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Abstract

This research develops and evaluates a novel computer system for the detection of

microcalcifications in mammograms using image texture analysis. The system can provide

a second opinion to radiologists to decrease the number of false readings, which include

diagnosing a mammogram as containing no calcifications when there is (false negative) or

as containing microcalcifications when there is not (false positive). The system follows

a Model Based Vision (MBV) paradigm for automatic detection of calcifications. The

Focus of Attention Module utilizes an image difference technique followed by global and

local thresholding to eliminate nearly 90% of the image from further processing. A new,

unique feature, the Laws Energy Ratio, is presented. The Laws Energy Ratios from the

L5R5 and L5E5 Laws masks provide Indexing criteria which correctly hypothesized 93%

of the microcalcification regions while reducing the number of false regions by over 75%.

A comparative study of three different texture measures using features calculated from

Angular Second Moment, Laws Energy Ratios and Power Spectrum Analysis is presented.

Using a neural network trained with a modified backpropagation algorithm, the Power

Spectrum Analysis feature set had the best overall performance with an 83% Probability

of Detection and an average False ROI Rate of 2.17 ROIs per image over 53 mammograms.

A combination of Laws Energy Ratio and Power Spectrum Analysis features selected using

Ruck Saliency metrics achieved an 85% Probability of Detection with an average 4 false

ROIs per image. Although not specifically developed for classifying regions as malignant

or benign, the system correctly identified 89% of the malignant microcalcification regions.

x



Computer Aided Detection of Microcalcifications Utilizing Texture Analysis

L Introduction

Detection of breast cancer is a difficult and, as of yet, unsolved problem. Advances in

digital image processing techniques may lead to improvements in detection and diagnosis of

this disease. The Air Force Institute of Technology (AFIT) has a long history of applying

computer vision and image processing to a host of military related problems[35, 20, 12, 15,

33]. It is the goal of this research to extend this work into the area of medical imaging[17,

25, 9, 13].

1.1 Breast Cancer Information

Breast cancer is a leading cause of cancer deaths among women, currently exceeded

only by lung cancer, and will eventually affect one in nine women in the United States[36, 2].

In 1994 alone, the National Cancer Institute (NCI) estimated that 182,000 women would be

newly diagnosed with breast cancer, with approximately 46,000 deaths from the disease[3].

The outlook for the next several years does not appear any brighter. The number of newly

diagnosed cases is expected to hold steady at approximately 150,000 each year[9].

Mammography is currently the best method for the detection of breast cancer. But

in 10-30% of women who have breast cancer, their mammograms were diagnosed as nega-

tive. The cancer missed by the radiologist was evident in two-thirds of these mammograms

retrospectively[13]. The missed detection may be attributed to a number of factors: the

subtle nature of the cancer, poor image quality, eye fatigue or merely oversight by the radi-

ologist. It has been suggested that having the mammograms read by two radiologists may

improve detection[22]. This would merely increase the existing high volume workload on

the radiologists, possibly leading to more missed cancer regions. Computer aided diagnosis

may be a solution to the problem of providing the radiologist with a "second opinion" or

a "second reading" by indicating locations of suspect abnormalities is the mammograms.
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1.2 Computer Aided Diagnosis

Computer aided diagnosis, or CADx, is an automated tool that is based on digital

image processing for the detection and classification of breast cancer. The mammographic

film can be digitized to allow for the computer processing of the image. The CADx system

will consist of basically four main parts:

1. The system would first identify possible cancerous areas, or regions of interest, in the

mammogram. This is referred to as Focus of Attention.

2. An initial hypothesis is made as to the classification of the region of interest. This

step is referred to as Indexing.

3. The indexed regions are then passed to a set of algorithms to extract features re-

quired to verify the initial hypothesis from the indexer. These features will hopefully

describe the critical diagnosis essence of the image and will be passed on to the final

stage of matching.

4. A classifier will attempt to match the extracted features against predicted features to

identify the segmented region as normal/abnormal tissue or cancerous/benign tissue.

The CADx system is not being developed to replace the radiologist but to assist them.

The primary objective of the system is to improve detection of breast cancer in hopes of

increasing the effectiveness and efficiency of mammographic screening[13]. The addition

of classifying the suspected regions as cancerous or benign may reduce the number of

false-positive diagnoses, thereby decreasing patient morbidity and the number of surgical

biopsies performed. The CADx system has the potential to save lives while reducing

unnecessary biopsy and surgery.

1.3 Problem Statement

Develop a CADx system to detect microcalcifications in a mammogram using an

image differencing technique with a global and local thresholding scheme for focus of at-

tention, create an initial indexing hypothesis from cluster and texture analysis information,
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extract features based on the texture analysis of the region of interest, and finally match

the extracted features using artificial neural networks.

1.4 Scope

Computer algorithms will be developed for the detection and classification of micro-

calcifications. Microcalcifications are generally the most difficult sign of breast cancer to

detect as compared to other signs such as masses or tumors. Microcalcifications are also

one of the first mammographically detectable manifestations of cancer.

The Focus Of Attention (FOA) algorithms will be based on image differencing tech-

niques. Work by Chan, et al. [8] has demonstrated the potential of this technique. Their

technique will be augmented by preprocessing the image to increase the dynamic range of

the pixel values where most of the microcalcification information is found. The goal of the

FOA stage will be to retain at least 90% of the known cancerous regions while reducing

the total number of pixels to be further examined by at least 80%.

Indexing will be accomplished by thresholding the FOA regions of interest (ROIs)

based on texture energy ratios and the number of identified microcalcifications in the RO.

Regions passed by the Indexing stage will be assumed to possibly contain microcalcifica-

tions. Once this initial hypothesis is generated, a set of features will be extracted from the

regions of interest to be matched against predicted features. The predicted. features will

be developed from training data used during initial development of the system.

The features to be extracted will be a function of second order histogram statistics

and image texture analysis. The second order histogram features were based upon previous

breast cancer research[17, 9]. The image texture analysis will be based on the use of the

Laws Texture measures[30] and Power Spectrum Analysis[41].

The extracted and predicted feature sets will be matched using neural networks.

The LNKnet software available here at AFIT will be used. A number of classification

techniques are available in LNKnet including K nearest neighbor, Gaussian and Multi-

Layer Perceptron (MLP) neural networks[19]. A neural network will also be developed to
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evaluate the effects of training on an imbalanced training feature set, or a set where one

class has a much larger number of samples available than the other.

1.5 Overview

Chapter I presented the basis for applying computer vision techniques to solving

the breast cancer detection problem. Chapter II provides background information on

breast cancer, computer vision and related breast cancer research. Chapter III provides

methodology of the specific techniques used in this research. Details on the database

of mammograms used and analysis of the research are presented in Chapter IV. Final

results and conclusions pertaining to this research are given in Chapter V. Additional

database information and computer code developed during this research are provided in

the appendices.
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II. Background

2.1 Breast Cancer

The sign of breast cancer focused on for this research can be identified in a mam-

mogram by small worm-like deposits of calcium, called microcalcifications. It is important

to note that calcifications are a normal occurrence in breast tissue. These are referred to

as benign calcifications. A radiologist will make a preliminary diagnosis from a mammo-

gram as to the type of calcification using criteria similar to those in Table 2.1[16]. Most

calcifications will have characteristics from both the benign and malignant criteria and the

radiologist will have to determine the importance of each feature to classify the lesion as

more likely to be malignant or benign.

Criteria BENIGN MALIGNANT

Size >0.5mm in diameter 0.1-0.5 mm in diameter
Density <5 in lml vol >5 in lml vol

Regular, smooth shape Irregular shape, pointed edges
Appearance Large and thick Small and Thin

Diffusely scattered, both breasts Local concentration, one breast

Table 2.1 Criteria for Diagnosis of Microcalcifications[16]

A radiologist may also consider any risk factors that are associated with the patient

while making a diagnosis. Age, family history and social status are factors that may be

indicators of patients more likely to have malignant lesions. However, these indicators

need to be used with care, as the American Cancer Society estimates that 75% of breast

cancers occur in women with no high risk factors[l]. Table 2.2 contains an excerpt from a

list of common risk factors as compiled by Tanne[40].

Once a suspicious region is detected, a biopsy is normally performed to determine

whether the lesion is malignant or benign. The biopsy sample is forwarded to a pathologist

to make gross (visible to the naked eye) and microscopic examinations of the sample.

Appendix A contains a breakdown of the number of malignant and benign cases used in

this study.
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Risk Level Risk Factor Criteria

Age 50 or older
Country of Birth North America

Significantly higher risk northern Europe

Family medical history Mother or sister with
history of breast cancer

Socioeconomic status Upper class
Age at first pregnancy 30 or older

Moderately higher risk Personal medical history Previous cancer in one breast
Benign tumor (fibroadenoma)

Family medical history Mother or sister with
history of breast cancer

Martial status Never married
Place of residence Urban; Northern United States

Race Caucasian women 45 or older
African-American women
younger than age 40

Slightly higher risk Duration of estrogen exposure Menopause after age 55
Menstruation before age 11

Number of pregnancies None
Weight Obesity after menopause
Personal medical history Previous endometrial

or ovarian cancer

Table 2.2 Risk Factors for Breast Cancer in Women[40]
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It is hoped that computer-aided diagnosis can assist a radiologist in detecting sus-

picious regions in a mammogram and possibly provide a diagnosis of the region based on

digital image processing techniques. A promising methodology being developed for auto-

matic target recognition is Model Based Vision(MBV)[4]. This type of architecture will

be used for developing the CADx system for this thesis.

2.2 Computer-Aided Diagnosis: Model Based Vision

The Model Based Vision architecture is based on developing hypotheses and testing

them to detect and identify objects of interest in an image. The MBV approach utilizes

models of sensors, targets and background to better predict the characteristics of potential

targets that can be determined by digital image processing. The following provides a brief

summary of the stages in an MBV system and related research in those stages.

2.2.1 Focus of Attention. The first level of a MBV system is referred to as

Focus of Attention(FOA). This stage is often referred to as segmentation. The purpose

of this stage is to eliminate as much of the image as possible that obviously does not

contain something of interest. For this research, the output of this stage consists of regions

where microcalcifications may be present. These regions are referred to as Regions of

Interest(ROI). The goal of this stage is to pass all regions containing microcalcifications,

or true positives, and as few regions as possible that contain normal tissue, or false ROIs.

A segmentation technique based on image differencing was developed by Chan and

Nishikawa[27, 8, 7, 26]. The process is based on filtering the image twice. Once to increase

the signal to noise ratio (SNR) of the microcalcifications as compared to normal tissue, and

the second time to decrease the SNR of the microcalcifications. The images are differenced

and then globally thresholded to retain only the pixels with values at the high end of the

gray-level histogram. These pixels were subjected to local thresholding which retained only

pixels with gray levels in the original image that were greater than the mean plus 3.4 times

the standard deviation of the surrounding 51 by 51 pixel window. Finally, morphological

erosion and a clustering algorithm are applied to reduce the number of false signals. This
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technique yielded 85% probability of detection with 2 false regions per image when applied

to a set of 78 mammograms.

While the technique developed by Chan and Nishikawa is dependent on local contrast,

Brettle, et al. created a segmentation scheme that operates in the frequency domain[6].

Operating in the frequency domain allows selected frequency components to be modified

independently of spatial contrast. The original image is converted into its frequency com-

ponents by use of the Fourier Transform. The technique then utilizes a combination of

a Butterworth high pass filter and a matched filter tuned to detect structures resembling

microcalcifications. The resulting image is spatially filtered to remove noise and globally

thresholded to retain only pixels above some multiple of the standard deviation in the im-

age. Brettle applied this technique to 15 segmented regions and achieved 100% probability

of detection with a false positive rate of 4 calcifications per region. It should be noted that

this technique was not applied to an entire image, only a small portion of a full image.

This research will be processing the entire breast image.

Yoshida, et al. implemented a set of Least Asymmetric Daubechies (LAD) wavelets

for the automated detection of clustered microcalcifications[42]. Their preliminary results

using a database of 39 mammograms with 41 microcalcification clusters yielded a detection

rate of 85%, with a false positive rate of 5 clusters per image.

2.2.2 Indexing. The indexing module creates an initial hypothesis space which

attempts to assign some identification to a region of interest in an image. This is an

overall likelihood or confidence measure for later model-based refinement. Traditional

target recognition schemes do not include this stage, opting to go directly to the next

process termed feature extraction.

2.2.3 Feature Extraction. The Feature Extraction phase attempts to provide

compact, quantitative descriptions of image characteristics. The extracted features are

matched against predicted features to recognize targets. There are a number of desirable

properties for extracted features[ll, 4]:
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1. Robust: Reliably found in imagery and stable with respect to small image changes,

such as uncertainties in absolute amplitude.

2. Discriminating: Responsive to differences among targets. A trade-off exists between

robustness and discriminating power. A system may attempt to classify a region

beginning with robust, less discriminating features then use less robust, highly dis-

criminating features to establish fine distinctions.

3. Extractable: Computable from image data.

4. Predictable: Derivable from 3-D models and/or a priori exemplars.

5. Efficient: Low computational load and a minimum set of required features.

The University of Chicago has obtained encouraging results using features derived

from the first moment of the power spectrum of the region[13]. Chitre, et al. and Kocur

have made use of features derived from the second order histogram of the region includ-

ing: Entropy, Contrast, Angular Second Moment, and Inverse Difference Moments[9, 18].

In further work, Chitre included a set of binary cluster features (number of calcifications,

average distance between calcifications, etc.) in addition to the second order histogram fea-

tures which improved the classification of malignant vs. benign regions[10]. A combination

of shape, texture and contrast features were applied to images containing microcalcifica-

tions by Parker, et al.[28]. Texture features have also been used to discriminate between

glandular and fatty regions in a study by Astley and Miller[23]. In their study, the images

were filtered with the Laws Texture masks[30] and image statistics were used to classify

the breast tissue. The masks found to be most useful were the 5x5 versions of the edge and

spot filters (R5R5, L5L5 and S5R5) in discriminating between glandular and fatty regions.

