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Abstract 

The protein folding problem consists of attempting to determine the native 

conformation of a protein given its primary structure. This study examines various 

methods of hybridizing a genetic algorithm implementation in order to minimize an energy 

function and predict the conformation (structure) of [Met]-enkephalin. 

Genetic Algorithms are semi-optimal algorithms designed to explore and exploit a 

search space. The genetic algorithm uses selection, recombination, and mutation 

operators on populations of strings which represent possible solutions to the given 

problem. 

One step in solving the protein folding problem is the design of efficient energy 

minimization techniques. A conjugate gradient rninimization technique is described and 

tested with different replacement frequencies. Baldwinian, Lamarckian, and probabilistic 

Lamarckian evolution are all tested. 

Another extension of simple genetic algorithms can be accomplished with niching. 

Niching works by de-emphasizing solutions based on their proximity to other solutions in 

the space. Several variations of niching are tested. 

Experiments are conducted to determine the benefits of each hybridization 

technique versus each other and versus the genetic algorithm by itself. The experiments 

are geared toward trying to find the lowest possible energy and hence the minimum 

conformation of [Met]-enkephalin. In the experiments, probabilistic Lamarckian strategies 

were successful in achieving energies below that of the published minimum in QUANTA 
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The Application of Hybridized Genetic Algorithms 
to the Protein Folding Problem 

I. Introduction 

Since the influx of computers into our culture began, we have been steadily 

increasing our reliance on their power to solve problems efficiently and accurately. As we 

attempt to solve more difficult problems, we have to work with larger search-space 

dimensions. These larger search space dimensions can result in lengthy solution times. 

So, we have to find ways beyond hardware (e.g. more powerful CPU chips) to speed up 

the process of finding solutions to our problems. 

At the Air Force Institute of Technology (AFIT), we are studying two techniques 

for solving large problems quickly. First, there has been research in the areas of semi- 

optimal algorithms (5, 17, 43). As their name implies, semi-optimal algorithms solve 

problems by finding user-defined good solutions which are not necessarily (and frequently 

not) optimal. Semi-optimal algorithms offer a relatively fast way to get a quality solution 

to an extremely complex problem. (17, 34) Also, there has been ongoing research in the 

potential gains of Parallel and Distributed Computing (4, 17). Parallel computing involves 

efficiently dividing tasks to be simultaneously executed on multiple processors in order to 

realize some speedup versus execution on a single processor (34). Distributed computing 

involves dividing tasks among several systems (e.g. a group of workstations) to realize 

some speedup (48). 



This particular thesis effort focuses on the first technique which is to apply semi- 

optimal algorithmic strategies in effort to solve the protein folding problem. This problem 

is to predict the three-dimensional structure of a protein given the primary sequence of 

amino acids that make up that protein. There are potentially a large number of bonded 

atoms in a protein and so there are many possible ways to arrange those atoms of a protein 

(and hence vary the layout ofthat protein). This plethora of protein arrangements can 

produce a search space so large that traditional searching methods (e.g. branch and bound, 

enumerative) can not be used. (5,7,17) 

Background 

This section provides a background on algorithmic complexity. Then, this section 

briefly discusses evolutionary algorithms focusing on genetic algorithms. This section 

closes with a short discourse on the protein folding problem. 

Algorithmic Complexity 

Many optimization problems involve a branch and bound search which can lead to 

traversing the entire solution space to be guaranteed to find the best solution. However, 

this type of search would experience exponential growth in execution time. (9, 35, 50, 59) 

This growth severely limits our ability to solve practical problems of any significant size. 

We want to therefore utilize techniques that allow us to search these larger problems. 

Two possible techniques are parallel/distributed computing (which is discussed in 



Appendix A for the benefit of other researchers) and the use of stochastic search 

algorithms such as genetic algorithms (the concern of this thesis). 

Genetic Algorithms 

The family of evolutionary algorithms are made up of evolutionary strategies, 

evolutionary programming, and genetic algorithms. Evolutionary algorithms use a number 

of operators such as selection (reproduction), crossover, and mutation (these operators 

are discussed in detail in Chapter II). Evolutionary strategies (ESs), employed primarily 

in Europe, use the selection and mutation operators. ESs use a high rate of mutation on 

real-value encodings. Evolutionary Programming (EP), used primarily in the United 

States, also uses selection and mutation on real-value encodings. Genetic Algorithms use 

selection, a high probability of crossover, and a low probability of mutation. 

Genetic algorithms are modeled on natural selection and genetics in that they 

simulate the survival of the fittest theory. It is important to note that a genetic algorithm 

does not necessarily find the optimal solution but it finds a good solution (hence the term 

semi-optimal). A genetic algorithm is of polynomial time complexity with a finite space 

requirement which is determined by the population size. So, the genetic algorithm enables 

us to obtain a good solution of a problem of exponential complexity in polynomial time. 

Genetic Algorithms were developed in an attempt to create robust, semi-optimal search 

algorithms that would be applicable to a wide variety of problems. However, a major 

shortcoming of GAs is premature convergence to local optima. In other words, the 



algorithm tends to get hung on a local optimum and returns it as a solution instead of a 

globally better solution. (4, 5, 17, 19, 23,26, 35, 46) 

Genetic Algorithms are easily parallelized. One approach puts multiple copies of 

the same program on each processor, starts their execution with different seeds for the 

random number generators, and selects the best solution after all processors have finished. 

Another approach (referred to as the island model) is where the population is divided up 

into subpopulations which are grouped on individual processors which run independent 

genetic algorithms. This results in little communications overhead but at a possible 

sacrifice in solution quality. The execution time of a genetic algorithm is typically 

dominated by the calculation of the fitness function. This function is problem dependent, 

but is usually of polynomial time complexity. (17, 21,19) In part 2, the Literature Review, 

we discuss the details of how a genetic algorithm works (See Appendix A for a further 

discussion on Parallel/Distributed Computing). 

The Protein Folding Problem 

The protein folding problem is classified as a Grand Challenge problem (47). The 

protein folding problem consists of trying to map out the secondary and tertiary structure 

(conformation) of a protein molecule given its primary structure. The primary structure of 

a protein is the sequence or chain of amino acid residues. The secondary structure 

represents the 3-dimensional arrangement of amino-acid residues within the molecule (e.g. 

a-helix or ß-sheet). The tertiary structure defines the molecule in terms of the relative 
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position of its bonded atoms. The purpose behind finding the structure mappings of a 

protein is that properties and functions of the molecule may be determined by its structure. 

So, if a relatively quick yet correct method of mapping out the structure of proteins can be 

formulated, we can greatly speed the development of industrial, pharmaceutical, and 

military applications. (5, 7, 17, 43, 57) 

Als/S.    \pA      Ai^^v^ A&A ^ac^\.      r^^>^  ^ä'S^ /it/ 
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Figure 1: An extended conformation of [Met]-enkephalin (17) 

The protein used in most of the AFIT studies is [Metj-enkephalin (see Figure 1). 

It is a relatively small and simple protein (polypeptide) defined by the five-amino-acid 

5 



sequence Tyr-Gly-Gly-Phe-Met. It is principally composed of carbon (C), oxygen (O), 

and nitrogen (N) atoms. The two principal factors influencing the selection of this 

particular protein for study are: [1] its unique and compact natural, biological state (native 

conformation) is known; [2] other researchers have used energy minimization to predict 

its tertiary structure. (5,17) 

While current experimental techniques allow us to decode the primary structure of 

a protein with little effort, predicting the tertiary structure of a protein is extremely 

difficult. Nuclear magnetic resonance and X-ray crystallography are laboratory techniques 

for determining the three-dimensional conformation of a protein. However, these 

approaches can expend as much as two years of laboratory effort to find the tertiary 

structure of a single protein and are not always possible! (16, 57) 

The solution to the Protein Folding problem can be modeled with an energy 

minimization approach. Energy minimization is a basic technique for predicting the 

tertiary structure of a protein using one of the following approximation methods: [1] ab 

initio methods: use quantum mechanical calculations to determine the energy exactly; [2] 

use semi-empiricalmethods that neglect some of the non-dominating energy terms; [3] 

use force-field methods which only account for pairwise energy interactions between 

atoms. Calculating a single energy value for these methods is of time-complexity 0(n5), 

0(n ), and 0(n2) respectively (where n is the number of particles - frequently atoms). (5, 

7, 17, 39) This need for faster methods is the driving force behind the use of genetic 

algorithms. 



Problem Statement 

The challenge of solving the Protein Folding Problem is to find a method of 

predicting the 3-dimensional shape of a protein given its defining sequence of amino-acids. 

An enumerative search of the entire solution space for even the smallest proteins would 

consume more time than the estimated age of the universe on today's supercomputers. 

Recent AFIT research (17) has indicated that parallel genetic algorithms are feasible for 

predicting the tertiary structure of the pentapeptide [Met]-enkephalin. Some goals for this 

investigation are to continue to improve the performance of the simple genetic algorithm 

and to continue to evaluate the feasibility of applying parallelized evolutionary algorithms 

to predict the tertiary structure of more complex molecules. While attempting to 

accomplish these goals, the major objectives of this effort are: 

a) make improvements to the simple genetic algorithm design and 

implementation 

b) investigate the use of hybrid optimization techniques such as local minimization 

to improve genetic algorithm efficiency and effectiveness. For example, conjugate 

gradient methods (deterministic) and simulated annealing (probabilistic) are two 

potential local minimization techniques. 

c) investigate the use of niching strategies to improve genetic algorithm efficiency 

and effectiveness. 



Rationale 

Why is the Protein Folding problem important? Solving the protein folding 

problem implies the ability to efficiently and reliably predict the tertiary structure of any 

protein once given the primary structure ofthat protein. Knowing the function of the 

various proteins present in our own bodies could lead to many new medical and scientific 

breakthroughs such as preventing or curing disease, repairing genetic disorders or birth 

defects, and developing disease or pest resistant strains of plants! The solution of the 

protein folding problem is also significant because it could provide insight into its 

complementary problem, which is that given a particular function that we desire a protein 

to perform, what is the tertiary structure that performs that function? Then, how do we 

construct that protein, or what is the primary structure we should build? The solution of 

this complementary problem would allow biochemists and computational scientists to 

design new polypeptides with a single, specific purpose. (5, 17) Moreover, there are 

variety of military applications including the possible development of a photosensitive 

protein film to be used on protective goggles for pilots. 

Methodology 

There are a number of activities or tasks that make up this research effort. The 

following subsections identify and define the major tasks that are to be accomplished in 

approaching this research effort. 



Literature Review 

This continuing review is used to establish foundations of current knowledge in the 

applicable fields of study. The principle review areas along with references are: 

a) genetic algorithms (4, 5, 13, 17,19-21,23-26,29, 31-33, 35,43,46, 57) 
b) protein folding problem (5, 7, 16,17, 19, 20,21, 32, 33,43) 
c) hybridization techniques (1, 12,28, 37,40,46,49, 51, 55, 56) 

Software Review 

This involves the study and comprehension of the programs contained in the AFIT 

Genetic Algorithm Toolkit as well as any code obtained from other sources for 

possible integration. (30, 36, 51) 

Algorithm Modifications/Extensions 

As problem areas are discovered, the design is to be modified accordingly. The 

principle extension is the addition of Local Minimization techniques to the 

algorithm and implementation. 

Implementation Modifications/Extensions 

After modifications have been made to the algorithm, the implementation is to be 

appropriately modified. For instance, following the extension of local minimization 



techniques in the algorithm, the actual implementation is to be modified (or 

extended) to reflect the change in the algorithm. 

Experiment Design and Implementation 

After the reviewing the software, reviewing the literature, and modifying the 

implementation, experiments are designed using the modified code. The 

experiments are designed to generate useful data so that this effort builds upon 

the work completed by previous AFIT students. 

Analysis 

The final step involves analyzing the data generated from performing the 

experiments, drawing comparisons between the experiments' data, evaluating what 

has been accomplished, and making recommendations on where future research 

should be focused. Particular emphasis is to be placed on the comparison of the 

results from the implementation as-is and the results of the implementations that 

use the various hybridization techniques. 

Summary 

Large, complex optimization problems require the use of suitable semi-optimal 

algorithms that trade some amount of solution quality for substantially reduced execution 

times. This thesis effort compares hybrid and standard genetic algorithm techniques for 

10 



efficiency and effectiveness in finding solutions. It also takes the recent research further 

by analyzing the feasibility of using AFIT's genetic toolkit software to determine the 

tertiary structure of larger, more complex proteins. 

This chapter has outlined the general problem, described the main components, 

and rationalized the need to expend research effort on genetic algorithms and the protein 

folding problem. Chapter II discusses the protein folding problem while Chapter HI 

details genetic algorithms. Chapter IV analyzes several hybridization techniques with 

attention given to the benefits of each to genetic algorithm implementations. Chapter V 

discusses the design and implementation of the experiments. Chapter VI presents the 

experimental values and the experimental data which is evaluated to establish the 

conclusions of this research. Finally, Chapter VII draws overall conclusions and presents 

some recommendations concerning future efforts in genetic algorithms and their 

application to the protein folding problem. 

11 



II. Literature Review - The Protein Folding Problem 

This chapter summarizes current knowledge of the Protein Folding Problem in 

order to establish a foundation for this thesis effort. The discussion is to first focus on 

protein structures followed by a look at current laboratory methods. Then, this chapter 

defines some terms of molecular geometry. Finally, the problem search and solution 

spaces are examined. 

The Protein Folding Problem 

Proteins are very common molecular structures. Several types exist: fibrous, 

membrane, and globular. Fibrous proteins make up the structural components in the 

human body. Membrane proteins control the flow of material across cellular boundaries. 

Enzymes which control biochemical reactions in cells (and thus are of interest to us) are 

globular proteins. (5, 7,17) 

A protein's primary structure is a sequence of amino acids. Thanks to modern 

technology, we can use computers to sequence a protein to rapidly determine its primary 

structure. As stated in Chapter I, the Protein Folding Problem consists of trying to map 

out the tertiary structure of a protein molecule given its primary structure. The primary 

structure is the chain of amino acids. Due to charges of each amino acid, the chain folds 

into a secondary structure. The three main characterizations of the secondary structure 

are the a-helix, the ß-sheet, and the looped domain. Based on the net free-energy of the 

molecule, the secondary structure folds again to form the tertiary structure of a protein. 

12 



Tertiary structures are then used in the cellular functions described. The tertiary structure 

defines the exact shape of the entire molecule. In other words, the tertiary structure is the 

actual layout of the atoms including the angles of the bonds between them. In searching 

for possible three-dimensional atomic arrangements (the tertiary structure) of a protein, 

we are looking for a stable protein which has a low energy. Because we are trying to find 

the best layout {conformation) of a particular protein by varying the dihedral angles (see 

Figure 2), this produces the folding effect of the protein and thus the name, the Protein 

Folding Problem. The purpose behind finding the structure mappings of a protein is to 

the determine properties and functions ofthat molecule. So, if a relatively quick, yet 

effective method of mapping out the structure of proteins can be formulated, we can 

greatly speed the development of pharmaceutical and military applications. (5, 7, 16,17, 

44, 57) 

Current laboratory methods of determining the tertiary structure are slow and 

tedious. X-ray crystallography involves striking a protein crystal with a fine beam of X- 

rays which creates a diffraction image on a photographic plate. The diffraction is 

proportional to the number of extranuclear electrons in each atom. A series of two- 

dimensional images are then used to calculate a three-dimensional image. The researcher 

must be able to grow a well-ordered, ninety-seven percent pure protein crystal (the growth 

alone can take months) and then be able to dehydrate the crystal for maximum diffraction 

resolution. (57) 
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Nuclear magnetic resonance (NMR) techniques are based on plots of characteristic 

signals of hydrogen atom interference. These signals are used to identify amino acids and 

determine interatomic distances that are then used to reconstruct protein structure using 

computer graphics. Both approaches need high concentrations of proteins to make 

accurate determinations. (16) However, these approaches can expend more than two 

years of laboratory effort to find the tertiary structure of a single protein and are 

sometimes not even possible. 

