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Abstract

A major problem encountered by users of distributed virtual environments is the

lack of simulators available to populate these environments. This problem is usually

remedied by using computer generated entities. Unfortunately, these entities often lack

adequate human behavior and are readily identified as non-human. This violates the

realism premise of distributed virtual reality and is a major problem, especially in training

situations. This thesis addresses the problem by presenting a computer generated entity

called the Automated Wingman. The Automated Wingman is a semi-automated

computer generated aircraft simulator that operates under the control of a designated lead

simulator. and integrates distributed virtual environments with intelligence. Access to

distributed virtual environments is provided through the DIS protocol suite while human

behavior is obtained through the use of a fuzzy expert system and a voice interface. The

fuzzy expert system is designed around a hierarchy of knowledgebases. Each of these

knowledgebases contains a set of fuzzy logic based linguistic variables that control the

actions of the Automated Wingman. The voice interface allows the pilot of the lead

simulator to direct the activity of the Automated Wingman. This thesis describes the

design of the Automated Wingman and presents the current status of its implementation.

Viii



THE AUTOMATED WINGMAN:
A COMPUTER GENERATED COMPANION FOR USERS OF DIS

COMPATIBLE FLIGHT SIMULATORS

1. Introduction

The mission of the Armed Forces of the United States is to prepare for war. This

sole mission underlies the doctrine of each of the four branches of the United States

military, including the United States Air Force (USAF). Thus, the basic doctrine of the

USAF states, " Training should be as realistic as possible .... Exercises must replicate to

the extent possible the chaos, stress, intensity, tempo, unpredictability, and violence of

war" [USAF92]. The basic doctrine of the USAF also calls for joint training with other

branches of the military as well as with allied nations. Unfortunately, factors in today's

crowded world often work against these goals, making them difficult to attain through

real life military exercises. Therefore, the defense community is looking to virtual

environments and computer simulation to satisfy future training

1.1 Background

One of the first major thrusts in the use of synthetic environments for training

purposes was the Defense Advanced Research Projects Agency (DARPA) sponsored

SimNet Distributed Virtual Environment project [THOR88]. SimNet used several

networked workstations to form a single distributed environment in which each node

maintains a fully self-contained model of the environment. Participants, or actors, in this

distributed environment broadcast their state either periodically or whenever their state

has changed significantly from the last update. Each node then monitors the network for



the state of the actors and portrays this information within its own local environment.

Designed primarily for ground-based combat, SimNet did not readily scale to high

performance aircraft simulators. However, SimNet was successful in showing that virtual

environments could be effectively used as training tools and research has continued in an

attempt exploit this capability [THOR88].

A real combat environment includes aircraft, helicopters, and other airborne

threats as well as soldiers, tanks, and other ground-based entities. Airborne vehicle

simulators move faster and turn quicker then their ground-based counterparts, requiring

frequent updates of position, velocities, and orientation. Therefore, in 1989, DARPA,

now known as the Advanced Research Projects Agency (ARPA), commissioned a project

to develop the Distributed Interactive Simulation (DIS) standard, based on the work of

the SimNet project, that incorporated advances in network communication and simulator

technology. True to its SimNet origins, each DIS compatible simulator maintains its own

models, terrain, and entities representing external simulators. The DIS standard is

currently at version 2.0 and several research projects are underway to add more capability

and flexibility. DIS continues to evolve and improve as more and more emphasis is

placed on training through virtual reality.

To address the need for high performance airborne simulators, DARPA also

sponsored AFIT to develop a low cost, DIS-compliant flight simulator [MCCA94]. This

project, known as the AFIT Virtual Cockpit (VC), has been the subject of several AFIT

master's theses [SWIT92] [ERIC93] [MCCA94]. The VC uses commercially available

off-the-shelf hardware and software to create an immersive environment based on the
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cockpit of an F-15E. The immersion is achieved using a variety of head-mounted

displays (HMDs) and a hands-on-throttle-and-stick arrangement using a Thrustmaster

joystick and throttle. A working version of the Virtual Cockpit was successfully

included, on a limited basis, in a series of simulation exercises called Zealous Pursuit

[MCCA94]. Work continues on the Virtual Cockpit, adding new features and improving

old ones.

DIS is not simply a research project. It is in use today, providing both a realistic

training environment for military units and a research test-bed rich in potential. Using a

dedicated wide-area network called the Defense Simulation Internet (DSI), simulators at

training centers around the country interact on a regular basis in limited training

exercises. Most facilities conducting DIS research, including AFIT, are also connected to

the DSI. Since DIS is designed to accommodate multiple simultaneous exercise

simulations, training and research can be performed at the same time. Researchers can

also be included in exercises using observation platforms such as AFIT's Synthetic

BattleBridge [HADD93]. This allows researchers to get a feel for how DIS is

performing, what its limitations are, and what areas need improvement. This has led to

the identification of several issues that must be addressed before DIS can be used for

large-scale training exercises.

1.2 Problem Statement

One of the problems in current DIS exercises is that the number of aircraft

simulators present does not adequately reflect the number of aircraft that would actually

participate in a real exercise. It is completely unrealistic that a major European conflict
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will be fought with only four combat aircraft, a typical number in a distributed

simulation. Because of the limited number of simulators available, aircraft sorties are

usually flown as single-ship formations. This is unrealistic and goes against the principle

of realistic training spelled out in USAF doctrine. In an actual exercise, these single-ship

formations would consist of at least two aircraft, if not more. This lack of realism

degrades the benefit derived from the simulation and needs to be corrected.

1.3 Research Objective

I propose to develop an architecture that will provide users of a variety of DIS

compatible aircraft simulators with one or more unmanned but intelligent wingmen.

These wingmen will use pre-mission planning, situational awareness, and voice control as

inputs to an expert system equipped to deal with uncertainty and approximation. Fuzzy

inferencing techniques and linguistic variables provide a close approximation to human

reasoning and will be used provide this capability to the expert system. Mission planning

will provide the wingman with the overall goal of the mission and a rough framework in

which the mission is to be accomplished. Linguistic variables and approximate reasoning

techniques to will be used to evaluate the current situation and maneuver within that

framework. Once the appropriate action has been determined, the Automated Wingman

will execute the action using standard USAF fighter tactics, or a close approximation of

them, to fly and fight alongside the flight leader in the manned simulator.

1.4 Scope

The capabilities of the Automated Wingman will be limited in that its actions will

be tied to those of the flight leader. The Automated Wingman will not act as an
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independent force capable performing its mission without human direction. Instead, it

will perform the appropriate maneuvers based on the situation and verbal commands from

the flight leader. Unlike in the real situation, the command set available to the flight

leader will be limited to a small number of predetermined orders and linguistic variables.

The Automated Wingman will have the capability to understand several maneuvers, such

as aileron loop and figure-8 as well as a few concepts such as "start bomb-run" or "evade

SAM". However, the pilot will not be able to teach tactics or lay out a plan to the

Automated Wingman as a real flight commander might do. Also, the first version of the

Automated Wingman will not be able to complete the mission on it's own. If the leader is

shot down then the mission would have to be aborted. Therefore, the ability of the pilot

to swap cockpits will be a key feature. As long as the pilot has a plane to fly, other

Automated Wingmen will continue to apply their fuzzy rules and determine the

appropriate action for the situation.
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2. Background

2.1 Introduction

The Automated Wingman builds upon several key areas of research. In order to

understand the design of the Automated Wingman and the significance of its results,

these topics must be familiar to and understood by the reader. The purpose of this chapter

is to identify and introduce these important subjects. The topics covered in this chapter

are Distributed Interactive Simulation, Fuzzy Logic, Expert Systems, and another

research project called TacAir-Soar. This chapter is not intended as a tutorial in these

topics. Instead, this chapter will introduce the subject matter, discuss the relevance of the

subject to the Automated Wingman, and refer the reader to appropriate material should

further study be required. Once armed with an understanding of the background material,

the reader will be ready to proceed with the design and implementation of the Automated

Wingman.

2.2 Distributed Interactive Simulation

The Distributed Interactive Simulation (DIS) protocol suite is a major part of the

Automated Wingman, It not only provides the rationale for development of the

Automated Wingman, it also provides the means for the Automated Wingman to be seen

by other players in a distributed simulation. This section introduces DIS and an

implementation of an interface to the DIS protocols developed at AIT that makes DIS
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easy to integrate into simulators and other programs intended for use in distributed

simulations.

Distributed simulations are conducted by linking computer-based combat

simulators together over a common network. Each simulator controls one or more

entities (tanks, planes, etc.) that move within a common environment (terrain, weather,

lighting, etc.). As the entities move, each simulator keeps all the other networked

simulators informed of the location and status of it's local entity or entities.

Representations of remote entities are presented to the users of each simulator. In this

fashion, entities can interact (acquire, track, shoot, and destroy) with other entities, local

or remote, within the simulation using a predetermined protocol suite. The DIS protocols

are an example of such a suite that enables networked simulators to interact within a

distributed environment.

The DIS protocol suite is the key technology enabling distributed simulations that

can include thousands of entities. Distributed simulation research has been extensively

documented and the interested reader is referred other sources for detailed information on

this subject. [GOSS94] is a distributed simulation tutorial and a good place to start for

those new to the subject. Several excellent summaries of DIS exist including [BLAU94]

and [STYT95]. [IST94] contains a glossary of terms used in DIS. The standards

document that fully enumerates the DIS protocol is [IEEE93]. Annotated bibliographies

of other references may be found on the World-Wide Web at

http:/www. afit. af.mil/Schools/EN/ENG/LABS/GRAPHICS/annobibs/annobibs.dis.htrnl.
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The key feature of the DIS protocols is that each simulator is required to maintain

knowledge of all entities within the simulation. Further, when an entity broadcasts it's

position over the network it is also required to broadcast parameters that will allow each

simulator to calculate that entity's changes in position and velocity over time. Parameters

are broadcast using packets of data called Protocol Data Units (PDUs). Positions are then

calculated using the data in these PDUs and a set of dead-reckoning algorithms provided

by DIS. Each entity is also required to dead-reckon it's own position. When the entity's

actual position differs from the dead-reckoned position by a pre-determined threshold the

entity broadcasts it new position and dead-reckoning parameters. While introducing

some positional error, this method reduces the network traffic and enables large-scale

distributed simulations with thousands of participating entities.

AFIT has been involved with DIS research since 1992 and has developed several

DIS-compatible simulators [SWIT92], [ERIC93], [GERH93], [MCCA94], [DIAZ94],

[KUNZ94], [VAND94], viewing platforms [WJLS93], [SOLT93], [HADD93] [STYT94]

and an activity recorder analogous to a VCR [FORT94]. In order to facilitate the

development of these projects a DIS interface, called Object Manager, was developed

[SHEA92]. The Object Manager package consists of two distinct parts, the Entity Object

Manager and the Application Object Manager. The first of these, the Entity Object

Manager, keeps track of all the entities in the simulation. It performs all dead-reckoning

and maintains the list of active entities. When an application requires information about

the state of the objects in the simulation it accesses the Entity Object Manager for this

information. The Application Object Manager, on the other hand, puts the applications
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entity on the network. Once again, it handles the required dead-reckoning and determines

when the data must be broadcast to the rest of the simulators. The application keeps the

Application Object Manager informed of it's movements through a procedure specifically

designed for that purpose. The Object Manager package removes the responsibility of the

DIS interface from the application developer and is an important part of the Automated

Wingman.

2.3 Fuzzy Logic

Although the Automated Wingman is not designed as an independent, intelligent

agent, it still must posses the capability to reason about it's environment and take

appropriate actions. To accomplish this, the Automated Wingman uses an approximate

reasoning technique called fuzzy logic. Fuzzy logic provides a method for representing

knowledge and dealing with the ambiguity and uncertainty inherent in that knowledge.

Traditional reasoning techniques, such as modus ponens [WINS93], can be extended to

deal with knowledge in this form. The result is a conclusion that takes uncertainty and

ambiguity into account and more closely resembles the decision that would have been

made by a human under the same circumstances [KOSK93]. For this reason, the

Automated Wingman uses fuzzy logic to help make it indistinguishable from human

controlled entities within a simulation.

A complete overview of fuzzy logic is beyond the scope of this document.

However, like DIS, fuzzy logic and it's applications have been extensively documented

and published. The original paper on fuzzy logic is [ZADE65], which provides a clear

description of fuzzy logic in the terminology of discrete mathematics. Other excellent
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introductions include [KOSK93], [MUNA94], and [COX92]. Detailed information about

fuzzy operators and fuzzy set theory is in [ZADE92], [ZIMM87a], [DUBO80], [KLIR95],

and [KOSK92a]. Annotated bibliographies of many of these papers can accessed on the

World-Wide Web at http:/www.afit.af.mil/Schools/EN/ENG/LABS/GRAPHICS/

annobibs/annobibs.fuzzy.html. Some of these papers describe objects known as

linguistic variables, which are important to the Automated Wingman

Standard "Z" function "Pi" function "S" functionA\ k

Young Middle Old
Aged

10 20 30 40 50 60 70 80 90 100

AGE

Figure 2-1 The Linguistic Variable AGE

The concept within fuzzy logic that is most applicable to the Automated Wingman

is that of a linguistic variable. A linguistic variable, such as temperature, describes a

quantity or an idea that is best represented by fuzzy sets, such as hot, warm, and cold.

