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Abstract

This thesis examines the relatively new theory of nonlinear control using state dependent

coe�cient factorizations to mimic linear state space systems. The control theory is a nonlinear

quadratic approach, analagous to linear quadratic regulation. All implementations examined in

this thesis are done strictly numerically.

This thesis is meant to provide a proof of concept for both satellite control and for an arti�cial

pancreas to regulate blood glucose levels in diabetics by automatic insulin injection. These simu-

lations represent only a �rst step towards practical use of the NQR method, and do not address

noise rejection or robustness issues.

xi



Applications of Nonlinear Control Using

the State-Dependent Riccati Equation

I. Introduction

1.1 Overview

The majority of control work presently done is based on linear methods and analysis. For

many dynamical systems, it is possible to linearize about a desired equilibrium and design a con-

troller about that equilibrium. This is e�ective as long as the perturbations away from the equi-

librium are small enough to be reasonably modelled by the linear system dynamics.

One of the most fundamental linear control synthesis methods is linear quadratic regulation

(LQR). This method uses a trade-o� between state deviations away from equilibrium and control

usage by relative weighting of the states and controls. This method is the basis for least squares

and Kalman �ltering. Control usage is assumed to be a function of the states. Assume we have

the following linear system in state space form

_x = Ax +Bu (1.1)

where A and B are matrices and x and u are vectors. LQR assumes that all states are available to

calculate the control needed. We then wish to choose our feedback control as

u = �Kx (1.2)

The system now behaves as if the dynamics were

_x = (A �BK)x (1.3)
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which is stable as long as (A� BK) has eigenvalues with negative real parts. Di�erent choices of

K with desired performance measures can be calculated using an algebraic Riccati equation (ARE)

with various state and control weighting. There are many more advanced methods of linear control

beyond LQR, but we will not be examining their nonlinear counterparts, if any, in this thesis.

Unfortunately, not all dynamical systems are handled well by linearized approximations. Since

linear quadratic regulation is well understood and established, it is only natural to try to extend the

LQR methods to regulate highly nonlinear systems. Based on the theory developed by Cloutier,

D'Souza, and Mracek [CDM95], a nonlinear system can be factored into a form which mimics state

space form. Analogous to linear methods there is a corresponding algebraic Riccati equation which

is now a function of the states, rather than a constant as in LQR. The positive semide�nite solution

of the Ricatti equation can be used to construct a stabilizing nonlinear feedback controller. This

method will be referred to as nonlinear quadratic regulation (NQR).

The original intention of this thesis was to examine linear mixed-norm control methods for

an arti�cial human pancreas. While attempting to linearize the biological dynamics of glucose and

other hormones, it was found that the linearized dynamics did not capture the important dynamics

of various states, the most important of these being glucose. For large external perturbations of

the system, the glucose state's response was insigni�cant. Since it is the most important state that

we wish to control through insulin injection, it appeared that linear control methods would not be

adequate.

The nonlinear methods of Cloutier, et al. were then applied to the nonlinear pancreas dy-

namics to create a glucose state regulator, with encouraging results. Because of the complexity

of the system, the control was implemented numerically. However, because of those complexities,

simpler satellite dynamics were also examined to provide insight and validity to the numerical

methods. While examining those simpler models, some valuable lessons were learned in numerical

implementation, which will also be presented.

1-2



Presently, gain scheduling is commonly used as a method to extend linear control to systems

which operate about many di�erent equilibria. Using one or more measured quantities as scheduling

variables, a di�erent linear control is chosen for the appropriate values of the scheduling variables.

From the arti�cial pancreas model we shall see that NQR can be implemented in a manner analogous

to gain scheduling.

1.2 Objectives

The objectives of this thesis are twofold:

1. Examine numerical implementation of nonlinear quadratic regulation.

2. Provide a proof of concept using NQR on problems with practical application.

We will examine a numerical approach to get an initial feel for the applicability of NQR to

certain problems. It is easily implemented in numerical simulations, plus alterations and permuta-

tions can be examined rather quickly. Analytical solutions for the problems we will examine can

be quite complex, and with each new permutation investigated, a new solution would have to be

found. The savings in time are more apparent when investigating nonlinear weights applied to the

states and controls.

For the second objective, we will investigate one problem that has been getting increased

attention lately. There is signi�cant interest in trying to establish an automatic control system

to regulate blood glucose levels in diabetics. Any such controller would be serving the role of an

arti�cial pancreas. Linear controllers have not had signi�cant success, partly due to the nonlinear

nature of the dynamics. This thesis will examine a nonlinear controller, which could behave in a

more natural manner than previously proposed nonlinear controllers.

This thesis also investigates NQR as applied to satellite control. Although there are many

su�cient control schemes already in use, this investigation helps con�rm the validity of the NQR
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methodology, and could possibly provide more alternatives with di�erent behaviors than current

controllers.

1.3 Outline

Chapter II introduces the necessary theory from Cloutier, et al. In addition to the basic fun-

damentals of nonlinear quadratic regulation, optimality conditions and nonlinear state estimation

theory are also presented for completeness. Because the implementation of NQR examined in this

thesis is strictly numerical, Chapter III covers those numerical issues. It covers both how to choose

a factorization suitable for numerical simulation, and how the simulations were implemented.

Chapters IV through VI examine nonlinear quadratic control of di�erent satellite models.

The dynamics are developed in Chapter IV for both externally and internally controlled satellites.

Chapter V uses a basic satellite model to examine the issues in choosing di�erent factorizations

to represent the nonlinear system. Chapter VI looks at the applicability and e�ectiveness of NQR

applied to more realistic satellite problems.

The next system examined is that of an arti�cial pancreas. There is current interest in

developing automatic feedback controllers for the control of diabetes, which would both be safe and

reduce the health risks associated with elevated glucose levels. Chapter VII presents the model

developed by Naylor, Hodel, and Schumacher [NHS95]. The results of various implementation

strategies are presented in Chapter VIII.

Conclusions and directions for follow-on work are given in Chapter IX. The appendices give

additional information, including the MATLAB scripts of the nonlinear dynamics and controllers

given in Appendix A. Appendix B presents the derivation on how the seven state externally

controlled satellite model can be reduced to six states, to form a completely controllable problem.
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II. Background Theory

This chapter presents the background theory of nonlinear regulation as developed by Cloutier,

D'Souza, and Mracek [CDM95]. Speci�cally, the method involves �nding a state-dependent coe�-

cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed.

The following development is taken with only very minor modi�cation from Cloutier, et al.

2.1 The Nonlinear Regulator Problem

We shall be considering the quadratic in�nite-horizon cost function of the form

minimize J =
1

2

Z 1
t0

�
xTQ(x)x+ uTR(x)u

�
dt (2.1)

subject to the nonlinear di�erential constraint

_x = f(x) + B(x)u (2.2)

given state x 2 Rn, control u 2 Rm; f(x) 2 Ck; B(x) 2 Ck and Q(x) = HT (x)H(x) � 0, and

R(x) > 0 for all x. We seek stabilizing solutions of the form

u = �K(x)x (2.3)

which should be familiar from linear quadratic theory except that the matrices Q, R, and K all

have elements that are functions of x.
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2.2 State Dependent Coe�cient Form

The constraint dynamics, Eqn. (2.2), can be written with a linear structure having state

dependent coe�cients

_x = A(x)x +B(x)u (2.4)

so that

f(x) = A(x)x (2.5)

The following de�nitions are associated with the SDC form:

De�nition: A(x) is an observable parameterization of the nonlinear system if the pair fH(x); A(x)g

is observable for all x.

De�nition: A(x) is a controllable parameterization of the nonlinear system if the pair fA(x); B(x)g

is controllable for all x.

De�nition: A(x) is a detectable parameterization of the nonlinear system if the pair fH(x); A(x)g

is detectable for all x.

De�nition: A(x) is a stabilizable parameterization of the nonlinear system if the pair fA(x); B(x)g

is stabilizable for all x.

2.3 State-Dependent Riccati Equation Technique

Associated with the nonlinear quadratic cost function is the state-dependent algebraic Riccati

equation (SDARE):

AT (x)P (x) + P (x)A(x)� P (x)B(x)R�1(x)BT (x)P (x) + Q(x) = 0 (2.6)
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Accepting only P (x) � 0, we can construct the nonlinear feedback control by

u = �R�1(x)BT (x)P (x)x (2.7)

These equations can be solved analytically to produce an equation for each element of u, or solved

numerically at a su�ciently high sampling rate.

The stability of the SDRE technique is given by the following theorem.

Stability Theorem. Given a detectable and stabilizable state dependent coe�cient parameteri-

zation, the SDRE method has a closed loop solution which is locally asymptotically stable. For a

proof, see [CDM95].

2.4 Optimality

Our performance index J is convex, so any stationary point is at least locally optimal. From

our performance index and constrained dynamics we form the Hamiltonian function

H =
1

2
xTQ(x)x+

1

2
uTR(x)u+ �T [A(x)x+ B(x)u] (2.8)

with stationary conditions

Hu = 0 (2.9)

_� = �Hx (2.10)

_x = A(x)x+B(x)u (2.11)

Using Eqs. (2.7) and (2.8) we have

Hu = R(x)u+BT (x)� (2.12)
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= R(x)[�R�1(x)BT (x)P (x)x] +BT (x)� (2.13)

= BT (x)[�� P (x)x] (2.14)

Thus, Hu = 0 if

� = P (x)x (2.15)

Satisfying Eqn. (2.15) for all time will satisfy the Hu optimality condition. From here we will drop

the argument (x) notation for simplicity. Di�erentiating Eqn. (2.15) with respect to time gives

_� = _Px+ P _x (2.16)

Using the optimality condition Eqn. (2.10) we also have

_� = �Qx�
1

2
xTQxx�

1

2
uTRxu� (xTAT

x +AT + uTBT
x )� (2.17)

Equating Eqs. (2.16) and (2.17) with substitutions from Eqs. (2.2) and (2.7) gives

_Px+P (Ax�BR�1BTPx) = �Qx�
1

2
xTQxx�

1

2
uTRxu�(x

TAT
x +A

T+xTPBR�1BT
x )Px (2.18)

Rearrange to form

_Px+
1

2
xTQxx+

1

2
uTRxu+ xTAT

xPx� xTPBR�1BT
x Px+ [ATP + PA� PBR�1BTP +Q]x = 0

(2.19)

Furthermore, from Eqn. (2.6) note that the term in brackets is our SDARE, which equals zero, and

substituting for u one more time, Eqn. (2.19) reduces to

_Px+
1

2
xTQxx+

1

2
xTPBR�1RxR

�1BTPx+ xTAT
xPx� xTPBR�1BT

x Px = 0 (2.20)
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This is the SDRE Optimality Criterion which, if satis�ed, guarantees the closed loop solution is

locally optimal and may be the global optimum.