■i 
\D 

2   \ 

Legend: 
A - Atoms B - Bond Angles D - Dihedral Angle 

Figure 2: Example Molecule Geometry 

For our discussion about molecular geometry, see Figure 2. We have four atoms 

(Ai, A2, A3, At) connected by bonds. There are two bond angles (Bi and B2). Bi is the 

angle formed by the AiA2 bond and the A2A3 bond and B2 is the angle formed by the A2A3 

bond and the A3A4 bond. There is only one dihedral angle (D). It is the angle formed 

between the AXA2 bond and the A3A4 bond. We can vary the dihedral angle, D, by 

twisting or folding our structure about the A2A3 bond. Through this kind of folding we 

14 



can alter the shape of our simple structure (i.e. produce many conformations). In a more 

complex structure such as [Met]-enkephalin (see Figure 1 in Chapter I), where there are 

twenty-four dihedral angles, there are many possible conformations. [Met]-enkephalin is 

actually a rather simple protein structure with a relatively low number of dihedrals. Thus, 

larger proteins can present an enormous search space of conformations. (4,17,43) 

Minimizing the energy function of a protein is a complex undertaking (see Figure 3 

for the energy function). Factors contributing to the complexity are the large search 

space, computational intensity of the determination of an individual's energy, and the 

existence of many local minima. How big is the search space? Consider that a 

E=     KKnjOij-req)2)  + 
(Ü)EB 

KKeijkCOijk-Geq)2)   + 
(UJOeA ^ 

(S (Koijki (1 + cos(nijkiOijki - Yyki))) + 

I ((Ai/rij)12 - (Bij/ry)6 + qiqyAtaij) 
(iJ)eN 

where:   Knj, Keijk, Koijki, r«,, 0«,, n^, yijki, Ay, and By are empirical constants 
B - bonded atoms, A - atoms forming bond angles, D - atoms forming dihedral angles, 
N - non-bonded atoms (atoms with more than 3 bonds separating them) 

Figure 3: CHARMm energy model (38) 

protein can have up to hundreds of amino acids. Thus, a protein can have a tremendous 

number of atoms (sometimes hundreds of thousands). Moreover, a protein has 3n-6 

degrees of freedom (where n is number of atoms). In a protein with just fifty residues 

(having twenty atoms per residue), we would be dealing with a system of equations with 

3*(20*50) - 6 = 2994 variables! Because we can discretize each dimension of the search 
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space to some domain of values (d), our search space has a complexity of |jd||3D-6. 

Moreover, since the bond angles and lengths are relatively stable, the dihedral angles 

mostly determine the tertiary structure. So, the search space can be reduced to ||d||n where 

d is the number of discrete dihedrals and n is the number of the independently variable 

dihedrals. However, what if we had just ten independent dihedral angles and dihedral 

angles discretized over twenty degree increments in a range of 0 to 360 degrees. Our 

search space would be to the order of 1018 (# of dihedrals#of *»-/#* **■«*»). It ^^ 

take about eleven days to search this relatively small search space on a teraflop (capable 

of one trillion floating point operations per second) computer which is capable of one 

point evaluation per clock cycle. Now, imagine how long it would take to search a 

protein with 100 dihedrals! Thus, we need faster methods of calculating the tertiary 

structure from a protein sequence. (5, 17,44, 53) 

Summary 

This chapter has presented a discussion of the Protein Folding Problem. It is a 

very large and complex problem that is not easily solved with laboratory techniques. So, 

the use of computers with efficient algorithms is justified. Solving this problem could 

pave the way for developments in pharmaceuticals and military applications. The next 

section is on genetic algorithms. It is important to consider that genetic algorithms may 

offer a method for generating good solutions to the protein folding problem but, by 

nature, can not consistently solve it. 
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I». Literature Review - Genetic Algorithms 

This chapter summarizes current knowledge of genetic algorithms in order to 

establish a foundation for this thesis effort. After a brief discussion on some of the 

primary people working in the field of genetic algorithms, this chapter details how a 

genetic algorithm works. Next, there is an analysis of the simple genetic algorithm 

including discussions on genetic operators. Then, there is a section addressing the 

fundamental theorem of genetic algorithms. This chapter also discusses the messy and fast 

messy genetic algorithms with a look at advantages of disadvantages of using each. 

Genetic Algorithms 

Background 

The foundations of genetic algorithms can be traced to a University of Michigan 

researcher, John Holland, and to one of his early students, Kenneth DeJong. Genetic 

algorithms were first proposed in Adaptation in Natural and Artificial Systems (1975), by 

Holland. There, he established the mathematical basis for genetic algorithms. DeJong, in 

his dissertation An Analysis of the Behavior of a Class of Genetic Adaptive Systems 

(1975), took Holland's work a step further by applying genetic algorithms to functional 

optimization problems. (13, 17,23, 31,44) 

Other principal contributors to genetic algorithm research are David Goldberg, 

Zbigniew Michalewicz, and John Grefenstette. Goldberg, who is also a Michigan 

alumnus, started with a dissertation that investigated the use of genetic algorithms to 
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control gas-pipeline transmission (which earned him a NSF Presidential Young 

Investigator Award in 1985). This and his subsequent work through the rest of the 

eighties culminated in Genetic Algorithms in Search. Optimization, and Machine Learning 

(1989). This textbook is used as a basic handbook for both fledgling and experienced 

genetic algorithm researchers alike. Goldberg is one of the most published individuals of 

the genetic algorithm field. Researchers of all levels also depend on the textbook by 

Michalewicz. His book, titled Genetic Algorithms + Data Structures = Evolution 

Programs (1992), introduces and examines genetic algorithms and their applicability to 

artificial intelligence and optimization problems. While he has worked on genetic 

algorithm parameter sets and machine learning, Grefenstette's best known contribution is 

GENESIS. GENESIS is a genetic algorithm implementation used by many researchers 

(including those here at AFIT) as a basic workbench. (17,23, 30,46) 

Using genetic algorithms involves searching through a space of potential solutions 

which necessitates exploring the solution space and taking advantage of the best solutions 

generated. While neglecting exploration of the search space, Hillclimbing takes advantage 

of the best solution for possible improvement. However, a random search explores the 

search space while not using any knowledge of promising areas to its advantage. 

Michalewicz states that; 

"Genetic Algorithms are a class of general purpose (domain 
independent) search methods which strike a remarkable balance 
between exploration and exploitation of the search space." (46) 
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Genetic algorithms work by manipulating populations of strings (or 

chromosomes). These strings are possible solutions encoded usually with ones and zeros 

(a series eigenes) representing Boolean conditions. For instance, say the problem being 

solved is the classic Knapsack Problem where we wish to maximize the value of the 

weight we can carry in our knapsack. The knapsack problem can be represented with 0/1 

notation in that (1) you have an item or (0) you do not. So, the strings would represent 

possible combinations of items in our knapsack. Strings are selected for the next 

generation based on their fitness. Our knapsack fitness function, would be based on the 

items' value and weight. (5,10, 17, 19, 23,29,43,46) 

Genetic algorithms continue to generate populations for a defined number of 

generations after which time the current best string is used as the solution to the problem. 

The execution time of a genetic algorithm is typically dominated by the calculation of the 

fitness function. This function is problem dependent, but is usually of polynomial time 

complexity. Genetic algorithms can be classified into two main types: the simple (or 

standard) genetic algorithm and the messy genetic algorithm (see Appendix B). (5, 17, 

19, 23, 43, 46) 

The Simple Genetic Algorithm 

How do simple genetic algorithms work? Simple genetic algorithms keep uniform 

length strings and perform three basic operations on those strings in the population: 

selection, crossover, and mutation. Refer to Figure 4 for the general structure of the 

algorithm. 
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First, the population is initialized. The population size is 2' (where / is the length 

of a string). (17,23) This is because having strings with / binary digits each means that it 

takes 2 different strings to represent all possible values. For example, if our strings have 

four digits (1 's and O's), then there are sixteen (24) possible strings that can be formed. 

initialize population 
for i = 1 to max_number_of_generations 

evaluate fitness 
for j = 1 to population_size 

selection 
crossover 
mutation 
evaluate fitness 

end loop 
end loop 

Figure 4: Simple Genetic Algorithm 

The selection (sometimes referred to as reproduction) operation does just what the 

name implies - it selects members of the current population ox generation to carry over 

into the next generation. Simply stated, "let's give more copies to better guys" (27).   The 

selection of strings is based on their fitness. The fitness can be defined as an enumeration 

of goodness or utility that the algorithm is to maximize. In our case, the fitness is the 

potential energy of the protein. However, by itself selection is not very useful. In fact, if 

we were to only do selection steps over and over, we would likely wind up with many 

copies of the best solution of the first generation. (17,23, 27) 

There are several types of selection operators. First, there is the Roulette Wheel 

selector. The roulette wheel selector (which is commonly used in simple genetic 

algorithms) assigns each string to a section of a wheel proportionate to the ratio of the 
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string's fitness and the average fitness of the population. So, the roulette wheel is an 

example of a. fitness proportionate selector. Figure 5 demonstrates how different 

String Fitness Ratio 
S1 
S2 
S3 
S4 

15 
5 
10 
10 

1.5 
0.5 

1 
1 

mean 10 

S4 

KJlif!«   : \   S1 

S3 
S2 

Figure 5: Roulette Wheel Selection 

fitnesses provide different proportions of the wheel. Thus, SI is three times as likely to be 

selected as S2 while both S3 and S4 are each twice as likely to be selected as S2. (17, 23, 

43, 44) 

Another type of selection operator is the tournament selector. It iteratively selects 

random pairs of strings which satisfy a thresholding criteria. It then compares the strings 

and picks the better one. Poorer strings (which would survive into later generations in the 

roulette wheel selector) are eventually gleaned from the population. So, this operator is 

labeled fitness disproportionate. (17, 23,43, 44) 

The crossover (also referred to as recombination) operator involves mating two 

strings and hence mixing their characteristics. This is accomplished by choosing a random 

crossover point and swapping the portions of the strings after the crossover point. In 

Figure 6, two members of the present generation called PI and P2 mate to form two 

members of the next generation called Nl and N2 (random crossover point happens to 
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occur in the middle of the strings). What if we were to go from generation to generation, 

just doing crossover? The result would be a randomly mixed population whose 

probability distribution would match what we get from just shuffling the bits we had 

initially at random. (5, 17, 23, 24,27,43, 46) 

generation(x) 
Pl:101011001010 
P2:110100011Q01 

generation(x+l) 
Nl:101011011001 
N2:110100001010 

Figure 6: Example of Crossover 

The mutation operator (see Figure 7) simulates a sudden, random change in a 

string. Mutation occurs at a random point in a string and the bit value is changed (1 to 0 

or 0 to 1). This causes the solution to randomly explore the solution space. Mutation 

occurs much less frequently than crossover. In Figure 7, a random point is chosen on PI 

and Nl is formed by flipping that bit. (5, 17, 23, 24, 43, 46) 

generation(x) 
PlilOlOlllOlOlO 

generation(x+l) 
Nl:101011001010 

Figure 7: Example of Mutation 
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The algorithm steps through these three operations repeatedly until some stopping 

criteria is met (max_number_of_generations in Figure 3). The combined effects of the 

selection operator (optimizer) and the recombination operator (diversifier) create the 

robust searching capability of the genetic algorithm while the mutation operator can help 

to aim the algorithm toward still other parts of the search space. Note that in all the above 

examples, binary strings were chosen for simplicity. However, real-valued strings, Lisp 

codes, and even assembly instructions may be used as well. Because genetic algorithms 

are loosely based on natural evolution, many of the terms associated with natural evolution 

are used interchangeably with the terms created specifically for genetic algorithms. (4, 5, 

17, 19, 23, 24, 27, 29, 43,46) 

Fundamental Theorem of Genetic Algorithms 

So, what makes the genetic algorithm work? Holland, in his book, discussed a 

theorem dealing with the probability of a string's survival from one generation to the next. 

This later became known as the Fundamental Theorem of Genetic Algorithms or the 

Schema Theorem. Before discussing the theorem, we need to define some terms. A 

schema is a pattern or template used to describe sets of strings with the same values at 

certain positions. The positions having different values are indicated by the don't care 

symbol (*). For example, 1 * 1 defines the set of strings {101,111} while 1 **0 defines the 

set of strings {1000, 1010, 1100, 1110}. Two values associated with a particular schema 

H, are the defining length (5(H)) and the order (o(H)). The defining length indicates the 

number of positions between the first specified value of the string and the last specified 
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value of the string. For example, 1**0* has a defining length of three (4-1) while 

*0***** has a defining length of zero (2-2). The order of a schema indicates the total 

number of specified positions. So, 1**0* has an order of two while *0***** has an order 

of one. (4, 17,23, 43,44) 

When crossover occurs within the defining length of the schema, it is possible (but 

not certain) that the schema can be disrupted. So, the probability of a schema's survival 

(ps) under crossover (which itself has a probability of pc) is: 

Ds > 1 —Do  
1-1 

Figure 8: Probability of schema survival under crossover 

Mutation can also disrupt the schema. So, the probability of a schema's survival (p^) 

under mutation (which itself has a probability of pm) is: 

Psm * 1 -0(H)pm, pm   «    1 

Figure 9: Probability of schema survival under mutation 

Lety(H) be the average fitness of a string matching schema (H), and / be the 

average fitness of the population. Moreover, suppose that the number of schema- 

matching strings in a population at time (t) is m(H,t). Then, the reproduction operator has 

the effect of: 

24 



miH,t + \) = m{H,t)^W- 

Figure 10: Effect of reproduction operator on the schemata 

Considering the combined effects (omitting a few negligible terms) of 

reproduction, crossover, and mutation on a schema's survival, the Schema Theorem 

indicates the number of examples of a schema in the next generation: 

m{H,t +1) > m^H^^-ips+psm) * mQIJ)^ 

Figure 11: Schema Theorem 

i        *(P)      ,m l-pc-±-j-o(H)p* 

The Schema Theorem (in Figure 11) can be interpreted as saying "short, low-order, 

above-average schemata receive exponentially increasing trials in subsequent generations." 

(23) In other words, small schemata that do not have very many specified positions but 

do have a good average fitness are more likely to survive and are therefore to be tested 

many times in later generations. (4,17,23, 43,44, 46) 

A setback of the simple genetic algorithm is the problem of deception. Deception 

is where a genetic algorithm selects locally optimal building blocks rather than globally 

optimal ones resulting in a premature convergence and an incorrect answer. In other 

words, short, low-order building blocks leading to suboptimal higher order building blocks 

causes deception. This is frequently the result of a function whose best points are 

surrounded by the worst, or in other words, a function with isolated optima. It can be 

argued than many optimization techniques would not perform in the case of a function 
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with local optima and that such functions occur rarely. Nonetheless, in order to combat 

the problem of deception, Goldberg devised another type of genetic algorithm — the 

messy genetic algorithm. Messy genetic algorithms (which are not used in this thesis 

effort) are discussed in Appendix B. (23,46) 

Summary 

The various forms of genetic algorithms offer us different approaches to finding 

solutions to problems. However, as we start to deal with real-world problems (which 

often have a massive search space), whatever type of genetic algorithm we choose to 

work with is too slow. For example, the genetic algorithm can take several hours to find a 

good solution when attempting to minimize the energy of [Met]-enkephalin which is a 

relatively small protein. Therefore, we must find methods to be used in conjunction with 

genetic algorithms to make our searches more efficient and effective (21). 
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IV. Literature Review - Hybridization Techniques 

This chapter summarizes current knowledge of hybridization techniques with 

emphasis placed on the possible benefits of combining them with a genetic implementation 

in order to solve the protein folding problem. First, this chapter addresses local 

rninimization which includes a discussion of conjugate gradient techniques. Next, there is 

a discussion of simulated annealing. Then, the chapter analyzes possible minimization 

application strategies. This chapter closes with a discussion of niching. 

Local Minimization 

As an enhancement to our genetic algorithm, we wish to apply a local minimization 

step(s) that can improve upon the value returned by the genetic algorithm at that iteration. 