These are called term sets. The linguistic variable can be set to one of these term sets or,

by "fuzzifying" a crisp value and determining to which term set the crisp value belongs,

the linguistic variable can be set to a fuzzy set that encompasses several of the term sets.

The linguistic variable then takes on the value of the term sets that apply, not the crisp
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value itself [ZADE75] [ZADE79] [SCHW90]. For example, the concept of age is often

described in terms of young, middle-aged, and old. Figure 2.1 shows one possible design

for the linguistic variable age. In this example, a person who is 15 years old is "young"

while 75 year-old person is "old". A 45 year-old person could be considered "young" or

"old" to a very small degree but is primarily called "middle-aged" [ZADE75]. Fig 2-1

also shows the standard "Z", "Pi", and "S" membership functions that are common in

linguistic variable design. These functions embody the ambiguity inherent in the concept

of age and give the linguistic variable its descriptive power. The Automated Wingman

will capitalize on this descriptive power to create an expert system capable of flying

within a distributed environment.

2.4 Expert Systems

An expert system is a program that combines knowledge about a particular

domain with reasoning mechanisms for the purpose of making deductions about the

domain from some known facts. An expert system shell, on the other hand, is a program

that contains only the reasoning mechanisms. The knowledge about the domain must be

obtained from domain experts through a process called knowledge acquisition [GIAR94]

and reduced into a form readable by the expert system shell. The reduced form is called a

knowledgebase. The use of expert system shells allows expert systems to be developed

for a wide variety of domains without having to develop specialized reasoning software

for each specific domain.

The heart of the Automated Wingman is a fuzzy expert system shell called

FuzzyCLIPS. CLIPS, which stands for C Language Integrated Production System
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(CLIPS) is an expert system shell developed by NASA [JSC92]. The term "Production

System" indicates that CLIPS represents knowledge as a series of rules of the form "if A

is true then conclude that B is true" [WINS92]. The Knowledge Systems Laboratory of

the Institute for Information Technology, National Research Council Canada has written

extensions to CLIPS to handle fuzzy logic and the resulting program is called

FuzzyCLIPS. Both CLIPS and FuzzyCLIPS are written in the C programming language

and provide a C language interface to CLIPS functionality. Both can run either as a

stand-alone application, a stand-alone application augmented by user developed C code,

or as an embedded expert system shell within a user application. The Automated

Wingman runs FuzzyCLIPS in the last of the three modes -- as an embedded expert

system.

Expert systems have been under development since the early 1950s under the

umbrella of artificial intelligence. Hence, a great deal of literature is available to describe

the different types of systems, such as case-based reasoning systems and production

systems, as well as how they operate. A good introductory text is [WINS92], particularly

for solid foundation in knowledge representation, production rules, and chaining.

[GIAR94] explores expert system development in general and shows examples using

CLIPS (the author is one of the developers of CLIPS). This book also contains a section

on reasoning under uncertainty using fuzzy logic. The FuzzyCLIPS software and manual

[KSL94] are available free of charge on the World-Wide Web at

http:/ai.iit.nrc.ca/fuzzy.html. Annotated bibliographies of other articles may be found at

http:/www.afit.af.milVSchools/EN/ENG/LABS/GRAPHICS/annobibs/annobibs.html.
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2.5 TacAir-Soar

The TacAir-Soar project is the first large program to undertake the task of

simulating pilot behaviors for use in DIS environments [LAIR95]. It's purpose is to

develop independent computer generated forces, called IFORs, that can execute a mission

without human intervention. To do this, TacAir-Soar builds upon an architecture for

general intelligence called Soar that has been under development since 1983 [ROSE93].

The relationship between TacAir-Soar and Soar itself is intricate and cannot be explained

without an understanding of the Soar architecture. Therefore, this section will describe

Soar in enough detail to serve as a foundation for understanding TacAir-Soar.

Ultimately, TacAir-Soar will be described and related to the goals of the Automated

Wingman.

The goal of the Soar program is to identify the key elements of general

intelligence and then design a software architecture that implements these elements. The

design of Soar is based on the concept of a universal weak method [ROSE93]. A

universal weak method attempts to reason and solve problems by applying general,

domain-independent structures and knowledge under the assumption that there is one

approach that can solve all problems. Using a universal weak method, Soar attempts to

exhibit general intelligence by performing tasks at the same level of proficiency that a

human can. This includes reasoning and learning. Since modeling human intelligence is

key to the success of the Soar project, Soar is based upon a cognitive model of human

intelligence [ROSE91].
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The model of human intelligence that Soar is based on separates human

intelligence into three layers. At the bottom is the neural band. The neural band

encompasses symbolic knowledge that is accessed directly without deliberate thought.

This includes reflexes, autonomic functions such as breathing and balance, and the

million other things we do everyday without even thinking about them. The next level is

the cognitive band. The cognitive level is where most human knowledge is stored,

accessed, and used for deliberation and decision making. Goal attainment is measured in

the cognitive level and operators are composed to achieve these goals as well. Finally,

the last level is the rational band. This band is goal-oriented, knowledge-based, and

strongly-adaptive. It provides humans with higher order rationalization functions such

why an action is being performed or what goal is to be achieved. These bands form an

architecture for human intelligence that is amenable to implementation in computer

software [ROSE91].

Of the three levels described above, Soar implements the cognitive band. This is

because there is limited intelligence embodied in the neural band and the rational band is

more a mechanism for understanding what we do, not why we do it. Soar further divides

the cognitive band into 3 sub-levels. The lowest of these levels is the memory level

where symbolic knowledge is stored and can be accessed. The primary data structure is

called a production and uses object-attribute pairs to represent knowledge. Productions

are analogous to if-then rules in that they have a condition-action structure. In order to

activate, or "fire", the action, all the conditions of a rule must be satisfied. In contrast to

regular production systems which use conflict resolution to determine which rules to fire,
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Soar fires all productions that apply and lets the next level decide upon the appropriate

action. In order to aid the next level in making this choice, Soar also has a special

memory data structure called a preference. Preferences encode knowledge about which

actions are best for a given situation or set of conditions. Once all the applicable

productions and preferences have fired the next level takes over [ROSE9 1].

The next level is called the decision level. It uses the productions and preferences

from the memory level to make elementary deliberate decisions. If the production and

preferences all point to one action then the decision is trivially easy. However, since

there is nothing to prevent productions and preferences from conflicting, there is a

possibility that an impasse will occur. Breaking the impasse requires knowledge about

the goal that the system is attempting to achieve. This is the domain of the next level

[ROSE91].

The top level is the goal level. The responsibility of this level is to determine

what to do when the decision level reaches an impasse. Usually this level will attempt to

break the impasse. According to its universal weak method, Soar will attempt this by

creating a "problem space" and a sub-goal that will add enough knowledge to break the

impasse. Soar then works on this sub-goal until it is either solved or results in another

impasse. This process recurses to the level necessary to bring enough information to bear

to solve the problem. This is very similar to the problem reduction method [WINS92]

but with an important difference. Throughout this process the entire goal stack is

available for inspection by all problem spaces. If knowledge uncovered in a sub-goal

solves a super-ordinate problem then the super-ordinate problem space is closed and all
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sub-problems are deleted because they are now irrelevant. This opportunistic approach to

problem solving enables Soar to reach solutions faster than depth-first search oriented

architectures [ROSE91].

Another feature of Soar is that it has the ability to learn through a process known

as chunking. As previously described, Soar resolves impasses at the decision level by

breaking the problem into sub-problems and solving the sub-problems. Once the impasse

has been broken, Soar saves the conditions that caused the impasse and the operators that

were used to resolve it. These new "chunks" of knowledge are stored away for retrieval

later should the same situation arise again. Thus, an impasse can sometimes be avoided.

These chunks not only solve problems already encountered, but can be sufficiently

general to solve problems that are similar, but not identical, to the original problem. This

is a powerful capability that supports the Soar goal of achieving general intelligence

[ROSE91].

The Soar project has been under development since 1982 and has already been

used to demonstrate general intelligence. Ri-Soar was a project to demonstrate

automated computer configuration similar to X1/RCON [ROSE93]. Other domains in

which Soar has been successfully applied include algorithm and software design, medical

diagnosis, blood banking and factory scheduling [ROSE93]. However, the project that is

by far the most relevant to the Automated Wingman is TacAir-Soar. TacAir-Soar has

demonstrated the ability to produce many pilot behaviors and has been used successfully

in a distributed simulation.
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TacAir-Soar builds upon Soar and another architecture called ModSAF. Soar

provides the intelligence and ModSAF provides the aircraft dynamics and access to

distributed simulations. Since Soar's intelligence is general in nature, the developers of

TacAir-Soar have focused on providing Soar with the knowledge specific to flying an

airplane and fighter tactics. As of early 1995, TacAir-Soar consists of approximately 200

operators spread over 24 problem spaces and about 1700 productions [TAMB95]. The

capabilities provided by this knowledgebase are impressive, as was demonstrated in a

distributed simulation in which TacAir-Soar was a participant [LAIR95].

TacAir-Soar was included in the Synthetic Theater of War - Europe (STOW-E)

exercise held in November of 1994. The purpose of STOW-E was to demonstrate the

feasibility of a large-scale distributed interactive simulation by integrating real forces,

human-controlled simulators, and computer generated IFORs [ROGE94]. The exercise

included more than 1800 entities over a 3 day period. Although there were problems,

TacAir-Soar demonstrated that computer-generated air forces could participate in DIS

environments. It was even successful in shooting down several manned simulators

(although that was not the usual case) [LAIR95]. The successful inclusion of TacAir-

Soar marked the first time that a general intelligence architecture such as Soar has

participated in a large-scale distributed simulation.

Figure 2-2 shows a portion of the TacAir-Soar goal hierarchy. Mission

parameters are entered into the program prior to beginning the simulation. While

running, TacAir-Soar follows a top-level goal labeled "Execute-Mission". That goal is

obviously too abstract to be implemented directly; no information exists in memory to
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attain that goal and an impasse occurs. Using the problem spaces developed by the

TacAir-Soar team, the system attempts to break the impasse by recursively dissecting the

problem and examining available operators [TAMB95]. Productions are used to take

known facts about the environment and suggest appropriate operators within the problem

space. Preferences indicate which actions are more desirable than others [ROSE91]. As

Soar moves further down its goal hierarchy the goal stack builds up, accumulating all the

goals that are currently at an impasse. If Soar discovers a new piece of information,

either as a result of applying an operator or from one of its aircraft sensors, it checks the

goal stack to see if any of the blocked goals can be resolved. When Soar finds an

operator that it can apply Soar executes it, and the corresponding problem space and all

it's sub-spaces are "rolled-up". This process repeats until the "Execute-Mission" goal is

achieved and the simulation is over [TAMB95]. An extended example of TacAir-Soar in

operation can be found in [TAMB95].
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Figure 2-2 A Portion of the TacAir-Soar Goal Hierarchy

From the description of TacAir-Soar it is clear that what distinguishes TacAir-

Soar from Soar itself is that Soar provides the capability for general intelligence while

TacAir-Soar provides the knowledge necessary for pilot behaviors. This is analogous to

the distinction between an expert system shell and the knowledgebase that provides the

system with its expertise. This separation has allowed the developers of TacAir-Soar to

concentrate on encoding pilot behaviors and tactics instead of the mechanisms of

intelligence itself [TAMB95]. The result is impressive. However, human pilots are still

able to defeat TacAir-Soar aircraft on a regular basis, as demonstrated in STOW-E.

Therefore, something is still missing. Until computer generated forces can sustain an
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even loss ratio against human pilots, there is a chance that the value of their participation

may be compromised.

2.6 Conclusion

This chapter has examined several subject areas related to the Automated

Wingman. These include the Distributed Interactive Simulation (DIS) protocols, fuzzy

logic, and expert systems. Also, the TacAir-Soar project was presented. TacAir-Soar

attempts to create an independent entity for distributed simulations using an architecture

for general intelligence called Soar. TacAir-Soar has demonstrated the successful use of

computer generated entities in a distributed simulation but still suffers from a high loss

rate to human pilots. The Automated Wingman uses a different approach to generating

semi-automated, as opposed to fully automated, entities. The Automated Wingman

attempts to address TacAir-Soar's shortfall through the use of fuzzy logic.
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3. Requirements

3.1 Introduction

To successfully fulfill its mission, the Automated Wingman must exhibit certain

features and capabilities, including DIS compatibility, autonomous route planning and

flight control, and responsiveness to enumerated voice commands. These capabilities are

important because they maintain the illusion of human control. The features include

machine independence and context switching. These make the Automated Wingman more

flexible and easier to employ in a distributed environment. Each of these will be described

in detail in this chapter.

3.2 DIS Compatibility

The Automated Wingman must be DIS-compatible in order to participate as an

actor within a distributed exercise. While flying a mission, the Automated Wingman will

be under the control of the lead aircraft simulator. However, all communication must

occur using DIS PDU's. For this reason, a critical requirement of the Automated

Wingman is that it be able to read DIS Entity-State PDU's and perform to dead-reckoning

as specified by the protocol. At the same time, the Automated Wingman cannot increase

the density of entities within a distributed simulation unless it is visible to all of the other

entities. Hence, the Automated Wingman must also be able to broadcast DIS Entity-State

PDU's that describe its own state, including the specified dead-reckoning parameters, for
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the other entities to read. Therefore, the Automated Wingman must be able to read and

broadcast, at a minimum, DIS Entity-State PDU's.

