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AFIT/GE/ENG/95D-19

Abstract

An extended Kalman filter (EKF) is used to combine the information obtained
from a Global Positioning System (GPS) receiver and an Inertial Navigation Sys-
tem (INS) to provide a navigation solution. This research compares the results of
a tightly-coupled GPS/INS integrated system with a loosely-coupled integrated sys-
tem, using real world data. A fair comparison is accomplished by using the same
sets of data, and keeping the integration structures as close as possible. Both inte-
grations are feedforward and have the same error states in the navigation Kalman
filters. Differences between the two, such as navigation solutions and tuning values,

are shown in the research.
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A COMPARISON OF LOOSE AND TIGHT GPS/INS
INTEGRATION USING REAL INS AND GPS DATA

1. Introduction

Currently within the United States Air Force (USAF) arsenal, multiple naviga-
tion tools exist to help the pilot navigate his plane. There are the inertial navigation
system (INS) and the Global Positioning System (GPS) to name just two. His-
torically, navigation tools have evolved from dedicated, single function, mechanical
sensor systems to sensor systems which have become quite sophisticated in their
function and accuracy. The earlier sensors have been developed, refined, and added
to the aircraft as stand-alone devices which provided crew members the increased
ability to perform their mission more effectively. In more recently developed sensors,
functional outputs from other sensors are added to enhance their performance. An
example of this would be the integration of the INS and the GPS. This research will
focus on two methods of integrating the inertial navigation system and the Global

Positioning System.

The goal of this thesis is to compare a loosely-coupled GPS/INS integration
with a tightly-coupled integration. The loosely-coupled configuration is based on
the current USAF F-16 fighter aircraft GPS/INS integration. This thesis also builds
on the natural progression in the study of integrated navigation systems at the Air
Force Institute of Technology (AFIT) [6,8,10,20,29]. Most AFIT research in this
field has been done with computer simulations; only a few have used actual data from
hardware [6,10]. This research uses actual data from hardware in a stationary, post-
processing environment. The equipment used is a Litton LN-93 inertial navigation

system [11] and a Navstar XR5-M6 GPS receiver citenavstar. The sponsor for this
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research is the Avionics Directorate of the Wright Laboratory, Wright-Patterson
AFB, OH.

1.1 Background

This section provides the background necessary to understand this thesis. It
begins with the progression of the research accomplished at AFIT. It then presents
the elementary components necessary for the proposed GPS/INS integration study.

This section ends with an explanation of GPS/INS integration.

1.1.1 AFIT Research Progression.  The integration of navigation systems
and the Global Positioning System improves navigation accuracy beyond what is
attainable by either alone. Simulations at AFIT and the Avionics Directorate of
the Wright Laboratory, Wright-Patterson AFB have shown just that. These simula-
tions included combining GPS and an inertial navigation system in tightly-coupled
configurations with various reduced order Kalman filters and various truth models.
AFIT has also simulated failures in the truth models and tested failure detection
and recovery algorithms. In general, these simulations worked very well and pro-

vided organizations like AFIT and the Avionics Directorate invaluable insights into

GPS/INS integration issues.

AFIT has researched GPS and INS integration issues such as modeling and
fault tolerance, primarily through simulation. Previous theses have attempted to
analyze and verify integration designs using real data. In 1990 Capt James Hirning
attempted to integrate a Collins 3A GPS receiver with a Litton LN-93 INS, using
real data citeHirning. This attempt failed, primarily because the raw measurements
and ephemeris data were not easily obtained from the GPS receiver [10]. In 1994
Capt Curtis Evans successfully integrated data from the Navstar XR-4PC and XR-
- 3PC GPS receivers with the LN-93 [6]. Capt Evans’s integration was done in a

stationary case; the LN-93 power requirements do not allow for easy mobility using
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the resources available at AFIT. The work proposed for this thesis will continue
using real data in the integration. At the same time, the current GPS/INS tight
versus loose integration controversy in the United States Department of Defense will

be researched.

Current USAF airborne platforms use the GPS and INS integrated in a loosely-
coupled fashion (see Section 3.1.1). The inherent reason is loose integration is more
convenient to implement in the aircraft than tight integration. A GPS receiver with
a Kalman filter (containing a generic INS model) can output position, velocity, and
time onto the military standard 1553 data bus, whereas the raw GPS measurements
of pseudo-range and delta-range cannot be passed to the 1553 data bus because of

physical and security limitations imposed on the bus.

On the other hand, tightly integrated filters are theoretically correct and opti-
mal. Measurements in tight integration are not corrupted by processing and therefore
can theoretically contain measurement noise that is white, Gaussian, and zero-mean
as the Kalman filter assumes it to be. Measurements to the navigation filter in loose
integration are first processed by the generic GPS filter, and therefore do not have
errors that can be characterized as white, Gaussian, and zero-mean; thus violating
the Kalman filter assumption (see Section 2.2). Although these non-white noise
measurements can be modeled with shaping filters, this is not normally done since
it will increase the number of filter states. Hence, the loose integration, by design, is
mismodelling the time correlations and/or cross-correlations of noises. However, in
the real world the Kalman filter algorithm assumptions are not always completely
met, so the question of how much more accurate the tight integration is over the

loose integration still remains.

1.1.2 Inertial Navigation System. An inertial navigation system (INS)
utilizes the inertial properties of accelerometers and gyroscopes mounted onboard a

vehicle to execute the navigation function. With appropriate initialization, an iner-
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tial navigation system is capable of continuous determination of vehicle position and
velocity without the use of external radiation or optical information. However, the
errors in the gyroscopes and accelerometers degrade the inertial navigation system’s
performance. The errors grow slowly but unboundedly over time. As a result, the
INS can provide accurate position and velocity data for short periods of time. This
high frequency response allows the INS to continue providing reliable information in

highly dynamic environments [1].

1.1.3 Global Positioning System. The Global Positioning System (GPS)
provides three-dimensional position and velocity information to users anywhere in
the world. The GPS consists of a space segment, a control segment, and a user
segment. The space segment consists of 24 satellites in six orbital planes. The
satellites receive information from the control segment and transmit satellite orbital
information to the user segment. The satellite constellation is arranged so that the
user has at least four satellites visible anywhere in the world at all times, with the
exception of brief outages in a few remote areas. The satellite transmits positioning
information modulated with two codes: C/A-code (Clear or Coarse/Acquisition),
and the higher accuracy P-code (Precise). When the P-code is encrypted it is called
Y-code. The Y-code prevents everyone except the US military and allies from using
the P-code [2] . The control segment consists of a master control station and five
monitor stations around the world. The monitor stations track all satellites, collect
data from each, and relay this information to the master control station for process-
ing. This processing involves the computation of satellite ephemerides and satellite
clock corrections. These corrections are transmitted to the satellites and accuracy
is maintained. The user segment consists of anyone with an antenna and GPS re-
ceiver. The user equipment receives signals from at least four different satellites and

computes position and velocity, which are provided to the user.

The pseudo-range is the primary GPS measurement to be used in the Kalman

filtering algorithm. Pseudo-range is the true range plus all the measurement errors,
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the user clock bias being the largest error. The receiver computes pseudo-range as
the time shift required to line up a replica of the code generated in the receiver
with the received code from the satellite, multiplied by the speed of light. The time
shift is the difference between the time of signal reception (measured in the receiver
time frame) and the time of emission (measured in the satellite time frame). The
difference in the receiver and satellite time frames comprise the user clock bias minus

the satellite clock bias [2].

1.1.4 Kalman Filter. A Kalman filter is an optimal recursive data process-
ing (estimation) algorithm. The Kalman filter combines all available measurement
data, and with the prior knowledge about the system and measuring devices, pro-
duces an estimate of the desired variables in such a manner that the mean squared
error is minimized statistically [16]. The conventional Kalman filter is based upon
linear system models. For this research, the INS and GPS measurements are com-
bined in an optimal manner providing an estimate of navigation parameters. The
navigation equations, however, are nonlinear, so the extended Kalman filter is used.
The basic idea of the extended Kalman filter is to relinearize about each estimate
once it has been computed. In this manner, it is possible to maintain the validity
of the assumption that deviations from the reference trajectory are small enough
to allow linear perturbation techniques to be employed with adequate results [17].
Hence, the extended Kalman filter uses the statistical characteristics of the errors in

both the GPS and the INS to determine the optimal combination of information.

1.1.5 GPS/INS Integration. The approaches to integrating Global Posi-
tioning System and inertial navigation systems implement the Kalman filter either
in the direct (total state space) or the indirect (error state space) formulation, and in
a feedforward or feedback mechanization. In the direct method, the total states such

as vehicle position and velocity are among the state variables in the filter, placing

the Kalman filter in the INS loop. Being in the INS control loop, the filter would
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have to sustain accurate awareness of vehicle angular motion and at the same time
suppress noisy and erroneous data. In terms of high dynamics, the filter would need
a very fast sample rate, on the order of 100 Hz, and would have to perform all
computations within this short sample period; therefore, the direct method is not

practical for highly dynamic in-flight use [16].

For the indirect method, the errors in the INS and GPS comprise the estimated
variables in the Kalman filter, and the measurement presented to the filter is the
difference between the INS and GPS data. The INS follows the high frequency
motions of the vehicle very accurately, and there is no need to model these dynamics
explicitly in the filter. Instead, the inertial system error dynamics are modeled,
which are relatively well developed, well behaved, and low frequency. Because the
filter is now out of the INS loop and the error dynamics are low frequency, the filter

sample rate can be much lower than that of the direct filter case [16].

The indirect feedback configuration compares the INS and GPS data and uses
the result to estimate the errors in the inertial system. The estimated errors are fed
back into the INS to correct it. In this scheme, the inertial errors are not allowed to
grow unchecked, and the adequacy of a linear model is enhanced. However the INS

is dependent on the Kalman filter estimates.

The indirect feedforward mechanization also compares the INS and GPS data,
and uses the result to estimate the errors in the inertial system, but the estimated
errors are then subtracted from the inertial data (external to the INS itself) to

obtain the optimal estimates of position, velocity, and attitude. The inertial system
is unaware of the existence of the filter or the GPS data, so if either should fail, the

unaltered INS information would still be available [16].

