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AFIT/DSIENY/96-3

Abstract

The research focused on the development of a new method to identify damaged structural
elements from a large flexible space structure on-orbit, using limited measured modal data. Limited
measured modal data is loosely defined as measured data containing only a few modal frequencies
and less than 10% of the total structural degrees-of-freedom. This effort was decomposed into four
specific tasks. The first is the identification of partiadl modal properties from measured data of the
nomina space structure. Second, the finite element model must be adjusted to match the measured
nomina partial data. The third task is an anaysis of the extent to which structural damage can be
localized to individua structural elements using the measured data. In conjunction with this task is
the determination of where to best place the limited number of sensors on the structure. Lastly, the
identification of structural damage must be performed using the limited measured modal data from a

damaged space structure.

Identification of the modal parameters was accomplished using the Eigensystem Realization
Algorithm, atime domain based method, adopted for use with averaged measured frequency response
functions. Model tuning was performed using the Automated Structural Optimization Software pack-
age, adapted for model tuning. The method minimizes a cost function based on the mismatch between
the measured and analytical eigenstructure. The minimization issolved using the eigenvalue and eigen-
vector sensitivities at each iteration step. The determination of prioritized sensor locations and damage
localization is performed using the eigenvaue and elgenvector sensitivities. Damage identification is
performed using anewly developed assigned partia eigenstructure method, which determines required

stiffness changes, consistent with the finite element formulation to achieve the measured data.

The theory for each task is presented and illustrated on an analytical example of a 41-element
free-free planar truss. Two experimental demonstrations were performed and the results reported. The
first wasa cantilevered truss model ed with 104 rod elements with atotal of 96 degrees-of-freedom. The
measured data consisted of the first five flexible modal frequencies, and only eight components of the
five corresponding eigenvectors. The second experiment was a cantilevered frame assembly modeled
with 96 beam elements with atotal of 192 degrees-of-freedom. The measured data consisted of thefirst

eight flexible modal frequencies, and only eight components of the eight corresponding e genvectors.

XVi



The research showed that in each test case, the structural damage could successfully be localized to a
small portion of the structure. The extent to which damage can be locaized was limited by both model

fidelity and accuracy of the measured modes.



STRUCTURAL DAMAGE IDENTIFICATION FROM LIMITED MEASUREMENT

DATA

|. Introduction

Over the past decade, both the size and complexity of military and civilian spacecraft have
increased considerably. Future Air Force space systemswill continue to increase in size dueto mission
requirements, while minimizing weight to remain within launch constraints of the booster inventory.
In addition to the size and complexity increase, the on-orbit lifetime has increased as a result of
new advances in solar power generation and battery storage devices. These advances coupled with
NASA’'sdemonstrated ability to perform on-orbit repair and replacement of flight critical items, further
extend a satellite’s usable lifetime. As a result, future large flexible space structures will have an
unprecedented requirement for verifying the structural integrity of such space structures on orbit, on a
periodic basisover thelifetime of the space system. Thepotential degradation of structural components
from long term exposureto the space environment was documented with the retrieval of NASA’sLong
Duration Exposure Facility.™*” Additional damage is also possible due to loads introduced during
orbital maneuvers, spacecraft docking operations, and from collisions with space debris. NORAD
currently tracks over 5000 objects 10 centimeters in size or larger in low Earth orbit.® Information
on both the location and extent of structural damage will be critical in assessing required in-space
repair missions and/or deviations from the planned mission profiles. The current configuration of the
International Space Station Alphais shownin Figure 1.1.%" Thisresearch focuses on identification of
damage to structural sub-assemblies typical of large orbiting space platforms. The truss-like structure

of International Space Station Alpha’s solar array sub-assembly is depicted in Figure 1.2.1%

Onemethod of structura verification isvisua inspection, however this method may be impracti-
cal duetothe extra-vehicular activity man-hoursrequired, or impossible asin the case of unmanned and
high atitude missions. Thusan alternative solution to visual inspection isdesired, and isthe main focus
of thisresearch. Two current disciplines, closely related to thistopic, are system identification theory
and analytica model tuning from experimental data. These two disciplines will be briefly reviewed,

and their correlation to structural damage identification will be highlighted.
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Figure1.1 On-orbit configuration of International Space Station Alpha.

¥4

Figure 1.2 Solar array sub-assembly from International Space Station Alpha.
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Vibration testing has been used extensively in industry to monitor rotating machinery. From
observations of input/output relationships, the frequency signature of a system can be used to detect
failures. Identifying specific failure modes can then be accomplished by a comparison of the frequency
signature to that of a predetermined set for each failure mode. For alarge system, this failure mode
set may beimpractica to produce or store and interpolation is not necessarily possible between failure
modes. Thus an dternative to searching a frequency signature database is sought. One alternative is

the use of a system identification algorithm.

System identification techniques are based on determining the underlying physical system from
agiven set of input/output relationships. For non-parametric system identification, the physical system
can be viewed as a ‘black box’ and thus no inherent knowledge of the structure of the system is
required. The primary measure of the effectiveness of the system identification is in how well the
identified mathematical model produces an output which matches the measured output for a given
input signal. Since there is a direct relationship between the time and frequency domain through
the Fourier transform, the identification can be accomplished in either domain. System identification
methods have been shown to be very effective in producing models which exactly (theoretically) or
closely match (to within the experimental error) the true system; however, they typically do not directly
give information about the physical structure of the system. For structura damage identification, the
system identification techniques are useful in obtaining the e genstructure of the physical system, which
will be shown to be sufficient to determine structural damage. The feasibility of identifying modal

frequencies, damping ratios and shapes from on-orbit testing has been addressed in previous studies.™

Unlike the non-parametric identification, model tuning is a parametric approach to system
identification which includes a detailed physica modd with well defined parameters of uncertain
values. Modd tuning attempts to match the input/output relationships of an analytica modd and
the physical system by varying parameters in the mathematica model. Differences in model tuning
methods depend on the assumptions made on how to vary these parameters. For physical structures,
one approach is to vary the material properties of the elements in the model. This is typically done
by adjusting the stiffness and mass and/or damping matrices of the model. This method assumes the
existence of afiniteelement method (FEM) model which producessimulated output whichisreasonably
close to experimental measurements. To exactly match experimental data, only small perturbations to

the model matrices are required. Model tuning can then be approached as an optimization problem.
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For agiven input, a minimization on the difference between the model output and the measured output
can be performed through the use of an appropriate metric, while iterating on the perturbation of the
matrices. The key distinction between different model tuning methods, important to structural damage
identification, is whether or not the physical connectivity of the structure is retained. Clearly, to
correctly determine a change in a structural element, the tuned model must not remove load paths or

introduce load paths not present in the physical structure.

An additional complexity with model tuning algorithms s in obtaining complete experimental
information. A typical FEM model of alargeflexible space structurewill include hundreds or thousands
of nodes with as many as six degrees-of-freedom at each node. In contrast, typical experimental data
will include accurate information on only the lower frequency modes of vibrations, taken at only asmall
subset of thenodesinthe FEM model. Furthermore, typically only translational degrees-of-freedomare
measured which further reduces the available data. Thus an additional distinguishing feature between
model tuning agorithms is in how to incorporate the reduced experimental data sets into the model.
Severa modd reduction/expansion algorithms have been used to correlate the model to experimental
data.®*** A common attribute of these methods is the use of the nomina FEM model to obtain the
unmeasured degrees-of-freedom. For damage detection however, the FEM model is the unknown and

hence cannot be used as the basis for the reduction/expansion.

Having briefly motivated the problem of on-orbit damage identification, along with introducing
the concepts of system identification and model tuning, a statement of the research objective can now
be given. The research focused on the development of a new method to identify damaged structura
elements from alarge flexible space structure on-orbit, using limited measured modal data. This effort
was decomposed into four specific tasks. Thefirst istheidentification of partial modal propertiesfrom
measured data of the nominal (i.e. undamaged) space structure. Second, the FEM modd must be
adjusted to match the measured nominal partia data. The third task is an analysis of the extent to
which structural damage can belocalized to individual structural elements using the measured data. In
conjunction with this task is the determination of where to best place the limited number of available
sensors on the structure. Lastly, the identification of structural damage must be performed using the

measured data from a damaged space structure.

This chapter briefly introduced the research effort and outlined some of the related work in this
area. Chapter 1l presents a background of related work in system identification and model tuning and
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discusses the relevance to damage identification. The subsequent chapters devel op the four tasks of the
on-orbit damage identification problem in detail, beginning with an overview of the methodology for
eachtask in Chapter 111. Thefour taskswereintegrated into asingle software package which ispresented
Appendix B. Lastly, validation of theresearch effort was performed using | aboratory experimentswhich

exhibit the same dynamic properties aslarge flexible space structures, and is presented in Chapter VIII.
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I1. Background
2.1 Motivation

The problem of producing analytical models capable of predicting dynamic responses has been
widely studied. While these solution methods may result in analytical models which match (typically
in a weighted least squares sense) experimental data, they most often do not directly address the
problem of relating perturbations of the analytical model to changes in the physical parameters of the
structure. Direct identification of failed structura components is exactly the information required to
adjust mission profiles to minimize structura dynamic loading and to enable development of repair
missions where possible. Thus a method which directly identifies damaged structural members from
experimental data is highly desirable. Due to the similarities among damage identification, system
identification and model tuning, an overview of existing methods for system identification and model

tuning will be presented as well as current methods of damage identification.

2.2 System ldentification Techniques

The problem associated with system identification is: given the measured response to a known
input, determine a mathematical representation of the system which reproduces the output sequence
given the input sequence. Differences in algorithms are based on the assumptions of the underlying
system, which then establishes the structure of the analytical model. For large flexible space structures,
afinite-dimensional linear time-invariant model can adequately represent the dynamics of the structure
and hence will be the subject of this investigation. In general system identification theory, such a
restrictive assumption need not be imposed.

To illustrate the genera approach to system identification, a sampled data single-input single-
output system will be considered. This presentation is based on work by Ljung.* Given an input
sequence u(t) and an output sequence y(t) wheret = (0,1,..., N — 1), thediscrete-time system can
be represented as:

y(1) = G )ult) + (1) (2.)
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with G/(z)u(t) representing the convolution summation of the system’s impulse response sequence

¢(t) with theinput sequence (), and is given by:

Glpu(t) = 3 glkyut - 1) 22)

k=0

The function »(t) represents the measurement noise (uncertainty) associated with obtaining the output

sequence. Theterm G/( z) represents the system’s transfer function and is defined as:

6 = Yol @3
where z represents the time-shift operator such that:

Zhy(t) = y(t-1) (24)

A parametric approach to system identification is then confined to the determination of a set of
parameters which fully describe G/( ). To illustrate the different approaches, a more general form of

Equation (2.1) is used to form agenera parametric model given as the following convolution:

e(t) (2.5)
where A(z), B(z),C(z), D(z),and F'(z) are polynomialsin the time shift operator = as follows:
Alz)=1+ a2 a2 (2.6)

and similarly for theremaining four polynomials. Theorder of thepolynomialsisgivenby na, nb, nc, nd
and n f respectively. The sequence ¢(?) is assumed to be a white noise sequence and is shaped by
%% to produce the measurement noise v(¢) of Equation (2.1). The commonly used linear models
are all specia cases of the genera form of Equation (2.5). The autoregressor with exogenous input
model is obtained by setting nc = nd = nf = 0. Similarly, the autoregressor with moving average
and exogenous input is obtained by setting nf = nd = 0. The output error model corresponds to
na = nc = nd = 0, while the Box-Jenkins model is obtained by setting na = 0. A large set of

models can thus be obtained from the general form given in Equation (2.5).
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Although the above development was in transfer function form, an equivalent state-space repre-

sentation is also possible. The state-space representation of Equation (2.5) is given as:
x(t4 1) = Az(t) + Bu(t) (2.7)

y(t) = Calt) + Du(t) + v(1) 28

where A, B, C, and D are redefined as constant matrices. Equation (2.7) can be rewritten in terms of
the time shift operator as:

za(t) = Az(t) + Bu(t) (2.9)

Solving for z(¢) yields:
2(t) = (21 — A)™" Bu(t) (2.10)

Substituting this result into Equation (2.8) yields the convolution:
y(t) = [C (1 = A7 B+ D] u(t) + v(1) (2.11)
Thusthe transfer function is directly related to the state-space quadruple (A, B, C, D) by:
G(z)=C[zI — A"'B+ D (2.12)

Hence the system identification problem is equivalent to determining the constant matrices of the
quadruple (A, B, C, D) which accurately reproduces a given measured response from a known input.
A further distinction between techniquesinvolveswhether theinput «(¢) and output y(¢) arerepresented

in the time or frequency domain. The foundation of these two methods will be briefly discussed.

2.2.1 Time Domain. System identification in the time domain seeks to reconstruct the
transfer function based on identification of the system’simpulse response function. For the scalar case,

if theinput is a pulse defined as:

a 1=0
0 t#£0
then the output y(¢) becomes:
y(t) = ag(t) + v(t) (2.14)



where ¢(t) is the unit-impul se response sequence and v(¢) is the measurement noise. If the signal to
noiseratio is high, then »(¢) << ag(t) and can be neglected. An estimate of the impulse response is
then simply:

g(t) = == (2.15)

with an error of @ An estimate of the transfer function can then be determined directly from the

estimated impul se response.
= Zg(t)z_t (2.16)
t=0

A disadvantage with the above method is the requirement to excite the system with an impulse.
This can be approximated with a finite pulse input, but may be impractical to implement on certain
systems, and it may bedifficult to obtain responselevelswhich are significantly above the measurement
noise levels. An alternative procedure known as correlation anaysis overcomes this shortcoming by

requiring the input is a zero-mean white noise sequence, i.e. it'sauto-correlation function is given as:

A 7=0

Ruu(1) = { 0 740 (2.17)

Then, from Equation (2.1) the cross-correl ation between the input and output is given as:

Ry (1) = Ag(T) (2.18)

where g(7) isthe desired impulse response sequence. By definition,"™ the cross-correlation between

two zero-mean sequences is given as.

Ry (7)= lim — Z y(tu(t — 1) (2.19)

N—»oo

whereit is assumed that the limit exists. An estimate of the correlation isthen obtained by selecting N

sufficiently large. Thusthe correlation estimate is defined as:

Ry (7) = — Z y(tu(t — 1) (2.20)
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Using the estimated correlation, an estimate of ¢(7) can then be obtained from the input and output

sequences using Equations (2.18) and (2.20).

o) = 55 2 w0l = 1) (2.21)

Although the assumption was made that the input «(¢) was white noise, this is not a restrictive
assumption since a shaping filter can always be constructed to produce the actual sequence u(t). "
The output sequence can then be filtered through this same filter and the estimate is computed using
Equation (2.21) withfiltered data. Although presented herefor the scalar case, the method is applicable

to multiple input/output combinations.

Based on these concepts, a vast array of system identification methods have been studied and
presented in the literature. From these methods, the eigensystem redization algorithm (ERA) was
singled out as one which has demonstrated it's ability to accurately produce a minimum system
realization from multi-input/multi-output (MIMO) experimenta data typica of large flexible space
structures.™ The ERA method is presented in Chapter 1V.

2.2.2 Freguency Domain.  The aforementioned methods were based on reconstruction of the
impulse response in the time domain. An aternative method is identification of the system’s transfer
function in the frequency domain. This method is commonly referred to as spectral analysis and is

included here for completeness.

The frequency response function of the system in Equation (2.1) is found by evauating the
transfer function G(z) on the unit circle = = ¢/“. Furthermore, the noise sequence v(t) can be
described in terms of its power spectral density ®,,(w ), where the power spectra density function is
defined as the Fourier transform of the autocorrelation function. Thus the input output relationship of
Equation (2.1) is completely specified from knowledge of G/(w) and ®,,(w). If initialy we assume
the measurement noise is negligible, the frequency response function can be found from sine-dwell

testing. In this method, the system is given aknown sinusoidal input.

u(t) = asin(wt) (2.22)
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For a linear time-invariant system, it is well known that the steady-state output response after the

transients die out is given by: ®

Yss (1) = a |G(w)|sin(wt + @) + v(1) (2.23)

where ¢ is given by the phase angle of G(w). In this way, an estimate of the transfer function can
be found by repeated application of the input sinusoid at frequencies of interest and measuring the
magnitude and phase of the response. A reconstruction of the transfer function from the data can then

be performed.

In the preceding analysis it was assumed that the measurement noise was small and hence was
neglected from the analysis. A lessrestrictive assumption isto assumeu(t) and v(t) are independent,
but v(¢) not necessarily negligible. The relationship between input and output given in Equation (2.1)
corresponds to arelationship between the power spectra of:

Py (w) = |G Puu(w) + Dyu(w) (2.24)

and
D, (W) = G(W)Pyu(w) (2.25)

Estimates of the frequency response function and the noise power spectrum are obtained by computing
the appropriate estimates of the correlation functions using Equation (2.20) and their corresponding

power spectra (by Fourier transformation).

