices for each process given by MSE. For this scenario, it is assumed that 

the site requires stabilization. Therefore, the utility functions shown previously in Figure 

4.1a are used to compare the alternatives. These functions are also explained in 

Appendix J. 

Using the information above, the DA model calculates the optimum remediation 

strategy for this scenario. Although data for actual technologies are used, strategies are 

represented in this analysis using the following notation: 

XX-Y, XX-Y, XX-Y,... 

Where XX = (CA: Characterization, S: Stabilization, R: Removal, T: Treatment, 
D: Disposal, C: Containment, M: Monitoring) 

and Y = (1: Technology 1, 2: Technology2, 3: Technology3) 
(The names and data for the technologies can be found in Appendix H) 

The strategy with the highest utility value for this scenario is (CA-1, S-l, C-l, M- 

2). This optimal strategy has a utility expected value of 0.991879. Although this strategy 

yields the highest expected utility value, there is relatively no difference between strategy 

1 and 2, and little difference in any of the top five strategies. The best five strategies 

based on utility are listed with their expected values for utility, cost, and time in Table 

4.2. 

Table 4.2 

Strategy Utility Cost Time (Yrs) 

1) CA-1, S-l, C-l, M-2 0.991879 $43,390,028 1.6641 

2)CA-2, S-l,C-l,M-2 0.991811 $39,067,517 3.9754 

3)CA-3,S-l,C-l,M-2 0.985656 $39,068,263 4.9624 

4)CA-2,S-l,C-3,M-2 0.970137 $49,565,961 4.8062 

5)CA-3, S-l,C-3,M-2 0.969249 $49,811,968 5.1039 
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As shown in the table, the resulting time and cost values for the strategies vary 

despite the similar utility values. The optimal strategy, (CA-1, S-l, C-l, M-2), has an 

expected cost $4 million higher than the next best strategy, (CA-2, S-l, C-l, M-2). 

However, the expected time for the optimal strategy is 2.5 years lower than the other 

alternatives. Despite the weight given to cost in the utility function, the value for time 

significantly influences the outcome. This is due to the attribute utility functions and the 

resulting values for cost and time. There is very little difference, according to the 

decision maker's utility function for cost, in the resulting cost values for the above 

strategies. The time values, however, are significantly different in terms of utility to the 

decision maker. 

Figure 4.2 shows the plot of the cost and time values of the feasible strategies for 

the scenario. Feasible strategies are those strategies that have compatible technologies 

and have cost and times below the maximum constraint values of $100,000,000 and 10 

years. Only feasible strategies are shown on the graph in Figure 4.2. The dashed line 

shows the target values for cost and time. The top five strategies discussed above, which 

have the highest utility values, are numbered on the plot. These strategies make up the 

majority of the strategies within the target region for both cost and time. Figure 4.3 

shows that the strategies with the lowest time values yield the highest utility values. 

There are other groups of strategies that have lower values for cost, but these strategies 

have much lower utility due to the significant increase in time. Most of the strategies 

have cost values below the cost target of $70,000,000. Very few strategies, however, 

have time values below the time target. Therefore, the sensitivity to cost is decreased and 
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time becomes influential. This fact is made clear in Figure 4.3. Figure 4.3 shows that all 

of the strategies have similar value for the utility of cost. The utility of the time values 

then provides the only means to distinguish the strategies. 
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Figure 4.2 Cost and Time Plot for Scenario 1 Strategies 
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The primary differences in the strategies with the highest utility values are in the 

characterization and the containment technologies used. The technologies used in the 

optimal strategy are all currently available and require no R&D. The characterization 

technology changes in each of the top three strategies. The results imply that the 

solutions are insensitive to the characterization technology used. This is expected, 

however, because of the relatively small costs and times required by the characterization 

technologies. Using a characterization technology that is not currently available and 

requires R&D can save approximately $4 million. This savings is due to the time value 

of money, which increases the remediation time by more than 2.5 years. This increase in 

time is what causes the utility to decrease. The change in utility of $39 million and $43 

million is 0.003, while the change in utility from 2.6 years to 4.5 years is 0.01. The 

increase in time is 3 times as bad as the increase in cost. 

For all of the top five strategies, the optimal stabilization technology is always S- 

1. If another stabilization technology is chosen, the best possible utility value drops to 

less than 0.8, significantly less than the previously discussed options. The containment 

technology varies slightly among the top five strategies. Containment technology C-l is 

the optimal choice, but C-3 is used in strategies with utility values of 0.97. 

The previous results were based solely on expected utility, where utility is based 

on cost and time. Examining the distributions of these values provides insight into the 

risk involved in each strategy. Figure 4.4a shows the cumulative distribution of utility for 

the top five remediation strategies. These distributions follow the results of the expected 

value of utility. The top three strategies: (CA-1, S-l, C-l, M-2), (CA-2, S-l, C-l, M-2), 

50 



and (CA-3, S-l, C-l, M-2) stochastically dominate the remaining two options. Stochastic 

dominance implies that these strategies are more likely to have higher utility values than 

the other strategies. 

CA-1,S-1,C-1,M-2 

CA-2, S-1,C-1,M-2 

CA-3, S-1.C-1, M-2 

CA-2, S-1.C-3, M-2 

 CA-3, S-1.C-3, M-2 

1,2,3 

0.7000   0.7500   0.8000 0.8500 

Utility 

0.9000   0.9500   1.0000 

Figure 4.4a Cumulative Utility Distributions for Scenario 1 

The lower utility values occur when several technologies in the strategy fail, while 

the higher utility values occur when none of the technologies fail. Despite the limited 

range of the graph, the fifth strategy (CA-3, S-l, C-3, M-2) has a 0.2% chance of 

exceeding the maximum values for cost and time. Therefore, this strategy results in a 

utility of 0 with probability 0.002. As in Chapter 3, if a strategy exceeds one of these 

limiting values, it is given a utility of zero. 
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The cumulative cost graph in Figure 4.4b shows that the second and third 

strategies, which had the lowest expected cost, stochastically dominate all others. 

However, the optimal strategy stochastically dominates the fourth and fifth strategies. 

The cumulative time distributions in Figure 4.4c show that strategy (CA-1, S-l, C-l, M- 

2) stochastically dominates all others for total time. This strategy also deterministically 

dominates all other strategies except for the strategy (CA-2, S-l, C-l, M-2). This 

dominance implies that the worst possible value for time with strategy (CA-2, S-l, C-l, 

M-2) is always better than the best possible time values for the other three strategies. 

This result supports the expected value results. 
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Figure 4.4b Cumulative Cost Distributions for Scenario 1 
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Figure 4.4c Cumulative Time Distributions for Scenario 1 

The frequency distributions for cost and time also illustrate the risk inherent in 

each strategy. Graphs of the frequency distributions of cost and time for the five 

strategies are given in Appendix K, and indicate the same results. The statistics for the 

frequency distributions are shown in Table 4.3. The sample variance values give an 

estimate of the risk for each strategy. The optimal strategy has the lowest average time 

value and the smallest sample variance, which implies that the risk in remediation time 

for this strategy is low. The cost of the optimal strategy, however, involves more risk. 

Not only is the expected cost higher than the next two strategies, but the sample variance 

of the cost values is larger than the other options. The cumulative cost distribution from 

Figure 4.4b shows that about 99% of the time this strategy has a cost less than the target 

cost of $70,000,000. 
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Table 4.3 

Strategy Cost X Cost S2 Time X Time S2 

($ Million) ($ Million)2 
(Yrs) (Yrs)2 

CA-l,S-l,C-l,M-2 43.390 47.7 1.664 0.477 
CA-2,S-l,C-l,M-2 39.067 39.8 3.975 0.874 
CA-3,S-l,C-l,M-2 39.068 36.1 4.962 0.873 
CA-2,S-l,C-3,M-2 49.565 36.7 4.806 1.294 
CA-3,S-l,C-3,M-2 49.811 32.9 5.103 1.070 

The optimal strategy for the given utility function weights for cost and time utility 

is (CA-1, S-l, C-l, M-2). Although the total cost for this strategy is slightly higher than 

other choices, this strategy requires significantly less time than all other alternatives. This 

difference in remediation time makes up for the slightly higher cost. This result may 

seem to contradict the importance given to cost (k=0.6667), but this follows the previous 

conclusions concerning the range of the cost and time values and the range of the 

resulting utility values. As discussed, any of the three characterization technologies can 

be used with (S-l, C-l, M-2) and cause little change in utility to the decision maker. 

Other changes to this strategy can be made but with significantly decreased utility. 

Further sensitivity analysis shows the optimal policy's sensitivity to the variable 

values used in the model. The rainbow diagram in Figure 4.5 shows how the optimal 

policy changes as the cost utility weight increases. The technologies selected for the 

optimal strategy are relatively insensitive. Only the optimal characterization technology 

choice changes as cost becomes more important to the decision maker. The policy 

changes occur at approximately k=0.68 and k=0.925. The similar results for CA-1, CA-2, 
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and CA-3 are also evident in this graph. The optimal policy given above is for k=0.6667, 

which is in the region of the rainbow diagram where policy changes begin to occur. 
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Figure 4.5 Rainbow Diagram for Cost Utility Weight in Scenario 1 

The effects of changing other variable values are shown in Figure 4.6. This 

tornado diagram indicates the most influential variables. The most significant variables 

are at the top of the graph and have the longest bands. The variables with the shortest 

bands, at the bottom of the graph, are the least influential. 
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Figure 4.6 Tornado Diagram for Scenario 1 Optimal Decision Policy 
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To perform the sensitivity analysis, the values for most of the variables were 

changed significantly from their nominal settings. Unless a range was specified, the 

values were varied from 50% to 150%. These ranges represent realistic values, however, 

especially for variables like the penalties for technology failure and the Stop_Time 

variables. Even with the wide range of values, the largest magnitude of change in the 

utility of the solution is 0.002. Regardless, the tornado diagram indicates which variables 

are important to this solution. The diagram shows that the variables for containment and 

stabilization technology failure are influential to this solution, as well as the interest and 

inflation rates. 

The only changes to the optimal policy occur when the interest rate is increased or 

when the inflation rate is decreased. This result follows the time value of money 

calculations used in the model. The CA-2 technology requires R&D, which allows other 

technology costs to be incurred at a later time. Therefore, if interest rates increase or the 

inflation rate decreases, it would be preferable to delay the costs and thus (CA-2, S-l, C- 

1, M-2) would be preferred to (CA-1, S-l, C-l, M-2). 

4.4 Scenario 2: Comparison of Treatment and Containment 

In scenario 2 it is assumed that the preliminary site characterization of the INEL 

pit 9 has determined that a specific characterization technology, CA-2, must be used. 

Added to this, it has been determined that stabilization of the waste is not required. 

Based on this, the decision maker must decide whether to treat or contain the waste site 

and which strategy to use. The comparison of treatment and containment options is a key 
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issue for the DOE, which makes this a likely analysis situation. Most of the same 

variable values are used for this scenario. The primary difference is the change in the 

utility functions due to the lack of stabilization. The utility functions used for this 

analysis were previously shown in Figure 4.1b, and are also explained in Appendix J. 

The weight for the utility of cost is (k=0.6667). 

To compare treatment and containment strategies, the optimal strategy for each 

method is determined. Treatment strategies consist of a retrieval, treatment, and disposal 

technology, while the containment technology makes up the containment strategy. For 

each strategy, monitoring technology M-2 is used. This is done because this is the only 

monitoring technology that is compatible with both treatment and containment options. 

Also, this technology clearly dominates the other monitoring alternative. This can be 

shown by examining the technology data in Appendix E. On-site disposal and 

monitoring (D-2, M-2) clearly dominates off-site disposal and monitoring (D-l, M-l). 

Selecting the monitoring technology determines the disposal technology, D-2, because of 

compatibility restrictions. 