1.1.5.1 Cascaded Filter Approach.  The cascaded filter approach to
GPS/INS integration is so named because its two Kalman filters are arranged in

series. The output of the first filter is the input to the second filter (filter-driving-
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filter). The outputs of the first filter have time-correlated noise and noise correlated
with the measured states and, since the Kalman filter expects uncorrelated mea-
surement noise, the measurements to the second filter could lead to filter stability
problems. When the measurement noises are correlated the Kalman filter becomes
over-confident, thus putting too much weight on its system model, and too little
weight on the measurement inputs. Although modelling colored noise can be done
with shaping filters this is generally not done. Compensation for the mismodelling
is accomplished by processing the first filter’s outputs less frequently than they are
available, such that the time correlation between the second filter’'s measurement
error inputs are sufficiently reduced. This places restrictions on the measurement

processing rate [4].

INS X. X

____________________________

Navigation
\ 8% g 8x
EKF

Figure 1.1 Indirect Feedforward Cascaded Filter Integration

Cascaded approaches were the earlier stages of integration, due to the desire
to iﬁtegrate already existing stand alone devices. Thus, in general, the cascaded
approach uses the dedicated GPS Kalman filter to produce a position and velocity
solution (see Figure 1.1). This GPS solution along with the INS position and velocity
solution was the input to the second navigation filter, which provided an estimated
navigation solution more accurate than the INS or GPS solution alone. If the GPS

receiver has fewer than four satellites in view, the GPS filter outputs degrade and
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Figure 1.2 Indirect Feedforward Centralized Filter Integration

closely track the rapidly growing INS errors. To avoid even greater filter instability
under these conditions the navigation filter is designed to disregard inputs from the

GPS receiver when fewer than four satellites are available [13].

1.1.5.2 Centralized Filter Approach.  The centralized filter approach
to GPS/INS integration utilizes a single Kalman filter. Since only one filter is used,
the instability problem with the filter driving filter configuration is nonexistent. The
GPS receiver raw data, pseudo-range and pseudo-range rate, are combined with the
INS data and used as measurements in the Kalman filter for estimating the error
in the inertial system (see Figure 1.2). In this sense, the GPS data can continue to
be used in the navigation solution when fewer than four satellites are received [3].
Further advantages can be attained if the GPS receiver is embedded into the INS.
First, there will be no need for costly TEMPEST secure communication links when
the classified GPS Y-code is being processed. Also, the collocation of the GPS and
INS simplifies the interface and communication permitting a tighter control over
data timing and latency. The collocated GPS and INS can transfer data via direct
Memory access and thus the delays usually associated with input/output between
the INS and GPS receiver are eliminated [27]. The centralized approach leads to the
tightly-coupled integration design used in this thesis.
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1.2 Literature Review

This section presents the tight versus loose integration views of four technical
papers published in 1989-1994 [4,14,23,30]. These papers analyze a tight and loose
GPS/INS integration and recommend which is better. As was discussed in the pre-
vious section, there are many ways to set up a tight and loose GPS/INS integration;
each paper has its own variation, however the basic concept for the tight integration
being to use a single Kalman filter and the loose integration to use two Kalman

filters in cascade is the same.

Wei, in his 1990 paper [30], compares the single filter GPS/INS integration with
the cascaded filter scheme in which the first filter is a local GPS-only filter. The test
data was collected using a road vehicle as the moving base for the INS and GPS. His
conclusion is that the accuracy of a sub-optimal cascaded filter does not deteriorate
from the centralized filter accuracy. He recommends that the decision for the use
of one integration over the other should be made on the basis of computational
efficiency, where the cascaded integration is more advantageous, and operationally

simpler for the intended application.

Dayton’s paper [4] compares a tightly-coupled system, in which the INS is
aided by the GPS and the GPS receiver is aided by the INS, with a cascaded system
in which the first filter uses measurements from the INS as well as the GPS. In both
cases the final error estimates are fed back to the INS, and the INS outputs are used
for navigation. Dayton’s conclusion is that the tightly-coupled integration “can lead
to superior navigation performance due to the tighter integration which allows the
system to take full advantage of all available measurements.” The cascaded filter, he
mentions, was simpler and easier to implement, but the filter driving filter problem

places restrictions on measurement processing rate.

Lewantowicz’s paper on deep integration [14], analyses a single Kalman filter
GPS/INS integration design in simulations. His results are that a “single Kalman

filter receiving pseudo-range and delta-range measurements and modelling significant
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GPS and barometric altimeter measurement errors can perform significantly better in
actual flight than the current cascaded approach.” The current cascaded approach
refers to the early 1990’s GPS/INS implementations used in the U.S. Air Force

aircrafts.

Schwarz’s 1994 paper [23], compares an embedded GPS (within the INS box)
approach with a centralized filter to an aided approach in which the GPS has its
own filter which feeds to the second, GPS/INS integration filter. The embedded
approach uses velocity feedback from the integrated system to the GPS tracking
loop, whereas the cascaded approach has none. The end results of this study showed

that the overall performance of the two designs are basically of the same quality.

These papers show the current controversy between tight and loose integration.
Loosely-coupled integration is computationally efficient and could be easier to im-
plement into existing airframes, but it is a sub-optimal design. The tightly-coupled
integration can achieve more optimality, but the increase in optimality may not
be worth the increased computational load and implementation difficulties. These
papers as a whole seem to say that the tightly-coupled design can achieve better
performance, provided all available measurements are used and the measurement
errors are modelled accurately. However, from a practical standpoint, all errors in
the real world cannot be accurately modelled, and the number of states needed to
model a significant amount of the errors would greatly increase filter computation
time. Thus, the true optimality claim of the tightly-coupled integration cannot be

achieved in the real world.

1.3 Problem Definition

The research conducted under this thesis will analyze tightly-coupled and
loosely-coupled GPS/INS Kalman filter integration schemes using real world data in
a stationary environment. This research will use extended Kalman filters with an

indirect implementation. The loose integration will consist of two extended Kalman
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filters cascaded in a feedforward design, as configured in the USAF F-16 fighter
aircraft navigation integration. The first filter, referred to as the GPS filter, will
incorporate a generic reduced order INS model, a 2-state GPS model, and a single
state for the barometric altimeter. The second filter, referred to as the naviga-
tion filter, will consist of the LN-93-specific INS model. For this research to obtain
meaningful results, an “apples versus apples” comparison between the two integra-
tion techniques is essential. Therefore, the tight integration is also feedforward, and
its single extended Kalman filter will consist of the LN-93-specific INS model used
by the loosely-coupled navigation filter, the 2-state GPS model and the single state

barometric altimeter model.

1.4 Scope

This research will concentrate on the comparison of loose and tight GPS/INS
integration using actual hardware and data collection from a stationary platform.
The current equipment available to this research does not make it feasible for a mobile
environment. Post processing techniques will be used; all data will be collected before

any integration scheme is applied. The scope of this research is limited by time.

1.5 Assumptions

All theses are limited by the assumptions made, and no research can be ade-
quately evaluated unless these assumptions are clearly defined. This section outlines
the assumptions that have been made in this thesis. The numerous assumptions

often made with simulations are not needed with the use of real data.

1. The INS platform is assumed to be stabilized with a barometric altimeter,
which is the commonly used method for the LN-93 [5]. The simulated output
of a barometric altimeter was sent to the LN-93 over the 1553 data bus to

stabilize the vertical channel during data collection.
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2. The comparison between tight and loose integration will be done with a ten-
run Monte Carlo analysis. While a larger run size for the Monte Carlo analysis
is preferable, this number of runs was selected due to computer and software

limitations.

3. Ergodicity is assumed. The statistics of each run do not change over time.
This is necessary using real data and hardware; it allows each consecutive run

to be averaged.

1.6 Plan of Attack

This research is divided into two basic components: Data collection of the
Litton LN-93 INS and the Navstar XR5-M6 GPS receiver, and the integration and

comparison of loose and tight configurations.

1.6.1 GPS/INS Data Collection.  The first task is to set up the INS and
GPS receiver for data collection. Collecting data from the GPS receiver is easily
implemented with the use of a PC computer. All GPS data collection protocol is
accomplished with the Navstar Data Monitor software package [21]. The LN-93
INS data collection is also done with a PC computer using the SPEPTRE protocol
citeSPEPTRE. Since using a stationary platform and post-processing is used, it is
possible to collect data from the GPS receiver and the INS independently without
any timing problems. Ten runs of data will be collected for each, the INS and GPS,

to provide a ten-run Monte Carlo analysis.

1.6.2 Integration Comparison. The INS and GPS data are integrated
using the collection of MATLAB [15] m-files called MATSOFE citematsofe (MAT-
LAB Multimode Simulation for Optimal Filter Evaluation). The routines used by
MATSOFE are directly patterned after an established USAF software package, Mul-
timode Simulation for Optimal Filter Evaluation (MSOFE), used to develop and test
Kalman filter algorithms [9]. The MATSOFE routines are configured for the loose
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and the tight GPS/INS integration. The MATSOFE routines are modified to accept
the real INS and GPS data where it normally uses simulated data. The same data
sets are used as measurements to both the tight and loose integrations. Since the
true position and velocity is known the error can be properly defined. Thus, the
comparison of the loose and tight integration is focused on the accuracy and fidelity

in the position and velocity estimates of each.

1.7 Overview of Thesis

Chapter II provides the theory necessary for this research. The extended
Kalman filter, Kalman filter tuning, and algorithms for calculating GPS satellite
ECEF position are among the topics presented. The theoretical advantages and
disadvantages between the two are also presented. Chapter III describes in detail
the loose and tight integrations as used in this thesis, along with the filter models
for each. This chapter also provides a simplistic, small order example of a tight
and loose integration to give insights that may be clouded by higher order models.
Chapter IV presents the results of this study. In Chapter V, conclusions from the

information presented and recommendations for further study are discussed.
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II. Theory
2.1 Overview

This section presents the theory necessary to accomplish this research. The
basic theory and equations associated with the extended Kalman filter are presented,
along with a brief discussion of filter tuning. A more rigorous development of many
of the Kalman filter subjects can be found in [16-18]. The theory then moves to the
method of determining GPS satellite ECEF (earth centered, earth fixed) positions.
The GPS satellite ECEF position is needed to determine the INS’s range to satel-
lite, which is compared to the GPS receiver’s measured pseudo-range. This section
concludes with the theoretical advantages and disadvantages of the cascaded and

centralized integration techniques.