G(w) = (2.269)
2
@y (w)]
D, (w)
The above highlights the general aspects of spectral anaysis. A more complete derivation of spectral

¢, (w) =Py (w) — (2.26b)

analysis is contained in Newland.™ The preceding material was based on a discrete time analysis,
since thisisthe form of measured data. The materia presented in the remainder of this chapter and al

subsequent chaptersis based on a continuous time analysis unless otherwise stated.
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2.3 Mode Tuning Techniques

As opposed to system identification techniques where no a priori model is required to perform
the identification, model tuning assumes the existence of an analytical model. For flexible structures,
the model can be written as:

Mx+Cx+ Kz =Ff (2.27)

where M, C, K represent the mass, damping, and stiffness matrices respectively for the degree-of-
freedom vector . The matrix F’ represents the influence matrix to a given input vector f. This
analytica model is the result of an application of Newton's second law, and most likely produced
as the output of a FEM program and used to simulate the dynamic response of the actual structure.
Notethat the matrices M, C, K, F' of the second-order Equation (2.27) can berelated to thefirst-order
quadruple (A, B, C, D) as givenin Equations (2.7) and (2.8). The transformation from second-order

to first-order form for astate vector [z, z]” is given by:

0 I

A= l ] (2.289)

-M~'K —-M~C

0
B = l ] (2.28h)
M-'F

C=[I 0] (2.28¢)
D = 0] (2.28d)

Due to violation of modeling assumptions and to inherent uncertainties in material properties, joint
properties, boundary conditions, etc. in developing the analytical model, there will exist an imperfect
correlation between the experimental and analytical results. If the correlation results are unsatisfactory,
an adjustment to the finite element mode is necessary. The common attribute of model tuning
techniques is that they attempt to minimize the required modification to the matrices, assuming the
FEM model isareasonableapproximationto thephysica structure. Additionally, for redlistic structures,
the FEM mode will include a large number of degrees-of-freedom (dimension of z) of which only a
small subset will be measured. The differences in the techniques stem from how to incorporate the
reduced data set and on what restrictions to make on the set of allowable perturbations to the existing

matrices as well as the selection of what error metric is to be minimized. Further classifications can
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be made on whether damping is considered in both the model and the measurements. For cases where
damping is neglected, C' = 0 in Equation (2.27), the distinction is whether adjustments are made to
the mass matrix, stiffness matrix, or both. The adjustments are the result of the solution of eigenvalue
problems, orthogonality relationships, and eigenstructure assignment techniques. Several relevant

techniques will now be reviewed.

231 Sensitivity Based. A straightforward approach to adjusting the matrices in Equation
(2.27) isto establish an obj ective function which isameasure of the difference between the experimental
and analytical model data.'™ The eigenstructure (eigenvalues and eigenvectors) has been widely
accepted as an acceptable method of measuring correspondence between models.'™ Thisis dueto the
fact that the eigenstructureisinvariant under a state transformation and thus allows direct comparisons
of different realizations. Sensitivity is the quantification of changes in the objective function due to
changes in the design variables. The sensitivity of the objective function with respect to the design
parameters is determined for each parameter in the matrices. A numerical optimization problem is
then solved by searching over the entire parameter space using the sensitivity information to determine
search directions. An advantage of this method isthat the updated models are consistent with the FEM

formulation and thus the connectivity is preserved.

While this method can yield acceptable results for small problems, the major drawback is the
large number of design parameters contained in the search space.®* For larger problems, the selection
of asuitable set of parameters to search over may not be intuitive. Its advantage in structural damage
identification, however, is that a set of parameters can be chosen that reflect physical failure modes,
such as searching over an eastic modulusvalueor the cross-sectional areaof each member. Preliminary
knowledge of the damage location may be required for large structures to minimize the required search
space. Hemez and Farhat applied this procedure to damage detection.™**! Success of the detection

algorithm relied on the extent of the damage and the sensitivity to the chosen design variables.

2.3.2 Orthogonality Based.  If the underlying physical system is assumed to be linear and
either undamped or proportionally damped, then the mode shapes of the structure will be orthogonal

with respect to the mass matrix."™” Modal orthogonality can then be represented as:

dTMP =1 (2.29)
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where ® isthe matrix composed of the measured eigenvectors (mode shapes). Using this orthogonality
requirement, small adjustments can then be made to the mass matrix M to force the orthogonality
requirement. Note that confidence in the analytical mass matrix is assumed higher than the confidence
in the stiffness matrix. For the undamped structure, the corresponding eigenval ue problem can then be
written s

PTK® = A (2.30)

Adjustments to the stiffness matrix are then made such that Equation (2.30) is satisfied. In Equations
(2.29) and (2.30), both @ and A are required to have the same dimension as the anaytica modd.
As previously discussed, the sets of measured eigendata will be much smaller than the number of
degrees-of-freedomin the analytical model. Thus, to apply the orthogonality equations, either amoda
expansion on the measured data or a modal reduction on the analytical model must be performed. As
presented by Berman, amodal expansion can be performed on the test data asfollows.!” The anaytical
matrices are first ordered such that the coordinates associated with the measured degrees-of-freedom
are ordered above the remaining coordinates. The eigenvaue problem for each mode can then be
written as:

[K — \M]®;, =0 (2.31)
This equation can then be partitioned as:
kl k‘z my My ¢1;
; — A ; =0 (2.32)
ky kg my My @,
The unknown lower partition of the eigenvector can then be solved using the following:
Go; = —(ka — Nma) ™M (k3 — \im3 )oui (2.33)

Thisresultisrepeated for each measured mode. Thismethod representsan interpol ation of the measured
modes at the unmeasured degrees-of-freedom. The accuracy of this technique is clearly dependent on
how accurately the analytical model represented the physical structure. It should be noted that if the
frequency dependence in the above equation were ignored, this would result in the standard Guyan

reduction relationship.

29



Having obtained full-length eigenvectors, the adjusted mass matrix is then formed from the

solution of a constrained minimization problem."” An objective function of the form:
J = | Mg on - a (2.39)

is used which penalizes deviations from the anaytica model. In the original work the Frobenius
norm was chosen. The subscript ¢ denotes the analytical model. The orthogonality constraint is then

appended with Lagrange multipliers as follows:

L=J+Y > v (9T M - I); (2.35)
i=1 j=1
Differentiating I, with respect to M and setting derivativesegual to zero yieldsasolution to the adjusted
mass matrix which now satisfies the orthogonality relationships and has minimized deviations from
the analytical mass matrix according to the applied norm in the objective function. The corrected mass
matrix is given by:

M = M, ®m (I — m)m™ e’ M, (2.36)

with m defined as:
m= o' M, (2.37)

Although not presented in the original work, an iterative scheme could be used becuase the interpolated
value of ¢ will change for the adjusted M. Having obtained the adjusted mass matrix, the stiffness
matrix isthen obtained in asimilar manner. Theobjectivefunctionisformed asan appropriate weighted
norm on the difference between the anaytical and adjusted stiffness matrices. 1n Berman’swork which
was an extension of the stiffness matrix adjustment method of Baruch,™ the analytica mass matrix
was chosen as the appropriate weighting function for the individual elements. This seems appropriate
only when elementa stiffness vaues are directly related to the mass of each element. Certainly,
there are structures which contain mass e ements which do not contribute to the overall stiffness of the
structure. With the norm chosen, the eigenval ue equation isthen appended asaconstraint with Lagrange
multipliers. Anadditional constraint to ensure symmetry of the stiffness matrix is also appended. The

adjusted stiffness matrix is then found from a differentiation with respect to the elements of K, and
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setting them equal to zero. The resulting adjusted stiffness matrix is given as:
K=K,+A+AT (2.38)

where

A= % (MK, ® + N)®T M) — K, 507 M (2.39)

Although the presentation above based on the work of Berman and Baruch did not consider damping,
it could be expanded to include the proportional damping case. The advantage of this method is the
straightforward mathematical formulation of the adjusted matrices. Furthermore, this method will
result in a tuned anaytic model which exactly reproduces the experimental data. Its shortcoming is
that it does not guarantee the closeness to unmeasured modes not used in the tuning process. Thisis
aresult of potentially unrealistic changes in the stiffness matrix such as the introduction of load paths
which physically do not exist. The introduction of fictitious load paths is undesirable when identifying
damaged elements since the stiffness changes can not be directly related to physical elements.

The orthogonality based approach described above is essentialy a matrix update approach
in which perturbation mass, damping, or stiffness matrices are determined that, when added to the
analytical matrices, reproduces the measured result. Brock originally examined this problem while
enforcing symmetry and positive-definiteness of the solution.' Success of this method is dependent on
the ability to accurately measure or reconstruct the modal matrix . When using limited measurements,

an accurate ® matrix is not arealistic expectation.

2.3.3 Connectivity Based.  To overcome some of the shortcomings of Baruch’s method of
stiffness matrix adjustments, Kabe introduced an objective function which ensures stiffness terms are
corrected in arelative manner such that the connectivity of the analytical model is preserved.®*" This
method was also expanded to include a weighting function which assigns a confidence level to each
term in the stiffness matrix. Kabe's algorithm uses a percent change in stiffness value cost function
and then appends a constraint on the sparsity pattern of the stiffness matrix to preserve the original
load paths. The addition of the structural connectivity information enables Kabe's method to identify

stiffness changes exactly in some cases, even when only alimited number of measurements were used.
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A mathematically equivalent but moreintuitive method was devel oped by Kammer using an alternative

matrix minimization formula. Similar work has been investigated by Smith and Besttie.'™

In al of these methods, the minimization of a matrix norm (typically the Frobenius norm) of
the difference between the measured and analyticad models can be justified when the goal is model
refinement. This method tends to make small changes across al the matrix elements, whereas damage

to astructural element will creste alarge localized change.

2.34 Residual Force Based. Ancther approach which has been applied to both model
tuning and damage identification is the residua force approach. This technique, developed by Chen
and Garba, is based on computation of aresidual force vector which represents the mismatch between
theanalytical model and themodal data."™® For simplicity, assume an undamped structure. Thesolution

to the second-order homogeneous equation:
Mx+ Kz =0 (2.40)

is given by the eigenvaues and eigenvectors (\;, ;) in Equation (2.31). If the mass matrix M is

assumed correct, and the stiffness matrix K iswritten as:
K=K,+AK (2.42)
then substitution of Equation (2.41) into Equation (2.31) yidds:
AK®, = (MM - K,) 9, (2.42)

The residual force vector AK ®; is essentialy equivalent to the moda force error proposed by
Ojalvo.™ The residual force vector for the " mode can then be written in terms of the unknown
elements of the stiffness matrix Ak;; and the connectivity matrix C; for the i'* mode. Construction
of C; isbased on nodal geometry, elemental physical properties, and the measured eigenvector for the
i'"» mode. An example construction of C; is given in Reference 10. Equating the result to the residual
force vector yields:

AK®; = C;Aky; (2.43)
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Thelength of theresidua force vector corresponds to the number of degrees-of-freedom of the system,
while Ak;; is avector whose length is equal to the number of independent elements in the stiffness

matrix. A least squares solution to Ak;; isfound using:
Ak;; = CEAK @, (2.44)

The (8)# notation denotes the pseudoinverse operation. If multiple modes are used, the equations are

stacked so that:
Ci1* TAK®,

Ak = | Cs AK®, (2.45)

Advantages of this method include its ability to handle a subset of the total number of modes of
the system. However, when forming the least squares solution without a full set of eigendata, there is
no guarantee that arealistic A£;; will result. This method was demonstrated using aFEM model of a
78 element triangular truss. The author used 3 iterations and constrained A#;; values to lie between
0 and 100% stiffness reduction from the unbroken values. The use of a reduced length eigenvector

(when the number of sensorsis less then the degrees of freedom) was not addressed.

Theresidual forcevector in Equation (2.42) wasa so investigated by Kaouk and Zimmerman. )
Using this method, the problemis approached in adecoupled fashion, using the residual force vector to
localize the damage and then using the minimum rank update to determine the extent of damage. This
method works well when @l the degrees-of-freedom can be measured, but degrades rapidly when the
size of themeasurement set isreduced. The determination of the extent of damage varied, depending on
which modes were used in the algorithm. Best results were obtained using only modes with significant

changes from their nominal values.

Additional work on establishing which modes to use in damage identification agorithms has
been presented by Kashangaki. In this work, calculation of the strain energy associated with each
mode in each member is performed using the analytical model. It is assumed that elements which are
highly strained in a given mode will be more readily identified using the eigendata for that particular
mode. This information could easily be incorporated into Chen’s work once an assessment of initial

damage location was performed.
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2.35 Assigned Eigenstructure Based. An dternative approach to model tuning, more
frequently formulated in a controls setting, is through eigenstructure assignment. With this technique,
a set of desired eigenvaueseigenvectors is achieved in closed-loop manner by the selection of a
proper set of feedback gains. The following paragraphs discuss some general results for elgenstructure

assignment, along with a closed form solution for obtaining the desired eigenstructure.

Consider alinear time-invariant system represented as;

r= Ax + Bu (2.463)
y=Cz (2.46b)
u= Ky (2.46¢)

The dimensions of the state, control, and output vectors x,u and y are of dimension n,m and r
respectively. If the system is both controllable and observable, and the matrices B and C are full rank,

then the following results can be proven'® :

1. The position of max(m, r) closed-loop eigenvalues can be arbitrarily assigned, with the

stipulation that complex eigenvalues must be assigned in complex conjugate pairs.

2. A total of min(m, r) elements of the closed-loop eigenvectors can be assigned, with the

same complex conjugate stipulation.

3. The assigned eigenvector associated with the assigned eigenvalue A;, must lie in the

subspace spanned by (A1 — A)~!'B.

Asapplied to structural damage identification, the matrix A is obtained from the analytical mass
and stiffness matrices of the tuned finite element model, as given in Equation (2.283). The matrix B,
which represents the control influence matrix, can be constructed from the connectivity matrix of the
structure. For redlistic structures thismatrix can always be chosen to be full rank from proper selection
of the structural elements. Therank of the measurement matrix C' will primarily depend on the number
of sensorschosen. Aswill be shown, thiswill beacritical factor in obtaining the desired eigenstructure

from condition 2 above.
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A closed-form solution to the eigenstructure assignment problem has been developed by Liebst
and Garrard." The solution involves determination of a feedback gain matrix (7, such that for all

desired closed-loop eigenvalue/eigenvector pairs(A;, ®;), the following relation holds.
(A4 BKC)®, = \;®, (2.47)
Thisis equivalently written as finding the vectors w; such that:
(M — A)®; = Buy; (2.48)
Determination of the gain matrix GG once the w,’s have all been calculated is:
G =W[Ce]™! (2.49)

where W = [w;w, . ..] and assuming the matrix product C'® is non-singular.

In generd, the desired eigenvectors may not be achievable. In thiscase, it is desirable to select
the w;’ s such that a minimization between the desired and achievable eigenvectorsis obtained. For the

minimization, aweighted cost function is established as:
Ji = (®; — &) Pi(®; — @) (2.50)

The achievable and desired closed-loop eigenvectors are denoted by ®; and ®¢ respectively. The (e)*
notation denotes the complex conjugate operation. The positive definite symmetric weighting matrix
P; can be chosen to weight certain elements of the vector of differencesin the desired and achievable
eigenvectorsmoreheavily than others. Thusfor agivendesired eigenvalue \;, itisdesirabletominimize
J; subject to Equation (2.48). The solution is found by appending Equation (2.48) to Equation (2.50)

with a Lagrange multiplier ;.

T = (@ = B P — &) 4 07 (W]~ A); — Bu] (25)
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The cost J; isminimized in equation 2.50 when:

aJ;
awi

=B =0 (252)

0J;
09,

=(®, - )P+ v/ (ANI—A)=0 (2.53)

Writing equations 2.48, 2.52, and 2.53 in matrix form yields:

(ML —A) —-B 0 ®; 0
0 0 BT wi | =1 0 (2.54)
P, 0 (A -4yl Ly P, 9!
or equivaently,
®; 0
Nilwi| =] 0 (2.55)
Vi Pz"I)C'l

K3

The obtainable A; and w; are then given by:

o, 0
wi|l=N"t| 0 (2.56)

It can be shown that VV; is aways non-singular with positive definite P; and B full rank, even if A;
is not moved from it's open-loop vaue. If an eigenvaluelvector pair (A, ®;) is not to be atered,
setting the corresponding w; = 0 assures that the open-loop values are retained. As developed above,
this algorithm requires the selection of a set of desired eigenvalues/vectors. Since in general when
performing modal tests on a structure, only eigenvector elements corresponding to the instrumented
degrees-of-freedom are identified, the technique as presented is not suitable for damage detection. The
eigenvector expansion method presented in Equation (2.33) is not suitable to use with damage detection

since it requires knowledge of the damaged mass and stiffness matrices which are unknown.