For this scenario, the optimal treatment strategy is (R-l, T-l, D-2). This strategy 

has an expected utility of 0.989413. The optimal containment strategy for this scenario is 

(C-l) with an expected utility of 0.99381. As in scenario 1, the utility values for the 

strategies are extremely high, and different strategies provide similar results. The top five 

strategies, along with their expected values for utility, cost, and time, are given in Table 

4.4. 
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Table 4.4 

Strategy Utility Cost Time (Yrs) 
l)CA-2,C-l,M-2 0.99381 $6,566,594 3.6788 
2)CA-2,R-l,T-l,D-2, M-2 0.989413 $17,021,437 3.1328 
3)CA-2,R-2,T-l,D-2, M-2 0.987297 $18,946,733 3.2347 
4) CA-2, C-3, M-2 0.96168 $17,013,336 4.7833 
5)CA-2,R-l,T-3,D-2, M-2 0.957239 $10,238,361 5.1994 

The data in the table shows that remediation time is very influential despite the 

weight given to cost. The optimal strategy for expected utility costs $11 million less than 

the next best strategy, but the utility values are close because the optimal strategy takes 

0.5 years longer. As in Scenario 1, this result is partly due to the utility functions and the 

cost and time values for the strategies. There is little difference to the decision maker in 

$6 million and $17 million, but the difference in 3.68 years and 3.13 years makes strategy 

(CA-2, R-l, T-l, D-2, M-2) have a lower utility than strategy (CA-2, C-l, M-2). Added 

to this, (CA-2, R-l, T-l, D-2, M-2) is a treatment strategy which has greater opportunity 

for technology failure due to the additional technologies involved. When technologies 

fail, the utility for the strategy decreases significantly. 

The graph in Figure 4.7 plots the cost and time values for the feasible strategies 

for this scenario. Only those strategies with cost and time values below the constraints of 

$100,000,000 and 10 years are shown. The target values for this scenario are shown by 

the dotted line. Generally, the graph shows that some strategies with lower costs and 

higher times have lower utility values. As in Scenario 1, the ranges for cost results in a 

small range for cost utility, but the range for time results in large range for time utility. 
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Figure 4.7 Cost and Time Plot for Scenario 2 Strategies 

The cumulative distributions for utility, cost, and time illustrate the importance of 

time and show the dominance of some strategies. The cumulative distribution for utility 

is given in Figure 4.8a. This graph shows that the top three strategies stochastically 

dominate the fourth and fifth ranked strategies. 
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Figure 4.8a Cumulative Utility Distributions for Scenario 2 
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The cumulative distribution for cost, in Figure 4.8b, shows a much different 

result. The strategies (CA-2, C-l, M-2) and (CA-2, R-1, T-3, D-2, M-2) stochastically 

dominate the other alternatives, except for (CA-2, C-3, M-2). However, (CA-2, C-l, M- 

2) deterministically dominates strategy (CA-2, C-3, M-2), which means this strategy will 

always cost less than the other. The cumulative distributions for time, given in Figure 

4.8c, show that the top three strategies stochastically dominate the remaining options. 
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Figure 4.8b Cumulative Cost Distributions for Scenario 2 
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Figure 4.8c Cumulative Time Distributions for Scenario 2 

Regardless of the utility values, there does not appear to be an obvious optimal 

strategy for this scenario. The strategy with the highest expected value for utility (CA-2, 

C-l, M-2) is a containment strategy which has the lowest expected cost. The strategy 

with the lowest expected time (CA-2, R-l, T-l, D-2, M-2) is a treatment strategy. Both 

of these options incorporate currently available technologies. The results for remediation 

time are very close for the top three strategies. The expected times for these strategies are 

within 6 months of each other. Examining the frequency distributions of cost and time 

for these strategies shows an important element of the risk in the strategies. The 

frequency graphs of cost and time for the top five strategies are shown in Appendix L. 

The statistics for these distributions are given in Table 4.5. The sample variance shows 

the risk inherent in each strategy's cost and time distributions. Strategies with smaller 

variance have less risk in the cost and time values. 
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Table 4.5 

Cost X Cost S2 TimeX Time S2 

($ Million) ($ Million)2 
(Yrs) (Yrs)2 

6.566 3.870 3.678 0.833 
17.021 200.0 3.132 1.425 
18.946 207.0 3.234 1.386 
17.013 1.46 4.783 1.310 
10.238 87.5 5.199 1.194 

Strategy 

CA-2, C-l, M-2 
CA-2,R-l,T-l,D-2,M-2 
CA-2, R-2,T-l,D-2, M-2 

CA-2, C-3, M-2 
CA-2,R-l,T-3,D-2,M-2 

The data in the previous table implies that if the decision maker is willing to 

accept a higher average remediation time with some risk involved, then the containment 

strategy (CA-2, C-l, M-2) may be the best solution. The average cost of this strategy is 

always lower than most of the other options, and the variance of these values is 

comparatively low. The average time for this strategy averages 6 months longer than the 

second and third options, but the variance of the time values is the lowest of all strategies. 

Therefore, the decision maker can save $11 million with strategy (CA-2, C-l, M-2) if he 

or she is willing to accept the increase in remediation time. This results in a $22 Million 

per year trade-off between the two options. The decision maker can be confident in this 

strategy, however, because of the smaller variance in the cost and time values. In times of 

restricting budget allotments, such information could be critical in selecting a course of 

action. 

Sensitivity analysis on this optimal policy shows that this solution is relatively 

insensitive to changes in the values of the input variables. The rainbow diagram in Figure 

4.9 shows that the optimal policy remains (CA-2, C-l, M-2) unless the weight given to 
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cost is decreased to extremely low values. Specifically, if time is the only important 

factor then the optimal solution is (CA-2, R-l, T-l, D-2, M-2). 

0.0 0.1 0.3 0.5 

Cost Weight (k) 

0.7 1.0 

Figure 4.9 Rainbow Diagram for Cost Utility Weight in Scenario 2 
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Figure 4.10 Tornado Diagram for Scenario 2 Optimal Decision Policy 

The tornado diagram in Figure 4.10 shows that the variables for containment 

technology failure are the most influential to the expected utility of the optimal solution. 
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The input variables were changed from 50% to 150% of their nominal values, unless a 

more feasible range was specified. Despite the changes to the input variables, the optimal 

policy remains (CA-2, C-l, M-2). 

4.5 Scenario 3: Single Process Technology Selection 

The third scenario is examined to determine the best technology selection for a 

particular process. Scenario 3 assumes that the decision maker has determined that the 

waste site will be treated using the strategy (R-l, T-3, D-2, M-2), and stabilization is not 

required. Therefore, the decision maker must decide which characterization technology 

to use. Perhaps the optimal treatment strategy was found previously, but three new 

characterization technologies must now be compared. Because of the lack of 

stabilization, the same utility functions as Scenario 2 will be used. These functions were 

shown previously in Figure 4.1b, and are also explained in Appendix J. 

Using expected utility the optimal technology selection is CA-1. The expected 

value for utility, cost, and time are given in Table 4.6. From this we see that CA-1 seems 

to dominate the other choices. It has a higher expected utility, a lower expected cost, and 

a lower expected time than CA-2 and CA-3. There is very little difference, however, 

between the values for expected utility, cost, and time for the three different strategies. 

Strategy 
1) CA-1, R-l, T-3, D-2, M-2 
2) CA-2, R-l, T-3, D-2, M-2 
3) CA-3, R-l, T-3, D-2, M-2 

Table 4.( 

Utility Cost Time (Yrs) 
0.958492 
0.957562 
0.949342 

$10,051,457 
$10,076,904 
$11,750,788 

4.9022 
5.2076 
5.5921 
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The graphs in Figure 4.11a-c show the cumulative distributions of utility, cost, 

and time. These distributions prove how similar the three options are. There is no 

dominance evident in the cumulative utility graph because the distributions are similar. 

The utility values for CA-1 and CA-2, however, appear to be marginally higher than CA- 

3. The cumulative cost distributions for CA-1 and CA-2 are almost identical. The graph 

shows that about 70% of the costs for CA-1 and CA-2 are less than the best possible cost 

for CA-3. The cumulative time distributions in Figure 4.1 lc are also similar for all three 

characterization technologies. Again, the distribution for CA-1 shows that this strategy 

may result in less remediation time more often than the other options. 

Figure 4.1 la Cumulative Utility Distributions for Scenario 3 
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Figure 4.1 lc Cumulative Time Distributions for Scenario 3 

Because of the similarities in these strategies, further analysis is necessary to 

distinguish an optimal decision policy. The frequency distributions determine the cost 
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and time risk for each technology. These distributions are given in Appendix M. The 

statistics for these distributions are shown in Table 4.7. 

Strategy 

Ta 

Cost X 
($ Million) 

ble 4.7 

Cost S2 

($ Million)2 
TimeX 

(Yrs) 
Time S2 

(Yrs)2 

$10,051 
$10,076 
$11,750 

$83.7 
$82.0 
$81.2 

4.902 
5.207 
5.592 

1.476 
1.191 
0.995 

CA-l,R-l,T-3,D-2,M-2 
CA-2,R-l,T-3,D-2,M-2 
CA-3,R-l,T-3,D-2,M-2 

The frequency distribution results show that CA-2 causes less variation in the cost 

and time for the strategy than CA-1. However, the maximum range of cost and time for 

CA-1 is less than or equal to the maximum value for CA-2. Based on this, it appears that 

characterization technology CA-1 should be used for the remediation strategy (CA-1, R-l, 

T-3, D-2, M-2). Most of the similarities in the results for the three technologies is due to 

the actual data for each technology. The O&M time for all three options is the same. The 

only difference is the R&D required for CA-2 and CA-3. The R&D time for these 

technologies has little effect on the expected time for the complete strategy. Along with 

this, most of the R&D cost for CA-2 and CA-3 is off-set by the R&D time. The R&D 

time allows retrieval and treatment to begin later, thus reducing the present value of the 

cost. On the other hand, CA-2 and CA-3 have a 10% chance of failing, while CA-1 is 

always successful. The probability of failure with technologies CA-2 and CA-3 makes up 

for the decrease in cost with a penalty cost for failure. 

Similarities in the results could also be due to the fact that characterization 

accounts for a relatively small proportion of the total cost and time for the strategy, and 
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thus was given small penalties for technology failure. However, characterization is a very 

important part of the remediation process. Because of this, the penalties may actually be 

higher than the average values used for the analysis. CA-1, however, would be 

unaffected by any increase in penalty because the technology has a probability of failure 

ofO. 

Sensitivity analysis shows how the optimal strategy of (CA-1, R-l, T-3, D-2, M-2) 

is insensitive to most changes in the input variables used. The rainbow diagram in Figure 

4.12 shows that this strategy is optimal for almost all values of k. When the cost weight 

is close to one, meaning that cost is the only important attribute, the policy does change to 

(CA-2, R-l, T-3, D-2, M-2). This may seem contradictory to the expected value results, 

but the variance of the cost values causes the change. Further, the R&D from CA-2 

allows other processes to begin later, and reduces the present value of the cost. 

0.88 
0.00 0.20 0.40 0.60 

Cost Weight (k) 

0.80 0.99 

Figure 4.12 Rainbow Diagram for Cost Utility Weight in Scenario 3 
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The tornado diagram in Figure 4.13 shows that very few variable values affect the 

expected utility of the optimal decision policy. Changes in the interest rate, inflation rate, 

and overlap for characterization, produced only small changes in the expected utility 

value and did not result in an optimal policy change. This is expected because this 

scenario only examines the characterization technology choice. 
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Figure 4.13 Tornado Diagram for Scenario 3 Optimal Decision Policy 

4.6 Summary 

Overall, the DA model provides many important tools for analyzing the 

technology selection decisions. The model uses the risk attitude of the decision maker to 

select technologies based on utility, however, cost and time data is also provided. The 

distributions for utility, cost, and time, provide valuable information to the decision 

maker. These distributions show the range and frequency of the values so that the 

decision maker sees the risk involved with each strategy. The model also allows for 

sensitivity analysis in the form of rainbow and tornado diagrams, for the input variable 

values. This tells the decision maker how sensitive the optimal policy is to change. The 
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previous scenarios outlined three of the probable analysis situations and showed how the 

model can be used to provide valuable information to the decision maker. 