The DIS protocol suite contains another family of protocols relevant to the

Automated Wingman. This family is the Radio Transmission PDUs. Using a capability

described in section 3.4, the Automated Wingman must be able to accept and respond to

verbal commands from the lead simulator. The Radio Transmission PDU family is the

mechanism that supports this functionality. Therefore, the Automated Wingman must

recognize and decode Radio Transmission PDUs in addition to Entity-State PDUs.

3.3 Autonomous Route Planning and Flight Control

Like a real pilot, the Automated Wingman must be capable of flying it's own

plane. It must be able to maintain straight and level flight as well as perform basic

directional maneuvers such as climb, dive, and bank to turn. Given its current location,

orientation, and velocity, the Automated Wingman must be able to use those basic

directional maneuvers to fly to a specified point in the environment with no external

intervention. Throughout these maneuvers the Automated Wingman must also manage

it's own airspeed. For example, if the Automated Wingman is ordered to fly in echelon

formation with the lead, then it must determine the coordinates of the echelon formation

position, use the basic maneuvers to fly to this position (note that the desired position is a

moving target), and control its airspeed to avoid overshooting the desired position. This

is a complex requirement but absolutely necessary for semi-autonomous behavior.

Many flight maneuvers are combinations of the basic directional maneuvers. In

order to behave like a human pilot, the Automated Wingman must know how to employ
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these more complicated maneuvers. For example, if the Automated Wingman arrives at

the desired coordinates and orientation early, it must perform some delaying maneuver.

As "S" turn will do this nicely. However, an "S" turn is a relatively complicated maneuver

that requires several basic bank turns while maintaining altitude. This task is far more

complicated than just a simple turn. Therefore, the Automated Wingman must also be able

to plan a series of route points in order to execute more complicated maneuvers.

Finally, the Automated Wingman must also know when to employ these

maneuvers. This means it must have a goal it is trying to achieve and a planning system to

guide its actions towards that achievement. These goals should be hierarchical in nature,

i.e., a set of sub-goals will be employed to achieve a super-ordinate goal. Using the goal

structure, the Automated Wingman could then employ different tactics and maneuvers in

an effort to achieve each goal. In this way, the Automated Wingman will know when to

employ an "S" turn, or a barrel roll, etc. Therefore, route planning is an essential element

for the Automated Wingman.

3.4 Voice Commands

The leader of a formation of real aircraft is usually able to communicate, either

verbally or visually, with his wingman. Visual communication, other than follow-the-

leader, is not an option for the Automated Wingman. Therefore, verbal communication

becomes more important. The Automated Wingman must be able to receive, interpret and

execute a limited set of voice commands from the lead simulator as if it were receiving

radio signals. These commands include basic maneuver commands, commands to employ

tactics, target designation, flight mode (formation versus independent), etc. Additionally,
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the Automated Wingman must be able to distinguish between its lead and other voice

traffic through the use of call signs. This is so that multiple wingmen do not interpret

commands meant for other instances of the Automated Wingman. The ability to receive

and respond to voice commands enhances the realism of the Automated Wingman and

increase the training value of a distributed simulation.

3.5 Machine Independence

Most simulators require a high-end workstation to render graphical representations

of the distributed environment. Only certain computers, such as the Silicon Graphics, Inc.

(SGI) Onyx Reality Engine, have the specialized graphics hardware necessary for

rendering graphics acceptable for training purposes. However, the Automated Wingman

is not required to render any graphics. Hence, it does not require a high-end workstation

to operate on. Therefore, the Automated Wingman cannot use any SGI specific software

libraries, such as the Performer graphics libraries. The one exception is the Object

Manager, which is specific to the SGI architecture because of its network interface. Even

then, a clearly defined interface must exist between the Automated Wingman and the

Object Manager package so that the Object Manager can be easily replaced if the

Automated Wingman is ported to another computer architecture. This machine

independence will increase the value of the Automated Wingman since it can run on

cheaper computers, freeing the expensive ones for human trainees.
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3.6 Context Switching

Since the purpose behind this project is realistic training, the Automated Wingman

is also designed to allow the pilot of the manned lead simulator to swap cockpits with the

Automated Wingman, maximizing the training opportunity of the pilot. This will involve

determining the appropriate interface and DIS protocol PDU usage in order to

accommodate this feature. Although this capability will initially be provided through the

AFIT Virtual Cockpit, the interface will be modular and fully documented so that other

simulators can be modified to make use of it. Cockpit swapping is the topic of another

thesis [SCHN95] and will not be described further in this document.

3.7 Conclusion

The Automated Wingman must be DIS-compatible and be able to fly its own

airplane. Further, it must be able to receive and implement voice commands from the lead

simulator. Both the voice commands and the nature of flying require that the Automated

Wingman have a hierarchical goal structure and planning capability, in order to satisfy its

mission requirements. Through these features, the Automated Wingman will meet its goal

of increasing the number of aircraft involved in training simulations while maximizing the

opportunity for trainees to experience realistic combat situations.
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4. Design Decisions

4.1 Introduction

The Automated Wingman is a complex system that embodies artificial

intelligence as well as traditional programming. In order to accommodate both of these

facets, I designed an architecture that separates them into two distinct modules with a

clearly defined interface. The airplane module provides the aerodynamics, weapons

systems, and flight parameters such as location, orientation, airspeed, etc. The FuzzyPilot

provides the system with the reasoning and decision making facility required for human-

like behavior by interfacing with a hierarchy of fuzzy knowledgebases. The basic

architecture ties these two modules together through a common interface in order for

them to work together. It also provides DIS access through the Object Manager package

(see section 2.2). This chapter describes the design of the basic architecture, the aircraft

module, the FuzzyPilot module, the knowledgebase hierarchy, and other parts of the

Automated Wingman that enable it to fly within a distributed simulation.

4.2 Overall System Design

This section describes the top-level design of the Automated Wingman. I identify

the inputs and outputs necessary for the Automated Wingman to satisfy the requirements

laid out in Chapter 3. I then decompose the Automated Wingman into a set high level

modules that form the basis of the remainder of the design. This section lays the

groundwork for the design outlined in the rest of the chapter.
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4.2.1 Context Diagram

The first order of business in any design is to identify the system inputs and

outputs. This is usually done with a context diagram, which is shown in Figure 4-1 for

the Automated Wingman. The inputs are enumerated voice commands from the lead

simulator, terrain data, information on other entities, and any kind of electromagnetic

emission data from within the simulation. The required outputs are the coordinates and

dead-reckoning parameters of the Automated Wingman as well as any active weapons

that may have been launched from the Automated Wingman. With the inputs and outputs

identified, I proceeded to create a high level design of the Automated Wingman's

architecture.

Voice Commands

Terrain The Aircraft Position, Velocity
and OrientationAutomated

Other Players Wingn Weapon Position, Veloci
Oe Pand Orientation

Emmisions

Figure 4-1 Automated Wingman Context Diagram
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4.2.2 Module Diagram

Figure 4-2 shows the division of the Automated Wingman into modules for the

different types of processing that are required. In developing this design, I attempted to

mirror reality to the fullest extent possible. For example, a real pilot does not have to

F-15 F-111
F-16 A-10
F-23 Etc
F-117

The Automated Wingman

Aircraft Automated Cockpit
Flight Dynamics , Wingman Display Module

MoueMain Module (AFIT VC)

Pilot
Decision

Logic

DIS Manager
(ObjectSIM)

DSI I
Figure 4-2 Automated Wingman Module Design

compute the airspeed of the aircraft from the velocity vector, it is simply displayed on the

airspeed indicator. Using that analogy, I determined that the most appropriate design is to

have a module that represents the pilot and another that represents the airplane. That

philosophy is evident from Figure 4-2.
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The Pilot Decision Logic module represents the pilot of the Automated Wingman.

It embodies the fuzzy expert system that provides the Automated Wingman with the

intelligence needed to fly the plane and perform route planning tasks. Information about

the aircraft's current status, the lead simulator, and the environment are input to this

module. It then uses a goal hierarchy and programmed knowledge to generate commands

that the airplane can respond to. In short, the Pilot Decision Logic module is the brain of

the Automate Wingman.

The Aircraft module provides all the features that an actual aircraft provides. It

consists of an aerodynamics model, gauges, a weapons store, and other hardware found in

an airplane. To provide control, the Aircraft module also contains a throttle and stick as

well as switches for the afterburner and speedbrake. This module is designed to be

expandable to provide more capabilities as the system matures.

The DIS module is also an important part of the Automated Wingman. It

provides the Automated Wingman with the capability to receive and broadcast DIS

PDU's. This module enables the Automated Wingman to meet the DIS requirements

specified in chapter 3. A full description of the DIS module can be found in [SHEA92].

The Cockpit Display Module is intended as a future add-on to allow an observer

to ride in the cockpit and view first-hand the actions of the Automated Wingman. Based

on the design of the AFIT Virtual Cockpit, it provides an optional immersive

environment. Since this capability is not a requirement for the Automated Wingman, the

design of this module has not proceeded very far. However, it is included to demonstrate

the flexibility of the underlying architecture.
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4.3 Basic Architecture

The Automated Wingman is designed with flexibility and scalability in mind.

The goal was to maintain a clear separation of tasks while developing an efficient system.

To do this, I used an object-oriented modeling tool called Object Modeling Technique

(OMT) [RUMB91] to create an object model and a dynamic model to show how the

Automated Wingman functions. These are shown and explained in this section. I then

extract the two central objects of the design, the Airplane object and the FuzzyPilot

object, from the overall system model and describe them. These objects provide the

fundamental foundation for the development of the Automated Wingman.

4.3.1 Object Model

The object model shows the system decomposed into individual units, called

objects, that function together to produce the desired system behavior [RUMB91].

Connections between objects show relationships and how they interact. The object model

of the Automated Wingman is shown in Figure 4-3. This diagram clearly shows that the

Automated Wingman is associated with the two Object Manager classes,

EntityObjectManager and CockpitObjectManager. These objects manage the

Automated Wingman's interaction with the DIS protocols. The data passed between the

Automated Wingman and these two objects is shown as association objects. The

Automated Wingman also consists of an Airplane object and a FuzzyPilot object, both of

which are described in detail in sections 4.3.3 and. 4.3.4. However, the interaction of

these two objects bears further discussion.
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The interface between the Airplane and FuzzyPilot objects is also clearly defined

in Figure 4-2. This interface is in the form of two association objects, one for gauges and

one for controls, maintaining the analogy of a real pilot in an airplane. The Gauge object

contains information such as coordinates, altitude, airspeed, climb rate and other

information that one would expect to find in a cockpit. This object is used to pass

information from the Airplane object to the FuzzyPilot object described in section 4.3.4.

The Controls object keeps the current TAS (throttle, stick, rudder, afterburner and

speedbrake) settings and passes this from the FuzzyPilot to the Airplane. An alternative

scheme is to make both of these part of the Airplane class. However, that would require

the FuzzyPilot to have explicit knowledge of the Airplane class. Using the association

object maintains the separation between the Airplane and the FuzzyPilot and is therefore

the cleaner design choice.
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4.3.2 Dynamic Model

The next step in the design of the basic architecture is the State Transition

Diagram shown in Figure 4-4. This model shows the states through which the basic

architecture traverses. At the beginning of every loop, the Automated Wingman obtains

an update of the lead aircraft's coordinates from the EntityObjectManager. It then

feeds that information to the FuzzyPilot, which uses that information and data from the

Airplane object to determine new throttle and stick (TAS) settings. Once the FuzzyPilot

has completed its cycle, the new TAS settings are given to the Airplane object for use in

the aerodynamics model. The Airplane object then "flies" the plane, updating the

coordinates and dead-reckoning parameters. Finally, the Automated Wingman gives the

new data to the CockpitObjectManager, which determines if a new broadcast is

NewLeadCoordinates

Update Lead Get New
Coordinates Throttle and Stick

NewA

Broadcast Execute
Dead-reckoning Aerodynamics

Parameters Model

Figure 4-4 State Transition Diagram of the Automated Wingman

required and takes the appropriate action. This behavior repeats as long as the Automated

Wingman is running, allowing the Automated Wingman to make decisions, fly and

participate in distributed simulations.
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4.3.3 Airplane Object Design

The Airplane object represents the aircraft that the Automated Wingman is

designed to fly. As shown in Figure 4-5, the Airplane object is an aggregate of at least

two other objects, the AeroModel and the WeaponsStore. As the project matures and

requirements are further refined, the aircraft can be augmented with more objects.

However, aerodynamics and weapons are the two basic necessities of any combat aircraft

and were therefore chosen to fill out the initial design.