2.5 Solution to the SDARE Using a Hamiltonian Matrix

One method of �nding the stabilizing solution to an algebraic Riccati equation involves the

eigenvalues of an associated Hamiltonian matrix. The associated Hamiltonian matrix is given by

M
d
=

2
664 A(x) �B(x)R�1(x)BT (x)

�Q(x) �AT (x)

3
775 (2.21)

The Hamiltonian matrix M has dimension 2n� 2n, with the property that all its eigenvalues

are symmetric about both the real and imaginary axes. A stabilizing solution exists only ifM has

n eigenvalues in the open left-half plane from whose corresponding eigenvectors a solution P can

be found to Eqn. (2.6). If the n eigenvectors are used to form a 2n� n matrix, and we denote the

n� n square blocks as X and Y , so that

2
6666664

...
...

...
...

�1 �2 � � � �n

...
...

...
...

3
7777775
=

2
664 Y

X

3
775 (2.22)

The solution to Eqn. (2.6) is then given by

P = XY �1 (2.23)

An excellent reference is Zhou, et al. [ZDG95], which gives more detailed developments and proofs

for solving various forms of the algebraic Riccati equation.
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For some of our problems we will be interested in solutions where, because of our parameter-

ization, n eigenvalues with negative real parts might not be available. We shall see in the satellite

dynamics section how a certain parameterization will guarantee zero eigenvalues. If this is a result

of an algebraic constraint where all the states cannot be driven to zero, and we can remove this

state from our cost function J , then we can still construct a \stabilizing" controller.

If there are m < n left half plane eigenvalues and n � m zero eigenvalues with at least

n�m
2

corresponding linearly independent eigenvectors, then we can construct the 2n � n matrix

of Eqn. (2.22) using the m eigenvectors of left half plane eigenvalues and the independent n�m
2

eigenvectors associated with the zero eigenvalues. The usable solution P is still given by Eqn.

(2.23). This solution is known as a neutrally stabilizing solution.

2.6 Nonlinear State Estimation

Analagous to linear methods, Mracek, Cloutier, and D'Souza [MCD95] have also developed

theory for a nonlinear state estimator. Using the dual formulation to the nonlinear quadratic

regulator problem, a nonlinear estimator can formed. The development for this section was taken

from [MCD95].

Assuming our measurement is a nonlinear function of x such that

y = g(x) (2.24)

we need to form a state dependent coe�cient measurement

y = C(x)x (2.25)

For the optimal estimation problem, we will use a cost function of the form
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minimize
x̂ J =

1

2
E

�Z 1
t0

�
(x� x̂)T�TW�1�(x� x̂) + (y �Cx̂)TV �1(y � Cx̂)

�
dt

�
(2.26)

subject to the nonlinear di�erential constraints

_x = A(x)x+ �w (2.27)

y = C(x)x+ v (2.28)

where W = E[wTw], the variance of the process noise, and V = E[vTv], the variance of the

measurement noise.

Associated with the SDC measurement form we have the following de�nitions:

De�nition: A(x) and C(x) form an observable parameterization of the nonlinear system if the pair

fC(x); A(x)g is observable for all x.

De�nition: A(x) is a controllable parameterization of the nonlinear system if the pair fA(x);�g

is controllable for all x.

De�nition: A(x) and C(x) form a detectable parameterization of the nonlinear system if the pair

fC(x); A(x)g is detectable for all x.

De�nition: A(x) is a stabilizable parameterization of the nonlinear system if the pair fA(x);�g is

stabilizable for all x.

Using the dual of the regulator problem, the nonlinear estimator is given by

dx̂

dt
= A(x̂)x̂+Kf (ym � ŷ) (2.29)

where

ŷ = C(x̂)x̂ (2.30)
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Kf = Y (x)CT (x̂)V �1 (2.31)

and Y (x) is the positive semide�nite solution to

A(x̂)Y (x) + Y (x)AT (x̂)� Y (x)CT (x̂)V �1C(x̂)Y (x) + �TW� = 0 (2.32)

The estimator will not be optimal unless a time dependent parameterization meeting the optimality

condition is used. However, not requiring optimality may still result in a su�cient estimator.

2-8



III. Numerical Approach To SDARE Control

3.1 State-Dependent Coe�cient Factorization

3.1.1 Controllable Parameterization. To solve the SDARE by numerical methods, a

controllable factorization must �rst be found. For example, take a two state problem with the form

_x1 = f(x)x1 + bu (3.1)

_x2 = x1x2

One factorization would be

_x =

2
664 f(x) 0

x2 0

3
775x+

2
664 b

0

3
775u (3.2)

and a second factorization would be

_x =

2
664 f(x) 0

0 x1

3
775x+

2
664 b

0

3
775u (3.3)

The �rst factorization is controllable whereas the second is not. State x1 is dependent directly

on the control input, and state x2 is in turn dependent on x1. In the �rst factorization this

information is maintained. The (2,1) term in the A matrix shows the coupling between these

states. The second factorization has hidden the cross coupling information. Even though the (2,2)

term is indeed a function of x1, the pointwise linear representation of the system does not know

how that term is changing and thus is unable to control x2. This is easily seen by examining the

controllability matrix for each system. The �rst system has rank two and the second has only rank

one, provided that f(x) and x2 are not simultaneously equal to zero.
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3.1.2 Optimal Parameterizations. Di�erent factorizations of the same problem can have

di�erent control histories. When examining a �xed parameterization to solve the SDARE, any

given SDC choice will not necessarily be optimal. To establish optimality, Cloutier, et al. estab-

lish a parameterization set which spans a hyperplane of possible solution parameterizations using

spanning variables f�ig. To achieve this optimality, each f�ig must be solved for as a function of

time which involves solving a two point boundary value problem.

However, a numerical approach using a �xed suboptimal SDC choice can provide insight

into increasingly complex systems for which �nding the positive de�nite solution with associated

boundary conditions is not a trivial undertaking. It is not implied that any factorization in the

following chapters is the optimal solution. Chapter V will show variations in control usage between

two parameterizations with equal weighting functions. One parameterization might be more nearly

optimal than the other, but it might just take changing the Q and R weightings to create a practical

solution. Also, from an implementation point of view, optimality might not be signi�cant. Any

stabilizable and detectable parameterization will achieve the same �nal result, i.e. perturbed states

will return to zero. If the state or control deviations or settling time are unacceptable no matter

what the Q and R weights are, then pursuing an optimal solution will most likely be necessary.

3.1.3 Ill-Conditioned Parameterizations. Numerical problems can arise when one state

di�erential equation is parameterized in a way which is nearly the same as another, i.e., a multiple

of the other. This is best seen using a real example, which will be illustrated in Section 6.3.1, Eqn.

(6.10). Further discussion of this issue will be deferred to that section.

3.2 Numerical Implementation

All simulations in this thesis were accomplished using MATLAB and SIMULINK [MAT].

One function contained the nonlinear di�erential equations. A second function created the A, B,

Q, and R matrices of the SDC parameterizations. At each time step, the state dependent algebraic
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Riccati equation

AT (x)P (x) + P (x)A(x)� P (x)B(x)R�1(x)BT (x)P (x) + Q(x) = 0 (3.4)

was solved for a stabilizing or neutrally stabilizing P. The instantaneous control u was calculated

by

u = �R�1(x)BT (x)P (x)x (3.5)

and fed back to the nonlinear dynamics. All of these calculations took place in the function labeled

\nonlinear controller". The following �gure shows the SIMULINK representation.

Mux

Mux

MATLAB
Function

nonlinear
controller

MATLAB
Function

nonlinear
dynamics

1/s
Integrator

xdot

derivatives

x

states

u

controls

Clock

tm
time

Figure 3.1 SIMULINK NQR Controller Model

To calculate P, the MATLAB algebraic Riccati equation solver had to be modi�ed to allow

for zero eigenvalues of the Hamiltonian matrix as discussed in Section 2.5. This modi�ed routine

was invoked in MATLAB in the the form SDARE(A, B*inv(R)*B', Q). The function SDARE will

be discussed further in the next section.
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3.3 Numerical Issues

3.3.1 Zero Eigenvalue Pairs. An interesting problem arose in the simulations of satellite

attitude control. Originally set up using Euler angles, it was suggested by Hall [Hal95a] that

they be examined using quaternions since that is the more standard coordinate system. Because

quaternions describe 3 space with 4 parameters, there is an inherent constraint. Due to this

constraint, the associated Hamiltonian of the SDARE will have a zero eigenvalue pair, because of

symmetry, implying a nonstabilizable mode, i.e. the constraint itself. However, if the nature of this

nonstabilizable mode is something we can neglect, we can construct a neutrally stabilizing solution

and use it.

Our goal in nonlinear quadratic regulation is to drive the state deviations and control usage

to zero. If we have a constrained state as above, it may only be possible to drive all but one state

to zero. The last state will settle at a non-zero value, consistent with its zero eigenvalue. This

state should be left unweighted and therefore undetectable. This prevents its inclusion in the cost

function, which would otherwise be in�nite. If the value the unconstrained state will settle at is

known and acceptable, then the neutrally stabilizing solution to the SDARE is acceptable.

This can result in fairly e�ective controllers; however, there is one precaution. If there is

more than one solution to the constrained states, there is no guarantee that the unweighted state

will go to the desired solution. As a regulator this could pose a problem when a disturbance is

large enough to move the states into the vicinity of the other solutions. In this sense the system is

not completely controllable to the desired equilibrium. For example, take a two state vector that

is constrained to have magnitude of 1, and you wish to keep it in an equilibrium value of [0 1]T by

penalizing only the �rst state. Starting from equilibrium the controller might work �ne. If however,

the states are disturbed to a value close to [0 �1]T , the controller will probably then drive the �rst

state to zero leaving the second state at its new value. The system will now be regulated about

this undesired equilibrium.

3-4



The standard MATLAB algebraic Riccati equation solver is designed to return only stabilizing

solutions. Because we are now interested in neutrally stabilizing solutions as well, the function

ARE(a,b,c) was altered into a new function SDARE(a,b,c). This was done by eliminating the error

checking routine which checked for n negative eigenvalues. The eigenvectors are sorted by their

respective eigenvalue sign from negative to zero and then positive. The modi�ed routine would now

return a neutrally stabilizing solution because it used the eigenvector associated with an imaginary

axis eigenvalue. Admittedly, this is not a robust error checking method, but it worked for the

satellite examples examined. More coding and error checking would have to be done for the routine

to be used on any example. The pancreas dynamics required only the standard ARE solver.

3.3.2 Singularity. A problem can be factored into a form where there is division by any

one of the states. This is numerically disastrous as the states approach zero. For a problem as

complex as the pancreas in Chapter VII, this factorization may be unavoidable. If so, it may be

necessary to introduce a dead band where the states are nearly zero and no control is used since

the states are su�ciently close to zero. This deadband was introduced into the controller for the

arti�cial pancreas, because of division by the glucose state. The numerics were well behaved for

very small values of the glucose state, so a deadband for values less than 0.0001 only was used.

This is su�ciently close to our desired value and results in no performance loss.
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IV. Satellite Dynamics

This chapter gives the simpli�ed satellite dynamics for the problems considered in this thesis,

and then incorporates those dynamics into a state dependent coe�cient form.

The notation kvk will be used to denote the Euclidean norm of a vector; i.e., its magnitude.