The common result throughout the scenarios is that the technologies that are 

currently available make up the majority of the optimal remediation strategies. There 

appears to be very little gain in using technologies that require R&D. The utility 

functions that were used are primarily responsible for this result. These functions left 

little room for extensive R&D cost and time. The technologies that are available are able 

to complete remediation earlier because of the lack of R&D time, and they do it for a 

lower cost. Even though a new technology may accomplish a process in less time or for 

less cost, the R&D cost and time overshadow this. Furthermore, containment strategies 

are generally favorable due to the decrease in cost and time risk caused by the fewer 

number of processes involved. 

The analysis results were affected by some obvious dominance in the data. This 

can be seen in the data values given in Appendix E. Disposal technology D-l is 

obviously dominated by D-2. The respective monitoring technology M-l is also 

dominated by M-2. This is due to the extreme values for R&D time and O&M costs 

involved. The O&M cost for D-l and M-l is more than 20 times greater than D-2 and M- 

2. The retrieval technology R-3 and the treatment technology T-2 are also apparently 

dominated choices. Their R&D and O&M costs appear to prevent them from being 

competitive choices, unless due to compatibility issues. 

The remaining technology choices make up possible remediation strategies. 

These strategies were examined using three different analysis scenarios. Most of the 
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optimal strategies involve currently available technologies; however, many other 

technologies can provide close results for utility, total time, and total cost. The expected 

values and distributions for utility, cost, and time were used to compare the strategies. 

Although actual technologies are used in the analysis, these results should be viewed as 

notional and dependent on the nature of the data used. 
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V. Findings and Conclusions 

5.1 Conclusions 

The goal of this analysis was to produce a generic model to analyze the DOE's 

selection of technologies for landfill waste site remediation. The following assumptions 

were used to develop the model: 

1) Considered technologies are applicable to the given waste site 

2) The decision to stabilize is made by the decision maker 

3) Cost and time elements can be modeled using gamma distributions 

The model uses the attributes of cost and time to compare possible remediation 

strategies and technologies. The model incorporates risk into the calculations of these 

attributes using the probability of technology failure, as well as cost and time penalties for 

failure. The decision maker's preferences for cost and time are also taken into account 

using utility functions, which can then be used to determine the optimal strategy for the 

particular decision maker. Finally, the model can be used to produce the following tools 

to aid the decision maker. 

1) Cumulative and frequency distributions for utility, cost, and time 

2) Cost and time plots 

3) Rainbow diagrams 

4) Tornado diagrams 
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5.1.1 Recommendations. The analysis of the presented scenarios shows the 

influence of the utility functions on the result. The range of the cost values for the 

strategies resulted in cost utilities that were indistinguishable. This caused a loss in the 

sensitivity for cost and increased the importance of time. Because of this, the relationship 

between cost and time may inaccurately reflect the decision maker's belief that cost was 

twice as important as time (k=0.6667). This is not necessarily a problem, provided that 

the decision maker's utility functions for cost and time are appropriate. These results 

showed, however, the importance of the target value that was used in the attribute utility 

functions. Because most of the strategies had costs below the target value, they all had a 

utility for cost that was similar. This result could change if absolute utility functions for 

cost and time can be determined, instead of the relative utility functions used for this 

analysis. 

The distributions for cost and time provided the necessary data to compare the 

alternatives. Some of the technology choices were obviously dominated in terms of cost 

and time. It may be beneficial to eliminate the technologies that are obviously dominated 

before determining the attribute utility functions. This could also eliminate the 

insensitivity that was shown in the cost utility results. In addition, logarithmic 

transformations of the cost values may eliminate the problems of having a large range of 

values for the cost attribute. 

The cumulative distributions for utility, cost, and time can be used to eliminate 

those strategies that are clearly dominated. The expected value provides a general 

measure, but it neglects the variance and range of the values. Because of this, the 
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distributions for cost and time should be used to compare the strategies with similar 

results. The variance of the comparable strategies should be analyzed to determine the 

amount of risk inherent in the cost and time for the strategy. 

Plots of the cost and time for the feasible strategies also provide important 

information to the decision maker. These graphs show the trade-offs that are assumed by 

the utility functions and shows strategies that should be examined further. Additionally, 

these two-way plots can show strategies that are obviously dominated or optimal. 

Once an optimal strategy is determined, sensitivity analysis can identify how this 

solution is affected by changes in the values of the variables used. The tornado diagram 

provides an effective method for displaying these results. Sensitivity analysis helps to 

determine the variables that have the most influence on the solution. Therefore, emphasis 

should be placed on the ranges of values assigned to these variables. The rainbow 

diagram illustrates the effects of changing a particular variable value. Analysis of the 

scenarios used in this study produced relatively insensitive solutions, which was primarily 

due to the limited range of alternative technologies. 

The data used in the analysis was the best available data for the individual 

technologies. The model is designed to use output from a LCC model for the cost and 

time data for each technology. However, the data for this study was gathered from DOE 

literature, technology principal investigators, and MSE estimates. Because of this, the 

results and conclusions are presented solely to detail the capabilities of the model. The 

results do not reflect the actual characteristics of the given technologies; therefore, the 

results should be treated as notional. 
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5.1.2 Contributions to Sponsor. The DA model provides the DOE with a 

generic analysis tool to compare remediation strategies and technologies. The model 

provides decision makers with useful information which can be used to make better 

decisions. Specifically, the DOE requested a generic model to analyze technologies for 

waste site remediation. The DOE required that the model incorporate LCC and risk 

information to analyze the technologies. Finally, the DOE required that the model 

emphasize sensitivity analysis on the solution. 

The DA model meets all of the requirements outlined by the DOE. The model is 

generic in that it allows for new technologies and changes in variable values. Although 

the model uses three choices for each technology decision, the model can be used to 

analyze any number of technologies by simply making multiple runs or adding more 

alternatives to the decision nodes for the technology selections. Additionally, new 

technologies can be analyzed when they become available. The compatibility constraint 

allows for relationships between technologies to be maintained. Variables, such as the 

penalty for technology failure and the process overlaps, allow the user to easily make 

changes to many of the assumptions in the model. 

The DA model is designed to use output from a LCC cost model and risk model. 

The life cycle cost model provides simulated cash flows and the cost and process times 

for the given technology. The risk model uses information about the technology to 

develop a probability of failure for the technology. The cost, time, and risk information is 

then used to calculate the total cost and time for each possible remediation strategy. 
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Finally, the DA model allows the user to see the effect of changing input values, 

which can be done using rainbow and tornado diagrams. Sensitivity analysis information 

is available for any value or uncertainty used in the model. Along with this, the Microsoft 

Windows® environment makes sensitivity analysis and other functions of the model easy 

to use and modify. 

5.2 Recommendations for Future Research 

Throughout the development of the model and the analysis of the data, 

opportunities for future research were identified. Several ideas, along with a brief 

description, are provided below. 

5.2.1 Technology Data Analysis. Gather output data from a LCC analysis of 

technologies. This data can then be used to determine the appropriate distributions to use 

for the cost and time elements in the model. Added to this, the three point 

approximations used in the model could be analyzed and compared with different 

discretized distributions. 

5.2.2 Modifications to the Utility Functions. The utility functions in this 

analysis were greatly affected by the technology data involved. When the technologies 

are changed, different utility functions must be determined. More generic utility 

functions may perform better, especially if they are independent of the technologies used 

in the analysis. 

5.2.3 Effectiveness Attributes. Although cost and time are important criteria for 

technology selection, the effectiveness of technologies is not directly accounted for. In 
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most cases, the model prefers treatment to containment due to the reduced cost and time 

involved. Attributes could be added to the model to reflect the fact that containment is a 

temporary strategy. The waste will still have to be treated, but perhaps with a better 

treatment technology. Other attributes such as safety and environmental impact may be 

as important as cost and time. 

5.3 Summary 

The DOE's remediation of waste sites is a complex process that involves 

significant cost, time, and risk. The selection of technologies is an important decision 

that requires the allocation of resources. The DA model developed in this study provides 

an invaluable tool in a time when budgetary, environmental, and public concerns are 

emphasized. 

Decision analysis provides a structured method for analyzing complex problems. 

The DA model combines several decision analysis techniques to produce useful 

information for decision makers. The model may not account for all of the details in the 

process, but by analyzing the important aspects the decision maker can be better informed 

and make better decisions. 
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Appendix A: AHP Weight Calculations 

Matrix A consists of ay elements from decision maker's assessments 

Weight for objective i: Wi and ay = wj Wj 

Need vector w = [wi W2 ... wn] 

AwT = AwT is a system of n equations 

If decision maker is consistent, then A = n. Let Amax be the largest number 

for which there is a nontrivial solution to the above equation (wmax). 

wmax can also be approximated by normalizing the columns of matrix A, and 

averaging the rows. These averages are the approximate weights. 

»n'i 
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Appendix B: AHP Consistency Index Calculations 

,T 1) Compute Aw 

2) Compute     1/n'^ ith entry in AwJ 
i = 1 ith entry in w * 

3) The Consistency Index (CI) is computed as follows: 

CI = ((#2 result)-n)/(n-l) 

4) A Random Index (RI) is used to form a ratio : CI / RI 

5) RI values depend on n 

6) Generally, if CI / RI < 0.1, then the inconsistency is acceptable 
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Appendix C: Logarithmic Least Squares Algorithm for HDP 

Use A matrix from AHP comparisons 

(]>)1/n 

Compute V; =       J for i, j = 1, 2,..., n 
2/11^) 

i     j 

Compute z = min^T ^ (logaij - log—)2 

i        i Yi 
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Appendix D: DA Model Source Code 

The following code is for the DPL® decision analysis software. The code follows 

the influence diagrams and decision trees given in Chapter 3. This code is for the 

stabilization model. Therefore, the appropriate utility functions are used. The code 

begins with the value node assignments from the EXCEL® spreadsheet containing the 

technology data. The code then assigns the remaining value nodes used in the model. 

The uncertainty nodes and all calculations follow the value node assignments. Finally, 

the decision tree structure is coded. 

string Excel_l="c:\\msoffice\\excel\\thesis.xls"; 
value Overlapl=0; 
value Rate=0.07; 
value Overlap2=0; 
value Overlap3=0.9; 
value Overlap4=l; 
value Overlap5=l; 
value Overlap6=l; 
exce, 
exce: 
exce' 
exce 
exce! 
exce! 
exce 
exce^ 
exce! 
exce^ 
exce 
exce 
exce 
exce 
exce 
exce 
exce 
excel 
exce 
exce 
excel 
exce 
excel 

l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 
l(Excel_ 

."Sheetl !C_Tl_OMCO") value C_Tl_OMCO; 