Using the basic concepts of eigenstructure assignment, a method for correcting FEM models
using eigenstructure assignment was developed by Zimmerman and Widengren.!"® Their solution
method is based on a symmetric eigenstructure assignment technique in which the symmetry (not

necessarily the connectivity) of the change in the stiffness matrix is preserved. A standard output
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feedback assignment'® is used, but a set of pseudosensors C' and pseudoactuators B are judiciously
chosen to yield a symmetric feedback matrix. The pseudoactuator matrix is chosen such that the
measured eigenvectors lie in the achievable eigenvector subspace. Thus each mode has it's own
corresponding pseudoactuator matrix. For agiven B, the corresponding €' isfound from the solution
of a generalized algebraic Riccati equation. Since there will exist a set of non-unique real solutions,
this set must be evaluated for one which yields the ‘best’ adjusted stiffness matrix. In the solution
technique, only necessary (but not sufficient) conditions are used and hence some solutions will be

asymmetric and can be immediately discarded.

Again, the assignment algorithm requires full length eigenvectors. The eigenvector elements
corresponding to the unmeasured degrees-of-freedom are obtained using an optimal least-squares
expansion into the achievable eigenvector subspace. An alternative to the least squares expansion
has also been developed by posing it as an orthogona Procrustes problem which yields similar, but

computationally more efficient results.™

Using the symmetric eigenstructure assignment technique does not preserve the load paths. An
iterative scheme was introduced to zero out stiffness matrix elements which were zero in the analytical
stiffness matrix. The disadvantage of this method is the requirement to solve the generalized algebraic

Riccati equation and then sort through the potential solution setsin an iterative fashion.

An alternative to the symmetric eigenstructure assignment is presented by Lindner.*” In this
method, eigenstructure assignment is performed for each element of the truss, using the elemental
stiffness value as the pseudocontrol variable. Location of the damaged element is based on the
assumption that for each eigenvalue and eigenvector pair (A;, ®;) assigned, only the assignment using
the damaged element will consistently return the same required stiffness changeto assign each (A;, ;)
pair. Hence this algorithm requires a complete search over al the elements, but in a non-iterative
fashion. A full set of sensor information (full length eigenvectors) was assumed in this work. An
advantage of this approach is that it does not require the inverse connectivity problem, i.e. finding the
element(s) corresponding to the change in the stiffness matrix. Thisis done initialy in the problem
formulation. A disadvantage in the detection scheme is that an increasing number of experimental
modes are required to better assess which element is the actual damaged element. The method is
also unsuitable for multiple element failures, since each eigenstructure assignment uses only a single

pseudocontrol variable.
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2.3.6 Realization Theory Based. A conceptudly straightforward approach to damage
detection would be to simply compare the first-order matrices of the analytical model to those obtained
using an identification algorithm. A direct comparison however, isonly possible when the two systems
are represented using the same state-space redization. An algorithm developed by Alvin and Park
called the common basis-normalized structural identification procedure performsthistransformation.™
This procedure requires the identified model to be the same order as the analytica model, which may
be difficult to obtain. When smaller realizations are identified, a reduced order model is obtained. A
reduction of the analytical model will destroy the connectivity information and make damage detection
difficult. In subsequent work by the same authors, this technique was applied to an eight-bay truss
structure, instrumented with three degree-of-freedom sensors at each node.'™ The use of a complete
set of sensors at each node allowed a post analysis to determine individual element damage. This

method was a so shown to be very sensitive to experimental imprecision.

As previously mentioned, when performing model reduction the sparsity of the stiffness matrix
and hence connectivity information is not preserved. The advantage of the reduced mode is that the
number of sensors can correspond directly to the degrees-of-freedom of the model. A compromise
solution was developed by Kim in which an intermediate set of coordinates is chosen, greater than
the number of measurements but less than the number in the analytical model."? The experimental
modes were expanded using amodal expansion technique, and the analytical model was reduced using
astandard model reduction algorithm. Using thisintermediate coordinate set, an optimal matrix update
was performed as developed by Baruch.® Using this intermediate set, the location of the damage can

be localized, but can no longer be determined to within an individua e ement.

24 Summary

A large collection of techniques for system identification, model tuning and damage detection
have been presented. For system identification, the ERA method was singled out as the method
of choice for obtaining the modal parameters form the measured response data. Common to most
model tuning techniques was the minimization of a matrix norm on the perturbation to the stiffness
matrix required to match experimental data. For damage detection, a matrix norm minimization is not
necessarily desirable. Additionally, severa approaches to the damage detection problem have been

reviewed. All approachesrequirefull-length eigenvectors (or construction thereof) in their formulation.
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Of the methods presented, it is the author’ s opinion that the assigned eigenstructure based approach has
the best potential to be computationally efficient, but must be adapted to handle limited measurement
data. Using the desirable aspects of each method, such as load path preservation and computational
efficiency, a solution was formulated in the subsequent chapters which specifically addresses damage

identification when only aminimal number of sensors are used.
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I11. Damage Identification Methodology

Theterms damage detection and damage i dentification appear frequently in theliterature. Inthis
work, the term detection applies to the process of monitoring, typically on line, the measured response
of the system. From the response, a decision is made as to whether or not ‘damage’ has occurred.
Damage can be defined as a failed sensor or actuator, or an actual change in the dynamics of the
structure. In contrast to detection, structural damage identification, as used herein, refersto the off-line
analysis of the measured response to determine damage to individual structural elements. Clearly
damage detection must occur to begin the damage identification phase. Current fault detection schemes
include monitoring residuals in an on-line estimator.™®*" The residual is the difference between the
measured output and the predicted output of an on-line estimator such as a Kaman filter. A fault
is indicated by the residual level rising above some predetermined threshold. Different threshold
levels are investigated in Faitakis.!* Furthermore, since the residual using a properly tuned estimator
should appear as white noise, additional research has focused on monitoring the ‘whiteness of the
residuals.”** In this research effort, it was assumed that a suitable damage detection agorithm is
available and thus was not further investigated. Each reported test case began with the assumption that
damage had already been detected. The research focused on the identification of damaged element(s),

using the measured data.

Once damage has been detected, the off-line damage identification process is initiated. The
identification process can be divided into four main tasks: (1) identification of partial modal properties
from measured data of the nominal space structure, (2) adjusting the FEM model to match the measured
nomina partial data, (3) analyzing the extent to which structural damage can belocalized to individual
structural elements using the measured data, and finally (4) the identification of structural damage
using measured partial modal data from adamaged space structure. The methodology for each task is
overviewed in the subsequent sections of this chapter, while the mathematical development isdeferred
to later chapters. The four tasks are based on a FEM model of the space structure where structural
damping is assumed negligible and is omitted from the analysis for simplicity. The free vibration of

the undamaged structureis modeled as:

Mz+ Kz =0 (3.1)
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with the symmetric mass and stiffness matrices M and K € R"*"™, x representing the state vector
and = denoting a double time differentiation on z. The eigenvalue and eigenvector for the :'* mode
of Equation (3.1) isgiven as (\;, ®;) whereas the measured eigenvalue and partia eigenvector for the
same mode is represented as (\;,¢;). The relationship between the » dimensional eigenvectors ®; and
the s dimensional partia eigenvectors ¢; is ¢; = C'®;. The matrix C' € R**” maps the full length
eigenvectorsinto the partia eigenvectors corresponding to the measured degrees-of-freedom, o= C'®.
With minimal sensor information available, a natural cost function representing the mismatch between

the eigenstructure of the finite element model and the measured eigendatais:

r AZ 2 r ] _ 9
7= a (T - 1) +3°3 by (% - %.) (3.2)

i=1 ? i=1 j=1
where the analytical eigenvalue for the i mode is denoted as A; and ¢;; denotes the j** element of
the i eigenvector from the analytical modal matrix ®. The overbar indicates a measured quantity.
The positive coefficients a, and b;; alow for individual weightings in the objective function. The
summation upper limits+ and s represent the number of eigenval ues/eigenvectors, and elements of the

eigenvectors, respectively, from the measured data. With the objective function defined, each task can
now be discussed by examining its relation to Equation (3.2).

3.1 Identification of Modal Parameters from Measured Data

The first task is the extraction of the system parameters (\;, ¢,; ) from the measured response
data. Thisisaccomplished through the use of the ERA method. ERA is atime domain approach based
on the system’s impulse response functions. On orbit, there are severa difficulties associated with
directly measuring impulse response functions. It is both difficult to apply the impulse, and difficult
to obtain adequate signal/noise levels without imparting physical damage. An aternative method is
to measure frequency response functions, and then perform an inverse Fourier transform to obtain
the impulse response functions. The frequency response functions are averaged before performing
the inverse operation to minimize the effect of noise corruption. Additionally, since acceleration
measurements are used, atime integration (adivision by jw in the frequency domain) is used to obtain
velocity measurements, and a second integration for displacements. The ERA method isthen applied to

theimpulse datato determine a discrete-time state-space realization. Thisrealization isthen converted
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to acontinuous model and the moda properties determined viaan eigenanalysis. Theidentified modal
properties are used in the evaluation of Equation (3.2) either initially to tune the baseline FEM model
or subsequently to identify damage.

3.2 Modd Tuning

The objective of modd tuning is the determination of small adjustments to the matrices in
Equation (3.1) such that Equation (3.2) is minimized. An additiona requirement is placed on the
tuning method not to add or delete load pathsin the model. Thisisimposed for two reasons. Thefirstis
so themodel will correlate well with measured data of the damaged structure when the model is used to
simulate a damaged configuration. The second isto ensure that changes in the matrices can be directly
related to physical elements of the structure. The model tuning task wasaccomplished using ASTROS-
ID, an automated multidisciplinary software package.!*® The method employed uses a mathematical
optimization strategy to minimize deviations between measured and analytical modal frequencies and
partial mode shapes. Search directionsare determined based on eigenval ue and eigenvector sensitivities
to design variables. A mode tracking algorithm is aso incorporated to identify and account for mode
switching during the optimization process. It will be demonstrated in Sections 6.4 and 8.2.4 that
ASTROS-ID can dso be utilized for damage identification by restricting the allowable changes to the

matrices in Equation (3.1), only allowing changes which are consistent with structural damage.

3.3 Damage ldentification Using Assigned Partial Eigenstructure

Andternative to the sensitivity based approach to the minimization of Equation (3.2) isachieved
through the use of an assigned partial eigenstructure (APE) method. Using theidentified eigenstructure
of the damaged structure (;, ¢, ), and the tuned FEM mode (M, K ), the APE method is applied to
determine the magnitude of the combinations of thefictitious actuators required to match the measured
data. For damage identification, it is assumed that the damage is confined to changes in the stiffness
matrix (K) of the FEM model which are consistent with the FEM formulation. Additionally, only
decreases in the stiffness matrix are permitted. The results of a damage localization analysis is used
to establish the initial search space for the given measured data. The minimization of Equation (3.2)
is accomplished by appending the eigenstructure constraint of Equation (3.1) along with the structural

constraint to form the Lagrangian, which is then differentiated to determine the necessary conditions.
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When only a subset of the total degrees-of-freedom are measured, an iterative scheme is required to

solve the necessary conditions.

3.4  Sensor Prioritization and Damage Localization

With only minimal sensor information available, two questions naturally arise: (1) at which
locations should the sensors be placed, and (2) to what extent can damage be identified with the
selected sensor locations? An eigenstructure sensitivity based method is presented to answer these
guestions. The method presented is based on examining thefirst-order partial eigenstructure sensitivity
to changes in the structura stiffness of each element of afinite element model. No a priori knowledge
of the damage location is assumed. Two aspects of the partial eigenstructure sensitivity are explored.
First is the amount by which variations of the elementa stiffness values change the measured partia
eigenstructure. |ndependent of the damage detection scheme used, elements which produce little or no
change in the measured data, and consequently in the cost function J of Equation (3.2), will be difficult
or impossible to detect when damaged. Second is the direction of change in the partia eigenstructure.
Elements which produce similar or identical changes in the partial eigenstructure will be difficult or
impossible to distinguish between when damaged. Therefore, sensor locations are chosen so that the
change in the measured partia eigenstructure dueto damageis maximized. Localization of the damage
to an element(s) is based on both the amount and direction of change to the partia eigendata for the

chosen sensor locations.

3.5 Summary

This chapter provided an overview of the four tasks associated with damage identification and
presented the methodology that will be used to accomplish each task. In the following chapters,
the mathematical basis for each task will be presented along with a description of how this was
implemented in software. An analytical example using a 41-element 8-bay planar free-free truss is

presented to illustrate each task.
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IV. Identification of Modal Parameters from Measured Data
41 Overview

Independent of the damage identification or model tuning method used is the requirement to
measure modal data (), ¢;). System identification using ERA reconstructs the transfer functions
based on identification of the system’simpul se-response functions. A disadvantage with thismethod is
the requirement to excite the system with an impulse. Thismay be impractica to implement on certain
systems, and it may bedifficult to obtain responselevelswhich are significantly above the measurement
noise levels. An aternative procedure is obtained using time-averaged frequency response functions

to obtain the impul se response functions, as discussed next.

4.2 Obtaining Measured Data

It is assumed that the flexible space structure is equipped with at |east one disturbance actuator
(input) and isinstrumented with at least one accel erometer (output). From random vibration testing, the
averaged frequency response functions are computed for each input/output combination. Thisis done
by exciting the structure with a band-limited pseudo-random noise sequence applied to each actuator.
The method bel ow details the computations for asingle applied input series u(t) and asingle measured
output series y(t). The extension to the MIMO case is simply amatter of subscripting the input/output
pairs. The definition of the discrete Fourier transform of each measured input and output time series

u(t) and y(t), consisting of N points sampled with sample period 7" is given as:

Uk) = wu(i)e = k=0,1,...,.N—1 (4.1)

(k) = %U(k)*U(k) k=0,1,...,N/2—1 (4.2)
and
W, (k) = %U(k)*Y(k) k=0,1,...,N/2—1 43)

where ()" represents the complex conjugate operation and U (k) and Y (k) are the discrete Fourier

transforms of the sampled input/output time series. Averaged spectra estimates ¥, (&), are then
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obtained from m sample sets by:

\IJUy(k) =

1
m

> Wy (k) k=0,1,...,N/2-1 (4.4)
p=1

The averaged frequency response functions (FRF) denoted as H (&), are then obtained from:

Hoy(k) = k=0,1,...,N/2—1 (4.5)

Theimpulseresponsefunction 4(¢), is computed for each input/output combination from the definition

of the inverse Fourier transform, given as.
h(i) =" Hyy(k)e /7 i=0,1,...,N—-1 (4.6)

This"averaged” impulse response function can then be used as an input to atime domain identification

algorithm such asthe ERA.

4.3 Eigensystem Realization Algorithm (ERA)

ERA is based on the singular value decomposition of the block Hankel matrix.”® Consider the

MIMO discrete-time linear system described by:
x(k+1)= Az(k) + Bu(k) (4.79)

y(k) = Ca(k) + Du(k) (4.7b)

where(A, B, C, D) areof dimension (n X n), (n X p), (¢ x n),and (¢ x p) respectively. A solution

to the Markov parameters * is determined from a unit impulse response Y as:

Y(k)=CA*'B (4.8)

*The discrete impulse sequence is commonly referred to in the literature as the Markov parameters.'*2
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The ERA method determines the Markov parameters by forming the block Hankel matrix H (%),

composed of the sampled unit impul se response.
Y (k) Y(k+n.)
Hk-1)= : : (4.9
Yk+n) -+ Y(k+n +n)

wheren, and n, are arbitrary integers satisfying the inequalities gn,. > n and pn. > n. The singular

value decomposition of H evaluated at k = 1 is expressed as:

H(0)=PDQ" (4.10)

The matrices P and ) contain the left and right singular vectors respectively, and D is a diagonal
matrix containing the singular values. The discrete-time minimum-order model isthen computed from

the decomposition as:

Ay = D;VPPTH(1)Q,D;Y? (4.11a)
B, = DY*QTE, (4.11b)

Cq= EIP, D) (4.11c)

D4, =Y(0) (4.11d)

The subscript »n represents the first » columns of P and ¢). The matrix D,, is a diagonal matrix
composed of the » non-zero singular values. E is[l,,0], and E is[I,,0] where I, and I, are
identity matrices of order p and ¢ respectively and O is the zero matrix. A transformation from the z-
plane to the s-plane based on the sample rate of the impul se data, can then be performed if a continuous
model isdesired. Theoriginal development of the ERA algorithm is given in Juang and Pappa.®? The
condensed derivation presented above was based on work by Crassidaset al.™ Determining D,, from
D in Equation (4.10) when using noise corrupted data may be difficult since there are no longer only
n non-zero singular values. The effects of noise on the sampled datais presented in subsequent papers
by Juang and Pappa’®, and Akers and Bernstein.™ Alternative strategies have been investigated to

handle noisy measurements and are found in the literature. %4
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TheERA identified quadruple (A4, B4, Cy4, D,) isused asthebasisfor theidentified eigenstruc-
ture. However, when comparing eigenvectors as in Equation (3.2), it is required that the components
of the elgenvectors represent the same coordinates for a meaningful comparison. Clearly the eigen-
vectors of the A; matrix will vary depending upon the realization used. The ERA method produces
an equivaent (from the input/output point of view) but different state-space realization. Although the
full-length state vector can never be recovered if only limited sensors are used, the measured partial

eigenvector can be directly related to the instrumented degrees-of-freedom through the transformation:

& = Cy®, (4.12)

The matrix C is the output matrix determined by ERA. The vector ®,; isthe i‘" eigenvector of the
matrix A.. Thematrix A. isthe state-space A; matrix from ERA after a conversion from the discrete
to the continuous domain based on the sample rate. The relationship between continuous and discrete

timeisgiven as.