4.1 Rigid Body with 3-axis External Torques

Assuming a rigid body, a satellite controlled with external torques obeys Euler's equation

given by

_! = �J�1! � J! + J�1T (4.1)

where ! is the body axis angular velocity vector, J is the inertia tensor, and T is the external

torques about each body axis. The derivation of rigid body motion can be found in most dynamics

texts. A good reference is Chobotov [Cho91], which concentrates speci�cally on satellites.

4.2 Rigid Body with Internal Stabilizing Rotors

Another interesting problem we will examine for which nonlinear quadratic regulation could

have practical application is a satellite stabilized by internal spinning rotors. The internal rotors

provide not only stability, but by changing the angular rates of each rotor, the satellite can be

brought to a new orientation. The total angular momentum of the satellite will be constant since

no external forces are present.

We will de�ne the vector �, containing three states, to have elements representing the axial

angular momentum of each rotor relative to inertial space. The vector x, also containing three

states, is the angular momentum expressed in body axes and is scaled such that kxk = 1. The

control vector u will be the torque applied to each rotor. The system dynamics are
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_� = u (4.2)

_x = x� J�1(x� A�) (4.3)

Given n rotors (controllers), then � 2 Rn, u 2 Rn, x 2 R3, J 2 R3�3, and A 2 R3�n. J is a scaled

inertia tensor given by

J = Jsat � ATJrotA (4.4)

where Jsat is the satellite inertia tensor, and Jrot is a diagonal n � n matrix with elements cor-

responding to each rotor's inertia. The matrix A has columns of unit vectors representing the

direction of each rotor's axis of spin in body axes, and whose order corresponds to the order of Jrot.

The equations of motion for this section were developed by Hall [Hal95b]. Leaving the notation the

same unfortunately leads to another use of A and x. Since these variables will appear as elements

of A(x)x their meaning should be taken from context.

We will also need the angular rates, !, given by

! = J�1(x� A�) (4.5)

Notice the satellite is stationary when x = A�. Also note that Eqn. (4.3) can be simply written as

_x = x� !.

4.3 Attitude Coordinates

The above sections give the equations for body axis angular rates. If in addition to angular

velocities we want to regulate an inertial position, then we must also include an inertial coordinate

system. To express the orientation of the satellite there are several options. Euler angles are

a common representation, but because the equation of motions can become singular for certain
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angles, quaternions are a preferable coordinate system. Initial quaternion values can be found from

the initial rotation matrix.

Quaternion dynamics will be included in the SDC parameterization to regulate inertial at-

titude of the satellite. There are four quaternions whose dynamics are related to the body axis

angular rates by

_q1 = 0:5 (q2!3 � q3!2 + q4!1) (4.6)

_q2 = 0:5 (�q1!3 + q3!1 + q4!2)

_q3 = 0:5 (q1!2 � q2!1 + q4!3)

_q4 = 0:5 (�q1!1 � q2!2 � q3!3)

If we adopt a vector notation of q = [q1 q2 q3 q4]
T we can use a shorthand notation of

_q = Q! (4.7)

where the matrix Q is given by

Q
d
= 0:5

2
66666666664

q4 �q3 q2

q3 q4 �q1

�q2 q1 q4

�q1 �q2 �q3

3
77777777775

(4.8)

Quaternions also have the property that kqk = 1. This means in the regulator problem that

only three quaternions can be driven to zero. The fourth will go to �1. Fortunately, coordinates

of [0 0 0 1]T and [0 0 0 � 1]T represent the same spatial orientation as do any �q. This means

regulating any three quaternions to 0 results in a unique solution.
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As we shall see later, the properties of quaternions result in a rank defective controllability

matrix. This would appear to cause problems; however, we will be able to use the neutrally

stabilizing solution to the SDARE as discussed previously.

There are several di�erent ways quaternions can be de�ned. The quaternions used in this

thesis are the same as found in Chobotov [Cho91].

4.4 Cross Product Notation

One notation needs to be introduced to simplify later representations. We will de�ne

x�
d
=

2
6666664

0 �x3 x2

x3 0 �x1

�x2 x1 0

3
7777775

(4.9)

which will allow the vector cross product x� y to be denoted as x�y, now a matrix times a vector.
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V. Suboptimal SDC Controllers

This chapter provides a conceptual feel for both how to choose a �xed SDC parameterization,

and how optimality can impact performance.

5.1 SDC Parameterization

We are interested in seeing how di�erent controllable parameterizations will behave, to see if

optimality is always a concern. If we assume an inertia tensor in principle axes, with inertias J1,

J2, and J3, we can expand and write the dynamics of Section 4.1 as the following three equations:

_!1 =
J2 � J3

J1
!2!3 +

T1

J1

_!2 =
J3 � J1

J2
!1!3 +

T2

J2
(5.1)

_!3 =
J1 � J2

J3
!1!2 +

T3

J3

These equations will be parameterized into four di�erent SDC forms. The �rst will be

_! =

2
6666664

0 J2�J3
J1

� !3 0

J3�J1
J2

� !3 0 0

0 J1�J2
J3

� !1 0

3
7777775
! +

2
6666664

1
J1

0 0

0 1
J2

0

0 0 1
J3

3
7777775
T (5.2)

which will be referred to as parameterization A (PA). Parameterization B (PB) will be similar

except we will change the factorization of the �rst equation. Parameterization B has the following
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SDC form

_! =

2
6666664

0 0 J2�J3
J1

� !2

J3�J1
J2

� !3 0 0

0 J1�J2
J3

� !1 0

3
7777775
! +

2
6666664

1
J1

0 0

0 1
J2

0

0 0 1
J3

3
7777775
T (5.3)

We can add elements to PB by adding and subtracting terms from each state equation. In this

manner we can create an A matrix with no empty elements. This altered parameterization will be

called PB2, and is given by

_! =

2
6666664

!2 �!1
J2�J3
J1

� !2

J3�J1
J2

� !3 !3 �!2

�!3
J1�J2
J3

� !1 !1

3
7777775
! +

2
6666664

1
J1

0 0

0 1
J2

0

0 0 1
J3

3
7777775
T (5.4)

The last parameterization will have the states factored more evenly. This will be parameterization

C (PC), given by

_! =

2
6666664

0 J2�J3
2J1

� !3
J2�J3
2J1

� !2

J3�J1
2J2

� !3 0 J3�J1
2J2

� !1

J1�J2
2J3

� !2
J1�J2
2J3

� !1 0

3
7777775
! +

2
6666664

1
J1

0 0

0 1
J2

0

0 0 1
J3

3
7777775
T (5.5)

Conceptually we can see that all four parameterizations will probably behave di�erently in

some fashion. At any point in time, the matrix A has a de�nite form with values dependent on

the state !. Each parameterization above, although representing the same dynamics, looks like

a di�erent linear system at each point in time. For example, in PA the algebraic Riccati solver

will see a linear system where !3 is coupled to only one other state, whereas for PB2 it will see

coupling of each state to every other state. These will indeed give di�erent control laws based on

the di�erent parameterizations.
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5.2 Results

Now let's examine how each model performs in a numerical simulation. We will use an inertia

matrix of

J =

2
6666664

10 0 0

0 15 0

0 0 20

3
7777775

(5.6)

All control simulations for this chapter will have initial angular velocities of

!0 =

2
6666664

4

4

2

3
7777775

(5.7)

To compare all four factorizations we will use a state penalty weight of Q = 10I3�3 and a

control penalty weight of R = I3�3. The results of parameterization A can be seen in Figures

5.1 and 5.2. The controller works quite well and brings the satellite to rest in around 35 seconds.

We can compare this time history with the results of the PB model shown in Figures 5.3 and 5.4.

Changing only two elements of the A matrix resulted in maximum control magnitudes that more

than doubled, even though the second controller still achieves the same �nal results and settles

in nearly the same time. The di�erences in state deviations are not as severe, but PA is a better

regulator.

Next, compare the PB2 results shown in Figures 5.5 and 5.6 with the previous examples.

Here we see that adding terms which don't change the dynamics can have a very adverse e�ect on

control usage. The control usage has magnitude almost �ve times the original PA controller, while

the settling time is still roughly the same. This controller does not initially regulate the states well

at all.
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The last SDC form, PC, gives a controller with the results seen in Figures 5.7 and 5.8. This

controller produces considerably smoother time histories with maximum control magnitudes less

than all previous SDC forms. The �rst and third angular velocities are regulated very quickly; the

second is much slower, but still settles in the same amount of time as the previous controllers. This

is an excellent regulator, especially if !2 is not as critical. Increasing state weighting will bring !2

back to equilibrium quicker, but at the cost of more control usage.

We can evaluate the cost function associated with each parameterization using numerical

integration. Using a trapezoidal approximation, the cost functions were 1:71e + 3, 3:35e + 3,

1:19e+4, and 1:73e+3 respectively. Since parameterizations A and C had the closest performance

of the four forms examined, we will now see how di�erent weightings a�ect these two controllers.

The next simulations will have state weighting of Q = I and control weighting of R = 10I.

Figures 5.9 and 5.10 show PA's performance, and PC's performance is shown in Figures 5.11

and 5.12. Here the performance is considerably di�erent. Parameterization A has a more rapidly

changing control usage. The state deviations and control usage are oscillatory as compared to the

still exponential nature of parameterization C. Time to settle for both controllers is around �ve

minutes. Parameterization A now has a cost function of 2:07e + 3 while PC's cost function is

4:46e + 3. Here we can see that although one parameterization is more optimal than another, it

may not necessarily have desirable characteristics.

Figures 5.13 and 5.14 show parameterization C with an even larger control penalty of R =

105I. Notice that !1 and !3 still have the same behavior, while !2 is directly related to the control

weighting. Parameterization C tries to stop the tumbling motion of the satellite as quickly as

possible, and then brings the third state to rest at a rate directly related to control weighting.

We will examine one last simulation. Since parameterization C has maximum control magni-

tudes that are almost invariant to changes in the penalty matrices Q and R, we will see if limiting

control usage still results in a stable controller. Figures 5.15 and 5.16 show the results of parameter-
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ization C using the original weights of the �rst example, except that control usage is sent through

a limiter of �2 Nm. Notice that the controller uses maximum control until the state deviations are

reduced to a level where the control exponentially dies out. The controller is still quite e�ective

even though the reduction in control usage could not be accomplished by control weighting.

5.3 Summary

We have seen that di�erences between factorizations produce di�erent state and control histo-

ries, and can be very sensitive to state and control weightings. For the examples considered, heavy

control penalties greatly enlarged the di�erences between parameterizations A and C, which had

relatively similar performance under heavy state weighting. We also saw that although relatively

little changes in the A matrix could e�ect the control and state histories, there was little change in

�nal settling time.

Adding elements to the A matrix so that dynamics cancel out is a trick used by Cloutier,

et al., [CDM95] for a system that has a zero A matrix. In the example here, it was seen that

there were adverse e�ects from adding those terms to an A matrix that was already well behaved.

Adding terms should probably only be done to handle such special cases like the one examined in

[CDM95].