."Sheetl !C_Tl_OMCU") value C_Tl_OMCU; 
,"Sheetl!C_Tl_OMTO") value C_Tl_OMTO; 
,"Sheetl !C_Tl_OMTU") value C_Tl_OMTU; 
,"Sheetl !C_Tl_PROB") value C_Tl_PROB; 
,"Sheetl !C_T1_RDCU") value C_T1_RDCU; 
."Sheetl !C_Tl_RDTO") value C_Tl_RDTO; 
,"Sheetl !C_T1_RDTU") value C_T1_RDTU; 
,"Sheetl !C_T2_OMCO") value C_T2_OMCO; 
,"Sheetl !C_T2_OMCU") value C_T2_OMCU; 
,"Sheetl !C_T2_OMTO") value C_T2_OMTO; 
."Sheetl !C_T2_OMTU") value C_T2_OMTU; 
."Sheetl !C_T2_PROB") value C_T2_PROB; 
."Sheetl !C_T2_RDCU") value C_T2_RDCU; 
."Sheetl !C_T2_RDTO") value C_T2_RDTO; 
."Sheetl !C_T2_RDTU") value C_T2_RDTU; 
."Sheetl !C_T3_OMCO") value C_T3_OMCO; 
."Sheetl !C_T3_OMCU") value C_T3_OMCU; 
."Sheetl !C_T3_OMTO") value C_T3_OMTO; 
."Sheetl !C_T3_OMTU") value C_T3_OMTU; 
."Sheetl !C_T3_PROB") value C_T3_PROB; 
."Sheetl !C_T3_RDCU") value C_T3_RDCU; 
."Sheetl !C_T3_RDTO") value C_T3_RDTO; 
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C_T3_RDTU") value C_T3_RDTU; 
M_Tl_OMCO") value M_T1_0MC0 
M_T1_0MCU") value M_T1_0MCU 
M_T1_0MT0") value M_T1_0MT0 
M_T1_0MTU") value M_T1_0MTU 
M_T1_PR0B") value M_T1_PR0B; 
M_T1_RDCU") value M_T1_RDCU 
M_T1_RDT0") value M_T1_RDT0 
M_T1_RDTU") value M_T1_RDTU: 
M_T2_0MC0") value M_T2_0MC0 
M_T2_0MCU") value M_T2_0MCU 
M_T2_OMTO") value M_T2_OMTO 
M_T2_0MTU") value M_T2_0MTU 
M_T2_PR0B") value M_T2_PR0B; 
M_T2_RDCU") value M_T2_RDCU; 
M_T2_RDT0") value M_T2_RDT0; 
M_T2_RDTU") value M_T2_RDTU; 
M_T3_0MC0") value M_T3_0MC0 
M_T3_0MCU") value M_T3_0MCU 
M_T3_0MT0") value M_T3_OMTO 
M_T3_OMTU") value M_T3_OMTU 
M_T3_PR0B") value M_T3_PROB; 
M_T3_RDCU") value M_T3_RDCU 
M_T3_RDT0") value M_T3_RDT0 
M_T3_RDTU") value M_T3_RDTU 
D_Tl_OMCO") value D_T1_0MC0 
D_Tl_OMCU") value D_T1_0MCU 
D_Tl_OMTO") value D_Tl_OMTO 
D_Tl_OMTU") value D_Tl_OMTU 
D_T1_PR0B") value D_T1_PR0B; 
D_T1_RDCU") value D_T1_RDCU 
D_T1_RDT0") value D_Tl_RDTO 
D_T1_RDTU") value D_T1_RDTU 
D_T2_OMCO") value D_T2_OMCO 
D_T2_0MCU") value D_T2_OMCU 
D_T2_OMTO") value D_T2_OMTO 
D_T2_0MTU") value D_T2_0MTU 
D_T2_PR0B") value D_T2_PR0B; 
D_T2_RDCU") value D_T2_RDCU; 
D_T2_RDT0") value D_T2_RDT0; 
D_T2_RDTU") value D_T2_RDTU; 
D_T3_OMCO") value D_T3_0MC0 
D_T3_OMCU") value D_T3_0MCU 
D_T3_0MT0") value D_T3_OMTO 
D_T3_0MTU") value D_T3_0MTU 
D_T3_PROB") value D_T3_PROB; 
D_T3_RDCU") value D_T3_RDCU 
D_T3_RDTO") value D_T3_RDT0 
D_T3_RDTU") value D_T3_RDTU 
T_T1_0MC0") value T_T1_0MC0 
T_Tl_OMCU") value T_Tl_OMCU 
T_T1_0MT0") value T_Tl_OMTO 
T_T1_0MTU") value T_T1_0MTU 
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excel(Excel_l,"Sheetl !T_T1_PR0B") value T_T1_PR0B; 
exceI(Excel_l,"Sheetl !T_T1_RDCU") value T_T1_RDCU; 
excel(Excel_l,"Sheetl!T_Tl_RDTO") value T_T1_RDT0; 
excel(Excel_l,"Sheetl!T_Tl_RDTU") value T_T1_RDTU; 
excel(Excel_l,"Sheetl !T_T2_0MC0") value T_T2_0MC0; 
excel(ExceLl,"Sheetl !T_T2_0MCU") value T_T2_0MCU; 
excel(Excel_l,"Sheetl !T_T2_OMTO") value T_T2_0MT0; 
excel(ExceLl,"Sheetl !T_T2_0MTU") value T_T2_0MTU; 
excel(Excel_l,"Sheetl !T_T2_PR0B") value T_T2_PROB; 
excel(ExceLl,"Sheetl!T_T2_RDCU") value T_T2_RDCU; 
excel(Excel_l,"Sheetl!T_T2_RDT0") value T_T2_RDT0; 
excel(Excel_l,"Sheetl !T_T2_RDTU") value T_T2_RDTU; 
excel(Excel_l,"Sheetl!T_T3_OMCO") value T_T3_0MC0 
excel(Excel_l,"Sheetl !T_T3_0MCU") value T_T3_0MCU 
excel(ExceLl,"Sheetl !TT3_0MT0") value T_T3_0MT0 
excel(ExceU,"Sheetl !T_T3_0MTU") value T_T3_OMTU 
excel(Excel_l,"Sheetl!T_T3_PR0B") value T_T3_PR0B; 
excel(Excel_l,"Sheetl !T_T3_RDCU") value T_T3_RDCU; 
excel(Excel_l,"Sheetl !TT3_RDT0") value T_T3_RDTO; 
excel(Excel_l,"Sheetl!T_T3_RDTU") value T_T3_RDTU; 
excel(Excel_l,"Sheetl !R_T1_0MC0") value R_Tl_OMCO 
excel(Excel_l,"Sheetl!R_Tl_OMCU") value R_Tl_OMCU 
excel(Excel_l,"Sheetl!R_Tl_OMTO") value R_T1_0MT0 
excel(Excel_l,"Sheetl!R_Tl_OMTU") value R_Tl_OMTU 
excel(Excel_l,"Sheetl!R_Tl_PROB") value R_T1_PR0B; 
excel(Excel_l,"Sheetl!R_Tl_RDCU") value R_T1_RDCU; 
excel(Excel_l,"Sheetl !R_T1_RDT0") value R_T1_RDT0; 
excel(Excel_l,"Sheetl !R_T1_RDTU") value R_T1_RDTU; 
excel(Excel_l,"Sheetl !R_T2_OMCO") value R_T2_OMCO 
excel(Excel_l,"Sheetl !R_T2_0MCU") value R_T2_0MCU 
excel(ExceLl,"Sheetl !R_T2_0MT0") value R_T2_0MT0 
excel(ExceLl,"Sheetl !R_T2_0MTU") value R_T2_0MTU 
excel(Excel_l,"Sheetl !R_T2_PR0B") value R_T2_PROB; 
excel(Excel_l,"Sheetl !R_T2_RDCU") value R_T2_RDCU; 
excel(Excel_l,"Sheetl !R_T2_RDTO") value R_T2_RDT0; 
excel(ExceLl,"Sheetl!R_T2_RDTU") value R_T2_RDTU; 
excel(Excel_l,"Sheetl!R_T3_OMCO") value R_T3_OMCO; 
excel(Excel_l,"Sheetl!R_T3_OMCU") value R_T3_OMCU; 
excel(Excel_l,"Sheetl !R_T3_OMTO") value R_T3_0MT0; 
excel(Excel_l,"Sheetl!R_T3_0MTU") value R_T3_OMTU; 
excel(Excel_l,"Sheetl !R_T3_PR0B") value R_T3_PROB; 
excel(Excel_l,"Sheetl !R_T3_RDCU") value R_T3_RDCU; 
excel(Excel_l,"Sheetl!R_T3_RDT0") value R_T3_RDT0; 
excel(Excel_l,"Sheetl!R_T3_RDTU") value R_T3_RDTU; 
excel(ExceLl,"Sheetl !S_T1_0MC0") value S_T1_0MC0; 
excel(Excel_l,"Sheetl !S_T1_0MCU") value S_T1_0MCU; 
excel(Excel_l,"Sheetl!S_Tl_OMTO") value S_T1_0MT0; 
excel(Excel_l,"Sheetl!S_Tl_OMTU") value S_T1_0MTU; 
excel(Excel_l,"Sheetl!S_Tl_PROB") value S_T1_PR0B; 
excel(Excel_l,"Sheetl!S_Tl_RDCU") value S_T1_RDCU; 
excel(Excel_l,"Sheetl!S_Tl_RDTO") value S_T1_RDT0; 
excel(Excel_l,"Sheetl!S_Tl_RDTU") value S_T1_RDTU; 
excel(Excel_l,"Sheetl!S_T2_OMCO") value S_T2_OMCO; 
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"Sheetl excel(Excel 

value Inflation=0.02; 
value Stop_Timel=l; 
value Fix_Timel=0.03724; 
value Fix_Costl=34687.33; 
value Stop_Time2=l; 
value Fix_Time2=0.88877; 
value Fix_Cost2=21685186.67; 
value Fix_Time6=0.833333; 
value Fix_Cost6=6923633.33; 
value Stop_Time6=0.5; 
value Stop_Time3=0.25; 
value Fix_Time3=0.656917; 
value Fix_Cost3=17833333.33; 
value Stop_Time4=0.25; 

S_T2_0MCU") value S_T2_0MCU; 
S_T2_OMTO") value S_T2_0MT0; 
S_T2_0MTU") value S_T2_0MTU; 
S_T2_PR0B") value S_T2_PR0B; 
S_T2_RDCU") value S_T2_RDCU; 
S_T2_RDT0") value S_T2_RDTO; 
S_T2_RDTU") value S_T2_RDTU; 
S_T3_0MC0") value S_T3_0MC0; 
S_T3_0MCU") value S_T3_0MCU; 
S_T3_0MT0") value S_T3_0MT0; 
S_T3_0MTU") value S_T3_0MTU; 
S_T3_PR0B") value S_T3_PR0B; 
S_T3_RDCU") value S_T3_RDCU; 
S_T3_RDTO") value S_T3_RDT0; 
S_T3_RDTU") value S_T3_RDTU; 
CA_T1_0MC0") value CA_T1_0MC0; 
CA_T1_0MCU") value CA_T1_0MCU; 
CA_T1_0MT0") value CA_T1_0MT0; 
CA_T1_0MTU") value CA_T1_0MTU; 
CA_T1_PR0B") value CA_T1_PR0B; 
CA_T1_RDCU") value CA_T1_RDCU; 
CA_T1_RDT0") value CA_Tl_RDTO; 
CA_T1_RDTU") value CA_T1_RDTU; 
CA_T2_0MC0") value CA_T2_0MC0; 
CA_T2_0MCU") value CA_T2_0MCU; 
CA_T2_OMTO") value CA_T2_0MT0; 
CA_T2_0MTU") value CA_T2_0MTU; 
CA_T2_PROB") value CA_T2_PROB; 
CA_T2_RDCU") value CA_T2_RDCU; 
CA_T2_RDTO") value CA_T2_RDTO; 
CA_T2_RDTU") value CA_T2_RDTU; 
CA_T3_OMCO") value CA_T3_0MC0; 
CA_T3_0MCU") value CA_T3_0MCU; 
CA_T3_OMTO") value CA_T3_0MT0; 
CA_T3_OMTU") value CA_T3_0MTU; 
CA_T3_PROB") value CA_T3_PR0B; 
CA_T3_RDCU") value CA_T3_RDCU; 
CA_T3_RDTO") value CA_T3_RDT0; 
CA_T3_RDTU") value CA_T3_RDTU; 
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value Fix_Time4=2.812497; 
value Fix_Cost4=43317900; 
value Fix_Time5=0; 
value Fix_Cost5=29330000; 
value Stop_Time5=0.1; 
value Stop_Time7=0.1; 
value Fix_Time7=0; 
value Fix_Cost7=243809; 
value k=0.66667; 
value Max_Time=10; 
value Max_Cost=100000000; 
excel(Excel_l,"CA_Tl_CAT") value CA_T1_CAT; 
excel(Excel_l,"CA_T2_CAT") value CA_T2_CAT; 
excel(Excel_l,"CA_T3_CAT") value CA_T3_CAT; 
excel(Excel_l,"S_Tl_CAT") value S_T1_CAT; 
excel(Excel_l,"S_T2_CAT") value S_T2_CAT; 
excel(Excel_l,"S_T3_CAT") value S_T3_CAT; 
excel(Excel_l,"R_Tl_CAT") value R_T1_CAT; 
excel(Excel_l,"R_T2_CAT") value R_T2_CAT; 
excel(Excel_l,"R_T3_CAT") value R_T3_CAT; 
excel(Excel_l,"T_Tl_CAT") value T_T1_CAT; 
excel(Excel_l,"T_T2_CAT") value T_T2_CAT; 
excel(Excel_l,"T_T3_CAT") value T_T3_CAT; 
excel(Excel_l,"D_Tl_CAT") value D_T1_CAT; 
excel(Excel_l,"D_T2_CAT") value D_T2_CAT; 
excel(Excel_l,"D_T3_CAT") value D_T3_CAT; 
excel(Excel_l,"C_Tl_CAT") value C_T1_CAT; 
excel(ExceLl,"C_T2_CAT") value C_T2_CAT; 
excel(Excel_l,"C_T3_CAT") value C_T3_CAT; 
excel(Excel_l,"M_Tl_CAT") value M_T1_CAT; 
excel(Excel_l,"M_T2_CAT") value M_T2_CAT; 
excel(Excel_l,"M_T3_CAT") value M_T3_CAT; 
excel(Excel_l,"Tl_FACT") value T1_FACT; 
excel(Excel_l,"T2_FACT") value T2_FACT; 
excel(Excel_l,"T3_FACT") value T3_FACT; 
decision Characterization Assessment. {Tech 1 ,Tech2,Tech3}; 
decision Stabilize_.{Yes,No}; 
decision Stabilization. {Tech 1 ,Tech2,Tech3}; 
decision Treat Contain_. {Treat,Contain}; 
decision Removal.{Techl,Tech2,Tech3}; 
decision Containment. {Tech 1 ,Tech2,Tech3}; 
decision Treatment. {Tech 1 ,Tech2,Tech3}; 
decision Disposal.{Techl,Tech2,Tech3}; 
decision Monitor. {Techl,Tech2,Tech3}; 
value R_D l_Time_MeanlCharacterization Assessment^ 