A genetic algorithm containing local minimization operators is sometimes referred to as a 

Hybridized Genetic Algorithm (HGA). Following a fitness evaluation, local minimization 

would move us closer to local minima among which (hopefully) is the global minimum. 

Two categorizations of approaches that can be used to locally minimize a 

multivariable function are deterministic and probabilistic. A deterministic approach is 

characterized by using knowledge of the search space in making a decision. This is usually 

the result of some calculations which provide the knowledge of the search space. For 

example, a calculation may allow you to omit a section of (prune) the search space. On 

the other hand, a probabilistic approach does not make use of knowledge about the 
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search space. A probabilistic approach makes selections after altering the probabilities of 

accepting solutions. So, acceptance probabilities of inferior solutions would be 

dynamically lessened to decrease our chances of selecting those solutions. It is worth 

noting at this time that an elitist strategy (can be used in genetic algorithms) is similar to a 

probabilistic approach in that an elitist algorithm guarantees that the best solution is 

carried over to the next generation. So, in other words, it is probabilistic in that the 

probability of selecting the best solution equals one. The two methods detailed here are 

conjugate gradient techniques (a deterministic approach) and simulated annealing (a 

probabilistic approach). (1,4) Figure 17 shows how a local minimization step could fit 

into a simple genetic algorithm. 

initialize population 
for i = 1 to max_number_of_generations 

evaluate fitness 
for j = 1 to population_size 

Local Minimization  step 
selection 
crossover 
mutation 
evaluate fitness 

end loop 
end loop 

Figure 12: Simple Genetic Algorithm with Local Minimization Step 

Conjugate Gradient Techniques 

To discuss the conjugate gradient technique, a brief mathematical review is 

necessary. What is a gradient? If the partial derivatives of/(x,y,z) are defined at a 

particular point, then the gradient of/at that point is a vector of the corresponding first 

partial derivatives or symbolically: 
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dx     dy      dz 

Figure 13: Gradient of a function 

In other words, a gradient is a vector in the direction of the maximum directional 

derivative of a function. A conjugate direction is sometimes referred to as a non- 

interfering direction. In a sense, conjugate means perpendicular. It does not use just the 

latest vector but the best combination of all vectors reached. So, we are moving in a 

direction that is perpendicular to all preceding directions. (11, 15, 51, 55) 

1. Ax = b (classic matrix equation) 
2. Suppose the vectors di,...,d„ are ^-orthogonal -» (di)T^dj = 0 
3. Finding the components of x, x = aid! + a2d2 +... + aBd„ 
4. Start at xo = 0, where residual b - Ax is r0 = b 
5. Go in direction di of steepest descent, continue to point xi = ctidi 
6. Compute new residual n = b -Axv 

7. Move in direction conjugate to rx which is d2 = rx + ß2di 
8. Continue to point x2= xi + a2d2 

9. Generalization of the cycle: 
direction:        dj = rj.i + ßjdj.i 
next point:      Xj = Xj.i+ (Xjdj 
residual: rj = b - Ax, 

10. ßj is chosen to make dj ^4-orthogonal to dj.i 
11. At the nth step, x„ = x„-i + a„d„ and so we have x. 

Figure 14: Matrix reduction with conjugate gradient technique (55) 

In principle, to minimize a function with a conjugate gradient technique, we need 

to start by moving in a direction opposite the gradient (the direction can be referred to as a 

residual and is equal to the gradient with minus sign). Next, we minimize by stepping 

along the function in a direction that is conjugate to the residual (this is calculated as a 

new residual). Next, we step in a direction that is conjugate to both our initial heading 

and its conjugate. Then, we step in a direction that is conjugate to our first heading, its 
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conjugate, and their conjugate and so on. See Figure 20 for a matrix representation of 

calculating the conjugate gradient. (51, 55) 

Simulated Annealing 

Simulated annealing (see Figure 21) is a probabilistic algorithm based on 

thermodynamic principles relating to the way that liquids freeze and crystallize and metals 

cool and anneal. If a liquid is cooled slowly, the atoms can line themselves up and form a 

Select an initial state ieE 
Select an initial temperature T > 0 
Set t = 0 
Repeat 

Set n = 0 
Repeat 

Generate state j which is a neighbor of i 
Calculate 5 = C(j) - C(i) 
If8<0  Theni=j 
Else if random(0,1) < exp(-8/T)  Then i = j 
Increment n 

Until n = N(t) 
t = t+l 
T = T(t) 

Until stopping criterion is true 

Where: E is the set of possible configurations (search space) 
t is the temperature change counter 
n is a repetition counter 
C is a cost function that assigns a real number to each member of E 
6 is the change in cost associated with moving from one state to another 

Figure 15: Simulated Annealing Algorithm (37) 

completely ordered crystal. This crystal is the minimum energy state for the system. The 

algorithm simulates this annealing process in solving optimization problems. It has also 

30 



been applied to problems in VLSI design, learning, artificial neural networks, and artificial 

vision. (37, 40,46, 60) 

Local Minimization Application Strategies 

There are two different strategies or approaches to applying local minimization to 

evolutionary algorithms. First, Lamarckian evolution uses local search to improve the 

current population. It also encodes those improvements onto the strings to be processed 

for the next generation. On the other hand, the Baldwinian approach involves the 

combination of learning with evolution. This is accomplished by transferring the improved 

fitness value (from the local minimization step) to the individual without coding the 

improvements back onto the string. This simulates the lifetime learning of an individual. 

The Lamarckian approach tends to converge much faster but has a greater probability of 

missing the global optimum by converging to some local optimum instead. The question 

of which approach is better seems to be application-dependent. (58) 

There are a number of ways to apply these approaches. The obvious technique is 

to perform a local minimization step every generation within the genetic algorithm. This 

application technique seems appropriate since we would be able to apply extra 

optimization to each member of the population at every genetic algorithm generation. The 

principal drawback is the massive amount of computation (repeatedly calculating the 

partial derivatives and gradients) involved with each local minimization step and then the 

resulting increase in execution time. Also, another drawback is that the application of 
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local minimization in every step could narrow the search space too rapidly and thus cause 

the global minimum (or maximum) to be missed. These two problems point to the need 

for an approach where a local minimization step would be applied only once in awhile. 

This kind of approach would still take advantage of the explorative nature of the genetic 

algorithm while reaping the additional exploitative benefits of local minimization. There 

are several possible strategies. One way is to apply a local minimization step every x 

generations of the genetic algorithm (where x is 5, 10,20, or whatever you want). 

Another possibility would be to have a local rmnimization step whenever a mutation 

occurs. The current AFIT implementation uses a three tenths of a percent mutation 

probability so local minimization steps would be relatively infrequent with this approach. 

Finally, another strategy would be Orvosh and Davis's five percent rule. They propose to 

arbitrarily replace five percent of the strings in every generation by re-encoding them with 

results found by a local minimization step. Their work showed the five percent rule was 

more effective than either always or never replacing the repaired strings for the 

applications they were solving. This replacement strategy could be varied by replacing ten 

or fifteen percent of the strings. The arbitrary replacement of strings can also be referred 

to as probabilistic Lamarckian replacement. (45,49, 58) 

Niching 

Another enhancement that can be applied to genetic algorithms is the concept of 

niching. Niching takes its concept from nature in that different species tend to exploit 

separate niches (sets of environmental features) in which other organisms have little or no 

interest rather than competing directly for the same resource. From an algorithmic point 
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of view, we have a solution space made up of a number of peaks and valleys. The genetic 

algorithm tends to concentrate its solutions around a certain peak. The idea Of niching is 

to spread the genetic algorithm's population around to other peaks by de-emphasizing a 

member's fitness based on the proximity of other population members. There are several 

niching schemes such as crowding and sharing. (12, 28) 

In crowding, we replace strings based on their similarity with other strings in an 

overlapping population. Stepping through generations of the GA, we randomly draw a 

subpopulation of crowding factor (CF) members. Then, we compare an individual to each 

string of the CF and replace the most similar string (based on a bit similarity count). As 

we progress to later generations, one or more species should establish a foothold in the 

population resulting in more strings being similar to each other. Then, by replacing similar 

strings, we can help maintain diversity and allow room for more species. (12,28) 

In sharing, we reduce a member's fitness based on that member's nearness to other 

members. In other words, a large cluster of individuals results in a large reduction in 

fitness for each while a solitary individual's fitness remains relatively unaffected. There 

are two forms of sharing - genotypic and phenotypic sharing. In genotypic sharing, we 

use sharing based on genetic proximity - the hamming distance between strings (number of 

different alleles).  We use phenotypic sharing when the proximity is defined in the 

decoded parameter space. (12,28) 
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Experiments fun by Deb and Goldberg (12) suggest that for functions with unequal 

peaks that genotypic sharing sometimes is unable to maintain stable subpopulations at 

peaks of lower values. Also, they found that sharing did a better job than crowding of 

allocating individuals to the peaks. (12) The solution to the protein folding problem is 

obtained by manipulating an energy function (see Figure 30, Chapter V) full of uneven 

peaks and valleys.   So, it is best to pursue a phenotypic sharing scheme. 

The first step in phenotypic sharing is to calculate the distance (dy) between the 

strings in the decoded parameter space. So, for the individuals xj = [xu, x^,..., Xp,J and 

xj ~ [xij > x2j > ■■-, Xpj] : 

4r$i(Xk,i-'Xkj) 

Figure 16: Phenotypic distance calculation (12) 

Next, let each niche be enclosed in a p-dimensional hypersphere of radius a^are such that 

each sphere makes up l/(number of peaks in the space) of the volume of the space. The 

radius of a hypersphere containing the entire space is: 

"V^A    *>max k>m[n) 

Figure 17: Radius of the hypersphere (12) 

Now, we can calculate a^. If we let q equal the number of peaks in the space then: 
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C/ share      D HZ 

Figure 18: Sigma share calculation (12) 

Finally, we sum a sharing function (Sh(dij)) over all strings (see Figure 25) to get a niche 

count. We divide each population member's fitness by its respective niche count to 

complete the sharing step. Next, we allow the genetic operators to manipulate the 

solution strings of the present generation. Then, at the next generation, we start the niche 

calculations again. (12,28) 

Sh(djj) = 0, jf dg > CTshare , otherwise: 

Sh(cp = 1- 
share 

w'CÄe-COM"'=ZSh(di(x>x^ 

Figure 19: Calculation of niche count (12, 28) 

Niching Summary 

Niching offers potential benefits towards solving the protein folding problem. 

Because, the solution space contains many hills and valleys, niching could work to force 

the genetic algorithm to explore more of the space. Niching also could work when 

combined with conjugate gradient minimization. Another possible benefit of niching could 

be in combating deception. Because niching operates by de-emphasizing areas, it could 

move the genetic algorithm away from deceptive minima. 
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Summary 

There are a number of techniques that can be used to enhance a genetic algorithm. 

We can use conjugate gradient methods to calculate local minima and then replace some, 

none, or all the population members. We can apply sharing to diversify the population. 

We can apply a combination of sharing to diverge the population and then a local 

minimization step to move the members closer to extrema at their various locations in the 

space. There are a large number of possible experiments in these areas. 
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V. Design. Modification, and Implementation 

The purpose of this chapter is to lay out the initial AFIT implementation and then 

to discuss additions/modifications. Then, this chapter is to summarize the plans for 

experimentation. 

The AFIT Implementation 

The present AFIT implementation (see Figure 26) is coded in C and is located in 

the -genetic directory in the Parallel Lab's account (Room 243, Bldg. 640, WPAFB). 

Fast 

-genetic/Toolkit 

r \ / 

Simple 

\ / s 

CHARMm 

v_ 

Generalized 

j 

Figure 20: AFIT Implementation 
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There are three principal divisions of the Toolkit - Simple, CHARMm, and Messy. The 

Simple directory contains the code necessary for the simple genetic algorithm. It includes 

selection, crossover, mutation, and supporting code. The Messy directory is broken into 

subdirectories. Each of them contain specialized messy genetic algorithm code as 

indicated by their titles. The CHARMm directory contains the code necessary for the 

matrix representation of each conformation and for the calculation of the energy of each 

conformation. This code is used by both the simple and messy genetic algorithm 

implementations. The CHARMm directory also contains the code for encoding and 

decoding the population individuals into their respective dihedral angles. For example, 

[Met]-enkephalin consists of twenty-four dihedrals each of which are encoded by ten 

binary bits. So, we have a total of 240 bit solution strings that we manipulate with genetic 

operators. (36) 

Inputs to the Implementation 

One input file used by the AFIT implementation (see Figure 29) is generated by a 

package called Cerius2. Cerius2 produces a sequential listing of all atoms present in the 

molecule. This listing is called a Z-matrix (see Figure 21). The bond length is the distance 

between the present atom and atom,. The bond angle is formed between the present atom, 

[atom type] [bond length] [flag] [bond angle] [flag] [dihedral] [flag] [atomj [atomd [atom,] [charge] 

Figure 21: Z-matrix Format 

atomj, and atonik. The dihedral is the torsion angle of the middle bond formed between 

the present atom, atomj, atom*, and atomi. For example, in Figure 22, this line shows 
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C   1.49994   0   111.60606   0   -119.97103   1   3   2   1   0.000 

Figure 22: Example line of Z-matrix 

that we have a carbon atom (C).   It is 1.49994 angstroms (an angstrom equals 10"10 

meters) distant from the previous atom in the list. There is an 111.60606 degree angle 

(with a vertex at atom 3) that is formed between the present atom, atom 3, and atom 2. 

Also, there is a -119.97103 degree dihedral angle formed on the bond between atom 3 and 

atom 2 with respect to the chain of atoms extending from the present atom to atom 1. 

The flags set to 0 indicate that parameters are held fixed. The charge field of the Z-matrix 

is not used. A separate file, called the residue topology file (RTF), is produced by a 

package called QUANTA. This file contains data about atomic charges and specific atom 

type information. Also supplied as an input to the implementation is a parameter file 

(PARM) that is also produced by QUANTA. This file contains constant parameters 

associated with bond lengths, bond angles, dihedral angles, and non-bonded pairs. Lastly, 

there is a user-supplied file, called in, that contains run-time parameters such as 

population-size, number of experiments, and other options (see Figure 48). (5, 6) 

Outputs of the Implementation 

The output of the AFIT implementation (see Figure 29) comes in several forms. 

First, there is a file generated (or appended to if it already exists) called out. It contains a 

line for every generation containing data such as the number of trials, percent converged, 

minimum energy at that generation, and the average energy ofthat generation. Also, the 

implementation writes to a file called the PDB file. The PDB file contains Cartesian 
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coordinates corresponding to each atom. The Cartesian coordinates are important for the 

evaluation of the energy function of a particular conformation. Finally, there is user- 

generated output (by print/ statements) which defaults to the screen or can be directed to 

a file. (5,8,36) 

Z-Matrix 

RTF file 

PARM file 

AFIT 
IMPLEMENTATION 

out We 

PDBffle 

user- 
generated 

Figure 23: Input and Output of AFIT implementation 

Modifications/Additions to Implementation 

This section details the modifications and additions to the APIT implementation. 

The topics to be discussed are local minimization (derivation and techniques), niching, and 

the use of tournament selection (fitness disproportionate selection) in a simple genetic 

algorithm. 
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Local Minimization 

One of the principal objectives of this experimentation is to determine what 

method of applying local minimization (if any) works best with regards to effectiveness 

and efficiency when used as a possible enhancement of the AFIT implementation. In 

exploring different techniques of local minimization, we settled on using a conjugate 

gradient technique discussed by Press et al (51) primarily because the code was readily 

available and looked relatively simple to adapt for use with the AFIT implementation. 