2.2 Extended Kalman Filter Equations

A Kalman filter is an optimal recursive data processing algorithm that can
be shown to be optimal with respect to virtually any criterion that makes sense,
given several underlying assumptions. These assumptions are that the system can
be described through a linear or linearized model and in which the system and
measurement noises are white and Gaussian [16]. One of the Kalman filter’s aspects
of optimality is that it incorporates all information that can be provided to it. The
Kalman filter processes all available measurerﬁents, regardless of their precision, to
estimate the current value of the variables of interest. The Kalman filter makes these

estimates with use of

1. Knowledge of the system and measurement device dynamics;

2. The statistical description of the system noises; and

3. Any available information about initial conditions of the variables of interest.




The GPS receiver and INS error state models consist of sets of linearized state space
differential equation-s and nonlinear measurement equations. These nonlinearities
prevent the use of the standard Kalman filter; thus the extended Kalman filter
(EKF) is needed. The fundamental idea of the EKF is to relinearize about each
estimate once it has been computed [17]. In this manner, provided that deviations
from the reference trajectory are small enough, linear perturbation techniques can
be employed with adequate results. The subsequent derivation and many of the

following equations are taken from Maybeck [17].

The extended Kalman filter can be summarized as follows. Let the nonlinear

system of interest be described by the dynamics model
(1) = (1), u(t), ] + G)w(t) 1)

where x(t9) is modeled as a (Gaussian) random vector with mean Xq and covariance
Po. f[x(t),u(t),t] is the state dynamics vector which is, in general, a nonlinear
function of the state vector x(t) and time ¢, and the control input u(t) (assumed to
be zero in this research). G(t) is a noise distribution matrix which, for this research,
is an identity matrix without loss of generality. The vector w(t) is a white Gaussian

noise vector having the statistics of zero-mean:
E{w(t)} =0 (2.2)

and noise strength:

E{w(t)wT(t+ )} = Q(¢)é(7) (2.3)

where 6(7) is the Dirac delta function.
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The Kalman filter incorporates sampled-data measurement information from

external measuring devices. The discrete-time measurements are modeled as:
Z(ti) = h[X(ti),ti] + V(ti) ‘ (24)

where z(t;) is the measurement available at time ¢;, and h is a known vector which is
a function of the state and time. The vector v(t;) is a white Gaussian noise sequence

having the statistics of zero-mean:
E{v(t)} =0 (2.5)

and noise covariance:

B{vanT(t)} =4 T E=h (2.6

0 ti#t;

Recalling the basic assumption of the conventional Kalman filter that the sys-
tem is linear, the nonlinear Equations (2.1) and (2.4) must be linearized. The fol-

lowing derivation is the linearization of these two equations using the linearization

method described in [17]:

1. Assume that a nominal state trajectory, x,(t), may be generated for all time
of concern, starting from the initial condition x,(fo) = X,,0 and satisfying the

deterministic differential equation:
(1) = £l u(t), 7)

where f[-, -, ] is specified in Equation (2.1), and u(t) = 0.

2. The sequence of nominal measurements associated with the nominal state tra-
jectory is given by:

Zn(ti) = h[Xn(t,), ti] (28)
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3. The perturbation of the state from the assumed nominal trajectory is the

difference of Equation (2.7) end Equation (2.1):

X(t) — X, = £[x(t), u(t), t] — f[xn(t), u(t), ] + G(t)w(t) (2.9)

4. The equation above may be approximated to first order by a Taylor series

expansion:

§%(t) = Flt; xa(1)]6%(t) + G(t)w(t) (2.10)

where §x(t) represents a first-order approximation to the process [x(t) —x,(t)],
and F[t;x,(t)] is the matrix of partial derivatives of f with respect to its first

argument, evaluated along the nominal trajectory:

Flt (1)) = 2 @2.11)

X=Xn (t)

5. In a similar manner, the measurement perturbation equation can be derived

and is expressed as:
6Z(ti) = H[ti;Xn(ti)](SX(ti) + V(ti) (212)

where the matrix H is defined as:

8h[X, tz']

H[t xa(t:)] = —5-

(2.13)

X=Xn (t;)

The nonlinear dynamics and measurement equations have been linearized to form
perturbation or error state equations. This linearization process allows for the ap-
plication of a linearized Kalman filter for the system described by Equations (2.10)
and (2.12). The output of the filter would be the estimate of 6x(t), denoted as 6x(t).
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An estimate of the total state can be computed using:
X(t) = x,(t) + 6%(¢) (2.14)

The expression above for the linearized Kalman filter is computationally advanta-
geous compared to an “optimal” nonlinear filter. Even appropriate higher-order
nonlinear filters include higher order terms from the Taylor series expansion of f and
h, thus imposing a severe computational disadvantage. However, unacceptable errors
will result with the linearized Kalman filter if the “true” and nominal trajectories
differ significantly. To avoid this problem, the extended Kalman filter is used. The
EKF relinearizes about newly declared nominals at each sample time, to enhance
the linearization process. This relinearization of the states about the new nominal
trajectory ensures that the deviations from the nominal trajectory will remain small.
This validates the earlier assumption and allows for linear perturbation techniques

to be employed with adequate results.

The extended Kalman filter equations are summarized below. The state esti-
mate and covariance are propagated from time ¢; to the next sample time ¢;,1 by

integrating the following equations:
%(t/t:) = f[%(t/t:), u(t), 1] (2.15)

P(1/t:) = Flt;X(t/8)IP (/1) + P(t/t)FT[5%(t/6)] + GOQGT()  (2.16)

where the notation (¢/t;) stands for “at time, ¢, based on measurements up through

time £;,” and where:

of[x,t
Fltix(t/8)] = 2] (2.17)
R=%(t/;)
and the initial conditions are:
x(t:/t:) = %(¢F) (2.18)
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P(t;/t) =P(t)) (2.19)

where the superscript, +, indicates the value at a time after the incorporation of a

measurement.

With the incorporation of the measurement, z;, the EKF measurement update

equations are:
K(t;) = P(t; JH [t %(t7 )] {H[t:; X(¢))/P (67 ) H [t %(47)] + R(t:)} ™ (2:20)

(1) = %(t7) + K(t:) {z — h[%(t]), 1]} (2.21)
P(tf) = P(t;) — K(t)H[t; X(¢7)P(t7) (2.22)

where H[t; %(¢;)] is defined in Equation (2.13), and the superscript, —, indicates a

value at a time just before incorporation of a measurement.

2.3 Kalman Filter Tuning

The objective of filter tuning is to achieve the best possible estimation per-
formance from a filter of specified structural form (totally specified except for Py
and the time histories of Q and R). These tunable matrices, Q and R, not only
account for actual noises and disturbances in the physical system, but also are a
means of declaring how adequately the assumed model represents the “real world”
system. The less accurate the model, the stronger thé noise strengths should be set.
In tuning the filter, the Py matrix is a determining factor in the initial transient
performance of the filter, whereas the Q and R histories dictate the longer term or

“steady state” performance and time duration of transients [16].

The process noise strength, Q, and measurement noise covariance, R, must be
appropriately tuned for the EKF to track the INS errors accurately. Increasing Q
would indicate either stronger noise driving the dynamics or increased uncertainty

in the adequacy of the model itself. This will increase the rate of growth of the P(¢)
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Table 2.1 Ephemeris Representation Parameters

X

Mean anomaly at reference time

B>
3

Mean motion difference from computed value

Eccentricity

Square root of the semi-major axis

Right Ascension at reference time

SN

Inclination angle at reference time

Argument of perigee

Rate of right ascension

Amplitude of the cosine harmonic correction term to the argument of latitude

e
[+)

Amplitude of the sine harmonic correction term to the argument of latitude

-
o

Amplitude of the cosine harmonic correction term to the orbit radius

Amplitude of the sine harmonic correction term to the orbit radius

<
@

Qo Qlo|ak e

o
o

Amplitude of the cosine harmonic correction term to the angle of inclination

Q

Amplitude of the sine harmonic correction term to the angle of inclination

ol
()

Ephemeris reference time

>
O
)
=

Age of Data Word

elements between measurement times and also of the steady state values of P(t;)
and P(t]"), resulting in the measurements being weighted more heavily. Increasing
R would indicate that the measurements are subjected to a stronger corruptive noise
or that the measurement model is less dependable, and so the measurements should

be weighted less by the filter [16].

2.4 GPS Satellite Positioning Determination

The indirect feedforward GPS/INS integrations (see Figures 1.1 and 1.2) showed
the need for range computations to obtain the INS-predicted range to each GPS satel-
lite. This range computation requires the ECEF position of the GPS satellites. This
section will present the algorithm used to compute the ECEF positions using GPS

satellite ephemeris data.

The GPS satellite ephemeris data (see Table 2.1) contains the parameters which
describe the satellite orbit for a one-hour interval of time. The ephemeris data is

in the form of Keplerian parameters, which are used to determine the satellite’s
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Keplerian orbit. Kepler’s equation citeGPSHNDBK is as follows:
E(t) = M(t) + esin[E(t)] (2.23)
where:

E(t) = Eccentric anomaly
M(t) = Mean anomaly

e = Eccentricity of the orbit

Solving for E(t) is impractical in any way except approximately because the exact

solution, for e < 0.663, is
E(t)=M(t)+2 kz_:l k—!Jk(ke)szn[kM(t)] (2.24)

where J;, are Bessel functions of the first kind of order k£ [28]. In this thesis, the
solution was found using successive substitutions to solve Kepler’s equation. The
equations used to solve for the true anomaly [28], v(t), are

V1 — e2sin[E(t)]
1 — ecos[E(t)]

sinfu(t)] = (2.25)

cos[E(t)] — e

cos[v(t)] = 1 — ecos[E(t)]

(2.26)

The ECEF positions of the GPS satellites are found by first solving for the
mean motion, ng, using the semi-major axis of the orbit, A, and the WGS-84 value

of the earth’s universal gravitational parameter g = 3.986005 x 10! meters/second:

no = \/% ' (2.27)




The corrected mean motion is then determined by
n=mng+ An (2.28)

where An is available in the ephemeris. The time since reference epoch is computed

from the difference in actual time and the ephemeris reference time:
ty =1t—to (2.29)
The mean anomaly at time 1, the time since reference time tg, is then found by
My, = My + nty, (2.30)

where My is the mean anomaly at the reference time. Once the mean anomaly is

obtained, Kepler’s equation can be iteratively solved with the following equation:
Ek+1 = My + esin[Ek] (231)

where the initial eccentric anomaly, FEo, is set to My. The true anomaly, vy, is
then calculated from Equations (2.25) and (2.26). Using the true anomaly, v, the

argument of latitude ug, radius g, and inclination ¢ can be determined [2]:

Uk = w + vk + Cussin2(w + vg) + Cyuecos2(w + vg) (2.32)
ri = A[l — ecos(Ey)] + Crecos2(w + vi) + Cresin2(w + vy) (2.33)
ik = 2o + Ciccos2(w + vg) + Cissin2(w + vg) (2.34)
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where:

Cuc,Cus = Argument of latitude correction coefficients
C,e,Crs = Orbital radius correction coefficients
Ci.,C;s = Inclination correction coefficients

w = Argument of perigee

which are available in the ephemeris. The latitude and radius are then used to

determine the satellite’s position in the orbital plane:
T, = ricos(uy) (2.35)
Yy, = resin(u) (2.36)
The corrected longitude of the ascending node is found from [2]:
Ak = Qo+ (Q — we)tr — weto (2.37)

where {1y and Q are defined in Table 2.1, and w, = 7.292115 x 107° radians/second,
is the WGS-84 value of the earth’s rotation rate. Using the orbital plane positions,
the ECEF positions of the satellites can be computed using:

zr = zcos(Ax) — yrcos(ix)sin(Ag) (2.38)
yr = zpstn( k) + yrcos(ix)cos(Ax) (2.39)
2k = yp.sin(ig) (2.40)

The ECEF frame used in the above equations has the x-axis direction in the
true equatorial plane in the direction of the Greenwich meridian and the z-axis along

the true earth spin axis, positive in the northern hemisphere, as seen in Figure 2.1.
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Figure 2.1 FEarth Centered Earth Fixed (ECEF) Coordinates

2.5 GPS/INS Integration Theory

This section discusses the theoretical advantages and disadvantages between
the centralized and cascaded filter integration techniques. Recall from Section 1.1.5.2,
that the centralized filter utilizes all the information at the same time. Thus all the
states for the entire system are defined in one global state vector with a correspond-
ing global description of the process noise. The cascaded filter is a two-stage data
processing technique. In the first stage, the local filter processes its own data to
yield the best possible local estimate. The second stage, the master filter, fuses the

local estimates, yielding the best global estimate.

The big advantage the centralized filter has over the cascaded filter is that
it can provide the “optimal” solution, in the sense of accuracy. The price for this
optimal solution is the high computational load. The cascaded filter, on the other

hand, has a reduced computational load but also a suboptimal solution.

Computational load is measured by the number of operations required for one
time propagation and one measurement update. Letting n be the dimension of
the state vector, s be the dimension of the dynamic driving noise, and m be the

dimension of the measurements, then the number of operations can be computed as

follows [16]:
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Conventional Kalman Filter:

Adds — %(Qn3 +3n*(3m + s — 1) + n(15m + 35 — 6))

1
Multiplies — 6(9713 + 3n*(3m + s + 3) + n(27m + 9s))

Divides — m
Kalman Filter with U-D Factorization:

1
Adds — g(9n3 +3n%(3m + 25 + 2) + 3n(3m + 1))

1
Multiplies — E(Qn3 + 3n?(3m + 25 + 7) + 3n(m + 4s — 4) — 65)

Divides — n(m+1)—1

A comparison of the computational loading between the tight and loose integration

used in this thesis is in Chapter 4.

From the practical, real world implementation standpoint, the centralized filter
design would be more troublesome to employ. Aircrafts did not initially have GPS
technology but did already have inertial navigation systems. The equipment (INS
and navigation computer) currently in the aircraft would have to be taken out and
redesigned. Thus, the cascaded approach was the simplistic method to incorporate
GPS systems into the existing aircrafts. Also, the basic Kalman filter assumptions
are usually violated, so it is not clear how “optimal” the centralized filter is when

using real world data.
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2.6 Chapter Summary

This chapter reviewed the extended Kalman filter theory and the required filter
tuning. The EKF is the integration algorithm used in combining the GPS pseudo-
range and the INS navigation solution. The chapter then presented the equations
used to compute the GPS satellite ECEF positions. The chapter concluded with a
discussion of the GPS/INS integration theory.
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III. Design Methodology and Error Models

This chapter first describes the structure of the tight and loose GPS/INS in-
tegration. The chapter then describes the INS, GPS and measurement models used
within the extended Kalman filters, and closes with an example using a simple order

integration problem.

3.1 GPS/INS Integration Technique

This research compares the loosely-coupled and the tightly-coupled GPS/INS
integration techniques. There are many ways to integrate the GPS and INS in
loosely-coupled and tightly-coupled configurations. The particular loose GPS/INS
integration used in this research is based on the current USAF F-16 GPS/INS in-
tegration. To keep a fair comparison, the tight integration maintains the same
feedforward configuration and the same filter model states as in the loose. The

tightly-coupled configuration is not currently used.

Both integrations use the same INS and GPS. The INS used is a Litton LN-93,
and the GPS receiver is a Navstar XR5-M6. The LN-93 is a strapdown INS, with
three accelerometers and three ring laser gyroscopes, and has a specification of 0.8
nautical mile per hour drift rate [5]. The XR5-M6 is a six-channel receiver, capable

of providing raw pseudorange data.

3.1.1 Loosely-Coupled GPS/INS Integration.  The loosely-coupled integra-
tion used in this research is based on the current F-16 GPS/INS integration [12].
The F-16 uses a feedback loop which is eliminated for this research. Feedback is
not used so that post-processing of the data can be done. Had feedback been used,
the integration would have to process in real time for the INS to produce the next
navigation solution. Future AFIT research will use feedback when a real-time mo-

bile GPS/INS integration lab is obtained. The loosely-coupled integration used in
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Figure 3.1 Loosely-Coupled GPS/INS Integration

this research is shown in Figure 3.1. The dashed line indicates the GPS equipment

(enclosed in one box) added to the existing aircraft navigation system.

The outputs from the INS, X, is used with GPS satellite orbit information
to calculate R;,s, which is the range from the GPS satellite to the INS-indicated
position. The GPS satellite orbits are obtained from the ephemeris data being
transmitted from each GPS satellite. The GPS receiver’s pseudo-range, Rps, is
subtracted from the INS range, R;.,, and used as measurement input to the first
extended Kalman filter, EK F'1, located in the GPS receiver, referred to as the GPS
filter. This filter makes a measurement update at each second, and models a generic
INS and GPS, which is the culprit with respect to performance. The output of
the filter is an estimate of the generic INS errors, dzl, which is subtracted from
the actual INS outputs Xj;,, to obtain the first estimate of the INS position and
velocity, X1.5;. This estimate is subtracted from the original INS output and used
as measurement input to the second extended Kalman filter, EK F2, located in the
fire control computer and referred to as the navigation filter. This filter has the Litton
LN-93-specific INS model and is updated every 10 seconds, but still propagates every

second to provide a best estimate navigation solution at the one Hertz rate. The
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Figure 3.2 Tightly-Coupled GPS/INS Integration

output of the filter is a better estimate of the INS errors which is subtracted from

the INS output to obtain the overall estimate of the vehicle position and velocity.

To reduce the filter-driving-filter problem (unmodelled time correlated noise
and/or correlated with the measured states), the second extended Kalman filter is
updated every 10 seconds whereas the first extended Kalman filter is updated every
second. Based on current literature [4,13] and the update rate the F-16’s GPS/INS
integration uses, the 10-second sample period seemed to be reasonable to prevent fil-
ter stability problems. This delay allows the time correlation between measurements

to be sufficiently reduced to adequately satisfy the Kalman filter assumption.

3.1.2 Tightly-Coupled GPS/INS Integration.  The tightly-coupled integra-
tion used in this research is a feedf.orvvard configuration consisting of a single extended
Kalman filter using the same Litton LN-93-INS-specific states as in the second filter
of the loosely-coupled integration, plus the two GPS states. The tightly-coupled

integration is shown in Figure 3.2.

The measurements into the extended Kalman filter, EKF, are generated in

the same way as for the GPS filter in the loosely-coupled integration. Since the
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tightly-coupled integration filter models the LN-93-specific INS, the output of the
filter is already the best estimate of the errors. These estimates are subtracted from
the INS outputs to give the estimated position and velocity. The tightly-coupled

extended Kalman filter is updated every second.

3.2 Filter Error Models

The filter models described in this section are based on the F-16 GPS/INS
integration filter models, which are derived from the 93-state Litton model. This
section begins with a description of Litton 93-state model [5]. The section then de-
scribes the models used in the loosely-coupled and tightly-coupled integration. In
these error models, the states are referenced against an (X,Y,Z) earth-fixed orthog-
onal coordinate system, where Y is along the spin axis of the earth and (Z,X) lie on

the equatorial plane with Z passing through the Greenwich meridian.

3.2.1 The 93-State LN-93 Error Model. The Litton 93-state model was
derived as a truth model for the LN-93 inertial navigation unit. These 93 error states

are broken down into six categories as follows:

ox = |6xT oxLoxtoxToxT6xE g (3.1)
where:

0xy contains the first 13 states, which are position, velocity,
attitude, and vertical channel errors. These states are classified
as “general” errors corresponding to standard Pinson error model [25]
states and states associated with barometric altimeter aiding of the
vertical channel.

X2 represents the correlated errors and “trend” states and are modeled as
first-order Markov processes in the system truth model. This
category is composed of the 16 gyro, accelerometer and
baro-altimeter errors.

0X3 consists of gyro bias errors, which are modeled
as random constants.
0x4 is also modeled as random constants and is made up of the
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accelerometer bias errors.

0xs is a set of first order Markov processes and is
composed of the six accelerometer and gyro initial thermal transients.
oxe is composed of the 18 gyro compliance error states.

These states are modeled as biases in the system truth model.

The 93-state Litton model state space differential equation is given by:

el Fi1 Fiz Fiz3 Fiu Fis Fis 0%y Wi
5).(2 0 F22 0 0 0 0 6X2 Wo
ox3 0 0 0 0 0 0 0x3 0
6Xy4 0 0 0 0 o 0 X4 0
6)-(5 0 0 0 0 F55 0 6X5 0
6%¢ 0 0 0 0 o 0 6Xg 0

This information was taken from the Litton LN-93 Error Budget [11]. This model
is the most detailed model available for the LN-93 as well as the LN-93 inertial

navigation units.

3.2.2 Loosely-Coupled Error Model. As stated previously, the loose in-
tegration requires two filters, each with a separate model. The GPS filter model
consists of 12 states (see Table 3.1). The first nine states are the standard Pinson
error states to model any generic INS. The tenth state is the barometric state used
for vertical channel stabilization. The last two states are the GPS states used for

modelling the largest GPS errors, user clock bias and clock drift.