Conceptually, we have learned a little about forming a good state dependent coe�cient fac-

torization for a given system. Of the four parameterizations examined, parameterization C appears

to give the overall better performance. It di�ers from the other parameterizations in that its dy-

namics are more evenly distributed among all the terms. State Dependent Coe�cient form is a way

to make a nonlinear system look linear at each point in time. By distributing the dynamics, the

linear representation shows all the coupling between states and their relationships to one another.

Therefore, a nonlinear term like x1x2x3 might be better represented by dividing it in thirds and

factoring out each state, rather than factoring one state and leaving the rest as a single coe�cient.
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The importance of optimality depends on each control problem examined. For our examples,

each �xed sub-optimal parameterization resulted in an e�ective controller. If the control usage

was too high for what would be implemented, the control could be limited. Implementing and

testing a �xed SDC form was relatively quick, and many permutations of penalty matrices could be

evaluated. If none of the controllers provided acceptable state and control histories, then at least

the insight gained from the �xed form could help in choosing penalty matrices before solving the

optimal problem.
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VI. Satellite Control Results

This chapter will show the e�ectiveness of the numerical SDARE solutions using the dynam-

ics of Chapter IV. The two examples presented here provide more practical examples than the

illustrative problem of Chapter V.

6.1 State Regulation vs. Tracking

Each controller in the examples of this chapter can be viewed as either a regulator or tracker.

For consistency, we will be regulating the angular rates and the �rst three quaternions. To do this

most e�ectively, the fourth quaternion will be left completely unpenalized.

A quaternion vector q = [0 0 0 1]T implies that the body axes and inertial axes line up. If

this is not the case, the coordinates that are measured will have to be transformed such that the

controller sees the correct inertial frame. An example of this implementation can be seen in Figure

6.1.

Mux

Mux

MATLAB
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nonlinear
dynamics

1/s
Integrator

xdot

derivatives

u

controls

Clock

tm
time

MATLAB
Func ion

nonlinear
controller
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coordinate
transformation

xprime

transformed states

x

states

Figure 6.1 SIMULINK Regulator Model
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In this same manner, the regulator can be made a tracker. To reorient the satellite, a di�erent

coordinate transformation merely needs to be done on the measured coordinates and then fed to

the controller. To accomplish this, the quaternions would be transformed to a rotation matrix, then

multiplied by the coordinate transformation. From this �nal rotation matrix the new quaternions

can be calculated.

For systems whose states can all be driven to an equilibrium value, the coordinate transfor-

mation is not as complex. The tracking diagram for the pancreas model in Chapter VIII shows the

more familiar method of subtracting reference values from the actual state values.

6.2 Despin of Satellite Using External Torques

This section will look at the following problem: given a perturbed rotating satellite, bring it

to rest in a speci�c orientation.

6.2.1 SDC Parameterization. Combining the dynamics of Section 4.1 with the quaternion

coordinates of Section 4.3, we will parameterize the system as

2
664 _!

_q

3
775 =

2
664 �J�1!�J 0

Q 0

3
775
2
664 !

q

3
775+

2
664 J�1

0

3
775T (6.1)

This parameterization was chosen strictly because it is a straightforward implementation of

the dynamics as derived, and handles the general case with non-diagonal inertia matrices. The

model retains all the cross coupling information in the A matrix as the parameterization C model

did in the previous chapter. There is a slight di�erence in the magnitudes of the coe�cients because

of the di�erent distribution of the inertia terms.

6-2



6.2.2 Initial Conditions and Weighting Functions. We will use the same inertia matrix

as in Chapter V,

J =

2
6666664

10 0 0

0 15 0

0 0 20

3
7777775

(6.2)

The perturbed satellite will also be rotating with initial angular velocities of

!0 =

2
6666664

1

1

4

3
7777775

(6.3)

and have initial coordinates of

q0 =

2
66666666664

�1:614529367818635e� 02

4:399467145509192e� 01

4:307255588328425e� 01

7:878208621355699e� 01

3
77777777775

(6.4)

which corresponds to a 3-2-1 Euler axis rotation of � = 70o; � = 45o, and  = 30o.

6.2.3 Simulation Results. For the �rst simulation we will use the following constant

penalty matrices:

Q = diag

��
5 5 5 5 5 5 0

��
(6.5)

R = I3�3 (6.6)

The results can be seen in Figures 6.2 through 6.5. The controller is quite e�ective in stabi-

lizing the satellite. An interesting feature of the NQR controller is the discontinuous control usage.

Notice in Figure 6.4 that the sharpest change in control occurs at about 1 and 3.5 seconds. This
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corresponds to where the unweighted quaternion q4 is zero, which is also where � takes its largest

value.

For comparison, we will do a second simulation using the following constant penalty matrices:

Q = diag

��
1 1 1 1 1 1 0

��
(6.7)

R = 5I3�3 (6.8)

The results of the second weighting can be seen in Figures 6.6 through 6.9. This controller

behaves as we would expect it to. With the reduced control usage, it takes almost twice as long

to stabilize. The behavior is more oscillatory since the satellite will undergo more rotations during

the regulation process. What is interesting to note here is that the unweighted quaternion q4 went

to �1, unlike +1 in the previous simulation, yet the �nal orientation of the satellite is the same.

This con�rms that we can pose a \stabilizable" problem, even though we had a nonstabilizable

Hamiltonian matrix.

6.3 Reorientation of Internally Stabilized Satellite

For this example we consider a tracking problem. Given a satellite at rest in one initial

position, bring the satellite to a new rest orientation with minimal angular velocities during the

transition. The �nal orientation will be a body axis frame which lines up with the inertial reference

frame; in other words, the inertial frame for the controller must be de�ned as that desired �nal

state, as discussed in the beginning of this chapter.
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6.3.1 SDC Parameterization. Using the dynamics of Section 4.2 and di�erentiating Eqn.

(4.5), we can form the following SDC factorization

2
66666666664

_�

_x

_!

_q

3
77777777775
=

2
66666666664

0 0 0 0

0 0 x� 0

�J�1x�J�1A J�1x�J�1 0 0

0 0 Q 0

3
77777777775

2
66666666664

�

x

!

q

3
77777777775
+

2
66666666664

I

0

J�1A

0

3
77777777775
u (6.9)

remembering that � is each rotor's angular momentum expressed in body axes, and x is the scaled

angular momentum of the entire satellite expressed in body coordinates. For our examples, � and

x are three dimensional vectors.

This factorization is rather large and has some advantages and disadvantages associated with

it. With this form, both angular rates and positions can be regulated and penalized accordingly.

This SDC form does, however, contain redundant information; i.e., specifying the quaternions will

uniquely de�ne the body axis momentum. This parameterization expresses the dynamics more

e�ciently using the state x.

It is important to notice that the state � is not desired to be regulated to zero, since it is the

rotors' angular rates that will keep the satellite stationary. Therefore, � should be left unpenalized

and thus undetectable.

Satellite attitude is best regulated through q, and therefore x should also be unweighted. The

reason x is not a good choice for attitude control, even though it is an inertially constant vector,

involves the constraint kxk = 1. Like q, we could choose to make all but one coordinate go to zero.

This is easily done; however, unlike q the position of the satellite is not uniquely de�ned in two

senses. The xn which is unweighted can go to either +1 or �1, which are indeed di�erent answers.

Also, even if x did achieve the desired �nal values, this only guarantees that the body vector and

inertial vector are colinear. There is no unique rotation of the satellite about that axis.
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As an aside, we will examine a second parameterization to illustrate the importance of forming

a numerically well conditioned problem. Rather than using the simpli�ed version of Eqn. (4.3) as

above, the _x equation could have been used directly as in the following SDC form

2
66666666664

_�

_x

_!

_q

3
77777777775
=

2
66666666664

0 0 0 0

�x�J�1A x�J�1 0 0

�J�1x�J�1A J�1x�J�1 0 0

0 0 Q 0

3
77777777775

2
66666666664

�

x

!

q

3
77777777775
+

2
66666666664

I

0

J�1A

0

3
77777777775
u (6.10)

This is an example of the problem discussed in section 3.1.3. While it appears as though it should

be a valid factorization, numerically the Hamiltonian is badly scaled. The similarities between the

second and third submatrix rows of the A matrix causes numerical problems. Here the A matrix

only has a block rank of 2, as compared to a block rank of 3 in the �rst parameterization.

6.3.2 Initial Conditions and Weighting Functions. Here � and x will be left unweighted

for the reasons already stated. Attitude control will be accomplished by weighting the �rst three

elements of q.

We will use a scaled inertia matrix of

J =

2
6666664

0:5 0 0

0 0:75 0

0 0 1

3
7777775

(6.11)

Using three rotors with directions given by

A =

2
6666664

1p
2

0 1p
2

1p
2

1p
2

0

0 1p
2

1p
2

3
7777775

(6.12)
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and given initial rotor momentum of

�0 =

2
6666664

0:2

0:6

0:4

3
7777775

(6.13)

we calculate the normalized initial satellite momentum vector to be

x0 =

2
6666664

4:2426e� 01

5:6569e� 01

7:0711e� 01

3
7777775

(6.14)

where x = A� so the satellite starts from rest.

We will use the same initial coordinates from our externally controlled satellite of

q0 =

2
66666666664

�1:614529367818635e� 02

4:399467145509192e� 01

4:307255588328425e� 01

7:878208621355699e� 01

3
77777777775

(6.15)

corresponding to a 3-2-1 Euler axis rotation of � = 70o; � = 45o, and  = 30o.

The penalty matrices for the �rst simulation will be:

Q = diag

��
0 0 0 0 0 0 10 10 10 10 10 10 0

��
(6.16)

R = I3�3 (6.17)
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while the second simulation will have increased relative control weighting. The penalty matrices

for this set up will be:

Q = diag

��
0 0 0 0 0 0 1 1 1 1 1 1 0

��
(6.18)

R = 50I3�3 (6.19)

6.3.3 Simulation Results. Results for the �rst weighting set are given in Figures 6.10

through 6.15. Notice that this controller is very e�ective in reorienting the satellite. Of all the

examples presented in this thesis, this is perhaps the most promising in real application. The

controller induces a quick increase in body axis angular velocities, and then exponentially decays

them back to their rest position. Control usage is very smooth. Also remember that the dynamics

are scaled, so that the time to settle does not represent real seconds, but rather scaled time units.

For our second example we will see how a larger control penalty impacts the problem. The

results are seen in Figures 6.16 through 6.21. This controller still provides excellent stability

properties. Now, however, instead of the sharp rise and exponential decay in angular velocities,

a sinusoidal pattern is superimposed over the growth and decay. Additionally, the settling time

has also increased. Further penalizing control usage only increases this sinusoidal nature, with a

continuing increase in time to settle.

6.4 Summary

This chapter shows that using a state dependent algebraic Riccati equation results in e�ec-

tive control usage which can be used to both stabilize and reorient a satellite. The �rst system

demonstrated the ability of NQR to command external torques to bring a satellite to rest. Since

control usage is limited by the fuel reserves of the satellite, this is not a very practical example.

This example was meant to help validate NQR as a control method.
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The internally controlled satellite example provides a more practical application for NQR.