This minimization technique required the use of the first derivative of the function being 

minimized. Thompson (56) discusses a promising method of calculating first derivatives 

but the AFIT implementation's representation of the molecule had to be altered to allow 

for Thompson's method of calculating of the first derivative of the energy function (see 

Figure 24). So, before local minimization routines could be inserted into the code, a 

number of steps (which are detailed in this section) were necessary: 

(1) AFIT implementation was altered to allow for Thompson's representation of 

the molecule; 

(2) Thompson's Cartesian coordinate system transformation was implemented; 

(3) Thompson's derivative method was used to calculate the partial derivative 

representing the change in position with respect to the change of the dihedral; 

(4) Partial derivative representing the change in the distance with respect to the 

change in position was calculated; 

(5) Partial derivative representing the change in the energy with respect to the 

change in interatomic distance was computed; 
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(6) Partiais were multiplied together resulting the first derivative which represents 

the non-bonded energy with respect to a particular dihedral angle; 

(6) Derivatives with respect to all dihedral angles were used in conjugate gradient 

routine to minimize energy function. (42, 51, 56) 

E=    I(Krij(rij-req)
2) + 

(Ü)eB 

KKöijkCGijk-Geq)2) + 
(U*)eA 

E (Koijki (1 + cos(nijki<I>ijki - Yiju))) + 

I ((Ai/ry)12 - (By/rij)6 + q^Tisrij) 
(Ü)eN 

where:   KHJ, Keijk, K^u, r^, ©„<,, njjki, Yijki, Aj,, and By are empirical constants 
B - bonded atoms, A - atoms forming bond angles, D - atoms forming dihedral angles, 
N - non-bonded atoms (atoms with more than 3 bonds separating them) 
rij - bonded (or non-bonded) atom term, ©ijk - bond angle term, <S>m - dihedral term 

Figure 24: CHARMm energy model (38) 

Cartesian Coordinate Transformation of Implementation 

Thompson's molecular representation is based first on each atom of the molecule 

being in its own coordinate system. Then, after each coordinate system is calculated, we 

calculate the coordinates of all atoms with respect to the same coordinate system. (56) 

Background 

First, suppose we have three atoms: A,, B2, and B3 where B2 lies on Aj's negative 

x-axis and B3 is the next atom in the sequence (see Figure 25). Each atom is in its own 
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coordinate system. The origin is at A! and our goal is to find the coordinates of atoms B2 

and B3 with respect to Ai's coordinate system. 

When we use Thompson's transformation to put B2 and B3 in terms of Aj's coordinate 

system, they are then referred to as A^ and A3 respectively. First, we represent each atom 

with a four by four matrix (see Figure 26). The first three numbers of its first column is 

a unit vector along its x-axis, the first three numbers of its second column is a unit vector 

along its y-axis, and the first three numbers of its third column is a unit vector along its z- 

axis. Finally, the first three numbers of the fourth column are the atom's actual 

coordinates. The fourth row is 0 0 0 1 for computational purposes. (42, 56) 

-coscc -sma 0 -Rcosa 
sinacosß -cosacosß -sinß Rsinacosß 
sinasinß 

0 
-cosasinß 

0 
cosß 

0 
Rsinasinß 

1 

Where a is the bond angle, ß is the dihedral angle, and R is the bond length 

Figure 26: B-Matrix representation of an atom (56) 
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For the first three atoms of the protein, there are no bond (with only two atoms) or 

dihedral (with only three atoms) angles. So, by definition, ß2 (dihedral value for atom 2's 

B Matrix) is set to it while ß3 (dihedral value for atom 3's B Matrix) and a2 (bond angle 

value for atom 2's B Matrix) are set to 0. Figure 27 and Figure 28 show the resulting B 

matrices that result from these defined bond and dihedral angle values. 

B2 = 
-1 0 0 -R2 

0 1 0 0 
0 0 -1 0 
0 0 0 1 

Figure 27: B2 Matrix 

B3 = 
-COSCI3 -sina3 0         -Rcosa3 

sina3 
0 
0 

-cosa3 
0 
0 

0 Rsina3 
1 0 
0             1 

Figure 28: B3 Matrix 

Also, by definition, Aj is just a four by four identity matrix. Note that its coordinates (first 

three numbers in the fourth column) are 0,0,0. 

Ai = 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Figure 29: Ai Matrix 
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To find A2, (B2 in terms of Ai's coordinate system), we multiply the Ax matrix by the B2 

matrix (A2 = Ai X B2). Because Ai is an identity matrix, A2 =B2. 

A2 = 
-1 0 0 -R2 

0 1 0 0 
0 0 -1 0 
0 0 0 1 

Figure 30: A2 Matrix 

To find A3, (B3 in terms of Ai's coordinate system), we multiply the A2 matrix by the B3 

matrix (A3 = A2 X B3). 

cosa3 sma3 0 R3COSCI3-R2 

sina3 
0 
0 

-cosa3 
0 
0 

0 
-1 
0 

Rsina3 
0 
1 

Figure 31: A3 Matrix 

From this point on, for every atom we wish to add to the structure, we first calculate its B 

matrix. Then, we multiply its B matrix by the A matrix of the adjacent atom to get the A 

matrix of the newly added atom (A„ew= Aadj X B„ew). We continue these steps until all 

atoms are in the base coordinate system. (42, 56) 
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Implementation of Cartesian Coordinates System 

The primary change to the existing implementation was the addition of the A and 

B matrix structures. The dihedral and bond angles are already stored and easy to access in 

calculating the matrices. After assigning initial values, all that was really required was an 

insertion of a loop that would step through each atom and calculate and store its B matrix. 

Then, a simple cross product function is called to calculate each A matrix. The only 

stumbling block was what became termed the atom 42 problem. As stated earlier, [Met]- 

enkephalin is our primary testing molecule. Observing Figure 1, we see that atom 42 is 

added adjacent to atom 2. Therefore, we can not compute its matrices by multiplying 

other matrices (as described in the above section). So, it was necessary to hard-code the 

values of the matrix for that atom. This becomes an important consideration when using 

the AFIT implementation for other molecules. While the implementation is generic 

enough to run different molecules by using different input files, when computing the 

matrix system for a molecule, any of its atoms added adjacent to its first two atoms must 

have their values hard-coded. 

Calculation of first derivative 

It was now necessary to calculate the derivative of the non-bonded energy with 

respect to the dihedral angle: 

dEnb    =    dEnb 5r±j ÖQx 

dßx ör±j dqx   3ßx 

Figure 32: Derivative of the non-bonded energy 
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First, Thompson provides a formula for calculating the change in position with respect to 

the change of the dihedral: 

dgi   =     aXfk. X   [q(j)   -  q(k')] 
dß* 

Figure 33: Positional Partial Derivative (56) 

where a^- is a unit vector along the X-axis of a chain atom, q(j) is the position vector in 

the base coordinate system of the atom we are adding, and where q(k') is the position 

vector in the base coordinate system of a chain atom. A chain atom is on the atom chain 

between the atom we are adding and the base atom (Ai). All that was needed was to add 

a loop that took the difference of the two vectors and then called the cross product 

function for each atom. (42, 56) 

dqx 
dr±i,   driU   drti 

dxi     dvi     dzi 

r2 = x2+y2+z2        -> Irdr/dx = 2Ax 
(Ay and Az terms of the dr vector are derived the s 

->    dr/dx = 
jame way) 

Ax/r 

where: 
Ax =Xi-*Xj Ay =yi-yj Az =  Zi-Zj 

Figure 34: Calculation of interatomic distance partial 
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Next, we can compute the change in the distance with respect to the change in 

position (see Figure 34) which can be calculated from Thompson's arrangement using 

atom i (atom we are adding) and atomj (atom adjacent to the one we are adding) using 

the coordinate (fourth) column of their respective A matrices. This was accomplished in 

the code by looping through the atoms and performing subtraction and division steps to 

calculate the vector. 

Finally, deriving the formula for the change in the energy with respect to the 

change in interatomic distance had to be accomplished by hand (there was no given 

formula). Recall that the non-bonded term of the energy function is: 

S ((Aij/rij)12 - (Bij/ry)6 + qjq/47cers) 
(ij)eN 

Figure 35: Non-bonded term of the energy function 

So, taking its derivative with respect to the interatomic distance (r^ term) we get: 

I (-^(Aij)12^)-13 +6(Bij)
6(rij)-

7 - W^TCs^)2]) 
('j)eN 

Figure 36: Derivative of the non-bonded term 

Now it was just necessary to set up a loop in the code that inserted the proper values into 

the formula to generate a scalar that is the partial derivative of the non-bonded term with 

respect to the change in the interatomic distance. (42) 
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Finally, all that remained to do was to multiply the dr vector by the above scalar 

and then perform a simple dot product of the resulting vector with the dq{ vector. The 

resulting scalar is the derivative of the non-bonded energy with respect to a particular 

dihedral angle. So, this procedure must be repeated for every dihedral resulting in an 

array of derivatives. (42, 56) 

Fletcher-Reeves-Polak-Ribiere Algorithm 

Press, et al, (51) discuss a conjugate gradient (see discussion in Chapter IV and 

Chapter V) algorithm/implementation that is a combination of the Fletcher-Reeves and 

Polak-Ribiere optimization methods. This technique uses the derivatives (which we 

calculated previously) of the function being optimized. 

Discussion 

The Fletcher-Reeves and Polak-Ribiere methods are nearly identical. They are 

based on the calculation of a sequence of mutually orthogonal vectors (gx) and the 

calculation of a sequence of mutually conjugate vectors (hx). So, symbolically, 

gi • gj = 0 and hi • A • hj = 0 (where A is a symmetric nxn matrix). (51) 

In calculating the sequences of vectors, two sequences of constants (yx, A*) are 

used such that gi+i = g - ^ A« hj and hi+, = gM + y{ hj where h = (gi • g;)/(gi • A« hi) and 

Yi = -(gi+i • A« hj)/(hi • A« hi). It can be shown that: 
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Yi = (gi+i •gi+i)/(gi«gi) = ((gi+i - gi)»gi+i)/(gi»gi) 

Figure 37: y; equation (51) 

It is at this point that the difference between the two techniques comes out. The Fletcher- 

Reeves approach sets y* = ((gi+i •&+!)%#&)) (from Figure 43) while the Polak-Ribiere 

approach sets y* - ((gi+i - gi)»gi+i)/(gi»gi) (from Figure 43). These two values for y; are 

equal only for exact quadratic forms. So, the Polak-Ribiere provides for proceeding 

beyond the minimums of the quadratic forms to possibly lower minimums. By changing a 

line of the implementation, the code can be switched between the two methods. The 

mutually conjugate and mutually orthogonal vectors are used to step toward a local 

minimum. (51) 

Implementation 

One of the primary motivating factors of choosing this local minimization 

technique was the fact that an implementation (with some documentation!) was readily 

E Minimum m Bracketing point 

Wrong Right 

Figure 38: Examples of bracketing a point 

Wrong 
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available. After minor modifications, f rprmn. c and its supporting functions were 

placed into the AFIT implementation. Gates (18) created a version of the bracketing 

function used in place of the function mnbrak. c. Gates' version, called mymnbrak. c, 

brackets the current minimum with two other points. The code checks and resets those 

points if necessary to make sure the point is indeed bracketed. Once the point is properly 

bracketed, a new middle point is found between the lower bracketing point and the 

original middle [steps 2-4 below]. That new middle becomes the upper bracket point and 

the old lower bracket point becomes the next middle. Then a new low bracket point is 

found. Now, the cycle starts over again with us finding a new middle between the existing 

middle and the lower bracket point [steps 5-6 below]. This cycle continues until the 

ivV'lvXi, 
Newly calculated middle 

■Bracket point 

r Minimum 

Figure 39: Local minimization bracketing steps (42) 
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middle point is lower than both the bracketing points where it is assumed that we have 

reached the local minimum [step 7]. (42, 51) 

Implementation of Niching 

The niching implementation follows from the niching algorithm steps (see Figures 

17-20) presented in Chapter IV. As stated in Chapter IV, phenotypic sharing was chosen 

because the function we are dealing with is filled with uneven peaks and Goldberg (12,28) 

discouraged the use of genotypic sharing and crowding for such functions. A general 

algorithm for phenotypic sharing is as follows: 

1) Calculate Distances 
2) Calculate Hypersphere 
3) Calculate Oshare 
4) Calculate Sh(d) 
5) Calculate niche count 
6) Divide fitness by niche count 

Figure 40: Phenotypic Sharing Algorithm 

In calculating the distance, we are dealing with the string components which are dihedral 

angles. So, we convert the set of strings into a two dimensional array of 24 dihedrals for 

each population member. This decoding of the strings is accomplished by the using the 

mapping D:{0,1}10 -> [-71,7t] often bit subsequences to dihedral angles such that: 

Df a. a2. • ■ ■. aw = -& + 2^£ a.2_j 

Figure 41: Dihedral decoding scheme (45) 
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This encoding gives us a precision of approximately one-third of a degree. Now, we are 

subtracting angles that fall in the -II to II radians range. However, we can not do just a 

straight subtraction as we want to keep the result in that range as well. So, we must take 

an absolute value of the difference and then subtract that from two PI. Then, we take the 

minimum ofthat initial difference or the value obtained by subtracting it from two PI. For 

example, if we are finding the distance between angles A and B in Figure 42, we would 

get the shorter, red distance instead of the longer, blue distance. Then, to finish the 

distance calculation, we square the distance we calculated and continue on with the next 
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two angles and keep summing the squares of their distances. Finally, we take the square 

root of the total squares of the dihedral distance for each population member. (45) 

Next, to calculate the radius of the hypersphere, we do not have to use the 

formulas provided by Deb and Goldberg (12). Instead, we know by the nature of our 

space that the complete area covered is the square root of the number of dihedrals times 

PI. So, this step is accomplished by a simple multiplication. Then, the calculation of a^are 

is accomplished by dividing the radius by the value obtained when you take the number of 

desired peaks to the one over number of dihedrals power. Finally, we use Deb and 

Goldberg's (12) formula for Sh(d) and accumulate those values for each member of the 

population. Those accumulated values are divided into the respective individual's fitness 

to accomplish the appropriate de-emphasis of fitness. This code is contained in the file 

niche. c which is located in the ~genetic/Toolkit/Simple directory. (36) 

Implementation of Tournament Selection in the Simple GA 

Another modification/addition to the AFIT implementation was putting the 

tournament selection option into the simple genetic algorithm. Code for tournament 

selection already existed for the messy genetic algorithm implementations. There is a 

slight difference in the way the messy genetic implementation represents the population 

compared with that of the simple genetic implementation. Both use record types, but the 

messy genetic implementation has more elements defined in its population record. So, the 

code had to be altered slightly to allow for handling a different record configuration. 
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After that, all that remained was to copy the code over into the Simple directory and make 

some other minor variable name changes. 

Genetic Algorithm Implementation Options 

Figure 43 shows an example of the user's in file. Note the Options line which is 

third from the bottom. This line allows the user to set the implementation to run a certain 

way. The options (See Figure 44 for a partial listing of options now available) shown in 

Experiments = 1 
Total  Trials =  10000 

Population Size = 20 
Structure Length = 240 

Crossover Rate =0.65 
Mutation Rate =  0.003 

Generation Gap =  1.0 
Scaling Window =  1 

Report  Interval =  1 
Structures  Saved =  1 

Max Gens w/o Eval =10 
Dump  Interval =  0 

Dumps  Saved =  0 
Options  = nye 

Number of Peaks =  16777216.0 
Random Seed =  987654321 

Figure 43: Example "in" file 

the example would have the AFIT implementation do niching, use fitness proportionate 

(roulette wheel) selection, and use elitism. Note that the number of peaks is set to 

16777216 which equals 224. In other words, we treat the entire hypersphere as if it were 

divided into 224 areas for the solutions to cluster in. Note that in order to force the 
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implementation to replace a percentage of strings (or components) other than zero or one- 

hundred, the "Z" option must be used and the source code must be modified. See 

Appendix C for instructions on altering the replacement percentage. 

option flag that is set description 

•IT. I 'E 

I CM F' 

'm' 

V 

•y 

'z' 

'Z' 

Lamarckflag use 100 percent replacement after local min 

Fivepercentflag do a local min every 20th generation 

Minimizationflag locally minimize 

PShareflag use phenotypic sharing in niching 

MutateMinflag when a mutation occurs, do local min 

TenLMflag Start locally minimizing after ten generations 

FitProflag use fitness proportionate selection 

TSflag use Tournament Selection 

EndLMflag do local minimization at last generation 

Davisflag replace only a percentage of the strings 

Figure 44: Partial listing of "in" file Options 

Summary 

This chapter has discussed the current AFIT implementation as well as its inputs 

and outputs. Then, this chapter detailed the additions/modifications (see Appendix D for a 

listing of those additions/modifications) that have been made to the AFIT implementation 

including local minimization, niching, and tournament selection (for the simple genetic 

algorithm). Some of the areas covered in the addition/modification section are techniques 

of implementation and the motivations behind some of the design decisions. The chapter 

then concluded with a brief discussion on the in file options. 
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VI. Experimentation and Analysis 

The purpose of this chapter is to define experimental design, detail the 

experiments, and analyze their results. These experiments attempt to find better ways of 

obtaining quality solutions (structures) to the protein folding problem. Experiments are 

important because while they prove nothing, they can be used to observe tendencies. We 

can conduct experiments on a set of data to learn the nature ofthat data. This chapter 

discusses motivations, expectations, and results of the experiments. This chapter 

concludes with a comparison of various strategies and combinations of those strategies. 

