
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1995

The Application of Hybridized Genetic Algorithms to the Protein The Application of Hybridized Genetic Algorithms to the Protein

Folding Problem Folding Problem

Robert L. Gaulke

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gaulke, Robert L., "The Application of Hybridized Genetic Algorithms to the Protein Folding Problem"
(1995). Theses and Dissertations. 6142.
https://scholar.afit.edu/etd/6142

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F6142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6142?utm_source=scholar.afit.edu%2Fetd%2F6142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

■^"teöfN

■.*?Vi.'v.

^;:.%'^ .^5~^f^ /''\\^ -::

THE APPLICATION OF HYBRIDIZED

GENETIC ALGORITHMS

TO THE PROTEIN FOLDING PROBLEM

THESIS
Robert L. Gaulke
Captain, USAF

AFIT/GCS/ENG/95D-03

■ ■■:■ -;<■: ■>?■>"

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

WTC QUALITY INSPECTED 1

■""■

AFIT/GCS/ENG/95D-03

THE APPLICATION OF HYBRIDIZED

GENETIC ALGORITHMS

TO THE PROTEIN FOLDING PROBLEM

THESIS
Robert L. Gaulke
Captain, USAF

AFIT/GCS/ENG/95D-03

mm M
Approved for public release; distribution unlimited

AFIT/GCS/ENG/95D-03

The Application of Hybridized

Genetic Algorithms

to the Protein Folding Problem

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Robert L. Gaulke, B.S.C.S.

Captain, USAF

December 19, 1995

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank all those who helped me in this research. My first thanks go

to my thesis advisor, Dr. Gary Lamont. I thank him for his patience and endurance of this

strong-willed student. I also thank my sponsor, Dr. Ruth Pachter, for spending her time in

the meetings and for setting up the Wright Labs presentation which got me on my way. I

would also like to thank the members of my thesis committee, Major Gregg Gunsch and

Dr. Eugene Santos for their time and teaching in the Artificial Intelligence sequence

coursework and for their input for this thesis effort.

I am deeply indebted to Larry Merkle and George Gates for their sacrifice in time

and energy on my behalf. They spent many hours in front of blackboards and monitors

explaining algorithmic and molecular concepts to me. I could not have completed this

research without the insight gained from our face-to-face and e-mail discussions. Also, I

thank Larry again for not always just giving me the answer, but for making me think.

I also thank the following for insight offered and for keeping my sense of humor

intact: Kevin Anchor, Chuck Beem, Randy Broussard, Jerry Cochran, Darin Goosby,

Shawn Hannan, Vince Hibdon, Don Hill, Dave Kaneshiro, Pedro Lima, Conrad

Masshardt, Shawn Northrop, Ding-Yuan "Steven" Sheu, Tom Rathbun, Ed Williams, and

Oswaldo Zanelli.

Lastly, I wish to thank my parents (both sets!) and my brother and sister for their

love and support. Most importantly, my love and thanks go to my wife, Lisa, for her

understanding, support, and for never believing me when I said, "I'm just playing solitaire

while it compiles."

Table of Contents

ACKNOWLEDGMENTS y

TABLE OF CONTENTS yj

TABLE OF FIGURES vi

ABSTRACT. „ vyi

L INTRODUCTION 1

BACKGROUND 2
Algorithmic Complexity. 2
Genetic Algorithms 3
The Protein Folding Problem 4

PROBLEM STATEMENT 7
RATIONALE 8
METHODOLOGY %

Literature Review p
Sofiware Review p
Algorithm Modifications/Extensions 9
Implementation Modifications/Extensions 9
Experiment Design and Implementation JO
Analysis JQ

SUMMARY 10

H. LITERATURE REVIEW - THE PROTEIN FOLDING PROBLEM. 12

THE PROTEIN FOLDING PROBLEM 12
SUMMARY 16

HL LITERATURE REVIEW - GENETIC ALGORITHMS 17

GENETIC ALGORITHMS , 17
Background. JJ

The Simple Genetic Algorithm 79
Fundamental Theorem of Genetic Algorithms 23

SUMMARY 26

IV. LITERATURE REVIEW - HYBRIDIZATION TECHNIQUES. 27

LOCAL MINIMIZATION 27
Conjugate Gradient Techniques 28
Simulated Annealing 30
Local Minimization Application Strategies 37
Niching ^2
Niching Summary 3j

SUMMARY 36

V. DESIGN. MODD7ICATION. AND IMPLEMENTATION 37

THE AFIT IMPLEMENTATION 37
Inputs to the Implementation 3g
Outputs of the Implementation ßp

MODIFICATIONS/ADDITIONS TO IMPLEMENTATION 40

iii

Local Minimization JJ

CARTESIAN COORDINATE TRANSFORMATION OF IMPLEMENTATION ..42
Background. 42
Implementation of Cartesian Coordinates System 4$

CALCULATION OF FIRST DERIVATIVE 46
FLETCHER-REEVES-POLAK-RIBIERE ALGORITHM !.'.'." .'49

Discussion ^p
Implementation $Q

Implementation of Niching j2
Implementation of Tournament Selection in the Simple GA 54
Genetic Algorithm Implementation Options 55

SUMMARY 56

VL EXPERIMENTATION AND ANALYSTS. , 57

DESIGN OF EXPERIMENTS 57

LOCAL MINIMIZATION EXPERIMENTS 59
Replacement of components jp
Summary of component replacement experiments 52
Replacement of strings ^2
Summary of string replacement experiments 7/

SUMMARY OF LOCAL MINIMIZATION EXPERIMENTS 72
NICHING EXPERIMENTS""...". 72

Number of peaks experiments j$
String comparisons 77
Niching with string replacement experiments 79

SUMMARY OF NICHING EXPERIMENTS 32
EXECUTION TIMES COMPARISON 83
SUMMARY 85

VIL CONTRIBUTIONS. CONCLUSIONS. AND FUTURE RECOMMENDATIONS 86

CONTRIBUTIONS 86

Theoretical contributions g$
Application Contributions gg

CONCLUSIONS 89

FUTURE RECOMMENDATIONS ' 91
SUMMARY 93

APPENDIX A - PARALLEL/DISTRIBUTED COMPUTING. 94

PARALLEL COMPUTING 94
DISTRIBUTED COMPUTING 97

PVM- ilZIIIIIIIIIZZIIIIZZfB
MPL 98

Issues of Distributed Computing pp
SUMMARY JOQ

APPENDIX B - MESSY GENETIC ALGORITHMS 101

The Fast Messy Genetic Algorithm 1Q4
Fast Messy Genetic Algorithms and Local Minimization 705

APPENDIX C - ALTERING THE REPLACEMENT PERCENTAGES 107

APPENDIX D - LISTING OF IMPLEMENTATION MODIFICATIONS/ADDITIONS 109

Code modifications in -genetic/TooMt/CHARMm for Thompson's (56) transformation 109
Coding in -genetic/Toolkit/CHARMm for conjugate gradient minimization 109

iv

Coding activities in -genetic/Toolkit for local minimization strategies 110
Coding activities in -genetic/Toolkit/Simple for niching strategies Ill

BIBLIOGRAPHY 112

INDEX „117

VITA 121

Table of Figures

FIGURE 1: AN EXTENDED CONFORMATION OF [MET]-ENKEPHALIN 5
FIGURE 2: EXAMPLE MOLECULE GEOMETRY 14
FIGURE 3: CHARMMENERGY MODEL 15
FIGURE4: SIMPLE GENETIC ALGORITHM 20
FIGURE 5: ROULETTE WHEEL SELECTION 21
FIGURE 6: EXAMPLE OF CROSSOVER 22
FIGURE 7: EXAMPLE OF MUTATION 22
FIGURE 8: PROBABILITY OF SCHEMA SURVIVAL UNDER CROSSOVER 24
FIGURE 9: PROBABILITY OF SCHEMA SURVIVAL UNDER MUTATION 24
FIGURE 10: EFFECT OF REPRODUCTION OPERATOR ON THE SCHEMATA 25
FIGURE 11: SCHEMA THEOREM ZZZ.ZZZZZZ.25
FIGURE 12: SIMPLE GENETIC ALGORITHM WITH LOCAL MINIMIZATION STEP 28
FIGURED: GRADIENT OF A FUNCTION 29
FIGURE 14: MATRTX REDUCTION WITH CONJUGATE GRADIENT TECHNIQUE '..29
FIGURE 15: SIMULATED ANNEALING ALGORITHM 30
FIGURE 16: PHENOTYPIC DISTANCE CALCULATION 34
FIGURE 17: RADIUS OF THE HYPERSPHERE 34
FIGURE 18: SIGMA SHARE CALCULATION '"35
FIGURE 19: CALCULATION OF NICHE COUNT35
FIGURE 20: AFIT IMPLEMENTATION 37
FIGURE 21: Z-MATRLX FORMAT 38
FIGURE 22: EXAMPLE LINE OF Z-MATRTX ^."."39
FIGURE 23: INPUT AND OUTPUT OF AFIT IMPLEMENTATION""40
FIGURE 24: CHARMM ENERGY MODEL ..."'..42
FIGURE 25: SAMPLE COORDINATES SYSTEMSA3
FIGURE 26 :B-MATRTX REPRESENTATION OF AN ATOM 43
FIGURE27: B2MATRTX .ZZZZZZZZZZZZZZZZZZZZZZ"44
FIGURE 28 :B3MATRrx Z.ZZZZZZZZZZZZZZZZ. 44
FIGURE 29: A, MATRTX ZZZZZZZZZZZZZZZZZ". 44
FIGURE30: A2 MATRTX ZZZZZZZZZZZZZZZZ. 45
FIGURE 31: A3 MATRTX '^"^''"ZIZZ'.'.. 45
FIGURE 32: DERIVATIVE OF THE NON-BONDED ENERGY ZZZZZZZZZZZZZ.46
FIGURE 33 POSITIONAL PARTIAL DERIVATIVE ZZZZZZZZZZZZZZ.Z 47
FIGURE 34: CALCULATION OF INTERATOMIC DISTANCE PARTIAL '"47
FIGURE 35: NON-BONDED TERM OF THE ENERGY FUNCTION".48
FIGURE 36: DERIVATIVE OF THE NON-BONDED TERM Z.ZZZ.48
FIGURE 37: ^EQUATION 50

FIGURE 38: EXAMPLES OF BRACKETING A POINTZZ.Z 50
FIGURE 39: LOCAL MINIMIZATION BRACKETING STEPS 51
FIGURE 40: PHENOTYPIC SHARING ALGORITHM ZZZZZZZZZZZZZZ.'. 52
FIGURE 41: DIHEDRAL DECODING SCHEME 52
FIGURE 42: DISTANCE CALCULATION OF DIHEDRAL ANGLES .ZZZ 53
FIGURE43: EXAMPLE "IN" FILE ZZZZZZZZZ. 55
FIGURE 44: PARTIAL LISTING OF "IN" FILE OPTIONS ZZZZZZZZZZZZZ. 56
FIGURE45: DIHEDRAL ANGLES (IN DEGREES) FOR ACCEPTED öP7WCMOF(MET]-ENKEPHALIN 57
FIGURE 46: FITNESS PROPORTIONATE COMPARISON OF DIHEDRAL REPLACEMENT PERCENTAGESZ 60
FIGURE 47: TOURNAMENT SELECTION DIHEDRAL REPLACEMENT EXPERIMENTS 61
FIGURE 48: TOURNAMENT SELECTION STRING REPLACEMENT STRATEGIES 63

VI

FIGURE 49: STATISTICAL COMPARISON OF TOURNAMENT SELECTION STRING REPLACEMENT MINIMUM
ENERGIES 64

FIGURE 50: FITNESS PROPORTIONATE STRING REPLACEMENT STRATEGIES 65
FIGURE 51: STATISTICAL COMPARISON OF FITNESS PROPORTIONATE REPLACEMENT STRATEGIES 66
FIGURE 52: MOST SIMILAR STRING OF FITNESS PROPORTIONATE 100% REPLACEMENT EXPERIMENT TO

OPTIMUM 67

FIGURE 53: BIT REPRESENTATION OF OPTä^L CONFORMATION OF [MET]-ENKEPHAUN 67
FIGURE 54: RESULTS OF STRING COMPARISON OF OPTIMUM AND MOST SIMILAR STRING 67
FIGURE55: DIHEDRAL ANGLES OF THE MOST SIMILAR STRING OF THE 100% REPLACEMENT EXPERIMENT 68
FIGURE 56: COMPARISON OF TOURNAMENT AND FITNESS PROPORTIONATE SELECTION STRATEGIES 69
FIGURE 57: SELECTION STRATEGY COMPARISON OF STANDARD DEVIATIONS 70
FIGURE 58: COMPARISON OF STRING VERSUS DIHEDRAL REPLACEMENT 70
FIGURE 59: SHARING EXPERIMENTS-NUMBER OF PEAKS 73
FIGURE 60: Our FILES FROM NICHING EXPERIMENTS 74
FIGURE 61: SGA ALONE VERSUS NICHING STRATEGIES 75
FIGURE 62: NICHING FINAL GENERATION STATISTICS 76
FIGURE 63 :Brr REPRESENTATION OF OPTIMUM SOLUTION OF [MET]-ENKEPHAUN 77
FIGURE 64: MOST SIMILAR STRING FROM NICHING WITH 224 PEAKS EXPERIMENT 77
FIGURE 65: BIT-COMPARISON OF THE ACCEPTED OPTIMUM AND THE MOST SIMILAR SOLUTION OF NICHING 78
FIGURE 66: DIHEDRAL ANGLES OF THE MOST SIMILAR NICHING 224 PEAKS SOLUTION 79
FIGURE 67: NICHING WITH 224 PEAKS AND DELAYED STRING REPLACEMENT 80
FIGURE 68: NICHING WITH 324 PEAKS AND DELAYED STRING REPLACEMENT 81
FIGURE 69: COMPARISON OF EXECUTION TIMES 84
FIGURE 70: COMPARISON OF ENERGIES FOUND BY THE VARIOUS STRATEGIES (BEST ARE HIGHLIGHTED)....... 91
FIGURE 71: DERIVATION OF THE ISOEFFICIENCY FUNCTION 96
FIGURE 72 :MGA POPULATION SIZE WITH STRING-LENGTH (1) 101
FIGURE 73: MESSY GENETIC ALGORITHM 102
FIGURE 74: EXAMPLE OF CUT-AND-SPLICE 103
FIGURE 75: FAST MESSY GENETIC ALGORITHM 105
FIGURE 76: FAST MESSY GENETIC ALGORITHM WITH LOCAL MINIMIZATION 106
FIGURE 77: MINIMIZATION SEGMENT OF ENERGY.C SOURCE FILE 108

vu

Abstract

The protein folding problem consists of attempting to determine the native

conformation of a protein given its primary structure. This study examines various

methods of hybridizing a genetic algorithm implementation in order to minimize an energy

function and predict the conformation (structure) of [Met]-enkephalin.

Genetic Algorithms are semi-optimal algorithms designed to explore and exploit a

search space. The genetic algorithm uses selection, recombination, and mutation

operators on populations of strings which represent possible solutions to the given

problem.

One step in solving the protein folding problem is the design of efficient energy

minimization techniques. A conjugate gradient rninimization technique is described and

tested with different replacement frequencies. Baldwinian, Lamarckian, and probabilistic

Lamarckian evolution are all tested.

Another extension of simple genetic algorithms can be accomplished with niching.

Niching works by de-emphasizing solutions based on their proximity to other solutions in

the space. Several variations of niching are tested.

Experiments are conducted to determine the benefits of each hybridization

technique versus each other and versus the genetic algorithm by itself. The experiments

are geared toward trying to find the lowest possible energy and hence the minimum

conformation of [Met]-enkephalin. In the experiments, probabilistic Lamarckian strategies

were successful in achieving energies below that of the published minimum in QUANTA

Vlll

The Application of Hybridized Genetic Algorithms
to the Protein Folding Problem

I. Introduction

Since the influx of computers into our culture began, we have been steadily

increasing our reliance on their power to solve problems efficiently and accurately. As we

attempt to solve more difficult problems, we have to work with larger search-space

dimensions. These larger search space dimensions can result in lengthy solution times.

So, we have to find ways beyond hardware (e.g. more powerful CPU chips) to speed up

the process of finding solutions to our problems.

At the Air Force Institute of Technology (AFIT), we are studying two techniques

for solving large problems quickly. First, there has been research in the areas of semi-

optimal algorithms (5, 17, 43). As their name implies, semi-optimal algorithms solve

problems by finding user-defined good solutions which are not necessarily (and frequently

not) optimal. Semi-optimal algorithms offer a relatively fast way to get a quality solution

to an extremely complex problem. (17, 34) Also, there has been ongoing research in the

potential gains of Parallel and Distributed Computing (4, 17). Parallel computing involves

efficiently dividing tasks to be simultaneously executed on multiple processors in order to

realize some speedup versus execution on a single processor (34). Distributed computing

involves dividing tasks among several systems (e.g. a group of workstations) to realize

some speedup (48).

This particular thesis effort focuses on the first technique which is to apply semi-

optimal algorithmic strategies in effort to solve the protein folding problem. This problem

is to predict the three-dimensional structure of a protein given the primary sequence of

amino acids that make up that protein. There are potentially a large number of bonded

atoms in a protein and so there are many possible ways to arrange those atoms of a protein

(and hence vary the layout ofthat protein). This plethora of protein arrangements can

produce a search space so large that traditional searching methods (e.g. branch and bound,

enumerative) can not be used. (5,7,17)

Background

This section provides a background on algorithmic complexity. Then, this section

briefly discusses evolutionary algorithms focusing on genetic algorithms. This section

closes with a short discourse on the protein folding problem.

Algorithmic Complexity

Many optimization problems involve a branch and bound search which can lead to

traversing the entire solution space to be guaranteed to find the best solution. However,

this type of search would experience exponential growth in execution time. (9, 35, 50, 59)

This growth severely limits our ability to solve practical problems of any significant size.

We want to therefore utilize techniques that allow us to search these larger problems.

Two possible techniques are parallel/distributed computing (which is discussed in

Appendix A for the benefit of other researchers) and the use of stochastic search

algorithms such as genetic algorithms (the concern of this thesis).

Genetic Algorithms

The family of evolutionary algorithms are made up of evolutionary strategies,

evolutionary programming, and genetic algorithms. Evolutionary algorithms use a number

of operators such as selection (reproduction), crossover, and mutation (these operators

are discussed in detail in Chapter II). Evolutionary strategies (ESs), employed primarily

in Europe, use the selection and mutation operators. ESs use a high rate of mutation on

real-value encodings. Evolutionary Programming (EP), used primarily in the United

States, also uses selection and mutation on real-value encodings. Genetic Algorithms use

selection, a high probability of crossover, and a low probability of mutation.

Genetic algorithms are modeled on natural selection and genetics in that they

simulate the survival of the fittest theory. It is important to note that a genetic algorithm

does not necessarily find the optimal solution but it finds a good solution (hence the term

semi-optimal). A genetic algorithm is of polynomial time complexity with a finite space

requirement which is determined by the population size. So, the genetic algorithm enables

us to obtain a good solution of a problem of exponential complexity in polynomial time.

Genetic Algorithms were developed in an attempt to create robust, semi-optimal search

algorithms that would be applicable to a wide variety of problems. However, a major

shortcoming of GAs is premature convergence to local optima. In other words, the

algorithm tends to get hung on a local optimum and returns it as a solution instead of a

globally better solution. (4, 5, 17, 19, 23,26, 35, 46)

Genetic Algorithms are easily parallelized. One approach puts multiple copies of

the same program on each processor, starts their execution with different seeds for the

random number generators, and selects the best solution after all processors have finished.