The second filter, the navigation filter, is used to model a specific INS, the
LN-93. This filter consists of 25 states as shown in Table 3.2. The states are the
standard Pinson error states, the barometric altimeter error state, nine gyroscope

error states, and six accelerometer error states. These states are similar to what
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Table 3.1 12-State Filter, Generic INS

State | Definition LN-93 | Loose

Symbol State | State
60x | X component of vector angle from true to computer frame 1 1
80y | Y component of vector angle from true to computer frame 2 2
80z | Z component of vector angle from true to computer frame 3 3
ox X component of vector angle from true to platform frame 4 4
oy Y component of vector angle from true to platform frame 5 5
oz 7, component of vector angle from true to platform frame 6 6
6Vx | X component of error in computer velocity 7 7
6Vy | Y component of error in computer velocity 8 8
oVy 7, component of error in computer velocity 9 9
bhc Barometer correlated bias noise error 23 10
SRyar | GPS user clock bias N/A 11
6Dyar | GPS user clock drift N/A 12

the F-16 uses in its navigation filter, except the vertical states 3, 9, and 10 are

added. These vertical states are needed for an adequate model in the single filter

of the tightly-coupled integration, but are not necessary for the second filter of the

loosely-coupled integration [22]. However, to keep a fair comparison, these states are

included in the navigation filter of the loose integration.

3.2.8 Tightly-Coupled Error Model.

The tightly-coupled integration has

only one filter modelling the LN-93-specific INS and the GPS. The LN-93 states are

error model (see Table 3.3).
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Table 3.2 25-State Filter, LN-93 Specific

State | Definition LN-93 | Loose
Symbol State | State
60x | X component of vector angle from true to computer frame 1 1
00y | Y component of vector angle from true to computer frame 2 2
60z | Z component of vector angle from true to computer frame 3 3
ox X component of vector angle from true to platform frame 4 4
oy Y component of vector angle from true to platform frame ) b)
bz Z component of vector angle from true to platform frame 6 6
oVx X component of error in computer velocity 7 7
oWy Y component of error in computer velocity 8 8
oVy 7, component of error in computer velocity 9 9
bho Barometer correlated bias noise error 23 10
b, X-component of gyro drift repeatability 30 11
b, Y-component of gyro drift repeatability 31 12
b, Z-component of gyro drift repeatability 32 13
X1 X-gyro misalignments about Y axis 36 14
X2 Y-gyro misalignments about X axis 37 15
X3 Z-gyro misalignments about X axis 38 16
" X-gyro misalignments about 7 axis 39 17
12 Y-gyro misalignments about Z axis 40 18
V3 Z-gyro misalignments about Y axis 41 29
Ab, | X-component of accelerometer bias repeatability 48 20
Ab, | Y-component of accelerometer bias repeatability 49 21
Ab, Z-component of accelerometer bias repeatability 50 22
Sa, X-component of accelerometer and velocity 51 23
quantizer scale factor error

Sa, Y-component of accelerometer and velocity 52 24
quantizer scale factor error

Sa, Z-component of accelerometer and velocity 53 25

quantizer scale factor error
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Table 3.3 27-State Filter, LN-93 Specific

State | Definition LN-93 | Tight
Symbol State | State
60x | X component of vector angle from true to computer frame 1 1
60y | Y component of vector angle from true to computer frame 2 2
00z | Z component of vector angle from true to computer frame 3 3
ox X component of vector angle from true to platform frame 4 4
oy Y component of vector angle from true to platform frame 5 )
oz Z component of vector angle from true to platform frame 6 6
60Vx | X component of error in computer velocity 7 7
0Vy | Y component of error in computer velocity 8 8
oV 7 component of error in computer velocity 9 9
bhc Barometer correlated bias noise error 23 10
SRy | GPS user clock bias N/A 11
6Dyar | GPS user clock drift N/A 12
b, X-component of gyro drift repeatability 30 13
by Y-component of gyro drift repeatability 31 14
b, Z-component of gyro drift repeatability 32 15
X1 X-gyro misalignments about Y axis 36 16
X2 Y-gyro misalignments about X axis 37 17
X3 Z-gyro misalignments about X axis 38 18
2 X-gyro misalignments about Z axis 39 19
vy Y-gyro misalignments about Z axis 40 20
V3 Z-gyro misalignments about Y axis 41 21
Ab, | X-component of accelerometer bias repeatability 48 22
Ab, Y-component of accelerometer bias repeatability 49 23
Ab, Z-component of accelerometer bias repeatability 50 24
Sa, X-component of accelerometer and velocity 51 25
quantizer scale factor error

S4, Y-component of accelerometer and velocity Y 26
quantizer scale factor error

Sa, Z-component of accelerometer and velocity 53 27

quantizer scale factor error
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3.8 Measurement Models

The measurement model for the GPS filter of the loose integration and the only
filter of the tight integration are the same. The measurements are made available
every second. The measurement for the navigation filter of the loose integration is

provided every ten seconds.

The measurement model for the tight integration filter, and for the first filter
of the loose integration, are pseudorange difference measurements. The number of
measurements depends upon the number of satellites being tracked. The XR5-M6
GPS receiver limits this number to a maximum of six. All received satellites are
used in the measurement. The pseudorange measurements received by the GPS
receiver are differenced with the INS-computed pseudorange to produce a difference

measurement:

6z = Rins — Rops (3.3)

The pseudorange, Rgps, is the sum of the true range from the user to the satellite

plus the errors.

RGPS = Rt + 5Rcl + 5Rt7'op + 6Rion + 6Ruclk - 5}zsclk -0 (34)
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where:

Rgps
Ry
6Ra

0 Rirop
6 Rion
6 Rycik
6 Rscix

GPS pseudorange measurement, from satellite to user
true range, from satellite to user

range error due to code loop error

range error due to tropospheric delay

range error due to ionospheric delay

range error due to user clock

range error due to satellite clock

zero-mean white Gaussian measurement noise

The INS-computed pseudorange measurement is found by differencing the satellite

ECEF position from the ECEF position provided by the INS:

Lo Ty
Rins = Xo =Xl = || vu | = | s
2y Zs

The above equation can be written as:

RINS = \/(xu - ws)2 + (yu - ys)2 + (zu - 23)2

(3.5)

(3.6)

The measurements used for the navigation filter of the loose integration are

the position error estimates from the GPS filter. These error estimates are the

first three states of the GPS filter. Again, the loose integration’s navigation filter

processes measurements at the 0.1 Hertz rate, but still provides a navigation solution

every second.

3-10




3.4 Simple, Low-Order Integration Example

This section presents a low-order integration example. This example will sim-
plify the tight and loose integrations, and provide insights for this research. The

example is simulated in Matlab’s [15] software extension, Simulink [24].

3.4.1 Setup. The loose and tight integration structure for this example
are the same as used for this research (see Figures 3.3 and 3.4). This example
however is for the one-dimensional case. The INS is modelled by two integrators,
with acceleration and noise inputs. The INS noise is modelled as a first-order Markov
process, the output of a first order lag, driven by zero-mean white Gaussian noise.
The GPS pseudorange is modelled by a constant plus a white discrete-time process
with a normal distribution. The first Kalman filter in the loosely-coupled integration
is a two-state filter modelling the two states of the INS. The second Kalman filter
is a three-state filter: two states to model the INS integrators, and a third state to
model the INS colored noise. The Kalman filter in the tightly-coupled integration is
the same as the second filter in the loose integration. The Kalman filter in the tight
integration is updated every second. Likewise, the first Kalman filter in the loose is
updated at the one second rate; the second filter is updated at the 10 second rate, as
is done for the actual hardware integration in this research. A detailed description

of this example with the Simulink code can be found in Appendix A.
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8.4.2 Results.  The results are from 10 Monte Carlo runs, each consisting
of 100 seconds in length (see Figures 3.5 and 3.6). In the plots, the dash-dot line
represents the mean filter error, the solid line is the actual mean error & one sigma
(one standard deviation), and the dashed line is the filter-predicted zero mean error
+ one sigma. The Kalman filters in both the tight and loose were optimally tuned
to reduce position errors. Figure 3.5 shows conservative tuning; however, a less
conservative tuning degraded the actual estimates. Analysis of 15 Monte Carlo runs
did not provide any further information. Also, run lengths of 1000 seconds presented

the same results except the plots were difficult to read.
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Figure 3.5 Loosely-Coupled Example Position Error

In an effort to compare the two plots, an ad hoc time average is taken. This
allows for each plot to be reduced to two meaningful scalars that can be compared.
For each plot, the mean value and first sigma is averaged across the length of the
runs to provide a time averaged mean error and time averaged standard deviation.
For these plots the time average was taken from the 10th through the 100th second
mark to allow for the initial transients to die off. The results, in Table 3.4, show the

tight integration outperforms the loose integration. Examining the plots, it can be
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Figure 3.6 Tightly-Coupled Example Position Error

seen the loose integration has a degraded performance mostly due to the propagation

cycle being 10 seconds long instead of 1 second, as in the case of the tight integration.

From this simple example, there is an inherent disadvantage for the loosely-
coupled integration. However, in the simplicity of this example the tightly-coupled
integration is capable of modelling all the characteristics of the INS and GPS to
include the noise inputs, which is impossible to do with real world data. Furthermore,
the extended Kalman filter must be used in real world applications and is not an
optimal filter. Thus, for the real world, the tight integration can never be truly
optimal and shows position performance comparable to a loosely-coupled integration

to within a few feet.

Table 3.4 Time Averaged Errors

[ Integration | Mean Error (ft) [ One Sigma (ft) |

Tight 0.0031 0.8340
Loose -0.4895 2.4626
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3.5 Chapter Summary

This chapter presented the designs used in this research. The integration con-
figurations were detailed. The GPS and INS error models used in the extended
Kalman filters were presented, as well as the filter measurement models. The chapter
concluded with a simple, low-order example providing some insights for the research.

With the integration designs and models described the results can be presented.
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IV. Results and Analysis

This chapter presents the results of the GPS/INS integration research. It
begins with a section on using real data in the integration instead of simulated data.
The chapter then analyzes the INS and the GPS position errors without any aiding
or integration. The results of the loose and the tight integrations are then presented,
followed by the comparison of the two. The chapter finishes with a section on other

comparison issues.