In research accomplished here at AFIT, feature extraction techniques have focused

on three main areas: second-order histograms, Karhunen-Loeve transforms and wavelet

transforms[17, 18]. Originally developed and evaluated for military and face recognition

applications, these techniques were applied to breast cancer detection[25]. The Angular

Second Moment(ASM) was generated from the co-occurrence matrix, or second order his-

togram. In this study, only a single distance vector was used in determining the ASM

calculation for the image. The Karhunen-Loeve transform, also referred to as principal
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component analysis, attempted to determine the directions of maximum variance in a

given feature set. Actual pixel values from malignant and benign regions of interest were

used as the feature set. The final area of research applied to breast cancer was wavelet

decomposition. Daubechies and biorthogonal wavelet decompositions were applied to the

microcalcification regions. The best results were achieved using a biorthogonal wavelet

decomposition, obtaining an 88% correct classification rate on 93 difficult to diagnosis

images[17].

2.2.4 Prediction. The Prediction stage focuses on producing quantitatively cor-

rect signature features suitable for matching. This stage may include producing a "model"

of a region of interest based on information gained from the Focus of Attention and Index-

ing stages. This model will attempt to simulate a target in the appropriate background

based on image information and will have the same features extracted as the candidate re-

gion of interest for use in the matching phase. For this research, the prediction module will

not develop models, but will reference training data regions of interest that are consistent

with the indexing hypothesis.

2.2.5 Matching. Once a region has been processed by the FOA, been assigned

an initial hypothesis, and the desired features are extracted from the regions of interest,

the features are sent to a classification algorithm in an attempt to verify, or match, the

predicted hypothesis. A number of classification schemes have been developed for pattern

recognition[11]. Currently, one of the most novel classification schemes for medical imag-

ing is the multilayer perceptron (MLP) artificial neural network[13, 9]. Neural networks

have a number of benefits when applied to cancer detection and diagnosis[32]. A neural

network, as well as other classifier types, can be evaluated with LNKnet, a versatile classi-

fication program[19]. LNKnet is capable of evaluating a given feature set using a number

of classifiers, including a statistical (Gaussian) or a non-parametric (K-Nearest Neighbor)

classifier.

2.2.6 Search. The Search module evaluates the results of the Prediction, Feature

Extraction, and Matching process to determine whether or not an acceptable match was
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achieved. The search module will examine the output of the match process for this research.

The input mammogram images will either contain microcalcifications or will consist of all

normal tissue. Therefore, if a region identified as a microcalcification will be deemed an

acceptable match.

2.3 Feature Selection

In any pattern recognition problem, it is desirable to classify a pattern using as

few features as possible[11]. A reduced feature space lends itself to less computational

requirements and better generalization to unseen data. A number of techniques are avail-

able to attempt to determine which of the features contain the most relevant classification

information.

A simple, statistical measure to quantify how separable a feature is in a two class

problem is the Fisher Ratio, Eqn 2.1, where /.i and o-i are the mean and variance of

the feature set for class i[29]. The Fisher Ratio is a measure of the separability of the

Probability Density Function(PDF) of the feature for each class. The larger the Fisher

Ratio, the more separable the classes are for that particular feature. This test is useful for

only a single feature vector and does not give any insight into the effects of combinations

of features. Still, it can be used for an initial determination of the potential classification

ability for a feature, such as a particular distance vector used to generate an Angular

Second Moment value.
FR = (-1 - A)2(2)

+ (2.1)

A technique has been developed that integrates feature and neural network architec-

ture selection by Steppe[38, 39]. The Steppe algorithm uses an iterative likelihood ratio

test statistic as a model selection criterion for sequentially determining the "best" neural

network.

The Steppe approach is a combination of statistical model building perspective and

backwards sequential selection. The process begins with architecture selection, where I

versions of a neural network with N hidden nodes and M features are trained and tested.

Then, the same number of neural networks are trained and tested with N- 1 hidden nodes.
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If the N - 1 hidden node network results are not statistically significantly different than

the N hidden node networks, the reduce network is retained. Next, feature selection is

accomplished where I versions of the current network architecture are trained and tested

with M features. This is followed by I networks trained and tested with one of the M

features removed. This is done until each feature has been left out. The feature that

causes the least statistically significant change in results is eliminated and the process

of architecture selection is begun again[39]. This process can be implemented to find the

smallest architecture and the single "best" feature or feature subset for a given classification

problem[17].

One of the key practical considerations is the necessary computing time and resources

for performing architecture and feature selection on a given data set. For large data sets

with a number of features, the training of multiple neural networks for each architecture

and feature set requires extensive processing time.

Another method designed specifically for neural networks is a derivative based saliency

metric developed by Ruck[34]. This saliency metric determines which features effect the

output of a trained neural network by taking the derivative of the output with respect to

each input feature. The features having the most effect on the output will have a higher

value. This is done by training multiple neural networks and averaging the saliency value

for each feature. The Ruck method is much faster and easier to implement in comparison

to the Steppe algorithm.

2.4 Summary

Research in the area of pattern recognition and breast cancer is extensive. A number

of candidate techniques have been developed and evaluated yielding promising results. Yet,

no single system or technique will be able to correctly identify microcalcification regions

in every case. The solution may exist in having a number of techniques processing an

image and combining the results. It is the focus of on-going research at AFIT to develop

and analyze new techniques for use in diagnosing breast cancer. These techniques are

being designed to be implemented in a Model Based Vision architecture. The processes

specifically developed in this research are presented and expanded in the next chapter.
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III. Methodology

3.1 Introduction

This chapter describes the actual techniques used to discriminate regions containing

microcalcifications from regions of normal tissue.

3.2 Database

The mammograms used in this research were obtained from the Wright-Patterson

Medical Center, Wright-Patterson AFB. A total of 72 patient cases were selected to be

digitized providing a total of 284 mammograms. The films were digitized to 0.1 mm by 0.1

mm pixel size with 12 bit gray scale resolution(4096 gray levels) using an Lumiscan 200

Laser Film Digitizer and Macintosh computer. The system was calibrated such that the

optical density range of 0 to 3.5 was digitized linearly to 0.001 optical density unit/pixel

value. After digitizing, each mammogram was manually sized to 1024 x 2048 pixel images

for evaluation with the CADx system.

Each mammogram had a corresponding pathology report indicating the diagnosis

and location of suspected regions. Dr. Jeff Hoffmeister reviewed and annotated each mam-

mogram as to the location and type of abnormality, if any. Table 3.1 shows the various

types of tissue abnormalities and the corresponding number of images available in the

database. The total number of images in Table 3.1 exceeds the total number of mammo-

grams digitized as some images contained multiple abnormalities.

Abnormality Number of Images

Biopsy Proven Malignant Microcalcs 39

Benign Microcalcs 37
Biopsy Proven Malignant Masses 48

Benign Masses 53
No Abnormality Visible 140

TOTAL 284

Table 3.1 Number of Images Available in Database for Various Tissue Abnormalities
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3.3 System Overview

This section provides a brief overview of the Microcalcification Detection System. A

Flow Diagram is shown in Figure 3.1. This system follows the basic Model Based Vision

architecture. The first module of the system, Focus of Attention, attempts to reduce the

amount of data to be processed by the system. The original image is first preprocessed

to improve the contrast and dynamic range of the microcalcifications in the image by

remapping the gray levels with a sigmoidal function. This modified image is then filtered

with a Hit/Miss technique. The filtered image emphasizes microcalcification-like structures

in the image. Regions of Interest, ROIs, are identified by a three step process. First, the

filtered image is globally thresholded to retain only the brightest 0.5% of the pixels in the

image. Second, the original image is locally thresholded by finding pixels that have a gray

level value greater than the mean plus two times the standard deviation of a 51 by 51 pixel

box around the pixel of interest. Only pixels surviving both thresholding techniques are

retained. Finally, the center coordinates of the minimum number of 64 by 64 pixel ROIs

enclosing the retained pixels are determined through a process of ROI centroid migration.

The Regions of Interest passed by the Focus of Attention module are next processed

by the Indexing module. This module forms an initial hypothesis as to the type of tissue in

the ROT. Three features are extracted from each ROI to develop this hypothesis. The first

feature is the number of individual microcalcifications identified in the ROT. The next two

features are Laws Energy Ratios, LER, for each ROT. The LER is the ratio of the energy

in the microcalcifications only versus the total energy in the ROI after filtering with the

L5E5 and L5R5 Laws Masks. ROIs having at least 3 individual calcifications, an L5E5

LER >0.0287 and an L5R5 LER >0.0083 are given the initial hypothesis of being a region

of microcalcifications. These ROIs are then set to the final module, Matching, to confirm

the hypothesis.

The Matching module takes the ROIs passed by the Indexing stage and extracts an

additional set of features to be used to classify the tissue type as normal or containing

microcalcifications. A set of texture features based on Angular Second Moment values,

Power Spectrum Analysis and Laws Texture Measures is extracted for each ROT. A neural
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network is used to determine if the extracted features best match to tissue containing

microcalcifications or normal breast tissue.

Again, the process is shown as a Flow Diagram in Figure 3.1. Each module and the

steps contained with in that module is shown. The remaining sections will describe in

detail each module and the processing involved.

3.4 Focus of Attention

3.4.1 Overview. The first step in processing the mammogram image is Focus of

Attention (FOA). This stage is often referred to as segmentation. The purpose of this stage

is to eliminate as much of the image as possible that obviously does not contain something

of interest. The output of this stage consists of regions where microcalcifications may be

present. These regions are referred to as Regions of Interest (RO1s). The goal of this stage

is to pass all regions containing true abnormalities, or true positives, and as few regions as

possible that contain normal tissue, or false ROIs.

There are three steps in the FOA module for this system. The image is first pre-

processed to modify the gray levels in an attempt to improve microcalcification contrast

and dynamic range. The processed image is filtered using a Hit/Miss filtering technique

to identify pixel locations that represent potential microcalcifications. The filtered im-

age is next subjected to a global and local thresholding scheme. The image is globally

thresholded to retain only a percentage of the brightest pixels. Those pixel locations are

further evaluated by local thresholding those locations in the original image to determine

if they are greater than the mean and some multiple of the standard deviation of a small

window around the region. Finally, regions of interest are found by grouping surviving

pixel locations to retain the minimum number of 64 by 64 pixel regions.

3.4.2 Gray Level Modification. After examining a number of sample mammo-

grams containing microcalcifications from the Training Data Set, it was discovered that

most of the gray levels containing microcalcification information were in the range of 2200

to 3600. A sample image and it's histogram, Figures 3.2(a) and (b), provide an exam-

ple of how the pixel gray levels associated with background and microcalcifications are
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Figure 3.1 Flow Diagram for Microcalcification Detection System
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Figure 3.2 (a) Sample Mammogram Image(b) Histogram of the Image

distributed. A non-linear function is applied to the raw image to remap the gray levels

of interest such that they occupy a larger range of the available gray levels. Figure 3.3

illustrates the sigmoidal function used to remap the gray levels and the resulting image.

The non-linear mapping has two desirable effects:

* The dynamic range of the microcalcifications regions is increased which also yields

improved contrast of the microcalcifications as compared to the surrounding back-

ground. To illustrate the increase in dynamic range, a small region containing mi-

crocalcifications from fourteen mammograms was extracted from the original and

processed images. The dynamic range and contrast was calculated for the regions.
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Image Dynamic Range [Contrast]
Original 745 0.0463

Processed 1733 0.2060

[Improvement [ 2.37 [ 4.25

Table 3.2 Non-Linear Gray Level Mapping Improvement to Dynamic Range and
Contrast[21]

The dynamic range of a region is quantified as DR = Max - Min, where Max is

the maximum pixel value in the region and Min is the minimum pixel value. The

contrast is quantified using a measure defined by Morrow[24]. The contrast of a

region is found by

fb

where f is the mean value of the microcalcification pixels and b is the mean value

of the remaining, or background, pixels. Table 3.2 shows the Dynamic Range and

Contrast improvements for the sample regions. The non-linear mapping improved

the Dynamic Range by approximately 2.5 and had over a factor of 4 increase in

contrast for microcalcification regions.

* The structures that resemble microcalcifications, but have gray levels below 2200,

are effectively removed. This helped eliminate a number of false ROIs from being

passed to further stages in the Focus of Attention process.

3.4.3 Hit and Miss Filtering. A Hit and Miss thresholding technique used in the

Focus of Attention stage is modeled after the system developed by Chan and Nishikawa[27,

8, 7]. This technique utilizes two filtered versions of the original image. The first filter, the

Hit filter, increases the signal to noise ratio of structures in the mammogram that resemble

microcalcifications. The second filter, the Miss filter, reduces the signal to noise ratio of

those same structures. A differenced image is obtained by subtracting the Miss filtered

image from the Hit filtered image. The differencing removes the majority of the structured

background while retaining those regions resembling the targets of interest.

The Hit, or matched, filter used is the three by three kernel shown in Figure 3.4(a).

A Box Rim filter, shown in Figure 3.4(b), is used as the Miss filter to suppress the target
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Figure 3.4 Spatial Filters: (a) Hit (matched); (b) Box Rim (suppression).

signal. Previous work by Chan[8] has indicated a filter with an outer dimension of nine

pixels and an inner dimension of five pixels yielded the best performance. Chan performed

his work on 10 0/im resolution images, the same resolution as the AFIT database, with a

Free Response Operating Curve (FROC) analysis in comparing 6 different Hit/Miss filter

combinations.

The frequency response characteristics of the filters are shown in Figure 3.5. Through

the differencing processing, the resulting frequency response of the system is a band pass

filter. The pass band of approximately 0.15 to 0.45 in normalized frequency (q to

radial spatial frequency) indicates structures of interest, including microcalcifications, are

composed of frequencies in this range. The existence of microcalcifications in this frequency

range corresponds to work done by McCandless[21]. His work with wavelet decomposition

also indicated a range of E to E contained frequencies common to microcalcifications.
8 2

To demonstrate the effects of the Hit & Miss filter, Figure 3.6(a-d) provides a look at

1-D cross sections from a region containing a microcalcifications and Figures 3.7(a-d) are

the actual regions. This sample was taken from image AF055 and has a mass containing

microcalcifications. Figure 3.6(a) shows the original region with the microcalcification.