Design of Experiments 

As stated earlier, the protein molecule model on which the experiments are based 

is [Met]-enkephalin. The minimum energy value (from now on referred to as the optimum 

solution) found in QUANTA for this protein is -29.225 kcal/mol (17). The experiments 

(with a combined total of over 8000 CPU-hours of execution time) focus on trying to 

approach that value which puts us closer to having the "correct" folded structure dihedral 

angles (see Figure 45). 

Residue $ vj/ a ^ ^ ^ JCi 
Tyr: -86.13 156.0 -176.84     -172.62          78.75       165.94 
Gly: -154.34 83.67       168.75 
Gly: 83.67 -73.83 -170.16 
Phe: -137.11 19.34 -174.02          58.71       -85.43 
Met: -163.48 160.31 -179.65          52.73       175.08     -180.00     -58.36 

Figure 45: Dihedral angles (in degrees) for accepted optimum of [Met]-enkephalin(17) 
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The goal of these experiments is (with a high level of confidence) to determine 

which genetic algorithm strategy or combination of genetic algorithm strategies offers the 

best or better chance of achieving a minimum energy conformation. The experiments are 

organized as follows: 

• For Conjugate Gradient local minimization test and compare dihedral and string 
replacement percentages using: 

- Roulette Wheel (Fitness Proportionate) Selection 

- Tournament (Fitness Disproportionate) Selection 

• For Niching test for: 

- Performance when varying number of peaks 

- Performance when combined with delayed replacement strategies 

In the execution of these experiments, attention is to be focused on the following 

quantitative and statistical comparisons which serve as an indicator of solution quality: 

•Lowest average energy 
•Lowest minimum energy 
•Execution times 

In several cases, the average energies of the experiments are similar. When Wilk-Shapiro 

normality tests were performed on the populations of energies, the average energies were 

shown to be from populations that were not normally distributed. Kruskal-Wallis tests 

were then used to determine if significant differences existed between the averages. 

When viewing the graphs (for instance, see the graph of Figure 46), note that 

frequently the graphs are plotted starting with generation five, ten, twenty-five, or fifty 

rather than starting with generation one. This is because generation one energy data is 
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often quite high such that it causes the graph to be spread over too high of a range of 

energies. This results in some difficulty in viewing the graph in later generations where 

the data values are closer together. So, by starting with a later generation (we are not real 

concerned, of course, with early generations), it becomes easier to see differences in the 

effectiveness of various strategies. 

Local Minimization Experiments 

For the first series of experiments, we are interested in knowing what percentage 

of replacement would work best for our application. Davis and Orvosh (49) report that 

for their applications a replacement percentage of five percent worked the best. In other 

words, local minimization is performed on all solution strings and then five percent are 

arbitrarily replaced. There are two approaches to replacement that were tried. The first 

approach was to replace a percentage of the components of each string. In other words, 

for five percent replacement, five percent of the dihedrals in each string were arbitrarily 

replaced. The second approach was to use replacement as discussed by Davis and Orvosh 

(49) which was to replace a percentage of the strings. 

Replacement of components 

First, a series of experiments used a simple genetic algorithm with fitness 

proportionate selection on a population of fifty individuals for 6000 trials. A population 

size of fifty was selected for the experiments in an attempt to remain consistent with 

previous research (17). For each set of the experiments, the random seeds 987654321 
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989954321, 998954321, 999854321, and 99954321 were used (in fact, these random 

seeds were used for all experiments in this research for uniformity). The percentage of 

replacement (of the dihedral angles) was varied from five to fifteen. Also, these 

experiments are viewed with a set of runs with zero percent replacement (Baldwinian - see 

Chapter IV) and with one-hundred percent replacement (Lamarckian - see Chapter IV). 

—o% 
 5% 

10% 

=-="15% 

= 100% 

gr*-o<»>«oo><Minco*-Ti^-o<')(DO><Nioa)*-<<ri"-Q 

generations 

Figure 46: Fitness Proportionate comparison of dihedral replacement percentages 

The graph of Figure 46 is based on five-run averages of the minimum energy found at each 

generation. Observe that the five, ten, and fifteen percent replacement strategies all 

achieve higher average minimum energies than the strategies of replacing the entire strings 

or not replacing anything. Moreover, in these experiments, the ranking of the dihedral 

replacement strategies seems directly related to the amount of dihedrals replaced. Fifteen 

percent had the highest average minimum energy (-21 kcal/mol), followed by ten percent 

(-22.2 kcal/mol), and then five percent (-22.8 kcal/mol). For this particular set of runs, the 
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one-hundred percent replacement strategy reaches a much lower average minimum energy 

(-30 kcal/mol) compared to the other techniques. While, it does not prove anything, this 

experiment does indicate that with fitness proportionate selection, we are probably better 

off replacing everything than just a few dihedral angles following local minimization. 

Next, experiments were run to look at the possible benefits of using tournament 

selection with the simple genetic algorithm. In addition, there were tests for possible 

benefits of using dihedral replacement strategies with tournament selection. The 

tournament selection experiments are run in sets of five using a population size of fifty. 
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\lx Tournament selection dihedral replacement experiments 

For comparison purposes, a graph is plotted based on the average minimum energy found 

by the experiments at each generation. In Figure 47, we see results very similar to those 

found by the fitness proportionate replacement experiments. Once again, the one-hundred 

percent replacement has reached a much lower average minimum energy (around -29 
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kcal/mol) as compared to the other methods. The other methods have found average 

minimum energies at around -22 to -24 kcal/mol. So, the tournament selection dihedral 

replacement strategies appear to be more effective than their fitness proportionate 

counterparts. However, the results indicate that once again we would probably be better 

off replacing everything than just replacing a few dihedral angles at each generation. 

Summary of component replacement experiments 

Notice that for both the fitness proportionate (see Figure 46) and tournament (see 

Figure 47) selection strategies that the replacement of the entire strings achieved lower 

average minimum energies. One conjecture for this behavior may be that by replacing 

only a percentage of the dihedrals, we are omitting "good" dihedrals and keeping "less 

good" dihedrals. Thus, we are possibly inhibiting (rather than helping) the progress of the 

simple genetic algorithm. On the other hand, replacing the entire string forces the 

implementation to keep all the dihedrals which improves on the progress of the simple 

genetic algorithm. The poor solution quality of the dihedral replacement strategies is an 

indicator that for this application we should experiment with replacing the entire strings. 

Replacement of strings 

The next set of experiments examines the concept of arbitrarily replacing a 

percentage of the population members (entire strings) at each generation of the simple 

genetic algorithm. For these experiments, a population size of fifty was used over 12000 

trials. The graphs show the results of five-run average minimum energies at each 
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generation. The string replacement strategies are tested using both fitness proportionate 

and tournament selection. 
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Figure 48: Tournament selection string replacement strategies 
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Figure 48 shows a comparison of string replacement strategies on a simple genetic 

algorithm that uses tournament selection. First, notice that the zero percent replacement 

(Baldwinian strategy) converges quickly to a higher energy value than the other 

replacement percentages. Why do the Baldwinian experiments converge so quickly? One 

conjecture is that the combination of the aggressive tournament selection and the non- 

replacement of strings causes members of the population with poor fitnesses to quickly be 

excluded from the population. This results in applying the genetic operators to similar 

strings which causes rapid convergence to relatively poor solutions. Notice also that the 

five percent replacement strategy converges (though not as early as the Baldwinian 

approach) at a slightly higher average energy (around -27 kcal/mol). The Lamarckian 

strategy, on the other hand, has the best average energy at almost -30 kcal/mol. In other 
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words, it is on average finding conformations with a lower energy than the optimum 

conformation. Note that the other replacement percentages often, fifteen, twenty, and 

twenty-five all reach average energies below -28 kcal/mol which shows that they are all 

averaging close to the energy of the optimum solution. All the replacement percentages 

perform well with the exception of replacing zero or five percent. 

0%        5%       10%      15%     20%     25%      100% 
min  -24.6118  -29.5072  -31.1748  -30.99  -32.093 -32.4905  -3l73162 

ave   -22.5944  -28.254   -29.0797  -28.7621 -29.4104 -28.8546  -29.7675 

dev  1.913753  1.428581  2.10214   1.312718 1.72258  2.14637   1.18114 

Figure 49: Statistical comparison of Tournament Selection string replacement minimum energies 

Figure 49 provides another way to analyze the tournament selection strategies. It 

shows the overall minimum energy found by each strategy, the average of the minimum 

energies found per strategy, and the standard deviation of the minimum energies found by 

each strategy. Note by the standard deviations, that the strategies are rather consistent in 

the minimum energies found. This is also apparent when comparing the averages to the 

overall minimum energy found by each technique. In fact, through Kruskal-Wallis tests, it 

has been shown that there is no significant difference between these averages. Finally, 

observe that the ten, fifteen, twenty, twenty-five, and one-hundred percent string 

replacement strategies all found a conformation with an energy less than -30 kcal/mol — 

they each found a conformation with an energy lower than the optimal solution! 
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In comparison (see Figure 50), the fitness proportionate selection technique 

employed with the various string replacement strategies also perform well. An easy 

observation of the graph is that the zero percent replacement (Baldwinian strategy) does 

not perform as well as the other strategies. However, notice that the fitness proportionate 

Baldwinian strategy does not converge rapidly like the tournament selection version. This 

is because fitness proportionate selection allows for existence of population members with 

poorer fitness which creates diversity. Diversity has the effect of slowing convergence. 
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Figure 50: Fitness proportionate string replacement strategies 

Note that the fifteen, twenty, and one-hundred percent replacement strategies all cluster 

around an average minimum energy of-30 kcal/mol. Figure 51 further differentiates 

between the replacement strategies through some simple statistical analysis of the 

minimum energy found by each experiment. 
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Figure 51 contains the absolute minimum energy, the average minimum energy, 

and the standard deviation of the minimum energies found by the various replacement 

experiments. While there was greater variation in the minimum energies found by the 

twenty percent replacement strategy, it found the lowest energy of all experiments, - 

35.1889 kcal/mol. Note that the fifteen percent replacement strategy has the best average 

minimum energy while it found only the third best minimum energy. Also, observe that 

every strategy except the zero percent replacement found a niinimum energy of less than - 

31 kcal/mol. In fact, the average minimum energy found by the zero replacement 

experiments is at least 5 kcal/mol higher than the average minimum energy of all the other 

strategies. 

0%       5%       10%      15%      20%      25%      10Q% 

min -27.6581 -34.0205 -31.3275 -33.9411 -35.1889 -31.0853 -32.8813 

ave -24.8085 -29.1842 -28.3492 -30.6108 -30.4155 -29.4659 -30.1201 

dev 1.868289  2.814428  2.115062  2.56697   3.076521  0.984139  2.377013 

Figure 51: Statistical comparison of fitness proportionate replacement strategies 

Another way of analyzing how close we are to finding the optimum solution is to 

compare the solution strings of a population for similarity (in terms of common bits) to the 

optimum string. The solution string in Figure 52 is the most similar string (of the 

population of fifty strings) from a one-hundred percent replacement experiment to the 

optimum string (see Figure 53). 
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000000100001100110000000000001101101011100111010110000000010 
000011010110010111100000000010000011001101010101110000010100 
000010010000000001011011100100111111001110110010010000010101 
111111001100111000100100110000010010110010011001101111101001 

Figure 52: Most similar string of fitness proportionate 100% replacement experiment to optimum 

010000101111101111000000001001000100100110111011101111100000 
101110111001001011100000011100000111101010001101110000010001 
000010111100000101011011100000101010011101000011011010010110 
111111001000000000001111001000111101100001010110100000000001 

Figure 53: Bit representation of optimal conformation of [Met]-enkephalin 

146 bits in common 
Order of the bits in common 

11  order (29) bits in common 
16 order (2B) bits in common 
15 order 2') bits in common 
13 order 2b) bits in common 
15 order 2b) bits in common 
15 order 24) bits in common 
15 order 2J) bits in common 
14  order   ( 2Z) bits in common 
16 order   ( 21) bits in common 
16 order   ( 2U) bits in common 

Correlat ion Matrix 
11 0                0 0 0 0 0 0 0 0 

9 16                0 0 0 0 0 0 0 0 
8 10              15 0 0 0 0 0 0 0 
7 9              11 13 0 0 0 0 0 0 
7 8                 9 11 15 0 0 0 0 0 
5 6                 7 8 10 15 0 0 0 0 
3 4                 5 6 7 li 15 0 0 0 
1 1                 2 3 3 6 8 14 0 0 
1 1                 1 1 1 2 4 8 16 0 
0 0                 0 0 0 1 3 6 12 16 

Figure 54: Results of string comparison of optimum and most similar string 
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Figure 54 shows the results of a string comparison program on the solution strings 

of Figure 52 and Figure 53. The program simply compares the bits at each position of 

each string to see if there is a match. Note that the string from the replacement 

experiment matches 146 of the 240 bits including sixteen 28 bits. In other words, the most 

similar string of the experiment matches just over sixty percent of the bits and sixteen of 

the angles are similar (give or take the sign which is reflected in the 29 bit). This similarity 

is further reflected by comparing the twenty-four dihedral angles (translated from the 

string of 240 bits) of the most similar string of the experiment (see Figure 55) with the 

dihedral angles of the optimum string (see Figure 45). 

ReSldUe 4 ¥ 2 Zl & %3 Y.4 
Tyr: -177.19 -36.56 -179.65     -178.24         80.16       -74.53 
Gly: 75.59 -97.38 -179.30 
Gly: -161.37 33.05 -179.30 
Phe: -162.07 -59.41 -172.97       175.43          70.66 
Met: -167.34 -73.12 171.91     -172.62        175.43     -100.55       35.86 

Figure 55: Dihedral angles of the most similar string of the 100% replacement experiment 

Figure 56 provides us with a comparison of the tournament and fitness 

proportionate selection techniques in the form of a graph showing the three best 

replacement strategies of each. Notice that the fitness proportionate selection strategies 

all find lower average minimum energies than the tournament selection strategies. 