CA_T1_RDTU, // Characterization 
CA_T2_RDTU, // Characterization, 
CA_T3_RDTU; // Characterization, 

value R_D l_Time_Std_DevlCharacterization Assessment= 
CA_Tl_RDTO, // Characterization, 
CA_T2_RDTO, // Characterization, 
CA_T3_RDTO; // Characterization, 

value O Ml Time MeanlCharacterization Assessment= 

_Assessment.Tech 1 
_Assessment.Tech2 
_Assessment.Tech3 

_Assessment.Tech 1 
_Assessment.Tech2 
Assessment.Tech3 
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CA_Tl_OMTU, // Characterization Assessment.Techl 
CA_T2_OMTU, // Characterization Assessment.Tech2 
CA_T3_OMTU; // Characterization Assessment.Tech3 

value 0_M 1 _Time_Std_DevlCharacterization Assessment= 
CA_Tl_OMTO, // Characterization_Assessment.Techl 
CA_T2_OMTO, // Characterization_Assessment.Tech2 
CA_T3_OMTO; // Characterization Assessment.Tech3 

value R_D l_Fund_LevellCharacterization Assessment= 
CA_T1_RDCU, // Characterization Assessment.Techl 
CA_T2_RDCU, // Characterization Assessment.Tech2 
CA_T3_RDCU; // Characterization Assessment.Tech3 

value 0_M 1 _Cost_MeanlCharacterization Assessment= 
CA_Tl_OMCU, // Characterization Assessment.Techl 
CA_T2_OMCU, // Characterization Assessment.Tech2 
CA_T3_OMCU; // Characterization Assessment.Tech3 

value 0_Ml_Cost_Std_DevlCharacterization Assessment= 
CA_Tl_OMCO, // Characterization Assessment.Techl 
CA_T2_OMCO, // Characterization Assessment.Tech2 
CA_T3_OMCO; // Characterization Assessment.Tech3 

value Prob_Fail 1 ICharacterization Assessment= 
CA_T 1 _PROB, // Characterization Assessment.Tech 1 
CA_T2_PROB, // Characterization Assessment.Tech2 
CA_T3_PROB; // Characterization Assessment.Tech3 

value R_D2_Time_MeanlStabilization= 
S_T1_RDTU, 
S_T2_RDTU, 
S_T3_RDTU; 

value R_D2_Time_Std_DevlStabilization= 
S_Tl_RDTO, 

//Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

S_T2_RDTO, 
S_T3_RDTO; 

value 0_M2_Time_MeanlStabilization= 
S_Tl_OMTU, 
S_T2_OMTU, 
S_T3_OMTU; 

value 0_M2_Time_Std_DevlStabiIization= 
S_Tl_OMTO, 
S_T2_OMTO, 
S_T3_OMTO; 

value R_D2_Fund_LevellStabilization= 
S_T1_RDCU, 
S_T2_RDCU, 
S_T3_RDCU; 

value 0_M2_Cost_MeanlStabilization= 
S_Tl_OMCU, 
S_T2_OMCU, 
S_T3_OMCU; 

value 0_M2_Cost_Std_DevlStabilization= 
S_Tl_OMCO, 
S_T2_OMCO, 
S_T3_OMCO; 

value Prob_Fail2IStabilization= 
S Tl PROB, 

//Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Stabilization.Techl 
// Stabilization.Techl 
// Stabilization.Tech3 

//Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Stabilization.Techl 
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S_T2_PR0B, // Stabilization.Tech2 
S_T3_PR0B; // Stabilization.Tech3 

value R_D3_Time_MeanlRemoval= 
R_T1_RDTU, //Removal.Tech 1 
R_T2_RDTU, // Removal. Tech2 
R_T3_RDTU; // Removal .Tech3 

value R_D3_Time_Std_DevlRemoval= 
R_T1_RDT0, // Removal.Techl 
R_T2_RDTO, // Removal.Tech2 
R_T3_RDT0; // Removal.Tech3 

value 0_M3_Time_MeanlRemoval= 
R_Tl_OMTU, //Removal.Techl 
R_T2_OMTU, // Removal.Tech2 
R_T3_0MTU; // Removal .Tech3 

value OJVI3_Time_Std_DevlRemoval= 
R_Tl_OMTO, // Removal.Techl 
R_T2_0MT0, // Removal.Tech2 
R_T3_0MT0; // Removal.Tech3 

value R_D3_Fund_LevellRemoval= 
R_T1_RDCU, //Removal.Techl 
R_T2_RDCU, // Removal .Tech2 
R_T3_RDCU; // Removal.Tech3 

value 0_M3_Cost_MeanlRemoval= 
R_Tl_OMCU, // Removal.Techl 
R_T2_0MCU, // Removal. Tech2 
R_T3_0MCU; //Removal .Tech3 

value 0_M3_Cost_Std_DevlRemoval= 
R_Tl_OMCO, // Removal.Techl 
R_T2_0MC0, // Removal.Tech2 
R_T3_OMCO; // Removal .Tech3 

value Prob_Fail3IRemoval= 
R_Tl_PROB, // Removal.Techl 
R_T2_PROB, // Removal.Tech2 
R_T3_PR0B; // Removal.Tech3 

value R_D4_Time_MeanlTreatment= 
T_T1_RDTU, // Treatment.Techl 
T_T2_RDTU, // Treatment.Tech2 
T_T3_RDTU; // Treatment.Tech3 

value R_D4_Time_Std_DevlTreatment= 
T_Tl_RDTO, // Treatment.Techl 
T_T2_RDTO, // Treatment. Tech2 
T_T3_RDT0; // Treatment. Tech3 

value 0_M4_Time_MeanlTreatment= 
T_Tl_OMTU, // Treatment.Techl 
T_T2_0MTU, // Treatment. Tech2 
T_T3_OMTU; // Treatment.Tech3 

value 0_M4_Time_Std_DevlTreatment= 
T_Tl_OMTO, // Treatment.Techl 
T_T2_0MT0, // Treatment. Tech2 
T_T3_OMTO; // Treatment.Tech3 

value R_D4_Fund_LevellTreatment= 
T_T1_RDCU, // Treatment.Techl 
T_T2_RDCU, // Treatment. Tech2 
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T_T3_RDCU; 
value 0_M4_Cost_MeanlTreatment= 

T_T1_0MCU, 
T_T2_0MCU, 
T_T3_0MCU; 

value 0_M4_Cost_Std_DevlTreatment= 
T_T1_0MC0, 
T_T2_OMCO, 
TT3_OMCO; 

value Prob_Fail4ITreatment= 
T_T1_PR0B, 
T_T2_PR0B, 
T_T3_PR0B; 

value R_D5_Time_MeanlDisposal= 
D_T1_RDTU, 
D_T2_RDTU, 
D_T3_RDTU; 

value R_D5_Time_StdJDevlDisposal= 
D_Tl_RDTO, 
D_T2_RDTO, 
D_T3_RDTO; 

value OJVi5_Time_MeanlDisposal= 
D_Tl_OMTU, 
D_T2_OMTU, 
D_T3_OMTU; 

value 0_M5_Time_Std_DevlDisposal= 
D_Tl_OMTO, 
D_T2_OMTO, 
D_T3_OMTO; 

value R_D5_Fund_LevellDisposal= 
D_T1_RDCU, 
D_T2_RDCU, 
D_T3_RDCU; 

value 0_M5_Cost_MeanlDisposal= 
D_Tl_OMCU, 
D_T2_OMCU, 
D_T3_0MCU; 

value 0_M5_Cost_Std_DevlDisposal= 
D_Tl_OMCO, 
D_T2_OMCO, 
D_T3_OMCO; 

value Prob_Fail5IDisposal= 
D_Tl_PROB, 
D_T2_PROB, 
D_T3JPROB; 

value R_D6_Time_MeanlContainment= 
C_T1_RDTU, 
C_T2_RDTU, 
C_T3_RDTU; 

value R_D6_Time_Std_DevlContainment= 
C_T1_RDT0, 
C_T2_RDTO, 
C_T3_RDT0; 

// Treatment.Tech3 

// Treatment.Techl 
// Treatment.Tech2 
// Treatment.Tech3 

// Treatment.Techl 
// Treatment.Tech2 
// Treatment.Tech3 

//Treatment.Techl 
// Treatment.Techl 
// Treatment.Tech3 

//Disposal.Techl 
// Disposal.Tech2 
// Disposal. Tech3 

// Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

// Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

//Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

//Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

// Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

// Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

//Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 
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value 0_M6_Time_MeanlContainment= 
C_T1_0MTU, 
C_T2_0MTU, 
C_T3_0MTU; 

value 0_M6_Time_Std_DevlContainment= 
C_T1_0MT0, 
C_T2_0MT0, 
C_T3_0MT0; 

value R_D6_Fund_LevellContainment= 
C_T1_RDCU, 
C_T2_RDCU, 
C_T3_RDCU; 

value 0_M6_Cost_MeanlContainment= 
C_T1_0MCU, 
C_T2_0MCU, 
C_T3_0MCU; 

value 0_M6_Cost_Std_DevlContainment= 
C_Tl_OMCO, 
C_T2_OMCO, 
C_T3_0MC0; 

value Prob_Fail6IContainment= 
C_T1_PR0B, 
C_T2_PR0B, 
C_T3_PR0B; 

value R_D7_Time_MeanlMonitor= 
M_T1_RDTU, 
M_T2_RDTU, 
M_T3_RDTU; 

value R_D7_Time_Std_DevlMonitor= 
M_Tl_RDTO, 
M_T2_RDTO, 
M_T3_RDT0; 

value 0_M7_Time_MeanlMonitor= 
M_Tl_OMTU, 
M_T2_OMTU, 
M_T3_OMTU; 

value 0_M7_Time_Std_DevlMonitor= 
M_T1_0MT0, 
M_T2_0MT0, 
M_T3_0MT0; 

value R_D7_Fund_LevellMonitor= 
M_T1_RDCU, 
M_T2_RDCU, 
M_T3_RDCU; 

value 0_M7_Cost_MeanlMonitor= 
M_T1_0MCU, 
M_T2_0MCU, 
M_T3_OMCU; 

value 0_M7_Cost_Std_DevlMonitor= 
M_Tl_OMCO, 
M_T2_OMCO, 
M_T3_0MC0; 

value Prob Fail7IMonitor= 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

// Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

// Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

//Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

//Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

//Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

//Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

// Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 
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M_T1_PR0B, 
M_T2_PR0B, 
M_T3_PROB; 

value Catl ICharacterization Assessment^ 
CA_T1_CAT, 
CA_T2_CAT, 
CA_T3_CAT; 

value Cat2IStabilization= 
S_T1_CAT, 
S_T2_CAT, 
S_T3_CAT; 

value Cat6IContainment= 
C_T1_CAT, 
C_T2_CAT, 
C_T3_CAT; 

value Cat3IRemoval= 
R_T1_CAT, 
R_T2_CAT, 
R_T3_CAT; 

value Cat4ITreatment= 
T_T1_CAT, 
T_T2_CAT, 
T_T3_CAT; 

value Cat5IDisposal= 
D_T1_CAT, 
D_T2_CAT, 
D_T3_CAT; 

value Cat7IMonitor= 
M_T1_CAT, 
M_T2_CAT, 
M_T3_CAT; 

value Disposal_FactorlTreatment= 
T1_FACT, 
T2_FACT, 
T3_FACT; 

// Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

// Characterization. 
// Characterization. 
// Characterization 

_Assessment.Tech 1 
_Assessment.Tech2 
Assessment.Tech3 

// Stabilization.Techl 
// Stabilization.Tech2 
// Stabilization.Tech3 

// Containment.Techl 
// Containment.Tech2 
// Containment.Tech3 

//Removal. Tech 1 
// Removal.Tech2 
// Removal.Tech3 

// Treatment.Techl 
// Treatment.Tech2 
// Treatment.Tech3 

//Disposal.Techl 
// Disposal.Tech2 
// Disposal.Tech3 

// Monitor.Techl 
// Monitor.Tech2 
// Monitor.Tech3 

// Treatment.Techl 
// Treatment.Tech2 
// Treatment.Tech3 

chance R_D_Tl.{Short,Normal,Long}=gamma(R_Dl_Time_Mean,R_Dl_Time_Std_Dev); 
chance 0_M_Tl.{Short,Normal,Long}=gamma(0_Ml_Time_Mean,0_Ml_Time_Std_Dev); 
chance 0_M_C 1. {Lo w,Normal,High} =gamma(0_M l_Cost_Mean,0_M l_Cost_Std_Dev); 
chance R_D_T2.{Short,Normal,Long}=gamma(R_D2_Time_Mean,R_D2_Time_Std_Dev); 
chance 0_M_T2.{Short,Normal,Long}=gamma(0_M2_Time_Mean,0_M2_Time_Std_Dev); 
chance 0_M_C2.{Low,Normal,High}=gamma(0_M2_Cost_Mean,0_M2_Cost_Std_Dev); 
chance R_D_T3.{Short,Normal,Long}=gamma(R_D3_Time_Mean,R_D3_Time_Std_Dev); 
chance 0_M_T3.{Short,Normal,Long}=gamma(0_M3_Time_Mean,0_M3_Time_Std_Dev); 
chance 0_M_C3. {Low,Normal,High} =gamma(0 JVI3_CostJvlean,0Jvl3_Cost_Std_Dev); 
chance R_D_T4.{Short,Normal,Long}=gamma(R_D4_Time_Mean,R_D4_Time_Std_Dev); 
chance 0_M_T4. {Short,Normal,Long }=gamma(0_M4_Time_Mean,0_M4_Time_Std_Dev); 
chance 0_M_C4.{Low,Normal,High}=gamma(0_M4_Cost_]vIean,0_M4_Cost_Std_Dev); 
chance R_D_T5. {Short,Normal,Long} =gamma(R_D5_Time_Mean,R_D5_Time_Std_Dev); 
chance 0_M_T5. {Short,Normal,Long} =gamma(0_M5_Time_Mean,0_M5_Time_Std_Dev); 
chance 0_M_C5. {Low,Normal,High} =gamma(0_M5_Cost_Mean,0_M5_Cost_Std_Dev); 
chance R_D_T6.{Short,Normal,Long}=gamma(R_D6_Time_Mean,R_D6_Time_Std_Dev); 
chance 0_M_T6. {Short,Normal,Long }=gamma(0_M6_Time_Mean,0_M6_Time_Std_Dev); 
chance 0_M_C6.{Low,Normal,High}=gamma(0_M6_Cost_Mean,0_M6_Cost_Std_Dev); 
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Chance R_D_T7.{Short,Normal,Long}=gamma(R_D7_Time_Mean,R_D7_Time_Std_Dev); 
chance 0_M_T7. {Short,Normal,Long }=gamma(0_M7_Time_Mean,0_M7_Time_Std_Dev); 
chance 0_M_C7. {Low,Normal,High }=gamma(0_M7_Cost_Mean,0_M7_Cost_Std_Dev); 
value R_D_Cl=@pv(R_Dl_Fund_Level,Rate-Inflation,@if(R_Dl_Time_Mean == 0.000001,0,R_D_T1)); 
value Timel=@if(R_Dl_Time_Mean == 0.000001,0,R_D_Tl)+O_M_Tl*(l-Overlapl); 
value R_D_C2=@pv(R_D2_Fund_Level,Rate-Inflation,@if(R_D2_Time_Mean == 0.000001,0,R_D_T2)) 
value R_D_C3=@pv(R_D3_Fund_Level,Rate-Inflation,@if(R_D3_Time_Mean == 0.000001,0,R_D_T3)) 
value R_D_C4=@pv(R_D4_Fund_Level,Rate-Inflation,@if(R_D4_Time_Mean == 0.000001,0,R_D_T4)) 
value R_D_C5=@pv(R_D5_Fund_Level,Rate-Inflation,@if(R_D5_Time_Mean == 0.000001,0,R_D_T5)) 
value R_D_C6=@pv(R_D6_Fund_Level,Rate-Inflation,@if(R_D6_Time_Mean = 0.000001,0,R_D_T6)) 
value R_D_C7=@pv(R_D7_Fund_Level,Rate-Inflation,@if(R_D7_Time_Mean == 0.000001,0,R_D_T7)) 
value Costl=R_D_Cl+(0_M_Cl*(pow(l+Inflation,R_D_Tl))*(pow(l+Rate,-R_D_Tl))); 
value Fail_Costl=(R_D_Cl+Stop_Timel*(Costl-R_D_Cl)+Fix_Costl*(pow(l+Inflation,(Timel-(l- 
Stop_Timel)*(0_M_Tl)))*(pow(l+Rate,-(Timel-(l-Stop_Timel)*(0_M_Tl)))))); 
value Fail_Timel=(Timel+(Stop_Timel-(l-Overlapl))*(0_M_Tl)+Fix_Timel); 
chance Total_Costl.{Fail,Success}={Prob_Faill}, 

FaiLCostl, // Total_Costl .Fail 
Costl; // Total_Costl .Success 

chance Total_Timel.{Fail,Success}={Prob_Faill}, 

Fail_Timel, // TotalJTimel .Fail 
Timel; // TotalJTimel .Success 

value Time2=@max((@if(R_D_T2>Total_Timel,R_D_T2,Total_Timel))+(l- 
Overlap2)*0_M_T2,Total_Timel+Overlapl*0_M_Tl); 
value Cost2=R_D_C2+(0_M_C2*(pow(l+Inflation,@max(R_D_T2,Total_Timel)))*(pow(l+Rate,- 
(@max(R_D_T2,Total_Timel))))); 
value Fail_Time2=(Time2+(Stop_Time2-(l-Overlap2))*(0_M_T2)+Fix_Time2); 
value Fail_Cost2=(R_D_C2+Stop_Time2*(Cost2-R_D_C2)+Fix_Cost2*(pow(l+Inflation,(Time2-(l- 
Stop_Time2)*(0_M_T2)))*(pow(l+Rate,-(Time2-(l-Stop_Time2)*(0_M_T2)))))); 
chance Total_Time2. {Fail.Success}={ Prob_Fail2}, 

Fail_Time2, // Total_Time2.Fail 
Time2; // Total_Time2.Success 

chance Total_Cost2. {Fail.Success }={Prob_Fail2}, 

Fail_Cost2, // Total_Cost2.Fail 
Cost2; // Total_Cost2.Success 

value Which_TimelStabilize_= 
Total_Time2, // Stabilize_.Yes 
TotaLTime 1; // Stabilize_.No 

value Which_0_MIStabilize_= 
Total JTime2+Overlap2*0_M_T2, // Stabilize_.Yes 
Total_Timel+Overlapl*0_M_Tl; //Stabilize_.No 

value Time3=@max((@if(R_D_T3>Which_Time,R_D_T3,Which_Time))+(l-Overlap3)*0_M_T3, 
Which_0_M); 
value Time6= @ max(( @ if(R_D_T6>Which_Time,R_D_T6,Which_Time))+( 1 -Overlap6)*0_M_T6, 
Which_0_M); 
value Cost3=R_D_C3+(0_M_C3*(pow(l+Inflation,@max(R_D_T3,Which_Time)))*(pow(l+Rate,- 
(@max(R_D_T3,Which_Time))))); 
value Cost6=R_D_C6+(0_M_C6*(pow(l+Inflation,@max(R_D_T6,Which_Time)))*(pow(l+Rate,- 
(@max(R_D_T6,Which_Time))))); 
value Fail_Time6=(Time6+(Stop_Time6-(l-Overlap6))*(0_M_T6)+Fix_Time6); 

91 



value Fail_Cost6=(R_D_C6+Stop_Time6*(Cost6-R_D_C6)+Fix_Cost6*(pow(l+Inflation,(Time6-(l- 
Stop_Time6)*(0_M_T6)))*(pow(l+Rate,-(Time6-(l-Stop_Time6)*(0_M_T6)))))); 
value Fail_Time3=(Time3+(Stop_Time3-(l-Overlap3))*(0_M_T3)+Fix_Time3); 
value Fail_Cost3=(R_D_C3+Stop_Time3*(Cost3-R_D_C3)+Fix_Cost3 *(pow( 1 +Inflation,(Time3-( 1 - 
Stop_Time3)*(0_M_T3)))*(pow(l+Rate,-(Time3-(l-Stop_Time3)*(0_M_T3)))))); 
chance Total_Cost3. {Fail,Success}={Prob_Fail3}, 

Fail_Cost3, // Total_Cost3.Fail 
Cost3; //Total_Cost3.Success 

chance Total_Time3.{Fail,Success}={Prob_Fail3}, 

Fail_Time3, // Total_Time3.Fail 
Time3; //Total_Time3.Success 

chance Total_Time6. {Fail,Success}={Prob_Fail6}, 

Fail_Time6, // Total_Time6.Fail 
Time6; // Total_Time6.Success 

chance Total_Cost6. {Fail,Success}={Prob_Fail6}, 

Fail_Cost6, // Total_Cost6.Fail 
Cost6; // Total_Cost6.Success 

value Time4=@max((@if(R_D_T4>Time3,R_D_T4,Time3))+(l-Overlap4)*0_M_T4, 
Total_Time3+Overlap3*0_M_T3); 
value Cost4=R_D_C4+(0_M_C4*(pow(l+Inflation,@max(R_D_T4,Time3)))*(pow(l+Rate,- 
(@max(R_D_T4,Time3))))); 
value Fail_Time4=(Time4+(Stop_Time4-(l-Overlap4))*(0_M_T4)+Fix_Time4); 
value Fail_Cost4=(R_D_C4+Stop_Time4*(Cost4-R_D_C4)+Fix_Cost4*(pow(l+Inflation,(Time4-(l- 
Stop_Time4)*(0_M_T4)))*(pow(l+Rate,-(Time4-(l-Stop_Time4)*(0_M_T4)))))); 
chance Total_Time4. {Fial.Success}={ Prob_Fail4}, 