Another approach (referred to as the island model) is where the population is divided up

into subpopulations which are grouped on individual processors which run independent

genetic algorithms. This results in little communications overhead but at a possible

sacrifice in solution quality. The execution time of a genetic algorithm is typically

dominated by the calculation of the fitness function. This function is problem dependent,

but is usually of polynomial time complexity. (17, 21,19) In part 2, the Literature Review,

we discuss the details of how a genetic algorithm works (See Appendix A for a further

discussion on Parallel/Distributed Computing).

The Protein Folding Problem

The protein folding problem is classified as a Grand Challenge problem (47). The

protein folding problem consists of trying to map out the secondary and tertiary structure

(conformation) of a protein molecule given its primary structure. The primary structure of

a protein is the sequence or chain of amino acid residues. The secondary structure

represents the 3-dimensional arrangement of amino-acid residues within the molecule (e.g.

a-helix or ß-sheet). The tertiary structure defines the molecule in terms of the relative

r

position of its bonded atoms. The purpose behind finding the structure mappings of a

protein is that properties and functions of the molecule may be determined by its structure.

So, if a relatively quick yet correct method of mapping out the structure of proteins can be

formulated, we can greatly speed the development of industrial, pharmaceutical, and

military applications. (5, 7, 17, 43, 57)

Als/S. \pA Ai^^v^ A&A ^ac^\. r^^>^ ^ä'S^ /it/
^S\1J \I/ Sp liP \£l7 1|F^XA|§/ *!&$)

Figure 1: An extended conformation of [Met]-enkephalin (17)

The protein used in most of the AFIT studies is [Metj-enkephalin (see Figure 1).

It is a relatively small and simple protein (polypeptide) defined by the five-amino-acid

5

sequence Tyr-Gly-Gly-Phe-Met. It is principally composed of carbon (C), oxygen (O),

and nitrogen (N) atoms. The two principal factors influencing the selection of this

particular protein for study are: [1] its unique and compact natural, biological state (native

conformation) is known; [2] other researchers have used energy minimization to predict

its tertiary structure. (5,17)

While current experimental techniques allow us to decode the primary structure of

a protein with little effort, predicting the tertiary structure of a protein is extremely

difficult. Nuclear magnetic resonance and X-ray crystallography are laboratory techniques

for determining the three-dimensional conformation of a protein. However, these

approaches can expend as much as two years of laboratory effort to find the tertiary

structure of a single protein and are not always possible! (16, 57)

The solution to the Protein Folding problem can be modeled with an energy

minimization approach. Energy minimization is a basic technique for predicting the

tertiary structure of a protein using one of the following approximation methods: [1] ab

initio methods: use quantum mechanical calculations to determine the energy exactly; [2]

use semi-empiricalmethods that neglect some of the non-dominating energy terms; [3]

use force-field methods which only account for pairwise energy interactions between

atoms. Calculating a single energy value for these methods is of time-complexity 0(n5),

0(n), and 0(n2) respectively (where n is the number of particles - frequently atoms). (5,

7, 17, 39) This need for faster methods is the driving force behind the use of genetic

algorithms.

Problem Statement

The challenge of solving the Protein Folding Problem is to find a method of

predicting the 3-dimensional shape of a protein given its defining sequence of amino-acids.

An enumerative search of the entire solution space for even the smallest proteins would

consume more time than the estimated age of the universe on today's supercomputers.

Recent AFIT research (17) has indicated that parallel genetic algorithms are feasible for

predicting the tertiary structure of the pentapeptide [Met]-enkephalin. Some goals for this

investigation are to continue to improve the performance of the simple genetic algorithm

and to continue to evaluate the feasibility of applying parallelized evolutionary algorithms

to predict the tertiary structure of more complex molecules. While attempting to

accomplish these goals, the major objectives of this effort are:

a) make improvements to the simple genetic algorithm design and

implementation

b) investigate the use of hybrid optimization techniques such as local minimization

to improve genetic algorithm efficiency and effectiveness. For example, conjugate

gradient methods (deterministic) and simulated annealing (probabilistic) are two

potential local minimization techniques.

c) investigate the use of niching strategies to improve genetic algorithm efficiency

and effectiveness.

Rationale

Why is the Protein Folding problem important? Solving the protein folding

problem implies the ability to efficiently and reliably predict the tertiary structure of any

protein once given the primary structure ofthat protein. Knowing the function of the

various proteins present in our own bodies could lead to many new medical and scientific

breakthroughs such as preventing or curing disease, repairing genetic disorders or birth

defects, and developing disease or pest resistant strains of plants! The solution of the

protein folding problem is also significant because it could provide insight into its

complementary problem, which is that given a particular function that we desire a protein

to perform, what is the tertiary structure that performs that function? Then, how do we

construct that protein, or what is the primary structure we should build? The solution of

this complementary problem would allow biochemists and computational scientists to

design new polypeptides with a single, specific purpose. (5, 17) Moreover, there are

variety of military applications including the possible development of a photosensitive

protein film to be used on protective goggles for pilots.

Methodology

There are a number of activities or tasks that make up this research effort. The

following subsections identify and define the major tasks that are to be accomplished in

approaching this research effort.

Literature Review

This continuing review is used to establish foundations of current knowledge in the

applicable fields of study. The principle review areas along with references are:

a) genetic algorithms (4, 5, 13, 17,19-21,23-26,29, 31-33, 35,43,46, 57)
b) protein folding problem (5, 7, 16,17, 19, 20,21, 32, 33,43)
c) hybridization techniques (1, 12,28, 37,40,46,49, 51, 55, 56)

Software Review

This involves the study and comprehension of the programs contained in the AFIT

Genetic Algorithm Toolkit as well as any code obtained from other sources for

possible integration. (30, 36, 51)

Algorithm Modifications/Extensions

As problem areas are discovered, the design is to be modified accordingly. The

principle extension is the addition of Local Minimization techniques to the

algorithm and implementation.

Implementation Modifications/Extensions

After modifications have been made to the algorithm, the implementation is to be

appropriately modified. For instance, following the extension of local minimization

techniques in the algorithm, the actual implementation is to be modified (or

extended) to reflect the change in the algorithm.

Experiment Design and Implementation

After the reviewing the software, reviewing the literature, and modifying the

implementation, experiments are designed using the modified code. The

experiments are designed to generate useful data so that this effort builds upon

the work completed by previous AFIT students.

Analysis

The final step involves analyzing the data generated from performing the

experiments, drawing comparisons between the experiments' data, evaluating what

has been accomplished, and making recommendations on where future research

should be focused. Particular emphasis is to be placed on the comparison of the

results from the implementation as-is and the results of the implementations that

use the various hybridization techniques.

Summary

Large, complex optimization problems require the use of suitable semi-optimal

algorithms that trade some amount of solution quality for substantially reduced execution

times. This thesis effort compares hybrid and standard genetic algorithm techniques for

10

efficiency and effectiveness in finding solutions. It also takes the recent research further

by analyzing the feasibility of using AFIT's genetic toolkit software to determine the

tertiary structure of larger, more complex proteins.

This chapter has outlined the general problem, described the main components,

and rationalized the need to expend research effort on genetic algorithms and the protein

folding problem. Chapter II discusses the protein folding problem while Chapter HI

details genetic algorithms. Chapter IV analyzes several hybridization techniques with

attention given to the benefits of each to genetic algorithm implementations. Chapter V

discusses the design and implementation of the experiments. Chapter VI presents the

experimental values and the experimental data which is evaluated to establish the

conclusions of this research. Finally, Chapter VII draws overall conclusions and presents

some recommendations concerning future efforts in genetic algorithms and their

application to the protein folding problem.

11

II. Literature Review - The Protein Folding Problem

This chapter summarizes current knowledge of the Protein Folding Problem in

order to establish a foundation for this thesis effort. The discussion is to first focus on

protein structures followed by a look at current laboratory methods. Then, this chapter

defines some terms of molecular geometry. Finally, the problem search and solution

spaces are examined.

The Protein Folding Problem

Proteins are very common molecular structures. Several types exist: fibrous,

membrane, and globular. Fibrous proteins make up the structural components in the

human body. Membrane proteins control the flow of material across cellular boundaries.

Enzymes which control biochemical reactions in cells (and thus are of interest to us) are

globular proteins. (5, 7,17)

A protein's primary structure is a sequence of amino acids. Thanks to modern

technology, we can use computers to sequence a protein to rapidly determine its primary

structure. As stated in Chapter I, the Protein Folding Problem consists of trying to map

out the tertiary structure of a protein molecule given its primary structure. The primary

structure is the chain of amino acids. Due to charges of each amino acid, the chain folds

into a secondary structure. The three main characterizations of the secondary structure

are the a-helix, the ß-sheet, and the looped domain. Based on the net free-energy of the

molecule, the secondary structure folds again to form the tertiary structure of a protein.

12

Tertiary structures are then used in the cellular functions described. The tertiary structure

defines the exact shape of the entire molecule. In other words, the tertiary structure is the

actual layout of the atoms including the angles of the bonds between them. In searching

for possible three-dimensional atomic arrangements (the tertiary structure) of a protein,

we are looking for a stable protein which has a low energy. Because we are trying to find

the best layout {conformation) of a particular protein by varying the dihedral angles (see

Figure 2), this produces the folding effect of the protein and thus the name, the Protein

Folding Problem. The purpose behind finding the structure mappings of a protein is to

the determine properties and functions ofthat molecule. So, if a relatively quick, yet

effective method of mapping out the structure of proteins can be formulated, we can

greatly speed the development of pharmaceutical and military applications. (5, 7, 16,17,

44, 57)

Current laboratory methods of determining the tertiary structure are slow and

tedious. X-ray crystallography involves striking a protein crystal with a fine beam of X-

rays which creates a diffraction image on a photographic plate. The diffraction is

proportional to the number of extranuclear electrons in each atom. A series of two-

dimensional images are then used to calculate a three-dimensional image. The researcher

must be able to grow a well-ordered, ninety-seven percent pure protein crystal (the growth

alone can take months) and then be able to dehydrate the crystal for maximum diffraction

resolution. (57)

13

Nuclear magnetic resonance (NMR) techniques are based on plots of characteristic

signals of hydrogen atom interference. These signals are used to identify amino acids and

determine interatomic distances that are then used to reconstruct protein structure using

computer graphics. Both approaches need high concentrations of proteins to make

accurate determinations. (16) However, these approaches can expend more than two

years of laboratory effort to find the tertiary structure of a single protein and are

sometimes not even possible.

■i
\D

2 \

Legend:
A - Atoms B - Bond Angles D - Dihedral Angle

Figure 2: Example Molecule Geometry

For our discussion about molecular geometry, see Figure 2. We have four atoms

(Ai, A2, A3, At) connected by bonds. There are two bond angles (Bi and B2). Bi is the

angle formed by the AiA2 bond and the A2A3 bond and B2 is the angle formed by the A2A3

bond and the A3A4 bond. There is only one dihedral angle (D). It is the angle formed

between the AXA2 bond and the A3A4 bond. We can vary the dihedral angle, D, by

twisting or folding our structure about the A2A3 bond. Through this kind of folding we

14

can alter the shape of our simple structure (i.e. produce many conformations). In a more

complex structure such as [Met]-enkephalin (see Figure 1 in Chapter I), where there are

twenty-four dihedral angles, there are many possible conformations. [Met]-enkephalin is

actually a rather simple protein structure with a relatively low number of dihedrals. Thus,

larger proteins can present an enormous search space of conformations. (4,17,43)

Minimizing the energy function of a protein is a complex undertaking (see Figure 3

for the energy function). Factors contributing to the complexity are the large search

space, computational intensity of the determination of an individual's energy, and the

existence of many local minima. How big is the search space? Consider that a

E= KKnjOij-req)2) +
(Ü)EB

KKeijkCOijk-Geq)2) +
(UJOeA ^

(S (Koijki (1 + cos(nijkiOijki - Yyki))) +

I ((Ai/rij)12 - (Bij/ry)6 + qiqyAtaij)
(iJ)eN

where: Knj, Keijk, Koijki, r«,, 0«,, n^, yijki, Ay, and By are empirical constants
B - bonded atoms, A - atoms forming bond angles, D - atoms forming dihedral angles,
N - non-bonded atoms (atoms with more than 3 bonds separating them)

Figure 3: CHARMm energy model (38)

protein can have up to hundreds of amino acids. Thus, a protein can have a tremendous

number of atoms (sometimes hundreds of thousands). Moreover, a protein has 3n-6

degrees of freedom (where n is number of atoms). In a protein with just fifty residues

(having twenty atoms per residue), we would be dealing with a system of equations with

3*(20*50) - 6 = 2994 variables! Because we can discretize each dimension of the search

15

space to some domain of values (d), our search space has a complexity of |jd||3D-6.

Moreover, since the bond angles and lengths are relatively stable, the dihedral angles

mostly determine the tertiary structure. So, the search space can be reduced to ||d||n where

d is the number of discrete dihedrals and n is the number of the independently variable

dihedrals. However, what if we had just ten independent dihedral angles and dihedral

angles discretized over twenty degree increments in a range of 0 to 360 degrees. Our

search space would be to the order of 1018 (# of dihedrals#of *»-/#* **■«*»). It ^^

take about eleven days to search this relatively small search space on a teraflop (capable

of one trillion floating point operations per second) computer which is capable of one

point evaluation per clock cycle. Now, imagine how long it would take to search a

protein with 100 dihedrals! Thus, we need faster methods of calculating the tertiary

structure from a protein sequence. (5, 17,44, 53)

Summary

This chapter has presented a discussion of the Protein Folding Problem. It is a

very large and complex problem that is not easily solved with laboratory techniques. So,

the use of computers with efficient algorithms is justified. Solving this problem could

pave the way for developments in pharmaceuticals and military applications. The next

section is on genetic algorithms. It is important to consider that genetic algorithms may

offer a method for generating good solutions to the protein folding problem but, by

nature, can not consistently solve it.

16

I». Literature Review - Genetic Algorithms

This chapter summarizes current knowledge of genetic algorithms in order to

establish a foundation for this thesis effort. After a brief discussion on some of the

primary people working in the field of genetic algorithms, this chapter details how a

genetic algorithm works. Next, there is an analysis of the simple genetic algorithm

including discussions on genetic operators. Then, there is a section addressing the

fundamental theorem of genetic algorithms. This chapter also discusses the messy and fast

messy genetic algorithms with a look at advantages of disadvantages of using each.

Genetic Algorithms

Background

The foundations of genetic algorithms can be traced to a University of Michigan

researcher, John Holland, and to one of his early students, Kenneth DeJong. Genetic

algorithms were first proposed in Adaptation in Natural and Artificial Systems (1975), by

Holland. There, he established the mathematical basis for genetic algorithms. DeJong, in

his dissertation An Analysis of the Behavior of a Class of Genetic Adaptive Systems

(1975), took Holland's work a step further by applying genetic algorithms to functional

optimization problems. (13, 17,23, 31,44)

Other principal contributors to genetic algorithm research are David Goldberg,

Zbigniew Michalewicz, and John Grefenstette. Goldberg, who is also a Michigan

alumnus, started with a dissertation that investigated the use of genetic algorithms to

17

control gas-pipeline transmission (which earned him a NSF Presidential Young

Investigator Award in 1985). This and his subsequent work through the rest of the

eighties culminated in Genetic Algorithms in Search. Optimization, and Machine Learning

(1989). This textbook is used as a basic handbook for both fledgling and experienced

genetic algorithm researchers alike. Goldberg is one of the most published individuals of

the genetic algorithm field. Researchers of all levels also depend on the textbook by

Michalewicz. His book, titled Genetic Algorithms + Data Structures = Evolution

Programs (1992), introduces and examines genetic algorithms and their applicability to

artificial intelligence and optimization problems. While he has worked on genetic

algorithm parameter sets and machine learning, Grefenstette's best known contribution is

GENESIS. GENESIS is a genetic algorithm implementation used by many researchers

(including those here at AFIT) as a basic workbench. (17,23, 30,46)

Using genetic algorithms involves searching through a space of potential solutions

which necessitates exploring the solution space and taking advantage of the best solutions

generated. While neglecting exploration of the search space, Hillclimbing takes advantage

of the best solution for possible improvement. However, a random search explores the

search space while not using any knowledge of promising areas to its advantage.

Michalewicz states that;

"Genetic Algorithms are a class of general purpose (domain
independent) search methods which strike a remarkable balance
between exploration and exploitation of the search space." (46)

18

Genetic algorithms work by manipulating populations of strings (or

chromosomes). These strings are possible solutions encoded usually with ones and zeros

(a series eigenes) representing Boolean conditions. For instance, say the problem being

solved is the classic Knapsack Problem where we wish to maximize the value of the

weight we can carry in our knapsack. The knapsack problem can be represented with 0/1

notation in that (1) you have an item or (0) you do not. So, the strings would represent

possible combinations of items in our knapsack. Strings are selected for the next

generation based on their fitness. Our knapsack fitness function, would be based on the

items' value and weight. (5,10, 17, 19, 23,29,43,46)

Genetic algorithms continue to generate populations for a defined number of

generations after which time the current best string is used as the solution to the problem.

The execution time of a genetic algorithm is typically dominated by the calculation of the

fitness function. This function is problem dependent, but is usually of polynomial time

complexity. Genetic algorithms can be classified into two main types: the simple (or

standard) genetic algorithm and the messy genetic algorithm (see Appendix B). (5, 17,

19, 23, 43, 46)

The Simple Genetic Algorithm

How do simple genetic algorithms work? Simple genetic algorithms keep uniform

length strings and perform three basic operations on those strings in the population:

selection, crossover, and mutation. Refer to Figure 4 for the general structure of the

algorithm.

19

First, the population is initialized. The population size is 2' (where / is the length

of a string). (17,23) This is because having strings with / binary digits each means that it

takes 2 different strings to represent all possible values. For example, if our strings have

four digits (1 's and O's), then there are sixteen (24) possible strings that can be formed.

initialize population
for i = 1 to max_number_of_generations

evaluate fitness
for j = 1 to population_size

selection
crossover
mutation
evaluate fitness

end loop
end loop

Figure 4: Simple Genetic Algorithm

The selection (sometimes referred to as reproduction) operation does just what the

name implies - it selects members of the current population ox generation to carry over

into the next generation. Simply stated, "let's give more copies to better guys" (27). The

selection of strings is based on their fitness. The fitness can be defined as an enumeration

of goodness or utility that the algorithm is to maximize. In our case, the fitness is the

potential energy of the protein. However, by itself selection is not very useful. In fact, if

we were to only do selection steps over and over, we would likely wind up with many

copies of the best solution of the first generation. (17,23, 27)

There are several types of selection operators. First, there is the Roulette Wheel

selector. The roulette wheel selector (which is commonly used in simple genetic

algorithms) assigns each string to a section of a wheel proportionate to the ratio of the

20

string's fitness and the average fitness of the population. So, the roulette wheel is an

example of a. fitness proportionate selector. Figure 5 demonstrates how different

String Fitness Ratio
S1
S2
S3
S4

15
5
10
10

1.5
0.5

1
1

mean 10

S4

KJlif!« : \ S1

S3
S2

Figure 5: Roulette Wheel Selection

fitnesses provide different proportions of the wheel. Thus, SI is three times as likely to be

selected as S2 while both S3 and S4 are each twice as likely to be selected as S2. (17, 23,

43, 44)

Another type of selection operator is the tournament selector. It iteratively selects

random pairs of strings which satisfy a thresholding criteria. It then compares the strings

and picks the better one. Poorer strings (which would survive into later generations in the

roulette wheel selector) are eventually gleaned from the population. So, this operator is

labeled fitness disproportionate. (17, 23,43, 44)

The crossover (also referred to as recombination) operator involves mating two

strings and hence mixing their characteristics. This is accomplished by choosing a random

crossover point and swapping the portions of the strings after the crossover point. In

Figure 6, two members of the present generation called PI and P2 mate to form two

members of the next generation called Nl and N2 (random crossover point happens to

21

occur in the middle of the strings). What if we were to go from generation to generation,

just doing crossover? The result would be a randomly mixed population whose

probability distribution would match what we get from just shuffling the bits we had

initially at random. (5, 17, 23, 24,27,43, 46)

generation(x)
Pl:101011001010
P2:110100011Q01

generation(x+l)
Nl:101011011001
N2:110100001010

Figure 6: Example of Crossover

The mutation operator (see Figure 7) simulates a sudden, random change in a

string. Mutation occurs at a random point in a string and the bit value is changed (1 to 0

or 0 to 1). This causes the solution to randomly explore the solution space. Mutation

occurs much less frequently than crossover. In Figure 7, a random point is chosen on PI

and Nl is formed by flipping that bit. (5, 17, 23, 24, 43, 46)

generation(x)
PlilOlOlllOlOlO

generation(x+l)
Nl:101011001010

Figure 7: Example of Mutation

22

The algorithm steps through these three operations repeatedly until some stopping

criteria is met (max_number_of_generations in Figure 3). The combined effects of the

selection operator (optimizer) and the recombination operator (diversifier) create the

robust searching capability of the genetic algorithm while the mutation operator can help

to aim the algorithm toward still other parts of the search space. Note that in all the above

examples, binary strings were chosen for simplicity. However, real-valued strings, Lisp

codes, and even assembly instructions may be used as well. Because genetic algorithms

are loosely based on natural evolution, many of the terms associated with natural evolution

are used interchangeably with the terms created specifically for genetic algorithms. (4, 5,

17, 19, 23, 24, 27, 29, 43,46)

Fundamental Theorem of Genetic Algorithms

So, what makes the genetic algorithm work? Holland, in his book, discussed a

theorem dealing with the probability of a string's survival from one generation to the next.