The satellite can be e�ciently reoriented with a relatively simple control law. Full state feedback

does not provide a limiting factor here, since measuring accelerations about all three axes is easily

implementable. These results are very encouraging. If a controller was implemented at an appropri-

ately high enough frequency, this NQR method would provide one more alternative for controlling

internally stabilized satellites.
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VII. Arti�cial Pancreas Model

This chapter covers the modeling of human glucose and insulin dynamics as developed by

Hodel and Naylor [NHS95] of Auburn University. The model was developed in SIMULINK and

uses modules written in C. This model, the Advanced Endocrine Management of Glucose (AEMG)

model, is divided into four compartments simulating the liver, pancreas, and blood and tissue

chemistry. For further information, see the individual papers by Hodel [Hod94] and Naylor [Nay94].

The dynamics presented here consolidate the information of those four modules. No claims are made

in this thesis as to the accuracy or validity of these equations, since veri�cation is beyond the scope

of this thesis. We are merely concerned with the following problem: assuming these dynamics,

what kind of performance does a nonlinear quadratic regulator achieve?

The complexity of the AEMG model is an attempt to present a better model of glucose and

insulin dynamics. The original intent of this thesis was to investigate linear controllers for this

model. Linear controllers examined in earlier papers and in Hodel's paper were based on simpler

models and were determined to be inadequate. When this author tried to linearize the larger

AEMG model dynamics, it was determined that linearizing about equilibrium was valid for only

insigni�cant perturbations. A comparison of the linear and nonlinear dynamics in response to an

external glucose disturbance is shown in Figure 7.1. The linear response is not large enough to

warrant any control, whereas the `real' response is signi�cant and requires insulin to counter the

e�ect. This prompted the investigation into nonlinear control techniques.

7.1 Nonlinear Dynamics

The current AEMG model contains nine states given in Table 7.1, and it is highly nonlinear.

The only changes to the dynamics presented here were altering the high and low limits of some

trigger functions and the addition of a constant term in the glucose state equation. This was done

so the equations would have a steady state value equal to average normal levels in humans. The
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Figure 7.1 Linear vs. Nonlinear Response

code received by the author was designed to settle with a glucose blood level at a slightly higher

value. The dynamics behave in the same way, but with these changes the steady state of the system

matched the average basal (equilibrium) level of humans as given in [Hod94].

Table 7.1 AEMG State Variables
xcl cortisol level
xel epinephrine level
xggl glucagon level
xgl glucose level
xghl human growth hormone level
xil insulin level
xgngl gluconeogenesis level
xgs glucose stores
xis insulin stores

The equations are presented in the form they are to help minimize the e�ort to correlate them

with the computer code of the AEMG model and previous papers. Therefore, coe�cients are not

always reduced to a single number or constants substituted with their values. Explanation of the

dynamics and the terms found in the equations will follow the model description.
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The dynamical model is:

_xcl = �cclxcl + cclbcl
1 + trigh(xgl; 90; 60)

1 + trigh(bgl; 90; 60)
(7.1)

_xel = �celxel + celbel
trigh(xgl; 1:2bgl; 0:8bgl)

trigh(bgl; 1:2bgl; 0:8bgl)
(7.2)

_xggl = �cgglxggl + 0:1(1:0� �)cgglbggl +
0:4xgstrigh(xgl; 140~�; 60~�)

1000 � vol
(7.3)

_xgl =

�
24 � 60 � 2mass � xgngl � 0:75 � 2mass

trigh(xgl; 60; 150)

trigh(bgl; 60; 150)

+0:91 � 2mass
trigh(xel

bel
; 0:9; 5:0)+ trigh(

xggl
bggl

; 0:9; 5:0)�
xgl
bgl

trigh(xil
bil
; 0:25; 5:0)

2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:25; 5:0)

�0:5mass
xglxil

bglbil
� 47:999232+wglucose

�
1

10 � vol
(7.4)

_xghl = �cghlxghl + cghlbghl
1 + trigh(xgl; 90; 60)

1 + trigh(bgl; 90; 60)
(7.5)

_xil = �cilxil +
0:4xistrigh(xgl; 60; 140)

1000 � vol
+
uinsulin

vol
(7.6)

_xgngl = �cgnglxgngl +
cgnglbgngl

2trigh(1:0; 1:0; 5:0)+ 2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:5; 5:0)
�

�
trigh(

xcl

bcl
; 1:0; 5:0)+ trigh(

xel

bel
; 0:9; 5:0)+ trigh(

xggl

bggl
; 0:9; 5:0)+

trigh(
xghl

bghl
; 1:0; 5:0)� trigh(

xil

bil
; 0:5; 5:0)

�
(7.7)
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_xgs = 0:2�(mgs � xgs)� 0:4xgstrigh(xgl; 140~�; 60~�)

�0:1(1:0� �)cgglbggl � 1000vol (7.8)

_xis = 0:2�(mis � xis)� 0:4xistrigh(xgl; 60; 140) (7.9)

Control is done by the injection of insulin and is seen in the term uinsulin in the xil state

equation. Although the mathematical dynamics will allow negative control, it is not physically

implementable and must be accounted for. This is done in the simulation by putting a limiter

in the SIMULINK model. Also, to save computational time, the controller function can return

a zero control command whenever xgl is less than the desired level, without solving the SDARE.

Disturbances to the model are modeled through the term wglucose in the xgl state equation, which

models dietary intake of glucose. Negative disturbances could be used to model glucose uptake if

needed.

The variablesmass and vol represent the body mass and blood volume, respectively. Average

values of 80kg body mass and 6 liters of blood were used for the simulation to match those used

by [Hod94].

The constants cstates are related to the half lives (in minutes) of the respective hormones and

given by

c =
� ln(0:5)

half life
(7.10)

The values used for the half lives are given in Table 7.2. These are only approximations, since

there is not enough data yet to improve their accuracy. For example, the 7.5 values represent the

median between possible values of 5 minutes to 10 minutes.
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Table 7.2 Half Life Values in Minutes
state value

cortisol 7.5
epinephrine 7.5
glucagon 7.5
glucose 7.5
human growth hormone 90.0
insulin 7.5
gluconeogenesis 30.0

The constants bstates are the basal levels of each state for an average healthy person and are

found in Table 7.3. The values for the �rst seven states came from the literature [Hod94], while

the last two were calculated from their equations in the AEMG code.

Table 7.3 Basal Levels
bcl 11.0
bel 92.0
bggl 120.0
bgl 100.0
bghl 2.4
bil 35.0
bgngl 2.708e-4
bis 3.4657e+5
bgs 9.7041e+4

The variables � and � are used to simulate healthy versus diabetic people. For a healthy

person, � = � = 1. The diabetic model we wish to regulate will use � = � = 0:1 which are the

values used in [Nay94]. The variable ~� is a shift value given by

~� = 1:1� 0:1� (7.11)

which is used to shift the arguments of some trigger functions. This represents a change in e�ec-

tiveness of one hormone responding to another.

The last variables mgs and mis are the maximum glucose stores and maximum insulin stores,

respectively. These states represent a total amount stored in the tissue and bloodstream of a
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human. They are de�ned to have the following values:

mgs = 10 � cggl � bggl � vol � 1000 (7.12)

mis = 10 � cil � bil � vol � 1000 (7.13)

7.2 Trigger function

The function trigh is used to scale the gains of terms it is found in. It has three arguments

and is given by

trigh(x; l; h)
d
=

1

2

�
1 + tanh

�
2x� l � h

h� l

��
(7.14)

The trigger function has a range of (0,1) for a domain over all x. A representative graph can

be seen in Figure 7.2. For h < l the function would start at 1 and decrease to 0 for larger x. Use
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Figure 7.2 y = trigh(x; 60; 140)

of this function helps model one state's sensitivity to another by causing a cuto� and saturation

e�ect. We will also make use of the derivative with respect to x, given by

dtrigh(x; l; h)

dx
=

1

(h� l)
sech2

�
2x� l � h

h� l

�
(7.15)
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7.3 Control Objectives and Concerns

The purpose of examining automatic control is to eliminate the dangers diabetics face with

elevated glucose levels. Type I diabetes, or insulin-dependent diabetes mellitus, requires daily

injection of insulin to allow the body to use its glucose for energy and metabolism. The blood

glucose levels of diabetics are often elevated above normal values. Long term a�ects of this can

include vision loss, kidney failure, and neurological damage.

An automatic insulin delivery system, or arti�cial pancreas, could help reduce the long term

e�ects by providing a more natural, gradual injection of insulin based on the body's needs. One

thing to be kept in mind is that the control is strictly one way, the injection of insulin. Naturally,

this means that our controller will be ine�ective against hypoglycemia, which is when blood glucose

is at an abnormally low level. The only robustness that the arti�cial pancreas can guard against is

to make sure that the controller does not result in or send the person into hypoglycemia. However,

it is hoped that any device which is constantly monitoring blood glucose would at least provide some

warning before hypoglycemia is achieved. For further information on automatic control strategies,

see [Hod94].

We will only be simulating external disturbances of increased blood glucose to evaluate the

performance of our controllers, since the only response to a disturbance which lowers glucose, like

exercise, would be for the controller to turn o�. This e�ect is readily seen in the simulations when

glucose levels drop or are brought close to the desired level.

7.4 Control Implementation

7.4.1 Equilibrium. To use the nonlinear dynamics, we must �rst do a coordinate trans-

formation so that each transformed state settles at zero. Letting q be the equilibrium value we will

use the substitution

x = q + �x (7.16)
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Di�erentiating Eqn. (7.16) gives

_x = � _x (7.17)

Equilibrium will depend on the health factors � and �. Since we are interested in control

of a diabetic's blood glucose, we shall use in Eqn. (7.16) the diabetic equilibrium values given in

Table 7.4. These equilibrium values were determined numerically from the �nal steady state of an

undisturbed simulation.

Table 7.4 Diabetic Equilibrium Values
qcl 10.928
qel 70.034
qggl 22.898
qgl 104.79
qghl 2.3730
qil 6.4219
qgngl 2.6169e-4
qis 3.0597e+4
qgs 1.5917e+4

7.4.2 Pseudo-Linearization. To implement a nonlinear controller would require either the

calculations to be done in real time, or for a large lookup table to be implemented. Since the model

has 9 states, neither is highly desirable. For this reason we will examine a reduced model. Since

linearizing the glucose state was the initial problem, we might ask what happens if we keep only

nonlinear terms that are a function of xgl? If this model could capture the dynamics reasonably

well, then a one dimensional lookup table would be easily implementable. Linear interpolation

would be much quicker and require less memory than a 9 space tensor.

Since we wish to have only nonlinear terms involving only �xgl, we will use Taylor series

expansions on any nonlinear functions of the other states and remove higher order terms. The

nonlinearities are mostly contained in the function trigh. Expanding and keeping linear terms we

have

trigh(x; l; h) ' trigh(q; l; h) +
dtrigh(x; l; h)

dx

����
q

�x (7.18)
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Wewill also have nonlinear terms that involve simple multiplication of two states. An example

would be a term such as xglxil becoming qglqil + qgl�xil + �xglqil + �xgl�xil. The last term is kept

because its nonlinearity involves �xgl, whereas something like xghlxil reduces to only qghlqil +

qghl�xil + �xghlqil, having thrown out the term �xghl�xil. The second example never occurs in our

nonlinear equations.