4.1 Integration with Real Data

This section is included because of the various insights that were discovered
during this research. Most AFIT research [8,20,29] has been done using simulated
data with truth models. This is especially significant for the GPS data. The GPS
data collected from an actual GPS receiver is not as smooth and refined as the
simulated data. For example, the GPS receiver could be tracking a satellite inter-
mittently, or the receiver might be giving bad pseudorange data for a satellite for
a few update cycles. In fact, a change in the order of the satellites being tracked
and down-loaded to the integration software causes problems. Thus, significant error
checking and/or massaging (keeping the satellite data in the same order) of the GPS

receiver’s data is essential to a satisfactory GPS/INS integration.

The extent of the raw GPS data processing needed, of course, depends on the
GPS receiver and how the data is down-loaded for use by the actual GPS/INS in-
tegration. Although this research was done in a post-processing environment, the
massaging of raw GPS data would be feasible in a real-time situation. The raw GPS
data preprocessing needed for this research included a check for bad pseudoranges,

and a routine to keep the order of the satellite data the same as the previous sample
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(to the extent possible). The use of bad pseudoranges in the GPS/INS integra-
tion caused large spikes in the navigation solution, sometimes to the extent of not

recovering. A change in the order of the satellites also caused spikes in the solution.

Although the integration algorithms had “bad data” checking routines, certain
types of corrupt data slipped through and caused wild perturbations in the integra-
tion’s performance (see Section 4.4.1). To keep the performance comparison between
the tight and loose integration simple, all the GPS and INS data sets were free of
corruption. Each run of INS data was examined independently so as to prevent
any anomalies. Likewise, each run of GPS data was examined independently using
a least squares algorithm to check for any corruptions. If a run of either INS or
GPS data was found to be corrupted, it was thrown out and a new run of data was

collected.

4.2 Data Collection

Ten sets of each the INS and the GPS data was collected. Collection was taken
over an approximate 25 minute period, but the analysis covered only the first 20
minutes to ensure full time coverage of data. Since this research is for the stationary
case, the GPS and INS data need not, and was ﬁot, taken simultaneously. The GPS
and INS data was, however, arbitrarily paired with each other and used in each of

the loosely-coupled and tightly-coupled integrations with the same pairs.

4.2.1 LN-93 Data. Each set of the LN-93 INS data was collected after
an initial alignment phase had been completed. The LN-93 has three alignment
modes: gyrocompass alignment, stored heading alignment, and in-flight alignment.
The alignment used in this research was the gyrocompass alignment mode. The

average position error and its standard deviation of all ten sets of INS data can be
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Figure 4.1 LN-93 Position Errors

seen in Figure 4.1. These plots were generated using the same algorithms used in

the GPS/INS integration algorithm, and reflect exactly what the INS output with

no integration or corrections involved. In these plots the dashed line represents the
mean error, and the solid line is the mean error 4 one sigma. By extrapolating these

plots, it can be seen that the errors are well within the LN-93’s 0.8 nm/hr drift rate

specification.

The latitude and longitude errors in Figure 4.1 have the normal characteristics

of inertial navigation systems. An inertial navigation system has low frequency error
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characteristics known as the Earth and Foucault rates and the Schuler Frequency
oscillations [1]. These low frequency characteristics, along with the gyro drift errors,
are the cause for the increasing latitude and longitude errors seen in Figure 4.1.
Since the errors continuously grow, it does not make sense to calculate a temporally

averaged error, as was done with the example in Chapter 3.

4.2.2 XR5-M6 Data. The GPS data collected was taken over different
hours of the day. This provided a variety of satellites received and gave a geometric
dilution of precision (GDOP) ranging from 2.25 to 5.12. The GDOP is a measure
of the geometrical “strength” of the received GPS satellite configuration. GDOP is
computed from the variance of the estimated user position in each axis and in the

user time offset [19].

GDOP = ,[o2, + 02, + 0%, + 0}, (4.1)

where 0, 0y, and 0, are the variance of the estimated user position in each axis
and oy, is the variance of the estimated user time offset. GDOP changes with time
as the satellites travel along their orbits. The value of the GDOP is a multiplier to

the measurement accuracy [2].

o =GDOP x o, (4.2)

where o is the position accuracy and o, is the measurement accuracy. Basically,
the higher the GDOP value, the worse the position accuracy will be. The average
position error and its standard deviation can be seen in Figure 4.2. In these plots
the dashed line represents the mean error, and the solid line is the mean error +
one sigma. The temporally averaged error was 246.46 £ 92.76 feet in latitude and

107.99 + 93.05 feet in longitude. As mentioned earlier, real data is not as smooth
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Figure 4.2 XR5-M6 GPS Position Errors

as simulated data. Such a case can be seen as a jump at the 810 second point where

one set of GPS data had satellite transitions.

These plots were generated using the same algorithms used in the GPS/INS

integration algorithm. This algorithm kept the one-second sample period, performed
the same checks for bad pseudorange data, and manipulated the data so that the
order of the received satellites was the same or as close to the same order as with
the previous set of data. All the GPS data collected, by chance, had at least four

satellites under track; had this not been the case, a GPS-only solution would not
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have been possible. The GPS data also included satellite transitions and satellite
drop outs. The data was evaluated for bad pseudorange data and found none. As
was mentioned in Section 4.1, any corrupt GPS data was thrown out; in fact, eight

of the 19 sets of GPS data collected had a corruption in it.

4.3 Integration Results

This section presents the results of the loose and tight GPS/INS integration
using actual hardware and real data. The results presented are position errors in
latitude and longitude, and velocity errors along the INS x-axis and y-axis. As stated
in the assumptions in Chapter 1, the INS received simulated barometric inputs to
the z-axis, so altitude and z-velocity errors are not presented. In all the plots, the
dotted line represents the mean filter error, the solid line is the actual mean error &
one sigma (one standard deviation), and the dashed line is the filter-predicted zero

mean error + one sigma.

4.3.1 Filter Tuning.  The EKF is very versatile and can be tuned for any
situation. The problem is that its performance may be excellent in the environment
for which it is tuned, but it may be rather lacking if conditions change, such as for
a failure or change in dynamics. In this research the filters were tuned such that
the best estimates of position and velocity errors could be attained. It should be
noted that the tuning is for this small set of data (10 runs), and for the stationary
case. For a more robust filter, tuning should be done in a mobile environment with
a large number of Monte Carlo runs (this research was limited due to computer and

software limitations).

4.3.2  Tight Integration. The tight integration results are presented in

this section. The tight integration position error plots are in Figure 4.3, and the
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Figure 4.3 Tight Position Errors

velocity error plots are in Figure 4.4. Tuning for the tight integration was easier
than for the loose, since there is only one filter. The dynamic driving noise values
and measurement noise values are shown in Table B.1 and Table B.2 of Appendix

B, respectively. Table B.2 gives the measurement values for the case when only four

satellites are used.

In the position error plots, the latitude temporally averaged error is -87.53 =+

31.13 feet. The longitude temporally averaged error is 154.13 £ 35.05 feet. The

plots show that the filter and the actual error estimates are stable; the plots are not
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Figure 4.4 Tight Velocity Errors

diverging off as with the position plots of the INS alone, see Figure 4.1. There is,
however, an obvious bias in the position error. This is attributed partially to the
fact that only 10 Monte Carlo runs were done. Had many more runs been done the
bias may be alleviated. The tuning values for the plots were obtained by provided

the best position and velocity error estimates.

For comparison purposes, the emphasis is placed on the sigma value of the

actual error. A smaller sigma value implies a tighter accuracy. The position sigma
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values of the tight integration is almost three times smaller than the GPS-alone

sigma values. This shows the significance of integration over a GPS system alone.

The velocity error plots also show stability of the filter and of the actual error
estimates. The mean values are close to zero. The x-axis velocity temporally aver-
aged error is -0.04233 £ 1.162 feet/second. The y-axis velocity temporally averaged
error is -0.1392 4 1.738 feet/second. The filter is tuned slightly on the conservative
side for these velocity components (most of the actual sigma values fall within the
filter sigma). The velocity plots are quite accurate, but it should be remembered
that this research is for the stationary case, and velocity was not part of the filter
measurements. The larger spikes are not extreme and are most likely due to various
jumps in the GPS data caused from satellite transitions (notice the spike at the
810 second point where one set of GPS data had a large jump caused by satellite

transitions).

4.8.8 Loose Integration. ~ The loose integration position error plots are in
Figure 4.5, and the velocity error plots are in Figure 4.6. This integration required
the tuning of two filters. In an actual implementation, the first filter (the generic INS
filter) would be tuned to give the best performance for all the INS’s that would be
used with it. For example, the F-16 can be configured with three different INS’s, so
the generic INS filter would be tuned for all three. In this research, both filters were
tuned for best overall results for the single INS used. The dynamic driving noise

and measurement noise values, @ and R, that gave the best response are shown in

Tables B.3, B.4, B.5, and B.6 of Appendix B.

In the position error plots, the latitude temporally averaged error is -85.48 +
32.69 feet. The longitude temporally averaged error is 153.49 £ 37.76 feet. These

plots show that the filter and the actual error estimates are stable. However, the
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Figure 4.5 Loose Position Errors

bias that was present in the tight integration position error estimates is also seen
here. The loose integration position sigma values outperform those of the GPS-only

sigma values by about three times. Likewise, the position error is not diverging as

the position errors of the INS-alone case does:

The velocity error plots are not as good as for the tight integration. The filter

sigma diverge to about 1.25 x 10* feet/second. The actual mean error, however,
remain close to zero. The actual sigma grows to about one foot/second for the

x-velocity and about 0.5 feet/second for the y-velocity. The x-axis velocity tempo-
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Figure 4.6 Loose Velocity Errors

rally averaged error is 0.1195 & 0.3704 feet/second. The y-axis velocity temporally

averaged error is 0.0411 £ 0.1511 feet/second.

4.3.4 GPS/INS Performance Comparison.  The tight and loose GPS/INS

integrations are compared for performance in x,y-axis position and velocity in this
section. Once again, the integration configurations and filter models were designed

to provide an “apples to apples” comparison. To make the comparison easier, the

temporal average is taken across the length of the run to provide a scalar value. The

results are summarized in Table 4.1.
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The tight and loose position error estimate sigma values are very close. The
loose velocity error estimates are comparable to the tight, but appear to be slowly
growing. A correction for this might be to add velocity measurements to the second
filter, using the velocity error estimates from the first filter. These velocity mea-
surements will be cross correlated with the position measurements and should be
modelled by.the measurement model of the navigation filter. This may keep the
loose integration’s velocity error estimates bounded and thus be very comparable in
performance to the tight integration. This research, with some refinements to the
loose integration, supports the idea that although a centralized filter is theoretically
optimal, when the filters are implemented in the real world where the theoretical
assumptions are violated and the models are not exact, the non-optimal cascaded

filter performs just as well.