Figures 3.6(b) & (c) show the corresponding region after applying the filters. Figure 3.6(d)

shows the differenced signal. The same sequence but with the full region is shown in Figures

3.7(a-d). Note how the background mass structure has been reduced to gray scale levels

near zero, causing the microcalcifications to be easily thresholded. Defining the Signal to

Noise Ratio as the mean value divided by the standard deviation[14], SNR = mean

the SNR of the original image was 0.0157, hit filtered image - 0.0373, miss filtered image -

0.0249, and the differenced image - 0.3464. The overall effect on the sample mammogram
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Figure 3.5 Filter Frequency Response for Hit and Miss Filter with Resulting Difference.

from Figure 3.2(a) is shown in Figure 3.8. Notice how the background has been effectively

removed while the microcalcifications have been made more prominent. This is also evident

in the histogram of the image, Figure 3.8(b), as the micro calcifications are now comprised

of the brightest pixels in the image.

3.4.~4 Region of Interest Extraction. Once the differenced image is obtained,

global thresholding is applied to retain only a percentage of pixels with high gray scale

values. The histogram of the differenced image is used to identify the gray scale value

where only 0.5% of the pixels have higher values. The pixels that are higher than the

threshold are set to one, otherwise the pixels are set to zero. This produces a binary mask

image of potential microcalcifications. This binary image is then subjected to a clustering

algorithm that identifies groups of connected pixels. Only groups that contain between

3 and 45 pixels are retained. This will eliminate any small or large pixel groups that

correspond to noise or other artifacts in the image. This image is later used to extract the

micro calcification masks required to generate the texture energy ratios and to determine

the number of clusters for each ROT for the Indexing and Matching modules.

Then, each of the remaining pixels is processed with a local threshold. For each

candidate pixel, a 5 1x51 window is extracted from the original image. The pixel g (x, y) is
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Figure 3.7 Effects of Hit & Miss Filters on Microcalcification Region
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Figure 3.8 (a) Mammogram after Hit/Miss Filtering
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(a) (b) (c)

Figure 3.9 Binary Mask Developed from:
(a) Hit/Miss Thresholding

(b) Local Thresholding
(c) Logically "AND" the Two Masks Together

retained only if

g(x, y) > /[ + no-

where [t is the mean value of the local window, o- is standard deviation of the window, and

n is the threshold factor.

The masks developed during the thresholding process can be seen in Figure 3.9(a-

c). The first mask is the result of globally thresholding the Hit/Miss filtered image. The

second mask is the result of the local thresholding process. By logically "AND"ing the two

mask together, only the pixel locations common to both masks are retained. This image

is used for ROI selection.
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The minimum number of 64x64 boxes that enclose the surviving pixels is next de-

termined. This is accomplished by first finding 512 non-overlapping windows in the image

(16 high by 32 wide). The center of mass of each window is calculated and the window

is recentered around that point. This process continues until the window moves less than

2 pixels. Overlapping windows are eliminated by comparing the center of mass of each

window. If the center of masses of the two windows are within d = 20, where d is the

Euclidean distance between two window centers, the window with the lowest energy is

eliminated. A list of ROI center coordinates is now generated.

At this point, the ROIs are ranked based on the number of pixel locations that cor-

respond to potential microcalcifications. The number of "on" pixels for each ROI location

in the binary mask is calculated. True microcalcification ROIs generally have a number of

pixel locations identified by the Hit/Miss filtering process as compared to random noise or

structures that responded to the filtering.

3.5 Indexing

3.5.1 Overview. The Indexing module receives a list of potential microcalcifica-

tion regions as identified during the Focus of Attention stage. The indexing module forms

an initial hypothesis as to the classification of each ROT. In this case, Indexing attempts

to further sort out the ROIs with microcalcifications from those containing only normal

tissue. In this stage, three features are extracted from each ROT: number of individual

calcifications and two Laws Energy Ratios developed from filtering the ROI with a Laws

mask.

3.5.2 Indexing Feature Extraction. The first feature extracted is the number

of individual calcifications as detected by the Hit/Miss filtering operation. An ROI is

extracted from the binary image produced by globally thresholding the Hit/Miss filtered

image for each coordinate passed by the FOA module. ROIs containing microcalcifications

generally have a large number of individual calcifications. This relates to the information

used by a radiologist in diagnosing a region containing microcalcifications. Recall Table

2.1 which showed regions of malignant microcalcifications generally contain 5 or more
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Figure 3.10 Laws Masks Used for Indexing:(a) L5R5(b) L5E5

individual calcifications in a 1 ml volume. The ROIs are 64 x 64 pixel regions with 100/ tm

pixels which gives a 6.4mm by 6.4mm size. For a volume of (6.4mm)3 , a malignant region

of this size would generally contain more than 1.31 individual calcifications. Based on

this analysis and observations during system development, ROIs are required to have at

least 3 individual calcifications to be given the hypothesis of being a region containing

microcalcifications.

The ROIs from the FOA next have two Laws Energy Ratios, as described in detail

in Section 3.6.4, calculated using the binary mask used to determine the number of calcifi-

cations and the same region location extracted from the original image. From the original

image and binary mask ROIs, the indexing stage determines the Laws Energy Ratio, LER,

for the L5E5 and L5R5 Laws masks which are shown in Figure 3.10. These two mask were

selected during system development for their discriminating ability between regions with

microcalcifications from those without for the Training Data Set. Only regions having an

L5E5 and L5R5 LER greater than a threshold determined during system development are

hypothesized to contain microcalcifications.

3.5.3 Indexing Criteria. After processing the Training Data Set images during

system development, three indexing criteria were developed as shown in Table 3.3. The

first criteria is ROIs must have at least 3 individual calcifications. For the Laws Energy

Ratios, it was determined that a L5R5 LER of 0.0083 and a L5E5 LER of 0.0346 or greater

was appropriate for separating microcalcifications from normal tissue in the Training Data

Set. Any ROI meeting this criteria is assigned an initial hypothesis of being a region of

microcalcifications. These regions are now sent to the Matching Module to confirm or

reject this hypothesis.
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Index Feature Criteria

Number of Clusters >3
L5R5 LER >0.0083
L5E5 LER >0.0346

Table 3.3 Indexing Features and Criteria

3.6 Feature Extraction

3.6.1 Overview. The ROIs given an initial hypothesis of being a region of micro-

calcifications are passed to the Feature Extraction module which processes the region in

an attempt to provide a quantitative description of image characteristics that can be used

by a classifier to discriminate between microcalcification and normal tissue regions. Three

different texture metrics are examined for their ability to extract the "diagnosis essence"

of the ROI:

" Angular Second Moment

" Power Spectrum Analysis

" Laws Energy Ratios

Each technique is discussed in detail in the following sections.

3.6.2 Angular Second Moment. Angular Second Moment, ASM, is a measure

often used to classify images based on texture analysis. The ASM value is based on

gray level co-occurances, i.e., on joint probability densities of pairs of gray levels. Let

6 = (Ax, Ay) be a vector in the (x, y) plane. For any such vector and image f(x, y), the

joint probability density of the pairs of gray levels that occur at points separated by 6 can

be found. This joint density takes the form of a matrix, C8, commonly referred to as the

gray level co-occurance matrix, where C(i, j) is the probability of the pair of gray levels

(i, j) occurring at a vector separation 6. The co-occurance matrix is m by m, where m is

the number of possible gray levels.

It is easy to compute the C6 matrix for a given image by counting the number of

times each pair of gray levels occur at a vector separation 6 = (Ax, Ay), where Ax and Ay

are integers. The following example illustrates the C6 matrix is developed for 6 = (1, 0).
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Figure 3.11 Co-occurance Matrix Example:(a) Image(b) C for 6 = (1, 0)

Weszka, it et al., in their study of texture measures for the classification of terrain,

point out:

If a texture is coarse, and 6 is small compared to the sizes of the texture
elements, the pairs of points at separation 6 should usually have similar gray
levels. This means that the high values in the matrix C6 should be concentrated
on or near its main diagonal. Conversely, for a fine texture, if 6 is comparable
to the texture element size, then the gray levels of points separated by 6 should
often be quite different, so that the values in C should be spread out relatively
uniformly. Thus a good way to analyze texture coarseness would be to compute,
for various values of the magnitude of 6, some measure of the scatter of the C
values around the main diagonal[41].

Similarly, texture directionality can be analyzed by comparing the spread measures of C

for various directions of the vector 6.

ASM = -p(i,j)2  (3.1)

The Angular Second Moment calculation is defined in Equation 3.1. In this form,

p(i,j) is defined as

p(i,j) C6(ij)
E. E, 6 (X, Y)

This measure is smallest when each p(i, j) are as equal as possible and large when some

elements are large and others small, such as when the values are largely concentrated

around the main diagonal. For the example C matrix in Figure 3.11, the ASM value is

0.0972.

Previous work by Kocur[17] and Chitre[9, 10] classified benign and malignant micro-

calcifications using texture features, specifically, Angular Second Moment. In both studies,

only a single value of 6 was used in constructing the C matrix. A better representation
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of the true texture present in the microcalcification region of interest may be gained by

evaluating multiple values of 6 in order to determine texture coarseness and direction-

ality. This measure will be used to separate normal tissue ROIs from ROIs containing

microcalcifications.

3.6.3 Power Spectrum Analysis. The Fourier transform of an image f(x, y) is

defined by Equation 3.2 and the Fourier power spectrum is I F I2= FF* (where * is the

complex conjugate).

F(u, v) - 0 e-3 27r(u+vY)f(x, y) dxdy (3.2)

The radial distribution of values in I F 12 is sensitive to texture coarseness in

f (x, y)[41]. A region of coarse texture will have high values concentrated near the ori-

gin, while fine texture regions will have values of I F 12 more spread out. A method to

analyze texture properties of an image using this fact is to find the averages of I F 12 taken

over ring-shaped regions centered at the origin, as given by Equation 3.3 for various values

of the ring radius r, where r -- u2 + v 2 and 9 = tan f[41].

27r

$r I F(r, 9) 12 dO (3.3)

Since the regions analyzed in this research are n by n digital images, the discrete

Fourier transform is used and the texture features from the power spectrum, Or ,r2, are

calculated by Equation 3.4.

U2+V
2
<r2, u,v~n-1

Ori,r2 = F(u, v) (3.4)
u

2
+v

2
r2, u,v>O

Various values of the inner and outer ring radii r, and r2 are selected to correspond

with frequency limits of various size objects. For the 64 by 64 ROIs being generated by

the Hit/Miss filtering stage, rings investigated and the corresponding object size are listed

in Table 3.4.
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r l ,r 2 I Object Size (pixels)

[0,1] 32

(1,2] 16
(2,4] 8
(4,8] 4

(8,16] 2

(16,31] 1

Table 3.4 Inner and Outer Ring Radii and Corresponding Object Size

I Micro ROI Normal ROI
Ring Mean Std Mean Std

[0,1] 0.5956 0.0728 0.6159 0.0569

(1,2] 0.0241 0.0098 0.0230 0.0096
(2,4] 0.0441 0.0144 0.0411 0.0129
(4,8] 0.0705 0.0206 0.0582 0.0133

(8,16] 0.1049 0.0221 0.0916 0.0136

(16,32] 0.1410 0.0199 0.1480 0.0186

Table 3.5 Power Spectrum Ring Ratios for a Microcalcification ROIs and a Normal ROIs
from 14 Sample Images

Sample regions of microcalcifications and normal tissue with their corresponding

power spectrum are shown in Figure 3.12. Notice how the power spectrum of the micro-

calcification image is more concentrated in the low frequency values. This is reflected in

the ring ratios as the fraction of energy in the lower frequencies is higher for the microcal-

cifications, as shown in Table 3.5.

3.6.4 Laws Texture Measures. A set of texture features based on the correlation

of pixel neighborhoods with a set of standard masks was developed by Laws[30]. The masks

are derived from three simple vectors: L3 [1 2 1], E3 [-1 0 1] and S3 [-1 2 -1]. The vectors

represent one-dimensional operations of center-weighted local averaging, symmetric first

("edge detection") and second ("spot detection") differencing. By convolving these vectors

with themselves and each other, five vectors are developed which are listed in Table 3.6.

By taking the outer product of every combination of vectors, twenty five 5x5 texture

"masks" are created. Each mask is convolved with an image and the statistics of the

resulting image, such as the sums of the squared or absolute values of each pixel, is used
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id
(c) (d)

Figure 3.12 (a) Microcalcification ROI and (b) Power Spectrum
(c) Normal ROI and (d) Power Spectrum

Label] Result of Vector ] Description

L5 L3 * L3 [1 4 6 4 1] Local Average
S5 E3 * E3 [-1 0 2 0 -1] Spot Detector
R5 S3 * S3 [1 -4 6 -4 1] Ripple Detector
E5 L3 * E3 [-1 -2 0 2 1] Edge Detector

W5 E3 * S3 [-1 2 0 -2 1] Wave Average

Table 3.6 Laws Texture Vectors
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ROI L5E5 LER
Type mean std

Microcalcification 0.0842 0.0498
Normal Tissue 0.0128 0.0201

Table 3.7 Laws Energy Ratios for Micro and Normal ROIs with L5E5 Mask

to define the texture properties of the image. This results in a texture energy measure of

the image.

For this research, all twenty five masks are investigated to determine which, if any,

respond strongly to regions containing microcalcifications while having little effect on nor-

mal tissue areas. The Laws features are calculated for regions detected by the Hit/Miss

filtering. A ratio of texture energy is calculated for each region of interest and each texture

mask. This ratio is defined in Eqn 3.5, where LER is the Laws Energy Ratio, EMiro. is

the energy in the laws filtered image corresponding to the possible microcalcifications, and

ETotal is the total energy in the laws filtered image.

LER - EMicros (3.5)
ETotal

EMicro, is determined by summing only the pixel values in the ROI that correspond

to the pixels in the binary mask developed during the FOA module. ETotal is the sum of

all pixel values in the ROT.