The purpose of the AeroModel object is to provide the Automated Wingman with

the flight dynamics of a real airplane. The aerodynamics model used is the one designed

by Cooke at the Naval Post-Graduate School [COOK92]. Cooke's model is also the

Airplane
Position
EuIerAnglcs
LinearVelocity
LinearAcceleration
AngularVelocity
Altitude
Airspeed
!Propagate

FiatTeABC
ABC11oFIat
CalcTargetAngles

l FWCloek

Weaponc f AeroModel Provides ime SystnrgCloekStore I Position G t~tme
EulerAngles GetDcltaTrtne
LinrVelo)ity
LinearAeeoleratonAngularVelocity
Fly Tr3ansforms Coordinate utmo
FlatToABC Sytems Qua[

ABCToFIat Increment
CalcelargetAngles Mk~ta

Figure 4-5 Airplane Object Diagram
(extracted from Figure 4-3 Automated Wingman Object

Model)
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model currently used in the AFIT Virtual Cockpit (VC) and was therefore a natural

choice for this project. However, using the design from the VC was not possible because

of its heavy reliance on the Performer graphics libraries that are specific to the SGI

architecture. Hence, an extensive redesign of the container objects and a re-

implementation of the code was required to achieve a clean, reusable interface. Since

container objects are an implementation detail, further discussion of this topic will be

deferred to the next chapter. However, the object model does show that the AeroModel

object uses other objects to manage the system clock and a quaternion object.

Unfortunately, different operating systems provide different function calls to access the

system clock. The SystemClock object encapsulates the clock so that these differences

remain transparent to the Automated Wingman. The Quatemion object, on the other

hand, provides an efficient way of incrementally updating the euler angles that transform

aircraft body coordinates into flat earth coordinates. This will be discussed in detail in

the section 4.6. Once the redesign of the AeroModel object was complete, the new

version of the AeroModel object met the requirement for a machine independent

architecture while providing realistic flight dynamics.

The WeaponsStore object is designed to be a simple data record of the weapons

carried by the Automated Wingman during a given mission. The FuzzyPilot would

access this information to find out what weapons remain at his disposal. Its design is

simple and does not warrant further discussion.
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The State Diagram in Figure 4-6 shows the state transitions within the Airplane

object. There are only two states, idle and flying. When an updated TAS setting is given

to the Airplane, it passes that information to the AeroModel and waits for it to return with

updated coordinates and dead-reckoning parameters. If the Airplane receives a request

for weapons information, it services that request by accessing the WeaponsStore object

and then continues to wait for more information. This continues for as long as the

Automated Wingman is in operation.

WeaponsRequest

NewParameters

~Flying

Figure 4-6 Airplane State Transition Diagram

4.3.4 FuzzyPilot Object Design

The second major object in the Automated Wingman is the FuzzyPilot object.

This object provides the Automated Wingman with an interface to the fuzzy expert

system. Most of the design for this object decomposes the functions of a pilot into

categories that can be implemented using an expert system shell and pilot specific

knowledge. These functions will be discussed in this section.
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Figure 4-7 FuzzyPilot Object Model

The lowest level of functionality is in the FlightControl object. FlightControl

provides the FuzzyPilot with the knowledge necessary to fly the airplane to a new

location. This is called "fly-to-point" operation. FlightControl keeps track of location,

orientation (euler angles), velocity vector, acceleration vector and other factors (see Table

4-1) of both the Automated Wingman and the lead aircraft. It also keeps track of and

interfaces with the Controls object, often called the TAS (Throttle And Stick). To

accomplish this, the FlightControl module requires information about the current status of

the Automated Wingman, the current status of the lead aircraft simulator, the TAS, and

coordinates of the new point in space to fly to. The outputs of the FlightControl object

are new settings for the TAS components shown in Table 4-1. FlightControl is a low

level function, but it is the foundation upon which all other functions of the FuzzyPilot

are built.
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Table 4-1 Parameters Maintained by the Flight Control Object
Wingman Lead TAS Miscellaneous

Attach Mode Position Aileron New Target Position
Position Euler Angles Elevator Bearing to Target Position

Euler Angles Velocity Vector Rudder Range to Target Position
Velocity Vector Acceleration Vector Throttle

Acceleration Vector Airspeed Afterburner
Airspeed Speedbrake

The next level is the FuzzyPlanner. The purpose of the FuzzyPlanner is to

provide the FlightControl module with the coordinates of the new point to which it

should fly. FuzzyPlanner does this based on the current orders under which the

Automated Wingman is operating. For example, if flying in formation, the FuzzyPlanner

uses the current coordinates of the lead aircraft to calculate the coordinates for the

Automated Wingman. The FlightControl module then attempts to minimize the

difference between the desired and actual coordinates. The FuzzyPlanner is also

knowledgeable about rolls, "S" turns, and other maneuvers that occur over a period of

time. This module decomposes these maneuvers into a series of points and keeps track of

where the Automated Wingman is in the maneuver. As the maneuver progresses, the

FuzzyPlanner feeds the appropriate points to the FlightControl module for action. This

provides the Automated Wingman with a believable and extendible maneuver set with

which to work.

The next three modules reside at the same functional level. They are the Weapons

Manager, the Threat Manager, and the Environment Manager. Each of these manage the

area indicated by their names. The Weapons Manager uses information about the current

target such as type, range, bearing, etc., to select the most appropriate weapon from the
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WeaponsStore. The Environment Manager keeps the most up to date information about

weather, terrain, clouds, etc., that might affect pilot decisions. The Threat Manager

watches the environment for unfriendly aircraft, Surface-to-Air Missile sites, and other

potential dangers. All of these provide input to the next level for use in goal

determination.

The top level of the FuzzyPilot is the Goal Manager. The Goal Manager's

objective is to keep the Automated Wingman on track and performing its mission by

interfacing with the Mission Knowledgebase (see Section 4.4.3). To do this, it integrates

all the data obtained from its sub-levels and other information, such as voice commands,

and chooses the appropriate goal to match the situation. It then selects a maneuver to

satisfy the chosen goal and instructs the FuzzyPlanner module to fly that maneuver. It

also tells the Weapons Manager when to fire its ordinance and the Threat Manager when

to release chaff or flares to confuse an incoming threat. The Goal Manager is therefore a

key component of the FuzzyPilot and will be discussed further in the Section 4.4.3.

4.4 Expert System Design

The fuzzy expert system provides the Automated Wingman with the intelligence

and decision making capability required to perform its mission. It is the subject of careful

design. First, a fuzzy logic production system was chosen for its ability to mimic human

reasoning [KOSK93a]. Then, the overall problem was decomposed into a hierarchy of

knowledgebases that cover the problem of flying a combat fighter. This led to the design

of the blackboard system shown in Figure 4-9. Next, several of the knowledgebases were

designed, including a mission goal tree. Finally, the lowest level knowledgebase,

4-14



FlightControl, was fully designed and prepared for implementation. The factors for

arriving at these design decision are discussed in this section.

4.4.1 Knowledgebase Hierarchy

The knowledge required to fly and fight in a combat aircraft is tremendous. In

order to make the problem manageable, I decomposed it into a hierarchy of

knowledgebases. The hierarchy is shown in Figure 4-8. At the highest level is the

mission knowledgebase. This knowledgebase guides the overall action of the Automated

Wingman. Threat is part of the mission knowledgebase because when the wingman is

threatened, it will change its mission to evade or suppress the threat. Tactics, Weapons,

and Environment compose the next level of the hierarchy. Once the mission is selected,

these knowledgebases analyze the environment and select the tactics and weapons

required to fulfill the mission. The Maneuver knowledgebase then selects the appropriate

aircraft maneuvers for the chosen tactics and weapons. Finally, the FlightControl

Mission F

Tactics Environment Weapons

Maneuvers

FlightControl

Figure 4-8 The Knowledgebase Hierarchy

knowledgebase implements the selected maneuvers. This hierarchy forms the basis for

the operation of the Automated Wingman.
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4.4.2 Blackboard System Design

Production systems function by matching rule antecedents, the "if' part, to known

facts and then asserting the rule consequents, the "then" parts. The facts are stored in a

data structure called the blackboard. Depending upon the design, either all, some, or

none of the facts may be visible to all of the productions. The scope of the facts is up to

the designer. For the Automated Wingman, I chose a two blackboard approach to

maintain a separation between the two domains I identified as important, aircraft systems

and the environment. The design is shown in Figure 4-9. The smaller of the two

blackboards is the Environment blackboard. This data structure maintains information

that is external to the Automated Wingman, such as other entities, threats, and weather.

Information on this blackboard is reduced and the result introduced, through the

appropriate modules, to the main blackboard. All reasoning about flying the airplane

takes place on the main blackboard, called the Aircraft blackboard. Each of the objects

discussed so far has an interface with the blackboards and uses the information that it

keeps. However, each object also has a private section of the blackboard, not shown, for

maintaining its own working facts. The blackboards ensure that each component has

access to the information it needs without bogging down the system with facts that are not

required by all.
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Figure 4-9 System Blackboard Design

4.4.3 The Mission Knowledgebase

The Automated Wingman is guided by the goal hierarchy in Figure 4-10, which is

the central part of the Mission knowledgebase. This hierarchy shows the activity of the

Automated Wingman at a high level and is therefore incomplete. Completing this graph

involves extensive studies of pilot behavior and is left for future research. However, even

in its current state, the graph demonstrate the types of goals that the Automated Wingman

can select from. Below each of the lowest nodes shown there are more goals that lead to

certain tactics and maneuvers. The Automated Wingman navigates its way, based on the

current situation, down to the maneuver level and instructs the FuzzyPlanner to carry out

the chosen maneuver. Then, on every loop described by Figure 4-4, the Automated
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Wingman compares the environment and the current state and determines whether the

same goal still applies or if it is time to select a different activity. This way, the

Automated Wingman is not committed to a particular tactic and can break off should the

circumstances warrant it. This provides the Automated Wingman with a powerful

guiding intelligence that may fool other, manned, entities into believing that it is under

human control.

Takeoi

LP-9 Lineuto L nd
Refuel Nay Gar Runway

Mission Descend Touch D

Down u

- -= Seah Orbit

&QVX aneounter
1Vsul Radar Munition __.._ AWA_

LO~q Release
Designatin TM d IF\.

Dive ~ ECM
Jink

Figure 4-10 High-Level Goal Hierarchy

Another point in favor of this design choice is that as the project matures it is easy

to add more knowledge to the system. Simply changing and recoding the goal tree is all

that is required. Assuming that the aerodynamics model can handle the maneuvers, this

makes developing and testing new tactics much easier to accomplish then hard-coding the

knowledge into the system. Therefore, the use of a goal tree such as Figure 4-10 adds for

a powerful reasoning capability to the Automated Wingman.
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4.4.4 The Environment Knowledgebase

The Environment knowledgebase manages the Automated Wingman's knowledge

of its surroundings through the Environment linguistic variable. This linguistic variable

is the domain of the Environment Manager of the FuzzyPilot. The design is shown in

Table 4-2 and Figure 4-11. In designing this linguistic variable, I have used a modified

version of the Object Modeling Technique found in [RUMB91]. The boxes represent

linguistic objects, i.e., variables, and the attributes are the term sets describing that object.

Links between linguistic objects show how the linked objects relate. The triangle shows

Table 4-2 Environment Linguistic Variables

Linguistic
Variable Description

Turbulence Air turbulence in the vicinity.
Snow Severity of snow falling in the vicinity of the Wingman
Rain Severity of rain in the immediate vicinity of the Wingman
Hail Severity of hail in the immediate vicinity of the Wingman

Clouds Cloud cover in the immediate vicinity of the Wingman
Fog Severity of fog in the immediate vicinity of the Wingman

Haze Severity of haze in the immediate vicinity of the Wingman
Thunderstorms Severity of thunderstorms in the vicinity of the Wingman

Lightening Severity of lightening in the immediate vicinity of the Wingman
Sun Position The position of the sun relative to the Wingman

Moon Position The position of the moon relative to the Wingman
Wind Direction The direction of winds in the immediate vicinity of the Wingman

Wind Intensity The speed of both steady wind and gusts around the Wingman

Illumination The level of light surrounding the Wingman
Terrain The type of terrain over which the Wingman is flying

Visibility How well the Wingman can see through the environment

class hierarchy and inheritance. The environment itself consists of several of these

linguistic objects instead of being a single linguistic variable. This design shows how the

objects relate and affect each other. For example, the snow object inherits a DIS Value
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(as yet undefined) and derives from it a fuzzy value. That fuzzy value is described by one

or more of the following term sets; flurries, light, medium, or heavy. Light snow lowers

visibility from, perhaps, unlimited to limited, depending on the other factors involved

with the determination of visibility. Visibility, a fuzzy linguistic variable with three term

sets, is stored as part of the environment for access by the Automated Wingman.

Positions, such as the sun and moon, are fuzzified to allow them to be dealt with in

general terms. Unfortunately, DIS does not as yet contain the mechanisms to support this

capability. As both DIS and the Automated Wingman mature, however, more work can

be done in this area to enhance the training effectiveness of DIS and the Automated

Wingman.
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4.4.5 The Threat Knowledgebase

Like the Environment linguistic variable, the design of the Threat linguistic

variable also uses the modified OMT style. Its design, Table 4-3 and Figure 4-12, also

shows how objects in the simulated world affect the threat level of the Automated

Wingman. For example, an SA-6 Surface-to-Air Missile increases the RadarThreat,

which may be decreased by launching chaff and employing Electronic countermeasures

(ECM). The RadarThreat linguistic variable then affects the overall Threat level which

also uses other factors to arrive at an overall threat level determination. This capability is

also more advanced than the Automated Wingman requires at this time. However, the

primary job of a wingman is to keep the lead informed of threats and other environmental

Table 4-3 Linguistic Variables Used in Threat Assessment
Linguistic
Variable Description
Threat The super-class of threat types.