This later became known as the Fundamental Theorem of Genetic Algorithms or the

Schema Theorem. Before discussing the theorem, we need to define some terms. A

schema is a pattern or template used to describe sets of strings with the same values at

certain positions. The positions having different values are indicated by the don't care

symbol (*). For example, 1 * 1 defines the set of strings {101,111} while 1 **0 defines the

set of strings {1000, 1010, 1100, 1110}. Two values associated with a particular schema

H, are the defining length (5(H)) and the order (o(H)). The defining length indicates the

number of positions between the first specified value of the string and the last specified

23

value of the string. For example, 1**0* has a defining length of three (4-1) while

*0***** has a defining length of zero (2-2). The order of a schema indicates the total

number of specified positions. So, 1**0* has an order of two while *0***** has an order

of one. (4, 17,23, 43,44)

When crossover occurs within the defining length of the schema, it is possible (but

not certain) that the schema can be disrupted. So, the probability of a schema's survival

(ps) under crossover (which itself has a probability of pc) is:

Ds > 1 —Do
1-1

Figure 8: Probability of schema survival under crossover

Mutation can also disrupt the schema. So, the probability of a schema's survival (p^)

under mutation (which itself has a probability of pm) is:

Psm * 1 -0(H)pm, pm « 1

Figure 9: Probability of schema survival under mutation

Lety(H) be the average fitness of a string matching schema (H), and / be the

average fitness of the population. Moreover, suppose that the number of schema-

matching strings in a population at time (t) is m(H,t). Then, the reproduction operator has

the effect of:

24

miH,t + \) = m{H,t)^W-

Figure 10: Effect of reproduction operator on the schemata

Considering the combined effects (omitting a few negligible terms) of

reproduction, crossover, and mutation on a schema's survival, the Schema Theorem

indicates the number of examples of a schema in the next generation:

m{H,t +1) > m^H^^-ips+psm) * mQIJ)^

Figure 11: Schema Theorem

i *(P) ,m l-pc-±-j-o(H)p*

The Schema Theorem (in Figure 11) can be interpreted as saying "short, low-order,

above-average schemata receive exponentially increasing trials in subsequent generations."

(23) In other words, small schemata that do not have very many specified positions but

do have a good average fitness are more likely to survive and are therefore to be tested

many times in later generations. (4,17,23, 43,44, 46)

A setback of the simple genetic algorithm is the problem of deception. Deception

is where a genetic algorithm selects locally optimal building blocks rather than globally

optimal ones resulting in a premature convergence and an incorrect answer. In other

words, short, low-order building blocks leading to suboptimal higher order building blocks

causes deception. This is frequently the result of a function whose best points are

surrounded by the worst, or in other words, a function with isolated optima. It can be

argued than many optimization techniques would not perform in the case of a function

25

with local optima and that such functions occur rarely. Nonetheless, in order to combat

the problem of deception, Goldberg devised another type of genetic algorithm — the

messy genetic algorithm. Messy genetic algorithms (which are not used in this thesis

effort) are discussed in Appendix B. (23,46)

Summary

The various forms of genetic algorithms offer us different approaches to finding

solutions to problems. However, as we start to deal with real-world problems (which

often have a massive search space), whatever type of genetic algorithm we choose to

work with is too slow. For example, the genetic algorithm can take several hours to find a

good solution when attempting to minimize the energy of [Met]-enkephalin which is a

relatively small protein. Therefore, we must find methods to be used in conjunction with

genetic algorithms to make our searches more efficient and effective (21).

26

IV. Literature Review - Hybridization Techniques

This chapter summarizes current knowledge of hybridization techniques with

emphasis placed on the possible benefits of combining them with a genetic implementation

in order to solve the protein folding problem. First, this chapter addresses local

rninimization which includes a discussion of conjugate gradient techniques. Next, there is

a discussion of simulated annealing. Then, the chapter analyzes possible minimization

application strategies. This chapter closes with a discussion of niching.

Local Minimization

As an enhancement to our genetic algorithm, we wish to apply a local minimization

step(s) that can improve upon the value returned by the genetic algorithm at that iteration.

A genetic algorithm containing local minimization operators is sometimes referred to as a

Hybridized Genetic Algorithm (HGA). Following a fitness evaluation, local minimization

would move us closer to local minima among which (hopefully) is the global minimum.

Two categorizations of approaches that can be used to locally minimize a

multivariable function are deterministic and probabilistic. A deterministic approach is

characterized by using knowledge of the search space in making a decision. This is usually

the result of some calculations which provide the knowledge of the search space. For

example, a calculation may allow you to omit a section of (prune) the search space. On

the other hand, a probabilistic approach does not make use of knowledge about the

27

search space. A probabilistic approach makes selections after altering the probabilities of

accepting solutions. So, acceptance probabilities of inferior solutions would be

dynamically lessened to decrease our chances of selecting those solutions. It is worth

noting at this time that an elitist strategy (can be used in genetic algorithms) is similar to a

probabilistic approach in that an elitist algorithm guarantees that the best solution is

carried over to the next generation. So, in other words, it is probabilistic in that the

probability of selecting the best solution equals one. The two methods detailed here are

conjugate gradient techniques (a deterministic approach) and simulated annealing (a

probabilistic approach). (1,4) Figure 17 shows how a local minimization step could fit

into a simple genetic algorithm.

initialize population
for i = 1 to max_number_of_generations

evaluate fitness
for j = 1 to population_size

Local Minimization step
selection
crossover
mutation
evaluate fitness

end loop
end loop

Figure 12: Simple Genetic Algorithm with Local Minimization Step

Conjugate Gradient Techniques

To discuss the conjugate gradient technique, a brief mathematical review is

necessary. What is a gradient? If the partial derivatives of/(x,y,z) are defined at a

particular point, then the gradient of/at that point is a vector of the corresponding first

partial derivatives or symbolically:

28

dx dy dz

Figure 13: Gradient of a function

In other words, a gradient is a vector in the direction of the maximum directional

derivative of a function. A conjugate direction is sometimes referred to as a non-

interfering direction. In a sense, conjugate means perpendicular. It does not use just the

latest vector but the best combination of all vectors reached. So, we are moving in a

direction that is perpendicular to all preceding directions. (11, 15, 51, 55)

1. Ax = b (classic matrix equation)
2. Suppose the vectors di,...,d„ are ^-orthogonal -» (di)T^dj = 0
3. Finding the components of x, x = aid! + a2d2 +... + aBd„
4. Start at xo = 0, where residual b - Ax is r0 = b
5. Go in direction di of steepest descent, continue to point xi = ctidi
6. Compute new residual n = b -Axv

7. Move in direction conjugate to rx which is d2 = rx + ß2di
8. Continue to point x2= xi + a2d2

9. Generalization of the cycle:
direction: dj = rj.i + ßjdj.i
next point: Xj = Xj.i+ (Xjdj
residual: rj = b - Ax,

10. ßj is chosen to make dj ^4-orthogonal to dj.i
11. At the nth step, x„ = x„-i + a„d„ and so we have x.

Figure 14: Matrix reduction with conjugate gradient technique (55)

In principle, to minimize a function with a conjugate gradient technique, we need

to start by moving in a direction opposite the gradient (the direction can be referred to as a

residual and is equal to the gradient with minus sign). Next, we minimize by stepping

along the function in a direction that is conjugate to the residual (this is calculated as a

new residual). Next, we step in a direction that is conjugate to both our initial heading

and its conjugate. Then, we step in a direction that is conjugate to our first heading, its

29

conjugate, and their conjugate and so on. See Figure 20 for a matrix representation of

calculating the conjugate gradient. (51, 55)

Simulated Annealing

Simulated annealing (see Figure 21) is a probabilistic algorithm based on

thermodynamic principles relating to the way that liquids freeze and crystallize and metals

cool and anneal. If a liquid is cooled slowly, the atoms can line themselves up and form a

Select an initial state ieE
Select an initial temperature T > 0
Set t = 0
Repeat

Set n = 0
Repeat

Generate state j which is a neighbor of i
Calculate 5 = C(j) - C(i)
If8<0 Theni=j
Else if random(0,1) < exp(-8/T) Then i = j
Increment n

Until n = N(t)
t = t+l
T = T(t)

Until stopping criterion is true

Where: E is the set of possible configurations (search space)
t is the temperature change counter
n is a repetition counter
C is a cost function that assigns a real number to each member of E
6 is the change in cost associated with moving from one state to another

Figure 15: Simulated Annealing Algorithm (37)

completely ordered crystal. This crystal is the minimum energy state for the system. The

algorithm simulates this annealing process in solving optimization problems. It has also

30

been applied to problems in VLSI design, learning, artificial neural networks, and artificial

vision. (37, 40,46, 60)

Local Minimization Application Strategies

There are two different strategies or approaches to applying local minimization to

evolutionary algorithms. First, Lamarckian evolution uses local search to improve the

current population. It also encodes those improvements onto the strings to be processed

for the next generation. On the other hand, the Baldwinian approach involves the

combination of learning with evolution. This is accomplished by transferring the improved

fitness value (from the local minimization step) to the individual without coding the

improvements back onto the string. This simulates the lifetime learning of an individual.

The Lamarckian approach tends to converge much faster but has a greater probability of

missing the global optimum by converging to some local optimum instead. The question

of which approach is better seems to be application-dependent. (58)

There are a number of ways to apply these approaches. The obvious technique is

to perform a local minimization step every generation within the genetic algorithm. This

application technique seems appropriate since we would be able to apply extra

optimization to each member of the population at every genetic algorithm generation. The

principal drawback is the massive amount of computation (repeatedly calculating the

partial derivatives and gradients) involved with each local minimization step and then the

resulting increase in execution time. Also, another drawback is that the application of

31

local minimization in every step could narrow the search space too rapidly and thus cause

the global minimum (or maximum) to be missed. These two problems point to the need

for an approach where a local minimization step would be applied only once in awhile.

This kind of approach would still take advantage of the explorative nature of the genetic

algorithm while reaping the additional exploitative benefits of local minimization. There

are several possible strategies. One way is to apply a local minimization step every x

generations of the genetic algorithm (where x is 5, 10,20, or whatever you want).

Another possibility would be to have a local rmnimization step whenever a mutation

occurs. The current AFIT implementation uses a three tenths of a percent mutation

probability so local minimization steps would be relatively infrequent with this approach.

Finally, another strategy would be Orvosh and Davis's five percent rule. They propose to

arbitrarily replace five percent of the strings in every generation by re-encoding them with

results found by a local minimization step. Their work showed the five percent rule was

more effective than either always or never replacing the repaired strings for the

applications they were solving. This replacement strategy could be varied by replacing ten

or fifteen percent of the strings. The arbitrary replacement of strings can also be referred

to as probabilistic Lamarckian replacement. (45,49, 58)

Niching

Another enhancement that can be applied to genetic algorithms is the concept of

niching. Niching takes its concept from nature in that different species tend to exploit

separate niches (sets of environmental features) in which other organisms have little or no

interest rather than competing directly for the same resource. From an algorithmic point

32

of view, we have a solution space made up of a number of peaks and valleys. The genetic

algorithm tends to concentrate its solutions around a certain peak. The idea Of niching is

to spread the genetic algorithm's population around to other peaks by de-emphasizing a

member's fitness based on the proximity of other population members. There are several

niching schemes such as crowding and sharing. (12, 28)

In crowding, we replace strings based on their similarity with other strings in an

overlapping population. Stepping through generations of the GA, we randomly draw a

subpopulation of crowding factor (CF) members. Then, we compare an individual to each

string of the CF and replace the most similar string (based on a bit similarity count). As

we progress to later generations, one or more species should establish a foothold in the

population resulting in more strings being similar to each other. Then, by replacing similar

strings, we can help maintain diversity and allow room for more species. (12,28)

In sharing, we reduce a member's fitness based on that member's nearness to other

members. In other words, a large cluster of individuals results in a large reduction in

fitness for each while a solitary individual's fitness remains relatively unaffected. There

are two forms of sharing - genotypic and phenotypic sharing. In genotypic sharing, we

use sharing based on genetic proximity - the hamming distance between strings (number of

different alleles). We use phenotypic sharing when the proximity is defined in the

decoded parameter space. (12,28)

33

Experiments fun by Deb and Goldberg (12) suggest that for functions with unequal

peaks that genotypic sharing sometimes is unable to maintain stable subpopulations at

peaks of lower values. Also, they found that sharing did a better job than crowding of

allocating individuals to the peaks. (12) The solution to the protein folding problem is

obtained by manipulating an energy function (see Figure 30, Chapter V) full of uneven

peaks and valleys. So, it is best to pursue a phenotypic sharing scheme.

The first step in phenotypic sharing is to calculate the distance (dy) between the

strings in the decoded parameter space. So, for the individuals xj = [xu, x^,..., Xp,J and

xj ~ [xij > x2j > ■■-, Xpj] :

4r$i(Xk,i-'Xkj)

Figure 16: Phenotypic distance calculation (12)

Next, let each niche be enclosed in a p-dimensional hypersphere of radius a^are such that

each sphere makes up l/(number of peaks in the space) of the volume of the space. The

radius of a hypersphere containing the entire space is:

"V^A *>max k>m[n)

Figure 17: Radius of the hypersphere (12)

Now, we can calculate a^. If we let q equal the number of peaks in the space then:

34

C/ share D HZ

Figure 18: Sigma share calculation (12)

Finally, we sum a sharing function (Sh(dij)) over all strings (see Figure 25) to get a niche

count. We divide each population member's fitness by its respective niche count to

complete the sharing step. Next, we allow the genetic operators to manipulate the

solution strings of the present generation. Then, at the next generation, we start the niche

calculations again. (12,28)

Sh(djj) = 0, jf dg > CTshare , otherwise:

Sh(cp = 1-
share

w'CÄe-COM"'=ZSh(di(x>x^

Figure 19: Calculation of niche count (12, 28)

Niching Summary

Niching offers potential benefits towards solving the protein folding problem.

Because, the solution space contains many hills and valleys, niching could work to force

the genetic algorithm to explore more of the space. Niching also could work when

combined with conjugate gradient minimization. Another possible benefit of niching could

be in combating deception. Because niching operates by de-emphasizing areas, it could

move the genetic algorithm away from deceptive minima.

35

Summary

There are a number of techniques that can be used to enhance a genetic algorithm.

We can use conjugate gradient methods to calculate local minima and then replace some,

none, or all the population members. We can apply sharing to diversify the population.

We can apply a combination of sharing to diverge the population and then a local

minimization step to move the members closer to extrema at their various locations in the

space. There are a large number of possible experiments in these areas.

36

V. Design. Modification, and Implementation

The purpose of this chapter is to lay out the initial AFIT implementation and then

to discuss additions/modifications. Then, this chapter is to summarize the plans for

experimentation.

The AFIT Implementation

The present AFIT implementation (see Figure 26) is coded in C and is located in

the -genetic directory in the Parallel Lab's account (Room 243, Bldg. 640, WPAFB).

Fast

-genetic/Toolkit

r \ /

Simple

\ / s

CHARMm

v_

Generalized

j

Figure 20: AFIT Implementation

37

There are three principal divisions of the Toolkit - Simple, CHARMm, and Messy. The

Simple directory contains the code necessary for the simple genetic algorithm. It includes

selection, crossover, mutation, and supporting code. The Messy directory is broken into

subdirectories. Each of them contain specialized messy genetic algorithm code as

indicated by their titles. The CHARMm directory contains the code necessary for the

matrix representation of each conformation and for the calculation of the energy of each

conformation. This code is used by both the simple and messy genetic algorithm

implementations. The CHARMm directory also contains the code for encoding and

decoding the population individuals into their respective dihedral angles. For example,

[Met]-enkephalin consists of twenty-four dihedrals each of which are encoded by ten

binary bits. So, we have a total of 240 bit solution strings that we manipulate with genetic

operators. (36)

Inputs to the Implementation

One input file used by the AFIT implementation (see Figure 29) is generated by a

package called Cerius2. Cerius2 produces a sequential listing of all atoms present in the

molecule. This listing is called a Z-matrix (see Figure 21). The bond length is the distance

between the present atom and atom,. The bond angle is formed between the present atom,

[atom type] [bond length] [flag] [bond angle] [flag] [dihedral] [flag] [atomj [atomd [atom,] [charge]

Figure 21: Z-matrix Format

atomj, and atonik. The dihedral is the torsion angle of the middle bond formed between

the present atom, atomj, atom*, and atomi. For example, in Figure 22, this line shows

38

C 1.49994 0 111.60606 0 -119.97103 1 3 2 1 0.000

Figure 22: Example line of Z-matrix

that we have a carbon atom (C). It is 1.49994 angstroms (an angstrom equals 10"10

meters) distant from the previous atom in the list. There is an 111.60606 degree angle

(with a vertex at atom 3) that is formed between the present atom, atom 3, and atom 2.

Also, there is a -119.97103 degree dihedral angle formed on the bond between atom 3 and

atom 2 with respect to the chain of atoms extending from the present atom to atom 1.

The flags set to 0 indicate that parameters are held fixed. The charge field of the Z-matrix

is not used. A separate file, called the residue topology file (RTF), is produced by a

package called QUANTA. This file contains data about atomic charges and specific atom

type information. Also supplied as an input to the implementation is a parameter file

(PARM) that is also produced by QUANTA. This file contains constant parameters

associated with bond lengths, bond angles, dihedral angles, and non-bonded pairs. Lastly,

there is a user-supplied file, called in, that contains run-time parameters such as

population-size, number of experiments, and other options (see Figure 48). (5, 6)

Outputs of the Implementation

The output of the AFIT implementation (see Figure 29) comes in several forms.