Table 4.1 Tight vs Loose Time Averaged Errors

Position (ft) Velocity (ft/sec)
Integration Latitude | Longitude X-axis | Y-axis
Tight -87.53 £+ 31.13 | 154.13 £ 35.05 | -0.04233 + 1.162 | -0.1392 £ 1.738
Loose -85.48 + 32.69 | 153.49 £ 37.76 | 0.1195 £+ 0.3704 | 0.0411 £ 0.1511

4.4 Other Comparison Issues

The comparison between tight and loose integration goes beyond position and
velocity performance. Other issues for comparison would be the behavior of each
integration with corrupt data, and also the computational load for each. This section
presents one case of corrupt data and the computational load difference between the

two integrations.
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4.4.1 Integration With Corrupt GPS Data . All the data used as mea-
surements in the previous section was good, non-corrupt data. The GPS data was
screened for corruption or errors before being used in the integration filters. This
type of massaging of raw GPS data would be feasible in a real-time situation. How-
ever, the amount of bad data checking that could be done is limited, due to the fact
that it must be done within the filter update rate (one second for these integrations).
Furthermore, one cannot account for all types of erroneous data, thus some bad data
may slip by the data checking routines and be used in the filter. Therefore, a com-
parison of how the loose and tight integrations might behave under bad data would
be of interest. This section presents a case where corrupt GPS data is used in each

the tight and loose integrations.

The corrupt data used in this section is from actual GPS data taken from the
XR5-M6 GPS receiver (see Figure 4.7). These plots were made with a least squares
algorithm using only GPS data and only one run. A single run is used to show the
failure. The GDOP was around 3.7, which is considered good. The spike in the data
reached above 8 x 108 feet in latitude and approached 4 x 10° feet in longitude. The
tuning values used in the tight and loose integration filters are the same as for the

case when good data is used, as shown in the previous section.

The results of the tight integration are shown in Figures 4.8 and 4.9. Both the
position and velocity reflect the corrupt data by also showing a spike in the error
estimates. Recall that the Kalman filters are estimating the INS errors, so a spike in
the error estimate will drastically affect the overall navigation solution. The latitude
error estimate spikes up to 2.5 x 10° feet and, after about 350 seconds of oscillation,
recovers to within 500 feet at the 590 second point. The longitude error estimate

spikes up above 1.5 x 10° feet and recovers to within 500 feet at the 500 second point,
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Figure 4.7 XR5-M6 GPS Position Error

after about 260 seconds of oscillation. Both position error estimates return to within

200 feet by the end of the 1200 second run.

The x-axis velocity error estimate spikes up to 2x 10° feet/second and stabilizes
to within 500 feet/second at the 500 second point. The y-axis velocity error estimate
spikes up just short of 4 x 10° feet /second and stabilizes to within 500 feet/second at
the 490 second point. Both velocity error estimates return to within 50 feet/second

by the end of the 1200 second run.
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The results of the loose integration are shown in Figures 4.10 and 4.11. Once
again the corrupt data causes a spike in the loose integration error estimates. The
latitude error estimate spikes up to 13 x 10* feet, and the longitude error estimate
spikes up to 18 x 10* feet. These spikes are over an order of magnitude less than
that for the tight case. Both the latitude and longitude recover to within 500 feet
at about the 300 second point, without any oscillations. By the end of the run both

are within 200 feet of error.
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Figure 4.9 Tight Velocity Errors

The x-axis velocity error estimate spikes up only to 320 feet/second and the

y-axis velocity error estimates spikes up to 475 feet/second. Both velocities stabilize

to within 10 feet/second by the 275 second mark.

It appears that for this corrupt data case, the loose integration behaves in a

less dramatic manner than does the tight. The loose error estimates in position do

not spike up as high as the tight. Although the actual magnitude of the spike is
not so critical, the loose recovers much more quickly and with fewer oscillations.

Likewise, the loose error estimates in the x,y-axis velocities do not spike nearly as
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Figure 4.10 Loose Position Errors

highly as in the tight case and also recovers extremely quickly. This implies the loose
integration handles this corrupt data case much better than the tight integration.

In all, the loose recovered from the corrupt data within 50 seconds for the position

and within 30 seconds for the velocities.

This section demonstrated the response of the tight and loose integration under

bad GPS data. It was found that the loose integration behaved gracefully and with a

quicker recovery time than the tight integration. If adaptive or self-tuning estimation

algorithms had been used, a comparison of the tight and loose filter residuals should
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models and estimation, such as Maybeck (Reference [17]).
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be examined for the ease of fault detection. The residual provides the information
to detect such an error as the bad GPS data in the above case. Once an error is
detected the self-tuning estimation algorithms can readjust the noise strengths in the
filter’s internal model so that the filter is continually “tuned” as well as possible [17].

Further information on adaptive estimation can be found in books on stochastic

The computational loading is the num-

ber of operations required for one time propagation and one measurement update;




see Section 2.5 for the equations used to calculate the number of operations. The
integrations used in this thesis are of the conventional Kalman filter type. If these
integrations were to be implemented in actual avionics the U-D factorization method
would be used for enhanced numerical characteristics; thus the computational load-
ing is computed for both (see Table 4.2). Comparing the computational load of
the 27-state filter with the 25-state filter shows how computationally arduous the

Kalman filter becomes as the number of states increase.

Table 4.2 Computational Load

Conventional Kalman Filter U-D Factorization
Adds | Multiplies | Divides || Adds | Multiplies l Divides
[ Tight | 27-State [ 43,983 | 46413 | 4 [ 54486 | 57,564 | 134 |
Loose | 12-State | 4,428 4,968 4 5,406 5,964 39
25-State | 34,225 | 36,275 3 42,625 | 45,275 99

The tight integration uses a single 27-state Kalman filter performing a prop-
agate and a measurement update for every navigation solution output it provides.
The total number of operations are 90,400 for the conventional Kalman filter and
112,184 for the U-D factorization method. These values are computed with four

measurements, as if exactly four satellites are received.

The total numbers of operations for the loose integration (both filters) are
79,903 for the conventional Kalman filter and 99,428 using the U-D factorization
method. These totals are for both filters doing a propagate and an update. However,
the loose integration uses a 12-state Kalman filter performing a propagate and a
measurement update plus a 25-state Kalman filter performing a propagate cycle for
every navigation solution output. The 25-state filter only performs a measurement

update at one tenth the rate of the navigation solution output. Therefore, the total




number of operations for the loose integration are high estimates. Again, the 12-state

filter assumes four measurements, and the 25-state filter uses 3 measurements.

4.5 Chapter Summary

This chapter presented the results of the tight and loose GPS/INS integration
study. It discussed the preprocessing of the raw data, and showed plots of the INS
and GPS alone. The tight integration results were presented next, followed by the
loose integration results. The performance comparison showed very little difference
in position accuracy, supporting the adequacy of the loose integration. This showed
that in the real world the theoretically optimal tight integration loses its optimality
and is comparable to the non-optimal loose integration. Corrupt data was presented
to the integrations and the loose dramatically outperformed the tight in its smooth,
quick recovery. Finally, the computational loading for each integration was provided

and showed the computational burden the tight has over the loose.
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V. Conclusions and Recommendations

This chapter presents the conclusions drawn from the results presented in
Chapter 4 and recommendations for future AFIT research. The conclusions gen-
eralize the results of the loose and tight GPS/INS integration study. The recom-
mendations points out potential problem areas identified in the research, provides

suggestions to remedy these shortcomings, and recommends future topics to be in-

cluded in future AFIT theses.

5.1 Conclusions

The research presented in Chapter 4 provided several interesting conclusions
between cascaded and centralized GPS/INS integrations. The integrations and
Kalman filters used in the research were designed to provide a fair comparison. Real
data from actual hardware was used in the integration to maintain a comparison
that is as realistic as possible. All errors in the real world cannot be modelled and

thus the tight integration is no longer optimal.

The performance of the tight integration is then compared to the theoretically
non-optimal loose integration. The research in Chapter 4 presented plots and scalar
values of latitude and longitude position errors, and x,y-axis velocity errors for both
integration configurations. The results showed very small differences between the
tight and loose integration in position performance, with the tight being slightly
more accurate. Although the loose integration’s actual errors were comparable to
those of the tight, there was a slight divergence. Velocity updates to the second filter
of the loose may bound the velocity solution and thus make the loose comparable
to the tight. Further comparison issues were then addressed: corrupt data and

computation load.
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The two integrations were subjected to corrupt GPS data. Both tight and loose
responded to the corrupt data with a spike in its position and velocity errors. How-
ever, the tight integration went thréugh large oscillations before recovering, whereas
the loose integration had no oscillation and recovered rather quickly. A further com-
parison on error detection via the filter residuals may also provide tradeoffs between

the tight and loose integration.

Computer loading for the two integrations were then examined. The loose
integration requires the computations for two filters, but these filters are of smaller
order than the single filter of the tight integration. The way the calculations are
required for the Kalman filter makes the loose integration more desirable with regards

to computer loading.

In summary, the tight integration had a very slight advantage over the loose in
estimating the position and velocity errors. However, for the corrupt GPS data case
used in this research the loose integration provided a smoother and quicker recovery.
Finally, as was expected, the loose integration requires significantly less computation

than does the tight integration.

5.2 Recommendations

The following section provides this researcher’s recommendations for future

AFIT research topics and enhancements to GPS/INS integrations.

5.2.1 Preprocessing of GPS Data.  Working with real data presented many
unexpected GPS/INS integration difficulties. The amount of fluctuations in the GPS
data was the biggest surprise. If the idea holds that the smoother the input data to
the integration is, the better the outputs will be, then preprocessing of the integra-

tion data is desirable. In this research, small amounts of preprocessing of GPS data
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was carried out. Small items like maintaining the order of the pseudoranges from
one measurement to the next, and a rough check for bad pseudoranges, were accom-
plished. A good criterion for determining a bad pseudorange or corrupt ephemeris
data was not established. This is especially difficult in the real-world when no truth
data is available for comparison. One way to enhance the GPS/INS integrations

might be to investigate the preprocessing of raw data.