Surface-to-Air Surface-to-Air Threats
Air-to-Air Air-to-Air Threats

SA-2 thru SA- Surface-to-Air missile threats (some IR guided, some radar guided)
14/16

AA-2 thru AA-9 Air-to-Air missile threats
Combat Aircraft Combat aircraft in the vicinity of the Wingman

Friendly Friendly combat aircraft in the vicinity of the Wingman
Enemy Enemy combat aircraft in the vicinity of the Wingman

IR Threat Threat due to Infra-Red seekers
Radar Threat Threat due to radar guided missiles

Cannon Unguided threat from enemy combat aircraft
Chaff A countermeasure against radar guided threats
Flares A countermeasure against IR guided threats
ECM A countermeasure against radar guided threats

Visibility Affects IR seekers

concerns and at some future point more work will be required in this area
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4.4.6 Flight Control Knowledgebase

While fuzzy knowledgebases are used throughout the entire knowledgebase

hierarchy, the initial version of the Automated Wingman focuses mostly on the lower

level knowledgebase called FlightControl. The FlightControl knowledgebase consists of

a set of linguistic variables and a set of rules that relate these linguistic variables to the

state of the Automated Wingman and the action that the Automated Wingman needs to

take. This section describes the design process that I followed and presents and discusses

my final design.

4.4.6.1 Linguistic Variable Design

The design of the FlightControl knowledgebase was an evolutionary process. My

first attempt concentrated on developing two flight modes, called "fly-to-point" and "fly-

to-angles". The idea behind this concept was that when the wingman is far away from the

lead, the wingman's primary goal is to get close to the lead using any method possible.

The best way to do that is to calculate the control inputs required to fly to the point in

space where the lead aircraft is at the current time, hence the name "fly-to-point". The

lead's position is constantly updated so as the wingman closes in on it, the wingman

updates it's trajectory to match the lead. As the trajectories of the two entities become the

same, the second flight mode, fly-to-angle, takes over. In this mode, the wingman

attempts to match the euler angles of the lead and maintain the matching trajectory.

Therefore, if the lead begins to climb or bank, the wingman will follow. Should the

wingman lose the formation position, the "fly-to-point" rules take over as the range

between the two increases and, once again, the wingman is brought back to the lead.
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Using these two modes seemed like a good methodology to keep the two entities flying in

formation.

Unfortunately, the "fly-to-point"/"fly-to-angles" method had a fatal flaw. The fly

to point rules were always chasing the tail of the lead aircraft and the trajectories never

came together. This caused the trajectory of the Automated Wingman to "porpoise" out

of control with ever increasing positional errors. At that time, I realized that the wingman

had to calculate not how to get to where the lead is now, but how to get to where the lead

will be at some future time. I projected variables dealing with velocity and acceleration

into the future using a value called a "lookahead". Initially, I used a fixed period of time,

but I found that while projecting 15 seconds was good for maintaining formation, it was

too long for attempting to achieve the formation position. I also found that 5 seconds was

good for achieving the formation position but resulted in over-control and rapid

oscillations while flying in formation. Therefore, I decided to vary the lookahead period

based on the range. When range is greater than 100 meters, the Automated Wingman

uses a 5 second lookahead, when it is less than 50 meters away, it uses a 15 second

lookahead. In between 50 and 100 meters, the lookahead period is a linear function of

distance between 5 and 15 seconds. The results (see Figure 6-1) show that this was a

good scheme.

Once I projected variables into the future, I found that there was no longer a need

for a "fly-to-angles" mode. This is because projecting the velocity values into the future

takes into account any difference in euler angles. So, I abandoned the "fly-to-angles"

mode and developed the "fly-to-point mode only.
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The final design of the FlightControl knowledgebase implements the 15 linguistic

variables shown in Table 4-1. The names of each of the linguistic variables were chosen to

describe the purpose of that variable. Variables with "Current" in the name describe

quantities as they are now while "Projected" variables use the variable lookahead period.

Table 4-1 Linguistic Variables in
the Automated Wingman

Linguistic Variables
Current Relative Altitude

Projected Relative Altitude
Vertical Velocity

Vertical Velocity Difference
Desired Vertical Velocity Difference

Projected Vertical Velocity Difference
Vertical Acceleration

Total Acceleration
Current Relative Airspeed

Projected Relative Airspeed
Projected Airspeed Difference

Relative Heading
Range

Lead Bearing
Bank Angle

A common concern with all of the term sets of all of the linguistic variables is

determining the membership functions to be used. Although Figure 2-1 shows non-linear

membership functions for the term sets of Age, these functions can be computationally

expensive. Therefore, I have chosen to stay with linear functions. The exact definition of

each of the membership functions is ad-hoc. So, I have used my best guess in

consideration of the purpose of the linguistic variable being designed. For example, I

chose 0 to 100 meters to represent "Nil" for the linguistic variable Range. This seemed

appropriate given the distance errors that can naturally occur when using DIS.
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Relative Altitude

There are two linguistic variables used to describe relative altitude. These are

CurrentRelativeAltitude and ProjectedRelativeAltitude. CurrentRelativeAltitude describes

the altitude difference between the Automated Wingman's current position and where the

Automated Wingman should be. ProjectedRelativeAltitude describes the relative altitude

between the two at some time, depending on the range, in the future given that the current

velocities and accelerations remain constant. The design of Relative Altitude is shown in

Table 4-2 and Figure 4-13.

Table 2 Relative AltitudeRelative Altitude

Altitude Difference (meters) Lower Nil Higher
-75 1 0 0
-50 1 0 0
-30 0 0.4 0

0 0 1 0
30 0 0.4 0
50 0 0 1
75 0 0 1

..................... ::::::::::::::::... ..

........ H...er

2N

-75 -25 25 75

Altitude Difference (meters)

Figure 4-13 Relative Altitude Graph
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4.4.6.1.2 Vertical Velocity

The design of the linguistic variable VerticalVelocity is shown in Table 4-3 and

Figure 4-14. VerticalVelocity describes the rate at which the Automated Wingman is

climbing or diving and is used to determine the change in vertical velocity required to

achieve the desired altitude.

Table 4-3 Vertical Velocity

Vertical Velocity
Climb Rate (MIS) Diving Nil Climbing

-5 1 0 0
-2 1 0 0
-1 0.5 0.5 0
0 0 1 0
1 0 0.5 0.5
2 0 0 1
5 0 0 1

.D.vin C lim bing...............................

-4 -2 02

Climb Rate (Met ers/See)

Figure 4-14 Vertical Velocity
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4.4.6.1.3 Vertical Velocity Difference

There are three linguistic variables dealing with differences in vertical velocity.

VerticalVelocityDifference describes the current difference in vertical velocities between

the Automated Wingman and the lead simulator or the desired position from the

FuzzyPlanner (see section 4.3.4). ProjectedVerticalVerticalDifference describes that

difference projected 5 to 15 seconds, based on range, into the fiture.

DesiredVerticalVelocityDifference indicates how the Automated Wingman should change

its vertical velocity in order to minimize the projected difference. The design of these

linguistic variables is shown in Table 4-4 and Figure 4-15.

Table 4-4 Vertical Velocity Difference

Vertical Velocity Difference
Delta Climb Rate (MIS) Slower Nil Faster

-10 1 0 0
-5 1 0 0
0 0 1 0
5 0 0 1
10 0 0 1

Delta Climb Rate (Meters/Sec)

Figure 4-15 Vertical Velocity Difference Graph
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4.4.6.1.4 Acceleration

Acceleration encompasses two linguistic variable, VerticalAcceleration and

TotalAcceleration. VerticalAcceleration describes the change in climb rate of the

Wingman while TotalAcceleration describes the change in airspeed. The design is shown

in Table 4-5 and Figure 4-16.

Table 4-5 Acceleration

Vertical Acceleration

Acceleration (M/SA2) Negative Nil Positive
-5 1 0 0
-2 1 0 0

-0.5 0.25 0 0
0 0 1 0

0.5 0 0 0.25
2 0 0 1
5 0 0 1

4-3
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4.4.6.1.5 Relative Airspeed

There are three airspeed linguistic variables. These are CurrentRelativeAirspeed,

ProjectedRelativeAirspeed, and ProjectedAirspeedDifference. The first two are the

current and projected airspeed differences between the Automated Wingman and the Lead

simulator. The projected airspeed difference is based on the velocities and acceleration

remaining at their current values for 5 to 15 seconds, depending on range. Projected

airspeed difference is the change in the Automated Wingman's airspeed relative to itself

over the next 5 to 15 seconds. The design is shown in Table 4-6 and Figure 4-17.

Table 4-6 Relative Airspeed

Current Relative Airspeed
Airspeed Difference (MS) Slower Nil Faster

-15 1 0 0
-10 1 0 0

0 0 1 0
10 0 0 1
15 0 0 1

...................................... ...... ..

0 . .............................

-15 -10 -5 0 5 10 15

Relative Airspeed (M~eterslSec)

Figure 4-17 Relative Airspeed Graph
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4.4.6.1.6 Relative Heading

The linguistic variable RelativeHeading describes the heading of the Lead

simulator relative to the heading of the Automated Wingman. In other words, it indicates

whether or not the two are traveling in the same direction. The design of RelativeHeading

is shown in Table 4-7 and Figure 4-18.

Table 4-7 Relative Heading

Relative Heading
Relative Heading (Deg) Nil Left Right Opposite

-180 0 0 0 1
-179 0 0 0 1
-90 0 1 0 0
0 1 0 0 0

90 0 0 1 0
179 0 0 0 1
180 0 0 0 1

-180 -009180

Relative Heading (Degrees)

Figure 4-18 Relative Heading Graph
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4.4.6.1.7 Range

The distance between the Automated Wingman and the Lead simulator, or new

position from the FuzzyPlanner, is described by the linguistic variable Range. The design

of Range is shown in Table 4-8 and Figure 4-19.

Table 4-8 Range

Range
Range (meters) Nil Close Far

0 1 0 0
1 1 0 0

50 0.505051 0 0
100 0 0.5 0
150 0 1 0
450 0 1 0
550 0 0 1
800 0 0 1

.

0
0240 600 800

Range (Meters)

Figure 4-19 Range Graph
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4.4.6.1.8 Lead Bearing

The direction in degrees of the lead simulator off the nose of the Automated

Wingman is known as the lead bearing. In the Automated Wingman, LeadBearing is the

linguistic variable that indicates where the lead simulator is in relation to the front of the

Wingman For example, if the lead simulator is 100 meters in front of and 100 meters to

the right of the Automated Wingman, then the lead bearing is 45 degrees The design of

LeadBearing is shown in Table 4-9 and Figure 4-20.

Table 4-9 LeadBearing

Lead Bearing

Bearing (Deg) Front Left Right Rear
-180 0 0 0 1
-179 0 0 0 1
-90 0 1 0 0
0 1 0 0 0

90 0 0 1 0
179 0 0 0 1
180 0 0 0 1

.... ......,... ... ..... ,. ..... ,..... . .. .., .... . ..... .. ... . . . . .. . . .. . . . .. . . . .. . .

-180 -009 8
Lead Bearing

Figure 4-20 LeadBearing Graph
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4.4.6.1.9 Bank Angle

The final linguistic variable is BankAngle. BankAngle describes the amount and

direction of the current bank. The Automated Wingman can bank left or right or fly level.

These are reflected in the design of BankAngle shown in Table 4-10 and Figure 4-21.

Table 4-10 BankAngle

Bank Angle
Bank Left None Right
-180 0 0 0
-179 0 0 0
-90 1 0 0
-89 0.988764 0 0
-1 0 0.988764 0
0 0 1 0
1 0 0.988764 0

89 0 0 0.988764
90 0 0 1
179 0 0 0
180 0 0 0

..................:............ ...................... ........... ........

a-:

-180 -009180

Figure 4-21 BankAngle Graph
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4.4.6.2 Production Rule Design

There as three axis of control for the FlightControl knowledgebase. These are

altitude, heading, and thrust. Using the linguistic variables designed in 4.4.6.1, I have

designed production rule graphs for each of these axes of control. These rule graphs show

how the linguistic variables combine to describe the state of the Automated Wingman

along each axis and the correct action that the wingman should take. Each design is

presented in this section

4.4.6.2.1 Altitude

Altitude is controlled in the FlightControl module of the FuzzyPilot and is

described in terms of two linguistic variables, ClimbRate and ElevatorDeflection. The first

describes the climb rate of the aircraft required to achieve the desired altitude. It

considers the current altitude relative to the desired altitude and what the altitude

difference will be at some time in the future given the current velocities and accelerations.

ElevatorDeflection describes the change in elevator setting required to achieve the climb

rate described above. Each of these relies on several linguistic variable in determining the

appropriate value.