First, there is a file generated (or appended to if it already exists) called out. It contains a

line for every generation containing data such as the number of trials, percent converged,

minimum energy at that generation, and the average energy ofthat generation. Also, the

implementation writes to a file called the PDB file. The PDB file contains Cartesian

39

coordinates corresponding to each atom. The Cartesian coordinates are important for the

evaluation of the energy function of a particular conformation. Finally, there is user-

generated output (by print/ statements) which defaults to the screen or can be directed to

a file. (5,8,36)

Z-Matrix

RTF file

PARM file

AFIT
IMPLEMENTATION

out We

PDBffle

user-
generated

Figure 23: Input and Output of AFIT implementation

Modifications/Additions to Implementation

This section details the modifications and additions to the APIT implementation.

The topics to be discussed are local minimization (derivation and techniques), niching, and

the use of tournament selection (fitness disproportionate selection) in a simple genetic

algorithm.

40

Local Minimization

One of the principal objectives of this experimentation is to determine what

method of applying local minimization (if any) works best with regards to effectiveness

and efficiency when used as a possible enhancement of the AFIT implementation. In

exploring different techniques of local minimization, we settled on using a conjugate

gradient technique discussed by Press et al (51) primarily because the code was readily

available and looked relatively simple to adapt for use with the AFIT implementation.

This minimization technique required the use of the first derivative of the function being

minimized. Thompson (56) discusses a promising method of calculating first derivatives

but the AFIT implementation's representation of the molecule had to be altered to allow

for Thompson's method of calculating of the first derivative of the energy function (see

Figure 24). So, before local minimization routines could be inserted into the code, a

number of steps (which are detailed in this section) were necessary:

(1) AFIT implementation was altered to allow for Thompson's representation of

the molecule;

(2) Thompson's Cartesian coordinate system transformation was implemented;

(3) Thompson's derivative method was used to calculate the partial derivative

representing the change in position with respect to the change of the dihedral;

(4) Partial derivative representing the change in the distance with respect to the

change in position was calculated;

(5) Partial derivative representing the change in the energy with respect to the

change in interatomic distance was computed;

41

(6) Partiais were multiplied together resulting the first derivative which represents

the non-bonded energy with respect to a particular dihedral angle;

(6) Derivatives with respect to all dihedral angles were used in conjugate gradient

routine to minimize energy function. (42, 51, 56)

E= I(Krij(rij-req)
2) +

(Ü)eB

KKöijkCGijk-Geq)2) +
(U*)eA

E (Koijki (1 + cos(nijki<I>ijki - Yiju))) +

I ((Ai/ry)12 - (By/rij)6 + q^Tisrij)
(Ü)eN

where: KHJ, Keijk, K^u, r^, ©„<,, njjki, Yijki, Aj,, and By are empirical constants
B - bonded atoms, A - atoms forming bond angles, D - atoms forming dihedral angles,
N - non-bonded atoms (atoms with more than 3 bonds separating them)
rij - bonded (or non-bonded) atom term, ©ijk - bond angle term, <S>m - dihedral term

Figure 24: CHARMm energy model (38)

Cartesian Coordinate Transformation of Implementation

Thompson's molecular representation is based first on each atom of the molecule

being in its own coordinate system. Then, after each coordinate system is calculated, we

calculate the coordinates of all atoms with respect to the same coordinate system. (56)

Background

First, suppose we have three atoms: A,, B2, and B3 where B2 lies on Aj's negative

x-axis and B3 is the next atom in the sequence (see Figure 25). Each atom is in its own

42

coordinate system. The origin is at A! and our goal is to find the coordinates of atoms B2

and B3 with respect to Ai's coordinate system.

When we use Thompson's transformation to put B2 and B3 in terms of Aj's coordinate

system, they are then referred to as A^ and A3 respectively. First, we represent each atom

with a four by four matrix (see Figure 26). The first three numbers of its first column is

a unit vector along its x-axis, the first three numbers of its second column is a unit vector

along its y-axis, and the first three numbers of its third column is a unit vector along its z-

axis. Finally, the first three numbers of the fourth column are the atom's actual

coordinates. The fourth row is 0 0 0 1 for computational purposes. (42, 56)

-coscc -sma 0 -Rcosa
sinacosß -cosacosß -sinß Rsinacosß
sinasinß

0
-cosasinß

0
cosß

0
Rsinasinß

1

Where a is the bond angle, ß is the dihedral angle, and R is the bond length

Figure 26: B-Matrix representation of an atom (56)

43

For the first three atoms of the protein, there are no bond (with only two atoms) or

dihedral (with only three atoms) angles. So, by definition, ß2 (dihedral value for atom 2's

B Matrix) is set to it while ß3 (dihedral value for atom 3's B Matrix) and a2 (bond angle

value for atom 2's B Matrix) are set to 0. Figure 27 and Figure 28 show the resulting B

matrices that result from these defined bond and dihedral angle values.

B2 =
-1 0 0 -R2

0 1 0 0
0 0 -1 0
0 0 0 1

Figure 27: B2 Matrix

B3 =
-COSCI3 -sina3 0 -Rcosa3

sina3
0
0

-cosa3
0
0

0 Rsina3
1 0
0 1

Figure 28: B3 Matrix

Also, by definition, Aj is just a four by four identity matrix. Note that its coordinates (first

three numbers in the fourth column) are 0,0,0.

Ai =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Figure 29: Ai Matrix

44

To find A2, (B2 in terms of Ai's coordinate system), we multiply the Ax matrix by the B2

matrix (A2 = Ai X B2). Because Ai is an identity matrix, A2 =B2.

A2 =
-1 0 0 -R2

0 1 0 0
0 0 -1 0
0 0 0 1

Figure 30: A2 Matrix

To find A3, (B3 in terms of Ai's coordinate system), we multiply the A2 matrix by the B3

matrix (A3 = A2 X B3).

cosa3 sma3 0 R3COSCI3-R2

sina3
0
0

-cosa3
0
0

0
-1
0

Rsina3
0
1

Figure 31: A3 Matrix

From this point on, for every atom we wish to add to the structure, we first calculate its B

matrix. Then, we multiply its B matrix by the A matrix of the adjacent atom to get the A

matrix of the newly added atom (A„ew= Aadj X B„ew). We continue these steps until all

atoms are in the base coordinate system. (42, 56)

45

Implementation of Cartesian Coordinates System

The primary change to the existing implementation was the addition of the A and

B matrix structures. The dihedral and bond angles are already stored and easy to access in

calculating the matrices. After assigning initial values, all that was really required was an

insertion of a loop that would step through each atom and calculate and store its B matrix.

Then, a simple cross product function is called to calculate each A matrix. The only

stumbling block was what became termed the atom 42 problem. As stated earlier, [Met]-

enkephalin is our primary testing molecule. Observing Figure 1, we see that atom 42 is

added adjacent to atom 2. Therefore, we can not compute its matrices by multiplying

other matrices (as described in the above section). So, it was necessary to hard-code the

values of the matrix for that atom. This becomes an important consideration when using

the AFIT implementation for other molecules. While the implementation is generic

enough to run different molecules by using different input files, when computing the

matrix system for a molecule, any of its atoms added adjacent to its first two atoms must

have their values hard-coded.

Calculation of first derivative

It was now necessary to calculate the derivative of the non-bonded energy with

respect to the dihedral angle:

dEnb = dEnb 5r±j ÖQx

dßx ör±j dqx 3ßx

Figure 32: Derivative of the non-bonded energy

46

First, Thompson provides a formula for calculating the change in position with respect to

the change of the dihedral:

dgi = aXfk. X [q(j) - q(k')]
dß*

Figure 33: Positional Partial Derivative (56)

where a^- is a unit vector along the X-axis of a chain atom, q(j) is the position vector in

the base coordinate system of the atom we are adding, and where q(k') is the position

vector in the base coordinate system of a chain atom. A chain atom is on the atom chain

between the atom we are adding and the base atom (Ai). All that was needed was to add

a loop that took the difference of the two vectors and then called the cross product

function for each atom. (42, 56)

dqx
dr±i, driU drti

dxi dvi dzi

r2 = x2+y2+z2 -> Irdr/dx = 2Ax
(Ay and Az terms of the dr vector are derived the s

-> dr/dx =
jame way)

Ax/r

where:
Ax =Xi-*Xj Ay =yi-yj Az = Zi-Zj

Figure 34: Calculation of interatomic distance partial

47

Next, we can compute the change in the distance with respect to the change in

position (see Figure 34) which can be calculated from Thompson's arrangement using

atom i (atom we are adding) and atomj (atom adjacent to the one we are adding) using

the coordinate (fourth) column of their respective A matrices. This was accomplished in

the code by looping through the atoms and performing subtraction and division steps to

calculate the vector.

Finally, deriving the formula for the change in the energy with respect to the

change in interatomic distance had to be accomplished by hand (there was no given

formula). Recall that the non-bonded term of the energy function is:

S ((Aij/rij)12 - (Bij/ry)6 + qjq/47cers)
(ij)eN

Figure 35: Non-bonded term of the energy function

So, taking its derivative with respect to the interatomic distance (r^ term) we get:

I (-^(Aij)12^)-13 +6(Bij)
6(rij)-

7 - W^TCs^)2])
('j)eN

Figure 36: Derivative of the non-bonded term

Now it was just necessary to set up a loop in the code that inserted the proper values into

the formula to generate a scalar that is the partial derivative of the non-bonded term with

respect to the change in the interatomic distance. (42)

48

Finally, all that remained to do was to multiply the dr vector by the above scalar

and then perform a simple dot product of the resulting vector with the dq{ vector. The

resulting scalar is the derivative of the non-bonded energy with respect to a particular

dihedral angle. So, this procedure must be repeated for every dihedral resulting in an

array of derivatives. (42, 56)

Fletcher-Reeves-Polak-Ribiere Algorithm

Press, et al, (51) discuss a conjugate gradient (see discussion in Chapter IV and

Chapter V) algorithm/implementation that is a combination of the Fletcher-Reeves and

Polak-Ribiere optimization methods. This technique uses the derivatives (which we

calculated previously) of the function being optimized.

Discussion

The Fletcher-Reeves and Polak-Ribiere methods are nearly identical. They are

based on the calculation of a sequence of mutually orthogonal vectors (gx) and the

calculation of a sequence of mutually conjugate vectors (hx). So, symbolically,

gi • gj = 0 and hi • A • hj = 0 (where A is a symmetric nxn matrix). (51)

In calculating the sequences of vectors, two sequences of constants (yx, A*) are

used such that gi+i = g - ^ A« hj and hi+, = gM + y{ hj where h = (gi • g;)/(gi • A« hi) and

Yi = -(gi+i • A« hj)/(hi • A« hi). It can be shown that:

49

Yi = (gi+i •gi+i)/(gi«gi) = ((gi+i - gi)»gi+i)/(gi»gi)

Figure 37: y; equation (51)

It is at this point that the difference between the two techniques comes out. The Fletcher-

Reeves approach sets y* = ((gi+i •&+!)%#&)) (from Figure 43) while the Polak-Ribiere

approach sets y* - ((gi+i - gi)»gi+i)/(gi»gi) (from Figure 43). These two values for y; are

equal only for exact quadratic forms. So, the Polak-Ribiere provides for proceeding

beyond the minimums of the quadratic forms to possibly lower minimums. By changing a

line of the implementation, the code can be switched between the two methods. The

mutually conjugate and mutually orthogonal vectors are used to step toward a local

minimum. (51)

Implementation

One of the primary motivating factors of choosing this local minimization

technique was the fact that an implementation (with some documentation!) was readily

E Minimum m Bracketing point

Wrong Right

Figure 38: Examples of bracketing a point

Wrong

50

available. After minor modifications, f rprmn. c and its supporting functions were

placed into the AFIT implementation. Gates (18) created a version of the bracketing

function used in place of the function mnbrak. c. Gates' version, called mymnbrak. c,

brackets the current minimum with two other points. The code checks and resets those

points if necessary to make sure the point is indeed bracketed. Once the point is properly

bracketed, a new middle point is found between the lower bracketing point and the

original middle [steps 2-4 below]. That new middle becomes the upper bracket point and

the old lower bracket point becomes the next middle. Then a new low bracket point is

found. Now, the cycle starts over again with us finding a new middle between the existing

middle and the lower bracket point [steps 5-6 below]. This cycle continues until the

ivV'lvXi,
Newly calculated middle

■Bracket point

r Minimum

Figure 39: Local minimization bracketing steps (42)

51

middle point is lower than both the bracketing points where it is assumed that we have

reached the local minimum [step 7]. (42, 51)

Implementation of Niching

The niching implementation follows from the niching algorithm steps (see Figures

17-20) presented in Chapter IV. As stated in Chapter IV, phenotypic sharing was chosen

because the function we are dealing with is filled with uneven peaks and Goldberg (12,28)

discouraged the use of genotypic sharing and crowding for such functions. A general

algorithm for phenotypic sharing is as follows:

1) Calculate Distances
2) Calculate Hypersphere
3) Calculate Oshare
4) Calculate Sh(d)
5) Calculate niche count
6) Divide fitness by niche count

Figure 40: Phenotypic Sharing Algorithm

In calculating the distance, we are dealing with the string components which are dihedral

angles. So, we convert the set of strings into a two dimensional array of 24 dihedrals for

each population member. This decoding of the strings is accomplished by the using the

mapping D:{0,1}10 -> [-71,7t] often bit subsequences to dihedral angles such that:

Df a. a2. • ■ ■. aw = -& + 2^£ a.2_j

Figure 41: Dihedral decoding scheme (45)

52

This encoding gives us a precision of approximately one-third of a degree. Now, we are

subtracting angles that fall in the -II to II radians range. However, we can not do just a

straight subtraction as we want to keep the result in that range as well. So, we must take

an absolute value of the difference and then subtract that from two PI. Then, we take the

minimum ofthat initial difference or the value obtained by subtracting it from two PI. For

example, if we are finding the distance between angles A and B in Figure 42, we would

get the shorter, red distance instead of the longer, blue distance. Then, to finish the

distance calculation, we square the distance we calculated and continue on with the next

53

two angles and keep summing the squares of their distances. Finally, we take the square

root of the total squares of the dihedral distance for each population member. (45)

Next, to calculate the radius of the hypersphere, we do not have to use the

formulas provided by Deb and Goldberg (12). Instead, we know by the nature of our

space that the complete area covered is the square root of the number of dihedrals times

PI. So, this step is accomplished by a simple multiplication. Then, the calculation of a^are

is accomplished by dividing the radius by the value obtained when you take the number of

desired peaks to the one over number of dihedrals power. Finally, we use Deb and

Goldberg's (12) formula for Sh(d) and accumulate those values for each member of the

population. Those accumulated values are divided into the respective individual's fitness

to accomplish the appropriate de-emphasis of fitness. This code is contained in the file

niche. c which is located in the ~genetic/Toolkit/Simple directory. (36)

Implementation of Tournament Selection in the Simple GA

Another modification/addition to the AFIT implementation was putting the

tournament selection option into the simple genetic algorithm. Code for tournament

selection already existed for the messy genetic algorithm implementations. There is a

slight difference in the way the messy genetic implementation represents the population

compared with that of the simple genetic implementation. Both use record types, but the

messy genetic implementation has more elements defined in its population record. So, the

code had to be altered slightly to allow for handling a different record configuration.

54

After that, all that remained was to copy the code over into the Simple directory and make

some other minor variable name changes.

Genetic Algorithm Implementation Options

Figure 43 shows an example of the user's in file. Note the Options line which is

third from the bottom. This line allows the user to set the implementation to run a certain

way. The options (See Figure 44 for a partial listing of options now available) shown in

Experiments = 1
Total Trials = 10000

Population Size = 20
Structure Length = 240

Crossover Rate =0.65
Mutation Rate = 0.003

Generation Gap = 1.0
Scaling Window = 1

Report Interval = 1
Structures Saved = 1

Max Gens w/o Eval =10
Dump Interval = 0

Dumps Saved = 0
Options = nye

Number of Peaks = 16777216.0
Random Seed = 987654321

Figure 43: Example "in" file

the example would have the AFIT implementation do niching, use fitness proportionate

(roulette wheel) selection, and use elitism. Note that the number of peaks is set to

16777216 which equals 224. In other words, we treat the entire hypersphere as if it were

divided into 224 areas for the solutions to cluster in. Note that in order to force the

55

implementation to replace a percentage of strings (or components) other than zero or one-

hundred, the "Z" option must be used and the source code must be modified. See

Appendix C for instructions on altering the replacement percentage.

option flag that is set description

•IT. I 'E

I CM F'

'm'

V

•y

'z'

'Z'

Lamarckflag use 100 percent replacement after local min

Fivepercentflag do a local min every 20th generation

Minimizationflag locally minimize

PShareflag use phenotypic sharing in niching

MutateMinflag when a mutation occurs, do local min

TenLMflag Start locally minimizing after ten generations

FitProflag use fitness proportionate selection

TSflag use Tournament Selection

EndLMflag do local minimization at last generation

Davisflag replace only a percentage of the strings

Figure 44: Partial listing of "in" file Options

Summary

This chapter has discussed the current AFIT implementation as well as its inputs

and outputs. Then, this chapter detailed the additions/modifications (see Appendix D for a

listing of those additions/modifications) that have been made to the AFIT implementation

including local minimization, niching, and tournament selection (for the simple genetic

algorithm). Some of the areas covered in the addition/modification section are techniques

of implementation and the motivations behind some of the design decisions. The chapter

then concluded with a brief discussion on the in file options.

56

VI. Experimentation and Analysis

The purpose of this chapter is to define experimental design, detail the

experiments, and analyze their results. These experiments attempt to find better ways of

obtaining quality solutions (structures) to the protein folding problem. Experiments are

important because while they prove nothing, they can be used to observe tendencies. We

can conduct experiments on a set of data to learn the nature ofthat data. This chapter

discusses motivations, expectations, and results of the experiments. This chapter

concludes with a comparison of various strategies and combinations of those strategies.

Design of Experiments

As stated earlier, the protein molecule model on which the experiments are based

is [Met]-enkephalin. The minimum energy value (from now on referred to as the optimum

solution) found in QUANTA for this protein is -29.225 kcal/mol (17). The experiments

(with a combined total of over 8000 CPU-hours of execution time) focus on trying to

approach that value which puts us closer to having the "correct" folded structure dihedral

angles (see Figure 45).

Residue $ vj/ a ^ ^ ^ JCi
Tyr: -86.13 156.0 -176.84 -172.62 78.75 165.94
Gly: -154.34 83.67 168.75
Gly: 83.67 -73.83 -170.16
Phe: -137.11 19.34 -174.02 58.71 -85.43
Met: -163.48 160.31 -179.65 52.73 175.08 -180.00 -58.36

Figure 45: Dihedral angles (in degrees) for accepted optimum of [Met]-enkephalin(17)

57

The goal of these experiments is (with a high level of confidence) to determine

which genetic algorithm strategy or combination of genetic algorithm strategies offers the

best or better chance of achieving a minimum energy conformation. The experiments are

organized as follows:

• For Conjugate Gradient local minimization test and compare dihedral and string
replacement percentages using:

- Roulette Wheel (Fitness Proportionate) Selection

- Tournament (Fitness Disproportionate) Selection

• For Niching test for:

- Performance when varying number of peaks

- Performance when combined with delayed replacement strategies

In the execution of these experiments, attention is to be focused on the following

quantitative and statistical comparisons which serve as an indicator of solution quality:

•Lowest average energy
•Lowest minimum energy
•Execution times

In several cases, the average energies of the experiments are similar. When Wilk-Shapiro

normality tests were performed on the populations of energies, the average energies were

shown to be from populations that were not normally distributed. Kruskal-Wallis tests

were then used to determine if significant differences existed between the averages.

When viewing the graphs (for instance, see the graph of Figure 46), note that

frequently the graphs are plotted starting with generation five, ten, twenty-five, or fifty

rather than starting with generation one. This is because generation one energy data is

58

often quite high such that it causes the graph to be spread over too high of a range of

energies. This results in some difficulty in viewing the graph in later generations where

the data values are closer together. So, by starting with a later generation (we are not real

concerned, of course, with early generations), it becomes easier to see differences in the

effectiveness of various strategies.