Figure 3.13 shows the results of filtering two ROIs with the Laws mask L5E5. The

center images are the binary mask showing the areas corresponding to possible microcal-

cifications as detected by the FOA module. Notice how the filtered image of the microcal-

cifications have the majority of the energy concentrated in the areas found in the binary

masks. This results in a high LER. The false ROI filtered images have energy more evenly

distributed throughout the image which results in a lower LER. The mean and standard

deviation for the L5E5 LER for the ROIs identified in the Training Data Set are listed in

Table 3.7.
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(a) (b) (c)

(d) (e) (f)

Figure 3.13 Microcalcification Tissue: (a) ROI, (b) Binary Mask, (c) L5E5 Filtered ROI
Normal Tissue: (d) ROI (e) Binary Mask, (f) L5E5 Filtered ROI

3.7 Prediction

3.7.1 Overview. The Prediction Module in a Model Based Vision System pro-

duces quantitatively correct "signature" features suitable for matching. These features are

used to match those obtained by the Feature Extraction module. For this research, the

prediction module does not develop a model, but references features obtained during sys-

tem development from training data. These features are used to train the neural network

used in the Matching module. From known microcalcification and normal tissue regions,

the three different texture measures (ASM, Power Spectrum Analysis, and Laws Energy

Ratios) are calculated. This results in a total of 56 different features for each training

region. In an effort to reduce the training feature space, feature selection is done based on

Fisher Ratio analysis.

3.7.2 Feature Selection. In any pattern recognition problem, it is desirable to

reduce the number of features used in classifying a set of data. This reduces computational

requirements while usually improving the generalization of the classifier. The trick is to
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find out which of the available features are the discriminatingly relevant features, that is,

best separate one class from another. The Fisher Ratio is a simple, statistical measure to

quantify the separation of two classes for a single feature. Recall, the Fisher Ratio is given

by
(

A l -
A2)

2

FR- 2o+o.2

For each feature, the F-ratio is calculated. The features with the highest F-ratios are used

for matching. The number of features that can be used are determined in the next section,

Matching.

3.8 Matching

3.8.1 Overview. ROIs surviving the Focus of Attention and Indexing stage

are assigned an initial hypothesis of being a region of microcalcifications. The Matching

Module attempts to confirm or reject this hypothesis by using the information provided by

the Feature Extraction and Prediction Modules to discriminate between microcalcification

and normal tissue. The features used by the classifier are selected based on the Fisher Ratio

calculation in an attempt to identify the more discriminatingly relevant features. These

features are used by a single hidden layer neural network to perform the classification. The

neural network is trained using a modified backpropagation algorithm to reduce training

time. The following sections review in detail the methods used.

3.8.2 Classification. A single hidden layer neural network with one output node,

as shown in Figure 3.14, is used for classifying the ROIs using the extracted features. The

neural network is trained using a batch backpropagation algorithm to adjust the weights.

The network outputs are clamped to 1 - E for any value greater than 1 - E and to e for

values less than c during training to reduce the likelihood of the network getting stuck in

a local minima[37].

The number of input nodes, I, is the number of features. This value is determined

using Foley's Rule[31] which requires at least three times the number of training samples per

class for each feature. Since there are only 18 microcalcification samples in the training set,

a maximum of 6 features are used. The number of hidden nodes, L, allowed is determined
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Figure 3.14 Basic Neural Network Architecture

using Cover's Rule[31] which states

L- N1

where N is the number of samples in the training. With 99 samples in the training set and

6 features, this yields a maximum of approximately 7 hidden nodes. Foley's and Cover's

rules give a good starting place as to the proper architecture for a neural network, but are

not set in stone. An architecture exceeding these values can be used, if an independent

test set is held out to verify the neural net performance.

From the Prediction Module Feature Selection, the top 6 features based on F-ratio

analysis are used for training and testing of the neural network. To examine the effects of

various architectures, the number of hidden nodes is varied from 1 to 9. Two data sets,

Evaluation and Normal Data Sets, are with held to verify the classification performance

of the Matching Module.

3.8.3 Modified Backpropagation Algorithm. One of the difficulties in applying a

classification scheme to the breast cancer problem is the lack of samples in. one or both

classes. There are generally a larger number of normal tissue samples than abnormal. This

is a major disadvantage for a backpropagation trained neural network, as the convergence

of the net output error is very slow[5]. This occurs when the negative gradient vector
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computed by backpropagation actually increases the error for the subordinate class during

the initial iterations.

A solution to this problem is to calculate a direction in the weight space that is

downhill in both the dominant and subordinate classes. Anand, et al. [5], recommend finding

a descent vector v which satisfies Equation 3.6.

-v .VE,(W) <0, c= 1,2 (3.6)

This vector takes the place of the gradient vector in the backpropagation algorithm, Equa-

tion 3.7, where W(k) is the collection of weights in the neural network at the beginning of

the kth iteration, A, a positive constant, is the learning rate and VE(W) = VEc(W), c =

1,2.

W(k + 1) = W(k) - AVE(W) (3.7)

The direction of v is set to bisect the angle between -VE,(W) and -VE 2 (W), the gra-

dients of the error vector for class 1 and 2, respectively. This is accomplished by finding

v using Eqn 3.8. The magnitude of v is set to be the same magnitude as would of been

computed by the standard backpropagation, as in Equation 3.9.

1 (-VE(W) -VE 2 (W) (3.8)2 --- 11 *I-VE, (W)T I II -VE2 (W) II

v 11=11 VE,(W) + VE 2(W) II (3.9)

This modified backpropagation algorithm is used to train the neural networks in

hopes of reaching a converged network more rapidly that has minimum error in both

classes.

3.9 Summary

The Model Based Vision architecture is used to develop the microcalcification detec-

tion system. The Focus of Attention module uses a Hit/Miss filtering technique followed by

global and local thresholding to select possible Regions of Interest (ROIs). The Indexing
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Module uses information from two Laws Energy Ratios and the number of individual cal-

cifications in the ROI in assigning the initial hypothesis. The Feature Extraction Module

obtains texture features using three different techniques: Angular Second Moment, Laws

Energy Ratios, and Power Spectrum Analysis. The top 6 features based on Fisher Ratios

determined during the Prediction Module are retained for use in the Matching Module.

The Matching Module uses a modified backpropagation algorithm Multilayer Perceptron

Neural Network to classify the ROI as containing microcalcifications or normal tissue. The

results obtained from testing on the AFIT database are provided in the next chapter.
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IV. Analysis and Results

4.1 Introduction

The microcalcification system was developed and evaluated using three separate data

sets. The first data set, labeled Training Data Set, was used to initially develop the

system and determine thresholding levels and indexing criteria values used in the Focus

of Attention and Indexing Modules. The second data set, Test Data Set, was used to

verify the accuracy of the thresholds determined during training. Analysis of the results

from the test set were used to adjust threshold values before going on to the final data

set. Once all parameters and thresholds have been determined using the training set and

slightly modified to improve accuracy on the test set, a final data set, the Evaluation

Data Set, was used to verify the the detection capability of the system on unseen data.

This was a "sanity check" to determine if the system was over tuned to the data used for

development. The results from the Evaluation Data set should be a reasonable indication of

the performance of the system to any image data set. An additional data set, Normal Data

Set, made up of images with no radiologist noted abnormalities, was used to evaluate how

the system performs for images containing no diagnosed microcalcifications. The number

of images and true regions of interest for each data set is listed in Table 4.1. Additional

details concerning the data sets used can be found in Appendix A.

4.2 System Development: Training Data Set

4.2.1 Focus of Attention Module. The Focus of Attention module was initially

evaluated using the 14 mammograms making up the Training Data Set. Each image had

Data Set Number of Images Number of Microcalcification Regions

Training 14 18
Testing 17 20

Evaluation 12 16
Normal 10 0

Total 53 54

Table 4.1 Number of Images and Microcalcification Regions for Training, Testing, Eval-
uation and Normal Data Sets
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(a) (b)

Figure 4.1 Sample Images: (a) Full Mammogram (b) Zoom on Microcalcification

a radiologist noted and biopsy confirmed malignant or benign microcalcifications. The

microcalcifications in each image varied from very high to low contrast in comparison to

the surrounding background. Figure 4.1 provides an example of the mammogram images

used in this study and a close-up of the microcalcification present in the image.

Each training image was first processed by the FOA module to identify the proper

thresholds for the global and local thresholding stages. Each training image was processed

multiple times as the two parameters were varied independently - the percentage of pixels

passed in global thresholding and the multiplicative factor of the standard deviation in the

local thresholding. The first parameter that was varied was the top percentage of pixels

passed by the global thresholding stage. While this parameter was varied from 0.2% to

0.5%, the multiplicative factor was held constant at a value of 2.0. The multiplicative factor

was then varied from 1.0 to 2.5 as the top percentage of pixels was held constant to a value

of 0.3%. Figures 4.2 and 4.3 show the results obtained from the 14 test images presented
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Figure 4.2 Free Response Operating Curve for Varying Global Threshold
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Figure 4.3 Free Response Operating Curve for Varying Local Threshold

as Free Response Operating Curves(FROC). The FROC shows the percentage of correctly

segmented regions versus the number of false ROIs per image. The ideal operating point

is the upper left corner of the plot which indicates the correct regions are being identified

with a minimal number of false regions being retained.

By allowing the top 0.5% of pixels in the differenced image to pass the global thresh-

olding and a multiplicative factor of 2.0 in the local thresholding, 100% of the micro-

calcification regions in the 14 test images can be identified with approximately 45 false

ROls per image. The goal of this stage is to pass all of the potential regions on to the

Indexing module, which attempted to further reduce the false regions while retaining the

true regions containing microcalcifications. The number of correct regions identified, their

ranking based on number of "on" pixels in the binary mask ROI, and the total number of

regions found for each training image is shown in Table 4.2. Note that except for one region
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Number of Correct Total Number
Image Regions Rank of Regions

AF005 2/2 1, 2 59
AF006 3/3 1, 2, 5 66
AF007 2/2 1, 2 49
AF008 1/1 13 17
AF009 1/1 1 21
AF020 1/1 7 39
AF022 1/1 1 66
AF024 1/1 1 38
AF033 1/1 2 41
AF038 1/1 1 75
AF040 1/1 5 33
AF045 1/1 1 35
AF047 1/1 4 25
AF055 1/1 7 30

Total 18/18 3.17 (mean) 594

Table 4.2 Results of Focus of Attention Module using Training Data

in image AF008 which ranked 13th out of 17, all the remaining regions were ranked within

the top 7 regions. The system could pass only the top 7 ROIs based on this ranking and

have an acceptable Probability of Detection of 95.4% and an average False ROI Rate of

5.93 regions per image. To improve this performance, the Indexing and Matching Modules

are used to reduce the False ROI Rate.

4.2.2 Indexing Module. The indexing module received the list of ROI center

coordinates from the Focus of Attention Module. A 64 by 64 region from the FOA binary

mask and the original image was extracted for each of the coordinates. The binary mask

was used to determine the number of individual calcifications in each ROT. After process-

ing the 14 training images, the regions containing microcalcifications had at least three

individual calcifications present. This was assigned as the first indexing criteria.

For the ROIs containing at least three individual clusters, each ROI from the orig-

inal image was filtered with each of the 25 Laws masks. The Laws Energy Ratio, LER,

was calculated for each ROI/Laws mask combination. This ratio determines the energy

contained in the individual calcifications versus the total energy in the ROI filtered by the

Laws Mask. To determine which of the Laws Energy Ratios had the strongest response
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Figure 4.4 Free Response Operating Curves using Training Data for:

(a) Laws Mask L5E5
(b) Laws Mask L5R5

to the microcalcifications, a FROC analysis was done for each of the 25 LERs. The Laws

Masks L5E5 and L5R5 had 100% Probability of Detection with the lowest False ROI Rate

for the 14 training images, as shown in Figures 4.4(a) and (b).

The Indexing module analysis on the 14 training images provided a first attempt at

setting the proper thresholds for the LER for mask L5E5 and L5R5. From the FROC

analysis, only ROIs with L5E5 LER of greater than 0.0346 and an L5R5 LER of greater

than 0.0083 were given the initial hypothesis of being a region of microcalcifications. For

the 14 training images, this resulted in a 100% Probability of detection and an average

of 3.2 False ROIs per image. This is comparable to other researchers results. Recall

the performance achieved by the system developed by Chan[27] which obtained an 85%

Probability of Detection rate with 2 false regions per image and Yoshida[42] with 83% PD

and 5 false regions per image. It should be noted that how Chan and Yoshida divided

their data into training and testing sets is unknown. If an independent test set was not

held out, their results may be biased as their systems could of been over tuned to their

training data.
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Feature
Set b F-Ratio Rank

[0,0] 0.0655 1
[1,0] 0.0131 23
[2,0] 0.0134 22
[3,0] 0.0118 24
[4,0] 0.0163 20
[0,1] 0.0135 21
[1,1] 0.0241 5
[2,1] 0.0231 7
[3,1] 0.0182 17
[4,1] 0.0105 25
[0,2] 0.0187 16

Angular [1,2] 0.0208 14
Second [2,2] 0.0292 3

Moment [3,2] 0.0213 13
[4,2] 0.0230 8
[0,3] 0.0216 12
[1,3] 0.0226 9
[2,3] 0.0224 10
[3,3] 0.0258 4
[4,3] 0.0189 15
[0,4] 0.0174 19
[1,4] 0.0338 2
[2,4] 0.0177 18
[3,4] 0.02214 11
[4,4] 0.0233 6

Table 4.3 Fisher Ratio Values and Ranking for each ASM Feature

4.2.3 Feature Extraction and Prediction. The full set of 25 Laws Energy Ratios,

25 Angular Second Moment and 6 Power Spectrum Analysis features were extracted for

each ROI passed by the Indexing Module with the hypothesis of containing microcalci-

fications. From these features, the Fisher Ratios were calculated to determine the top 6

features from each feature set as shown in Tables 4.3, 4.4, 4.5. These 6 features from each

feature set were used to train a neural network for a comparison study to determine which

of the texture measures give the best performance.