Observe that the best overall method found by the experiments is replacing fifteen percent 

of the strings while using a fitness proportionate selection operator. While we can not use 

this graph to prove that fitness proportionate strategies are better than tournament 

selection strategies, we can use the graph as an indicator that fitness proportionate 

selection might work better with conjugate gradient minimization. 
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Figure 56: Comparison of tournament and fitness proportionate selection strategies 

Another good technique for analyzing the nature of tournament selection versus 

fitness proportionate selection is by examining the standard deviation of the energies of all 

population members at each generation. Viewing Figure 57 (note that it is plotted on a 

logarithmic scale and calculated on a population of fifty), we see that the standard 

deviation of the energies in the fitness proportionate generations is more volatile and 

remains higher. This indicates that really bad solutions (high energy conformations) are 

being kept in the population. The standard deviations of the energies in the tournament 

selection generations are much lower which indicates a population of more consistent 

energies. Now, this consistently low energy population is probably also affected by the 

Baldwinian replacement strategy. While this discussion does not necessary prove 

anything, it demonstrates the much higher selective pressure of tournament selection when 

intensified by the Baldwinian strategy. 
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Figure 57: Selection strategy comparison of standard deviations 
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Figure 58: Comparison of String versus Dihedral Replacement 
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In order to directly compare string versus dihedral replacement strategies, examine 

Figure 58. This graph represents five run average minimum energies at each generation. 
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These runs consisted of 12000 trials on a population of fifty individuals. The graph 

compares the five and ten percent replacement strategies. The dihedral replacement 

experiment plots begin with Drep in the legend while the string replacement plots are 

indicated with Srep in the legend. The graph demonstrates that the replacement of strings 

is more effective than just replacing a few of the dihedrals (or parts of the strings). Note 

that the dihedral replacement strategies' average minimum energy is about 7-8 kcal/mol 

higher than the average minimum energies found with string replacement. 

Summary of string replacement experiments 

A number of the string replacement application strategies on the average found 

conformations with energies less than the energy of the optimum solution. In fact, a 

number of applications (see Figure 49 and Figure 51) found energies that were at least ten 

percent lower than the energy of the optimum solution. Moreover, the fitness 

proportionate application strategy of replacing fifteen percent of the strings found a 

conformation with an energy of-35.11! In general, the experiments showed the fitness 

proportionate strategies to be slightly more effective than their tournament selection 

counterparts. However, the difference is not great enough to discard the idea of using 

tournament selection (notice in Figure 49 that several application strategies found 

conformations with lower energy than the optimum). In both the fitness proportionate and 

tournament selection experiments the Baldwinian approach performed poorly enough to 

indicate that it is not an effective energy minimization tool in a protein folding problem 

application. 
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Summary of local minimization experiments 

We have observed a number of characteristics of replacement strategies. First, all 

the string replacement strategies demonstrated potential for both tournament and fitness 

proportionate selection. The zero replacement strategies do not appear to be as effective 

in that their average minimum energies are at least 5 kcal/mol higher than the averages of 

the other string replacement strategies. The dihedral replacement strategies are ineffective 

when compared with the string replacement strategies. When comparing the most similar 

string found by the fitness proportionate Lamarckian strategy to the optimum string, 

several of the translated dihedral angles were similar. Several of the string replacement 

strategies (both tournament and fitness proportionate selection operators) demonstrated 

their effectiveness as energy minimization tools in this protein folding problem application 

by consistently finding conformations with similar, and often, lower energies than that of 

the optimum conformation. 

Niching Experiments 

This set of experiments has the goal of determining the feasibility of applying a 

sharing strategy (see Chapter IV) to a simple genetic algorithm for protein structure 

prediction. First, experiments were executed to analyze the behavior of using different 

numbers of peaks with sharing. Next, experiments were executed in order to observe the 

effects of string replacement strategies when used in combination with a genetic algorithm 

that performs sharing at each generation. 
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Number of peaks experiments 

This set of experiments had the purpose of determining the number of peaks to use 

in the sharing algorithm in finding the best protein structure. In a sense, we can view a 

simple genetic algorithm as sharing with an infinite number of peaks at which we can 

cluster solution strings. Because the computation of cr^are involves dividing the radius by 

the 24th (because we have twenty-four dihedrals) root of the number of peaks (see niching 

discussion in Chapter IV), the test values for the number of peaks were chosen to be l24 

(= 1), 224(= 16777216), and 324(= 282429536481). This results in relatively different 

values of Oshare (radius/1, radius/2, and radius/3) used in the sharing algorithm. In other 

words, if we used one, five, and ten peaks for our tests, the twenty-fourth root of each of 

those are similar and would result in similar values of a^are which would therefore 
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Figure 59: Sharing experiments - number of peaks 
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generate very similar results. These experiments consisted often thousand trials run with 

a population size of twenty. The smaller population size was chosen in order to facilitate a 

quicker convergence. These sharing experiments were run on a simple genetic algorithm 

with a fitness proportionate selection operator. The graph of Figure 59 is of five-run 

average minimum energies by generation.   Notice that all strategies had nearly the same 

average minimum energy by generation 550. However, careful examination reveals that 

using the strategies of 1 and 324 peaks worked better than using 224 peaks. 

An important concept of niching is that the de-emphasizing of the fitness of 

clustered solution strings slows down convergence. Figure 60 shows the last three lines of 

the out files of various strategies so we can compare the amount of convergence. Actually, 

the lines of the out files have had some columns removed to show just the columns 

GA 
3993 49988 0.976 -2.245191e+01 
3994 49998 0.976 -2.245191e+01 
3995 50007 0.978 -2.245191e+01 

1 to 24th peaks 
3899 49981 0.961 -1.817938e+01 
3900 49995 0.963 -1.817938e+01 
3901 50009 0.964 -1.817938e+01 

2 to 24th peaks 

3898 49983 0.955 -2.412793e+01 
3899 49992 0.952 -2.412793e+01 
3900 50005 0.954 -2.412793e+01 

3 to 24th peaks 

3765 49989 0.924 -2.473190e+01 
3766 49997 0.920 -2.473190e+01 
3767 50011 0.928 -2.473190e+01 

Figure 60: Out files from niching experiments 
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pertinent to this discussion. From left to right, the first column shows the number of 

generations, the second column displays the number of trials, the third column is the 

percentage of convergence, and the fourth column is the minimum energy found at that 

generation. So, for niching with one peak, after 3901 generations we were 96.4 percent 

converged with a minimum energy of-18.179 kcal/mol. Notice that the simple genetic 

algorithm that was run without any niching has achieved over ninety-seven percent 

convergence which is a greater level than any achieved by the niching strategies. So, we 

can deduce that the sharing is slowing down convergence as expected. 

Notice also that for these particular runs, the niching strategies (224 and 324_peaks) 

finds a lower minimum energy than the simple genetic algorithm. In Figure 61, we see the 

results of experiments that were allowed to run for fifty-thousand trials so we could get a 

better idea of which strategy may be better. The graph shows five-run average minimum 
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Figure 61: SGA alone versus niching strategies 

75 



energies by generation. If we examine the area of eight hundred through eleven hundred 

(800-1100) generations, we see that the strategies were all averaging about the same 

rninimums with the simple genetic algorithm just barely outperforming the niching genetic 

algorithm implementations. Observe that as we progress into later generations, the 

average rninimums start to become more distinct. For this set of experiments, the strategy 

of niching with 224 peaks barely outperforms the simple genetic algorithm (with no 

niching) and the implementation with 324 peaks. 

Figure 62 shows a statistical picture of the final generation of the strategies shown 

in the graph of Figure 61. It shows the average minimum energy of the final generation, 

the absolute minimum energy found by each strategy, and the standard deviation of the 

final generation minimum energies. We can therefore deduce that minimum energies 

found by the strategy of using niching with 224 peaks were all very similar while there was 

some variance in the minimum energies found by the strategy of using niching with l24 

peaks. Note that the minimum energy found by each strategy is very similar. Moreover, 

Kruskal-Wallis tests showed that the average minimum energies have no significant 

differences. So, based on the data of this experiment, it is difficult to conclude (with high 

confidence) which strategy is better. 

§A_                    I24 peaks               2Zi peaks 32i peaks 
ave            -24.2659          -22.9987                 -24.8167 -24   1769 
min            -26.7415          -26.7929                 -26.0231 -26.6563 
dev            1.911804          4.602258                 0.99861 2.439931 

Figure 62: Niching final generation statistics 
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String comparisons 

Once again, to appraise the success of the experiments, we attempt to determine 

how close our solutions come to matching the accepted optimum conformation. Recall 

from Figure 45 the dihedral angles (in degrees) of the accepted optimum energy 

conformation of [Met]-enkephalin. The string in Figure 64 (the most similar string of a 

niching experiment's population) is to be compared with the string of the accepted 

optimum conformation (see Figure 63) to determine, structurally, how similar our solution 

is to the accepted best conformation. 

010000101111101111000000001001000100100110111011101111100000 
101110111001001011100000011100000111101010001101110000010001 
000010111100000101011011100000101010011101000011011010010110 
111111001000000000001111001000111101100001010110100000000001 

Figure 63: Bit representation of optimum solution of [Met]-enkephalin 

010100111011010101011111111111010000000000000110101111111101 
111110111110100000100000100000001111111111001010001111111111 
001000000000000110111011111001010110010101000111110101001110 
111111011000111101110101111000001001000110110010110000000001 

Figure 64: Most similar string from niching with 224 peaks experiment 

Figure 65 displays the results of running a comparison program using the strings of 

Figure 63 and Figure 64. Note that the most similar solution string only matched 134 bits. 

If we were to generate a random 240-bit string, we would expect to, on average, have 120 

bits in common with the accepted optimum string. So, our solution is not much better 
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than if we had just randomly produced a solution string!   Also, observe that we had 

fifteen 2 bits and fourteen 28 bits in common. These higher order matchings indicate that 

we are at least in the ballpark of almost two-thirds of the dihedral angles. So, while our 

complete 240-bit string is rather different than that of the accepted optimum conformation, 

many of our dihedral angles are at least similar. Figure 65 shows the comparison using 

our best 2   peaks niching solution. When a comparison was performed with the most 

similar solution string from the 324 peaks experiment and the optimum string, there were 

137 bits in common with thirteen 29 bits and eleven 28 bits in common. So, the 324 peaks 

strategy does find a slightly more similar structure with respect to total bits but with fewer 

similar dihedral angles. 

134 bits  . Ln common 
Order of the bi .ts in common 

15 order (29) bits in common 
14 order (28) bits in common 
12 order (27) bits in common 
14 order (26) bits in common 
15 order (25) bits in common 
13 order (24) bits in common 
12 order (23) bits in common 
11 order (22) bits in common 
16 order (21) bits in common 
12 order (2°) bits in common 

Correlation Matrix 
15               0 0 0 0 0 0 0 0               0 
12            14 0 0 0 0 0 0 0               0 

8               8 12 0 0 0 0 0 0               0 
7               7 9 14 0 0 0 0 0               0 
6               6 8 10 15 0 0 0 0               0 
3               3 4 5 9 13 0 0 0               0 
2               2 3 4 6 6 12 0 0               0 
1               1 2 2 3 3 6 11 0               0 
1               1 2 2 2 2 4 9 16               0 
1               1 1 1 1 1 2 3 7            12 

Figure 65: Bit-comparison of the accepted optimum and the most similar solution of niching 
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When comparing the dihedrals of the most similar solution from the niching with 

224 peaks experiments (see Figure 66) to the dihedrals of the assumed optimum 

conformation (see Figure 45), it is apparent that several of the optimal dihedrals were 

nearly found in the experiment. This dihedral similarity corroborates our in the ballpark 

conjecture in the bit-comparison discussion of Figure 65. 

Residue 4 S s fc & X3 y.4 
Tyr: .   -62.58  119.88   179.65  -170.51    87.54  -129.02 
Gly: -90.00 -170.86   178.95 
Gly: 174.02   45.70 -168.75 
Phe: -90.35  104.06   179.65   -54.49   -79.10 
Met: -135.00  -47.81 -179.65   -62.58   176.48   -93.16   71.37 

Figure 66: Dihedral angles of the most similar niching 224 peaks solution 

Niching with string replacement experiments 

This set of experiments have the purpose of determining whether or not string 

replacement is feasible when used with niching. These experiments executed 20000 trials 

on a population of fifty individuals. We allow the experiments to run with niching for 

three-hundred generations at which point the population should be well divided into 

various niches that we wish to explore further. From the three-hundred first generation 

on, conjugate gradient local minimization is applied using various replacement schemes. 

In other words, from then on, at every generation niching is performed, followed by the 

application of genetic operators (see Chapter HI), and then the conjugate gradient local 

minimization steps (see Chapters IV, V) occur. The number of peaks versus string 

replacement percentages of zero, five, ten, and one-hundred percent are observed. 
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Figure 67 shows the results of the various replacement percentages when used 

with niching with 224 peaks. All the experiments have the same average minimum energy 

until the three-hundredth generation after which the local minimization takes effect. The 

effect of the local minimization is demonstrated by the forking of the graph. Notice that 

the one-hundred percent replacement average minimum energy is much lower than that of 

the other strategies (about -29 kcal/mol versus about -19, -22, and -23 kcal/mol). In other 

words, the Lamarckian strategy is finding conformations whose average energy is near to 

the energy of the optimum conformation. However, the other experiments indicate that 

ScoocN^-tDooocj^-inh-Oi-coiftr»- —    —    —    — 
T-T-^-i-T-cMCNotCMCMCMoromn 

generations 

Figure 67: Niching with 2   peaks and delayed string replacement 

the combination of sharing with 224 peaks and the other replacement percentages are not 

effective tools in an energy minimization protein folding problem application. A possible 

reason behind the apparent ineffectiveness of the other string replacement percentages 

may be the combination of not reencoding all solutions and then de-emphasizing those 
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non-encoded solutions' fitnesses. This combination produces the effect of the two 

strategies more or less canceling each other out! 

Figure 68 shows the results of the various replacement percentages used with 

niching with 324 peaks. All the experiments have the same average minimum energy until 

the three-hundredth generation after which the local minimization takes effect. This graph 

also contains the characteristic forking due to the local minimization. Notice that the one- 

hundred percent replacement average minimum energy is much lower than that of the 

other strategies (about -31 kcal/mol versus about -23, -25, and -26 kcal/mol). In other 

words, the Lamarckian strategy is finding conformations whose average energy is lower 

than the energy of the optimum conformation. While all the 324 peaks experiments 
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Figure 68: Niching with 3   peaks and delayed string replacement 
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outperformed their 224 peaks counterparts, the experiments indicate that the combination 

of sharing with 324 peaks and the replacement percentages (other than the Lamarckian 

strategy) are not effective tools in an energy minimization protein folding problem 

application. The 324 peaks strategies outperform the 224 peaks strategies possibly because 

the 324 peaks strategy results in a greater initial dispersal of the population. This dispersal 

results in a more complete exploration of the search space. Like the 224 peaks 

experiments, a possible reason behind the apparent ineffectiveness of the other strategies 

may be tied to the combination of not reencoding all solutions and then de-emphasizing 

those non-encoded solutions' fitnesses. So, this combination could likewise be producing 

the effect of the two strategies canceling each other out. 

Summary of niching experiments 

The niching experiments demonstrated the effects of population dispersal over the 

fitness landscape. While none of the niching strategies performed especially well by them 

selves, when niching was applied with the delayed local minimization Lamarckian 

replacement strategy, some interesting results were produced. For niching with 224 peaks, 

the Lamarckian replacement produced conformations with average energies of about -29 

kcal/mol. In other words, on average we were finding conformations about as "good" as 

the optimum conformation (with respect to energy). For niching with 324 peaks, the 

Lamarckian replacement produced conformations with average energies of about -31 

kcal/mol. This combination of strategies produced the best average energy of anv 

experiment in the thesis effort. This strategy, on average, found conformations which had 

energies five percent lower than that of the optimum conformation. 
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Execution times comparison 

In Figure 69, the execution times of various strategies are presented for 

comparison. It is important to note that these are the best times achieved for each strategy 

running on SPARC 20s. Average times would be misleading in this case because students 

and faculty are constantly logging on and off the machines as well as running their own 

jobs. A busier machine would drastically slow down execution (especially when jobs are 

lasting more than a day). 