Local Minimization Experiments

For the first series of experiments, we are interested in knowing what percentage

of replacement would work best for our application. Davis and Orvosh (49) report that

for their applications a replacement percentage of five percent worked the best. In other

words, local minimization is performed on all solution strings and then five percent are

arbitrarily replaced. There are two approaches to replacement that were tried. The first

approach was to replace a percentage of the components of each string. In other words,

for five percent replacement, five percent of the dihedrals in each string were arbitrarily

replaced. The second approach was to use replacement as discussed by Davis and Orvosh

(49) which was to replace a percentage of the strings.

Replacement of components

First, a series of experiments used a simple genetic algorithm with fitness

proportionate selection on a population of fifty individuals for 6000 trials. A population

size of fifty was selected for the experiments in an attempt to remain consistent with

previous research (17). For each set of the experiments, the random seeds 987654321

59

989954321, 998954321, 999854321, and 99954321 were used (in fact, these random

seeds were used for all experiments in this research for uniformity). The percentage of

replacement (of the dihedral angles) was varied from five to fifteen. Also, these

experiments are viewed with a set of runs with zero percent replacement (Baldwinian - see

Chapter IV) and with one-hundred percent replacement (Lamarckian - see Chapter IV).

—o%
 5%

10%

=-="15%

= 100%

gr*-o<»>«oo><Minco*-Ti^-o<')(DO><Nioa)*-<<ri"-Q

generations

Figure 46: Fitness Proportionate comparison of dihedral replacement percentages

The graph of Figure 46 is based on five-run averages of the minimum energy found at each

generation. Observe that the five, ten, and fifteen percent replacement strategies all

achieve higher average minimum energies than the strategies of replacing the entire strings

or not replacing anything. Moreover, in these experiments, the ranking of the dihedral

replacement strategies seems directly related to the amount of dihedrals replaced. Fifteen

percent had the highest average minimum energy (-21 kcal/mol), followed by ten percent

(-22.2 kcal/mol), and then five percent (-22.8 kcal/mol). For this particular set of runs, the

60

one-hundred percent replacement strategy reaches a much lower average minimum energy

(-30 kcal/mol) compared to the other techniques. While, it does not prove anything, this

experiment does indicate that with fitness proportionate selection, we are probably better

off replacing everything than just a few dihedral angles following local minimization.

Next, experiments were run to look at the possible benefits of using tournament

selection with the simple genetic algorithm. In addition, there were tests for possible

benefits of using dihedral replacement strategies with tournament selection. The

tournament selection experiments are run in sets of five using a population size of fifty.

-10 i

-12

-14-

-16-

* -18-
P
S -20
5 -22

-24-

-26

-28-

-30-
ir

I

——0%

—5%

10%

-"- iJ15%

■—100%

-«tüH =»»to

CO T-
v- <Q

1 Fig!

1*- <

ire^

•~coo>oojco^'<oi^-cooT-<N<om(0r^o>o*-co

generations

\lx Tournament selection dihedral replacement experiments

For comparison purposes, a graph is plotted based on the average minimum energy found

by the experiments at each generation. In Figure 47, we see results very similar to those

found by the fitness proportionate replacement experiments. Once again, the one-hundred

percent replacement has reached a much lower average minimum energy (around -29

61

kcal/mol) as compared to the other methods. The other methods have found average

minimum energies at around -22 to -24 kcal/mol. So, the tournament selection dihedral

replacement strategies appear to be more effective than their fitness proportionate

counterparts. However, the results indicate that once again we would probably be better

off replacing everything than just replacing a few dihedral angles at each generation.

Summary of component replacement experiments

Notice that for both the fitness proportionate (see Figure 46) and tournament (see

Figure 47) selection strategies that the replacement of the entire strings achieved lower

average minimum energies. One conjecture for this behavior may be that by replacing

only a percentage of the dihedrals, we are omitting "good" dihedrals and keeping "less

good" dihedrals. Thus, we are possibly inhibiting (rather than helping) the progress of the

simple genetic algorithm. On the other hand, replacing the entire string forces the

implementation to keep all the dihedrals which improves on the progress of the simple

genetic algorithm. The poor solution quality of the dihedral replacement strategies is an

indicator that for this application we should experiment with replacing the entire strings.

Replacement of strings

The next set of experiments examines the concept of arbitrarily replacing a

percentage of the population members (entire strings) at each generation of the simple

genetic algorithm. For these experiments, a population size of fifty was used over 12000

trials. The graphs show the results of five-run average minimum energies at each

62

generation. The string replacement strategies are tested using both fitness proportionate

and tournament selection.

ffr-.-.P d^™ft Cr—.^

"3-<oF-cooT-(o*TiHh.«oo o K T- in
^- CM ^ to

generations

Figure 48: Tournament selection string replacement strategies

=0

 5
— 10

"==15

' - 20
1 " 25

' " 100

Figure 48 shows a comparison of string replacement strategies on a simple genetic

algorithm that uses tournament selection. First, notice that the zero percent replacement

(Baldwinian strategy) converges quickly to a higher energy value than the other

replacement percentages. Why do the Baldwinian experiments converge so quickly? One

conjecture is that the combination of the aggressive tournament selection and the non-

replacement of strings causes members of the population with poor fitnesses to quickly be

excluded from the population. This results in applying the genetic operators to similar

strings which causes rapid convergence to relatively poor solutions. Notice also that the

five percent replacement strategy converges (though not as early as the Baldwinian

approach) at a slightly higher average energy (around -27 kcal/mol). The Lamarckian

strategy, on the other hand, has the best average energy at almost -30 kcal/mol. In other

63

words, it is on average finding conformations with a lower energy than the optimum

conformation. Note that the other replacement percentages often, fifteen, twenty, and

twenty-five all reach average energies below -28 kcal/mol which shows that they are all

averaging close to the energy of the optimum solution. All the replacement percentages

perform well with the exception of replacing zero or five percent.

0% 5% 10% 15% 20% 25% 100%
min -24.6118 -29.5072 -31.1748 -30.99 -32.093 -32.4905 -3l73162

ave -22.5944 -28.254 -29.0797 -28.7621 -29.4104 -28.8546 -29.7675

dev 1.913753 1.428581 2.10214 1.312718 1.72258 2.14637 1.18114

Figure 49: Statistical comparison of Tournament Selection string replacement minimum energies

Figure 49 provides another way to analyze the tournament selection strategies. It

shows the overall minimum energy found by each strategy, the average of the minimum

energies found per strategy, and the standard deviation of the minimum energies found by

each strategy. Note by the standard deviations, that the strategies are rather consistent in

the minimum energies found. This is also apparent when comparing the averages to the

overall minimum energy found by each technique. In fact, through Kruskal-Wallis tests, it

has been shown that there is no significant difference between these averages. Finally,

observe that the ten, fifteen, twenty, twenty-five, and one-hundred percent string

replacement strategies all found a conformation with an energy less than -30 kcal/mol —

they each found a conformation with an energy lower than the optimal solution!

64

In comparison (see Figure 50), the fitness proportionate selection technique

employed with the various string replacement strategies also perform well. An easy

observation of the graph is that the zero percent replacement (Baldwinian strategy) does

not perform as well as the other strategies. However, notice that the fitness proportionate

Baldwinian strategy does not converge rapidly like the tournament selection version. This

is because fitness proportionate selection allows for existence of population members with

poorer fitness which creates diversity. Diversity has the effect of slowing convergence.

o%
5%

•10%

■15%

=20%
a25%

100%

mcOi-*ri^os2coo>fMinco*-^ri~. ß s CD d> CM in CO
(N ft in CD i~- „ _

generations

Figure 50: Fitness proportionate string replacement strategies

Note that the fifteen, twenty, and one-hundred percent replacement strategies all cluster

around an average minimum energy of-30 kcal/mol. Figure 51 further differentiates

between the replacement strategies through some simple statistical analysis of the

minimum energy found by each experiment.

65

Figure 51 contains the absolute minimum energy, the average minimum energy,

and the standard deviation of the minimum energies found by the various replacement

experiments. While there was greater variation in the minimum energies found by the

twenty percent replacement strategy, it found the lowest energy of all experiments, -

35.1889 kcal/mol. Note that the fifteen percent replacement strategy has the best average

minimum energy while it found only the third best minimum energy. Also, observe that

every strategy except the zero percent replacement found a niinimum energy of less than -

31 kcal/mol. In fact, the average minimum energy found by the zero replacement

experiments is at least 5 kcal/mol higher than the average minimum energy of all the other

strategies.

0% 5% 10% 15% 20% 25% 10Q%

min -27.6581 -34.0205 -31.3275 -33.9411 -35.1889 -31.0853 -32.8813

ave -24.8085 -29.1842 -28.3492 -30.6108 -30.4155 -29.4659 -30.1201

dev 1.868289 2.814428 2.115062 2.56697 3.076521 0.984139 2.377013

Figure 51: Statistical comparison of fitness proportionate replacement strategies

Another way of analyzing how close we are to finding the optimum solution is to

compare the solution strings of a population for similarity (in terms of common bits) to the

optimum string. The solution string in Figure 52 is the most similar string (of the

population of fifty strings) from a one-hundred percent replacement experiment to the

optimum string (see Figure 53).

66

000000100001100110000000000001101101011100111010110000000010
000011010110010111100000000010000011001101010101110000010100
000010010000000001011011100100111111001110110010010000010101
111111001100111000100100110000010010110010011001101111101001

Figure 52: Most similar string of fitness proportionate 100% replacement experiment to optimum

010000101111101111000000001001000100100110111011101111100000
101110111001001011100000011100000111101010001101110000010001
000010111100000101011011100000101010011101000011011010010110
111111001000000000001111001000111101100001010110100000000001

Figure 53: Bit representation of optimal conformation of [Met]-enkephalin

146 bits in common
Order of the bits in common

11 order (29) bits in common
16 order (2B) bits in common
15 order 2') bits in common
13 order 2b) bits in common
15 order 2b) bits in common
15 order 24) bits in common
15 order 2J) bits in common
14 order (2Z) bits in common
16 order (21) bits in common
16 order (2U) bits in common

Correlat ion Matrix
11 0 0 0 0 0 0 0 0 0

9 16 0 0 0 0 0 0 0 0
8 10 15 0 0 0 0 0 0 0
7 9 11 13 0 0 0 0 0 0
7 8 9 11 15 0 0 0 0 0
5 6 7 8 10 15 0 0 0 0
3 4 5 6 7 li 15 0 0 0
1 1 2 3 3 6 8 14 0 0
1 1 1 1 1 2 4 8 16 0
0 0 0 0 0 1 3 6 12 16

Figure 54: Results of string comparison of optimum and most similar string

67

Figure 54 shows the results of a string comparison program on the solution strings

of Figure 52 and Figure 53. The program simply compares the bits at each position of

each string to see if there is a match. Note that the string from the replacement

experiment matches 146 of the 240 bits including sixteen 28 bits. In other words, the most

similar string of the experiment matches just over sixty percent of the bits and sixteen of

the angles are similar (give or take the sign which is reflected in the 29 bit). This similarity

is further reflected by comparing the twenty-four dihedral angles (translated from the

string of 240 bits) of the most similar string of the experiment (see Figure 55) with the

dihedral angles of the optimum string (see Figure 45).

ReSldUe 4 ¥ 2 Zl & %3 Y.4
Tyr: -177.19 -36.56 -179.65 -178.24 80.16 -74.53
Gly: 75.59 -97.38 -179.30
Gly: -161.37 33.05 -179.30
Phe: -162.07 -59.41 -172.97 175.43 70.66
Met: -167.34 -73.12 171.91 -172.62 175.43 -100.55 35.86

Figure 55: Dihedral angles of the most similar string of the 100% replacement experiment

Figure 56 provides us with a comparison of the tournament and fitness

proportionate selection techniques in the form of a graph showing the three best

replacement strategies of each. Notice that the fitness proportionate selection strategies

all find lower average minimum energies than the tournament selection strategies.

Observe that the best overall method found by the experiments is replacing fifteen percent

of the strings while using a fitness proportionate selection operator. While we can not use

this graph to prove that fitness proportionate strategies are better than tournament

selection strategies, we can use the graph as an indicator that fitness proportionate

selection might work better with conjugate gradient minimization.

68

-TS rep20
~TS rep25

TSreplOO

=FPrep15
FP rep20
FPreplOO

O <M I
in to i«-

generations

Figure 56: Comparison of tournament and fitness proportionate selection strategies

Another good technique for analyzing the nature of tournament selection versus

fitness proportionate selection is by examining the standard deviation of the energies of all

population members at each generation. Viewing Figure 57 (note that it is plotted on a

logarithmic scale and calculated on a population of fifty), we see that the standard

deviation of the energies in the fitness proportionate generations is more volatile and

remains higher. This indicates that really bad solutions (high energy conformations) are

being kept in the population. The standard deviations of the energies in the tournament

selection generations are much lower which indicates a population of more consistent

energies. Now, this consistently low energy population is probably also affected by the

Baldwinian replacement strategy. While this discussion does not necessary prove

anything, it demonstrates the much higher selective pressure of tournament selection when

intensified by the Baldwinian strategy.

69

>

■o
n

■D c

r-00U)CM0)<D«QI^^'-l»lOCM0><D<0ON-M-'<-00U5
t-«Nn»l5ll)(iNS«l<IIIJOrNNnt>tlO

generation

Figure 57: Selection strategy comparison of standard deviations

*f p rep 0%
■tsrepO%

toeOT-*rr^.op5<DQ)fMU5cOT-'Tt^O(O<0a>cMinoOT-i-i^o T-oi-ini--cod>OfMco^r<Dr-<]oo»-:<>!(0 — — - — — —

generations

Figure 58: Comparison of String versus Dihedral Replacement

—Srep5%
="°Srep10%
=~Drep5%
—Drep10%

In order to directly compare string versus dihedral replacement strategies, examine

Figure 58. This graph represents five run average minimum energies at each generation.

70

These runs consisted of 12000 trials on a population of fifty individuals. The graph

compares the five and ten percent replacement strategies. The dihedral replacement

experiment plots begin with Drep in the legend while the string replacement plots are

indicated with Srep in the legend. The graph demonstrates that the replacement of strings

is more effective than just replacing a few of the dihedrals (or parts of the strings). Note

that the dihedral replacement strategies' average minimum energy is about 7-8 kcal/mol

higher than the average minimum energies found with string replacement.

Summary of string replacement experiments

A number of the string replacement application strategies on the average found

conformations with energies less than the energy of the optimum solution. In fact, a

number of applications (see Figure 49 and Figure 51) found energies that were at least ten

percent lower than the energy of the optimum solution. Moreover, the fitness

proportionate application strategy of replacing fifteen percent of the strings found a

conformation with an energy of-35.11! In general, the experiments showed the fitness

proportionate strategies to be slightly more effective than their tournament selection

counterparts. However, the difference is not great enough to discard the idea of using

tournament selection (notice in Figure 49 that several application strategies found

conformations with lower energy than the optimum). In both the fitness proportionate and

tournament selection experiments the Baldwinian approach performed poorly enough to

indicate that it is not an effective energy minimization tool in a protein folding problem

application.

71

Summary of local minimization experiments

We have observed a number of characteristics of replacement strategies. First, all

the string replacement strategies demonstrated potential for both tournament and fitness

proportionate selection. The zero replacement strategies do not appear to be as effective

in that their average minimum energies are at least 5 kcal/mol higher than the averages of

the other string replacement strategies. The dihedral replacement strategies are ineffective

when compared with the string replacement strategies. When comparing the most similar

string found by the fitness proportionate Lamarckian strategy to the optimum string,

several of the translated dihedral angles were similar. Several of the string replacement

strategies (both tournament and fitness proportionate selection operators) demonstrated

their effectiveness as energy minimization tools in this protein folding problem application

by consistently finding conformations with similar, and often, lower energies than that of

the optimum conformation.

Niching Experiments

This set of experiments has the goal of determining the feasibility of applying a

sharing strategy (see Chapter IV) to a simple genetic algorithm for protein structure

prediction. First, experiments were executed to analyze the behavior of using different

numbers of peaks with sharing. Next, experiments were executed in order to observe the

effects of string replacement strategies when used in combination with a genetic algorithm

that performs sharing at each generation.

72

Number of peaks experiments

This set of experiments had the purpose of determining the number of peaks to use

in the sharing algorithm in finding the best protein structure. In a sense, we can view a

simple genetic algorithm as sharing with an infinite number of peaks at which we can

cluster solution strings. Because the computation of cr^are involves dividing the radius by

the 24th (because we have twenty-four dihedrals) root of the number of peaks (see niching

discussion in Chapter IV), the test values for the number of peaks were chosen to be l24

(= 1), 224(= 16777216), and 324(= 282429536481). This results in relatively different

values of Oshare (radius/1, radius/2, and radius/3) used in the sharing algorithm. In other

words, if we used one, five, and ten peaks for our tests, the twenty-fourth root of each of

those are similar and would result in similar values of a^are which would therefore

40T

ini^o<o«DO)r-Tri^op5inoOT-ti^o)CMini»r-<oa>o>cM

generations

Figure 59: Sharing experiments - number of peaks

73

generate very similar results. These experiments consisted often thousand trials run with

a population size of twenty. The smaller population size was chosen in order to facilitate a

quicker convergence. These sharing experiments were run on a simple genetic algorithm

with a fitness proportionate selection operator. The graph of Figure 59 is of five-run

average minimum energies by generation. Notice that all strategies had nearly the same

average minimum energy by generation 550. However, careful examination reveals that

using the strategies of 1 and 324 peaks worked better than using 224 peaks.

An important concept of niching is that the de-emphasizing of the fitness of

clustered solution strings slows down convergence. Figure 60 shows the last three lines of

the out files of various strategies so we can compare the amount of convergence. Actually,

the lines of the out files have had some columns removed to show just the columns

GA
3993 49988 0.976 -2.245191e+01
3994 49998 0.976 -2.245191e+01
3995 50007 0.978 -2.245191e+01

1 to 24th peaks
3899 49981 0.961 -1.817938e+01
3900 49995 0.963 -1.817938e+01
3901 50009 0.964 -1.817938e+01

2 to 24th peaks

3898 49983 0.955 -2.412793e+01
3899 49992 0.952 -2.412793e+01
3900 50005 0.954 -2.412793e+01

3 to 24th peaks

3765 49989 0.924 -2.473190e+01
3766 49997 0.920 -2.473190e+01
3767 50011 0.928 -2.473190e+01

Figure 60: Out files from niching experiments

74

pertinent to this discussion. From left to right, the first column shows the number of

generations, the second column displays the number of trials, the third column is the

percentage of convergence, and the fourth column is the minimum energy found at that

generation. So, for niching with one peak, after 3901 generations we were 96.4 percent

converged with a minimum energy of-18.179 kcal/mol. Notice that the simple genetic

algorithm that was run without any niching has achieved over ninety-seven percent

convergence which is a greater level than any achieved by the niching strategies. So, we

can deduce that the sharing is slowing down convergence as expected.

Notice also that for these particular runs, the niching strategies (224 and 324_peaks)

finds a lower minimum energy than the simple genetic algorithm. In Figure 61, we see the

results of experiments that were allowed to run for fifty-thousand trials so we could get a

better idea of which strategy may be better. The graph shows five-run average minimum

-5

-GA

-1 to 24th

2 to 24th

=3 to 24th

-25 -L
S!2S!ßS!GPinP'ß01"oiOQir>oinomoino
NiOTii)M»ONfilnSiNäo«nlrlSS$?Nn «iMNiMNNMnnnnn

generations

Figure 61: SGA alone versus niching strategies

75

energies by generation. If we examine the area of eight hundred through eleven hundred

(800-1100) generations, we see that the strategies were all averaging about the same

rninimums with the simple genetic algorithm just barely outperforming the niching genetic

algorithm implementations. Observe that as we progress into later generations, the

average rninimums start to become more distinct. For this set of experiments, the strategy

of niching with 224 peaks barely outperforms the simple genetic algorithm (with no

niching) and the implementation with 324 peaks.