4.2.4 Matching. For each texture feature set, 5 networks with 1 to 9 hidden nodes

(a total of 45 networks for each feature set) were trained using the imbalanced training set
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Feature Laws
Set Mask F-Ratio] Rank

L5L5 0.3019 23
L5S5 0.7148 2
L5R5 0.5956 7
L5E5 0.6207 3
L5W5 0.6118 4
S5L5 0.5600 9
S5S5 0.7348 1
S5R5 0.4574 15
S5E5 0.5858 8
S5W5 0.5375 10

Laws R5L5 0.4879 12
Energy R5S5 0.4200 17
Ratios R5R5 0.2711 24

R5E5 0.3332 20
R5W5 0.3105 22
E5L5 0.6039 5
E5S5 0.6025 6
E5R5 0.3860 19
E5E5 0.1118 25
E5W5 0.4659 14
W5L5 0.4833 13
W5S5 0.4996 11
W5R5 0.3124 21
W5E5 0.4439 16
W5W5 0.4046 18

Table 4.4 Fisher Ratio Values and Ranking for each Laws Energy Ratio Feature Feature

Feature Ring
Set Radius F-Ratio j Rank

RO 0.0480 4
Power R12 0.0064 6

Spectrum R24 0.0238 5
Analysis R48 0.2552 2

R816 0.2641 1
R1632 0.0650 3

Table 4.5 Fisher Ratio Values and Ranking for each Power Spectrum Analysis Feature
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Feature # Hidden Probability of False ROI
Set Nodes Detection Rate

ASM 4 0.94 5.21
LER 4 0.94 2.36
PSA 7 0.94 1.64

Table 4.6 Training Data Set System Results including Matching Module

Parameter Value

Global Threshold 0.5%
Local Threshold 2.0

Number of Clusters/ROT >3
L5R5 LER >0.0083
L5E5 LER >0.0346

Table 4.7 Parameter Settings Determined During System Development

modified backpropagation algorithm with a fixed learning rate of 0.1. Each network was

trained until at least 90% of the training set microcalcifications were correctly identified.

The results from testing on the training data are shown in Table 4.6. These results are

biased since the network was trained with the same data it was tested with, naturally

causing a high Probability of Detection. System evaluation with the Test, Evaluation and

Normal Data sets will give a better representation of neural network performance.

4.3 System Evaluation: Test Data Set

The Test Data was next processed to determine the effectiveness of the parameters

found during system development, as shown in Table 4.7. Analysis of results from the

test data was used to determine if the system parameters were over tuned for the Training

Data Set. From this analysis, the parameters were "tweaked" to improve generalization

before processing the final Evaluation Data.

4.3.1 Focus of Attention Module. Using the 17 Test Data images, the Focus of

Attention module was able to detect all of the 20 microcalcification areas with an average

of 44.65 ROIs per image. Table 4.8 breaks down the results for each image. The parameters

for the global and local thresholds determined during training performed well against the

Test Set by identifying 100% of the microcalcification regions in the 17 Test Set images.
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Number of Correct Total Number
Image Regions Rank of Regions

AF092 1/1 4 90
AF094 1/1 13 74
AF102 1/1 6 24
AF119 2/2 1,2 36
AF121 1/1 1 28
AF128 3/3 2,3,4 31
AF130 1/1 12 28
AF141 1/1 1 51
AF150 1/1 2 61
AF160 1/1 35 63
AF162 1/1 30 53
AF168 1/1 2 84
AF170 1/1 5 43
AF186 1/1 10 20
AF192 1/1 14 18
AF202 1/1 1 26
AF204 1/1 4 29

Total 20/20 7.6 (mean) 759

Table 4.8 Results of Focus of Attention Module using Testing Data

The rankings for the regions were more spread out, ranging from 1 to 35, but with the

majority in the top 15. Selecting the top 15 regions would result in a 90% Probability of

Detection with an average 5.12 False Regions per Test Data Set image.

4.3.2 Indexing Module. After the FOA identified the initial ROIs, the Indexing

module processed the ROIs using the parameters set during System Development. Using

these threshold values, 17 of the 20 true ROIs in the Test Data Set were correctly hy-

pothesized with an average false ROI rate of 4.9 ROIs per image. Analysis of the results

indicated one region was lost due to having less than three individual microcalcifications

identified in the RO. The remaining two ROIs did not meet the Laws LER ratio thresh-

olds. A FROC analysis was done to determine if a new threshold value should be set.

Figure 4.5 shows the results of varying each parameter.

By lowering the L5E5 LER threshold to 0.0287, one of the missed ROIs can be

detected, increasing the Probability of detection from 85% to 90% on the Test Set. The
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Figure 4.5 FROC Analysis of Test Data for (a) varying L5h5 LER and (b) varying L5E5
LER

False ROI Rate for the Test Data Set increased from 4.9 to 6.47 ROIs per image using

the lower L5E5 LER threshold. To get the second missed ROI, both the L5R5 and L5E5

parameters had to be lowered which caused an unacceptable number of fhe alearms to

pass through this stage. This parameter was changed before processing te Evaluation

and Normal Data sets. Checking the effect of changing the parameter on the Training

Data Set, the PD remained at 100% while the False ROI Rate increased from 3.2 to 5.5

false ROIs per training set image.

4.3.3 Matching. The texture features were extracted for the Test Data ROIs

passed by the Indexing Module. These features were evaluated with the trained networks

from the system evaluation with the training data. Table 4.9 shows the performance of

each feature set and the corresponding number of hidden nodes in the neural network.

The Angular Second Moment Features provided little false ROI reduction while lowering

Probability of Detection. The Laws Energy Ratio features cut the false ROI rate by over

a factor of 2, while having the same Probability of Detection as the ASM features. The

Power Spectrum Analysis features had a slightly lower Probability of Detection, but had

the lowest false ROI rate.

The results from the LER and PSA features sets were analyzed to determine which

regions were missed. For the LER feature set, the microcalcification regions from images
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Feature # Hidden Probability of False ROI
Set Nodes Detection Rate

ASM 4 0.75 6.35
LER 4 0.75 2.59
PSA 7 0.70 1.82

Table 4.9 Test Data Set System Results including Matching Module

Feature Set Feature Saliency Value Selected]
L5S5 0.4793 V
L5E5 0.1759

Laws L5W5 0.7363 V
Energy S5S5 0.3445
Ratio E5L5 0.2011

E5S5 0.9610 V
R01 0.2188
R12 0.6184 _V

Power R24 0.5508 V
Spectrum R48 0.1503
Analysis R816 0.9892 V/

R1632 0.3991

Table 4.10 Ruck Saliency Values for LER and PSA Feature Sets

AF130, AF150, and AF162 were incorrectly classified. For the PSA feature set, the mi-

crocalcification regions from images AF130, AF160, AF170 and AF202 were misclassified.

Notice how only one common image was missed by both feature sets. A combination of

features from the LER and PSA feature sets were selected using the Ruck Saliency Metric

to pick the top three features from each feature set. Table 4.10 gives the saliency values for

each feature and which features were selected for use in combination. Using these features,

the system Probability of Detection Rate increased to 80% and along with the False ROI

Rate to 3.88 using a neural network with 2 hidden nodes. Using these features, the regions

in images AF130, AF150 and AF202 were correctly classified.

4.4 System Evaluation: Evaluation and Normal Data Sets

The full system with the criteria listed in Table 4.11 using the Angular Second Mo-

ment, Laws Energy Ratio, Power Spectrum Analysis and LER/PSA combination feature

sets was used to evaluate the system performance using the unseen Evaluation and Normal
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Parameter Value

Global Threshold 0.5%
Local Threshold 2.0

Number of Clusters/ROI >3
L5R5 LER >0.0083
L5E5 LER >0.0287

4 (ASM)
Hidden Nodes 4 (LER)

7 (PSA)
2 (LER/PSA)

Table 4.11 Final System Criteria Used for Evaluation/Normal Data Sets

ASM LER PSA LER/PSA
Data Features Features Features Features
Set PD FRR PD FRR PD FRR PD FRR

Evaluation 10.75 6.25 [0.75 4.58 0.81 3.67 0.75 5.75
Normal I - 4.6[ - 3.21- 1.7 - 3.3

Table 4.12 System Results on Evaluation and Normal Data Sets

Data sets. Table 4.12 lists the Probability of Detection and False ROI rates for these data

sets.

The Probability of Detection rate was fairly constant for all the feature sets. This

reflects the system should perform at approximately this level for any data set. The False

ROI Rate was slightly higher for the LER, PSA and combination feature sets. This may be

caused by the images that made up the Evaluation and Normal Data sets. These images

were digitized from slightly older films taken with a different X-Ray system than those

used in the Training and Testing Data sets. The FOA module did correctly identify 100%

of the microcalcifications in the Evaluation Data set, but the hypothesis from the Indexing

Module was incorrect for 2 regions out of the 14 radiologist identified microcalcification

clusters. These results validate the system FOA thresholds were not over tuned to the

Training and Test Data. The Matching Module incorrectly identified the remaining 1 or 2

regions for each feature set.

The system had approximately the same False ROI Rate on the Normal Data set

as with the data sets containing microcalcifications. Analysis of the results showed that

the majority of the false detections were from images AF263 and AF273. It was unknown

4-12



Image Number of Final Number of
Number Indexed Regions False ROIs Reported

214 3 2
229 5 2.5
236 4 1.5
244 1 0.5
246 2 0.5
247 3 1
263 15 9
273 15 11
275 1 0.5
286 6 3.5

Total 55 3.2

Table 4.13 Average Number of False Regions per Image Reported in Normal Data Set
for the Four Feature Sets

why these two images accounted for the majority of false detections. Table 4.13 shows the

number of False ROIs passed by the Indexing stage and the average number of false ROIs

per image reported by the system for the four different feature sets.

,4.5 Summary

The Model Based Vision Microcalcification Detection System was developed and

evaluated using 53 images with a total of 54 microcalcification regions. Three different

texture measure features were examined and Fisher Ratio analysis was applied to select

the features to be used in a neural network classifier. The best overall performance from

the individual feature sets using the Training, Testing, Evaluation and Normal data sets

was achieved with the Power Spectrum Analysis features resulting in an 83% Probability

of Detection with a False ROI Rate of 2.17 regions per image. This is a comparable

result to the published capabilities of approximately 83-85% PD with 2-5 False Regions

per image[13, 42]. The Power Spectrum Analysis features performed slightly better than

the Laws Energy Ratio features in terms of False ROI Rate. Both had the same PD of 83%.

Table 4.14 breaks out the performance of the system for each data and feature set. These

two feature sets gave better results than the Angular Second Moment features which have

been used in other research[17, 9]. By creating a combination feature set based on Ruck
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ASM LER PSA LER/PSA
Data Features Features Features Features
Set PD IFRR PD [FRR PD ]FRR PD I FRR

Training 0.94 5.21 0.94 2.36 0.94 1.64 1.00 3.07
Testing 0.75 6.35 0.75 2.59 0.70 1.82 0.80 3.88

Evaluation 0.75 6.25 0.75 4.58 0.81 3.67 0.75 5.75
Normal - 4.6 - 3.2 - 1.7 - 3.3

Overall 1 0.81 5.6 1 0.83 1 3.09 10.83 1 2.17 10.85 f 4.07

Table 4.14 Overall System Results for Each Data and Feature Set

Saliency of the LER and PSA feature sets, an overall PD of 85% with a False ROI Rate of

4.0 was achieved.
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V. Conclusions

5.1 Introduction

This chapter provides a summary of the research accomplished. The goal of this

thesis was to develop a Model Based Vision system capable of identifying regions of mi-

crocalcifications in a digitized mammogram. The system identifies regions which contain

microcalcifications, but does not classify them as malignant or benign. A number of unique

developments in the area of feature extraction and classification were presented.

5.2 Summary of Methodology

Following a Model Based Vision paradigm for computerized detection, the system

was composed of 5 separate modules. The first module, Focus of Attention, used a three

step process in identifying potential regions of interest (ROI). The digitized mammogram

was first subjected to a non-linear remapping of the gray levels to improve the contrast and

dynamic range of the microcalcifications. This image was then filtered with a Hit/Miss

filtering combination. The third and final step in the FOA module was a combination of

global and local thresholding to remove the areas not corresponding to microcalcifications.

The FOA module was modeled after work performed by Chan[27]. Implementing the

Hit/Miss/Thresholding technique on a new database confirms the potential of this method

for segmenting microcalcifications. Augmenting Chan's method with the non-linear pre-

processing allowed the thresholds to be set higher, reducing the number of false regions

from being segmented. The FOA module correctly segmented 100% of the microcalcifica-

tion regions while eliminating over 90% of the image from further processing.

The ROIs identified by the FOA module were assigned an initial hypothesis generated

by the Indexing Module. This hypothesis was a function of the number of individual

calcifications identified in the ROI and a novel texture energy measure called the Laws

Energy Ratio. The Laws Energy Ratio compared the amount of energy in the pixels

identified as part of a microcalcification in the ROI to the overall energy of the ROI which

has been filtered with the Laws masks L5E5 and L5R5. The Indexing Module correctly
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indexed 93% of the microcalcification regions with an average False ROI Rate of 7.55

regions per image over 53 images.

The ROIs assigned an initial hypothesis of being a region of microcalcifications had

a number of features extracted based on three different texture measures: Angular Second

Moment, Laws Energy Ratios and Power Spectrum Analysis. The Prediction Module used

Fisher Ratio analysis to determine the top 6 features from each feature set obtained by the

Feature Extraction Module. These features were then set to the final Matching Module.

The Matching module implemented a Multilayer Perceptron Neural Network trained

using a modified backpropagation algorithm to classify the ROIs as normal or microcal-

cification tissue. A novel application of qualitatively selecting the best feature subset for

microcalcification identification was accomplished. Ruck Saliency metrics were applied to

identify the most relevant features in the LER and PSA feature sets to create a combined

feature set resulting in an increased Probability of Detection.

5.3 Summary of Results

In the first documented comparative study of texture measures for microcalcification

detection on a single database, Power Spectrum Analysis features had the best overall

performance, identifying 83% of the microcalcification regions with an average 2.17 false

regions per image. These results were verified using an independent Evaluation Data Set

to confirm the system was not biased to the Training Data. This is comparable to other

research which has obtained an 85% detection rate with 2 false regions per image[27] and

83% with 5 false regions per image[42]. A combination of LER and PSA features based on

Ruck Saliency metrics were selected in an attempt to improve the classification accuracy.