Fail_Time4, // Total_Time4.Fial 
Time4; // Total_Time4 .Success 

chance Total_Cost4. {Fail.Success }={Prob_Fail4}, 

Fail_Cost4, // Total_Cost4.Fail 
Cost4; // Total_Cost4.Success 

value Time5=@max((@if(R_D_T5>Time4,R_D_T5,Time4))+(l-Overlap5)*Disposal_Factor*0_M_T5, 
Total JTime4+Overlap4*OJvI_T4); 
value 
Cost5=R_D_C5+(Disposal_Factor*0_M_C5*(pow(l+Inflation,@max(R_D_T5,Time4)))*(pow(l+Rate,- 
(@max(R_D_T5,Time4))))); 
value Fail_Time5=(Time5+(Stop_Time5-(l-Overlap5))*(Disposal_Factor*0_M_T5)+Fix_Time5); 
value Fail_Cost5=(R_D_C5+Stop_Time5*(Cost5-R_D_C5)+Fix_Cost5*(pow(l+Inflation,(Time5-(l- 
Stop_Time5)*(Disposal_Factor*0_M_T5)))*(pow(l+Rate,-(Time5-(l- 
Stop_Time5)*(Disposal_Factor*0_]vI_T5)))))); 
chance Total_Time5. {Fail,Success}-{Prob_Fail5}, 

Fail_Time5, // Total_Time5.Fail 
Time5; //Total_Time5.Success 

chance Total_Cost5. {Fail.Success}={Prob_Fail5}, 

Fail_Cost5, // Total_Cost5.Fail 
Cost5; //Total_Cost5.Success 
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value TC_TimelTreat__Contain_= 
Total_Time5, // Treat__Contain_.Treat 
Total_Time6; // Treat Contain_.Contain 

value TC_0_MITreat_Contain_= 
Total_Time5+Overlap5*0_M_T5, // Treat_Contain_.Treat 
Total_Time6+Overlap6*0_M_T6; // Treat_Contain_.Contain 

value Time7=@max((@if(R_D_T7>TC_Time,R_D_T7,TC_Time))+0_M_T7,TC_0_M); 
value Cost7=R_D_C7+(0_M_C7*(pow(l+Inflation,@max(R_D_T7,TC_Time)))*(pow(l+Rate,- 
(@max(R_D_T7,TC_Time))))); 
value Fail_Time7=(Time7-(l-Stop_Time7)*(0_M_T7)+Fix_Time7); 
value Fail_Cost7=(R_D_C7+Stop_Time7*(Cost7-R_D_C7)+Fix_Cost7*(pow(l+Inflation,(Time7-(l- 
Stop_Time7)*(0_M_T7)))*(pow(l+Rate,-(Time7-(l-Stop_Time7)*(0_M_T7)))))); 
chance Total_Time7. {Fail,Success}={Prob_Fail7}, 

Fail_Time7, // Total_Time7.Fail 
Time7; // Total_Time7 .Success 

chance Total_Cost7. {Fail.Success}={Prob_Fail7}, 

Fail_Cost7, // Total_Cost7.Fail 
Cost7; //Total_Cost7.Success 

sequence( attributes = 8, 
objective = xland($l<=Max_Cost, $2<=Max_Time) ? k*(@if($l<=77000000,1.001- 

0.0001273*exp(0.00000009852*$l),-0.000002347+121*exp(-0.00000006601*$l))) + (l- 
k)*(@if($2<=7.7,l-0.0001245*exp(0.9879*$2),-0.000000000002095+121*exp(-0.6601*$2))):0, 

constraint = xland(@if($3 > 0, xlor($4 = $3, $5 == $3), @if($3 < 0, xland($4 != $3, $5 != $3), 
1)), @if($4 > 0, xlor($3 == $4, $5 == $4, $6 = $4), @if($4 < 0, xland($3 != $4, $5 != $4, $6 != $4), 1)), 
@if($5 > 0, xlor($3 == $5, $4 == $5, $6 = $5, $7 = $5), @if($5 < 0, xland($3 != $5, $4 != $5, $6 != $5, 
$7 != $5), 1)), @if($6 > 0, xlor($4 == $6, $5 == $6, $7 == $6, $8 == $6), @if($6 < 0, xland($4 != $6, $5 
!= $6, $7 != $6, $8 != $6), 1)), @if($7 > 0, xlor($5 = $7, $6 == $7, $8 == $7), @if($7 < 0, xland($5 != 
$7, $6 != $7, $8 != $7), 1)), @if($8 > 0, xlor($6 = $8, $7 = $8), @if($8 < 0, xland($6 != $8, $7 != $8), 
l)))?0:halt(-9999999)): 

decide to Characterization Assessment then 
set Stabilize_.Yes then 
decide to Stabilization then decide 

to Treat Contain_.Treat then 
decide to Removal then 
decide to Treatment then 
decide to Disposal then 
decide to Monitor and get 0,0,Catl,Cat2,Cat3,Cat4,Cat5,Cat7 then 
gamble on R_D_T1 then 
gamble on 0_M_T1 then 
gamble on 0_M_C1 then 
gamble on Total_Timel then 
gamble on TotaLCostl and get Total_Cost 1,0,0,0,0,0,0,0 then 
gamble on R_D_T2 then 
gamble on 0_M_T2 then 
gamble on 0_M_C2 then 
gamble on Total_Time2 then 
gamble on Total_Cost2 and get Total_Cost2,0,0,0,0,0,0,0 then 
gamble on R_D_T3 then 
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gamble on 0_M_T3 then 
gamble on 0_M_C3 then 
gamble on Total_Time3 then 
gamble on Total_Cost3 and get Total_Cost3,0,0,0,0,0,0,0 then 
gamble on R_D_T4 then 
gamble on 0_M_T4 then 
gamble on 0_M_C4 then 
gamble on Total_Time4 then 
gamble on Total_Cost4 and get Total_Cost4,0,0,0,0,0,0,0 then 
gamble on R_D_T5 then 
gamble on 0_M_T5 then 
gamble on 0_M_C5 then 
gamble on Total_Time5 then 
gamble on Total_Cost5 and get Total_Cost5,0,0,0,0,0,0,0 then 
gamble on R_D_T7 then 
gamble on 0_M_T7 then 
gamble on 0_M_C7 then 
gamble on Total_Time7 then 
gamble on Total_Cost7 and get Total_Cost7,Total_Time7,0,0,0,0,0,0 

to Treat Contain_.Contain then 
decide to Containment then 
decide to Monitor and get 0,0,Catl,Cat2,Cat6,Cat7,0,0 then 
gamble on R_D_T1 then 
gamble on 0_M_T1 then 
gamble on 0_M_C1 then 
gamble on Total_Timel then 
gamble on Total_Costl and get Total_Costl,0,0,0,0,0,0,0 then 
gamble on R_D_T2 then 
gamble on 0_M_T2 then 
gamble on 0_M_C2 then 
gamble on Total_Time2 then 
gamble on Tbtal_Cost2 and get Total_Cost2,0,0,0,0,0,0,0 then 
gamble on R_D_T6 then 
gamble on 0_M_T6 then 
gamble on 0_M_C6 then 
gamble on Total_Time6 then 
gamble on Total_Cost6 and get Total_Cost6,0,0,0,0,0,0,0 then 
gamble on R_D_T7 then 
gamble on 0_M_T7 then 
gamble on 0_M_C7 then 
gamble on Total_Time7 then 
gamble on Total_Cost7 and get Total_Cost7,Total_Time7,0,0,0,0,0,0 

94 



Appendix E: Variable Descriptions and Calculations 

The variables used in each process model are described below. Each process 

model uses all of the variables listed, with the exception of the Overlap variable. This 

variable is not used in the monitoring process because monitoring is the final process. 

The character I represents a process, so that: 

I = (1: Characterization, 2: Stabilization, 3: Retrieval, 4: Treatment, 5: Disposal, 

6: Containment, 7: Monitoring) 

For calculations, (1-1) represents the process that precedes process I. 

Name: R&DI_Fund_Level 

Description: 

Amount of money allocated each year for R&D for the selected technology. This 

value is constant and represents the funding level each year beginning at year 0. 

Name: R&DI_Time (mean and standard deviation) 

Description: 

Number of years for R&D funding for the selected technology. The mean and 

standard deviation are used for the parameters for the distribution of R&D Time. 

Name: 0&MI_Cost (mean and standard deviation) 

Description: 

The present value of the cost of the selected technology from the end of R&D 

until process I completion. These values are output from the LCC model. The mean and 

standard deviation are used for the parameters for the distribution of O&M Cost. 

Name: 0&MI_Time (mean and standard deviation) 
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Description: 

The time required for the selected technology to complete process I, from the end 

of R&D. The mean and standard deviation are used for the parameters for the 

distribution of O&M Time. 

Name: Prob_FailI 

Description: 

The probability that the selected technology fails during process I, given that the 

technology was successfully developed. 

Name: CatI 

Description: 

The category of the selected technology for process I. This value is used in the 

compatibility constraint for the technology strategy. 

Name: Disposal_Factor 

Description: 

This variable is used only in the treatment process model. It represents the ratio 

of the volume of the waste after treatment to the volume of the waste before treatment. 

This value is then used to adjust the 0&M_Cost and 0&M_Time for disposal, to reflect 

the change in volume. 

Name: Overlapl 

Description: 

The percentage of process I O&M time that is overlapped by the succeeding 

process. (1-Overlapl) represents the amount of O&M for process I that is complete 
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before the succeeding process begins. For example, Overlap3 = 0.9 implies that 

treatment begins when 10% of removal is complete. 

Name: Stop_TimeI 

Description: 

The percentage of O&M time in process I when technology failure will occur. 

For example, Stop_Time3 = 0.3, then if the removal technology fails, it will be 

considered a failure after 30% removal O&M time has passed. 

Name: Fix_TimeI 

Description: 

The penalty time required to complete process I if technology failure occurs 

Name: Fix_CostI 

Description: 

The penalty cost required to complete process I if technology failure occurs. 

Name: R&D_TI 

Description: 

The output value from the R&D time distribution. This value represents the 

number of years for R&D for the selected technology. 

Name: 0&M_TI 

Description: 

The output value from the O&M time distribution. This value represents the 

number of years for O&M for the selected technology to perform process I. 
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Name: Rate 

Description: 

This value represents the rate of return on investments. The nominal value used is 

7%, unless otherwise stated. 

Name: Inflation 

Description: 

This value represents the inflation rate. The nominal value used is 2%, unless 

otherwise stated. 

Name: 0&M_CI 

Description: 

The output value from the O&M cost distribution. This value represents the 

present value of O&M cost for the selected technology to perform process I. 

Name: R&D_CI 

Description: 

The total present value of R&D cost for the selected technology, given the annual 

funding level and number of years for R&D. This value is calculated using a preset value 

of an annuity formula. 

„OT,„    ,„„„,,.,.      T      , (l + Rate-Inflation)R&D-TimeI-l 
R&D_CosÜ = R&D_Funding_Level - P,r, -r   . 

(Rate - Inflation) ■ (1 + Rate - Inflation)R&D-TimeI 

Name: Timel 

Description: 
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The total time required from the beginning of remediation through process I. This 

value also represents the time that the succeeding process can begin O&M, if the 

technology for process I does not fail. Thus, Time7 is the total time for the technology 

portfolio to perform all processes, if the monitoring process does not fail. The calculation 

involves checks to ensure that R&D is complete, and that non-consecutive processes do 

not overlap. 