Figure 62 shows a statistical picture of the final generation of the strategies shown

in the graph of Figure 61. It shows the average minimum energy of the final generation,

the absolute minimum energy found by each strategy, and the standard deviation of the

final generation minimum energies. We can therefore deduce that minimum energies

found by the strategy of using niching with 224 peaks were all very similar while there was

some variance in the minimum energies found by the strategy of using niching with l24

peaks. Note that the minimum energy found by each strategy is very similar. Moreover,

Kruskal-Wallis tests showed that the average minimum energies have no significant

differences. So, based on the data of this experiment, it is difficult to conclude (with high

confidence) which strategy is better.

§A_ I24 peaks 2Zi peaks 32i peaks
ave -24.2659 -22.9987 -24.8167 -24 1769
min -26.7415 -26.7929 -26.0231 -26.6563
dev 1.911804 4.602258 0.99861 2.439931

Figure 62: Niching final generation statistics

76

String comparisons

Once again, to appraise the success of the experiments, we attempt to determine

how close our solutions come to matching the accepted optimum conformation. Recall

from Figure 45 the dihedral angles (in degrees) of the accepted optimum energy

conformation of [Met]-enkephalin. The string in Figure 64 (the most similar string of a

niching experiment's population) is to be compared with the string of the accepted

optimum conformation (see Figure 63) to determine, structurally, how similar our solution

is to the accepted best conformation.

010000101111101111000000001001000100100110111011101111100000
101110111001001011100000011100000111101010001101110000010001
000010111100000101011011100000101010011101000011011010010110
111111001000000000001111001000111101100001010110100000000001

Figure 63: Bit representation of optimum solution of [Met]-enkephalin

010100111011010101011111111111010000000000000110101111111101
111110111110100000100000100000001111111111001010001111111111
001000000000000110111011111001010110010101000111110101001110
111111011000111101110101111000001001000110110010110000000001

Figure 64: Most similar string from niching with 224 peaks experiment

Figure 65 displays the results of running a comparison program using the strings of

Figure 63 and Figure 64. Note that the most similar solution string only matched 134 bits.

If we were to generate a random 240-bit string, we would expect to, on average, have 120

bits in common with the accepted optimum string. So, our solution is not much better

77

than if we had just randomly produced a solution string! Also, observe that we had

fifteen 2 bits and fourteen 28 bits in common. These higher order matchings indicate that

we are at least in the ballpark of almost two-thirds of the dihedral angles. So, while our

complete 240-bit string is rather different than that of the accepted optimum conformation,

many of our dihedral angles are at least similar. Figure 65 shows the comparison using

our best 2 peaks niching solution. When a comparison was performed with the most

similar solution string from the 324 peaks experiment and the optimum string, there were

137 bits in common with thirteen 29 bits and eleven 28 bits in common. So, the 324 peaks

strategy does find a slightly more similar structure with respect to total bits but with fewer

similar dihedral angles.

134 bits . Ln common
Order of the bi .ts in common

15 order (29) bits in common
14 order (28) bits in common
12 order (27) bits in common
14 order (26) bits in common
15 order (25) bits in common
13 order (24) bits in common
12 order (23) bits in common
11 order (22) bits in common
16 order (21) bits in common
12 order (2°) bits in common

Correlation Matrix
15 0 0 0 0 0 0 0 0 0
12 14 0 0 0 0 0 0 0 0

8 8 12 0 0 0 0 0 0 0
7 7 9 14 0 0 0 0 0 0
6 6 8 10 15 0 0 0 0 0
3 3 4 5 9 13 0 0 0 0
2 2 3 4 6 6 12 0 0 0
1 1 2 2 3 3 6 11 0 0
1 1 2 2 2 2 4 9 16 0
1 1 1 1 1 1 2 3 7 12

Figure 65: Bit-comparison of the accepted optimum and the most similar solution of niching

78

When comparing the dihedrals of the most similar solution from the niching with

224 peaks experiments (see Figure 66) to the dihedrals of the assumed optimum

conformation (see Figure 45), it is apparent that several of the optimal dihedrals were

nearly found in the experiment. This dihedral similarity corroborates our in the ballpark

conjecture in the bit-comparison discussion of Figure 65.

Residue 4 S s fc & X3 y.4
Tyr: . -62.58 119.88 179.65 -170.51 87.54 -129.02
Gly: -90.00 -170.86 178.95
Gly: 174.02 45.70 -168.75
Phe: -90.35 104.06 179.65 -54.49 -79.10
Met: -135.00 -47.81 -179.65 -62.58 176.48 -93.16 71.37

Figure 66: Dihedral angles of the most similar niching 224 peaks solution

Niching with string replacement experiments

This set of experiments have the purpose of determining whether or not string

replacement is feasible when used with niching. These experiments executed 20000 trials

on a population of fifty individuals. We allow the experiments to run with niching for

three-hundred generations at which point the population should be well divided into

various niches that we wish to explore further. From the three-hundred first generation

on, conjugate gradient local minimization is applied using various replacement schemes.

In other words, from then on, at every generation niching is performed, followed by the

application of genetic operators (see Chapter HI), and then the conjugate gradient local

minimization steps (see Chapters IV, V) occur. The number of peaks versus string

replacement percentages of zero, five, ten, and one-hundred percent are observed.

79

Figure 67 shows the results of the various replacement percentages when used

with niching with 224 peaks. All the experiments have the same average minimum energy

until the three-hundredth generation after which the local minimization takes effect. The

effect of the local minimization is demonstrated by the forking of the graph. Notice that

the one-hundred percent replacement average minimum energy is much lower than that of

the other strategies (about -29 kcal/mol versus about -19, -22, and -23 kcal/mol). In other

words, the Lamarckian strategy is finding conformations whose average energy is near to

the energy of the optimum conformation. However, the other experiments indicate that

ScoocN^-tDooocj^-inh-Oi-coiftr»- — — — —
T-T-^-i-T-cMCNotCMCMCMoromn

generations

Figure 67: Niching with 2 peaks and delayed string replacement

the combination of sharing with 224 peaks and the other replacement percentages are not

effective tools in an energy minimization protein folding problem application. A possible

reason behind the apparent ineffectiveness of the other string replacement percentages

may be the combination of not reencoding all solutions and then de-emphasizing those

80

non-encoded solutions' fitnesses. This combination produces the effect of the two

strategies more or less canceling each other out!

Figure 68 shows the results of the various replacement percentages used with

niching with 324 peaks. All the experiments have the same average minimum energy until

the three-hundredth generation after which the local minimization takes effect. This graph

also contains the characteristic forking due to the local minimization. Notice that the one-

hundred percent replacement average minimum energy is much lower than that of the

other strategies (about -31 kcal/mol versus about -23, -25, and -26 kcal/mol). In other

words, the Lamarckian strategy is finding conformations whose average energy is lower

than the energy of the optimum conformation. While all the 324 peaks experiments

=0%

"5%

10%

"100%

coocM^-<ocoor>i^'ioi>-a>T-<Q rrrrrNNNNNINnn
t <o
■Q I-»
<0 to

CM «- O 0> 00 I--
o> 1- to tr <o oo _ ..

generations

Figure 68: Niching with 3 peaks and delayed string replacement

81

outperformed their 224 peaks counterparts, the experiments indicate that the combination

of sharing with 324 peaks and the replacement percentages (other than the Lamarckian

strategy) are not effective tools in an energy minimization protein folding problem

application. The 324 peaks strategies outperform the 224 peaks strategies possibly because

the 324 peaks strategy results in a greater initial dispersal of the population. This dispersal

results in a more complete exploration of the search space. Like the 224 peaks

experiments, a possible reason behind the apparent ineffectiveness of the other strategies

may be tied to the combination of not reencoding all solutions and then de-emphasizing

those non-encoded solutions' fitnesses. So, this combination could likewise be producing

the effect of the two strategies canceling each other out.

Summary of niching experiments

The niching experiments demonstrated the effects of population dispersal over the

fitness landscape. While none of the niching strategies performed especially well by them

selves, when niching was applied with the delayed local minimization Lamarckian

replacement strategy, some interesting results were produced. For niching with 224 peaks,

the Lamarckian replacement produced conformations with average energies of about -29

kcal/mol. In other words, on average we were finding conformations about as "good" as

the optimum conformation (with respect to energy). For niching with 324 peaks, the

Lamarckian replacement produced conformations with average energies of about -31

kcal/mol. This combination of strategies produced the best average energy of anv

experiment in the thesis effort. This strategy, on average, found conformations which had

energies five percent lower than that of the optimum conformation.

82

Execution times comparison

In Figure 69, the execution times of various strategies are presented for

comparison. It is important to note that these are the best times achieved for each strategy

running on SPARC 20s. Average times would be misleading in this case because students

and faculty are constantly logging on and off the machines as well as running their own

jobs. A busier machine would drastically slow down execution (especially when jobs are

lasting more than a day).

Note that the run times for Q, R, and S are so (relatively) small that they hardly

appear on the graph. These experiments only lasted fourteen, twelve, and five minutes

respectively. In contrast, the Baldwinian strategy (with fitness proportionate selection)

took over 3700 minutes (three days equals 4320 minutes). The conjugate gradient routine

loops up to five times in its attempt to approach the local optimum. The Lamarckian

strategy more or less saves the minimization steps through reencoding the improved

strings. Therefore, after several generations, the Lamarckian strategy is using strings

which are nearer to local optima and require less of those time-consuming conjugate

gradient loops. The Baldwinian strategy, on the other hand, nearly always requires all five

loops and so the executions tend to take much longer as demonstrated by the bar graph of

Figure 69. Observe that all the fitness proportionate local minimization strategies execute

at least a day while their tournament selection counterparts take ten to sixteen hours. So,

in some respects, better solution quality (lower energies) seems to have an increasing cost

in terms of execution time.

83

Execution Times Comparisons

Where:
Fitness Proportionate Selection, population 50, 12000 trials, string replacement

A - replace 100%
C - replace 0%
E - replace 5%
G - replace 10%
I - replace 15%
K - replace 20%
M - replace 25%

Tournament Selection, population 50, 12000 trials, string replacement
B - replace 100%
D - replace 0% (converged after about 5000 trials)
F - replace 5%
H - replace 10%
J- replace 15%
L - replace 20%
N - replace 25%

Niching for 300 generations then with local minimization, population 50, 12000 trials
O-replace 100%
P - replace 0%

Q is plain niching, population 50, 12000 trials

Simple Genetic Algorithm - no local minimization, population 50, 12000 trials
R is fitness proportionate selection
S is tournament selection (converged at around 6000 trials)

Figure 69: Comparison of execution times

Summary

The experiments presented in this chapter are geared toward finding a minimum

energy conformation of [Met]-enkephalin. The results of the experiments are used to

accomplish the objective of this research effort which is to determine the suitability of

using the various local minimization and niching techniques in solving the protein folding

problem. The results from the experiments conducted indicate that several string

replacement strategies (some with niching) are effective tools in energy rninimization

protein folding problem applications in that they find conformations whose energies are at

or below the energy of the optimum conformation. Further analysis and conclusions

drawn from these experiments are presented in Chapter VII.

85

VII. Contributions. Conclusions, and Future Recommendations

Based on the Literature review, design, implementation, and experimental work

discussed previously in addition to the observations made throughout this investigation,

the major contributions, conclusions and recommendations are presented. The discussion

of contributions is broken into the areas of theoretical and application contributions. The

conclusions (analytical contributions) are based on the work accomplished in trying to

meet the goals of this thesis effort. The goals focus on determining the possible benefits

of applying local minimization and niching strategies in conjunction with genetic

algorithms for protein structure prediction. These operators are compared by examining

the minimum energies and average minimum energies found.

Contributions

The contributions are highlighted in the areas of theoretical contributions and

application contributions of this thesis effort. The analytical contributions are discussed in

the Conclusions section.

Theoretical contributions

A primary theoretical contribution of this thesis effort is the idea of locally

minimized component replacement (see Chapter IV as well as Figure 46 and Figure

47). While the concept of replacing percentages of entire solution strings has been

discussed in several articles (49, 58), component replacement (though probably already

discovered) is not as thoroughly published. In fact, this author has never seen any articles

86

on the subject so it is possible that it has not been published at all. This is not a safe

assumption, (obviously since this author is not well read in all journals and publications in

the field of evolutionary computation, it would be foolish to lay claim to this concept's

discovery).

More important than the issue of who discovered the concept of component

replacement, is the fact that this concept deserves further attention despite its relatively

poor performance in this application's experiments (see Chapters IV and VI as well as

Figure 46 and Figure 47). Component replacement should be tested in applications with

different number of components and of varying component length. For example, perhaps

it would perform well in an application where the solution is encoded into long strings

(many digits) but with just a few components (e.g. five thousand bits and five

components) so that encoding a percentage of the components would entail encoding

most of the string. On the other hand, perhaps component replacement works by ensuring

that at least fifty percent of each string is encoded (in other words, most of the string)

regardless of component bit-length.

The next theoretical contribution of this thesis effort is the concept of combining

niching with delayed local minimization (see Figure 67 and Figure 68) Again, the issue

of discovery is not as important as the point that this concept also deserves further

attention. The strategy of sharing with 224 peaks combined with delayed (for three

hundred generations) Lamarckian replacement found energies comparable to the energy of

the optimal solution. Also, the strategy of sharing with 324 peaks combined with delayed

87

(for three hundred generations) Lamarckian replacement found average minimum energies

five percent less than the energy of the optimal solution. These results indicate that the

prolonged dispersal of a genetic algorithm population over the fitness landscape using

niching followed by locally minimizing and then re-encoding every individual for many

generations is an effective method of energy minimization. Experiments to measure the

effectiveness of this concept in other genetic algorithm applications would be worthwhile.

In summary, this thesis effort has produced two principal theoretical contributions:

the concept of component replacement and the concept of niching with delayed local

minimization. While niching with delayed local minimization demonstrated the most

promise in energy minimization, both ideas deserve more attention and therefore should

be tried in different genetic algorithm applications.

Application Contributions

This thesis effort has produced a number of contributions to the AFIT

implementation. Most important, is that there now exists a hybrid genetic algorithm

software platform. From this, further research can occur on local minimization and

niching strategies on [Met]-Enkephalin as well as other protein molecules (with minor

software modifications).

In terms of coding, specific contributions to the AFIT implementation are

discussed in Appendix D. The appendix details many of the additions and modifications to

the AFIT implementation. Other contributions to AFIT implementation are in the form of

88

documentation. Many of the file and procedure headers were incomplete (or in some

cases unchanged duplicates of others). Through this thesis effort, many of those headers

have been corrected and completed. Also, commenting within the source code has been

added and improved in uncountable areas which allow future programmers to more

quickly grasp the idea of what functions the code is performing. Moreover, files have

been added in directories to assist researchers. A file called LM_options_list which

contains the options associated with local minimization and niching (it is similar to the list

of Figure 44) has been added to the -genetic/ Toolkit/ Simple directory. In the

~genetic/Toolkit/Messy/Fast directory, readme.file_contents has

been added to help would-be fast messy genetic algorithm researchers locate functions and

procedures (like the simple genetic algorithm, the fast messy implementation consists of

many source files).

Conclusions

The experiments detailed in Chapter VI indicate that some local minimization and

niching techniques may be feasible for energy minimization protein structure prediction.

Several strategies, on the average, found conformations of lower energy than the accepted

optimum. However, no experiment found the accepted optimum conformation.

The fitness proportionate string replacement strategies performed better than their

tournament selection counterparts (the twenty percent replacement experiment achieved a

minimum energy of-35 kcal/mol). There are replacement strategies using both selection

operators that found conformations with average minimum energies below the energy of

89

the optimum conformation. The Baldwinian replacement strategy performed poorly when

used with either selection operator and so is an ineffective tool in this energy minimization

protein folding problem application. See Figure 70 for a brief summary of the

experimental results.

Strategies of arbitrarily replacing a percentage of the dihedrals (or parts of the

strings) performed poorly when compared with the results of total string replacement for

both fitness proportionate and tournament selection. Based on these poor results, this

strategy (see the Theoretical Contributions discussion on pages 87-88 for further insight)

does not seem feasible for a protein folding application. However, this type of strategy

could be useful for other applications and so should not be discarded totally. See Figure

70 for a brief summary of the experimental results.

Niching strategies did not perform as well by themselves but show great promise

when combined with delayed local minimization Lamarckian strategies. The concept of

allowing the solution space to be firmly divided into niches and then applying local

minimization (and encoding all strings) outperformed every other strategy tested in this

thesis effort (in terms of average minimum energy). Further experimentation should be

applied to the concept of diversifying the solution space using niching combined with the

exploitation of the solution space using conjugate gradient local minimization (see the

Theoretical Contributions discussion on page 88 for further insight). See Figure 70 for a

brief summary of the experimental results.

90

Strategy Average Minimum

Fitness proportionate Lamarckian replacement -30.1201 -32.8813
Fitness proportionate 20% string replacement -30.4155 -35.1889
Fitness proportionate 15% dihedral replacement -21.0916 -22.5633
Tournament 5% dihedral replacement -24.4519 -27.1842
Tournament Lamarckian replacement -29.7675 -31.3162
Tournament 20% string replacement -29.4104 -32.093
Niching(3) with delayed Lamarckian replacement -31.0592 -32.7731
Niching with324 peaks -24.1769 -26.6563

Figure 70: Comparison of energies found by the various strategies (best are highlighted)

In terms of execution times (see Figure 69), most of the strategies were finished in

48 hours. Compared to the possible two years of laboratory time of the physical

techniques (see Chapter II), these quality solutions were obtained in only about two days.

So most of the strategies when considering execution time and solution quality, are

effective in this protein folding problem application. However, the Baldwinian runs

frequently took more than seventy-two hours which coupled with their poor solution

quality indicates that they are impractical for this protein folding problem application.

Future Recommendations

There are a number of possible techniques to try in our search for better ways to

find optimal conformations. If anything, this thesis effort demonstrated the potential of

applying a local minimization technique with genetic algorithms in polypeptide energy

minimization. So, the local minimization techniques should now be incorporated into the

existing AFIT serial fast messy genetic algorithm code and thoroughly tested. Next, the

91

local minimization code should be inserted into the parallel versions of the simple and fast

messy genetic algorithm. The results of experiments conducted with these

implementations can be compared with the results presented in this thesis to determine

which methods are most worthy of further testing (see Appendices A and B for additional

information on parallel/distributed computing and messy genetic algorithms).

Because some of the niching implementations showed such promise, the niching

code should be combined with the parallel simple genetic algorithm code. The

combination of niching (which spreads the population out over the solution space) and

parallel computing (which spreads the population over the different nodes) could yield

interesting results (see Appendix A for information on parallel/distributed computing).

There are several other methods that could also be applied. Research

should be applied toward using real-valued encodings and operators applied to the protein

folding problem while paying attention to performance (in terms of both solution quality

and execution times). Also, trying other types of selection operators could offer benefits.

Another interesting experiment would be to adapt the current fitness proportionate

operator so that it applies a higher selective pressure by periodically eliminating members

with poor fitness (poor fitness could be defined as being more than three deviations from

the mean fitness, for example).