The combination of features resulted in an overall correct classification rate of 85% with 4

false regions per image.

Although the system was not designed to classify the microcalcification regions as

malignant or benign, it is interesting to note that 89% of the malignant microcalcification

regions were correctly identified using the combination of PSA and LER features. This

reflects the system being more sensitive to the cancerous regions. A logical extension to this
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research would be to have an additional stage to classify the identified microcalcification

regions as malignant or benign.

5.4 Conclusion

This research explored the application of Model Based Vision to the detection of

microcalcifications. A number of novel techniques were explored for this research:

" The Hit/Miss filtering technique was effective in increasing the signal to noise ra-

tio of the microcalcifications sufficiently such that a global and local thresholding

combination could accurately segment those regions. Preprocessing the image im-

proved performance. Frequency analysis of the Hit/Miss filtering technique showed

consistent results with other research in wavelet based detection[21, 42].

" A novel texture feature, the Laws Energy Ratio, was effective in separating nor-

mal and abnormal tissue regions in the Indexing Module, correctly indexing 93% of

the microcalcification regions. Using the new features for classifying the region as

normal or microcalcification tissue yielded competitive results of 83% Probability of

Detection with an average 3.09 False ROIs per image on 53 images.

* In the first documented, direct comparative study of three different texture measures

for the classification of normal and microcalcification tissue, the Power Spectrum

Analysis feature set had the best overall performance with an 83% Probability of

Detection with an average 2.17 False ROIs per image.

" A neural network, trained with a modified backpropagation algorithm using a com-

bination feature set derived from a quantitative feature selection method was able

to increase the Probability of Detection, correctly identify 85% of the radiologist

identified microcalcifications with an average of 4 False ROIs per image.

This research successfully met the objective of developing a complete, end to end

Microcalcification Detection System as stated in Chapter I. The system was developed

and evaluated using independent data sets. The final performance of the system should

be a reasonable indication of system performance on any novel data set.

5-3



Appendix A. Database Information

The following tables list the images used for each data set. The locations given are
the center [row,column] locations of the microcalcification regions for a 2048 by 1024 image.
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IMAGE DIAGNOSIS REGIONS LOCATIONS

AF005 Malignant 2 [976,826],[504,665]
AF006 Malignant 3 [1194,319],[1165,363],[956,208]
AF007 Malignant 2 [603,533],[477,533]
AF008 Malignant 1 [943.416]
AF009 Malignant 1 [1410,453]
AF020 Malignant 1 [709,199]
AF022 Benign 1 [734,524]
AF024 Benign 1 [1082,654]
AF033 Malignant 1 [462,717]
AF038 Benign 1 [1154,345]
AF040 Benign 1 [1298,317]
AF045 Benign 1 [841,344]
AF047 Benign 1 [1548,607]
AF055 Malignant 1 [1313,824]

Table A.1 Training Data Set Information

IMAGE DIAGNOSIS REGIONS LOCATIONS

AF092 Benign 1 [1274,747]
AF092 Benign 1 [1514,576]
AF102 Malignant 1 [579,410]
AF119 Benign 2 [865,656],[763,675]
AF121 Benign 1 [895,448]
AF128 Malignant 3 [662,474],[698,457],[758,482]
AF130 Benign 1 [1097,372]
AF141 Benign 1 [592,588]
AF150 Benign 1 [322,71]
AF160 Malignant 1 [960,789]
AF162 Malignant 1 [1263,690]
AF168 Benign 1 [925,257]
AF170 Benign 1 [851,611]
AF186 Benign 1 [1379,117]
AF192 Malignant 1 [1033,761]
AF202 Benign 1 [1124,282]
AF204 Benign 1 [1209,318]

Table A.2 Testing Data Set Information
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IMAGE DIAGNOSIS REGIONS LOCATIONS

AF224 Malignant 2 [1453,303],[1391,339]
AF226 Malignant 1 [1325,586]
AF240 Malignant 1 [1107,90]
AF241 Malignant 2 [236,936] [364,1064]
AF259 Benign 1 [1410,453]
AF261 Benign 1 [1650,840]
AF264 Benign 1 [1621,239]
AF266 Benign 1 [1240,167]
AF267 Malignant 2 [778,552],[726,574]
AF269 Malignant 1 [1356,290]
AF282 Benign 1 [707,159]
AF284 Benign 2 [1156,114],[1184,162]

Table A.3 Evaluation Data Set Information

IMAGE DIAGNOSIS REGIONS LOCATIONS

AF214 Normal -

AF229 Normal -

AF236 Normal - -

AF244 Normal - -

AF246 Normal - -

AF247 Normal - -

AF263 Normal - -

AF273 Normal - -

AF275 Normal -

AF286 Normal -

Table A.4 Normal Data Set Information
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Appendix B. Computer Code

The following sections contain the computer code used during this research. Coding
was accomplished using multiple image processing environments including MATLAB and
programming directly in C.

B.1 MATLAB Code

The following M-files were used in the MATLAB environment. All main M-files and
any function calls are included for completeness. Each M-file will be separated by two rows
of % symbols.

%This program will take the input image file name, use the defined
%parameters and perform the

%hit/miss filtering operation and the local thresholding operation.
%The surviving rois are tested for number and size of possible

%microcalcifications. A binary mask and the x,y coordinates will
%be returned to the main program.

%FUNCTIONS CALLED DURING micro-det-sys.m:

%localthres: C-program for local thresholding
% histo: MEX file for finding a histogram of a gray level image
0 mainseg: M-file for finding minimum number of rois
% raw2viff: Khoros routine to convert file to viff type file
% vpebble: Khoros routine to find non-connected pixel groups
% and remove groups larger than or smaller than a
% specified number
% cluster: M-file to find number of non-connected pixel groups
% find-asm: M-file to extract angular second moment features
% find-ring: M-file to extract power spectrum features

@%%%%0%% 00%0%0%%%%/%//%/%/%%%%%%%%%%%%/00%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%O1O))O1O101 100%0%0%0101%%jO

function [asm-good,asm-bad,ler-good,ler-bad,psa-good,psa-bad,combo-good,
combo-bad,keep,toss]=microdetsys(file);

%define parameters

ws=64;

gthres=0.5;

lthres=2.0;

lws=51;
min-num-clusters=3;

minLRLER=0.00829;
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mm _LELER=0.0287;

%load marno

mamopath='/home/pinnal/bdata/wpafbh/';

f ilenaine= [mainopath file] ;

if str2num(file (3:5) <204

%Training and Testing Data Sets open using 1024 by 2048 size

fid~fopen(filename, 'r');

X=fread(fid, [2048 1024] ,'ushort');

fclose(fid);

%~remove tags from selected images

if sum(file='afO7)5

X(1:600,1:150)=zeros(size(X(1:600,1:150)));

elseif sum(file=='af005')==5
X(1:200,1:400)=zeros(size(X(1:200,1:400)));

elseif sum(file=='af006')==5
X(1:100,480:1024)=zeros(size(X(1:100,480:1024)));

elseif suxn(file=='af008')==5

X(100:600,800:1024)=zeros(size(X(100:600,800:1024)));

elseif sun(file='IafO2O')==5

X(1:400,750:1024)=zeros(size(X(1:400,750:1024)));

elseif sum(file=='af022')==5

X(1:200,500:1024)=zeros(size(X(1:200,500:1o24)));

elseif su(file=='af024')==5

X(1:400,800:1024)=zeros(size(X(1:400,800:1024)));

elseif sum(file=='af038')==5

X(50:300,750: 1024)=zeros(size(X(50:300,750: 1024)));

elseif sum(file=='af092')==5
X(1:150,700:1024)=zeros(size(X(1:150,700:1024)));
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elseif siu(file=='af12I')==5

X(100:225,300:425)=zeros(size(X(100:225,300:425)));

else

X=X;

end;

else;

%Evaluation and Normal Data Sets open using 1124 by 2048 size

fid=fopen(filename, 'r');

X=fread(fid, [2048 1124], 'ushort');

f close (f id);

%remove tags from selected images and crop images

if sux(file='af224'>==5
X(100:400,700:1124)=zeros(size(X(100:400,700:1124)));

X=X(: ,1:1024);

elseif suni(file=='af240')==5

X(1:100,500:1124)=zeros(size(X(1:100,500:1124)));

X=X(: ,1:1024);

elseif suxn(file=='af259')==5

X(1:200,1:700)=zeros(size(X(1:200,1:700)));

X=X(: ,101:1124);

elseif sux(file=='af284D)==5

X(200:600,900: 1124)=zeros(size(X(200:600,900:1124)));

X=X(: ,1:1024);

elseif (sum(file=='af226')==5 I sum(file=='af241')==5
suin(file=='af261')==5 I suxn(file=='af267')==5

suxn(file=='af 269')=5)

X=X(: ,101:1124);

elseif suxn(file=='af2l4')==5
X(1:250,550:1000)=zeros(size(X(1:250,550:1000)));

X=X(: ,1:1024);

elseif sum(file=='af273')==5

X(1:100,1:600)=zeros(size(X(1:100,1:600)));

X=X(: ,101:1124);
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elseif sum(file=='af286')==5

X(1: 200,800 :1124)=zeros (size(X(1: 200,800 :1124)));

X=X(: ,1:1024);

elseif (su(file=='af247')==5 I sux(file'af263')==5
sum(file'af275)5)

X=X(: ,101:1124);

else

X=X(: ,1:1024);
end;

end;

%~write out for local thresholding USE ONLY THE ORIGINAL IMAGE

fid=fopen('local..thres-img' ,wb;

fwrite(fid,X, 'ushort');

fclose(fid);

param=-[lthres lwsJ;

fid=fopen('local-param' ,wb;

fwrite(fid,paran, float');

fclose(fid);

%%YFOCUS OF ATTENTION

%Call local thresholding program

local-.thres;

%perform the sigmoid adjustment

B = .003;

xO = 3100;

Y = 4000./(1 + exp(-B*(X - x))

Y = .0S*X + Y;

Y=round(Y);

clear X B xO;

%perform hit/miss filtering/thresholding
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load hmtfilter;

hmconv2(Y,intfilter, 'same');

clear Y hiutfilter param lthres lws sig;

off set=min(min(hn));

hm=hm-off set;

clear offset;

%find top pixels to keep %%

high = max(max(hm));

low = min(min(hm));

[num-pix,gll = histo(hin,high,low,1);

total=suin(num-pix);

limit=total*(1-gthres/i00);

sum..pix=0;

for gt-level=1 :4096;

suimpix=sun...pix + numn.pix(gt-level);

if suinpix>=limit;

break;

end;
end;

hintmask=hm>=gt-level;

clear gt-level sum-pix nuxn-pix total limit high low gl bin;

%load local thresholding mask

fid=fopen('local-mask' ,Ir

ltmask=fread(fid, [2048 1024] ,'float');

fclose(fid);

%logically AND the hxntmask and ltmask

IMG=hintmask&ltmask;

clear ltmask;

%write out bintmask for pixel reduction by Khoros
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fid=fopen('hmtmask' ,'wb');

fwrite(fid,hmtmask, 'uintl');

fclose(fid);

clear hxntmask;

.raw2viff -j hmtmask -o vfilel -r 1024 -c 2048 -t bit

!vpebble -i vfilel -o hmtmaskr -val 1 -min 4 -max 45

IMG=IMG';

roi..size=ws;

main-seg;

clear 1MG;

%read in reduced mask with clusters >3 pixels and <45 pixels

fid=fopen('hmtmaskr' ,'r');
headfread(fid,1024, 'char');

IMG=fread(fid, [2048 10241 ,'uintl');

fclose(fid);

U.create the 25 laws matrices

L5=[l 4 6 4 11; U% local average

S5=[-l 0 2 0 -1]; U.7 spot detector

R5=[1 -4 6 -4 1]; %%.7 edge detector
E5=[-1 -2 0 2 1]; %%7 ripple detector

W5=[-l 2 0 -2 1]; U. wave detector

L5L5=L5'*L5;

L5S5=L5 '*S5;

L5R5=L5'*R5;

L5E5=L5'*E5;

L5W5=L5'*W5;

S5L5=S5'*L5;

S5S5=S5'*S5;

S5R5=S5'*R5;

S5E5=S5'*E5;

S5W5=S5'*W5;

R5L5=R5'*L5;
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R5S5=R5' *S5;

R5R5=R5' *R5;

R5E5=R5'*E5;

R5W5=R5 '*W5;

E5L5=E5'*L5;

E5S5=E5'*S5;

E5R5=E5'*R5;

E5E5=E5'*E5;

ESW5=E5'*W5;

W5L5=W5'*L5;

WSS5=W5'*S5;

W5R5=W5'*R5;

W5E5=W5'*E5;

W5W5=W5 '*W5;

mask= [
'L5L5'

'L5S5'

'L5R5'

'L5E5'

'L5W5'

'S5LS'

'S5S5'

'S5R5'

'S5E5'

'S5W5'

'R5L5'

'R5S5'

'R5R5'

'R5E5'

R5W5'

'E5L5'

'E5S5'

'E5R5'

'E5E5'

'E5W5'

'WELS'

'W5S5'

'W5R5'

'W5E5'

IW5W5'
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index-mask= [
'L5R5'

'LSE5'

1;

%~list of FOA roi center coordinates

xcout2(: ,2);

yc'out2(: ,1);

xct=xc-ws/2;

xcb=xc+ws/2;

ycl=yc-ws/2;

ycr=yc+ws/2;

%open orginal image again

fid=fopen(filename, 'r');

Xfread(fid, [2048 10241, 'ushort');

fclose(fid);

%~index rois and get features for surviving rois

num-rois~outl;

%start checking each roi for indexing,
% feature extraction and matching

for i=l:nunn.rois;

%check roi for extraction

if xc(i)>32 I yc(i)>32;

oroi=X(xct(i) :xcb(i) ,ycl(i) :ycr(i)); %original image roi

mroi=IMG(xct(i):xcb(i),ycl(i):ycr(i)); %~mask image roi

else

break;7.roi center too close to edge of image

end;

if suni(sum(mroi))==0;

break;%do not process rois with out a cluster

end;
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%%INDEXING%%Y

%~get cluster information

[num.cls,EN,D,cnts,csizel=cluster(mroi);

%get laws info for indexing

%make rois 64x64 for laws and f ft processing

orois=oroi(1:64,1:64);

mrois=mroi(1 :64,1:64);

%using ogrinal image

for j=l:size(index-.mask,1);

eval(['xconv2(orois,' index..mask(j,:) ',"'valid"');']);

total=suin(sum(x));

region=suxn(sum(x.*mrois(3:62,3:62)));

index-laws (j )=region/total;

end;

if (numcls>-minnumclusters & indexijaws (l)>=minLR_LER

& index-laws(2)>=min-LE-LER);

%%%. POSSIBLE MICROCALCIFICATION ROI %%%%%%%/.Y

%%%OYFEATURE EXTRACTION%%%%.