The Climb Rate Rule Graph is shown in Figure 4-22. Each of the bubbles

represents a linguistic variable describing a quantity relevant to climb rate. The

FlightControls module determines values for all these linguistic variables and then

navigates this graph to determine the value for ClimbRate. For example, at the top of the

graph the current value of AttachMode (see Figure 5-2) is checked. If AttachMode is
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"Attached" then check the linguistic variable "CurrentRelativeAltitude". If that is "Nil"

then check the VerticalVelocityDifference. If that is "Nil" also, then check the

ProjectedRelativeAltitude. A "Nil" there means maintain the current vertical velocity

(climb rate). That is the "crisp" path. All these linguistic variables are fuzzy, and

therefore, there may be other paths that apply but have less weight. This will "spread" the

value of ClimbRate out so that it may encompass all five term sets, Decrease, Dip,

Maintain, Bump, and Increase. In fact, in general, all five term sets will apply to some

degree but most will apply to zero degree. The flexibility of the degree to which a term

set describes the linguistic variable provides the power of this mechanism of reasoning.

The ElevatorDeflection linguistic variable operates in a manner similar to the

ClimbRate linguistic variable. Its rule graph is shown in Figure 4-23. It uses the

VerticalVelocity linguistic variable, a synonym for ClimbRate, to determine what action

should be taken with the elevator control. At the top of the graph is the VerticalVelocity

linguistic variable and its term sets, which lead down differing paths. Once again, all paths

that apply to a degree greater than zero are activated. This leads to five term sets for the

linguistic variable Elevator Deflection, Down, NudgeDown, Nil, NudgeUp, and Up. Once

all the paths have been activated, the value of ElevatorDeflection is defuzzified to produce

a single value that represents the amount of change required for the stick. That single

value incorporates all the term sets that applied in every linguistic variable considered.

Therefore, no information was ignored and a better decision results.
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4.4.6.2.2 Heading

Like altitude, heading is also controlled by linguistic variables. It is very similar to

the process shown above and, hence, will not be discussed further.

4.4.6.2.3 Airspeed

Airspeed is another quantity of the FlightControl module that is determined by

using linguistic variables. However, airspeed is different because the throttle is not the

only input into its determination. It also relies on the afterburner and speedbrake. For this

reason, there are three rule graphs for airspeed, as shown in Figure 4-24, Figure 4-25, and

Figure 4-26. The airspeed rule graph generates the airspeed goal, which is used by the

throttle and afterburner/speedbrake rule graphs. This layering of linguistic variables shows

how one goal can be used to control several output variables

Figure 4-24 shows the rule graph used to develop the airspeed goal. Six separate

linguistic variables are factored into the airspeed goal. Theses are described in Table 4-11.

After reasoning with the fuzzy value from each of these linguistic variables, a fuzzy goal is

calculated. Five term sets have been designed into the Airspeed Goal linguistic variable,

each representing a possible goal. These are Decrease, Dip, Maintain, Bump, and

Increase. As with the Vertical Velocity Goal, the airspeed goal is a fuzzy value and

several of these term sets may apply to some degree. This could be defuzzified into one

goal. However, that would discard information about the overall goal and be a less

desirable response. Therefore, this fuzziness will be carried over into the decisions to be

made about the throttle, afterburner, and speedbrake.
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Table 4-11 Linguistic Variables Used to Determine the Airspeed Goal
Linguistic
Variable Description

Attach Mode Describes whether or not the Automated Wingman is flying in
formation

Relative Heading The heading of the Lead with respect to the heading of the
Automated Wingman

Range The distance to the Lead from the Wingman

Current Relative The Leads airspeed with respect to Automated Wingman, described
Airspeed as a scalar quantity

Lead Bearing Direction of the Lead off the Wingman's nose.

Projected Relative The Lead's projected airspeed relative to the Automated Wingman's
Airspeed projected airspeed at 5 to 15 seconds in the future.

Relige Seacling

Airpeed l Airspd ol irpeeCool Air GoalAl ispeC

Figure 4-24 Airspeed Rule Graph
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Once the Airspeed Goal has been set, it is used to determine the appropriate

change to the throttle ,as shown in Figure 4-25, and to the afterburner and speedbrake,

Figure 4-26. The throttle rule graph shows the linguistics variables considered in the

decision about how to change the throttle setting. Again, several linguistic variables are

factored into the decision for each of the throttle, the afterburner and the speedbrake. The

linguistic variables used to determine the new throttle setting are described in Table 4-12

and those for the afterburner and speedbrake in Table 4-13. The speedbrake and

afterburner graphs are a little different from the others. Instead of representing fuzzy

quantities, the afterburner and speedbrake are either on or off, i.e., they are crisp.

Therefore, there is no defuzzification. This shows the necessity of choosing a fuzzy expert

system shell that is capable of non-fuzzy reasoning.

Table 4-12 Linguistic Variables used to Determine the Change in Throttle

Linguistic
Variable Description

Airspeed Goal What action to take with the airspeed
Vertical Velocity How fast is the airplane climbing or diving

Projected Airspeed Given the current velocities and accelerations, what will be the
Difference change in airspeed in the next 5 to 15 seconds.

Table 4-13 Linguistic Variables Used to Determine the Afterburner and Speedbrake
Settings

Linguistic
Variable Description

Projected Airspeed Given the current velocities and accelerations, what will be the

Difference change in airspeed in the next 5 to 15 seconds.
Range The distance to the Lead from the Wingman

Throttle Setting The current throttle setting (must be > 0.95 for afterburner to be on)
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Figure 4-25 Throttle Delta Rule Graph

4-43



Spcmped Goale

Figure 4-26 Afterburner and speedbrake Rule Graph

4.5 Voice Command Enumeration

The Automated Wingman is a semi-automated force and will accept control

commands from the pilot of the lead simulator. However, the Automated Wingman

cannot interpret all English language commands. Therefore, a command set must be

developed to provide a set interface between the pilot and the Automated Wingman. This

section describes that interface, including the command structure and vocabulary.

In keeping with true military style, I intend to use a two step command process.

The first step is called the preparatory command and the second is the action command.

The preparatory command conveys all the information that the subordinate needs to know

about the command while the action command instructs him to execute. Consider the

command "Forward, March! ". The command "Forward" is the preparatory command. It

tells subordinates that they are about to move forward. They do not execute at this time.

Executing now would lead to haphazard starts and uncoordinated movement. Instead, the

subordinates wait for the execution portion of the command. This provides a common,
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coordinated point at which to begin the execution of the command. The same will be true

of the commands used to control the Automated Wingman. I have chosen this command

structure to allow for commands of variable length. This way, the leader can convey all

the information about the command to the wingman before the wingman goes out and

executes any portion of the command. This gives the leader the opportunity to correct

himself or change the command before execution.

In order to understand how this structure will work it is necessary to know the

command vocabulary. Table 4-14 and Table 4-15 describe the enumeration of voice

commands to be used in the Automated Wingman project.

4-45



Table 4-14 Enumerated Preparatory Commands

Enumerate Maneuvers Enumerated Modifiers
010 Dive 130 Steep
011 Climb 131 Shallow
012 Bank 132 Hard
013 Roll 133 Easy
014 Altitude Flight Level 134 Fast
015 Airspeed Speed 135 Slow
016 Heading 136 Tight I Tightly
017 Orbit 137 Loose Loosely
018 Strafe Enumerated Target Designators
019 Engage 200 Bearing
020 Evade 201 Designate
021 Slot Formation 202 Aircraft I Fighter I Bomber I Target
022 Wedge Formation 210 Bogeyl
Enumerated Directions 211 Bogey2
100 North 212 Bogey3
101 Northwest 213 Bogey4
102 East 214 Bogey5
103 Southeast 215 Bogey6
104 South 216 Bogey7
105 South West 217 Bogey7
106 West 218 Bogey8
107 Northwest 219 Bogey9
108 Up
109 Down
110 Right I Starboard
111 Left I Port I Port-side

Table 4-15 Enumerated Action Commands

001 Break I Now I Go
255 Reset

Numbers will be transmitted as numbers.
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Using the command structure described above and the vocabulary note that we can

support complex commands such as

"Bank Hard Right, Now"
"Climb to Flight Level 250, Break" (Note: FL250 is Altitude 25000 ft)
"Designate Target Bearing 037, Flight Level 300 as Bogeyl, Break"
"Bank Right, No, Reset, Reset, Evade, Go!"

This will provide the Automated Wingman with a robust capability to support a wide

variety of corimands.

4.6 Coordinate Systems

The last topic to be covered in this chapter is coordinate systems. The Automated

Wingman contains four separate, but related, coordinate system, in which the motion of

entities can be described (see Figure 4-27). This section discusses those coordinate

systems and the design of the objects that converts between them.

4.6.1 DIS Coordinates

The DIS standard calls for all entity information to be specified in a round earth

coordinate system called WGS-84. In the WGS-84 coordinate system the origin is at the

center of the earth, the x-axis passes through the prime meridian at the equator, the y-axis

passes through 90 0 east longitude at the equator, and the z-axis through the north pole

[IEEE94]. This coordinate system allows an entity to be placed anywhere in the world

and can support large operations. It is a universal coordinate system based on standards

already in place. Therefore, it was selected as the DIS standard coordinate system.
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Figure 4-27 Coordinate Systems

4.6.2 Flat Earth Systems

Round earth models, such as WGS-84, are very convenient for locating battlefields

all around the earth, but make for very large-valued coordinates once the battlefield has

been placed. This large-valued coordinate system may cause a loss of precision in the

local area of the battle. For that reason, WGS-84 is often not used within simulators.

Instead, a local flat earth coordinate system is defined with the origin at a point specified

in round earth coordinates. Angles are then used to measure the axes alignment of the

two coordinate systems. Since the origin of the new coordinate system is nearby,

coordinate values are not large enough make precision an issue. However, conversions

are necessary in order to rhake these flat earth entities DIS compliant.
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There are two possible orientations of a flat earth coordinate system, called NED

and ENV. NED coordinate systems are those with their x-axis oriented to the north, y-

axis to the east, and, by right-hand rule, their z-axis down. Hence, they are called NED

for North, East, and Down. However, a more intuitive system is one in which the z-axis is

positive in the up direction, so another orientation is sometimes used. In this alternative

system, the x-axis points east, the y-axis points north, and the z-axis points vertical, or up.

These are called ENV coordinate systems. Both ENV and NED can be used to perform

the same function, but one must be careful to know which coordinate system is being

used.

The Automated Wingman uses both systems. This is an artifact of the conversion

of the VC aerodynamics model and supporting utilities. The aerodynamics model assumes

an NED flat earth coordinate system while SGI's Performer library requires an ENV one.

Therefore, both exist in the VC and the Automated Wingman, requiring care to be

exercised when dealing with coordinate systems. At some point, the ENV coordinate

system should be removed from the Automated Wingman, eliminating some of the

troubling coordinate system issues in this project.

4.6.3 Aircraft Body Coordinates

The last coordinate system used in the Automated Wingman is the Aircraft Body

Coordinate (ABC) system. The ABC system defines the x-axis to be pointing out the

nose, the y-axis out the right wing, and the z-axis out the bottom. This is always true,

regardless of the orientation of the airplane within the environment. A set of angles, called

euler angles, are used to describe the orientation of the ABC system within the flat earth
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system. Using these euler angles, any coordinate within the ABC can be transformed into

the flat earth coordinate system.

4.6.4 Conversion Objects

The Automated Wingman uses two objects to make conversions between the

various different coordinate systems. The first, borrowed from the AFIT VC, is called the

RoundEarthUtilities object. It converts coordinates, vectors, and euler angles between the

WGS-84 coordinate system and the flat earth ENV coordinate system. Although this

object was extensively re-implemented to eliminate machine dependence, the basic design

was not changed in order to maintain as much commonality between the VC and the

Automated Wingman as possible. Thus, the ENV coordinate system was incorporated

into the Automated Wingman. The RoundEarthUtilities object is capable of converting in

both directions and is used extensively throughout the Automated Wingman.

The second object, the quaternion object, is used to transform the ABC system

into flat earth NED. NED is then converted to ENV by swapping x and y values and

negating z. Quaternions provide an efficient mechanism for incrementally updating a

rotation matrix [SHOE93] which converts ABC system coordinates to flat earth NED.

Hence, Cooke used them to convert the output of his aerodynamics model into flat earth

NED coordinates [COOK89]. Therefore, the Automated Wingman uses the quaternion

object to make conversions between the aircraft body and flat earth NED coordinate

systems.
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4.6.5 Summary

Figure 4-27 summarizes the coordinate systems used in the Automated Wingman

and shows how they are converted. A future redesign would be to create an object that

converts flat earth NED to round earth without first converting to flat earth ENV. The

redesign would save precious clock cycles and make the system more comprehensible.

4.7 Conclusion

This chapter has examined the design issues involved in developing the Automated

Wingman. It covered the basic architecture and showed how it is designed to provide an

interface between the DIS objects, the Airplane object and the FuzzyPilot object. Next,

the two main objects of the Automated Wingman were examined. The Airplane object

provides the flight dynamics and capabilities of an airplane while the FuzzyPilot provides

the intelligence that imitates a human pilot. Then, the design of the fuzzy expert system

was explored. The knowledgebase hierarchy and several of the linguistic variable designs

were shown to demonstrate how the FuzzyPilot uses information to determine what action

should be taken next. Furthermore, the design of the voice command set was shown.