5.2.2 Measurement Models.  This research used only position as the mea-
surements for all the filters in both the loose and tight integration. Future research
should include velocity measurements to the filters. The delta-range data from the
GPS can be differenced with the INS velocity with respect to the satellites to provide
measurements to the GPS filter of the loose and the only filter of the tight. With
regards to the navigation filter of the loose integration, the three velocity error states
of the GPS filter can be used as measurements to the navigation filter. The velocity
measurements will be cross correlated with the position measurements and should
be modelled as so by the measurement model of the navigation filter. This velocity
updates may improve on this research’s problem with the second filter velocity diver-
gence. In fact, all the INS states of the GPS filter can be used as measurements to
the navigation filter with proper cross correlation terms in the measurement model.
However, it should be remembered that an increase in the number of measurements
increases the computational loading. A study on the navigation solution performance

with this increased number of measurements would be of interest.

5.2.8 GPS/INS Integration with Feedback. ~ With the recent AFIT acquisi-
tion of a Rockwell inertial measurement unit (IMU), a feedback GPS/INS integration
configuration can be done. The inertial measurement unit outputs raw accelerometer

and gyroscopic measurements. Since these measurements are not processed inside
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the box as an INS does, a feedback configuration can be achieved without the prob-
lems of having a real-time system. The current problem with real-time systems at
AFIT is the lack of speed, since the software programs have to keep up in a real-time
scenario. The Rockwell IMU will allow more control of the “INS” in a post-processing
environment. First, a computer program must be made to use the raw accelerometer
and gyroscopic measurements to output an INS navigation solution. Estimates from
a GPS/INS integration can be used as added inputs to the computer program ;and
thus, an INS using feedback in a post-processing environment is created. Research
of this type using real data in a GPS/INS feedback configuration will be a first for
AFIT.

5.2.4 Mobile GPS/INS Integration. The Rockwell inertial measurement
unit is a compact battery operated unit. This finally gives AFIT the opportunity to
take its INS/GPS integration on the road. The Rockwell IMU along with its battery
and a laptop computer for data collection can be easily secured onto a pallet and
taken on the road in a small vehicle. The XR5-M6 Navstar GPS receiver can be
fitted with a second laptop computer and placed in the same vehicle with the IMU.
An accurate method for timing of the collection of the IMU and GPS data would

need to be designed.

5.8 Summary

Hopefully, the results of this research and the recommendations provided will
help the AFIT Navigation, Guidance, and Control section in attaining its goal of
developing a mobile integrated system. This chapter has presented the conclusions

and recommendations from this research.
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Appendiz A. Swmple, Low-Order Integration

This appendix provides a complete breakdown of the simple, low-order inte-
gration example in Chapter 3. The example was simulated in Matlab’s Simulink
software. The integration configurations were done in block diagram format using
Simulink’s preprogramed blocks with the exception of the Kalman filter blocks. The

Kalman filters were programmed as Matlab functions using m-files.

Figures A.1 and A.2 show the loose and tight GPS/INS integration configura-
tions. The INS, Orbit, and GPS blocks are common to both configurations. The INS
block is shown in Figure A.3, and consists of two integrators driven by colored noise
and an acceleration input. The colored noise is modelled as a first-order Markov
process driven by zero-mean white Gaussian noise. The Orbit block is shown in Fig-
ure A.4. This block simulates the ephemeris data of a GPS satellites by providing
the location of the satellite in this simulation (it is at a constant location), and thus
computing the INS range to satellite. The GPS block is shown in Figure A.5 and
simulates the pseudorange outputs of a GPS receiver. This block receives the true
location of the vehicle throughout the run of the simulation and adds white Gaussian
noise to simulate a pseudorange. The Profile block, shown in Figure A.6, reads in

the acceleration input and provides the true position of the vehicle.

The Kalman filter blocks are m-files programmed as Matlab functions. The
algorithm used is the standard (versus extended) discrete-time Kalman filter algo-
rithm. The tight filter and the first filter in the loose has an update rate of one

second. The second fitler in the loose updates every ten seconds.

The Simulink integration block diagrams are run from a shell, script file. This

shell provides the Kalman filter initial conditions, vehicle acceleration inputs, random
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number seeds, number of Monte Carlo runs and run length, and the plotting routines.
The shell calls the Simulink diagrams using the ‘tk45’ command, which is the Runge-

Kutta fifth order integration function.

<5
- MATLAB
MATLAB 4 4 Function[
Function KF2
K H

GPS
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Figure A.2 Tightly-Coupled Integration
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Appendiz B. Filter Tuning Parameters

This appendix provides the dynamics driving noise strength, @, and measure-
ment variance, R, tuning values used in the tight and loose GPS/INS integrations.
The tuning parameters for the 27-state filter of the tight integration is shown in
Tables B.1 and B.2. The tuning parameters for the 12-state filter of the loose inte-
gration is shown in Tables B.3 and B.4. The tuning parameters for the 25-state filter
of the loose integration is shown in Tables B.5 and B.6. The 12-state, and 27-state
filter measurement noise in Tables B.4 and B.2 reflect the measurements from four
satellites, although the number of measurements may vary depending on the number
of satellites received. The number of measurements for the 25-state filter is always

three (3 positions).
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Table B.1 Dynamic Driving Noise Values for 27-State Filter

| Element of Q | Definition | Value
(1,1) X component of vector angle from true to computer frame | 1 x 10713
(2,2) Y component of vector angle from true to computer frame | 1 x 10713
(3,3) 7. component of vector angle from true to computer frame | 1 x 10713
(4,4) X component of vector angle from true to platform frame | 1 x 10?
(5,5) Y component of vector angle from true to platform frame | 1 x 10?
(6,6) 7 component of vector angle from true to platform frame |1 x 10?
(7,7) X component of error in computer velocity 1.5 x 10?
(8,8) Y component of error in computer velocity 1.5 x 102
(9,9) 7 component of error in computer velocity 1.5 x 10?
(10,10) Barometer correlated bias noise error 1x10°°
(11,11) GPS user clock bias 1x10°
(12,12) GPS user clock drift 5 x 10°
(13,13) X-component of gyro drift repeatability 3x1073
(14,14) Y-component of gyro drift repeatability 3 x1073
(15,15) Z-component of gyro drift repeatability 3x 1073
(16,16) X-gyro misalignments about Y axis 5x 1076
(17,17) Y-gyro misalignments about X axis 5% 107°
(18,18) Z-gyro misalignments about X axis 5x107°
(19,19) X-gyro misalignments about Z axis 5x 107
(20, 20) Y-gyro misalignments about Z axis 5x107°
(21,21) Z-gyro misalignments about Y axis 5% 1076
(22,22) X-component of accelerometer bias repeatability 2.5 x 1073
(23,23) Y-component of accelerometer bias repeatability 2.5 x 1073
(24,24) Z-component of accelerometer bias repeatability 2.5 x 1073
(25,25) X-component of accelerometer and velocity 144 x 107°
quantizer scale factor error
(26,26) Y-component of accelerometer and velocity 144 x 107
quantizer scale factor error
(27,27) Z-component of accelerometer and velocity 144 x 107°

quantizer scale factor error

Table B.2 Sensor Measurement Noise Values for 27-State Filter

| Element of R | Definition | Value |
) Satellite 1 | 100
2) Satellite 2 | 100
,3) Satellite 3 | 100
4)

Satellite 4 | 100
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Table B.3 Dynamic Driving Noise Values for 12-State Filter

| Element of Q | Definition | Value

(1,1) X component of vector angle from true to computer frame | 5 x 107*?
(2,2) Y component of vector angle from true to computer frame | 5 x 1073
(3,3) 7 component of vector angle from true to computer frame | 5 x 10~**
(4,4) X component of vector angle from true to platform frame | 1 x 10°
(5,5) Y component of vector angle from true to platform frame | 1 x 10°
(6,6) 7 component of vector angle from true to platform frame |1 x 10°
(7,7) X component of error in computer velocity 1.5 x 10°
(8,8) Y component of error in computer velocity 1.5 x 10°
(9,9) Z component of error in computer velocity 1.5 x 10°

(10,10) Barometer correlated bias noise error 1x10°°

(11,11) GPS user clock bias 1.5 x 1072

(12,12) GPS user clock drift 1 x 10?

Table B.4 Sensor Measurement Noise Values for 12-State Filter

| Element of R | Definition | Value [

) Satellite 1 | 50
2) Satellite 2 | 50
,3) Satellite 3 | 50
4) Satellite 4 | 50
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Table B.5 Dynamic Driving Noise Values for 25-State Filter

I Element of Q | Definition | Value
(1,1) X component of vector angle from true to computer frame | 1 x 102
(2,2) Y component of vector angle from true to computer frame | 1 x 10?
(3,3) 7. component of vector angle from true to computer frame | 1 x 102
(4,4) X component of vector angle from true to platform frame |1 x 10®
(5,5) Y component of vector angle from true to platform frame |1 x 108
(6,6) 7. component of vector angle from true to platform frame |1 x 108
(7,7) X component of error in computer velocity 1.5 x 10'°
(8,8) Y component of error in computer velocity 1.5 x 10%°
(9,9) 7, component of error in computer velocity 1.5 x 1019

(10,10) Barometer correlated bias noise error 1 x10°
(11,11) X-component of gyro drift repeatability 3x1073
(12,12) Y-component of gyro drift repeatability 3 x1073
(13,13) Z-component of gyro drift repeatability 3 x 1073
(14,14) X-gyro misalignments about Y axis 5x107°
(15,15) Y-gyro misalignments about X axis 5x107°
(16,16) Z-gyro misalignments about X axis 5x 107°
(17,17) X-gyro misalignments about 7 axis 5x107°
(18,18) Y-gyro misalignments about Z axis 5x107°
(19,19) Z-gyro misalignments about Y axis 5x107°
(20,20) X-component of accelerometer bias repeatability 2.5 x 1073
(21,21) Y-component of accelerometer bias repeatability 2.5 x 1073
(22,22) Z-component of accelerometer bias repeatability 2.5 x 1073
(23,23) X-component of accelerometer and velocity 144 x 107°
quantizer scale factor error
(24,24) Y-component of accelerometer and velocity 144 x 107
quantizer scale factor error
(25,25) Z-component of accelerometer and velocity 144 x 107°
quantizer scale factor error
Table B.6 Sensor Measurement Noise Values for 25-State Filter

| Element of R | Definition | Value |
(1,1) X component of vector angle from true to computer frame | 100
(2,2) Y component of vector angle from true to computer frame | 100
(3,3) Z component of vector angle from true to computer frame | 100
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