%get laws ratios
%using ogrinal image

for j=1:size(mask,1);

eval(['x=conv2(orois,' mask(j,:) '"''valid"');']);

total=sum(sun(x));

region=sum(sum(x.*mrois(3:62,3:62)));

ler-feature (j )=region/total;

end;
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%get asm features for [0,0] to [4,4]

asm-feature=findasm(oroi ,4);

%get psa features

psa-feature=findring(orois);

%~single feature vector containing all features

features=[str2nun(file(3:5)) xc(i) yc(i) nurn-cis

ler-feature asm-feature psa..feature];

%running total of all features for indexed rois

keep=[keep; str2num(file(3:5)) xc(i) yc(i) num-cls

ler-feature asm-feature psa-feature];

%%.%MATCHING WITH NEURAL NETWORK%%%%

%%%USING ASM FEATURES%%%
ASM=[l features(: ,30) features(: ,36) features(: ,42)
features(:,48) features(:,51) features(:,54)];
data=ASM;
load asmweights %%7 4 middle nodes

train-data=iim-data-train;

Wlwl.4;
W2w24;

ave~mean(train-data(: ,2:I+1));

average=ones(n,l) * aye;

sigma=ones(n,l) * dev;

data(:,2:I+1)=(data(:,2:I+1)-average)./sigma;

data=data';

zi1 . (I + exp(-W1 * [data(2:I+1,1);11));

z2 1 1 (1 +i exp(-W2 * [zi; 1]));

if z2>=0.2647

asmguess 1
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else
asmguess = 0;

end;

if asmguessl

asm-good=[asmgood;features(2 :3)];

else

asm..bad=[asm-bad;features (2:3)];

MYUSING LER FEATURES%%%7

LER=[l features(: ,6) features(: ,8:9)

features(:,11) features(:,20:21)1;

data=LER;

load lerweights UI 4 middle nodes

train-data=nn-data-train;

Wl=wl-4;
W2=w2-.4;

avemean(train~data(: ,2:I+1));

dev=std(train-data(: ,2:I+1));

averageones(n,1) * aye;

sigmaones(n,l) * dev;

data(:,2:I+1)=(data(:,2:I+1)-average)./sigma;

datadata';

z1 = 1 .1(1 + exp(-Wl * [data(2:I+1,1);l]));

z2 = 1I. (I + exp(-W2 * [zi; 1]));

if z2>=0.1741

lerguess = 1;
else

lerguess = 0;

end;

if lerguess=

ler..good=[lergood; features (2:3)1;

else

ler~bad= [lerbad; features (2:3)];

M./USING PSA FEATURES%%%
PSA=[l features(: ,55:60)];

data=PSA;
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load psaweights %%7 7 middle nodes

Wl=wl_7;

W2=w2-7;

train-data=nndata-train;

ave=mean(train-data(: ,2:I+1));

dev=std(train_data(: ,2:I+1));

averageones(n,l) * aye;

sigmaones(n,1) * dev;

data(:,2:I+1)=(data(:,2:I+1>-average)./sigma;

data=data';

z1 = 1I. (1 + exp(-Wl * [data(2:I+1,1);11));

z2 1 I1 (1 + exp(-W2 * [zi; 1]));

if z2>=0.4071

psaguess = 1;

else

psaguess = 0;
end;

if psaguess=

psa-good=Epsa-good;features(2 :3)];

else

psa-.bad=[psa-bad; features (2:3)];

%%%USING LER/PSA FEATURES%%%.

combo=[l features(: ,6) features(: ,9) features(: ,21)

features(:,56:57) features(:,59)];

data=combo

load comboweights %%7 2 middle nodes

Wl=wl-2;

W2=w2-.2;

train-.datann-data-train;

ave=mean(traindata(: ,2:I+1));

dev=std(train.Aata(: ,2:I+1));

average=ones(n,1) * aye;
sigmaones(n,l) * dev;
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data(:,2:I+1)=(data(:,2:I+1)-average)./sigma;

datadata';

zi1 1 (1 + exp(-W1 * [data(2:I+1,1);1]));

z2 = 1 .1(1 + exp(-W2 * [zi; 11));

if z2>=0.2156

comboguess = 1;

else
comboguess = 0;

end;

if asmguessl

combo..good= [combo-good; features (2:3)1;

else

combo-bad=[combo-bad;features(2:3)1;

else;

%%%OYNOT INDEXED MICROCALCIFICATION REGION%%%

%%~keep x,y coord and indexing features for error analysis

toss=[toss;str2nun(file(3:5)) xc(i) yc(i)

nuin-cls index-laws(l) index-laws(2)];

end;

end;

%programn complete

% main-seg.m

7%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Program main.seg.m that executes the segmentation functions for a
% 1024 by 2048 hit and miss threshholded mammogram.

% Original by Dru McCandles; Modified by Ron Dauk

7 The requirements to run this program are:

% 1: A 1024x2048 matrix called IMG exists in memory

% The program parameters are:

% top-margin uncertainty edge distance from top/bottom of IMG
% size-margin uncertainty edge distance from sides of IMG
% min-energy minimum "energy" required for ROI to be
% considered relevant after first pass
% thresh minimum energy to survive the second pass
% box-row # rows in the sliding window (size in rows)
% box-col # cols in the sliding window (size in cols)
% -NOTE: the (image size - margin) / box size

% must be an integer

% Initial Threshhold

*mm = mean(IMG(:));

%sd = std(IMG(:));

hit = 1; % normally 7*sd;

%IMG(1:20,:) = zeros(20,2028);
%MASK = IMG > hi-t;

%IMG = IMG.*MASK;

%clear MASK

%figure(1)

%image(IMG)

% Parameter Definitions
%%7%%%%%777777777777770%7%70/7%77%00/0%0/0/0/%%%%%%%%%%%%%0////0000% %0/0000

top-margin 0;

side-margin = 0;
%min-energy = 600; % usually = 600
%thresh = 1400; % usually = 1400

box-row = roi-size;
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box-col = roi-size;

%%%e%%e%%%%%%%%%%%%o%%% oo%%%e%%%%%o.... %%%%ooo %%%o...%%%%%%%o@

% BEGIN PROGRAM
OO@OOOOOOOOOOO 0 0 @00@ 0 0 @0000 0 000000 0 00000 0 SSO O/O/O/O//0/@/O/O/O

% Compute the "Energy" matrix E

E = slider(IMG,top-margin, side-margin,box..xow,box-col);

%. Keep only those regions which have at least the minimum energy

min-energy = 1; % normally .7*mean(E(:));

[1,J] = find(E > min-energy);
I-mid = (I-1)*box-row+top-margin+(box-row/2);

J -mid =(J-1)*box-col+side-margin+(box-col/2);

% Perform the centroid migration

[G,EN] SEG(IMG, I, J,top-margin, side-margin,min-.energy,box-row,box-col);

thresh = 1; %h normally 4*min-energy;

[I..final ,J-final ,Efinal] = reducer(G ,EN,thresh);

for i = 1:length(I-final)
if (Ijfinal(i)<(box-row/2) II-.final(i)>(1020 - (box..row/2)))
E-final(i) = 0;
elseif (Jjfinal(i)<(box-col/2) IJ-final(i)>(2028 -(box-.col/2)))

Ejfinal(i) = 0;

end

end

F = find(E-final);

for i = 1:length(F);

I..clear(i) = I.final(F(i));

J..clear(i) = J.final(F(i));

E..clear(i) = E..final(F(i));

end

Em, outl1]=size (E..clear);

Lrank,index] sort (E-clear');
rank=flipud(rank);

index=flipud(index);

out2=zeros (out1, 2);
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for i=l:outl;
out2(i,1)=Iclear(index(i));

out2(i,2)=J_clear(index(i));

end;

clear I-clear J-clear E-clear index rank Ifinal J-final
clear E-final top-margin side-margin box-row box-col hi-t F I

clear J I-mid J-mid E EN G min-energy

function E = slider(IMG,top-margin,side-margin,nrow,ncol);

% function E = slider(IMG,top-margin,side-margin,nrow,ncol);

% function that returns the matrix E of the sum of the abs of the pixel

% values in IMG, where IMG is a 1020x2028 reconstructed wavelet image

% of a mammogram. Each entry in E is the 'energy' of
% a nrow by ncol size piece of IMG, with a 1-to-1 correspondance

% between the location of E(i,j) and

% the location of the 99x100 piece of IMG for which it was computed.

% To determine where E(i,j) came from, find:

% row-start = (i-1)*nrow + top-margin + I

% col-start = (j-1)*ncol + side-margin + 1

% The roi is located at
% (row-start:row-start+nrow-l,colstart:col-start+ncol-1)

% The energy is computed by sliding a non-overlapping

% nrowxncol box over IMG

[nr,nc] = size(IMG); % This should be 1020 x 2028 !!
rboxes = (nr - 2*top-margin)/nrow;

cboxes = (nc - 2*side-margin)/ncol;

for x = 1:cboxes

for y = 1:rboxes
rowindex = top-margin + ((y-1)*nrow) + 1;

col-index = side-margin + ((x-1)*ncol) + 1;

ROI = IMG(row-index:(row_index+nrow-1),col-index:(col_index+ncol-1));

E(y,x) = sum(sum(abs(ROI)));

end
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end

%function [G,EN]=SEG(IMG,I,J,topmargin,sidemargin,minenergy,srow,scol);

tol = 3;

[Sr,Scl = size(IMG);

L =length(I);

for i = 1:L

row-index = top-margin + ((I(i)-1)*srow) + 1;

col-index = side-margin +I ((J(i)-l)*scol) + 1;
ROI=IMG(row-index: (row-index+srow-1) ,col-index: (col-index+scol-1));

C =centroid(abs(ROI));

% recompute the new ROI

nri = 0(1) + row-index - (srow/2) + 1;
if nri < (top-margin + 1)

nri =top-margin + 1;

end
nrif =C(l) + row-index + (srow/2);

if nrif > (Sr - top-margin)

nrif =Sr - top-margin;

end

nci =C(2) + col-index - (scolI2) + 1;

if nci < (side-.margin + 1)
nci =side-margin + 1;

end
ncif =C(2) + col-.index + (scolI2);
if ncif > (Sc - side-.margin)

ncif =(Sc - side-margin);

end

ROI =IMG(nri:nrif,nci:ncif);

OCX =[C(1)+row-index C(2)+col-indexl;

row-index = nri;

col-index = nci;

C =centroid(abs(ROI));
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NCX =[C(1)+nri C(2)+ncil;

d = sqrt((OCX - NCX)*(OCX - NCX)');

EN(i) = suin(sum(abs(ROI));

n = 1;

while d > tol

nri = C(1) + row index - (srow/2) + 1;

if nri < (top-margin + 1)

nri =top-margin + 1;

end

nrif =C(1 + row-index + (srow/2);

if nrif > (Sr - topjnargin)

nrif =Sr - top-margin;

end

nci =C(2) + colindex - (scolI2) + 1;

if nci < (sidemargin + 1)

nci =side-margin + 1;

end

ncif =C(2) + col-index + (scol/2);

if ncif > (Sc - side-.margin)

ncif =(Sc - side-..margin);

end

ROI =IMG(nri:nrif,nci:ncif);

EN(i) = sum(sum(abs(ROI));

if EN(i) < min-.energy

d = 0;

end

OCX = [C(1)+row-index C(2)+col-index];

row-index = nri;

col-index = nci;
C = centroid(abs(ROI));

NCX = [C(1)+nri C(2)+nci];

d =sqrt((OCX - NCX)*(OCX - NOX)');

n =n + 1;

end

new-I(i) = 0(1 + nri;

new..j(i) = C(2) + nci;

end

G = [newlI' new-J'1;

function [I-final,J-final,E-final] = reducer(G,EN,thresh)

% program reducer.m that removes duplicate rois
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%(i.e., rois that have centers that are within 20 pixels of each other)

- it keeps the roi with the highest energy.

% The row,col components are in a L by 2 matrix G, and the Energy is in
a L by 1 vector EN

L = length(EN);

wun = ones(L,1);

for i = 1:L
tmp = wun*G(i,:);

A = G - tmp;

D = sqrt(diag(A*A'));

DIST = [DIST D];

DIST(i,i) = 1000;

end

[II,JJ] = find(DIST < 30);

for i = 1:length(II);

if EN(II(i)) > EN(JJ(i))

EN(JJ(i)) = 0;
else

EN(II(i)) = 0;
end

end

for i = 1:L
if EN(i) > 99999500 % usually 9500

EN(i) = 0;
end

end

F = find(EN > thresh);

for i = 1:length(F);
I.final(i) = G(F(i),I);

Jfinal(i) = G(F(i),2);

E.final(i) = EN(F(i));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function C = centroid(ROI);
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% function C = centroid(ROI);

% This function computes a weighted centroid C = [rc cc] of the matrix ROI

[I,J,VI = find(ROI);
S = sum(V);
rc = sum(I.*V)/S;

cc = sum(J.*V)/S;
C = [round(rc) round(cc)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [num,E,D,M,csize] = cluster(IMG);

% function [num,E,D,M,csizel = cluster(IMG);
7

% This function takes in an image IMG and determines the number of unique

% clusters (num), the abs energy of each cluster (E), the distance of the
% center of each cluster from the centroid (D), and the center coordinate

% of each cluster (M).
7

% The function works using a two-pass loop: The first pass groups all
% pixels that are left-right of each other together first, and then

% top-bottom second by assigning each pixel a cluster number C(i).
% The second pass then groups all of the 'sub-clusters' together that

% are top-bottom connected by reassigning all the cluster numbers from one

% to match the other.