Ay = et (4.13a)
T
Bd:/ﬁwﬂﬂr (4.13b)
0]
Cr=c, (4.130)
D,=D, (4.13d)

This assumes a zero-order hold on inputs over the sample period 7. The subscripts ¢ and d denote

continuous and discrete respectively.

4.4 Software Implementation

When using experimental frequency response data obtained from accelerometer measurements,
some pre-processing of the frequency response measurements is required. The first is a double time
integration to obtain displacement measurements. This enables the identification of strictly proper
transfer functions. This aso resultsin compatible data between the measured and FEM data, since the
FEM eigenvector data represents nodal displacement and rotation information. Thetimeintegration is

accomplished efficiently by a division of the frequency response function by the complex number jw
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where w is the frequency in radians corresponding to each data bin. For the double time integration,
the divisor is simply —w?. Next, to avoid the consequence of dividing by zero, the first few data
pointsin the frequency response function are artificially set to zero and no division is performed. This
is equivaent to removing any bias from the measurements. The first few bins represent the steady-
state component. Typically, the accuracy of the accelerometers for very low frequencies is poor, and
therefore no vauable data is lost by zeroing out this portion. Lastly, for the particular analyzer used
in this experiment (see Hardware Section 8.3.1), only data corresponding to 0 - 80% of the Nyquist'*”

frequency of the complex frequency responseis output for analysis. Thus, before an inverse Fourier
transform can be performed, the data is padded with zeros (acting as low pass filter) up to the Nyquist
frequency, and then reflected about the real and imaginary axes to obtain the full symmetric spectrum.
For example, data consisting of 4096 real sampled time points, results in 2048 unique complex points.
Of the 2048 complex points, only 1601 are statistically reliable due to aliasing effects, and thusthisis
all that is available for analysis. To obtain adiscrete-time model based on the same sample rate as the
recorded data it is necessary to use the full 4096 point symmetric spectrum for use in Equation (4.6).
To achieve this, the 1601 complex points are expanded to 2048 points by padding with zeros, and then
the symmetric portion is reconstructed to achieve the full 4096 complex points. This reconstructed set
of 4096 pointsis used in the computation of the impulse response function as given in Equation (4.6).

Thisis repeated for each measured frequency response function.

From the impulse response functions, the block Hankel matrix is constructed according to
Equation (4.9), using the results of Equation (4.6). The size of the block Hankel matrix is chosen
based on the desired number of modes to be identified and is selectable as a parameter in the software.
In generd, the block Hankd matrix is not square, unless there are an equal number of inputs and
outputs. For computational efficiency only the singular values and vectors corresponding to the
smaller dimension need be computed. The state-space representation is found from the singular
value decomposition using Equations (4.11). After a conversion from discrete to continuous time
using MATLAB®’s d2cm algorithm, the measured frequencies and shapes are obtained from an

eigenanalysis of thematrix A, and Equation (4.12) to obtain ( \;, ¢, ). The sequence of events required
for the identification of the modal parametersis depicted in Figure 4.1.

45 An Analytical Example
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Figure4.1 Sequence of eventsfor identification of modal parameters.
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Figure4.2 41-element free-free planar truss example showing degree-of-freedom numbering.

10 15 20 25 30 35 40
9 14 19 24 29 34 39
6 11 16 21 26 31 36 41
3 13 18 23 28 33 38
7 12 17 22 27 32 37

Figure 4.3 41-element free-free planar truss example showing el ement numbering.
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To illustrate the contribution of each of the four tasks to the damage identification problem, a
41-element 8-bay planar free-free truss was chosen, which is the planar analogue of the Flexible Truss
Experiment described in Section 8.3. The truss was modeed using forty-one rod elements, with two
translational degrees-of-freedom per node. The vertical and horizontal members were constructed of
aluminum with a cross-sectional area of 0.373 sgquare inches and thirty inches in length. The diagonal
members were modeled as L exan (polycarbonite), with a cross-sectional area of 0.540 square inches,
an dastic modulus 20 times less stiff than aluminum and 70% percent less dense. The density of all
memberswas equally scaled to produce natural frequencies for thefirst few flexible modes on the order
of 10 Hertz. This configuration was also chosen because it exhibits attributes common to on-orbit
flexible structures which include: alow fundamental frequency, rigid body motion, minimal structural
damping, and structural symmetry. Redundant diagonal members were included in each bay to help
illustrate the concept of damage localization. Figure 4.2 shows the degree-of -freedom numbering
scheme and Figure 4.3 show the element numbering scheme. An excitation actuator was simulated
at degree-of-freedom # 2 for vibration testing. Four accelerometers were placed at degree-of-freedom
numbers 2, 10, 18, and 26.

Totest the ERA method, asimulation of the measured datawas performed. The analytical model
was used to generate four sampled-datatime series at the instrumented degrees-of-freedomto arandom
input sequence. A second random sequence was added to each output time series to simulate the effect
of noise corruption. A metric of the root-mean-sgquare (RMS) value of the noise signal divided by the
RMS value of the origina signal was used to define the noise corruption level. Fourier transforms
of these simulated signals were computed and averaged to compute the averaged frequency response
functions as described in Section 4.2. The datawas sampled at a 100 Hz rate using 1024 sample points
and 25 averages. One percent of critical damping for all modes wasincluded in the analytical model to
ensure the response functions were bounded. Using these simulated frequency response functions, the
ERA identified eigenvalues and eigenvectors were computed and compared to the FEM results. The

results are tabulated in Table 4.1 for the first five flexible modes.

A study was conducted to illustrate the effect of both the noise level on the measurements
as well as the selected size of the block Hankd matrix. The number of sample points used in the
construction of the block Hankel matrix for afixed number of inputs/outputs (1/4) was varied, as well

as the measurement noise level. Increasing the number of sample points increases the computation



Table4.1 41-element free-free planar truss eigenvalues.

True ERA (Hz)f
Mode# | Frequency (Hz) | clean | 10% noise
1 5.90 5.90 5.90
2 10.59 10.59 10.59
3 15.67 15.67 15.67
4 20.35 20.35 20.34
5 25.14 25.14 25.13

tData presented for 75 sample points used in construction of the Hankel matrix.

time required to decompose the block Hankel matrix. The results shown in Figure 4.4 illustrate that,
for an increase in noise, a larger number of sample points is required to achieve the same relative
error in the measured eigendata. The identification error was the value of .J as defined in Equation
(3.2) with unity weightings. For the actua test configuration, the number of sensors available and the
noise level are predetermined quantities. Thus, in the determination of (\;, #;), it is desirable to use
as many sample points as computationally feasiblein the construction of the block Hankel matrix. All

subsequent identification using ERA will adopt this approach.

In generd, a similar study can be performed to illustrate the effect of adding additional inputs
or outputs to extract the modal quantities. Thisis particularly important when there are modes which
are either uncontrollable or undetectable from the chosen input/output set. For this analytical example
however, the first five flexible modes are both controllable and observable from the input/output set,
and thus no further ERA analysis on this model was performed. In a separate study, this software was
applied to an experimental large, lightly damped space structureto producea state-space representation.

Theresults are reported in Reference 69.

4.6 Summary

The identification of modal parameters from measured frequency response functions was pre-
sented using the ERA method. Averaging in the frequency domain was performed to mitigate noise
effects. A description of how this agorithm isimplemented in software was presented along with the
results of the method applied to an anaytical example. Theidentified ();, ¢,) pairs can then be used
either to tune the FEM modéd as described in Chapter V, or identify structural damage as described in

Chapter VI.
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V. Model Tuning Using ASTROS 1D
51 Overview

Accurate prediction and simulation of the dynamic behavior of large flexible space structures
requireanalytical model swhich agreewith measured data. Unfortunately, uncertainty in afiniteelement
model (FEM) implies less than perfect correlation between analytical and measured data. When the
disagreement is deemed unacceptable, it isnecessary for the design engineer to make adjustmentsto the
FEM. For large problems the number of potential parameters to adjust, such as elemental areas, elastic
moduli, inertia moments, etc., quickly becomes overwhelming. Thus a systematic method is required
to ensure that the adjustments produce the desired results. To this end, a method is introduced which
poses a numerical optimization problem. Namely, given a set of measured eigenvalues and partia
eigenvectors, determine the values of selected physical parameters of the model which minimize the

weighted deviations from the analytical eigenvalues and eigenvectors.

ASTROS-ID represents an automated method of adjusting analytical finite element models to
measured data. The agorithm uses a mathematical optimization strategy to minimize deviations
between measured and analytical modal frequencies and partial mode shapes. A mode tracking

algorithm is used to identify and account for mode switching during the optimization process.

A critical aspect to any model tuning algorithm isits practical implementation. Key advantages
to the method presented herein include its ability to handle a small subset of the total eigenstructure
of the system without using an eigenvector expansion method, and the ability to track mode switches
during the tuning process. Thisoptimization strategy wasimplemented using the Automated Structural
Optimization System (ASTROS) software package, developed by Wright Laboratory.™ The present
research work is an extension to the work begun by Gibson on the software modules ASTROS-ID, an
enhancement to ASTROS to incorporate system identification.™ The overall intent of this software
enhancement is to enable the user to input a set of desired moda frequencies and partia modal
vectors and then iterate on a set of structura parameters to minimize deviations between analytical and

experimental measurements.
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5.2 Theory

Model tuning is performed by minimizing an objective function based on a weighted sum of
deviations from measured eigenvalues and partial eigenvectors. The free vibration of the structure is

modeled as:
Mz + Kz =0 (3.1

Assuming real eigenvalues and eigenvectors, the objective function as previously defined is given as.

r=ya(X- 1)2 P06 - 3)’ (32)
i=1 i i=1j=1

The summation upper limits » and s represent the number of eigenvalues/eigenvectors, and elements
of the eigenvectors, respectively, chosen to be tuned. The minimization of the objective function J is
carried out in aninner and outer loop fashion. The outer loop consists of performing the eigenanalysis,
normalizing and matching anaytical and measured modes, calculating design parameter sensitivities,
updating design variables, and detecting solution convergence. The inner loop solves an approximate
optimization problem after each outer-loop eigenanalysis using the new design variable sensitivity
information. The inner loop is an approximate solution because the sensitivity information is used
to project new values of the analytical eigenvalues and eigenvectors for given changes in the design
variables without recomputing the eigenanalysis. Once the approximate problemis solved by ageneral
constrained optimization method, control is passed to the outer loop where the variables are updated
and a new eigenanalysis is performed. The details of computing the sensitivity information as well as
the mode normalization and tracking is discussed next. The problem considered herein assumes area
eigenanalysis with unique eigenvalues, and for simplicity is not developed for the case where damping

isincluded in the finite e ement formulation.

5.2.1 Eigenvalue Sensitivity. A second-order Taylor series expansion is used to project new
eigenvalue values to given design variable changes contained in the vector Ag. Theexpansionisgiven
as:

1
A2, + VATAg + §AgT(V2/\Z»)Ag (5.1)
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where )\,; denotes the initial eigenvalue resulting from the eigenanalysis. The j** dement of the

eigenvaue gradient vector V )\; is given as; ™

OT[K; — \ M, ®;
Aig = ST M@,

(5.2)

where a comma denotes differentiation with respect to a design variable. The elements of the Hessian
matrix V2 )\; are given as.
ST [F, ;@ 4 Fp @i 5] — [Ny T M ®; 4+ A, T M ;9]

with £ ; defined as:
E,j = ](7]' — AZM,] — Az,]M (54)

The notation (e); ; represents differentiation with respect to the j* design variable of some quantity
(e), associated with the " mode. The decision to include a second-order approximation, rather
than only afirst order, was due to the fact that the terms appearing in the second-order eigenvalue
gradient are already computed when calculating the first-order elgenvector gradients. Equations (5.2)
and (5.3) include the scalar normalization term &7 M &,. Thus the eigenvector normalization will
scale the eigenvalue gradients. Proper choice of eigenvector normalization is addressed in the next
section. Design sensitivities of the mass and stiffness matrices M and K are known explicitly
from the finite element formulation, and can thus be computed using either analytical derivatives or
finite-difference methods. Eigenvalue sensitivity for each mode included in the objective function is
computed according to Equations (5.2) and (5.3). The eigenvector derivativesin Equation (5.3) can be
computed by a modal expansion'*® or more efficiently by Nelson’s method™ when only a subset of

eigenvectors are involved, as explained next.

5.2.2 Eigenvector Sengitivity and Normalization. A first-order Taylor series expansion is
used to project the new value of the eigenvector based on the current eigenvector value ¢,; and the
eigenvector gradient V ;. The expansion is computed for each degree-of-freedom in the eigenvector

set. The expansion of the k" term of the eigenvector for the :'* modeis given as:

Gir = boir + VoL Ag (5.5
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The eigenvector gradient is found by first differentiating the eigenvalue eguation for each mode with

respect to each design variable:
[I( - AZM] Qi,j - [AZJM —|— AZM,] - ](7]'] @Z (56)

Since the bracketed term on the left hand side is necessarily singular by definition, the solution to ®; ;
is found by employing Nelson’s method. The problem is solved by separating ®, ; into the sum of a

particular and homogeneous solution given as.
;=P + Vi (5.7)

Assuming there are no repeated roots, and [K — A\; M] isan (n x n) marix, thenitsrank isn — 1.
Thus the homogeneous solution is found by eliminating a row and column and then performing the
inverse.

~ ~1-1 ~ ~ ~ ~
Vi = [K = M| [N M+ A - K ) & (5.8)

and

] i ) - T
‘/z’j = [Vlj,...,‘/(1_1)]',0,‘/]]',..-,‘/(n—l)j] (59)

The (e ) notation denotes matrices reduced by one row and column, or vectors reduced by one element.
Nelson’s method removes the row and column corresponding to the maximum entry in ¢,. Equation
(5.9) shows the expansion of VZ»J» to V;; for the maximum entry occurring in the {*" entry. Note that
the matrix inverse in Equation (5.8) need not be explicitly caculated. Rather, the reduced matrices
can be used in Equation (5.6) and solved through matrix decomposition followed by forward and
back substitution. To solve for the unknown scalar constant ¢;; in Equation (5.7), a normalization
constraint must be applied. The objective of the optimization is to minimize differences between
measured and analytica modes, which clearly can only be computed when the eigenvectors are
normalized in the same manner. To achieve this objective, a point normalization scheme is used in
which eigenvectors are normalized such that the degree-of-freedom with maximum amplitude in the
measurement set is set to unity. Presumably, this would aso correspond to a degree-of-freedom in
which there was high measurement confidence (i.e., high signal/noiseratio). Thisisimportant because

the analytic gradient of this degree-of-freedomwill beidentically zero. Itisnot practical nor useful for
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optimization to normalize eigenvectors based on the analytical model, such as by mass normalization,
since the analytical matrices are the unknownsin the optimization routine. However, mass normalized
analytical eigenvectors are useful in detecting mode switches as discussed in the next section. After
each eigenanaysis in the outer loop, the eigenvectors used in the objective function must be point
normalized per the measurement data. Having chosen the degree-of-freedom normalization point for

each mode, the normalization constraint for each mode can be expressed as:
&7 5®;, =1 (5.10)

where the matrix 5; contains only one non-zero entry, a one in the row and column corresponding to
the normalization point for the ;' mode. Differentiating the constraint Equation (5.10) with respect to
each design variable and substituting the result from Equation (5.7) yields:

Dueto the specid form of the matrix .5; Equation (5.11) simplifies to:

Cij = _(‘/z’j)norm.pt. (512)

which is the negative of the element in vector V;; corresponding to the normalization point for the i*"
mode. The point normalized eigenvectors must be used in calculating the term &7 M ®; in Equations
(5.2) and (5.3) to ensure proper scaling of the eigenvalue and eigenvector sensitivities. The elgenvector
sensitivity is computed for each mode included in the objective function. For measured modes where
only frequency information (not shape) isavailable, afirst-order Taylor series expansionisusedin lieu

of Equation (5.1).