The partially linearized equations, detailed in the next section, respond to an external glucose

disturbance as shown in Figure 7.3. These dynamics match the nonlinear dynamics only for the

initial response. Therefore we must be careful in our implementation. The di�erences in responses

is due to a build up of error as the states are propagated foward. Since we will be measuring the

states and calculating the derivatives based on those values, we do not have to worry about the

error accumulating. Provided that the derivatives calculated at each time step have relatively small

error, we can reasonably base a controller on these estimates of the derivatives.
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Figure 7.3 Response of Nonlinear Dynamics and Partially Linearized Dynamics

7.4.3 SDC Parameterization. After performing the coordinate transformation and pseudo-

linearization, we are left with only one parameterization by allowing A(x) to be a function of only

�xgl. Any constant terms will have to be multiplied by
�xgl
�xgl

, where the numerator will be factored
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out leaving the coe�cient for the �xgl state. In the following equations we will denote in bold the

�x that are factored out leaving the elements of our nonlinear matrix A(xgl). The �nal form can

be seen in Appendix A. The next chapter will detail the results of designing controllers for this

model.

Our perturbed nonlinear equations become:

� _xcl = �ccl�xcl +

�
�cclqcl + cclbcl

1 + trigh(qgl + �xgl; 90; 60)

1 + trigh(bgl; 90; 60)

�
�xgl

�xgl
(7.19)

� _xel = �cel�xel +

�
�celqel + celbel

trigh(qgl + �xgl; 1:2bgl; 0:8bgl)

trigh(bgl; 1:2bgl; 0:8bgl)

�
�xgl

�xgl
(7.20)

� _xggl = �cggl�xggl +

�
�cgglqggl + 0:1(1:0� �)cgglbggl +

0:4qgstrigh(qgl + �xgl; 140~�; 60~�)

1000 � vol

�
�xgl

�xgl

+
0:4trigh(qgl + �xgl; 140~�; 60~�)

1000 � vol
�xgs (7.21)
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� _xgl =
1

10 � vol

�
24 � 60 � 2mass � �xgngl +

0:91 � 2mass

2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:25; 5:0)
�

 
dtrigh( qel

bel
; 0:9; 5:0)

dx
�xel +

dtrigh(
qggl
bggl

; 0:9; 5:0)

dx
�xggl

!

�

 
0:91 � 2mass

2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:25; 5:0)
�
dtrigh( qil

bil
; 0:25; 5:0)

dx
�

0:5mass

bil

!
�

�
qgl + �xgl

bgl

�
�xil

�

+

�
24 � 60 � 2mass � qgngl � 0:75 � 2mass

trigh(qgl + �xgl; 60; 150)

trigh(bgl; 60; 150)

+0:91 � 2mass
trigh( qel

bel
; 0:9; 5:0)+ trigh(

qggl
bggl

; 0:9; 5:0)�
qgl+�xgl

bgl
trigh( qil

bil
; 0:25; 5:0)

2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:25; 5:0)

�0:5mass
(qgl + �xgl)qil

bglbil
� 47:999232+

�
�xgl

10 � vol � �xgl
+
wglucose

10 � vol
(7.22)

� _xghl = �cghl�xghl +

�
�cghlqghl + cghlbghl

1 + trigh(qgl + �xgl; 90; 60)

1 + trigh(bgl; 90; 60)

�
�xgl

�xgl
(7.23)

� _xil = �cil�xil +

�
�cilqil +

0:4qistrigh(qgl + �xgl; 60; 140)

1000 � vol

�
�xgl

�xgl

+
0:4trigh(qgl + �xgl; 60; 140)

1000 � vol
�xgs +

uinsulin

vol
(7.24)
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� _xgngl = �cgngl�xgngl +

�
�cgnglqgngl +

cgnglbgngl

2trigh(1:0; 1:0; 5:0)+ 2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:5; 5:0)
�

�
trigh(

qcl

bcl
; 1:0; 5:0)+ trigh(

qel

bel
; 0:9; 5:0)+ trigh(

qggl

bggl
; 0:9; 5:0)

+ trigh(
qghl

bghl
; 1:0; 5:0)� trigh(

qil

bil
; 0:5; 5:0)

��
�xgl

�xgl

+
cgnglbgngl

2trigh(1:0; 1:0; 5:0)+ 2trigh(1:0; 0:9; 5:0)� trigh(1:0; 0:5; 5:0)
�

"
dtrigh( qcl

bcl
; 1:0; 5:0)

dx
�xcl +

dtrigh( qel
bel
; 0:9; 5:0)

dx
�xel +

dtrigh(
qggl
bggl

; 0:9; 5:0)

dx
�xggl

+
dtrigh(

qghl
bghl

; 1:0; 5:0)

dx
�xghl �

dtrigh( qil
bil
; 0:5; 5:0)

dx
�xil

#
(7.25)

� _xgs = [�0:2�� 0:4trigh(qgl + �xgl; 140~�; 60~�)] �xgs

+ [0:2�(mgs � qgs)� 0:4qgstrigh(qgl + �xgl; 140~�; 60~�)

�0:1(1:0� �)cgglbggl � 1000vol]
�xgl

�xgl
(7.26)

� _xis = [�0:2� � 0:4trigh(qgl + �xgl; 60; 140)]�xis

+ [0:2�(mis � qis)� 0:4qistrigh(qgl + �xgl; 60; 140)]
�xgl

�xgl
(7.27)
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VIII. State Regulation of Blood Glucose

This chapter presents the results of the nonlinear quadratic control as applied to human

glucose and insulin dynamics. This is a tracking problem, since we wish the glucose levels to be

stabilized at a level di�erent than a diabetic's basal (average equilibrium) level. Since the controller

dynamics are based on deviations away from equilibrium, those values must be subtracted from

the measured states. This setup can be seen in Figure 8.1. To regulate glucose, instead of the
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Figure 8.1 SIMULINK Tracking Diagram

equilibrium value being subtracted, we will subtract the desired level causing the regulator to be

a tracker. The block `Matrix Gain' is the vector containing those equilibrium and tracking values.

The functions used for the `nonlinear dynamics' and `nonlinear controller' blocks can be seen in

Appendix A.

8.1 Continuous Controller Solution

We will examine regulation of blood glucose level by penalizing only the glucose state since

it is the objective of our regulation problem. However, it is important not to penalize it too much
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relative to insulin injection (i.e. control usage), since large doses of insulin and fast rate changes in

hormone levels are both dangerous.

We should also leave the other states unpenalized for another reason. With the injection of

insulin and change in blood glucose level, the other states will depart from their diabetic basal levels

as well. This e�ect is necessary, and we do not wish to further reduce our controller e�ectiveness

by penalizing those deviations. It might be possible to �nd a desirable level for those other states

and weight deviations from the desired levels, but this is risky and could cause a situation where

glucose will be driven below its desired value for some disturbance, resulting in hypoglycemia.

All the simulations in this section use the partially linearized equations developed in the

previous chapter. To evaluate the performance of the nonlinear quadratic regulator, we will examine

the response to a disturbance in blood glucose. The external disturbance will start at 25 minutes

and last until 50 minutes which will represent the intake of glucose from food.

To develop a feasible controller, we are �rst interested in verifying that our SDC parameter-

ization works, and that a solution to regulate glucose exists. To examine this we will �rst set up a

cheap control problem. Using as much control as is needed, we will see if the controller is e�ective.

The penalty matrices for the cheap control problem are:

Q = diag

��
0 0 0 108 0 0 0 0 0

��
(8.1)

R = 1 (8.2)

Figures 8.2 and 8.3 shows the cheap controller results of NQR in response to the external

glucose injection (i.e. food). The controller is indeed quite e�ective in regulating glucose level.

There is a slight steady state error because of the tracking nature of the problem, which requires

control usage as long as glucose is away from its real equilibrium. Also, there is an initial insulin
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injection with magnitude 5 � 104 which is not plotted in Figure 8.3 to allow the magnitudes of the

rest of the control history to show.

This only establishes that there is a possible solution. We now must work at trying to achieve

a more realistic controller. First, negative insulin is not implementable, so our control usage must

be limited to only positive values. Second, the control usage magnitude is too large and would be

fatal. For our next try, we will add a limiter preventing negative insulin injection and use weights

of:

Q = diag

��
0 0 0 100 0 0 0 0 0

��
(8.3)

R = 1 (8.4)

The results are seen in Figures 8.4 and 8.5. Here we see that glucose is not very e�ectively

controlled, and it reaches levels almost as high as the uncontrolled diabetic would achieve. The

problem is that the insulin injection still starts with a peak that is too high and dangerous. We

cannot achieve the performance we want. To get better glucose tracking we need to increase the

state weighting, but that would only increase the insulin injection peaks to more dangerous levels.

We will now examine two di�erent methodologies to back away from the strict use of NQR.

First, we are interested in what happens if we also limit the maximum insulin injection rate. If an

arti�cial pancreas was implemented, it would certainly have a failsafe limit far below the maximum

injection a person could handle. Using an upper limit of 20 mU/s, and choosing a weight on glucose

of 106 keeping R = 1, we get the response seen in Figures 8.6 and 8.7. Note: this is not implying

this is a safe or healthy limit at all. This is merely the maximum value used in [Hod94], and is used

solely for a proof of concept and comparison to earlier work. In fact, Hodel states it is ten times

the natural basal injection level of humans.

This is de�nitely the most interesting control history of the cases we will examine. Each

narrow pulse has a duration of 0.5 seconds. The controller is using almost bang-bang control. In
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Figure 8.2 Glucose Dynamics for the Cheap Control Problem
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Figure 8.3 Insulin Dynamics for the Cheap Control Problem
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Figure 8.4 Glucose Dynamics for Q = 100
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Figure 8.5 Insulin Dynamics for Q = 100
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Figure 8.6 Glucose Dynamics for Limited Magnitude Controller
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Figure 8.7 Insulin Dynamics for Limited Magnitude Controller
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fact, increasing the weighting on glucose another order of magnitude does result in strictly bang-

bang control. Here the e�ects are slightly less severe. The results are promising and blood glucose

is regulated to acceptable levels; however, the changes in control usage can be very drastic. With

further research and validation of the assumed dynamics, this control methodology may provide

one possible solution.

We will also examine one more control strategy to see if we can establish a smoother control

history. Here we will return to a cheap control problem for weighting, except instead of implement-

ing the commanded insulin injection we will scale back the control by a constant value that would

result in safe levels. This is not always an acceptable control strategy, since stability is not guaran-

teed when changing the gain of a calculated controller. However, for this problem the dynamics are

well behaved, and we know a reduction in control usage will only slow the rates of insulin injection.

We are not in any more risk of inducing hypoglycemia than with the fully e�ective controller. The

weight on glucose for this problem is 108 with R = 1. The implemented control will be

u =
ucommanded

2500
(8.5)

Notice in Figures 8.8 and 8.9 that the control history is much more well behaved. Glucose levels

are regulated to reasonable levels and insulin injections are under the maximum we used in the

previous design.