This included an enumeration of commands and explained how they are to be used.

Finally, a discussion of the various coordinate systems used by the Automated Wingman

was presented. All these concepts have been brought together in the Automated

Wingman to create a realistic computer generated semi-automated entity for use in

distributed simulations.
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5. Implementation

5.1 Introduction

This chapter discusses the details of the implementation of the Automated

Wingman. I begin with an explanation for choosing C++ as the implementation language.

Next, I detail some of the classes that I developed to hold key data components, called

container classes. Then, I discuss the rationale for choosing FuzzyCLIPS as the fuzzy

expert system shell, as well as the interface between the Automated Wingman and

FuzzyCLIPS. Particular interest paid to data structure issues between C++ and

FuzzyCLIPS. Following the discussion of FuzzyCLIPS, I present some examples of how

the linguistic variable and production rule designs from Chapter 4 are transformed into

FuzzyCLIPS constructs. Finally, I conclude this chapter with an overall assessment of the

implementation and indicate some of the areas left for further development.

5.2 Language Considerations

When it came to selecting a language for implementing the Automated Wingman,

there were basically two choices, C++ and Ada. Both are object oriented and support the

class structure shown in Figure 4-3. Ada is the DoD standard language and is gaining

widespread support. However, C++ is an industry standard and, as such, is supported by

many companies selling compilers and other development tools. C++ is also favored for

research because of its flexibility and the fact that it interfaces naturally with the Unix

operating system used on the class of workstations for which the Automated Wingman is
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designed. Add the fact that nearly all of the fuzzy inferencing tools I found were C or

C++ based and the fact that the Object Manager DIS interface is written in C++, then C++

became the obvious choice for the implementation language. Choosing Ada or any other

language would have required a tremendous effort to duplicate the tools that already exist

in C++. Therefore, I chose to implement the Automated Wingman in the C++

programming language.

5.3 Container Classes

In the design phase the software analyst assumes the existence of data structures

that, in practice, may not actually exist. This abstraction helps the analyst to see the "big

picture" and not get bogged down in the details of a particular programming paradigm.

However, when the programmer encounters these data structures, he must decide how to

implement them without departing from the design. In object-oriented programming these

data structures are usually made into objects called container classes [RUMB91]. These

container classes form the basis of the rest of the implementation.

The Automated Wingman uses three container classes, shown in Figure 5-1. The

Matrix class has two subclasses, HMatrix3D and HVector3D. The Matrix and

Quaternion classes each hold data to be operated on and are therefore implementations of

the data structures used in Chapter 4. RoundEarth Utilities, on the other hand, is a

container class for coordinate system conversions. This section provides the details of

these classes.
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Figure 5-1 Container Classes Used in the Automated Wingman

One feature that each of these container classes have in common is that they have

been developed using templates. Templates are a C++ construct that allow the developer

to abstract away the specific data type, such as int or float, and deal with just the

operations themselves. Accordingly, the programmer creates a template of the class that

tells the compiler how the data objects are to be manipulated. When the programmer

wants to use the class, he instantiates it with a specific data type. The compiler then

creates the actual code, complete with types, based on the class template provided by the

programmer. Templates are a powerful and convenient way to implement container

classes that perform the same functions without regard to the type of data being stored. I

have therefore used them in the implementation of the container classes for the Automated

Wingman.
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5.3.1 The Matrix Class

The Matrix class provides a data structure for holding matrices of various sizes,

controlled by the attributes RowSize and ColumnSize. There are several methods, such as

Transpose and Inverse, and operators, like "+, "-", and "[]", designed to allow the

matrices to be manipulated. Although the class was originally created by Capt Jim

Russell, I have made extensive modifications to eliminate compiler warnings and to

improve functionality. Once I had the Matrix class, I was able to proceed to the container

classes that the Automated Wingman really requires.

The first subclass, HMatrix3D, implements a three-dimensional homogenous

matrix. A three dimensional homogenous matrix is a 4 x 4 matrix used for rotating and

transforming coordinate systems. Since the Automated Wingman uses several coordinate

systems, it requires the ability to store matrices that can perform coordinate system

transformations. This class includes methods to generate rotation and translation matrices

as well as a method to extract euler angles from a direction cosine matrix. It also inherits

all the methods of the Matrix base class, although some are overloaded (not shown in the

figure) to take advantage of the fact that an HMatrix3D object is of known size. The

primary difference between a Matrix object and an HMatrix3D object is that the

HMatrix3D object is constrained to be a 4 x 4 matrix while the Matrix object can be of

any dimension.

The second subclass is the HVector3D class. An HVector3D object is either a 4 x

1 column vector or a 1 x 4 row vector. The orientation is indicated by the attribute

"Orientation", which can take on the value "Row" of "Column". An HVector3D can
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describe either a point in 3-space or a vector as indicated by the "Type" attribute. If the

object is a point then the last element is 0, otherwise, it is 1. Like HMatrix3D, HVector3D

inherits all the attributes and methods of the Matrix class. It also adds methods used with

vectors such as distance, which is the vector distance between two vector objects, and

direction, which returns a unit vector in the direction of the object. HVector3D provides

the functions necessary to manipulate points and vectors within the various coordinate

systems used in the Automated Wingman.

5.3.2 The Quaternion Class

The purpose of a quaternion was described in Chapter 4. Figure 5-1 shows how

the quaternion class is implemented. The quaternion itself is stored as a four element

array. The first method incrementally updates the quaternion with the changes in angular

velocity of the Automated Wingman. The second method generates a rotation matrix

from the quaternion. The last method allows the programmer to set two quaternions

equal to each other and is provided for the cockpit switching capability implemented by

Schneider in [SCHN95]. Like the Matrix class, the Quaternion class has been

implemented as a template.

5.3.3 The RoundEarthUtilities Class

The last container class designed for the Automated Wingman does not store data.

Instead, it implements conversions between the WGS-84 round earth coordinate system

and the ENV flat earth coordinate system (see chapter 4). The class is called

RoundEarth Utilities. It is based on a class by the same name developed by Gerhard and

Erichsen [ERIC93]. However, that class used matrix and vector functions from the SGI
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Performer libraries to create and manipulate coordinate system transformations. The

implementation developed for the Automated Wingman eliminates these dependencies,

using the HMatrix3D and HVector3D classes instead. An excellent description of the

original class can be found in [ERIC93]. Since the Automated Wingman's

RoundEarth Utilities class represents a re-implementation of the original design, the reader

is referred to [ERIC93] for further information.

5.4 FuzzyCLIPS

This section discusses FuzzyCLIPS, the fuzzy expert system shell chosen for this

project. The rationale for choosing FuzzyCLIPS is discussed, as well as some

implementation objects that organize the data and help with the C++/FuzzyCLIPS

interface. Although FuzzyCLIPS is the best choice available for this project, there were

still some issues that had to be dealt with. The first of these is the fact that the Automated

Wingman is written in C++ and FuzzyCLIPS is written in C. Second, FuzzyCLIPS was

designed as a standalone program. A programming interface was added to improve the

functionality of FuzzyCLIPS, but it is not easy to use. Both of these required special

attention in the implementation of the Automated Wingman.

5.4.1 Rationale

FuzzyCLIPS was chosen as the fuzzy expert system shell for several reasons. The

first reason is that it is based on a widely known expert system shell called CLIPS. CLIPS

is a project of NASA that has been ongoing for many years. There is a great deal of

information available about CLIPS and its capabilities, as well as its limitations, are well
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understood. As a long-term project, CLIPS is reasonably mature and it includes many

advanced features, such as Rete pattern matching [GIAR94], not found in some other

implementations of expert system shells. FuzzyCLIPS is an extension of CLIPS. It

maintains all of the capabilities of the original, non-fuzzy, version but it adds the capability

to represent fuzzy concepts. Hence, all the literature about CLIPS applies to

FuzzyCLIPS.

The second reason that FuzzyCLIPS was chosen is that, like CLIPS, it is C based

and has a C language interface. Since I had already selected C++ as my development

language, choosing a C based system made sense. There are other fuzzy expert system

shells written in C and C++; however, most lack either the sophistication or the

capabilities provided by FuzzyCLIPS. Therefore, FuzzyCLIPS was an appropriate choice.

Finally, FuzzyCLIPS is available free of charge. That meant that I could easily

obtain it and begin development immediately. For these three reasons, FuzzyCLIPS

became the fuzzy expert system shell for the Automated Wingman.

5.4.2 Implementation Objects

FuzzyCLIPS supports an object-oriented language called COOL (CLIPS Object-

Oriented Language). COOL allowed me to create objects within FuzzyCLIPS that helped

organize the data and streamline the C++/CLIPS interface. The objects I created are

described in this section.

5.4.2.1 The Airplane Object

The FuzzyCLIPS Airplane object is an abstract object with two concrete

subclasses, Wingman and Lead. The object model is shown in Figure 5-2. When placed

5-7



on the FuzzyCLIPS fact list, this structure holds information about both the Automated

Wingman and the lead simulator. Modules can access this information in order to apply it

in the reasoning process. This information is updated every time the decision loop is

entered.

Airplane
Position
EulerAngles

Velocities
Accelerations
Airspeed
TotalAcceleration

Wingman Lead

AttachMode

Figure 5-2 Airplane Object within CLIPS

5.4.2.2 The FlightControl Object

In addition to accessing the Wingman and Lead objects shown in Figure 5-2, the

FlightControls module also has a private object, the FlightControls object. The

FlightControls object, shown in Figure 5-3, contains the current setting for the TAS,

afterburner and speedbrake. The FuzzyCLIPS FlightControls module stores the new

control information in this object, while the C++ FlightControl class accesses it to get the

FlightControls

Aileron
Elevator
Rudder
Throttle
AfterBurner
Speedbrake

Figure 5-3 The FlightControls Object
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new TAS settings from FuzzyCLIPS. Therefore, this object acts as an interface between

the expert system and the underlying architecture of the Automated Wingman.

5.4.3 Language Issues

As mentioned above, FuzzyCLIPS is a standalone program written in C. This

means that it is not object-oriented nor is it a library. In order to imbed FuzzyCLIPS into

the Automated Wingman, I had to recompile and link FuzzyCLIPS as a library. CLIPS

was designed to do this and the fuzzy extensions in FuzzyCLIPS do nothing to interfere

with this. However, there are several switches in the "setup.h" file that had to be changed

[JSC93b] as well as modifying the Makefile that came with FuzzyCLIPS. I compiled

FuzzyCLIPS into a library called "libFzCLIPS.a". This file, and the Makefile that built it,

can be found in "-medwards/thesis/fzclips" on the SGI systems.

FuzzyCLIPS provides a header file, called "clips.h", that declares all of the

functions found in the user interface. This had to be included in the compilation units that

required access to FuzzyCLIPS. Two problems arose from this. The first was with

naming conventions. FuzzyCLIPS does not use distinctive variable names that other

programmers are not likely to use (such as appending -CLIPS or a couple of

underscores), so, a few name collisions occurred. These were solved by ensuring that the

colliding types were never used in the same compilation unit. The second problem was

with interfacing C with C++. In order to support method overloading, C++ uses a process

called name-mangling, which adds characters to the method names of a class. These

characters are based on the function's formal parameter list. Thus, two functions with

identical names but different parameters are represented differently in C++. However, C
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does not support name-mangling. Therefore, the C++ compiler must be informed when a

particular section of code that is not name-mangled is included in a C++ source file. This

is done with the 'extern "C" { }' construct. Whenever the "clips.h" file is included, it is

wrapped in this construct so that the C++ compiler can work with it.

5.4.4 Programming Interface

The FuzzyCLIPS programming interface, which is based on the CLIPS interface in

[JSC93b], is very cumbersome. This is because CLIPS treats all data as objects, even

numbers and characters. For example, if a CLIPS variable is set to the value "3", a "3"

object is created, placed in memory, and the variable set to point at it. Other CLIPS

variables with the value "3" will also point to that object. This is efficient if large numbers

of variables are set to "3", and is particularly useful for speeding up the pattern matching

used by the Rete algorithm [GIAR94]. However, this means that CLIPS manages its own

memory and that the data structures used by CLIPS are non-standard. Therefore, moving

data into CLIPS, hence FuzzyCLIPS, requires the use of special functions. Additionally, it

means that data in the Automated Wingman must be "loaded" into FuzzyCLIPS and the

results must be "read out" from FuzzyCLIPS. These functions are provided by the

programming interface but are difficult to use.

The Automated Wingman uses FuzzyCLIPS objects to transfer data between the

basic architecture and the FuzzyCLIPS fact list. This is because it is difficult for the basic

architecture to find the address of an asserted FuzzyCLIPS fact, such as the result of a

reasoning cycle. Objects, on the other hand, can be created by the basic architecture,

which stores the object's memory address, and accessed whenever needed. This allows
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the basic architecture to place data into FuzzyCLIPS objects, instruct FuzzyCLIPS to

"run", and then read the result from FuzzyCLIPS as long the rulebase puts the result back

into an object. This is precisely how the Automated Wingman interface to FuzzyCLIPS

was implemented. The Automated Wingman, through the FlightControls class, creates

three objects: the Wingman object, the Lead object (see fig 4-10), and the FlightControls

object (see fig 4-11). Data from the Automated Wingman is placed into the first two of

these objects. Other data, such as the lookahead period used for the linguistic variables

projected into the future, are also placed on the FuzzyCLIPS fact list. The FlightControls

class then issues the FuzzyCLIPS "run" command. When the "run' command completes,

the rulebase has placed the new TAS settings into the FuzzyCLIPS FlightControls object.