Theassumption of [ K — A\; M| having no repeated rootsfor usein Equation (5.8) can potentially
cause difficulties for structures with closely spaced modes. However, no difficulty was observed for
the models tuned during this research effort, even though they contained closely spaced modes. An
examination of the effects of repeated roots, and the required extension to Nelson’s method to handle

this case, is arecommended topic of future research.
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5.2.3 Mode Switch Detection.  For convenience, the engineer typically will assign a number-
ing scheme to the set of measured modes from an experimental analysis. It isimperative that the same
numbering scheme be employed when comparing measured modes to analytical modes. Prior to the
start of the optimization, this numbering scheme is most easily facilitated through the use of computer
aided software capable of displaying mode shapes. At this point, the designer can pair up measured
and analytica modes. Once the optimization starts however, it is necessary for the software to track
the analytical mode sequencing. Asthe design variables changeit ishighly likely that mode switching
will occur. Without mode tracking, an optimization scheme would become hopelessly lost trying to
match bending modes to torsion modes, for example, and vice-versa. Mode tracking can be performed

using cross orthogonality checking.™

If the eigenvectors are mass normalized, mode tracking can be
accomplished by computing the modal correlation coefficient matrix between successive eigenanalysis

solutions. The cross orthogonality matrix is given as.

0 = ¢=DT () gn) (5.13)

The modal matrix ® includes only the eigenvectors computed in the eigenanalysis. The superscript
n denotes the iteration number. Assuming mass orthonormalization, near unity valuesin O indicate
high correlation between modes. Mode tracking is accomplished by searching over O successively for
the largest absolute value. If the entry is in a diagonal location, this mode has not changed between
iterations. An absolute maximum in a non-diagona entry indicates the mode number switch between
two iterations by its row and column position. After each mode s paired, the corresponding row and
column are eliminated from O, and the search for the next pair is accomplished on the reduced matrix
until al modal pairs are found. As discussed previously, mode switch detection is done in the outer

optimization loop, just prior to point normalization and eigensensitivity calculations.

5.3 Software Implementation

This model tuning technique was implemented using the structural design software ASTROS.
This software uses an executive control sequence called MAPOL (Matrix Analysis Problem Oriented
Language) to develop the solution sequence. MAPOL allows the user to incorporate custom software

modules into the solution sequence while maintaining full access to the ASTROS solution modules.
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loop

Update
M(Ag). K(Ag)

Figure 5.1 ASTROS-ID decision flow.

For the problem at hand, software modules written in FORTRAN 77 were developed (or modified from
Gibson’s original work) for eigenvector normalization, mode switch testing, eigenvalue and eigenvector
sensitivities, objective function evaluation, and processing data to and from the optimization module.
A small section of MAPOL code is then inserted into the standard ASTROS solution sequence to
control the calling of these new modules. Tuning information (desired frequencies, mode shapes and
the corresponding weighting values) are appended to the standard bulk data input. It should be noted
that the actual software implementation was less restrictive than that given in Equation (3.2), in that it
allowed for a different number of measured components for each mode if desired. This is applicable in
situations where numerous frequencies can be measured, but only a few shapes. Additional information
on the use of ASTROS as a multidisciplinary design tool can be found in References 55 and 51. The
decision chart for ASTROS-ID is shown in Figure 5.1. A brief description of modifications to the

original software modules along with a description of new modules is contained in Appendix A.



5.4 Sdection of Tuning Parameters

Before the optimization can be performed, the designer must choose a set of design variables.
In ASTROS, the design variable for abeam element is the beam’s cross-sectional area, because weight
minimization istypicaly the overall objective. In model tuning however, other properties such as the
elastic moduli, mass, or both may be the desired design variables. To accommodate the ability to tune
more than one property of an element, superposition can be used. To illustrate this method, consider
tuning the mass and el astic modulus of abeam between two nodes. Using two beam elements, onewith
the elastic modul us set to zero and asecond with the density property set to zero, will have the combined
effect of a single beam element. However, now both properties can be set as design variables. Note
that adjusting the cross-sectional area of a beam with a zero elastic modulusis equivalent to adjusting
the density property of that beam. A similar relation is true for the beam element with zero mass
density. In asimilar fashion, the torsional properties of the beam can be varied independently. Using

this technique allows the user awide choice of design variables.

Selection of which design variables to vary is dependent on the designer’s objective and is
problem dependent. If in the development of the finite element model some of the more complicated
geometries were simplified using equivalent but uncertain parameters, then these parameters are the
natura choice for the design variables. If however, the objective is damage identification, then design
variables must be chosen which relate directly to damagable elements. Furthermore, adesign variable
may be associated with a group of elements. For tuning, it may be desirable to assign a single design
variable to the elastic modulus of al the longitudinal elements. In this way, any symmetry present in
the structure will be retained throughout the tuning process. For damage identification, it is required
that aunique design variable be assigned to each element, in order to isolate the damage. Ingenerd, the
search space (number of design variables) will be much larger for the damage identification problem
than for model tuning. A method of reducing the initial search space is presented in Chapter VII on
damage localization. A discussion of the choice of design variables is presented for the analytica

example below, and for the experimental models in the Chapter VIII.

55 An Analytical Example

To illustrate the use of model tuning using ASTROS-ID, a 41-element freefree planar truss
depicted in Figures 4.2 and 4.3 was modeled with the density of al the elements a 90% of the true
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Table5.1 Frequency values for the tuned 41-element free-free planar truss.

Frequency (H2)
Mode# | Truevalue | Initia value | Tuned value
1 5.90 6.51 5.90
2 10.59 12.01 10.59
3 15.67 17.89 15.67
4 20.35 23.37 20.35
5 25.14 28.90 25.14

value and the elastic modulus at 120% of the true value for the diagonal elements. The measured data
(i, ¢;) wastaken to be that of the truss using the true density and stiffness values (see Table 4.1). The
design variables were chosen as follows. Because the uncertainty in the density of all members was
assumed equal, the density of all structural members was set to a single design variable. To account
for the possible uncertainty in the joint connections, the elastic modulus of the vertical, horizontal, and
diagonal members was chosen as three separate design variables. For this set of design variables, the
elastic modulus of the different types of members could be varied independently, but all members of
the same type (horizontal, vertical, diagonal) would vary simultaneously. Note that the selection of

these four design variables was made only to illustrate the tuning method, and do not represent any true

uncertainty in this theoretica model.

The measured data consisted of the first five flexible modes at the same four instrumented
degrees-of-freedom (2, 10, 18, 26), asused in Chapter 1. Equa weighting was placed on al measured
valuesin Equation (3.2). Theresults of the tuning are listed in Table 5.1 for the changes in the natural
frequencies. The corresponding design variable changes are listed in Table 5.2. Three outer-loop
iterations were required, which decreased the objective function seven orders of magnitude. To the
numerical precision of the input data, the objective function was zero. As can be seen from the datain
Table5.1, thetrue valueswere not compl etely recovered, although the objective function waszero. This
isaresult of using only partial data in the objective function. The achieved solution is not necessarily
unique. Thisis particularly true when both the mass and stiffness values are allowed to vary, aswasthe

case for this example. For damage identification, variations will be confined to the stiffness matrix.
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Table5.2 Design variable values for the tuned 41-element free-free planar truss.

| Designvariable | True | Initia | Tuned |

density (dl) 1 .9 1.02
horizontal stiffness 1 1 1.02
vertical stiffness 1 1 1.00
diagonal tiffness 1 12 1.02

3iterations in 46.5 seconds of cpu time.

56 Summary

An agorithm was developed to tune finite element models to measured eigendata.  Careful
attention was placed on eigenvector normalization, and how the normalization rel atesto the computation
of the eigenvalue and eigenvector sensitivities. Mode switches were successfully tracked through an
analysis of the correlation coefficient matrix. Implementation of this algorithm in ASTROS makes
this tuning procedure readily accessible to the design engineer during the finite element design phase.
This level of experimentally validated automated tuning represents a substantial improvement over
current capabilities. Natural applications of this algorithm include the identification of uncertain
structural parameters, as well as the identification of damaged structural elements. Thistechnique was
successfully applied to an analytical model. Experimenta results using ASTROS-ID for both model
tuning and damage identification are contained in Chapter VIII.

ASTROS-ID requires an eigenanaysis and gradient evaluations at each outer-loop iteration,
which can be computationally expensive. An alternative method to minimizing Equation (3.2) is
pursued using an assigned eigenstructure method developed in the next chapter. Reduction of the

initial search space, which will ease the computational burden, is presented in Chapter VII.
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V1. Damage ldentification Using Assigned Partial Eigenstructure
6.1 Overview

Presented is an agorithm to identify individual damaged structural elements of large flexible
space structures using on-orbit data. Using measured partia eigendata, a control theoretic approach is
applied in which fictitious actuators corresponding to each structural element are assumed. Using the
identified partial eigenstructure(;, ¢,) and thesefictitious actuators, an assigned partial eigenstructure
(APE) technique is employed on the analytical model of the undamaged structure. An identification
of structural damage is obtained directly from the required control of the fictitious actuators (stiffness
adjustment) to achieve the desired eigenstructure. This method represents an aternative to the gradient

search technique using ASTROS-ID presented in Chapter V.

6.2 Theory

With minimal sensor information available, a natural cost function representing the mismatch
between the eigenstructure of the finite eement mode and the measured eigendata is:
r AZ 2 r s _ 9
J = Zai (X_ - 1) + Zzsz (Csz - ¢ij) (3.2)
i=1 2 i=1 j=1
withal quantitiesas previously defined. A minimization of Equation (3.2) was developed in Chapter V
to performmodel updating using ASTROS-ID, inwhich theminimization issolved using theeigenvalue

and eigenvector sensitivitiesat eachiteration step. An alternativeto computing these sensitivities (which

still requires an eigenanalysis at each iteration step) is accomplished using APE, developed below.

The APE method is based on minimizing the same cost function given in Equation (3.2). Two
initial assumptions are made. First, structural damage is confined only to changes in the stiffness
properties of the structure. Second, structural damping is negligible. These two assumptions are
consistent with most on-orbit damage scenarios of large flexible space structures. The free vibration

of the undamaged structure is modeled as:

Mx+ Kz =0 3.1
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with the symmetric mass and stiffness matrices M, K € R"*", x representing the state vector and
(e) denoting adouble time differentiation. With damage confined to the stiffness matrix, the damaged
structure is modeled as:

Mz + (K — AK)z =0 (6.1)

where A K represents an unknown perturbation to the stiffness as the result of structural damage.
The eigenvalue and eigenvector for the i* mode of Equation (6.1) is given as (\;, ®;) whereas
the measured eigenvalue and partial eigenvector for the same mode is represented as (\;, ¢;). The
relationship between the » dimensiona eigenvector ®; and the partial eigenvector ¢; is ¢; = C®,.
Thematrix C' € R*>*™ maps the full length eigenvectors into the partia eigenvectors corresponding to
the measured degrees-of-freedom. For the APE method, the cost function in Equation (3.2) based on

the errors between the finite e ement modd and the measured modesis rewritten in vector notation and

isgiven as:
1 + - 1 — _
J =5 =NTAN =X + 5D (6 = &) Wiloi = 6) (62)
i=1
where A = [\, Ao, ..., A,] for the » measured modes, with s degrees-of-freedom measured for each

mode. The positive-definite constant matrices A and W can be used to weight the contribution of each
term in the overall cost function. This cost function is then minimized subject to the eigenstructure
constraint:

(=M + K — AK)®; =0 (6.3)

where only r of the (\;, ®;) coupled with only s components of ®; are able to be measured. Addi-
tionally, to ensure AK is consistent with the finite element formulation, the structural constraint is
represented as:

AK = BGBT (6.4)

where B is constructed from the nodal connectivity information and the elemental parameters, and G
is a diagona matrix composed of the fraction of damage for each element. The parameterization of
AK isbestillustrated using a simple example. For a two degree-of -freedom spring mass system as
shown in Figure 6.1, the equations-of-motion obtained from an application of Newton's second law
are:

myr, = —klxl — k‘z(wl — wz) (65)
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Figure6.1 Example two degree-of-freedom system.

Moo = —k‘z(wz - xl) (66)

These equations can then be written in matrix form as:
my; 0 ky 4 ke —ksy
x+ z=0 (6.7)
0 mo

—ks ko
where the stiffness matrix /& can then be written as;

ki+ ks —ks 1 -1
I( = =
—ks ko 0 1

T

(6.8)

[h olr ~1
0 ko]0 1

The matrix pre-multiplying the diagonal matrix in Equation (6.8) contains the structural connectivity

information. For example, the first column corresponds to spring &;, which is connected only to
degree-of-freedom 2, and hence has only a single non-zero entry in row one. The second column
corresponds to spring k-, which is connected to both degree-of-freedom z, and z-, and hence both
rows have non-zero entries. Direction cosines are used to determine the values of the non-zero entries,
based on the relative position of the nodes. For this linear example, the direction cosines are plus and

minus one. In the same fashion, the stiffness perturbation matrix A K can be expressed as:

Vi VR [0 0] [V —VE]"
AR = = BGBT (6.9)
ol ]
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Note that with 0 < ¢; < 1, any combination of decreases in the spring el ements can be modeled in

A K. For atruss structure constructed from p rod elements, B iswritten as:

B=[B B, (6.10)

A E;
Bi = 7 ‘[0,...,0,C1,C2,C3,0,...,0,—C1,—C2,—C3,0,...,O]T (611)
G = diag(g1 -~ gp) 0<gi <1 (6.12)

with ¢y, ¢, c5 representing the direction cosines for the i element, inserted at the degrees-of-freedom
associated with the ¢** element. The variables A;, F; and [, are the cross-sectional area, elastic
modulus, and length of the 7' element respectively. A value of g;= 0 corresponds to an undamaged
element whereas, g; = 1 corresponds to a complete loss of stiffness to the :'* element. For beam

elements with six degrees-of-freedom per node, the expression for B; becomes:

- i
2
.
2
L,
1
-1 1
1 1 I 12
B, =R;- -diag (L—Z(Az 3Ly 3Ly pigi Ty Iy ))
_1 ;
—9
T,
—9
T,
-1
-1 -1
L 1 -1

(6.13)
where R; is the rotation matrix between the :*» element’s local coordinate frame in which the inertia
properties I, and I, aredefined, and the global coordinate system. Thevariablesy; and j; are Poisson’s
ratio and the torsiona stiffness of the i'" element respectively. Only the non-zero portion of B; is
shown, which occurs in the rows corresponding to the global degrees-of-freedom associated with the

i'" dlement. For beam eements, (7 is now ablock diagonal matrix, with each diagonal block linked
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to a single design variable g; (g; - Is, where I isthe 6 x 6 identity matrix). Although developed
explicitly herein only for rod and beam elements, any element’s symmetric matrix A K; can be written
as BG; BT using the non-zero singular values and singular vectors of AK;. The minimization of
the cost function in Equation (6.2) is solved by forming the Lagrangian and establishing necessary

conditions. The appended cost function J; for the :** modeis:
1 — 1 — _
Ji = 5%’(&' - /\z’)z + §(¢z - @)TVVZ(@ — &)+ VZ'T(—AZ'M + K — BGBT)‘I%' (6.14)

where v; isavector of Lagrange multipliers for the i* mode. With ¢; = C'®; this becomes:

Ji = %ai(/\i W %(cpi _ T CTWC(®; — )+ T (=AM + K — BGBT)®, (6.15)
Itisthenassumed: 3G 3 A, = A; , Vi = 1,...,r implying there are sufficient design variables
(structural elements) to achieve the measured eigenvalues. This is satisfied if the measured data

is consistent with actual damage. For the case of noise corrupted measurements, \; ~ A; , Vi =

1,...,r,andisassumed to contribute negligibly to the cost function. With these assumptions, Equation
(6.15) reduces to:
1 — — —
Ji = §(<1>i - o) 'cTwW,C(®; — @)+ v (-\M + K — BGBT)®, (6.16)

The necessary conditions for the minimization become:

0J;

o= (-\iM + K — BGBT)®; =0 (6.17)
Vi
Zé’ - % (vF BGB ®;) = 0 (6.18)
aJ; _ _ T
5 = CTWC(® - ) + v (=M + K = BGBT)] =0 (6.19)
which can be rewritten as;
(=AM + K)®; — BGBT®; =0 (6.20)
8 T T
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CTW,C®; + (—\M + K)v; — BGB v, = CTW,;¢; (6.22)

To pose this non-linear optimization problem as an approximate linear problem, it is necessary to
introduce the matrix operator P(a, ). In the case where there is only one column of the matrix B
associated with each design variable, such as for spring and rod elements as given in Equations (6.10
through 6.12), P(a, () is defined as:

P(a,ﬁ) with Pand 8 € R7%° | a € R*¥! sz = Zakﬁijﬁkj (6.23)
k=1

where P;; isthe i*" row and the j** column of the matrix P. In terms of the operator P, terms of the

form ST 37  can be written as:
Br3"a = P(a,B)y where v = diag(T') , T € R**?(diagonal) (6.24)

Whentherearemultiplecolumnsof B associated with asingledesign variable, such asgivenin Equation
(6.13) for beam elements, an additional summation of the columns of P is required for each design
variable. Inthecasewherethereareq columnsof B for eachdesignvariable, B € R"*?4, G € RPIxrd

and hence P € R™*?4 according to Equation (6.23). The summation is then defined as:

' 29 rg ~ nx
P=[y P P Y B, Perv (6.25)

j=1 j=q+1 J=(p—1)g+1

where P; isthej*" column of P. Notethat P = P forthecasewhereq = 1. Furthermore, constructing
P from P gives the design engineer the ability to link multiple elements to a single design variable

g; as desired. In terms of the operator P, the following substitutions can be made in the necessary

conditions:
BGBT®; = P(®;, B)g (6.26)
8 T T T
BGBv; = P(v;, B)g (6.28)

The necessary conditions, with these substitutions become:
(=AM + K)®; — P(®;,B)g =0 (6.29)
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P(®;,B)'v, =0 (6.30)
CTW,C®; + (-\iM + K)v; — P(vi, B)g = CTW, o, (6.31)

which can now be written in matrix form for the :*» mode as:

(-\M + K) 0 ~P(®;,B)] [®; 0
0 P(®;, B)” 0 v | = 0 (6.32)
cTW,c (=M +K) —P(v,B)l Ly CTW; ¢,

Then since g, the vector of fractiona structural damage for each element (g, ) is the same for each

measured mode, the necessary conditions can be assembled as:

0
_@1_

0

41 _

CTWi¢,

N| | = : (6.33)
P,
0
1/7‘

0

L g _

LCTW, ¢,

where
(=AM + K) —P(®,,B)]
P(®,, B)”
CTw,C (=M M+ K) —P(n, B)
N = :
(=AM + K) —P(®,,B)
P(®,,B)"
i ctw.c  (-\M+K) —P(v.,B)

(6.34)
and N € Re+n-rxeerte) | representing an over-determined set of linear equations whenever » > 1.
Only the non-zero entries are shown. The desired solution vector ¢ is then found from a least squares
solution to Equation (6.33) using aQR™ decomposition and back substitution. Since N = N (®;, ;),

an iterative schemeisintroduced updating (®;, v; ) with the results of the previousiteration. Theinitia
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guess a (®;, ;) is to use the nomina vector ®; from the undamaged model, with the measured ¢;
elements inserted at the measured degrees-of-freedom. It is assumed that structural damage did not
result in catastrophic damage, and thus the nomina eigenvectors are areasonable initial guess. Some
typical deviations in the eigenvectors resulting from damage to a small number of structural elements
are shown in Section 6.4. Vector normalization and sign convention is accounted for by setting
loa, = |&

to be zero. During the iteration process, values of the damage fraction g, outside the alowable range

, = Land (C®;)T - ¢; > 0. The Lagrange multiplier vector v; isinitialy assumed

are removed from subsequent iterations, further reducing the parameter search space. The weighting
matrix W; isnominally set to the identity matrix (scaled such that || ;|| = || 4 ||) corresponding to the

case where all measurements are assumed at the same level of uncertainty.

Having presented both the ASTROS-ID and the APE methodology for the minimization of
Equation (3.2), a comparison can now be made, illustrating the different nature of the two solution
techniques. Because the APE method assumes the eigenvalues can be achieved exactly, it is equivalent
to placing a very high weighting on the eigenvalues. Additional design degrees-of-freedom are then
used to achieve the desired eigenvector components. However, if the weighting on the eigenvalues in
ASTROS-ID istoo large as compared to the eigenvector weightings, then the eigenvector information
is negligable in the cost function, and it is equivaent to only using the eigenvalue information. This
tends to spread the assigned damage over severa elements. Furthermore, since their are no constraints
placed on the solution vector in the APE method until after the decomposition and back substitution is
formed, unrealistic stiffness changes often result, which are then easily identified and removed fromthe
search space. This establishes a natural and simple method to reduce the search space for subsequent
iterations. No such search space reduction is currently available for ASTROS-ID, and is listed as a

topicfor futureresearch. Notethat in either case, convergence to the globa minimum isnot guaranteed.

Solution techniques used to minimize Equation (3.2) can be classified as either a mathematical
programming approach or an optimality criterion approach. Mathematical programming, also referred
to as a direct search method, is based on establishing search directions to arrive at the solution. This
technique is used in ASTROS-ID. In contrast, optimality criteria methods seek to directly satisfy the
optimality criteria, iteratively usingarecursionformula. Satisfaction of Equation (6.33) istheoptimality

criterion used in APE. An overview of the two approaches as applied to structural optimization can be
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Figure 6.2 Assigned partial eigenstructure decision flow.

found in the text by Haftka and Gurdal. ™ Additional work using optimality criteria is presented in the
work by Venkayya. ")

6.3 Software Implementation

Structural damage detection using APE proceeds as follows. First, the matrix 73 is constructed
according to Equation (6.11) forrod elements, or Equation (6.13) for beam elements. A B; is constructed
for each element in the search space. Next, using the mass and stiffness matrices A/ and & from a tuned
finite element model (one in which the measured data of the undamaged structure correlates well with
the model) and the measured eigendata of the damaged structure, Equation (6.33) is constructed. A QR
decomposition and back-substitution is used to solve for the achievable eigenvectors ®;, the Lagrange
multipliers ;, and the damage fractions ¢,. Elements in ¢ outside an allowable range (i.e., an increase
in stiffness or negative stiffness) are removed from the search space by removing the corresponding
columns of B. At each iteration step, the matrix V is updates using either the new ( ®;, v;) solution
pair or the new reduced B matrix. The solution sequence is repeated until convergence. The decision

chart for this algorithm is shown in Figure 6.2.
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For theinitial construction of N using the measured (\;, ¢, ) data, two preprocessing steps are
required. Thefirst isapairing of the measured mode shapes with the nomina mode shapes. Thisis
accomplished by normalizing the co-norm of the partial mode shapes to unity and then checking the

cross-orthogondity relation as given in the following:
O=4¢"¢ , ¢andde R’ (6.35)

Modes are paired based on the maximum values in the row and column positions of the matrix O. A
second check is performed to verify the measured modal frequencies of the damaged structure are at
or below the corresponding frequencies of the undamaged analytical model, i.e,, \; < A; Vi. For
each mode, measured frequencies above the analytical frequencies are set to the analytical values.
Structural damage, when confined to decreases in the stiffness matrix, can only decrease the natural
frequencies. Thisrequirement can easily be shown by establishing the negative definiteness of changes
in the eigenvalues to changes in the stiffness matrix. As will be developed in Chapter VI, these

changes to first order can be expressed as:

D)
— = _3"P(®.B .
oy (®, B) (6.36)

For this first-order mode, it is sufficient to show the negative definiteness of the :'" eigenvalue with

respect to the ;5" stiffness value change. Thisrelationship is given as:

AN
—— = -7 P(®;, B, (6.37)

which, using the definition of P from Equation (6.23), valid for rod elements, and carrying out the

vector multiplication yields:

) = - Z Z (I)li(I)kiBlj Bkj (6.38)
g] =1 k=1
Rearranging the summation yields:

g] =1 k=1
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which simplifies to:
oN;
dg;

_ (Zn: o, BU) (6.40)
=1

which is a negative definite quantity. If the more genera definition of P is used as given in Equation
(6.25), an additional summation is required over the corresponding columns of B associated with the
jt* design variable. Again, this is a negative definite quantity since it is the sum of negative definite

terms from Equation (6.40).

The APE iterative solution technique involves the least squares solution of the matrix NV in
Equation (6.34). This matrix is classified as a large sparse rectangular matrix which is possibly
singular, and therefore the solution technique is tailored to this matrix classification. A sparse QR
algorithm is used to decompose N and then a back-substitution to compute the solution vector. Due
to the size of N, asparse solver is required for all but small pedagogica problems. Column pivoting
in the QR decomposition is not incorporated since pivoting does not preserve the matrix sparsity and
increases the number of fill-ins. For the case when IV is singular, the nature of the solution is different
than that of the M oore-Penrose pseudo-inverse. The solution vector contains asmany zero entries asthe
rank deficiency of N. Thisisadesirable attribute when determining damage detection, since typically
damageislocalized in the structure, and hence only asmall number of elements have non-zero damage
fractions. The APE algorithm was coded using MATLAB®, with portionswritten in Fortran to handle
the sparse matrix manipulations to speed processing time. MATLAB’s spgrmex agorithm was used
to perform the decomposition. In practice, the range of allowable damage fractions (0 < ¢g; < 1) was

widened to ensured ¢;'s were not discarded prematurely before convergence.

An additional consideration in damage detection algorithms is that of uniqueness. With only
partial modal data available, the problem is generally ill-posed and hence there may exist multiple
damage fractions which result in the same partial eigendata. This problem is exacerbated when
noise corrupted measurements are used. The use of the structural constraint as given in Equation
(6.4), combined with the restriction that the damage fraction ¢ lie within an alowable range, helps to
minimize the problem of non-uniqueness. For a given problem, solution uniqueness is dependent on
the number of modes, the number of eigenvector components measured, the quality (signal/noise) of
the measurements, the finite element model, and the numerical accuracies of the detection agorithm.

To account for non-unique solutionsin the APE algorithm, an off-line sensitivity analysisis performed
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Figure 6.3 41-element free-free planar truss showing element and degree-of -freedom numbering.

once the size and quality of the measurement set has been determined. Using the results of this
analysis, the parameter search space is confined to elements which produce unique and identifiable
eigenstructures. Elements whose damage results in an identifiable change in the measured partial
eigenstructure are defined as detectable. Next, APE symmetric elements are defined as damaged
structural elements which produce the same measured partial eigenstructure. The results of the APE
algorithm indicate damage fractions which are confined to an APE symmetric element set. Further
refinement to an individual element within the set is not possible without additional or higher quality

measurement data.

Numerous tests of the APE algorithm were conducted using finite element models of sizes
ranging between 16 and 192 degrees-of-freedom constructed of 8 to 104 structural elements using
either spring, rod, or beam elements. In al cases, when using analytical eigendata simulating both
perfect measurements and model correlation, the APE agorithm converged to the correct damaged
element(s), and indicated the correct percent of damage. In each case, less than ten percent of the
total degrees-of-freedom were included in the measurement set, and only a small number of the natural
frequencies. An additional attribute of the algorithm is that, in the case where the entire eigenvector

can be measured exactly, the exact solution is obtained without iterating.

6.4 An Analytical Example

The APE method was applied to the 41-element free-free planar truss shown in Figure 6.3.
Structural damage was arbitrarily defined as a 50% reduction in stiffness to element #7 and a 30%
reduction to stiffnessin element #18. An eigenanaysis of the FEM mode using the reduced stiffness

values produced the (\;, ¢,) measured data. The frequencies and partial shapes corresponding to
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Table6.1 Damage identification results on the 41-element free-free planar truss.

True APE ASTROS-ID
element # | % damage | element # | % damage | element # | % damage
7 50 7 50.0 7 34.3
18 30 18 30.0 10 34.4

18 19.1
19 12.6
cpu time 14.6 (sec.) 540.2 (sec.)

the same instrumented degrees-of-freedom (2, 10, 18, 26) as used in Chapter IV for the first five
flexible modes were used. Figures 6.4 and 6.5 show the resulting change in modal frequency and
shape from structural damage. The damaged configuration is plotted using dashed lines, while the
nomina configuration is plotted using solid lines. As can be seen from the figures, the change in the
shapes dueto the damage isminimal, justifying the use of the nominal eigenvectorsfor the unmeasured
degrees-of-freedom to initiate the APE algorithm. The 41 fictitious actuators corresponding to the 41
structural elements were used to construct B according to Equation (6.10).

The results of the APE method are listed in Table 6.1. Nineteen iterations were used in the
solution process, starting from an initia search space of 41 elements. An analysis using ASTROS-ID
with 41 design variables corresponding to the stiffness of the 41 elements was aso performed. The
results are listed in Table 6.1, aong with the required CPU times for each method. Four outer-loop
iterations were used in obtaining the ASTROS-ID results. Equal weighting on the eigenvaue and
eigenvector components were used in the objective function, since al quantities are known exactly.
Note that although both methods were run on the same CPU platform (Sparc-10 workstation), the
methods were implemented in two different software environments. Because of this, there may be
some small percentage of the CPU times reported that is associated with processing unigue to the
software environment and not the solution computation. Table 6.1 does illustrate the difference in the
nature of the solutions. Using the APE method, the solution space is reduced to the fewest number of
elements which can achieve the measured eigenstructure. Using ASTROS-ID, the damage is equally
assigned between elements which have the same eigenvalue and eigenvector sensitivities. Elements
number 7 and number 10 have exactly the same eigenval ue sensitivity and nearly the same eigenvector
sensitivity to the measured data. Thesameistruefor elements 18 and 19. Inthe case whereuncertainty

exists in the measured data, it becomes increasingly difficult, if not impossible to distinguish between
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Figure6.4 Change in frequencies and shapes due to structural damage for the first three flexible
modes.
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which element to correctly assign the damaged value. A dlight perturbation in the measured data can
result in the APE method assigning a 50% damage to element 10 rather than element 7. The problem
of distinguishing between elements with similar sensitivities is termed ‘ damage localization’ and is

discussed in Chapter V1I.

6.5 Summary

A method was presented to achieve a set of measured eigenvalues and eigenvectors through
changes in the stiffness matrix which are consistent with the finite element formulation. The method
does not require the use of full-length eigenvectors in its formulation, and is suitable for use with
minimally instrumented structures. The method was demonstrated on an analytical model, accurately
identifying the damaged elements. A comparison between ASTROS-ID and APE was a so performed.
Common to both methods is the question of which degrees-of-freedom to instrument to facilitate
damage identification, and to what extent can the damage be locaized from the measured data. These

two questions are addressed in Chapter VII.
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VII. Sensor Prioritization and Damage Localization
7.1 Overview

For large spacestructures, practicality dictatesthat only partial modal datacan bemeasured. With
minimal sensor information, two questions naturally arise: at which locations should the sensors be
placed, and to what extent can damage be identified with the selected sensor locations? An eigenstruc-
ture sensitivity based method is presented to answer these questions. While sensor placement methods
have been presented by Lim ¥, Kammer ®*¥, and Liu and Tasker ¥, they focused on maximizing
either controllability or observability and not damage detection. Kashangaki ! introduced a modal
sensitivity parameter as a quantitative measure of the eigenvalue and eigenvector sensitivity, and used
this to determine which modes should be used in a damage detection scheme. In practice however, for
agiven complex structure, only afew of the lower frequency global modes can be accurately identified.
At higher frequencies, the separation of local and globa modes becomes increasingly difficult, if not
impossible. Furthermore, only a few degrees-of-freedom can be instrumented. Therefore, emphasis
herein is placed on prioritizing sensor locations and on the ability to localize damage from partial

eigendata for a given number of modes, and not on which modes to measure.