[I,J,V] = find(abs(IMG));
1 = length(I);

% first pass - assign same row clusters

C(1) = 1;

cmax = 1;

cind = cmax;
for i = 2:1

newcol = J(i) - J(i-1);

if new-col == 0

t = find((I == I(i)) & (J == (J(i) - 1)));

if t == []
if I(i) == (I(i-1) + 1)
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C(i) = cind;

else

cmax = cmax + 1;

cind = cmax;

C(i) = cind;

end

else

cind = C(t);

C(i) = cind;

end

elseif new-col == 1

t = find((I == I(i)) & (J == (J(i) - 1)));

if t == [I

cmax = cmax + 1;

cind = cmax;

C(i) = cind;

else

cind = C(t);

C(i) = cind;

end

else

cmax = cmax + 1;

cind = cmax;

C(i) = cind;

end

end

% second pass - assign same column clusters

for i = 2:1

if (J(i) == J(i-1)) & (I(i) == I(i-l)+)

if C(i) C(i-1)
t C(i-);
T = find(C == t);

q = length(T);

for k = 1:q

C(T(k)) = C(i);

end
end

end

end

CENT = centroid(IMG);

% determine the number of unique clusters, size, energy & distance
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num = 0;
for i = 1:cmax
T = find(C ==i);

if T -= [I

num = num+ 1;

s = length(T);

csize(num) = s;

e = 0;

rowsum = 0;
colsum = 0;

for k = 1:s
e = e + V(T(k));

rowsum = rowsum + V(T(k))*I(T(k));
colsum = colsum + V(T(k))*J(T(k));

end

E(num) = e;

rowm= rowsum/e;

colm = colsum/e;

Mn = [rowm colm];

M(num,1:2) = Mn;

D(num) = sqrt((Mn - CENT)*(Mn - CENT)');

end

end

%single hidden layer, sigmoid activation function, single output

%neural net
% TRAINING IN BATCH MODE
%[err_co,err-cl,W1,W2]=seltrn(data,HL,maxepochs,lr,clamp,type);

%INPUT:

%data: 1st col class, remaining cols features, # of row=# of samples

% HL: number of desired hidden nodes
%maxepochs: maximum number of epochs to train

% ir: learning rate
% clamp: clamp output > 1-clamp to 1-clamp or <clamp to clamp

% type: select backprop method: 0 normal, 1 imbalanced

%OUTPUT:
% err-cO: error for class 0 for each epoch
% errcl: error for class 1 for each epoch
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% Wl: final weights for input to hidden layer
% W2: final weights for hidden layer to output node

MTis program will train a neural net for an imbalanced training set

%with two classes with a selectable number of hidden nodes and a

%single output node.

function

[err-cO,err-cl,WI,W2,dzdxlseltrn(data,HL,maxepochs,lr,clamp,type)

MYrand seed value

rand('seed' ,suin(100*clock));

[n, I] size (data);

I=I1;

%normalize data

ave=mean(data(: ,2:I+1));

dev=std(data(: ,2:I+I));

average=ones(n,i) * aye;

sigmaones(n,l) * dev;

data(:,2:I+1)=(data(:,2:I+I)-average)./sigma;

data=data';

%initialize weights in the net

Wl=rand(HL,I+1)-O.5; /.IHL by I+11

W2=rand(l,HL+1)-O.5; %.[1 by HL+1]

err-.cO=[];

err-cl=[];

epoch=O;

while epoch<maxepochs

U.nitialize variables
mseO=[];

mse1=E];

index=randperm(n);

countQ=1;
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count1=1;
zl..c0[]

zlc 1= [
z2...cQ=[

X-cO= [I
X..c1= 0
n00; -
n10O;

for i=1:n;

%desired output

d(i)=data(1,index(i));

%~feature vector with bias(I+. by n)
X(:,i)=[data(2:I+1,index(i)); 11;

%compute activation fuctions

%hidden layer (HL by n)
zl(:,i)=1./(1+exp(-W1 *(,))

%~output layer (1 by n)
z2(i,i)=1./(1+exp(-W2 *[zl(: ,i) ;i1));

%clamnp output values

if z2(I,i)>(1-clamp);

z2(1 ,i)=1-clamp;

elseif z2(1,i)<clamp;

z2(1,i)=clanp;

else;

z2(I,i)=z2(1,i);

end;

%~divide input, hidden and output layer results by class
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if d(i)==I;
X-ciX.ci X(: ,i)];
zl-ci=[zl-cl zi(: ,i)];
z2.cl=[z2-c1 z2(l,i)];

nl=nl+l;

else;

X-c0=[X.cO X(:,i)1;
zl-cO=[Zl-cO zl(: ,i)];

z2..cO=[z2..cO z2(l,i)];

nO=nO+1;

end;

end; %%.all train samples through the net

%find first derivative of hidden and output layers

%derivative of hidden layer(HL by no)
dzl-cO=zl-cO.*(l-zlicO);

%derivative of output layer (1 by nO)
dz2-cO=z2-cO.*(l-z2-cO);

%derivative of hidden layer(HL by n1)
dzI..c1=zI-ci. *(1-z1-ci)

%derivative of output layer(i by n1)
dz2-.cI=z2-cl *(i-z2-ci);

dout-cO=dz2-c0 .* (clainp-z2_cO); M1i by nO)
temp-cO=W21 * dout-..cO; Y.(HL+i by nO)
dhl-cO = dzi-cO .*temp-cO(i:HL,:); %(HL by nO)

dout..ci=dz2-ci . (i-clamp-z2-ci); %.(1 by ni)
temp..ciW2' * dout..ci; %(HL+i by ni)
dhl-cl = dzi-ci .* temp-cl(I:HL,:); Y.(HL by nI)

%calculate gradients for each class

GEWi-cO=dhl-cO * X-cO';
GEW2_cO=dout-cO * [z1.cO;ones(i,nO)]';

GE-.Wi-c=dhl-ci * Xcl
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GEW2_cl=dout.cl * [z1-cl;ones(1,nI)1';

%update the weights

if type==O;

%~regular backprop GE=GE-cO + GE-cl

WI = WI + lr*(GEWicO + GE.WI-ci); %(HL by I+1)

W2 = W2 + lr*(GEjJ2_cO + GE..W2-ci); %(I by HL+1)

else;

%imbalanced training set

%find unit vectors f or each gradient

unit-GE-WicO=GEWicO/sqrt(sum(sum(GE-WlcO. -2)));

unitGEW..ci=GE.Wi-c/sqrt(sum(su(GEWi-l.-2)));

unit-GEW2-O=GEW2cO/sqrt(sum(GEW2.c0. 2));
unit-GE-W2-c=GE-2ci/sqrt(sum(GE-2-c.^2));

%set direction to the bisecting angle between the class GE vectors

angGEWl=(unit.GE_Wi_cO + unit-G-Wl-c)/2;
angGEW2= (unitGE.W2-cO + unit-GE-W2-c )/2;

%calculate magnitude of GE vectors

mag-GE-Wi=sqrt(sum(sum((GEWi-cO + GEWi-ci).-2)));
mag-GE-W2=sqrt(sun((GE-W2_cO + GEW2c).2));

%create new GE vectors

GE-Wi=mag-GE.WI*ang-GE.W1;

GE-W2=mag-GEW2*ang-GE-W2;

%update weights with new backprop

Wi=Wl-Ilr*GEWi;
W2=W2+lr*GE-W2;

end;

%calculate the mse for each class
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for i=l:n
if d(i)==O;
mseO(countO)=(clamp-z2(i) ) 2;
countO=countO+1;

else;

count 1=count 1+1;

end;

end;

%%7 compute epoch error for each class

epoch-err-cO=mean(mseo);

epoch-.err...cl=mean(mse 1);

err-cO=[err-cO epoch-err-cO];

err.cl=[errcl epoch-.err..cil;

epoch=epoch+l;

end;

% Ruck Feature Saliency

dzdx=zeros(1,I);

for i=1:n

z1 = 1 .1(1 + exp(-W1 * (,);

z2 = 1I. (1 + exp(-W2 * [zi; 1]));
fprimel zI . (1-zi);

fprime2 z2 .*(1-z2);

7.dzdx contains each feature's saliency for all training samples

dzdxl=abs((Wl(: ,l:I) '*(((W2(: ,1:HL) '*fprime2) .*fprimel)))');

dzdxdzdx + dzdxl;

end % (for i=1:n)

dzdx=dzdx/max (dzdx);

dzdx
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B.2 C Code

This section contains the C code developed to accomplish the local thresholding. The
program requires a 1024 by 2048, unsigned short integer data type, binary image file named
"local-thres-img" be available in the current directory. A parameter file with the threshold
and local window sizes must be in a file named "local-param" saved as floating point data
type. The program will then test every pixel in the image to determine if it is greater
than the mean plus the threshold times the standard deviation of the pixels surrounding
the test pixel. The size of the region is defined by the local window size parameter. The
system will output a binary image with ones where the pixel met the criteria and zeros
where it did not. This file is written to disk with the name "local-mask" and saved as a
floating point data type.

This code can be compiled using the following at the command line on a Unix plat-
form. cc -o output.exe locaLthres.c -im

#include <stdio.h>
#include <math.h>

#include <stdlib.h>

#define max-rows 1024

#define max-cols 2048

float mamo[max.rows] [max-cols];

float new-mask[max-rows] [max-cols];
unsigned short bufin[max-rows*maxcols];

float bufout [max-rows*max-cols];

char header [1024];

main()

{
FILE *ifp,*ofp;
int nread,nitems=2,count=O,m,k;

float oldsum,oldsumofsqr, sum, sumofsquares;

float mean,std,low-t,win-size,param[2] ,temp;
int row,col,ws;

/* Read in Mammogram */

ifp = fopen("local-thres-img","r");
nread = fread(bufin, sizeof(unsigned short), maxrows*max-cols, ifp);

fclose(ifp);
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for (row=0 ;row<max-rows ;row++)

for (co=O; col<max-cols; col+i)

mamo [row] [coi]= (float) bufin[row*max-cois+col];

/* Read in Values for parameters*/

ifp = fopen("local.param" ,"r

nread = fread(paran, sizeof(fioat), nitems, ifp);

fclose(ifp);

low-t=param[0];

win-size=param[1];

ws = (int) win-size;

/* Fill outer edge of mask with zeros

f or (row=0;row<((ws-1)/2) ;row++)
for (col=0; col<maxcols; col++)

new-mask [row] [coil =0.0;

for (rowmax-rows- ((ws-l)/2) ;row<max-rows ;row++)
for (col=0; col<max-cols; col++)

new-mask [row] [coil =0.0;

for (row=((ws-l)/2) ;row<max-rows-((ws-1)/2) ;row++)

for (col=0;col<((ws-l)/2) ;col++)

new-mask [row] [col] =0.0;

for (row=((ws-l)/2) ;row<max-rows-((ws-1)/2) ;row++)

for (col=max-cols-((ws-1)/2) ;col<max-cols;col++)

new-mask [row] [col] =0.0;

/* test first pixel *

sum = 0.0;

suinofsquares = 0.0;

for (row=0; row<ws; row++)

for (col=0; col<ws; col++)

sum = sum + mamo [row] [col];
sumofsquares=sumofsquares+mamo [row] [col *mamo [row] [col];

oldsum = sum;

oldsumofsqr = sumof squares;
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m = (ws-1)/2;

mean = sum/(win-size*win-size);

temp=(sumofsquares-((sun*sum)/(win-size*win-size)))/(win~size*winsize-1);

if (temp<=1.0)

std=temp;

else

std= (float) sqrt( (double) temp);

if (maino[m] [ml >mean+low-t*std && mean>1200.0)

new-nask [ml [ml =1 .0;

else

new-mask [ml [m]0.0;

/* test all other pixels *

f or (row=m; row<max-.rows-m; row++)

for (colm+1; col<max-cols-m; col++)

for (k=-m; k<m+1; k++)

sum =sum - mamo[row+k] [col-m-1] + mamo[row+k] [col+m];
sumofsquares=sumofsquares-mamo [row+k] [col-m-iJ *mamo [row+k] [col-m-1]

+ mano [row+k] [col+m] *mano [row+k] [col+m];

mean = suxn/(win..size*win..size);

temp=(sumofsquares-((sum*sum)/(winsize*win-size)))/(win.size*win.size-1);

if (temp<=1.0)
std=temp;

else

std= (float) sqrt( (double) temp);

if (mamo [row] [col]>mean+low-t*std && mean>1200.0)

new-mask [row] [col] =1 .0;

else

new-mask [row] [col] =0.0;

sum = oldsum; /* update sum and sumof squares. *
sumof squares = oldsumofsqr;

for (k=-m; k<m+l; k++)

sum = sum - mamo [row-mi [m+k] + mano [row+m+1] [m+k];
sumofsquares = sumofsquares - mamo [row-n][m+k] *mamo [row-mi [m+k]
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+ mano [row+m+1] [m+k] *mano [row+m+1] [m+k];

oldsum = sum; /* update oldsun and OldSumOfSqr *
oldsumofsqr =sumof squares;

/* calculate statdiff for 1st nonzero

/* output pixel in next row *

mean = sum/(win-.size*win_size);

temp=(sumofsquares-((sum*sum)/(win.size*win-.size)))/(win-size*win-size-1);

if (temp<=1.0)

std=temp;

else

std= (float) sqrt( (double) temp);

if (mamo[row] [col]>mean+low.t*std && mean>1200.0)

new-.mask [row] [col] =1 .0;

else

new-mask [row] [col] =0.0;

I

/* Output mask of potential regions *

f or (row0 ; row<max-rows ;rowI+)

for (col=O; col<max-cols; col++)

buf out [row*max-cols+col] =new-mask [row] [col];

ofp=fopen("local-mask" ,"w

nread=fwrite (buf out, sizeof (float) ,max-rows*max-cols ,ofp);

fclose(ofp);

printf("mask completed, \n");
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