92

Finally, there are a few software engineering concerns. First, the AFIT/WL

implementation is currently modified by a number of researchers. There needs to be

established a system for communication about code changes between the researchers. One

solution may be for each researcher to establish one's own working directory in which

coding and testing is accomplished. Then, after group approval, the code could copied

into the main implementation. Also, there need to be some standards defined for

commenting (both inside the code and in headers). The existing code is very well

documented in some areas while not at all in others. The issue of what is a useful,

complete comment needs to be addressed and agreed upon.

Summary

This chapter summarizes the general conclusions that can be derived from this

investigation. These conclusions are used to indicate possible areas of future research.

Overall, this thesis documents the results of various applications of local minimization

strategies and niching strategies to the AFIT genetic algorithm implementation.

93

Appendix A ■ Parallel/Distributed Computing

This appendix summarizes current knowledge of parallel/distributed computing

techniques with emphasis placed on the possible benefits of combining them with a genetic

implementation towards solving the protein folding problem. First, this chapter discusses

parallel computing paying attention to issues such as scalability and the isoefficiency

function. Then, this chapter addresses distributed computing focusing on issues, PVM,

and MPI.

Parallel Computing

When you have to dig a ditch, if you have a helper start at one end while you start

at the other, then the task is accomplished much quicker than by you working alone. This

is the same philosophy that is used is parallel computing. Frequently, a job can be

accomplished much quicker by dividing tasks among multiple processors. An important

consideration in parallel computing is communication - all the processors need to know

what is going on, what to do with their results, and then need to send those results. In our

ditch-digging example, the best communication scheme would probably be to initially give

our helper all the necessary information: where to start, how deep, how wide, and so on.

If the helper keeps having to run the full length of the ditch to ask you questions, it lowers

the helper's productivity, your productivity, and as a result, the overall productivity.

However, if our helper has a limited memory capacity and only can remember a few things

(how bright can a ditch-digger's assistant be?) then we might have to adopt a different

94

Communications scheme. Similarly, in parallel computing, we also have to take local

memory and message sending time into account.

Frequently, a job can be accomplished much quicker by dividing tasks among

multiple processors. An important consideration in parallel computing is communication

— all the processors need to know what is going on, what to do with their results, and

then need to transmit those results. In parallel computing, we also have to take local

memory and message sending time into account. (34)

Massively parallel computers (computers having a large number of processors) can

have over a thousand processors, and plans are being drawn for architectures with more

than one million nodes. Parallel solutions are said to be scalable if additional processors

can be used efficiently. (34) This is important because after some point our job can

actually be slowed down if we add additional processors. In our ditch-digging example,

we can only use a limited number of additional assistants before they start getting in the

way of each other and slowing down the job. So, at first, our ditch job is scalable.

However, after reaching one assistant per few feet of ditch, additional assistants are not

effective and, in fact, could be detrimental. In comparison, to reap the benefits of

parallelism, we are looking for algorithms that are scalable.

How effective is parallel processing? The potential gains of parallelism are made

very apparent with the recent announcement that Sandia National Laboratory achieved

281 billion floating point operations per second (gigaFLOPS) on two hyperlinked Intel

95

Paragons (6768 processors in parallel) using the Linpack Benchmark and 328 gigaFLOPS

using electromagnetic radar signature calculation code. This is made more dramatic when

you consider that each of the 3384 nodes were actually just a pair of Intel i860 XP

processors which are each capable of a mere 50 million floating point operations per

second (megaFLOPS). (52)

As stated previously, we can view a system's scalability by using its isoefficiency

function. For example, say we have/? processors, a problem size of W, and the total time

on all processors that it takes to solve a given problem ispTp.. Out of p1p ,we spend only

W units of time performing useful work. We can now express the overhead (T0) function.

Then, we can derive the isoefficiency function as follows:

= pTp - W (overhead function)

= [W + T0(W,p)] / p (solving for Tp)

= W / Tp (speedup)

= W*p / [W + T0(W,p)]

= S/p (efficiency)

= W / [W + T0(W,p)]

= 1 / [1 + T0(W,p)]/W

= E/d-E) * T0(W,p) (solving for W)

let constant K = E/(l-E) depend on the maintained efficiency

So, w = K * T0(W,p) (isoefficiency function)

Figure 71: Derivation of the Isoefficiency Function (34)

W

96

The isoefficiency function is telling us the difficulty (or lack thereof) with which a parallel

system can keep a constant efficiency and so achieve some speedup in proportion to the

number of processors. We hope for a small isoefficiency function because that indicates

that we only need small increments in the problem size for the efficient use of more

processors. In other words, we would have a highly scalable system. (34)

The main reason that we are interested in parallel computing is that genetic

algorithms are easily parallelized and very scalable. One approach puts multiple copies of

the same program on each processor, starts their execution with different seeds for the

random number generators, and selects the best solution after all processors have finished.

Another approach (referred to as the island model) is where the population is divided up

into subpopulations which are grouped on individual processors which run independent

genetic algorithms. This results in little communications overhead but at a possible

sacrifice in solution quality. (17, 19)

Distributed Computing

As personal computers (PCs) become more powerful and less expensive (more

CPU per dollar), we are looking for ways to divide jobs among groups of PCs to reap

parallel benefits. This type of computer task division is known as distributed computing.

Distributed computing is not limited to just networks of PCs. It can be used in a network

of any type of systems (e.g. SPARC 20 workstations). Some of the characteristics of a

distributed system include the lack of a shared clock and the lack of shared memory.

97

There are a number of strategies for controlling the network. The two methods discussed

are Parallel Virtual Machine (PVM) and Message Passing Interface (MPI). (34, 48, 54)

PVM

PVM allows a heterogeneous collection of UNIX systems to be viewed by a user's

program as a single parallel virtual computer. PVM was developed at the Oak Ridge

National Laboratory by Vaidy Sunderham and Al Geist. The initial version was a

prototype used only in the lab. After a period of testing, version 2 was written and

released through the University of Tennessee. As of 1994, version 3.3 had been

developed and released. PVM works by viewing the user's application as a set of

cooperating tasks. PVM manages the initialization, termination, and synchronization of

these tasks. Communication is handled through primitives which involve strongly type

constructs for buffering and transmission. Those constructs includes those for sending,

receiving, broadcasting, barrier synchronization, and global summing. PVM allows tasks

the ability to start and stop other tasks, and to add or delete computers from the virtual

system. PVM is not limited to distributed computing as it can be used with massively

parallel machines as well. (22)

MPI

The Message Passing Interface standard specification was completed in 1994. Its

goal was to develop standard syntax and semantics of massage passing routines (in

FORTRAN or C) which would allow for portability. MPI is easily compatible with

98

distributed-memory multicomputer and shared-memory multiprocessors. The MPI

standard was developed over a year of intensive meetings involving over eighty people

from approximately forty organizations, many vendors of concurrent computers, and

researchers from universities, government laboratories, and industry. Their combined

efforts resulted in the publication of the MPI specification. MPI is still in relatively early

development. The next version of MPI is expected to include provisions for the following:

Parallel I/O, Remote store/access, Active messages, Process startup, Dynamic process

control, Non-blocking collective operations, FORTRAN 90 and C++ language bindings,

and Graphics. Real-time support MPI can be used as a communications layer built on the

hardware platform which allows PVM to be ported to MPI to exploit vendor-supplied

communication performance. (14,22)

Issues of Distributed Computing

A number of factors come into play when dealing with distributed computation.

First, there is granularity. Granularity is the ratio of uninterrupted computation time to

communication operations. This should not be confused with parallel granularity which is

the ratio of the power of the processors versus the number of processors. Another issue is

coupling. Coupling is the amount a process depends on companion processes for the

overall computation to succeed. Another issue is portability. Portability is the aspect of a

system component that allows it to be used in various environments. For instance,

software portability would indicate the extent that software can be ported from one

hardware system to another. Another issue is cache coherence or more generally, data

99

coherence. Data coherence is the problem that arises when one processor changes the

values of data in its local memory. This results in the data located in shared memory and

the data in the local memory of other processors becoming obsolete. One technique for

handling the problem is to have the processor write to a shared location which is then used

to update all memory locations. (34,41,48)

Summary

Parallel and distributed computing can offer us a large advantage in problem

solving. It enables us to divide our problem into concurrent tasks and solve the problem

faster. Key issues in parallel/distributed computing such as efficiency and overhead

contribute to the concept of scalability. Scalability is what provides us that large

advantage in problem solving. Fortunately, genetic algorithms are scalable.

100

Appendix B - Messy Genetic Algorithms

Messy genetic algorithms were developed largely to overcome the problem of

deception. The messy genetic algorithm combats deception through the use of partially

enumerative initialization (PEI). In PEI, the initial population of possible building blocks

(partial solutions) is created with each being a specified length. With a block size of n, the

initial population size is equal to:

This can result in populations much larger than those used by simple genetic algorithms.

Note that if we set the block size equal to the string length (w = I) then our population size

is equal to just 2l which is the same as the initial population size of a simple genetic

algorithm (using binary digits). This is logical since we would be manipulating fixed-

length blocks that encompass the entire string just as a simple GA manipulates the entire

fixed-length string. Moreover, if we set the block size equal to one, then our initial

population size would be 21. In other words, if our block is made up of just one bit, then

it would only take 2/ strings to cover the possible values. (17,25,43, 44)

Another key difference between messy and simple genetic algorithms is that messy

GAs encode both the string position (locus) and its value (allele) in variable-length strings.

These strings are built up to allow a genetic algorithm to cover all features of a problem.

101

Messy Genetic algorithms tend to mimic nature in that over time simple structures develop

into complex ones. In doing so, they allow the existence of under-specifiedand over-

PerformPEI
evaluate fitness

for i=l to max. number of primordial generations
perform tournament selection
periodically half the population (e.g. every 10 iterations)

for i=l to max. number of juxtapositional generations
perform cut-and-splice
evaluate fitness
perform tournament selection

Figure 73: Messy Genetic Algorithm

specified strings (hence the variable lengths). Under-specified strings do not have an allele

for every locus. A locally optimal competitive template is used to supply the values for

the unspecified loci. Over-specified strings have more than one allele per locus. In this

case, the locus is set to the value encountered first. (17,25, 26)

The messy genetic algorithm consists of two phases— the Primordial Phase and

the Juxtapositional Phase. The word primordial implies happening or existing first. The

primordial phase happens before the juxtapositional phase and so hence the name. In the

Primordial phase, we are concerned principally with enriching the population with above

average building blocks. This is usually accomplished through tournament selection. The

other main purpose served by the primordial phase is the reduction of the population size

to a level (usually halved) that enables the juxtapositional phase to operate efficiently and

effectively on the population. (2, 17, 25,43,44)

102

The Juxtapositional phase is similar to a simple genetic algorithm. The word

juxtapositional means positioned side by side which makes for a logical name since we are

placing strings side by side for comparison. The main difference between the

juxtapositional phase and the simple genetic algorithm is that we are now dealing with

variable length strings. So, the crossover operator is replaced with the Cut-and-Splice

operator. The Cut-and-Splice operator picks random points on parent strings and cuts off

the ends and splices the end onto the other string head to form the children of the next

generation (very similar to crossover except we are not cutting off equal-length ends from

the parent strings). The mutation operator is generally not used with messy genetic

algorithms. (4, 17, 24, 25, 43, 44)

generation(x)

PI:101011001010
P2:110100011001

generation(x+l)

Nl:10101100011001
N2:1101001010

Figure 74: Example of Cut-and-Splice

There are several advantages of the messy genetic algorithm. First, it handles the

problem of deception primarily by finding tightly-coded building blocks and then finding

globally optimal structures by juxtaposing those building blocks. This, in part, affects the

next advantage which is generally better solution quality. However, the messy genetic

103

algorithm has a big disadvantage in that the increased population size causes more

computations which leads, in some cases, to dramatic increases in execution times. To

overcome such problems, the fast messy genetic algorithm was developed. (4, 17,24, 25,

26,43)

The Fast Messy Genetic Algorithm

What makes a fast messy genetic algorithm jforf? The fast messy genetic algorithm

is very similar to the messy genetic algorithm but with a few key differences. The first and

principal difference is in the initialization. The fast messy genetic algorithm reduces the

complexity of the initialization phase (messy GA -» 0(7*) versus the fast messy GA -»

0(/ log I)) which, in turn, reduces the overall algorithm time and space complexity. The

fast messy GA uses probabilistically complete initialization (PCI) which creates a

population whose size is equivalent to the population size at the end of the primordial

phase of messy genetic algorithms. The fast messy GA then enriches the population

through alternating steps of tournament selection and building block filtering (BBF). The

tournament selection increases the percentage of individuals containing building blocks

and then BBF randomly deletes some number of genes from every individual. That

number is chosen so that many of the building blocks are disrupted (but not all!). The end

result is a population of partial strings that have a high expected proportion of building

blocks. The last key difference is that there is more conservative thresholding in the

tournament selection of the fast messy GA compared to that in the messy GA. (17,44)

104

Perform PCI
evaluate fitness

for i=l to max. number of primordial generations
perform tournament selection
if a BBF is scheduled then

perform BBF
evaluate fitness

for i=l to max. number of juxtapositional generations
perform cut-and-splice
evaluate fitness
perform tournament selection

Figure 75: Fast Messy Genetic Algorithm

Even though they generally have lower execution times than the messy genetic

algorithm and offer increased solution quality versus the simple genetic algorithm, fast

messy genetic algorithms have not proven to be the end-all solution to our problems. The

principal problem is that the best parameters for the fast messy genetic algorithm are

presently unknown. In some cases, the fast messy genetic algorithm has been shown to

have much greater execution times than the simple genetic algorithm. Until better fast

messy parameters are found, previous AFIT research indicates that the simple genetic

algorithm (on a parallel platform) is the preferred technique for the protein folding

problem. (19, 20, 21)

Fast Messy Genetic Algorithms and Local Minimization

Figure 18 shows the possible locations of a local minimization step in a fast messy

genetic algorithm. Having a local minimization step in all three locations could stand to

provide us the most benefit from local niinimization but would suffer with respect to

105

computation time. Performing the local minimization step only within the Primordial loop

would allow us to generate a highly fit population for the juxtapositional loop to operate

on. On the other hand, there is logic to a strategy of sending generic building blocks (ones

Perform PCI

evaluate fitness

Local Minimization step

for i=l to max. number of primordial generations
perform tournament selection
if a BBF is scheduled then

perform BBF
evaluate fitness
Local Minimization step

for i=l to max. number of juxtapositional generations
perform cut-and-splice
evaluate fitness
Local Minimization step
perform tournament selection

Figure 76: Fast Messy Genetic Algorithm with Local Minimization

that have not been influenced by local minimization) to the juxtapositional loop which

contains a local minimization step. This configuration would make the genetic algorithm

rapidly approach a minimum. The question is, would our solution quality suffer? This

and other questions (about solution quality versus execution time) leaves no doubt that

future research is needed in determining the best strategy for placement of local

minimization steps in a fast messy genetic algorithm.

106

Appendix C - Altering the replacement percentages

This appendix describes the steps required to modify the different string

replacement percentages when using local minimization in the AFTT implementation.

Most of the options of the implementation are set using values and flags in the user-

defined in file (see Figure 43). By setting just the local minimization flag (m) in the

options line, the implementation defaults to the Baldwinian strategy (zero percent

replacement). If the Lamarckianflag (E option) is included in the options, then one-

hundred percent of the strings are replaced in each generation's local minimization step.

However, to set the percentage of replacement of strings (or components) to a value other

than zero or one-hundred, then the Davisßag (Z option) must be included in the options

line and the actual code must be modified to indicate the desired percentage.

The local minimization code that must be modified is located in the last section of

the file, energy, c, which is located in the ~genetic/Toolkit/CHARMm directory.

The code (see Figure 77) contains a section for string replacement (starts immediately

after "Lamarckian or Davis's replacement evolution" comment) and a

section for dihedral replacement (which is commented out). To change the percentage of

replacement, change the rand number in the if statement (note that it is currently set to

. 10 or ten percent replacement in line 8). Finally, observe that the if block also handles the

Lamarckian (one-hundred percent replacement) flag.

107

if(Minimizationflag)
{

frprmn(P, num_dihedrals, 0.1, sdummy, &energy, func, dfunc);

/**********Lamarckian or Davis's replacement evolution*********/

if ((Lamarckflag) || ((Davisflag) S& (Rand() < 0.10)))
{
start = 0;

for (i = 0; i < numjdihedrals; i++)
{
tempint = (unsigned long)(((P[i+1] + PI)/twoPI) *

max_range);
Itoc (tempint, &buff[start], slice);
start = start + slice;

}

} /*if Lamarckian or Davis*/

/************D^jiedral replacement code***************/

/* if (Davisflag)
{
start = 0;

for (i = 0; i < numjdihedrals; i++)
{

if (Randf) < 0.10)
{
tempint = (unsigned long)(((P[i] + PI)/twoPI) *

max_range);
Itoc (tempint, Sbuff[start], slice);
start = start + slice;

}
}

} */ /*if Davisflag*/

return(energy);

} /*if Minimization*/

Figure 77: Minimization segment of energy.c source file

108

Appendix D - Listina of Implementation Modifications/Additions

This appendix itemizes many of the modifications and additions to the AFIT

implementation that were involved with this thesis. It is important to note that most all of

the actions described in this appendix were accomplished in a "team" environment and so

several individuals (42) were involved. This appendix comments on the actions which

were especially labor-intensive to the author.

Code modifications in ~genetic/Toolkit/CHARMn for Thompson's (56)
transformation

File

molecule.h

molecule.c

Action

modified ATOM TYPE structure by replacing declaration
of coords [3] with declaration of transmat [4] [4];
added Btransmat [4] [4] structure;

replaced references to coords with equivalent
transmat notation;
coded identity matrix for atom#l;
coded B-matrices for atoms 2 and 3 after hand-calculating
those values;
coded known values used for first (bond angle terms) and
fourth rows (1 0 0 0) of the all the B-matrices;

removed old coordinate computations;
added procedure Mat_x_Mat which computes A-matrices
using second and third rows of B-Matrices;
added code to handle atom 42 problem,

Coding in -genetic/Toolkit/CHARMm for conjugate gradient minimization

new coordinates.c

File

derivative.c

Action

implemented Thompson's (56) derivative algorithm to
calculate the partial derivative representing the change in
position with respect to the change in the dihedral;

109

frprmn.c

dbrent.c

nrutil.c

nrutil.h

mymnbrak.c

dlinmin.c

energy.c

implemented code to calculate the partial derivative
representing the change in distance with respect to the
change in the position;
implemented code to calculate the partial derivative
representing the change in energy with respect to the
change in the interatomic distance;
implemented code to multiply partials resulting in the
derivative of the non-bonded energy with respect to a
particular dihedral;
partial derivative code segments were placed in a loop
structure to generate an array containing derivative of the
non-bonded energy with respect to all dihedrals;
the author did many of the hand calculations and much of
the initial coding which was followed up by editing and
additions by other individuals (42);

modified from Numerical recipes in C (51) for use with the
AFIT implementation;

modified from Numerical recipes in C (51) for use with the
AFIT implementation;

modified from Numerical recipes in C (51) for use with the
AFIT implementation;

modified from Numerical recipes in C (51) for use with the
AFIT implementation;

Gates(42) created this modification of the mnbrak. c code
from Numerical recipes in C (51);

modified from Numerical recipes in C (51) for use with the
AFIT implementation;

added calls containing calculated derivatives and energy
function to f rprmn. c which return minimized function.