The method presented is based on examining the first-order partia eigenstructure sensitivity to
changes in the structural stiffness of each element of afinite element moddl. No a priori knowledge
of the damage location is assumed. Two aspects of the partial eigenstructure sensitivity are explored.
First, is the amount by which variations of the elementa stiffness values change the measured partial
eigenstructure. Independent of the damage detection scheme used, elements which produce little or
no change in the measured datawill be difficult or impossible to detect when damaged. Second, isthe
direction of change in the partid eigenstructure. Elements which produce similar or identical changes
in the partial eigenstructure, will be difficult or impossible to distinguish between when damaged.
Therefore, sensor locations are chosen so that the change in the measured partial eigenstructure due to
damage is maximized. Localization of the damage to an element(s) is based on both the amount and

direction of change to the partial eigendata for the chosen sensor locations.
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7.2 Sensitivity Theory

Eigenvalue and eigenvector sensitivity to changes in structural elements will be based upon the
finite element model of the structure. For on-orbit damage scenarios of large flexible space structures,
two assumptions are made. First, structura damage is confined to changes in the stiffness properties
of the structure. Second, structural damping is negligible. With these assumptions, the free vibration

of the structureis modeled as:
Mz + (K —-AK)z=0 (6.2)

with al variables as previously defined. The eigenvalue and eigenvector for the:*” mode of Equation
(6.1) isgiven as(\;, ®;) whereas the measured eigenvalue and partia eigenvector for the same mode
is represented as (A, ¢;). The relationship between the n dimensional eigenvectors ®; and the s
dimensiona partial eigenvectors ¢; is ¢; = C®;. The matrix C € R**" maps the full length
eigenvector into the partial eigenvector corresponding to the measured degrees-of-freedom. With
minimal sensor information available, a natural cost function representing the mismatch between the

eigenstructure of the finite element model and the measured eigendatais:

r AZ 2 r s o 9
J = Z%’(T - 1) +Zzsz (Csz - ¢ij) (3.2)

i=1 ? i=1 j=1
Of interest for sensor |ocation determination is how to choose the matrix €' such that structural damage
resultsin observablechangesin \; and ¢; and hencein J. OnceC isdetermined, damagelocalizationis
concerned with the uniqueness of changesin \; and ¢; for variationsin the matrix A K. Asdeveloped

in Chapter VI, the structural constraint can be imposed on A K by expressing it as.
AK = BGBT (6.4)

where B is constructed from the nodal connectivity information and the elemental parameters. &' is
adiagona matrix (G = diag(g; .. .g,)) composed of the fraction of damage for each element (g;).
A vdue of g; = 0 corresponds to an undamaged element whereas ¢; = 1 corresponds to a complete
loss of stiffness to the i'* element. The eigenvalue and eigenvector sensitivity to structural damage

is computed based on the method presented by Fox and Kapoor.™ The sensitivity calculations are
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consistent with the method presented in Chapter V, however with damage being confined to the stiffness
matrix the calculations are further simplified. Furthermore, the matrix operator P(«, 3) as defined in

Chapter 1V is used to develop the sensitivity equations. The eigenvalue equation iswritten as:
(=\iM + K — BGBT)®; =0 (7.0

With the assumption that changes from structural damage are confined to the perturbation matrix A K,

Equation (7.1) is differentiated, which after simplifying resultsin:

oN 9
-+ —(BGBT®;) =0 (7.2)

M®,
"dg Oy

Asdeveloped in Chapter V1, the matrix operator P(«a, /3) is defined as:
P(a,B) with P, € R .o e R | Py =" opfi; B (6.23)
k=1

where F;; isthe i'" row and the 7" column of the matrix P. In terms of the operator P, the matrix

product in parenthesis in Equation (7.2) can be written as:

BGBT®; = P(®;,B)g where g = diag(G) , G € ®*?(diagonal) (7.3
Each eigenvector is normalized so that ®7 M ®; = 1. Premultiplying Equation (7.2) by &7 and using
the operator P, the eigenvalue sensitivity from Equation (7.2) can be written as:

N N

2 — _TpP(d,.B e RIxp 7.4
89 7 ( b ) b 89 E ( )
Inasimilar fashion, eigenvector sensitivity iscomputed by differentiating Equation (7.1) and using the

results of Equation (7.4). The eigenvector sensitivity for the** modeis:

[K —\M — BGBT] % = [M®;®] +I] P(®;,B) , % € R"xP (7.5)

The matrix I denotesthe n. x n identity matrix. The method introduced by Nelson ® is used to solve

Equation (7.5). Thisisnecessary duetothesingularity of thematrix [ K — \; M — BG BT]. Assuming
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no repeated roots, this method involves separating the solution into a particular and homogeneous

solution, where:

o,
dg
with:
~ ~ ~ ~ o~ -1 ~ o~ o~ ~ o~
Vi= [k~ X\ - BGBT|” [M&:87 + 1] P(a,, B) )
and
~ ~ ~ ~ T
‘/i: [‘/ilv'"7‘/2'1—1707‘/2'17"'7‘/2'71—1] (78)

The (e ) notation represents matrices reduced by one row and one column, or vectors reduced by one
element. Nelson’s method removes the row and column corresponding to the maximum entry in @,.
Equation (7.8) corresponds to the maximum entry occurring at the [** element. For computational
efficiency, a decomposition and substitution is preferable to explicitly computing the inverse. The
constant row vector ¢; isgiven as:

ci = -0 MV, (7.9)

With thefirst-order eigenvalue and el genvector sensitivities defined, let V A be the matrix whose
i'" row and j** column entry is defined as:
oN 1 &7 P(®,, B;)

AV P L=
N 3!]]' A Ai

(7.10)

The term A; is introduced to correct the scaling of the different modes. With this definition, each
column of VA corresponds to different structural elements and each row to a different mode. The

eigenvalue change from changes in the structural lements Ag € RP*!, tofirst order, is given as:
AN = VAAg (7.12)

where
Ai - Aoi

AN =[AX, ..., AN]T  and AN = S

Ni=1,....r (7.12)

Thevector A\ € R7*! consists of thefractional changesto the r measured eigenvalues of the structure

due to damage. Similarly, the vector A\, € R7%! contains the eigenvalues of the structure evaluated

7-4



a BG,B”. For the undamaged structure, BG, BT = 0. Since Equation (7.11) is valid only for
small changes of Ag, it is not possible to use it directly to determine damaged elements. However,
for the purpose used herein, Equation (7.11) is adequate to examine the relationship between A and
Ayg. Information on the amount and direction of changesin A\ are contained in the matrix V A. With
Ag; € [0, 1], rowsof VA with negligible normswill contribute negligibly to changesin AA. Rowsin
V A which are similar or identical to one another will have values of Ag; that affect AX similarly or
identically, and hence will be indistinguishable from one another. For thisanalysis, it is assumed that
|lg||, is small and that, although individual elementsin Ag may be close to unity, the overall effect on

the globa nature of the structureis small, i.e. no catastrophic failures.

Using the results from Equation (7.5), the partial eigenvector sensitivity for the i** mode is

defined as:
09,

¢ a9

, Vo € P (7.13)

where C' is determined from the measured degrees-of-freedom as previously defined. With this

definition, changes in the partial eigenvector for thei'” mode, to first order in A g, isgiven as:

The vector ¢; € R**! isthe partial eigenvector for the instrumented degrees-of-freedom, and ¢;, €
$:x1 contains the partial eigenvector of the finite e ement model evaluated at BG, BY. Similar to
the eigenvalue case, information on the amount and direction of change of A¢; is contained in the
matrix V¢;. Note that there is one matrix V¢, for each measured mode. Information on which to
base both sensor location and damage localization is contained in the matrices VA and V¢;. Two
properties of these matrices are investigated, which are referred to as the detectability and colinearity.
Detectability is a measure of the amount of change which occurs from changes in a design variable,

whereas colinearity is ameasure of the direction of change.

7.21 Sensor Location Prioritization. Initially with C' = I, V¢, from Equation (7.13)
contains information indicating which degrees-of-freedom to instrument. As previously discussed, on
orbit only a few of the low frequency modes can be measured. Given this fact and the problem of

solution non-uniqueness associated with using partial measurement data, it is assumed that any mode
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which can be measured should be used in a damage detection scheme. Given then that there are r
measured modes, the detectability in the measured eigenvectors at the /' degree-of-freedom from

changes in the p dements of the structureis defined as:

D,y =Y Y I¥ol, (7.9

k=1i=1
The vector D= [Dy, .. .D¢n]T is then sorted in descending order, initialy prioritizing the sensor
locations based on detectability. A threshold is set based on the measurement uncertainty and the finite
element modeling errors. Values of D, below this threshold indicate degrees-of-freedom which are
unaffected by structural damage for the measured modes. Next, acolinearity check ismadeto determine
degrees-of-freedomwhich yield similar information onthe damaged elements. Thecolinearity, denoted

S, between any two vectors a and /3 is defined as:
Sap=0a" B lall, =[IB], =1 (7.16)

which is simply the cosine of the angle between the two vectors. A vaueof 5,5 = 1 indicate perfect
colinearity whereas 5,5 = 0 indicates orthogonal vectors. With this definition, the colinearity of the

eigenvector sensitivity between measured degrees-of-freedom/ and m is defined as:

Soim = [% > (Vi w?]] (7.17)
Im

i=1

Again a threshold from unity is set based on the measurement uncertainty and the finite element
modeling errors. Valuesin Sy, R"*" within this threshold are declared colinear, indicating that at
these degrees-of -freedom for ther measured modes, the changesin the el genvector areindistinguishable
from oneanother to changesinthe structural elements. Using thisinformation, multiple colinear entries
in vector D4 are removed, leaving only one entry from each colinear grouping. The remaining first
s elements of vector D, represent the prioritized s degrees-of-freedom to place sensors. With D
defined as the first s elements of the reduced and sorted vector D, the matrix C' is chosen such that
Dj = CDy issdtisfied. Ananalytical example is presented in a subsequent section, following the

discussion of damage localization.
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7.2.2 Damage Localization. Given the » modes measured at the s degrees-of-freedom
as determined above, damage localization determines the extent to which damage can be isolated to
individual elements. Similar detectability and colinearity metrics are used, which are now restricted to
the instrumented degrees-of-freedom. The detectability in the measured eigenvalues from changes in

the k%" structural element is defined as:
=3 [Vl (7.18)
i=1

where D, = [D,, .. .DAP]T. Eigenvalue colinearity information is contained in 5. The 5 row and
k" column of S, indicates the colinearity of the eigenval ue changes between the 7% and k' structural
elements and is defined as:

Sy, = [VAT-VAL, (7.19)

The eigenvalue colinearity isindependent of the degree-of-freedom at which it ismeasured. Similarly,

detectability in the measured eigenvectors from the k" structural element is defined as:

= Z Z |[V¢Z]lk| (7.20)

=1 i=1

where D, = [D,, ... D, |". Eigenvector colinearity information is contained in S,. The j'" row
and k" column of S indicates the colinearity of the eigenvector changes between the j* and k"

structural elements and is defined as:

l Z Vol -V ] (7.21)
i=1 ik
Note the similarity between Equations (7.15) and (7.17) and Equations (7.20) and (7.21). For this
reason, sensor prioritization and damage localization are considered dua problems, either of which can
be determined with only a slight modification to the same algorithm. Notationally, detectability D and
colinearity .5 were multiply defined, once for sensor prioritization and again for damage detection. It

should be clear from the context of the problem which definition applies.

With these definitions, damage localization proceeds as follows. Elements in D, and D

which are below the modeling and measurement uncertainty threshold level are declared undetectable.
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Damage in an undetectable element cannot be identified from the measured data. Of the remaining
elements, colinear elements, as indicated by elements in 5, and 5, above the uncertainty level are
indi stinguishable from one ancther. From the measured data, structural damage can only be localized
to acolinear group, and not to an individual e ement within the group. Elements contained in a colinear

group are referred to as symmetric elements.

7.3 Software Implementation

[52]

Thesensor prioritization and damagelocali zation method wasimplemented using MATLAB®
software. For a given number of modes, the eigenvalue and eigenvector sensitivities are computed
using Equations (7.4) and (7.6) respectively. From these, the detectability metrics D, and D, are
computed using Equations (7.18) and (7.20). The colinearity metrics 5, and .5, are computed using
either Equations (7.15) and (7.17) for sensor prioritization or using the transposes as given in Equations
(7.19) and (7.21) for damage locdization. These metrics are then compared against threshold values
based on model and measurement uncertainty. The uncertainty is determined by how well the finite
element model correlates to the measured data, for nominal as well as damage configurations. The
detectability threshold was established as a percentage of the maximum element in the vector D. For
colinearity the threshold was a percentage decrease from unity value. With the thresholds established,
the elements of the structure are then classified as either undetectable (U) using D, and D ,, symmetric
(9), or identifiable (1). For computational efficiency, detectability is checked first. Any elements
with values below the detectability threshold are classified as U and are removed from the sensitivity
gradient matrices before forming the colinearity metrics. Colinearity groupings are then determined
from the colinearity matrix by replacing the entries of the matrix with either ones or zeros based on
being above or below the colinearity threshold. In this way, a nonzero entry in the :** row and ;"
column indicates symmetry between the:*” and 5" elements. Notethat only the entries abovethe main
diagonal need be computed. Based on these entries, the elements are classified as either Sor |. For
acolinear grouping of elements as determined by 5, and 5, one element is classified as identifiable
and the remaining as symmetric. The selection of the weighting between emphasis on 5, and on
S, is dependent on the damage identification scheme used. For damage identification based on the
cost function minimization, such as given in Equation (3.2), the metric results should be combined

consistently with the cost function weighting coefficients. For example, a high relative weighting on
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the eigenvalues corresponds to an increased emphasis on the .S, metric. A decision flow chart for the
damage localization process as implemented for use with the APE method isshown in Figure 7.1. The

decision chart reflects the emphasis the APE method places on eigenvaues over the eigenvectors.

I ndependent of the algorithm used for damage identification, the advantage of the U/S/I classifi-
cationisapparent. It quickly indicates which damaged elements cannot be detected from the measured
data. Furthermore, only elements in the | classification need be included in the search space. It has
been observed that decreasing the search space precludes singularities of the NV matrix in Equation

(6.34) and significantly reduces the required solution time.

7.4 An Analytical Example

To demonstrate the use of the detectability and colinearity metrics, an anaytical example of both
the sensor prioritization and damage localization was performed using the same 41-element free-free

planar truss assembly as shown in Figure 7.2 and described previously in Chapter 1V.

The first analysis was an examination of the relationship between increasing the number of
measured modes and increasing the number of sensors. Table 7.1 contains the tabulated results. The
dataclearly showsthat, if possible, increasing the number of modes measured is preferableto increasing
the number of sensorsto enhance damage localization. For al cases, the threshold values werefixed at
10% for detectability and 5% colinearity. It should be noted that the tabulated resultsin someinstances
show that adding additional sensors had an adverse effect on identifiability. Thistrend isan artifact of
using different length vectors, dueto a different number of sensors, compared against afixed threshold.

The data as presented is intended only to show the overall trends.

To demonstrate sensor prioritization, the locations of three sensors were selected using a fixed
number of modes and the same thresholds as stated above. As shown in Table 7.2, the prioritized

locations increase the number of identifiable elements over two randomly chosen sensor locations.

A third analysis was performed to demonstrate the validity of using only first-order sensitivities,
evaluated at the nominal configuration, over therange of Ag. Table 7.3 liststhe symmetric elements as
determined by 5, for thefirst five flexible modes, for the same threshold val ues as used above and using
asingle sensor. Asan example, theresultsindicate elements 8, 9, 33, and 34 are symmetric to the partia

measured data, and thus only one element should be included in the damage detection search spece.

7-9



compute
OAr, Do
D)\' D<D
no
i "element
v ¥ detectable in
reduce redﬁjce A
D‘D A yes
v l .
i "element yes
detectable in
\
compute
reduce Y o
o SRS

| "element
symmetric in

S

Figure7.1 Damage localization decision flow.

4 8 12 16 20 24 28
3 7 11 15 19 23 27
10 15 20 25 30 35

32 36
31 35
40

4 9 1 1 2 2

1 6 11 16 21 26 31
3 8 13 18 23 28

2 7 12 17 22 27 32

33

36

3

37

38

41

2 6 10 14 18 22 26
la s 1 1w v la [

7-10

30
29

Figure7.2 41-element free-free truss showing degree-of-freedom and element numbering.

34
33



Table 7.1 Damage localization results for a41-element free-free planar truss.

Measured Flexible Modes

# Sensors 1 1.2 | 123 | 1234 | 12345

1 20/9/3f 21/15/5 21/15/5 9/25/7 9/24/8

2 29/9/3 21/8/12 21/3/17 9/6/26 9/1/31

3 29/2/10 21/2/18 21/0/20 9/3/29 9/1/31

4 29/0/12 21/1/19 21/0/20 9/4/28 9/0/32

5 29/0/12 21/3/17 21/0/20 9/3/29 9/0/32

6 29/0/12 21/3/17 21/0/20 9/2/30 9/0/32
Locations || 34,2,1,3,33,35 | 1,35,3,33,9,27 | 1,35,33,3,36,2 | 1,35,33,3,36,2 | 1,35,3,33,16,22

tDatapresented in U/S/I format where U denotesthe number of undetectable elements, S the number of symmetric elements,
and | the number of identifiable elements. The sum of U, S, and | equals the total number of elements of the structure.
1The locations of the sensors were chosen using the prioritization method presented and are reported by degree-of-freedom

number in priol

Table7.2

ritized order.

Damage localization for different sensor locations for a 41-element free-free planar truss.

Method | Sensor Location! ‘ Damage Localization (U/S/I)i ‘
Prioritized 1,353 9/1/31
Random 3,11,19 9/5/27
Random 24,34 9/3/29

tReported by degree-of-freedom number.
tBased on measuring the first five flexible modes.

7-11



Table 7.3 Damage localization based on eigenvaue sensitivity using the first 5 flexible modes, for
the 41-element free-free planar truss.

Element # Equivalent Symmetric Elements (.S A)T ‘
2 5,37,40
3 4,38,39
7 10,32,35
8 9,33,34
12 15,27,30
13 14,28,29
17 20,22,25
18 19,23,24
Undetectable Elements 1,6,11,16,21,26,31,36,41

tResults are independent of selected sensor |ocation.

The measured eigenvalues with damage to element 8, g5 € [0, 1] corresponds to the same eigenval ues
for an equivalent break in either elements 9, 33, or 34. For an example with multiple breaks, elements 8
and 30 were reduced by 70% and 50% respectively. Using any combination of two elements, selecting
one el ement fromthe symmetric set (8,9,33,34), and one el ement from the symmetric set (12,15,27,30),
reduced by 70% and 50% respectively, the changes in the measured eigenvalues were within 2% of
each other. Thisis well within the uncertainty level established in the threshold for .5, used to select
the symmetric sets.

75 Summary

A method was presented which prioritizes the degrees-of-freedom to instrument when used to
collect modal data for damage detection. It was shown that this method can also be used to determine
the extent to which damage can be localized from these sensor locations. The method represents a
computationally attractive alternativeto an exhaustive search over the parameter space and isavauable
tool during the design phase to determine measurement and/or modeling accuracy requirements. An
analytical example was presented which showed that the extent to which damage can be localized is
limited by the amount and qudity of the measured data. It was aso shown that increasing the number

of measured modes is of greater benefit than increasing the number of sensors.