The Automated Wingman reads these values out, places them into the Control class, and

then executes the Aeromodel with the new TAS settings as input. Clearly, it is a

cumbersome interface. However, with a good deal of effort, it has been made to work for

the Automated Wingman.

5.5 FlightControl Knowledgebase

Chapter 4 presented the design of the FlightControl knowledgebase. All of the

linguistic variable designs were shown in tables and figures, as well as the design of the

production rules. However, these must be transformed into FuzzyCLIPS constructs at

implementation time. This section explains how that is accomplished.

FuzzyCLIPS supports a construct called deftemplates in which linguistic variables

can be represented. The general structure of a fuzzy deftemplate is:
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(deftemplate <TemplateName> ["comment"]
<from> <to> [<units>] ; universe of discourse
(

(<TermSetName> <description of fuzzy set>)

)
)

where:

<TemplateName> is the name of the linguistic variable
<from> is the start of the interval over which the linguistic variable is defined
<to> is the end of the interval over which the linguistic variable is defined
<units> is the units of the interval [optional]
<TermSetName> is the name of the term set being defined
<description of fuzzy set> is a fuzzy set specification (see [KSL94])

For example, the FuzzyCLIPS implementation of the CurrentRelativeAltitude linguistic

variable is:

(deftemplate CurrentRelativeAltitude
-20000 20000 Meters
(

(Lower (-50 1)(-30 0))
(Nil (-50 0)( 0 1)(50 0))
(Higher (30 0)( 50 1))

)

Similarly, the production rule graphs from chapter 4 must be implemented. The

format of a FuzzyCLIPS rule is given in [KSL94] and is very similar to the format of a

CLIPS rule [GIAR94] [JSC93a]. The only difference is the inclusion of Certainty Factors

in FuzzyCLIPS rules, which are not used in this implementation of the Automated

Wingman. As an example, a rule derived from the Vertical Velocity Rule Graph (Figure

4-22) is shown below.
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(defrule InThePocket
(object (is-a WINGMAN)

(AttachMode Attached))
(CurrentRelativeAltitude Nil)
(VerticalVelocityDifference Nil)
(Proj ectedRelativeAltitude Nil)

(assert (VerticalVelocityGoal Maintain))

This rule is developed by following path in Figure 4-22 that goes straight down the

middle of the figure. From these two examples, it is easy to see that the implementation of

the design presented in Chapter 4 is straight-forward.

5.6 Future Work

This is the initial version of the Automated Wingman. Accordingly, a great deal

effort was put into creating a design that could be extended and added to without major

modifications to the underlying structure. I attempted to identify, separate, and

modularize the functions required to fly an airplane. I believe that I was successful in this

endeavor. I also implemented basic flight control using fuzzy logic. It is a low level of

implementation, but it works. However, the Automated Wingman must be developed

much further before it can be included in a distributed simulation.

This version of the Automated Wingman implements a basic flight control package

using fuzzy logic. These flight controls can fly the airplane along a route given by a series

of points, called "fly-to-point" operation. However, this is the lowest level of control and

works best when the Automated Wingman is attempting to fly in formation with a lead

aircraft simulator. Higher levels of control are needed to implement more complex

maneuvers and even higher levels to implement tactics. In addition, the current version of

5-13



the Automated Wingman has no weapons or ability to reason about what weapons should

be employed. For the Automated Wingman to be useful in DIS simulations, weapons,

maneuvers, and tactics must be added.

5.7 Conclusion

This chapter has discussed some of the details of the implementation of the

Automated Wingman. C++ was chosen as the implementation language in order to re-use

as much already written code as possible. The implementation details of the linguistic

variables and rule graphs shown in chapter 4 are presented along with representative

examples of each. Finally, two issues involved in integrating FuzzyCLIPS were discussed.

These are creating the FuzzyCLIPS library to embed into the Automated Wingman and a

discussion of the cumbersome, but functional, programming interface provided by

FuzzyCLIPS. Finally, suggestions for future work are presented. These are the

significant issues encountered in the implementation of the Automated Wingman.
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6. Results/Conclusions

This chapter describes the results of the Automated Wingman project. Particular

emphasis is placed on the fact that the fundamental design of the Automated Wingman is

itself a result. Also, the results of testing the flight control module are presented. First,

the design of the Automated Wingman is discussed. Next, data is presented to

demonstrate the effectiveness of the flight control module. From these results, I draw

conclusions about the project. Finally, I make some recommendations about work that

must be done before the Automated Wingman can be a viable entity in a distributed

simulation.

6.1 Results

This section describes the results obtained from this project. Specifically, it

discusses the flexibility and extendibility of the fundamental design and the results obtained

from the flight control module.

6.1.1 The Design

One of the results of the Automated Wingman is the fundamental design. My goal

was to achieve a flexible and extendible design that could serve the basis for future work

on the Automated Wingman. With the design presented in chapter 4, I have met this goal.

The flexibility of the Automated Wingman is a result of decomposing the problem into

two distinct parts, the FuzzyPilot and the Airplane. The expandability is provided by the
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clearly defined class interfaces and modular code, as well as by the choice of FuzzyCLIPS

as the reasoning tool. Both of these aspects are explained in this section.

The decomposition of the Automated Wingman into the FuzzyPilot and Airplane

objects maintains the separation between the distinct parts of the problem. This separation

allows the developer to view the problem in real world terms and work with domains that

are more familiar and in which experts exist. These domains are aircraft design and

capabilities, and flying a high performance jet fighter, which can, in turn, be decomposed

further into the domains presented in chapter 4. In the aircraft design domain, work is

already underway to replace the existing aerodynamics model with a better one. The goal

is to eventually have a library of different aerodynamics models, each representing a

different type of aircraft that can selected when the Automated Wingman is instantiated.

The weapons store is another example of an object that can be added to the aircraft

domain. The class structure devised for the Automated Wingman will facilitate these

efforts.

The fighter pilot domain is knowledge-based and uses the fuzzy expert system. It

represents the "human" portion of the Automated Wingman. As of this version of the

Automated Wingman, the pilot can fly his aircraft given a series of route points to fly

along. However, the fighter pilot domain can be developed through further knowledge

engineering efforts. This will result in the addition of more modules to the FuzzyPilot,

which the structure is designed to accommodate. Therefore, knowledge can be added to

the Automated Wingman without having to worry about improved aerodynamics models
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or how the Airplane object does its job. The design removes this concern from the

knowledge engineer making the Automated Wingman flexible.

The expandability of the Automated Wingman is also a result of the design. Since

the Automated Wingman is object-oriented, new objects can be identified and added

without restructuring the entire system. Most existing classes have methods allowing

internal data to be read. If required, additional methods can be added to any class without

impacting the overall structure. This expandability is essential if the Automated Wingman

is to fulfill the role of a believable semi-automated force.

FuzzyCLIPS also enhances the expandability of the Automated Wingman.

Knowledgebases can be modularized within FuzzyCLIPS to maintain their separation.

Therefore, it is possible, and desirable, to create new knowledgebase modules as new

reasoning capability is added. This modularity improves efficiency, eliminates collisions

between knowledgebases, and allows unrelated knowledgebases to be developed

independently. Also, certain data elements identified as global in scope can be made

available to all FuzzyCLIPS knowledgebase modules. This flexibility in knowledgebase

design and implementation greatly enhances the expandability of the FuzzyPilot and the

Automated Wingman as a whole.

6.1.2 Flight Control Results

Three axes of control were identified for implementation in the flight control

module, elevation, airspeed, and heading. These were decoupled as much as possible,

although airspeed and heading are related, so a complete separation was not possible.

Next, knowledgebases were designed and implemented to control the motion of the
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Automated Wingman along these axes. Then, these knowledge bases were tested and the

results graphed. This section presents those results.

The Automated Wingman was tested by using it as a wingman to an aircraft

created by the AFIT Gaggle generator and then tracking the performance of the

Automated Wingman over time in each of the three axes. The AFIT Gaggle generator is a

simple program whose purpose is to generate and broadcast DIS entities. Each entity in

the Gaggle is programmed to fly a particular route over the terrain. To test the

Automated Wingman, I devised a race-track style route where the Gaggle entity flies

straight for nearly the length of the terrain, turns, and then flies back. This repeats until

the Gaggle is terminated. With the Gaggle entity designated as the lead simulator, I ran

the Automated Wingman, which was programmed to output the time, its relative altitude,

airspeed, and heading. Representative results from these runs are presented in this section.

Figure 6-1 shows the results in the elevation axis. The goal was to maintain the
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Figure 6-1 Vertical Motion Analysis
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relative altitude within ±50 meters and the graph shows that this goal was satisfied. The

jaggedness of the graph is attributed to oscillations in the aerodynamics model due to

coordinate conversions. Smoothing the current model or implementing a new model

altogether will be required to remove these oscillations.

6.2 Conclusions

The original goals of the Automated Wingman were lofty. They were based on

assumptions about the re-usability of code from the ART Virtual Cockpit and the

availability of tools for the implementation of the voice control. Unfortunately, these

assumptions proved to be, at best, exaggerated and the implementation is not as robust as

originally intended. Still, this thesis has demonstrated the feasibility of a fuzzy logic based

semi-automated force. I have created a fundamental design that is flexible and ready to

serve as the foundation of future efforts on this project. My implementation has shown

that a hierarchy of fuzzy linguistic variables can be used to control a dynamic process,

such as an airplane. Therefore, I conclude that this thesis has successfully proven the

concept of a semi-automated force based on fuzzy logic.

This thesis has laid the groundwork for the Automated Wingman. It has provided

an underlying design structure that is open, flexible, and extendible. I have succeeded in

creating a design where the capabilities that can be added to the Automated Wingman are

limited only by imagination of the developer and processing power of available computers.

As more students develop the reasoning hierarchy, I have every reason to expect that the

Automated Wingman will successfully participate in distributed simulations and enhance

their training value.
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6.3 Recommendations

The Automated Wingman has tremendous potential to provide believable

computer generated semi-automated forces for distributed simulations. By exploiting the

capabilities of fuzzy logic, we can create simulation entities that attach themselves to other

entities and are indistinguishable from manned simulators. This can help make distributed

simulation a valid and cost-effective training tool. Therefore, development of the

Automated Wingman should be continued.

This thesis has been successful in providing the fundamental design and flight

control for the Automated Wingman. However, there is still much work to be done before

the Automated Wingman can fulfill its mission. If this project is thought of as a pyramid, I

have provided the base. The rest of the pyramid remains to be built. However, in my

hierarchical design, I have provided a blueprint that can be followed, or modified as

required, to fill-in the remaining portions of the Automated Wingman.

In order to fight in a distributed simulation, a weapons module must be added.

The Automated Wingman must be given a weapons store and the ability to determine

which weapon is appropriate for a given scenario. This implies that a weapons selection

knowledgebase is required. This knowledgebase must contain the information on the

capabilities of each available weapon, consider external factors such as the target type and

weather, and be able to select the appropriate weapon for the given situation. Once the

weapon is selected, the Automated Wingman must then know how to use it.

To employ the selected weapon, a tactics module must be developed. Tactics

govern how weapon systems are used. For any selected weapon, the tactics may be
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designed to position the aircraft in the correct place to launch the weapon or they may be

guidance on how and when to release the weapon. Either way, a complex series of

maneuvers will be required. The tactics knowledgebase must be capable of selecting the

appropriate maneuvers to put the aircraft in a position to maximize the effectiveness of the

chosen weapon. Therefore, a tactics knowledgebase needs to be added to make the

weapons useful.

Tactics are implemented by a series of maneuvers. Hence, a maneuver module is

required. This maneuver module can build upon the "fly-to-point" concept behind the

implementation of the flight control module or a different module can be included to

translate the maneuvers for use by the flight control module. This maneuver module must

include knowledge and state, and must be goal oriented in order to know when a given

maneuver is complete. The maneuver module is essential the for operation of the

Automated Wingman and should be the next area developed in this project.

Another module that is important to the operation of the Automated Wingman is

the voice interface. I had intended to implement this feature. However, the tools required

to do this were not available when I needed them. However, they will eventually be ready.

Once that happens, the Automated Wingman can be given the capability to receive and

respond to voice commands based on the design given in chapter 4, as was intended in the

original Automated Wingman concept.

A related feature is to have the Automated Wingman communicate with the lead

simulator. One of the key responsibilities of a real wingman is to watch for threats and

make recommendations to the lead. In order for the Automated Wingman to do this, it
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must have its own message generation capability. The Automated Wingman could then

track and analyze the environment and inform the lead when there is an imminent threat or

a better option than the one currently being pursued. This realistic behavior would greatly

enhance the believability of the Automated Wingman entity.

Each of these modules is necessary for the Automated Wingman to fulfill its

requirements. This thesis provides a design that can easily incorporate these modules, as

well as guide their development. However, in order to create a realistic SAF, this project

must continue. Clearly, there is more work to be done on the Automated Wingman before

it is ready to fly, fight, and win.
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