Timel= max 
max(R&D_TimeI, Time(I-1)) + (1 -Overlapl) • (0&M_TimeI)," 

Total_ Time(I -1) + Overlap(I -1) • (0& M_ Time(I -1) 

Name: Fail_TimeI 

Description: 

The total time required from the beginning of remediation through process I. This 

value also represents the time that the succeeding process can begin O&M. This value 

assumes that the technology for process I fails, and is therefore adjusted to reflect the 

increase. Using the Stop_TimeI value, a portion of the O&M time for the failed 

technology is used plus a penalty time value from Fix_TimeI. 

Fail _Time 1= (Time I + (Stop _ Time I-(1-Overlap  I))0& M _ Time I + Fix _ Time I) 

Name: Total_TimeI 

Description: 

This uncertain event passes the time value for process I. If the technology fails 

then the Fail_TimeI value is used. If the technology does not fail, then the value for 

Timel is used. 
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Name: CostI 

Description: 

The present value of the total cost for the technology to complete process I 

including all R&D costs, assuming the technology does not fail. This cost is adjusted for 

inflation and the cost of capital, based on when O&M occurs - from the previous time 

calculations. 

O&M      Cost I-(1 +Inflation   ^(R&D.Timel.Time (1-1)) 
Cost I = R & D _ Cost I +  _   

(1 4- Rate \max(R&D-TimeI'Time C1-1)) 

Name: Fail_CostI 

Description: 

The present value of the cost to complete process I, if the technology fails. This 

value includes the R&D cost for the failed technology plus a portion of the O&M cost. A 

penalty cost is also added from the Fix_CostI value. 
(1 + Inflation )(TimeI-(i-stop_Timei)o&M_Timei) 

Fail _ CostI = R & D _ CostI + Stop _ Timel • (CostI - R & D _ CostI) + Fix _ CostI ■ Rate)(Timei-(l-s,op_Timei).o&M_Timei) 

Name: Total_CostI 

Description: 

This uncertain event passes the cost value for processl. If the technology fails, 

then the value for FailCostI is used. If the technology does not fail, then the value for 

CostI is used. 
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Appendix F: Technology Compatibility Constraint Description 

When the technologies are input into the spreadsheet, it is likely that relationships 

exist between technologies in different processes. For example, a specific treatment 

technology might require the use of a specific removal technology. This required 

coupling can be two-way or one-way. In other words, a two-way coupling may exist 

where the removal technology also requires the specific treatment technology. Other 

constraints may include incompatibilities, where one treatment technology cannot be used 

with a specific removal technology. 

A category system is set up in the spreadsheet in order to account for these 

compatibility constraints. The system uses integers to categorize technologies. When 

technology data is entered in the spreadsheet, the technologies must also be given 

categories. A technology is assigned a category of 0 if it is compatible with all other 

technologies. If a two-way couple is required, then the two technologies should be given 

a category of some positive integer. For instance, the coupled removal and treatment 

technologies will have a category of 1. Therefore, when the DA model creates the 

technology portfolios it will check to see that if a portfolio has one category of 1, then 

another category should also be assigned 1. If this does not hold, then the portfolio is no 

longer considered and no calculations are made for that portfolio. 

If a two-way incompatibility exists, then the two technologies should be given a 

category of some negative integer. In this case, if the DA model finds a portfolio with a 

negative integer for a category, then it will check to ensure that no other category is 
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assigned that same negative integer. If the portfolio has two categories with the same 

negative integer, then an incompatibility exists and the portfolio is no longer considered. 

This system can account for one-way relationships also. The one-way relationship 

pertains only to couples, because incompatibility is not a one-way relationship. A one- 

way couple implies for example, that if a certain removal technology is used then it must 

be used with a specific treatment technology, however the treatment technology may be 

used with other removal technologies. To account for this, the incompatibility 

relationship is used. If a removal technology requires a specific treatment (one-way), 

then the removal technology and the other treatment technologies are assigned a negative 

integer category. The examples that follow demonstrate the category system. 

Techl 
Tech 2 
Tech 3 

Removal    Treatment 
1 
0 
0 

0 
1 
0 

Removal Techl and Treatment Tech 2 
have to be used together. 

Removal    Treatment 
Techl -2 0 
Tech 2 0 -2 
Tech 3 0 0 

Removal Techl and Treatment Tech 2 
cannot be used together. 

Removal    Treatment 
Techl -1 -1 
Tech 2 0 0 
Tech 3 0 -1 

Removal Techl must be used with 
Treatment Tech2 
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Appendix G: Gamma Function Maximum Likelihood Estimator 

In order to determine the parameters for the gamma distribution, the maximum 

likelihhod estimator (MLE) equations must be satisified. These equations are iterative 

and must be solved simultaneously. 

The following two equations must be satisified [Law and Kelton, 1991: 332]: 

£ln(Xi) 
ln(ß) + V(d) = -El         dß = X(n) 

n 

Note, ¥(a) = -—r— is called the digamma function where T' is the derivative 
r\oc) 

ofT,   T(z)= \tzAe 'dt    for any real number z > 0, 
o 

djVVdt 
r'(z)=-2-:  dz 

and 

103 



Appendix H: Explanation of Distributed Sampling Simulation 

The DA model uses simulation of the different cost and time distributions to 

determine an optimal decision policy. The method of simulation is called distributed 

sampling, and is described in the DPL© user's manual [ADA, 1995: 427-435]. This 

approach is an extension of Monte Carlo simulation. Monte Carlo simulation determines 

the path for a particular iteration using random numbers to select the branch for each 

uncertainty node. This process is repeated until the number of iterations is reached. The 

major drawback of this method is that some branches may never be selected, due to the 

nature of random number generation. 

An improvement on this is Modified Monte Carlo simulation. This method 

distributes the number of iteration samples over the branches for each node. The number 

of samples assigned to each branch is equal to the number of initial samples times the 

probability associated with each branch for the node. This technique is called stratified 

sampling. When the samples are distributed, then the simulation begins. 

Distributed Sampling is very similar to Modified Monte Carlo simulation. The 

primary difference is that Distributed Sampling begins simulation when the remaining 

samples at a particular node is less than three times the branches from that node. At this 

point, the remaining samples are distributed using the Modified Monte Carlo technique. 

Basically, Distributed Sampling is the Modified Monte Carlo technique, distributing 

fractions of samples down the branches until a small number remain. Then the 
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Simulation continues using the Modified Monte Carlo technique. This method of 

simulation is recommended for models with decisions near the beginning of the tree. 
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Appendix I: Technology Data Set and Explanation 

The technologies used for this analysis were selected for remediation of the INEL 

Test Pit 9. The waste in Pit 9 consists mainly of transuranic waste in drums, boxes, and 

other containers. The measurements for this site were provided by INEL, with estimates 

from MSE. These values are shown below: 

Surface Area 
Waste Volume 

Waste Mass (100 lb/ ft2) 
Containment Area 

Work Rate 
(excluding Treatment) 

Work Rate 
(Treatment) 

435,000 ft2 

500,000 ft3 

50,000,000 lb. 
481,800 ft2 

8 hr. / day 
240 days / year 

24 hr. / day 
300 days / year 

The data above was used to calculate and convert cost and time data for the 

technologies used in this analysis.    The technology options for each process are listed 

below. 

Characterization: 

Stabilization: 

Retrieval: 

1) Rapid Geophysical Surveyor 

2) VETEM 

3) High resolution Imaging Using Holographic Impulse 

Radar Array 

1) In Situ Cementation 

2) Innovative Grouting and Retrieval 

3) In Situ Vitrification 

1) Retrieval Demonstration 
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Treatment: 

Disposal: 

Containment: 

Monitoring: 

2) Remote Excavation System 

3) Cooperative Telerobotic Retrieval System 

1) Cementation 

2) Plasma Centrifugal Furnace 

3) Stratex 

1) Yucca Mountain Disposal(Off-Site) 

2) On-Site Disposal 

1) Monolithic Confinement 

2) In Situ Encapsulation of Buried Waste 

3) Soil Saw (Horizontal) 

1) Yucca Mountain Disposal (Off-Site) 

2) On-Site Disposal 

The following spreadsheets contain the data for the technologies considered in 

this analysis. The first spreadsheet contains the actual data that was supplied by MSE. In 

the second spreadsheet, these values are converted to common units for cost and time 

using the measurements and site characteristics given above. Calculations were used for 

technologies that did not give worst case, best case, or average values. Typical 

percentages for cost and time overruns as well as best case percentages were used to 

calculate values not provided. The percentages used for these calculations are given 

below. These values are estimates taken from a DOE Project Performance Study which 
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investigated the cost and schedule performance of DOE environmental remediation 

projects [DOE: 1993, 111]. 

Best Case 
Cost 

Average        Worst Case Best Case 
Time 

Average Worst Case 
94% 100% 148% 77.5% 100% 142% 

The data shown in the following spreadsheet is one of three types. Some of the 

values were taken directly from literature or from the principle investigators for the 

specific technologies. Other data values were calculated from the above percentages, 

while the remaining data values were estimates from MSE. All data values should be 

considered notional and should not be used to determine funding or project status. 

For the first spreadsheet, values in italics are MSE estimates. The values in bold 

are from DOE literature or principal investigator surveys. The values for In-Situ 

Cementation O&M elements, and for the Retrieval Demo O&M elements were taken 

from the "Remediation Technologies Screening Matrix Reference Guide" [EPA/542/B- 

94/013, 1994]. The values for Cementation and On-Site Disposal were taken from 

previous research [White et al., 1995]. All other bold values were taken from the survey 

results of technology principal investigators for MSE. 
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Appendix J: Utility Function Calculations 

The following information was used to develop the utility functions for cost and 

time. These functions were developed for strategies with and without stabilization. 

Worst Cost Best Cost Worst 
Time 

Best Time 

With $199,464,000 $22,202,800 30.52 yrs 1.68 yrs 
Stabilization 
Without $214,427,000 $6,563,650 30.20 yrs 0.80 yrs 
Stabilization 

With 
Stabilization 
Without 
Stabilization 

With 
Stabilization 
Without 
Stabilization 

Target Cost 
$70,000,000 

$60,000,000 

Target+10% 
$77,000,000 

$66,000,000 

Target Time 

7 yrs 

6 yrs 

Target+10% 

7.7 yrs 

6.6 yrs 

Target+25% 
$87,500,000 

$75,000,000 

Target+25% 

8.75 yrs 

7.5 yrs 

The following functions were used as the attribute utility functions for strategies 

with and without stabilization. The graphs are shown followed by the formulas used to 

create them. The utility functions for strategies with stabilization are given with the 

utility functions for strategies without stabilization on the following pages: 
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With Stabilization 

Utility 
Utility 

2.2203C+07 1.9946e+08 

Cost ($ ) 

1.6802 30.521 

Time (Years) 

If cost < 77,000,000: 
U(cost) = 1.001 - o.0001273e(000000009852*cost) 

Else: 
U(cost) = -0.000002347 + 121e' (-0.00000006601 »cost) 

If time < 7.7: 
U(time) = 1 - 0.0001245e(a9879,time) 

Else: 
U(time) = -0.000000000002095 + 121e (-0.6601 »time) 

112 



Without Stabilization 

Utility 
Utility 

30.202 

Cost ($) Time (Years) 

If cost < $66,000,000: 
U(cost) = 1 - o.0001234e(00000001154,cost) 

Else: 
U(cost) = -0.00000000958 + 121e' (-0.00000007702»cost) 

If time < 6.6: 
U(time) = 1 - 0.0001238e(1153#time) 

Else: 
U(time) = -0.00000000000000001066 + i21e

(07702,time) 
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Appendix K: Cost and Time Frequency Distributions for Scenario 1 

The following graphs are the frequency distributions of cost and time for the top 

five remediation strategies in Scenario 1. The graphs are shown with the strategy listed 

beneath each set of distributions. 
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Appendix L: Cost and Time Frequency Distributions for Scenario 2 

The following distributions are the frequency of cost and time for the different 

characterization technologies. The graphs are shown with the strategy below each set of 

distributions. 
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Appendix M: Cost and Time Frequency Distributions for Scenario 3 

The following distributions are the frequency of cost and time for the strategies in 

Scenario 3. The graphs are shown with the strategy listed below each set of distributions. 
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