To show the e�ectiveness of this controller, Figure 8.10 shows the controlled diabetic response

against a healthy response to the same disturbance. The match is quite close. We can see that the

healthy response is not trying to keep a 
at response, but that the natural dynamics allow gradual

increases and decreases in response to disturbances, just as the controlled response does.
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Figure 8.8 Glucose Dynamics for Reduced Usage Controller
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Figure 8.9 Insulin Dynamics for Reduced Usage Controller
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Figure 8.10 Controlled Diabetic Response vs. Healthy Response
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8.2 Table Lookup Solution

The pseudo-linearization was done to form simpler calculations which could be done o�-line

and stored in a table lookup. In this section, the controller uses a gain matrix based on glucose

measurements to the nearest 0.5 mg/dl. Whereas the previous section used a continuous solution,

here the solution P is solved for a �xgl from 0.0 to 20.0 at steps of 0.5. The elements of P are then

stored as a row in a larger matrix. Instead of calculating the solution to the SDARE at each step,

�xgl is used to calculate the index to the matrix. The matrix P is reformed and used to calculate

the control usage.

The results for this methodology are given in Figures 8.11 and 8.12. The results are indistin-

guishable from the pointwise solution of above. However, the simulation ran at least twice as fast

and provides a more implementable controller. Instead of having an onboard processor to solve an

algebraic Riccati equation, an arti�cial pancreas can use the gain matrices which would be stored

in memory.

8.3 Control without Full State Feedback

Since NQR assumes full state feedback, none of the controllers examined for blood glucose

regulation are actually implementable. Presently, blood glucose is the only measurement that

would be available. Additionally, two of the states, namely glucose stores and insulin stores, are

not measurable at all. They are results of the model, and there would be no way to measure total

amounts in the body.

Perhaps the other states' in
uences on control usage are relatively small compared to blood

glucose. To see if this might be reasonable, we will set the gains for all other states to 0 and

calculate the control usage. Figures 8.13 and 8.14 shows the results of this methodology. Insulin

injection achieves higher values but the deviations on blood glucose remain reasonable. Scaling

the control usage again may be e�ective in bringing the insulin injection levels back to reasonable
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Figure 8.11 Glucose Dynamics for Discretized Controller
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Figure 8.12 Insulin Dynamics for Discretized Controller
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levels. Scaling the control usage by half gives the results in Figures 8.15 and 8.16. The control

usage is indeed brought back to reasonable levels and the glucose level is still well controlled for

this disturbance.

These results also make the possibility of incorporating a nonlinear state estimation encour-

aging. Since removing the gains on the other states did not have a completely damaging e�ect, a

nonlinear estimator that can converge on reasonable state estimations may be e�ective in a com-

bined regulator-estimator controller. We could then leave all the gains intact and use the estimated

states with small errors in the states having little impact. Here we must caution against using the

partially linearized dynamics for the purpose of state estimation. Since this implementation does

propagate our assumed dynamics forward, the steady state is signi�cantly di�erent than steady

state of the full nonlinear dynamics. If we wish to couple a state estimator with our controller we

must use a full nonlinear estimator for this purpose.

8.4 Performance to Large Disturbances

Diabetics can be prone to very high blood glucose levels which exceed the levels already

examined. The previous simulations were run with the same disturbance used in Naylor, et al.

[NHS95], to allow comparisons. This section will use the �nal controller, i.e. discretized with

scaled control usage u = ucommanded

5000
, examined in the previous section with a maximum injection

rate of 20mU/min. We will increase the external glucose disturbance to be 0.5 grams/min over

the same period from 25 to 50 minutes. This level was chosen because the model achieved a high

blood glucose level 125 mg/dl for a healthy response, which is near the upper safety limit of blood

glucose. Note the diabetic response reaches an uncontrolled high of 173 mg/dl, which is dangerous

when continued for prolonged periods of time. Since the AEMG model is still in an early stage of

development, this test case might be stretching the model. However, we are interested in how NQR

can handle increasingly larger disturbances. For linear controllers, large disturbances can cause the
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Figure 8.13 Glucose Dynamics: Non xgl gains set equal to zero
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Figure 8.14 Insulin Dynamics: Non xgl gains set equal to zero
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Figure 8.15 Glucose Dynamics: Zeroed gains with reduced control
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Figure 8.16 Insulin Dynamics: Zeroed gains with reduced control
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controller to be ine�ective if the dynamics are highly nonlinear. If the NQR controller can continue

to provide encouraging results to increasingly large disturbances, then it seams reasonable that a

nonlinear quadratic regulator could provide one solution for an arti�cial pancreas.

The results are shown in Figures 8.17 and 8.18. The controlled response performs very closely

to the healthy response. This near match is of course unique for this case. For larger disturbances

the controller will result in lower performance than the average healthy performance, due to the

upper safety limit on insulin injection. Since the controller shown here is using the maximum

injection level, it will not be able to achieve a higher blood insulin level. For smaller disturbances,

the behavior approaches that seen in Figure 8.15.

Figure 8.19 shows how the controller would behave if its control usage was not limited to

a maximum value, with the corresponding control history in Figure 8.20. This shows that even

though the the control usage may not implementable, mathematically the NQR controller can keep

up with the dynamics of the nonlinear system. The overshoots increase for large disturbances, but

as a regulator NQR does return to the equilibrium values.

8.5 Summary

This chapter shows a preliminary investigation into a control methodology for an arti�cial

pancreas. While the model of human biological dynamics may be at an unvalidated stage, we

were still able to see nonlinear quadratic control e�ectively handle the assumed dynamics. Where

previous linear controllers have provided discouraging results, the SDARE calculated a suitable

controller. As the model improves, we can hope that the controller would improve as well.

On a more cautionary note, we must remind ourselves that full state feedback is not available

for this problem. Unfortunately, whereas we were able to turn o� the gains to the other states and

still achieve good results, as the model improves this may not be the case. However, these initial
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Figure 8.17 Glucose Dynamics: 0.5 g/min disturbance
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Figure 8.18 Insulin Dynamics: 0.5 g/min disturbance
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Figure 8.19 Glucose Dynamics: 0.5 g/min disturbance, no insulin cuto�
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Figure 8.20 Insulin Dynamics: 0.5 g/min disturbance, no insulin cuto�
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results should encourage us to pursue nonlinear estimation for this problem if we indeed need all

the states.
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IX. Conclusions and Recommendations

9.1 Further Research Areas

This thesis provided only a �rst attempt at applying the methods of Cloutier, et al., to

practical applications. There is still further research required in each of the areas we have examined.

9.1.1 Internally Stabilized Satellites. Nonlinear quadratic regulation provided some very

encouraging results when applied to a satellite stabilized by internal momentum wheels. NQR pro-

vides both a method for stabilizing the satellite and reorienting it to any desired position. Further

research in this area should probably investigate the merits of NQR as compared to controllers

already being implemented.

Because the equations of motions were scaled, the method should be examined using real

values for the inertias. This will determine both if the torques are of reasonable magnitude, and if

the time to settle is acceptable. As the inertias represented by the scaled inertia matrix go up, the

control magnitudes and time scale likewise increase.

9.1.2 Arti�cial Pancreas Studies. This thesis only provided a proof of concept in exam-

ining the applicability of NQR as a basis for arti�cial pancreas control. While the results are quite

encouraging, there is still much more research required on the modelling side. Not only do the

biological dynamics need to be well understood, but they also require rigorous validation before

implementing a control based on them.

As the dynamic models of glucose, insulin, and related hormones improve, it is this author's

hope that a controller based on the state dependent coe�cient method of NQR will continue to be a

viable solution. It is most likely that as the equations improve, they will become only more complex

and more nonlinear, implying that nonlinear controllers may hold the most promising solutions.

Further research is not limited to the biological side. There are still many issues of NQR to be

examined, including robustness and using nonlinear estimators. There is the very real possibility
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that for an improved dynamics model the gains on the other states will be signi�cant. Since NQR

is a full state feedback method, this will require it being coupled with some type of state estimator.

This could have disastrous e�ects on stability and robustness. Ultimately, since the controller would

be implemented on a human, there is no room for casual guessing.

9.1.3 Gain Scheduling Alternative. One possibility for NQR that the pancreas study

provided is the use of the state dependent coe�cient form as an alternative to gain scheduling.

Linear controllers of nonlinear systems have been adequate for many di�erent control problems

where the dynamics are reasonably represented and the perturbations relatively small. Perhaps

implementing SDC controllers on partially linearized systems will likewise be adequate for systems

with nonlinearities contained mostly in one state. This would provide a bridge between linear and

full-up nonlinear controllers. A follow up study could examine the problem where the dynamics

are represented by

_x = A(xk)x +B(xk)u (9.1)

where xk is the single state in which all nonlinearities are expressed. Perhaps there are more easily

derived optimality conditions and robustness issues for this simpler problem.

9.1.4 Discrete Implementation. What is important to remember is that the simulations

presented provided instantaneous control usage based on the values of the states. Although this

helps provide a proof of concept, it does not con�rm that we can implement the controller automat-

ically in a delayed or digitally sampled manner. Stability is provided asymptotically by providing a

pointwise stabilizing controller. If we implement the calculated control usage at any delayed time,

there is no guarantee that the commanded control will still have a stabilizing e�ect. This is of

course true for linear systems as well.
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None of this should discourage one from pursuing a discrete implementation. Further research

should also look at the performance of sampling and delay in a more realistic implementation of

NQR.

9.2 Summary

While the theory of nonlinear feedback control using the state-dependent Riccati equation is

still relatively new, it appears that there may be great promise in the results. For the examples

studied in this thesis, NQR provided stabilizing controllers that were quite e�ective, and although

suboptimal still provided adequate state and control usage responses.

We have also seen nonlinear quadratic regulation used on two very di�erent dynamical sys-

tems. The method seems well suited to a variety of control problems. With further development

of the theory behind NQR, we may �nd this method to be a promising new direction in control

theory.
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Appendix A. MATLAB Implementation of NQR

This appendix provides the functions which created the nonlinear dynamics and controllers

used in the SIMULINK simulation.