Note that the run times for Q, R, and S are so (relatively) small that they hardly 

appear on the graph. These experiments only lasted fourteen, twelve, and five minutes 

respectively. In contrast, the Baldwinian strategy (with fitness proportionate selection) 

took over 3700 minutes (three days equals 4320 minutes). The conjugate gradient routine 

loops up to five times in its attempt to approach the local optimum. The Lamarckian 

strategy more or less saves the minimization steps through reencoding the improved 

strings. Therefore, after several generations, the Lamarckian strategy is using strings 

which are nearer to local optima and require less of those time-consuming conjugate 

gradient loops. The Baldwinian strategy, on the other hand, nearly always requires all five 

loops and so the executions tend to take much longer as demonstrated by the bar graph of 

Figure 69. Observe that all the fitness proportionate local minimization strategies execute 

at least a day while their tournament selection counterparts take ten to sixteen hours. So, 

in some respects, better solution quality (lower energies) seems to have an increasing cost 

in terms of execution time. 
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Execution Times Comparisons 

Where: 
Fitness Proportionate Selection, population 50, 12000 trials, string replacement 

A - replace 100% 
C - replace 0% 
E - replace 5% 
G - replace 10% 
I - replace 15% 
K - replace 20% 
M - replace 25% 

Tournament Selection, population 50, 12000 trials, string replacement 
B - replace 100% 
D - replace 0% (converged after about 5000 trials) 
F - replace 5% 
H - replace 10% 
J- replace 15% 
L - replace 20% 
N - replace 25% 

Niching for 300 generations then with local minimization, population 50, 12000 trials 
O-replace 100% 
P - replace 0% 

Q is plain niching, population 50, 12000 trials 

Simple Genetic Algorithm - no local minimization, population 50, 12000 trials 
R is fitness proportionate selection 
S is tournament selection (converged at around 6000 trials) 

Figure 69: Comparison of execution times 



Summary 

The experiments presented in this chapter are geared toward finding a minimum 

energy conformation of [Met]-enkephalin. The results of the experiments are used to 

accomplish the objective of this research effort which is to determine the suitability of 

using the various local minimization and niching techniques in solving the protein folding 

problem. The results from the experiments conducted indicate that several string 

replacement strategies (some with niching) are effective tools in energy rninimization 

protein folding problem applications in that they find conformations whose energies are at 

or below the energy of the optimum conformation. Further analysis and conclusions 

drawn from these experiments are presented in Chapter VII. 
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VII. Contributions. Conclusions, and Future Recommendations 

Based on the Literature review, design, implementation, and experimental work 

discussed previously in addition to the observations made throughout this investigation, 

the major contributions, conclusions and recommendations are presented. The discussion 

of contributions is broken into the areas of theoretical and application contributions. The 

conclusions (analytical contributions) are based on the work accomplished in trying to 

meet the goals of this thesis effort. The goals focus on determining the possible benefits 

of applying local minimization and niching strategies in conjunction with genetic 

algorithms for protein structure prediction. These operators are compared by examining 

the minimum energies and average minimum energies found. 

Contributions 

The contributions are highlighted in the areas of theoretical contributions and 

application contributions of this thesis effort. The analytical contributions are discussed in 

the Conclusions section. 

Theoretical contributions 

A primary theoretical contribution of this thesis effort is the idea of locally 

minimized component replacement (see Chapter IV as well as Figure 46 and Figure 

47). While the concept of replacing percentages of entire solution strings has been 

discussed in several articles (49, 58), component replacement (though probably already 

discovered) is not as thoroughly published. In fact, this author has never seen any articles 
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on the subject so it is possible that it has not been published at all. This is not a safe 

assumption, (obviously since this author is not well read in all journals and publications in 

the field of evolutionary computation, it would be foolish to lay claim to this concept's 

discovery). 

More important than the issue of who discovered the concept of component 

replacement, is the fact that this concept deserves further attention despite its relatively 

poor performance in this application's experiments (see Chapters IV and VI as well as 

Figure 46 and Figure 47). Component replacement should be tested in applications with 

different number of components and of varying component length. For example, perhaps 

it would perform well in an application where the solution is encoded into long strings 

(many digits) but with just a few components (e.g. five thousand bits and five 

components) so that encoding a percentage of the components would entail encoding 

most of the string. On the other hand, perhaps component replacement works by ensuring 

that at least fifty percent of each string is encoded (in other words, most of the string) 

regardless of component bit-length. 

The next theoretical contribution of this thesis effort is the concept of combining 

niching with delayed local minimization (see Figure 67 and Figure 68) Again, the issue 

of discovery is not as important as the point that this concept also deserves further 

attention. The strategy of sharing with 224 peaks combined with delayed (for three 

hundred generations) Lamarckian replacement found energies comparable to the energy of 

the optimal solution. Also, the strategy of sharing with 324 peaks combined with delayed 
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(for three hundred generations) Lamarckian replacement found average minimum energies 

five percent less than the energy of the optimal solution. These results indicate that the 

prolonged dispersal of a genetic algorithm population over the fitness landscape using 

niching followed by locally minimizing and then re-encoding every individual for many 

generations is an effective method of energy minimization. Experiments to measure the 

effectiveness of this concept in other genetic algorithm applications would be worthwhile. 

In summary, this thesis effort has produced two principal theoretical contributions: 

the concept of component replacement and the concept of niching with delayed local 

minimization. While niching with delayed local minimization demonstrated the most 

promise in energy minimization, both ideas deserve more attention and therefore should 

be tried in different genetic algorithm applications. 

Application Contributions 

This thesis effort has produced a number of contributions to the AFIT 

implementation. Most important, is that there now exists a hybrid genetic algorithm 

software platform.   From this, further research can occur on local minimization and 

niching strategies on [Met]-Enkephalin as well as other protein molecules (with minor 

software modifications). 

In terms of coding, specific contributions to the AFIT implementation are 

discussed in Appendix D. The appendix details many of the additions and modifications to 

the AFIT implementation. Other contributions to AFIT implementation are in the form of 
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documentation. Many of the file and procedure headers were incomplete (or in some 

cases unchanged duplicates of others). Through this thesis effort, many of those headers 

have been corrected and completed. Also, commenting within the source code has been 

added and improved in uncountable areas which allow future programmers to more 

quickly grasp the idea of what functions the code is performing. Moreover, files have 

been added in directories to assist researchers. A file called LM_options_list which 

contains the options associated with local minimization and niching (it is similar to the list 

of Figure 44) has been added to the -genetic/ Toolkit/ Simple directory. In the 

~genetic/Toolkit/Messy/Fast directory, readme.file_contents has 

been added to help would-be fast messy genetic algorithm researchers locate functions and 

procedures (like the simple genetic algorithm, the fast messy implementation consists of 

many source files). 

Conclusions 

The experiments detailed in Chapter VI indicate that some local minimization and 

niching techniques may be feasible for energy minimization protein structure prediction. 

Several strategies, on the average, found conformations of lower energy than the accepted 

optimum. However, no experiment found the accepted optimum conformation. 

The fitness proportionate string replacement strategies performed better than their 

tournament selection counterparts (the twenty percent replacement experiment achieved a 

minimum energy of-35 kcal/mol). There are replacement strategies using both selection 

operators that found conformations with average minimum energies below the energy of 
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the optimum conformation. The Baldwinian replacement strategy performed poorly when 

used with either selection operator and so is an ineffective tool in this energy minimization 

protein folding problem application. See Figure 70 for a brief summary of the 

experimental results. 

Strategies of arbitrarily replacing a percentage of the dihedrals (or parts of the 

strings) performed poorly when compared with the results of total string replacement for 

both fitness proportionate and tournament selection. Based on these poor results, this 

strategy (see the Theoretical Contributions discussion on pages 87-88 for further insight) 

does not seem feasible for a protein folding application. However, this type of strategy 

could be useful for other applications and so should not be discarded totally. See Figure 

70 for a brief summary of the experimental results. 

Niching strategies did not perform as well by themselves but show great promise 

when combined with delayed local minimization Lamarckian strategies. The concept of 

allowing the solution space to be firmly divided into niches and then applying local 

minimization (and encoding all strings) outperformed every other strategy tested in this 

thesis effort (in terms of average minimum energy). Further experimentation should be 

applied to the concept of diversifying the solution space using niching combined with the 

exploitation of the solution space using conjugate gradient local minimization (see the 

Theoretical Contributions discussion on page 88 for further insight). See Figure 70 for a 

brief summary of the experimental results. 
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Strategy Average Minimum 

Fitness proportionate Lamarckian replacement -30.1201 -32.8813 
Fitness proportionate 20% string replacement -30.4155 -35.1889 
Fitness proportionate 15% dihedral replacement -21.0916 -22.5633 
Tournament 5% dihedral replacement -24.4519 -27.1842 
Tournament Lamarckian replacement -29.7675 -31.3162 
Tournament 20% string replacement -29.4104 -32.093 
Niching(3 ) with delayed Lamarckian replacement -31.0592 -32.7731 
Niching with324 peaks -24.1769 -26.6563 

Figure 70: Comparison of energies found by the various strategies (best are highlighted) 

In terms of execution times (see Figure 69), most of the strategies were finished in 

48 hours. Compared to the possible two years of laboratory time of the physical 

techniques (see Chapter II), these quality solutions were obtained in only about two days. 

So most of the strategies when considering execution time and solution quality, are 

effective in this protein folding problem application. However, the Baldwinian runs 

frequently took more than seventy-two hours which coupled with their poor solution 

quality indicates that they are impractical for this protein folding problem application. 

Future Recommendations 

There are a number of possible techniques to try in our search for better ways to 

find optimal conformations. If anything, this thesis effort demonstrated the potential of 

applying a local minimization technique with genetic algorithms in polypeptide energy 

minimization. So, the local minimization techniques should now be incorporated into the 

existing AFIT serial fast messy genetic algorithm code and thoroughly tested. Next, the 
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local minimization code should be inserted into the parallel versions of the simple and fast 

messy genetic algorithm. The results of experiments conducted with these 

implementations can be compared with the results presented in this thesis to determine 

which methods are most worthy of further testing (see Appendices A and B for additional 

information on parallel/distributed computing and messy genetic algorithms). 

Because some of the niching implementations showed such promise, the niching 

code should be combined with the parallel simple genetic algorithm code. The 

combination of niching (which spreads the population out over the solution space) and 

parallel computing (which spreads the population over the different nodes) could yield 

interesting results (see Appendix A for information on parallel/distributed computing). 

There are several other methods that could also be applied. Research 

should be applied toward using real-valued encodings and operators applied to the protein 

folding problem while paying attention to performance (in terms of both solution quality 

and execution times). Also, trying other types of selection operators could offer benefits. 

Another interesting experiment would be to adapt the current fitness proportionate 

operator so that it applies a higher selective pressure by periodically eliminating members 

with poor fitness (poor fitness could be defined as being more than three deviations from 

the mean fitness, for example). 
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Finally, there are a few software engineering concerns. First, the AFIT/WL 

implementation is currently modified by a number of researchers. There needs to be 

established a system for communication about code changes between the researchers. One 

solution may be for each researcher to establish one's own working directory in which 

coding and testing is accomplished. Then, after group approval, the code could copied 

into the main implementation. Also, there need to be some standards defined for 

commenting (both inside the code and in headers). The existing code is very well 

documented in some areas while not at all in others. The issue of what is a useful, 

complete comment needs to be addressed and agreed upon. 

Summary 

This chapter summarizes the general conclusions that can be derived from this 

investigation. These conclusions are used to indicate possible areas of future research. 

Overall, this thesis documents the results of various applications of local minimization 

strategies and niching strategies to the AFIT genetic algorithm implementation. 
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Appendix A ■ Parallel/Distributed Computing 

This appendix summarizes current knowledge of parallel/distributed computing 

techniques with emphasis placed on the possible benefits of combining them with a genetic 

implementation towards solving the protein folding problem. First, this chapter discusses 

parallel computing paying attention to issues such as scalability and the isoefficiency 

function. Then, this chapter addresses distributed computing focusing on issues, PVM, 

and MPI. 

Parallel Computing 

When you have to dig a ditch, if you have a helper start at one end while you start 

at the other, then the task is accomplished much quicker than by you working alone. This 

is the same philosophy that is used is parallel computing. Frequently, a job can be 

accomplished much quicker by dividing tasks among multiple processors. An important 

consideration in parallel computing is communication - all the processors need to know 

what is going on, what to do with their results, and then need to send those results. In our 

ditch-digging example, the best communication scheme would probably be to initially give 

our helper all the necessary information: where to start, how deep, how wide, and so on. 

If the helper keeps having to run the full length of the ditch to ask you questions, it lowers 

the helper's productivity, your productivity, and as a result, the overall productivity. 

However, if our helper has a limited memory capacity and only can remember a few things 

(how bright can a ditch-digger's assistant be?) then we might have to adopt a different 
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Communications scheme. Similarly, in parallel computing, we also have to take local 

memory and message sending time into account. 

Frequently, a job can be accomplished much quicker by dividing tasks among 

multiple processors. An important consideration in parallel computing is communication 

— all the processors need to know what is going on, what to do with their results, and 

then need to transmit those results. In parallel computing, we also have to take local 

memory and message sending time into account. (34) 

Massively parallel computers (computers having a large number of processors) can 

have over a thousand processors, and plans are being drawn for architectures with more 

than one million nodes. Parallel solutions are said to be scalable if additional processors 

can be used efficiently. (34) This is important because after some point our job can 

actually be slowed down if we add additional processors. In our ditch-digging example, 

we can only use a limited number of additional assistants before they start getting in the 

way of each other and slowing down the job. So, at first, our ditch job is scalable. 

However, after reaching one assistant per few feet of ditch, additional assistants are not 

effective and, in fact, could be detrimental. In comparison, to reap the benefits of 

parallelism, we are looking for algorithms that are scalable. 

How effective is parallel processing? The potential gains of parallelism are made 

very apparent with the recent announcement that Sandia National Laboratory achieved 

281 billion floating point operations per second (gigaFLOPS) on two hyperlinked Intel 
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Paragons (6768 processors in parallel) using the Linpack Benchmark and 328 gigaFLOPS 

using electromagnetic radar signature calculation code. This is made more dramatic when 

you consider that each of the 3384 nodes were actually just a pair of Intel i860 XP 

processors which are each capable of a mere 50 million floating point operations per 

second (megaFLOPS). (52) 

As stated previously, we can view a system's scalability by using its isoefficiency 

function. For example, say we have/? processors, a problem size of W, and the total time 

on all processors that it takes to solve a given problem ispTp.. Out of p1p ,we spend only 

W units of time performing useful work. We can now express the overhead (T0) function. 

Then, we can derive the isoefficiency function as follows: 

= pTp - W (overhead function) 

= [W + T0(W,p)] / p (solving for Tp) 

= W / Tp (speedup) 

= W*p / [W + T0(W,p)] 

= S/p (efficiency) 

= W / [W + T0(W,p) ] 

= 1 / [1 + T0(W,p)]/W 

= E/d-E) * T0(W,p)  (solving for W) 

let constant K = E/(l-E) depend on the maintained efficiency 

So, w = K * T0(W,p)      (isoefficiency function) 

Figure 71: Derivation of the Isoefficiency Function (34) 

W 
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The isoefficiency function is telling us the difficulty (or lack thereof) with which a parallel 

system can keep a constant efficiency and so achieve some speedup in proportion to the 

number of processors. We hope for a small isoefficiency function because that indicates 

that we only need small increments in the problem size for the efficient use of more 

processors.   In other words, we would have a highly scalable system. (34) 

The main reason that we are interested in parallel computing is that genetic 

algorithms are easily parallelized and very scalable. One approach puts multiple copies of 

the same program on each processor, starts their execution with different seeds for the 

random number generators, and selects the best solution after all processors have finished. 

Another approach (referred to as the island model) is where the population is divided up 

into subpopulations which are grouped on individual processors which run independent 

genetic algorithms. This results in little communications overhead but at a possible 

sacrifice in solution quality. (17, 19) 

Distributed Computing 

As personal computers (PCs) become more powerful and less expensive (more 

CPU per dollar), we are looking for ways to divide jobs among groups of PCs to reap 

parallel benefits. This type of computer task division is known as distributed computing. 