Coding activities in -genetic/Toolkit for local minimization strategies

File (Subdirectory) Action

energy. c (CHARMm) added code to partially or completely encode (strings and
components of) locally minimized solutions (see Figure 77);
added various flag declarations;

110

generate.c (Simple) added constructs to activate and deactivate flags which
correspond to strategies that depend on number of
generations completed;
added printf statements to force output in the most usable
format for this thesis effort;

input.c (Simple) added in options and corresponding flag assignments for
the various local rninimization application strategies;

format.h (Simple) added flag declarations for the various local minimization
application strategies;

global.h (Simple) added flag declarations for the various local minimization
application strategies;

Coding activities in ~genetic/Toolkit/Simple for niching strategies

File Action

input.c added niche flag option and flag assignment;
modified in file format to include number of peaks
assignment;

format.h added flag declaration for the niching strategy;
added declaration for number of peaks variable;

global.h added flag declaration for the niching strategy;
added declaration for number of peaks variable;

select.c added call to niche procedure;
modified roulette computations to accommodate the de-
emphasized fitnesses resulting from niching;

niche.c implemented sharing algorithm (12,28);
the author did much of the initial coding which was
followed by editing and additions by other individuals (42);

ill

Bibliography

[1]. Adler, Dan, Genetic Algorithms and Simulated Annealing: A Marriage Proposal
NY, NY, 1993.

[2] The American Heritage Dictionary 2nd College ed., Boston, MA: Houghton Mifflin
Company, NY, NY: Dell Publishing Company, 1986.

[3]. Brassard, Bratley, Algorithmics. Theory and Practice Englewood Cliffs, NJ:
Prentice Hall, 1988.

[4]. Brinkman, Chase, Gates, Gordon, Olsan, Merkle, Lamont, Compendium of Parallel
Programs for the iPSC Computers Vol. V, version 2.0, Evolutionary Algorithms -
Supplemental text for CSCE656, Department of Electrical and Computer
Engineering, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, May 26, 1994.

[5]. Brinkman, Genetic Algorithms and their Application to the Protein Folding Problem.
MS thesis, AFIT/GCE/ENG/93D-02, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December 1994.

[6], Brooks, Bruccoleri, Olafson, States, Swaminathan, Karplus, Journal of
Computational Chemistry, Vol. 4, No. 2, 1983, John Wiley and Sons Inc.,
CHARMM: A Program for Macromolecular Energy, Minimization, and
Dynamics Calculations.

[7]. Chan, Hue Sun and Dill, Ken A, The Protein Folding Problem Physics Today pp
24-32, February 1993.

[8], CHARMm, 1992. Parameter file for CHARMm version 22.0, Molecular
Simulations Incorporated.

[9]. Christofides, Graph Theory. An Algorithmic Approach Academic Press, 1975.

[10]. Cormen, Leiserson, & Rivest, Introduction to Algorithms Cambridge MA MIT
Press, 1990.

[11]. Conte, Samuel D. and de Boor, Carl, Elementary Numerical Analysis: An
Algorithmic Approach, 3rd ed., NY, NY: McGraw-Hill Publishing, 1980.

[12]. Deb, Kalyanmoy and Goldberg, David E., An Investigation of Niche and Species
Formation in Genetic Function Optimization, Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 42-50,1989.

112

[13]. DeJong, Kenneth A, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, PhD dissertation, The University of Michigan, Ann Arbor, MI, 1975.

[14], Dongarra, J.J. & Otto, S.W. & Snir, M. & Walker, D.W., An Introduction to the
MPI Standard, Communications of the ACM (submitted), January 1995.

[15]. Finney, Ross L. and Thomas, George B., Calculus. Reading, MA: Addison-Wesley
Publishing Company, 1990.

[16]. Fogel, GaryB., An Introduction to the Protein Folding Problem and the
Potential Application of Evolutionary Programming, The Second Annual
Conference on Evolutionary Programming, pp. 170-177, San Diego, CA:
Evolutionary Programming Society, 1993.

[17]. Gates, George H. Jr., Predicting Protein Structure Using Parallel Genetic
Algorithms, MS thesis, AFIT/GCS/ENG/94-D, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December 1994.

[18]. Gates, George H. Jr., mymnbrak. c, code contained in Genetic Algorithm Toolkit
ver 2.0 (36), June 1995.

[19]. Gates, Pachter, Merkle, Lamont, Simple Genetic Algorithm Parameter Selection
for Protein Structure Prediction WL/MLPJ, Wright-Patterson AFB, OH.

[20]. Gates, Pachter, Merkle, Lamont, Parallel Simple and Fast Messv GAs for Protein
Structure Prediction, WL/MLPJ, Wright-Patterson AFB, OH, January 17, 1995.

[21]. Gates, Pachter, Merkle, Lamont, Parallel Simple GAs Vs Parallel Fast Messv GAs
for Protein Structure Prediction WL/MLPJ, Wright-Patterson AFB, OH, May
1995.

[22]. Geist et al, PVM: Parallel Virtual Machine - A Users' Guide and Tutorial for
Networked Parallel Computing Cambridge, MA: MIT Press, 1994.

[23]. Goldberg, David E. Genetic Algorithms in Search. Optimization, and Machine
Learning, Reading, MA: Addison-Wesley Publishing Company, 1989.

[24]. Goldberg, David E., et al, Genetic Algorithms and Walsh Polynomials: Part I, A
Gentle Introduction, Complex Systems. 3:129-152 (1989).

[25]. Goldberg, David E., et al, Messy Genetic Algorithms: Motivation, Analysis, and
First Results, Complex Systems. 3:493-530 (1989).

113

[26]. Goldberg, David E., et di, Messy Genetic Algorithms Revisited, Complex
Systems. 4:415-444 (1990).

[27]. Goldberg, David E., Making Genetic Algorithms Fly - A Lesson from the Wright
Brothers, seminar given at the Air Force Institute of Technology, August 23
1995.

[28]. Goldberg, David E. & Richardson, Jon, Genetic Algorithms with Sharing for
Multimodal Function Optimization, Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms pp
41-49,1987.

[29], Grant, An introduction to Genetic Algorithms. C/C++ Users Journal - Advanced
Solutions for C/C++ Programmers Vol.. 13, Num. 3, March 1995.

[30]. Grefenstette, John, A User's Guide to Genesis 5.0. Technical Report, Nashville,
TN, Vanderbilt University, 1990.

[31], Holland, Adaptation in Natural and Artificial Systems. The University of Michigan,
Ann Arbor, MI, 1975.

132]. Judson R.S. and McGarrah M., Analysis of the Genetic Algorithm Method of
Molecular Conformation Determination, Journal of Computational Chemistry,
vol. 14, No. 11, 1385-1395, John Wiley & Sons Inc., 1993.

[33]. Judson R.S. et al, Conformational Searching Methods for small Molecules. II
Genetic Algorithm Approach, Journal of Computational Chemistry, vol. 14, No
11, 1407-1414, John Wiley & Sons Inc., 1993.

[34]. Kumar et al, Introduction to Parallel Computing Redwood City, CA:
Benjamin/Cummings Publishing Company Inc., 1994.

[35], Lamont, Gary B. & Merkle, Laurence D., CSCE686 Lecture & class notes, 1995.

[36]. Lamont et al, Genetic Algorithm Toolkit, ver 2.0, 1993.

[37], Larranaga et al, Genetic Algorithms Elitist Probabilistic of Degree 1. a
generalization of Simulated Annealing. University of the Basque Country June
21,1993.

[38]. LeGrand, Scott M. & Merz, Kenneth M. Jr., The Application of the Genetic
Algorithm to the Minimization of Potential Energy Functions, Journal of Global
Optimization, pp. 49-63, 1993.

114

[39]. Lengauer, Thomas, Algorithmic Research Problems in Molecular Bioinformatics,
Arbeitspapiere der GMD 748. May 1993.

[40], Lin, Feng-Tse, et al, Applying the Genetic Approach to Simulated Annealing in
Solving Some NP-Hard Problems, IEEE Transactions on Systems. Man, and
Cybernetics, vol. 23, no. 6, pp. 1752-1767, 1993.

[41]. Meijer, Anton & Peeters, Paul, Computer Network Architectures. Rockville, MD:
Computer Science Press, 1983.

[42], Merkle, Laurence D. & Gates, George H. Jr., Series of personal conversations,
June 1995.

[43]. Merkle, Laurence D., Generalization and Parallelization of Messv Genetic
Algorithms and Communication in Parallel Genetic Algorithms. MS thesis,
AFIT/GCE/ENG/92-D, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, December 1992.

[44] Merkle, Laurence D., Prospectus on Optimal Parameter Selection for a Class of
Evolutionary Algorithms. Technical Report, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, April 21, 1995.

[45]. Merkle, Laurence D., Gaulke, Robert L. et al., Hybrid Genetic Algorithms for
Polypeptide Energy Minimization, paper submitted to Symposium on Applied
Computing '96, September 15,1995.

[46], Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. NY,
NY: Springer-Verlag, 1992.

[47]. National Science and Technology Council, High Performance Computing and
Communications: Technology for the National Information Infrastructure.
Supplement to the President's Fiscal Year 1995 Budget, Second Printing.

[48]. Nutt, Gary, Open Systems. Englewood Cliffs, NJ: Prentice Hall Inc., 1992.

[49]. Orvosh, D & Davis, L., Shall We Repair? Genetic Algorithms, Combinatorial
Optimization, and Feasibility Constraints, Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kaufmann, p. 650, 1993.

[50]. Pearl, Heuristics - Intelligent Search Strategies for Computer Problem Solving
Reading, MA: Addison-Wesley Publishing, 1984.

[51]. Press, William H. et al, Numerical Recipes in C. Cambridge, MA: Cambridge
University Press, 1990.

115

[52], Sandia National Laboratories, Sandia/Intel Set World SuperComputing Speed
Record—Again, Albuquerque, NM, Jan 1995.

[53]. Schulze-Kremer, Steffen, Genetic Algorithms for Protein Tertiary Structure
Prediction, Parallel Genetic Algorithms, pp. 129-49, ISO Press, 1993.

[54]. Singhal, Mukesh & Shivaratri, Niranjan G., Advanced Concepts in Operating
Systems: Distributed. Database, and Multiprocessor Operating Systems. NY, NY:
McGraw-Hill Incorporated, 1994.

[55]. Strang, Gilbert, Introduction to Applied Mathematics. Wellesley, MA: Wellesley-
Cambridge Press, 1986.

[56], Thompson, H. Bradford, Calculation of Cartesian Coordinates and Their
Derivatives from Internal Molecular Coordinates, The Journal of Chemical
Phvsics. vol. 47, no. 9, pp. 3407-10, November, 1967.

[57]. White, Handler, Smith, Principles of Biochemistry, fourth ed., NY, NY: McGraw-
Hill Book Company, 1968.

[58]. Whitley, Darrell & Gordon, Scott, & Mathias, Keith, Lamarckian Evolution, The
Baldwin Effect and Function Optimization, Parallel Problem Solving from Nature
- PPSNm, Davidor, Yuval et al (Eds), International Conference on Evolutionary
Computation, Berlin: Spring-Verlag, pp. 6-15, October 9-14, 1994.

[59]. Winston, Artificial Intelligence. Third Ed, Reading, MA: Addison-Wesley
Publishing, 1993.

[60]. Yong, Liu & Lishan, Kang & Evans, DJ., The annealing evolution algorithm as
function optimizer, Parallel Computing. Vol. 21, pp. 389-400, 1995.

116

INDEX

A

accepted minimum conformation 77 7g
dtete 33,101,102
atom 42problem 45 209

B

Baldwinian viü, 31,60,63,65,69, 71, 83, 90, 91, 107
binary strings 23
bond angles 14) 15> 16 39 42,46
bond length 3g 43
bonds 13 14j 15'42
branch and bound search ' ' ' 2
building block filtering 204

C

CHARMm 15 38 39 42; i12

competitive template '......'....'. ' 102
component replacement 86 87 gs
conformation viii, 4, 5,6,13, 38,40, 58,64,67, 77, 78^ 79* 85
conjugate Viii, 7, 27, 28, 29, 35, 36, 41, 49, 50, 68, 79, 90
conjugate gradient viü, 27, 28, 29, 35, 36, 41,49, 58, 68, 79, 83, 90
coordinate system 42 43 45 47
coupling ' ' '99

crossover 3, 19, 20, 21, 22, 24, 25, 28, 387103
crowding 33,34,52
crowding factor ' ' 33
Cut-and-Splice operator 203

D

data coherence 200
deception .' ZZZr25^357io'u03
defining length 23 24
deterministic j y-i
dihedral angles 13, 14, 15, 16, 38, 39, 42, 43, 44, 46, 49, 52, 57^ 60,61,! 62, 68,72, 77! 78
dihedral replacement 60 61 62> 70) n 72
dihedrals 15, 16, 38, 52, 54, 59, 60, 71, 73, 79, 90
Distributed computing 2 97

E

elitism «
elitist strategy 28
energy minimization Z~l'^6^li'n^&Vs',S9
evolutionary algorithms 3 7 31
evolutionary programming ' ' 3
evolutionary strategies 3

F

fast messy genetic algorithm 19,89,91,104,105,106

117

fitness ...4, 19-21, 24, 25, 27-8, 31, 33, 35, 40, 52, 54-56, 59, 61, 63, 65-69, 72, 74, 89, 90, 92, 102, 105-6
fitness disproportionate 21 58
fitness landscape 88
fitness proportionate selection 21, 58,61,62,65,68,69, 71, 72, 83, 84
five percent rule 32
Fletcher-Reeves-Polak-Ribiere Algorithm 49
Fundamental Theorem of Genetic Algorithms 23

G

generation 19-23, 25, 28, 31, 35, 39, 56, 58, 60, 61, 62,63, 69, 70, 72, 74, 75, 76, 79, 80, 81, 103
GENESIS 18

genetic algorithm: see simple genetic algorithm, messy genetic algorithm or fast messy genetic algorithm
genotypic sharing 33,34,52
gradient viii, 7, 27, 28, 29, 35, 36,41, 49,68, 79, 90
granularity 99

H

hamming distance 33
Hillclimbing 18
Hybridized Genetic Algorithm 27

island model 4 97
isoefficiency function 94 95 97
isolated optima 25

/

Juxtapositional Phase 102 103

K

Knapsack Problem 19
Kruskal-Wallis tests 76

L

Lamarckian viii, 31, 32, 60, 63, 72, 80, 81, 82, 83, 88, 107, 116
local minimization.. 7, 9, 27, 28, 31, 36, 40, 41, 50, 56, 59, 61, 72, 79-81, 85, 86, 89, 90, 91, 93, 105, 106
locus 101,102
M

Massively parallel computers 95
Message Passing Interface 98
messy genetic algorithm 19, 26, 38, 54, 91, 101,102, 103, 104, 105, 106
[Mef]-enkephalin viii, 7> i5> 26, 38,46, 57, 67, 77, 85, 88
MPI 94,98,99,113
mutation viii, 3, 19, 20, 22, 23, 24, 25, 28, 32, 38, 56, 103
mutually conjugate 49 50

mutually orthogonal 49'50

N

mching viii, 27, 32, 35, 40, 52, 55, 56, 58, 72-79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 111
niching and local minimization 87
non-bonded energy 42 46 49
Nuclear magnetic resonance ' g' 14

118

o
one-hundred percent replacement.... 60,61, 65, 66, 80,81. See also Lamarkian
optimum conformation 82,85
order of a schema 24
overhead function 96
over-specified strings 102

Parallel and Distributed Computing 1
Parallel computing 1; 92, 94, 95, 97
Parallel Virtual Machine 98; 113
parallel/distributed computing 2 94
PARM "!.""""I!!"""""""I"..!.39
partially enumerative initialization 101
PDBfile ".!."'.1""""""!..39
phenotypic sharing 33; 34; 52i 56
portability 98 99
premature convergence 3 25
primary structure of a protein 46
primitives 98
Primordial Phase 102
probabilistic Y^ 7
probabilistic Lamarckian 32
probabilistically complete initialization 104
protein folding problem viii, 2, 4, 8, 9, 11, 27, 34, 35, 57, 71, 72, 80, 82, 85, 90, 91, 92, 94, 105
PVM 94,98,99,113

Q

QUANTA 38,39,57

R

real-valued strings 23
recombination yjä 21 23
reproduction ^""^3,2o| 24^ 25
residual 29
residue topology file , 39
roulette wheel ZZZZZZ~2Ö''55'sS
RTF 39

S

Sandia National Laboratory 95
scalability"„"...94 96
SC3lable !"!Z."""!""95,'97, 100
schema 23 24 25
Schema Theorem ' 23' 25
search space ^ 2(12, 15,16, 18, 23,26,27, 3o| 32
secondary structure 4 J2

semi-optimal algorithms viii V 10
set the percentage of replacement of strings .'...107
shari"8 33, 34, 35, 36, 52, 56, 72, 73, 75, 80, 82, 87
simple genetic algorithm..viii, 7, 17, 25, 28, 38,40, 54, 56, 59,61,62, 63, 72-3,75, 89, 92, 101, 103, 105
simulated annealing 7 27 28
string replacement 63, 64, 65, 71, 72, 79, 80, 8l[89' 90

119

T

tertiary structure 4,6, 7, 8,11,12,13, 14, 16
time complexity 3>4) 19
tournament selection...21, 40, 54, 56, 58,61, 62, 63,64, 65, 68,69, 71, 72, 83, 84, 90, 102, 104, 105, 106

U

under-specified strings 102

X

X-ray crystallography 6, 13

Z

zero percent replacement 60,63,65,66, 107. See also Baldwinian
Z-matrix 38 39

120

Vita

Captain Robert L. Gaulke earned his bachelor's degree in Computer Science and

Mathematics from the University of Tampa in 1991. He earned his commission through

the Air Force Reserve Officer Training Corps (AFROTC). Upon entering active duty in

1992, he was assigned to the Air Force Military Personnel Center (AFMPC), Directorate

of Personal Data Systems, Modeling and Retrieval Section. While there, he served in a

customer service and training capacity for the central-site personnel data systems

worldwide. He left AFMPC in 1994 to attend the Air Force Institute of Technology.

121

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
08 Dec 95

5. REPORT TYPE .AND DATES COVERED
Master s Thesis

4. TITLE AND SUBTITLE
The Application of Hybridized Genetic Algorithms to the Protein Folding
Problem

6. AUTHOR(S)
Robert L. Gaulke, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583
8. PERFORMING ORGANIZATION

REPORT NUMBER

AFIT/GCS/ENG/95D-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Wright Laboratory (AFMC)
Materials Directorate
Wright-Patterson AFB, OH 45433

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The protein folding problem consists of attempting to determine the native conformation of a protein given its pri-
mary structure. This study examines various methods of hybridizing a genetic algorithm implementation in order to
minimize an energy function and predict the conformation (structure) of [Met]-enkephalin. Genetic Algorithms are
semi-optimal algorithms designed to explore and exploit a search space. The genetic algorithm uses selection, recom-
bination, and mutation operators on populations of strings which represent possible solutions to the given problem.
One step in solving the protein folding problem is the design of efficient energy minimization techniques. A conjugate
gradient minimization technique is described and tested with different replacement frequencies. Baldwinian, Lamar-
ckian, and probabilistic Lamarckian evolution are all tested. Another extension of simple genetic algorithms can be
accomplished with niching. Niching works by de-emphasizing solutions based on their proximity to other solutions
in the space. Several variations of niching are tested. Experiments are conducted to determine the benefits of each
hybridization technique versus each other and versus the genetic algorithm by itself. The experiments are geared
toward trying to find the lowest possible energy and hence the minimum conformation of [Met]-enkephalin. In the
experiments, probabilistic Lamarckian strategies were successful in achieving energies below that of the published
minimum in QUANTA.

14. SUBJECT TERMS

Genetic Algorithms, Protein Folding Problem, Niching, Lamarkian Evolution, Bald-
winian Evolution

15. NUMBER OF PAGES
130

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR -
TA -
WU -

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categorie

NASA
NTIS

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

• U.S.GPO: 1993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	The Application of Hybridized Genetic Algorithms to the Protein Folding Problem
	Recommended Citation

	/tardir/mig/a305874.tiff