A.1 Rigid Body Dynamics

The following MATLAB function generates the equations of motion for the externally con-

trolled satellite.

function rtrn=satdyn1(x,J)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create nonlinear satellite dynamics

% angular velocity and quaternion states

% due to external torques

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w=x(1:3); q=x(4:6); q4=x(7); T=x(8:10);

wdot= -inv(J)*crs(w)*J*w +inv(J)*T;

qdot= .5*(crs(q)+q4*eye(3))*w;

q4dot= -.5*q'*w;

rtrn= [ wdot; qdot; q4dot];

A.2 Internal Rotor and Satellite Dynamics

The following MATLAB function generates the equations of motion for the externally con-

trolled satellite.

function rtrn=satdyn2(z,J,A)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% create nonlinear satellite dynamics with internal rotors

% states: mu, x, q; control: u

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mu=z(1:3); x=z(4:6); q=z(7:9); q4=z(10); u=z(11:13);

mudot= u;

w= inv(J)*(x-A*mu);

xdot= crs(x)*w;

qdot= 0.5*(crs(q)+q4*eye(3))*w;
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q4dot= -0.5*q'*w;

rtrn= [mudot;xdot;qdot;q4dot];

A.3 Arti�cial Pancreas

The following MATLAB function generates the dynamics used in the AEMG model with

some minor modi�cations.

function dx = nlplant(u, alpha, beta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% artificial pancreas dynamics

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xcl= u(1);

xel= u(2);

xggl= u(3);

xgl= u(4);

xghl= u(5);

xil= u(6);

xgngl=u(7);

xgs= u(8);

xis= u(9);

EGI= u(10); %external glucose

EII= u(11); %external insulin

d1= -log(.5)/7.5;

d2= -log(.5)/90;

d3= -log(.5)/30;

vol=6; mass=80;

as=1.1-.1*beta;

bcl= 11.1;

bel= 92;

bggl= 120;

bgl= 100;

bghl= 2.4;

bil= 35;

bgngl= .00027083;

bgs= 5*d1*bggl*vol*1000;

bis= 5*d1*bil*vol*1000;

upgs= .4*xgs*trigh([xgl as*140 as*60 ]) + .1*(1-beta)*d1*bggl*vol*1000;

upis= .4*xis*trigh([xgl 60 140]);

uhgp= 24*60*2*mass*xgngl + .7*(1.3)*2*mass*(trigh([xel/bel .9 5])...
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+ trigh([xggl/bggl .9 5]) - trigh([xil/bil .25 5])*xgl/bgl)...

/(2*trigh([1 .9 5]) - trigh([1 .25 5]));

utgcu=.75*2*mass*trigh([xgl 60 150])/trigh([bgl 60 150])...

+ xgl*xil*mass/2/bgl/bil;

maxgluc= 10*d1*bggl*vol*1000;

maxins= 10*d1*bil*vol*1000;

dxcl= -d1*xcl + d1*bcl*(1+trigh([xgl 90 60]))/(1+trigh([bgl 90 60]));

dxel= -d1*xel + d1*bel*trigh([xgl 1.2*bgl .8*bgl])*2;

dxggl= -d1*xggl + upgs/1000/vol;

dxgl= (uhgp - utgcu + EGI - 47.999232)/10/vol;

dxghl= -d2*xghl + d2*bghl*(1+trigh([xgl 90 60]))/(1+trigh([bgl 90 60]));

dxil= -d1*xil + upis/1000/vol + EII/vol;

dxgngl= -d3*xgngl + d3*bgngl*(trigh([xcl/bcl 1 5]) + trigh([xel/bel .9 5])...

+ trigh([xggl/bggl .9 5]) + trigh([xghl/bghl 1 5]) - trigh([xil/bil .5 5]))...

/(2*trigh([1 1 5]) + 2*trigh([1 .9 5]) - trigh([1 .5 5]));

dxgs= .2*alpha*(maxgluc - xgs) - upgs;

dxis= .2*beta*(maxins - xis) - upis;

dx=[dxcl dxel dxggl dxgl dxghl dxil dxgngl dxgs dxis]';

A.4 Satellite Controller using External Torques

The following MATLAB function generates the feedback control for the externally controlled

satellite.

function torq=cont1(x,J,R,Q)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% nonlinear controller for satellite w/ external torques

% using reduced dynamics

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w=x(1:3); q=x(4:6); q4=x(7);

B= [inv(J);zeros(3)];

A= [ -inv(J)*crs(w)*J, zeros(3);...

(crs(q)+q4*eye(3))/2, zeros(3)];

P= sdare(A, B*inv(R)*B', Q);

torq= -inv(R)*B'*P*x(1:6);
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A.5 Satellite Controller of Internal Momentum Wheels

The following MATLAB function generates the feedback control for the internally controlled

satellite.

function rtrn=cont2(z,J,A,s,r)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% nonlinear controller for intenally stabilized satellite

% dimension 13, states: mu, x, w, q; control: u

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mu=z(1:3); x=z(4:6); q=z(7:9); q4=z(10);

Q= diag([0 0 0 0 0 0 s s s s s s 0]);

R= eye(3)*r;

w=inv(J)*(x-A*mu);

JxJ=inv(J)*crs(x)*inv(J);

qmat= [.5*(crs(q)+q4*eye(3)); -.5*q' ];

B=[eye(3); zeros(3); -inv(J)*A; zeros(4,3)];

A=[ zeros(3,13) ;...

zeros(3,6), crs(x), zeros(3,4) ;...

-JxJ*A , JxJ, zeros(3,7) ;...

zeros(4,6), qmat, zeros(4) ];

P=sdare(A, B*inv(R)*B', Q);

%eig(A) %uncomment to see eigenvalues of A

%eig(A-B*inv(R)*B'*P) %uncomment to see eigenvalues of (A-BK)

rtrn= -inv(R)*B'*P*[mu;x;w;q;q4];

A.6 Partially Linearized Pancreas Controller

The following MATLAB function generates the feedback control for the arti�cial pancreas

model.

function u=nlcontr(x,Q,R)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% artificial pancreas controller

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

y=x(4); %glucose state
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if abs(y)<.0001

u=0;

else

B= [0 0 0 0 0 1/6 0 0 0]';

A= nlA(y); %create nonlinear A matrix

P= are(A, B*inv(R)*B', Q);

u= -inv(R)*B'*P*x;

% u= u/2500; % uncomment for scaled controller

end

The above code calls the function nlA(xgl) which is given by:

function aa = nlA(xgl)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Make nonlinear A matrix; function of xgl only

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d1= -log(.5)/7.5;

d2= -log(.5)/90;

d3= -log(.5)/30;

vol= 6; mass= 80; alpha= 0.1; beta= 0.1;

v10= vol*10;

as= 1.1-0.1*beta;

bcl= 11.1;

bel= 92;

bggl= 120;

bgl= 100;

bghl= 2.4;

bil= 35;

bgngl= .00027083;

bgs= 5*d1*bggl*vol*1000;

bis= 5*d1*bil*vol*1000;

qcl= 10.83;

qel= 70.24;

qggl= 23.868;

qgl= 104.82;

qghl= 2.3814;

qil= 6.43;

qgngl= 2.6353e-4;

qgs= 3.1885e4;

qis= 1.591e4;

upgs= 0.4*qgs*trigh([qgl+xgl as*140 as*60 ]) + 0.1*(1-beta)*d1*bggl*vol*1000;

upis= 0.4*qis*trigh([qgl+xgl 60 140]);

gama1= 0.7*(1.3)*2*mass/(2*trigh([1 0.9 5]) - trigh([1 0.25 5]));
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gama2= d3*bgngl/(2*trigh([1 1 5]) + 2*trigh([1 0.9 5]) - trigh([1 0.5 5]));

maxgluc= 10*d1*bggl*vol*1000;

maxins= 10*d1*bil*vol*1000;

a14= -d1*qcl + d1*bcl*(1 + trigh([qgl+xgl 90 60]))/(1+trigh([bgl 90 60]));

a24= -d1*qel + d1*bel*trigh([qgl+xgl 1.2*bgl 0.8*bgl])*2;

a34= -d1*qggl + upgs/1000/vol;

a38= .4*trigh([qgl+xgl as*140 as*60])/1000/vol;

a41= gama1*dtr(qel/bel,0.9,5)/v10;

a43= gama1*dtr(qggl/bggl,0.9,5)/v10;

a44= 24*60*2*mass*qgngl + gama1*(trigh([qel/bel 0.9 5])...

+ trigh([qggl/bggl 0.9 5]) - trigh([qil/bil 0.25 5])*(qgl+xgl)/bgl);

a44= (a44 - (0.75*2*mass*trigh([qgl+xgl 60 150])/trigh([bgl 60 150])...

+ (qgl+xgl)*qil*mass/2/bgl/bil + 47.999232))/v10;

a46= (-gama1*dtr(qil/bil,.25,5) - (qgl + xgl)*mass/(2*bil*bgl))/v10;

a47= 24*60*2*mass/v10;

a54= -d2*qghl + d2*bghl*(1 + trigh([qgl+xgl 90 60]))/(1 + trigh([bgl 90 60]));

a64= -d1*qil + upis/1000/vol;

a69= .4*trigh([qgl+xgl 60 140])/1000/vol;

a71= gama2*dtr(qcl/bcl,1,5);

a72= gama2*dtr(qel/bel,0.9,5);

a73= gama2*dtr(qggl/bggl,0.9,5);

a74= -d3*qgngl + gama2*(trigh([qcl/bcl 1 5]) + trigh([qel/bel 0.9 5])...

+ trigh([qggl/bggl 0.9 5]) + trigh([qghl/bghl 1 5]) - trigh([qil/bil 0.5 5]));

a75= gama2*dtr(qghl/bghl,1,5);

a76= -gama2*dtr(qil/bil,0.5,5);

a84= 0.2*alpha*(maxgluc-qgs) - upgs;

a88= 0.2*alpha - 0.4*trigh([qgl+xgl as*140 as*60]);

a94= 0.2*beta*(maxins-qis) - upis;

a99= 0.2*beta - 0.4*trigh([qgl+xgl 60 140]);

aa=[-d1 0 0 a14/xgl 0 0 0 0 0;...

0 -d1 0 a24/xgl 0 0 0 0 0;...

0 0 -d1 a34/xgl 0 0 0 a38 0;...

a41 0 a43 a44/xgl 0 a46 a47 0 0;...

0 0 0 a54/xgl -d2 0 0 0 0;...

0 0 0 a64/xgl 0 -d1 0 0 0;...

a71 a72 a73 a74/xgl a75 a76 -d3 0 0;...

0 0 0 a84/xgl 0 0 0 a88 0;...

0 0 0 a94/xgl 0 0 0 0 a99];
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Appendix B. Reduction of Neutrally Stable System

This appendix shows how the 7 state model given in Eqn. (6.1) can be reduced to a fully

controllable form such that a standard algebraic Ricatti equation solver can be used. We will

assume that controls will be weighted by R = �2I, the angular velocities weighted by Q! = 
2I,

and the �rst three quaternions by Qq1�3 = �2I

Beginning with the SDARE we have
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We now have the following three equations to solve for P11; P12; and P22:
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Solving for P12 �rst we take one term across and taking e�ectively the square root of each

side with careful attention to matrix dimension

P12J
�1 = ��

2
664 I3�3

0

3
775 (B.6)

where each side is 4� 3. Postmultiply by J to get

P12 = ��

2
664 J

0

3
775 (B.7)

This establishes that the last row of P12 is a zero row. Now examining Eqn. (B.4) and

expanding

J!�J�1
�
J 0

�
+QTP22 �

1

�2
P11J

�1J�1
�
J 0

�
= 03�4 (B.8)

we see that the �rst and third terms have a fourth column whos elements are all zero. This implies

that P22 must have a fourth zero column and row because of symmetry. Therefore, the seventh

row and column of P (x) which solves the SDARE are empty. We can then eliminate the seventh

row and column from our dynamics and we are left with a strictly controllable parameterization.

The equations for P11 reduce to another SDARE.
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