Distributed computing is not limited to just networks of PCs. It can be used in a network 

of any type of systems (e.g. SPARC 20 workstations). Some of the characteristics of a 

distributed system include the lack of a shared clock and the lack of shared memory. 
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There are a number of strategies for controlling the network. The two methods discussed 

are Parallel Virtual Machine (PVM) and Message Passing Interface (MPI). (34, 48, 54) 

PVM 

PVM allows a heterogeneous collection of UNIX systems to be viewed by a user's 

program as a single parallel virtual computer. PVM was developed at the Oak Ridge 

National Laboratory by Vaidy Sunderham and Al Geist. The initial version was a 

prototype used only in the lab. After a period of testing, version 2 was written and 

released through the University of Tennessee. As of 1994, version 3.3 had been 

developed and released. PVM works by viewing the user's application as a set of 

cooperating tasks. PVM manages the initialization, termination, and synchronization of 

these tasks. Communication is handled through primitives which involve strongly type 

constructs for buffering and transmission. Those constructs includes those for sending, 

receiving, broadcasting, barrier synchronization, and global summing. PVM allows tasks 

the ability to start and stop other tasks, and to add or delete computers from the virtual 

system. PVM is not limited to distributed computing as it can be used with massively 

parallel machines as well. (22) 

MPI 

The Message Passing Interface standard specification was completed in 1994. Its 

goal was to develop standard syntax and semantics of massage passing routines (in 

FORTRAN or C) which would allow for portability. MPI is easily compatible with 
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distributed-memory multicomputer and shared-memory multiprocessors. The MPI 

standard was developed over a year of intensive meetings involving over eighty people 

from approximately forty organizations, many vendors of concurrent computers, and 

researchers from universities, government laboratories, and industry. Their combined 

efforts resulted in the publication of the MPI specification. MPI is still in relatively early 

development. The next version of MPI is expected to include provisions for the following: 

Parallel I/O, Remote store/access, Active messages, Process startup, Dynamic process 

control, Non-blocking collective operations, FORTRAN 90 and C++ language bindings, 

and Graphics. Real-time support MPI can be used as a communications layer built on the 

hardware platform which allows PVM to be ported to MPI to exploit vendor-supplied 

communication performance. (14,22) 

Issues of Distributed Computing 

A number of factors come into play when dealing with distributed computation. 

First, there is granularity. Granularity is the ratio of uninterrupted computation time to 

communication operations. This should not be confused with parallel granularity which is 

the ratio of the power of the processors versus the number of processors. Another issue is 

coupling. Coupling is the amount a process depends on companion processes for the 

overall computation to succeed. Another issue is portability. Portability is the aspect of a 

system component that allows it to be used in various environments. For instance, 

software portability would indicate the extent that software can be ported from one 

hardware system to another. Another issue is cache coherence or more generally, data 
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coherence. Data coherence is the problem that arises when one processor changes the 

values of data in its local memory. This results in the data located in shared memory and 

the data in the local memory of other processors becoming obsolete. One technique for 

handling the problem is to have the processor write to a shared location which is then used 

to update all memory locations. (34,41,48) 

Summary 

Parallel and distributed computing can offer us a large advantage in problem 

solving. It enables us to divide our problem into concurrent tasks and solve the problem 

faster. Key issues in parallel/distributed computing such as efficiency and overhead 

contribute to the concept of scalability. Scalability is what provides us that large 

advantage in problem solving. Fortunately, genetic algorithms are scalable. 
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Appendix B - Messy Genetic Algorithms 

Messy genetic algorithms were developed largely to overcome the problem of 

deception. The messy genetic algorithm combats deception through the use of partially 

enumerative initialization (PEI). In PEI, the initial population of possible building blocks 

(partial solutions) is created with each being a specified length. With a block size of n, the 

initial population size is equal to: 

This can result in populations much larger than those used by simple genetic algorithms. 

Note that if we set the block size equal to the string length (w = I) then our population size 

is equal to just 2l which is the same as the initial population size of a simple genetic 

algorithm (using binary digits). This is logical since we would be manipulating fixed- 

length blocks that encompass the entire string just as a simple GA manipulates the entire 

fixed-length string. Moreover, if we set the block size equal to one, then our initial 

population size would be 21. In other words, if our block is made up of just one bit, then 

it would only take 2/ strings to cover the possible values. (17,25,43, 44) 

Another key difference between messy and simple genetic algorithms is that messy 

GAs encode both the string position (locus) and its value (allele) in variable-length strings. 

These strings are built up to allow a genetic algorithm to cover all features of a problem. 
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Messy Genetic algorithms tend to mimic nature in that over time simple structures develop 

into complex ones. In doing so, they allow the existence of under-specifiedand over- 

PerformPEI 
evaluate fitness 

for i=l to max. number of primordial generations 
perform tournament selection 
periodically half the population (e.g. every 10 iterations) 

for i=l to max. number of juxtapositional generations 
perform cut-and-splice 
evaluate fitness 
perform tournament selection 

Figure 73: Messy Genetic Algorithm 

specified strings (hence the variable lengths). Under-specified strings do not have an allele 

for every locus. A locally optimal competitive template is used to supply the values for 

the unspecified loci. Over-specified strings have more than one allele per locus. In this 

case, the locus is set to the value encountered first. (17,25, 26) 

The messy genetic algorithm consists of two phases— the Primordial Phase and 

the Juxtapositional Phase. The word primordial implies happening or existing first. The 

primordial phase happens before the juxtapositional phase and so hence the name. In the 

Primordial phase, we are concerned principally with enriching the population with above 

average building blocks. This is usually accomplished through tournament selection. The 

other main purpose served by the primordial phase is the reduction of the population size 

to a level (usually halved) that enables the juxtapositional phase to operate efficiently and 

effectively on the population. (2, 17, 25,43,44) 

102 



The Juxtapositional phase is similar to a simple genetic algorithm. The word 

juxtapositional means positioned side by side which makes for a logical name since we are 

placing strings side by side for comparison. The main difference between the 

juxtapositional phase and the simple genetic algorithm is that we are now dealing with 

variable length strings. So, the crossover operator is replaced with the Cut-and-Splice 

operator. The Cut-and-Splice operator picks random points on parent strings and cuts off 

the ends and splices the end onto the other string head to form the children of the next 

generation (very similar to crossover except we are not cutting off equal-length ends from 

the parent strings). The mutation operator is generally not used with messy genetic 

algorithms. (4, 17, 24, 25, 43, 44) 

generation(x) 

PI:101011001010 
P2:110100011001 

generation(x+l) 

Nl:10101100011001 
N2:1101001010 

Figure 74: Example of Cut-and-Splice 

There are several advantages of the messy genetic algorithm. First, it handles the 

problem of deception primarily by finding tightly-coded building blocks and then finding 

globally optimal structures by juxtaposing those building blocks. This, in part, affects the 

next advantage which is generally better solution quality. However, the messy genetic 
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algorithm has a big disadvantage in that the increased population size causes more 

computations which leads, in some cases, to dramatic increases in execution times. To 

overcome such problems, the fast messy genetic algorithm was developed. (4, 17,24, 25, 

26,43) 

The Fast Messy Genetic Algorithm 

What makes a fast messy genetic algorithm jforf? The fast messy genetic algorithm 

is very similar to the messy genetic algorithm but with a few key differences. The first and 

principal difference is in the initialization. The fast messy genetic algorithm reduces the 

complexity of the initialization phase (messy GA -» 0(7*) versus the fast messy GA -» 

0(/ log I)) which, in turn, reduces the overall algorithm time and space complexity.   The 

fast messy GA uses probabilistically complete initialization (PCI) which creates a 

population whose size is equivalent to the population size at the end of the primordial 

phase of messy genetic algorithms. The fast messy GA then enriches the population 

through alternating steps of tournament selection and building block filtering (BBF). The 

tournament selection increases the percentage of individuals containing building blocks 

and then BBF randomly deletes some number of genes from every individual. That 

number is chosen so that many of the building blocks are disrupted (but not all!). The end 

result is a population of partial strings that have a high expected proportion of building 

blocks. The last key difference is that there is more conservative thresholding in the 

tournament selection of the fast messy GA compared to that in the messy GA. (17,44) 
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Perform PCI 
evaluate fitness 

for i=l to max. number of primordial generations 
perform tournament selection 
if a BBF is scheduled then 

perform BBF 
evaluate fitness 

for i=l to max. number of juxtapositional generations 
perform cut-and-splice 
evaluate fitness 
perform tournament selection 

Figure 75: Fast Messy Genetic Algorithm 

Even though they generally have lower execution times than the messy genetic 

algorithm and offer increased solution quality versus the simple genetic algorithm, fast 

messy genetic algorithms have not proven to be the end-all solution to our problems. The 

principal problem is that the best parameters for the fast messy genetic algorithm are 

presently unknown. In some cases, the fast messy genetic algorithm has been shown to 

have much greater execution times than the simple genetic algorithm. Until better fast 

messy parameters are found, previous AFIT research indicates that the simple genetic 

algorithm (on a parallel platform) is the preferred technique for the protein folding 

problem. (19, 20, 21) 

Fast Messy Genetic Algorithms and Local Minimization 

Figure 18 shows the possible locations of a local minimization step in a fast messy 

genetic algorithm. Having a local minimization step in all three locations could stand to 

provide us the most benefit from local niinimization but would suffer with respect to 
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computation time. Performing the local minimization step only within the Primordial loop 

would allow us to generate a highly fit population for the juxtapositional loop to operate 

on. On the other hand, there is logic to a strategy of sending generic building blocks (ones 

Perform PCI 

evaluate fitness 

Local Minimization step 

for i=l to max. number of primordial generations 
perform tournament selection 
if a BBF is scheduled then 

perform BBF 
evaluate fitness 
Local Minimization step 

for i=l to max. number of juxtapositional generations 
perform cut-and-splice 
evaluate fitness 
Local Minimization step 
perform tournament selection 

Figure 76: Fast Messy Genetic Algorithm with Local Minimization 

that have not been influenced by local minimization) to the juxtapositional loop which 

contains a local minimization step. This configuration would make the genetic algorithm 

rapidly approach a minimum. The question is, would our solution quality suffer? This 

and other questions (about solution quality versus execution time) leaves no doubt that 

future research is needed in determining the best strategy for placement of local 

minimization steps in a fast messy genetic algorithm. 
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Appendix C - Altering the replacement percentages 

This appendix describes the steps required to modify the different string 

replacement percentages when using local minimization in the AFTT implementation. 

Most of the options of the implementation are set using values and flags in the user- 

defined in file (see Figure 43). By setting just the local minimization flag (m) in the 

options line, the implementation defaults to the Baldwinian strategy (zero percent 

replacement). If the Lamarckianflag (E option) is included in the options, then one- 

hundred percent of the strings are replaced in each generation's local minimization step. 

However, to set the percentage of replacement of strings (or components) to a value other 

than zero or one-hundred, then the Davisßag (Z option) must be included in the options 

line and the actual code must be modified to indicate the desired percentage. 

The local minimization code that must be modified is located in the last section of 

the file, energy, c, which is located in the ~genetic/Toolkit/CHARMm directory. 

The code (see Figure 77) contains a section for string replacement (starts immediately 

after "Lamarckian or Davis's replacement evolution" comment) and a 

section for dihedral replacement (which is commented out). To change the percentage of 

replacement, change the rand number in the if statement (note that it is currently set to 

. 10 or ten percent replacement in line 8). Finally, observe that the if block also handles the 

Lamarckian (one-hundred percent replacement) flag. 
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if(Minimizationflag) 
{ 

frprmn(P, num_dihedrals, 0.1, sdummy, &energy, func, dfunc); 

/**********Lamarckian or Davis's replacement evolution*********/ 

if ((Lamarckflag) || ((Davisflag) S& (Rand() < 0.10))) 
{ 
start = 0; 

for (i = 0; i < numjdihedrals; i++) 
{ 
tempint = (unsigned long)(((P[i+1] + PI)/twoPI) * 

max_range); 
Itoc (tempint, &buff[start], slice); 
start = start + slice; 

} 

}    /*if Lamarckian or Davis*/ 

/************D^jiedral replacement code***************/ 

/* if (Davisflag) 
{ 
start = 0; 

for (i = 0; i < numjdihedrals; i++) 
{ 

if (Randf) < 0.10) 
{ 
tempint = (unsigned long)(((P[i] + PI)/twoPI) * 

max_range); 
Itoc (tempint, Sbuff[start], slice); 
start = start + slice; 

} 
} 

}  */  /*if Davisflag*/ 

return(energy); 

}       /*if Minimization*/ 

Figure 77: Minimization segment of energy.c source file 
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Appendix D - Listina of Implementation Modifications/Additions 

This appendix itemizes many of the modifications and additions to the AFIT 

implementation that were involved with this thesis. It is important to note that most all of 

the actions described in this appendix were accomplished in a "team" environment and so 

several individuals (42) were involved. This appendix comments on the actions which 

were especially labor-intensive to the author. 

Code modifications in ~genetic/Toolkit/CHARMn for Thompson's (56) 
transformation 

File 

molecule.h 

molecule.c 

Action 

modified ATOM TYPE structure by replacing declaration 
of coords [ 3 ] with declaration of transmat [ 4 ] [ 4 ]; 
added Btransmat [4] [4] structure; 

replaced references to coords with equivalent 
transmat notation; 
coded identity matrix for atom#l; 
coded B-matrices for atoms 2 and 3 after hand-calculating 
those values; 
coded known values used for first (bond angle terms) and 
fourth rows (1 0 0 0) of the all the B-matrices; 

removed old coordinate computations; 
added procedure Mat_x_Mat which computes A-matrices 
using second and third rows of B-Matrices; 
added code to handle atom 42 problem, 

Coding in -genetic/Toolkit/CHARMm for conjugate gradient minimization 

new coordinates.c 

File 

derivative.c 

Action 

implemented Thompson's (56) derivative algorithm to 
calculate the partial derivative representing the change in 
position with respect to the change in the dihedral; 
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frprmn.c 

dbrent.c 

nrutil.c 

nrutil.h 

mymnbrak.c 

dlinmin.c 

energy.c 

implemented code to calculate the partial derivative 
representing the change in distance with respect to the 
change in the position; 
implemented code to calculate the partial derivative 
representing the change in energy with respect to the 
change in the interatomic distance; 
implemented code to multiply partials resulting in the 
derivative of the non-bonded energy with respect to a 
particular dihedral; 
partial derivative code segments were placed in a loop 
structure to generate an array containing derivative of the 
non-bonded energy with respect to all dihedrals; 
the author did many of the hand calculations and much of 
the initial coding which was followed up by editing and 
additions by other individuals (42); 

modified from Numerical recipes in C (51) for use with the 
AFIT implementation; 

modified from Numerical recipes in C (51) for use with the 
AFIT implementation; 

modified from Numerical recipes in C (51) for use with the 
AFIT implementation; 

modified from Numerical recipes in C (51) for use with the 
AFIT implementation; 

Gates(42) created this modification of the mnbrak. c code 
from Numerical recipes in C (51); 

modified from Numerical recipes in C (51) for use with the 
AFIT implementation; 

added calls containing calculated derivatives and energy 
function to f rprmn. c which return minimized function. 

Coding activities in -genetic/Toolkit for local minimization strategies 

File (Subdirectory) Action 

energy. c   (CHARMm)       added code to partially or completely encode (strings and 
components of) locally minimized solutions (see Figure 77); 
added various flag declarations; 
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generate.c   (Simple )   added constructs to activate and deactivate flags which 
correspond to strategies that depend on number of 
generations completed; 
added printf statements to force output in the most usable 
format for this thesis effort; 

input.c   (Simple) added in options and corresponding flag assignments for 
the various local rninimization application strategies; 

format.h   (Simple) added flag declarations for the various local minimization 
application strategies; 

global.h   (Simple) added flag declarations for the various local minimization 
application strategies; 

Coding activities in ~genetic/Toolkit/Simple for niching strategies 

File Action 

input.c added niche flag option and flag assignment; 
modified in file format to include number of peaks 
assignment; 

format.h added flag declaration for the niching strategy; 
added declaration for number of peaks variable; 

global.h added flag declaration for the niching strategy; 
added declaration for number of peaks variable; 

select.c added call to niche procedure; 
modified roulette computations to accommodate the de- 
emphasized fitnesses resulting from niching; 

niche.c implemented sharing algorithm (12,28); 
the author did much of the initial coding which was 
followed by editing and additions by other individuals (42); 
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