Having devel oped the four tasks associated with damage identification, each task was combined
into an integrated software package and programmed in MATLAB®. A description of this software
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tool is provided in Appendix B. Using this software, the four tasks of damage identification were

applied to experimenta structures, the details of which are discussed in the Chapter VIII.
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VII1. Experimental Validation of Theory
8.1 Test Objective

The test objective is the experimental demonstration of the ability to identify structural damage
from a simulated damaged space truss using limited measurement data. I1n choosing an experimental
apparatusto validate anew technique, it isimportant for the experiment to exhibit the common dynamic
characteristics of the intended application. For large flexible space structures, these characteristics
include alow fundamental frequency (on the order of 1 Hz) and high modal density at low frequencies
with low modal damping ratios, and a truss-like structure. Furthermore, it is important that both
the excitation actuator and measurement sensors be non-grounded since only these type devices are
applicable to space-based applications. Lastly, to demonstrate the detection of actual damage, it
is desirable to have a structure which contains structural e ements which can easily be modified or
removed to smulate afailure. Two different test beds where chosen to validate the theory. The first
validation was through the use of experimental test data obtained from NASA's 8-bay truss test bed,

and the second using AFIT'ssix-meter Flexible Truss Experiment.

8.2 NASA Test Data Analysis

8.2.1 Hardware. NASA's 8-bay truss test bed consisted of eight cubic bays of a hybrid
space truss cantilevered from arigid backstop plate. This configuration represents a scaled section of
the proposed International Space Station. Each bay is ahalf meter in length, constructed of aluminum
members. A typical joint configuration is shownin Figure 8.1. The truss was fully instrumented with
onetriaxial accelerometer at each of its 32 unconstrained nodes. Disturbance excitation was achieved
using two ground-based dynamic shakersattached at two different node points. A complete description
of the hardware and the testing procedureis contained in the work by Kashangaki. ™

8.2.2 Modd Tuning. The NASA truss was modeled using 104 rod elements, with three
translational degrees-of-freedom per node. The material properties of all elements were identical.
Lumped masses were incorporated into the mode to account for the mass of the node balls, standoffs,
dleeves, collars, and instrumentation. The data received from NASA (T. Kashangaki) consisted of the
identified natura frequencies and shapes for the first five flexible modes of the truss, for the nomina

as well as several damage configurations. The first five modes in numerical order consisted of the
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Figure 8.1 Joint construction for the NASA 8-bay truss experiment.

first bending modes about the ‘X’ and ‘Z’ axes, the first torsiona mode about the 'Y’ axis, and the
second bending modes about the ‘X’ and ‘Z’ axes. A typical frequency response function is depicted
in Figure 8.2, measured at the free end of the truss. Both the nominal and damaged measurements are
shown. As can be seen in the figure, identification of global modes past 80 Hertz is difficult due to the
presence of local element modes in this regime. Hence only the first five modes could be accurately
measured. Also depicted in the frequency response functions is the effect of structural damage. For
this particular damage case which correspondsto the removal of alongeron element at the cantilevered
end, damage is manifest in the frequency response by a separation of the first two flexible modes only.

Nine damage cases were tested. The damage configurations were the full removal of one or two
elements of the truss. The different damage configurations are shown in Figures 8.3, 8.4, and 8.5. For
the nominal configuration, i.e. no damage, the results of the finite dement analysis and the measured
data are compared in Table 8.1. Although the FEM model isin fair agreement with the measured data,
any disagreement will result in the damage identification method assigning a percentage of damage to
an element(s) to account for the disagreement. Therefore, tuning was performed using ASTROS-ID

to ensure the initial disagreement was as minimal as possible. A total of 110 design variables were
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Figure8.2 Measured frequency response function for the NASA truss.
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Figure8.3 Damage configurations for the NASA truss, cases A, B, and C.
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Figure 8.4 Damage configurations for the NASA truss, cases D, E, and F.

CASE H

Figure 8.5 Damage configurations for the NASA truss, cases G, H, and L.
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Table8.1 Measured natura frequencies of NASA’s 8-bay truss.

Frequency (Hz) % difference
Mode# | Measured \ Initial \ Tuned | Initia \ Tuned
1 13.88 13.79 | 13.88 | 0.65 0.00

14.48 1431 | 1447 | 119 | 0.07
4841 50.53 | 4840 | 437 | 0.02
64.03 65.98 | 64.03 | 3.05 | 0.00
67.46 71.20 | 67.52 | 555 | 0.08

a b~ wdN

used to tune the model, which included the elastic modulus of the 104 rod dements. Two design
variables were used for the mass of the rods, one for the half meter length rods and a second for the
diagona members(1/+/2 inlength). Theremaining four design variables were used to adjust the mass
properties of the lumped nodal masses. There were four different nodal configurations, depending on
how many members were connected at a node point and whether or not an external shaker attachment
was included. To tune the model, al five measured modes were used with equal weighting on all
frequencies. Eigenvector information was not included in the tuning process for several reasons.
First, the prioritized sensor locations were not chosen until after the model was tuned, and thus which
elements of the eigenvector to includein thetuning processwasyet unknown. (Eigenvalueinformation
isindependent of the sensor locations, assuming a sensor is not located at a node point for a particular
mode.) Note that although the full length eigenvectors are available from the test data, this does not
represent aredlistic on-orbit capability and thus compl ete knowledge of the eigenvectors was not used.
A second reason for not including eigenvector information was the desire to maintain the symmetry
of the structure. With 110 design variables, there was adequate design freedom to nearly achieve
any partial measured eigenvectors. Thus any measurement error in the partial vectors could ater the
symmetry of themodel. Theresult of thetuningislisted in Table 8.1. The tuning process required 23.4
minutes of CPU time for four outer-loop iterations, and resulted in a decrease in the objective function

by four orders of magnitude. All design variables remained within 10% of their nominal values.

Using the tuned model, an eigenanalysis for each of the nine damage cases was performed.
The results, along with the experimentally measured data from the damaged structure, is presented
in Table 8.2 for comparison. In order for the objective function minimization to be successful, it is
important that the analytical model with simulated damage correlate well with the measured data of the
damaged structure. Unfortunately, tuning to the nominal as well as the damaged datais only possible
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Table8.2 Changesin natura frequencies from damage on the NASA truss.

Frequency (Hz)
Damage case Mode#l | Mode#2 Mode#3 | Mode#4 | Mode#5
Nomina | 13.88/13.881 | 14.48/14.47 | 48.41/48.40 | 64.03/64.03 | 67.46/67.52
A 13.94/13.88 | 9.50/9.43 | 4852/48.40 | 64.16/64.03 | 65.91/64.98
B 13.47/13.16 | 14.12/14.25 | 35.65/34.25 | 60.18/59.06 | 65.86/ 65.90
C 13.97/13.88 | 11.39/11.29 | 48.53/48.40 | 64.50/ 64.03 | 59.90/ 58.51
D 13.21/13.16 | 14.44/14.24 | 36.68/35.92 | 61.35/61.20 | 66.95/ 65.97
E 13.96/13.88 | 11.42/11.30 | 48.57/48.40 | 64.61/64.03 | 59.91/58.60
F 13.94/13.88 | 9.50/9.42 | 48.50/48.40 | 64.08/64.03 | 65.80/ 64.91
G 12.29/12.26 | 1450/ 14.47 | 48.67/48.40 | 50.65/ 48.60 | 67.76/ 67.52
H 13.73/13.70 | 14.55/14.47 | 48.68/48.40 | 54.76/54.30 | 67.71/ 67.52
| 13.74/1358 | 9.86/9.74 | 36.66/35.89 | 63.35/62.56 | 58.86/ 57.46

tData presented in (measured / FEM simulated ) format, where the first number represents the measured frequency and the
second is the result of an eigenanalysis on the FEM model with the damaged el ement(s) removed.

with a priori knowledge of the damage. An attempt to ensure the simulated damaged analytical model
correlated well with the measured data was the rationale behind maintaining symmetry during the

tuning process.

8.2.3 Sensor Prioritization and Damage Localization Analysis. After tuning the analyt-
ical model, a prioritization of the degrees-of-freedom to instrument was performed as developed in
Chapter VI1. To demonstrate the capabilities of the APE software, a small number of sensors (8) were
chosen. Threshold values of 10% for detectability and 7% percent for colinearity wereused for both the
sensor prioritization and the damage | ocalization method. Thesethreshold valuesrepresent the assumed
combined uncertainty in both the measurement error and the modeling error. These values were chosen
by performing three analyses for threshold values of 5, 7, and 10%, and then comparing overal results
against valuesin Table 8.2. The eight prioritized sensor locations are shown in Figure 8.6. These eight

degree-of-freedom locations were used to construct the eight elements of the partial eigenvectors for

the damage identification process.

Having identified the sensor locations, a damage localization anaysis was performed. The
results of thisanalysis are contained in Table 8.3, listing the undetectable, symmetric, and identifiable
elements. Table 8.4 presents a description of the element numbering used. The results show that using
only thefirst five modes and the 8 component eigenvectors, 64 of the el ements are undetectable fromthe

measured data. Thisindicates that changesin the measured data are insignificant from damage in these
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Figure8.6 Prioritized sensor locations for the NASA truss.

elements. These results are consistent with a similar analysis on this truss presented by Kashangaki,
Smith and Lim™ showing that 95% of the total strain energy associated with the first six modes
was contained in only 40 elements. The unidentifiable elements are categorized as either battens, or
elements located near the free end of the truss. The remaining 40 elements of the localization analysis
are divided among 23 symmetric groupings containing one, two or four elements. One element from

each of the 23 symmetric groupsis used to define theinitia search space for the identification process.

8.2.4 Damage |dentification Results.  Using the results of the sensor prioritization to define
the measured data, the tuned anaytical model, and the damage localization analysis to define the
initial search space, damage identification using APE was performed. The results are contained in
Table 8.5. On average, the results were achieved in one minute requiring 20 iterations. In six of the
nine cases, the damage was localized to asingle dement or a single symmetric grouping. For Case D
and Case E, arepeated use of the APE method using the results of the first identification application

as the initial search space, was able to localize the damage down to the single correct element or
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Table 8.3 Damage localization results for the NASA 8-bay truss.

\ Element #

Equivaent Symmetric Elements

32
34
47
58
59
61
63
65
72
73
74
76
78
84
85
87
89
1
98
99

100

102

104

36, 45, 49

38

51, 60, 64
62,71, 75

77,86, 90

88, 97, 101

103

Undetectable Elements

1-31,33,35,37,39-44,46,48,50,52-57,66-70,79-83,92-96

Table 8.4 Element numbering and descriptions for the NASA 8-bay truss.

Description
BayT # Longeron Diagona Batten?

1 6, 8, 10, 12 7,911, 13 1,23,4,5

2 19,21, 23,25 20, 22, 24, 26 14, 15, 16, 17, 18
3 32, 34, 36, 38 33, 35, 37,39 27,28, 29, 30, 31
4 45, 47, 49, 51 46,48, 50,52 | 40,41, 42,43, 44
5 58, 60, 62, 64 59, 61, 63,65 | 53,54, 55, 56, 57
6 71, 73,75, 77 72,74,76,78 | 66,67, 68,69, 70
7 84, 86, 88, 90 85, 87, 89, 91 79, 80, 81, 82, 83
8 97, 99, 101, 103 | 98, 100, 102, 104 | 92, 93, 94, 95, 96

tBays are numbered consecutively starting from the free end.
tIncludes diagonal membersin the batten plane.
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single symmetric group. A capability could be incorporated into the APE algorithm to adaptively re-
initialize the algorithm. Also noted in the these two cases is assigned damage values which are greater
than 100%. Unlike ASTROS-ID, the APE method cannot constrain the values of ¢; to lie strictly
within zero and one. These constraints can only be enforced by removing from the search space the
corresponding elements with ¢;’s outside the allowable range. As previously discussed in Chapter VI,
to avoid prematurely discarding el ements and allow for modeling error, the allowabl e range of ¢ should
be widened. For the results reported, the alowable range was set to (0 < ¢; < 2). An additional
capability to dowly reduce the allowable range as the iteration progresses could be incorporated. The
exact method to accomplish both the re-initialization and allowable range reduction are referred to as
algorithm percolation methods, and is listed as a topic of future recommended research. For damage
Case |, the compound break, damage to element #71 was not identified. Damage to element #71 (a
longeron in the sixth bay) was assigned to a longeron in either bay three or four. This difficulty is
in part due to the fact that the measured data for this damage case does not correlate well with the
simulated damaged analytica model, as indicated by the values given in Table 8.2. The true culprit,
modeling error or measurement error, cannot be determined from the known information. Anytimethe
simulated damage to the analytical mode does not agree with the measured data for the same damage
configuration, any method based on matching the partial measured datawill have difficulty in obtaining

the true solution.

For comparison purposes, ASTROS-1D was performed on Cases D, H, and | using the same 23
element initial search space as used for the APE method. The results are reported in Table 8.6. In the
objective function, Equation (3.2), the eigenvalues were al assigned equal weighting of 100 for all
five modes (¢; = 100), and all eigenvector components were assigned unity weighting (b;; = 1). For
Case D, ASTROSID identified damage to diagonal elements in the last four bays of the truss, but did
not isolate it down to asingle element. For Case H, damage was identified to longeron elementsin the
third and fourth bay of thetruss. Asfor APE, ASTROS-ID could not correctly idenitify damage Case
I, due to the measuement and/or modeling error as previosuly discussed. For Case |, both methods did

identify damage in both longerons and diagonal el ements.

Comparing the overall results, the ASTROS-ID method tended to spread the assigned damage
over severa elements, whereas the APE method typically assigned damage to a single element or

symmetric group. This comparison illustrates the different nature of the two solution techniques, as
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Table 8.5 APE identification results on the NASA truss.

True damage APE |dentified
Damage case | Element # | % damage | Element# | % damage | cpu time (sec.)
A 84 100 | 84(88,97,101)f 85 33
B 85 100 85 96 80
c 71 100 58(62,71,75) 94 65
D 78 100 78 98 76
104 110
E 62 100 58(62,71,75) 110 56
32(36,45,49) 103
F 97 100 84(88,97,101) 89 32
G 51 100 47(51,60,64) 88 85
H 34 100 34(38) 97 43
| 71 100 32(36,45,49) 80 63
78 100 78 99

tDatapresented in I(S) format where | isthe number of the identified element and Sisthe symmetric element numbers.

previously discussed in Section 6.2. Differences in the solutions are also in part due to the method
used to establish theinitia search space from the sensitivity analysis. Both methods used the results of
the same damage localization analysis, however the analysis as described in Section 7.3 was tailored
for the APE method. In general, an order of magnitude increase in CPU time was required for the

ASTROS-ID solution.

8.3 Flexible Truss Experiment (FTE)

8.3.1 Hardware. Thesix-meter FTE was assembled at the Air Force I nstitute of Technology
from excess hardware received from the Structura Dynamics Branch of Wright Laboratory after
termination of the 12-Meter Truss Active Control Experiment.”® The hardware consists of the truss
assembly, actuators and their power drivers, accelerometer sensors, and red-time digital control and
signal processing equipment. As presented in the documentation on the 12-meter truss, there was
considerabl e difficulty in obtaining amodel of the 12-meter truss which correlated well with measured
data. Although only half the structureis currently used due to physical space limitations, the difficulty
in modeling the structure makes it ideally suited to use in validating a model tuning agorithm. It
should a'so be noted that the experiment’s name is somewhat of a misnomer. Although the word truss
is used, the structure is actually a frame structure with rigid connections between members. The term

trusstypically is used for structures with pinned connections.
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Table8.6 ASTROS-ID identification results on the NASA truss.

True damage ASTROS-ID Identified
Damage case | Element # | % damage | Element# | % damage | cputime (sec)

D 78 100 61 65 793
63 36
65 93
76 15
78 88
91 64
104 24

H 34 100 34(38) 96 602
47(51,60,64) 73

| 71 100 32(36,45,49) 40 541
78 100 | 58(62,71,75) 83
61 84
63 50
65 94
78 90
84(88,97,101) | 94

8.3.1.1 TrussDescription.  The basic structure of the experiment is alightly damped
six-meter truss, cantilevered vertically from arigid support base. The FTE is depicted in Figure 8.7.
The truss is composed of two equal length frames of welded tubular aluminum aloy longerons and
battens with bolt-in tubular Lexan diagonals in a back-to-back “K” pattern. A section of the FTE is
depicted in Figure 8.8. The assembled truss has a square cross section of 20 inches on a side. The
longerons are made from 6061-T6 aluminum alloy tubes with a 1.5-inch-square cross section and
0.065 inch wall thickness. The battens are 6061-T6 tubes with 0.5-inch-square cross section and 0.063
inch wall thickness. The diagonal members are Lexan tubing (270,000 psi elastic modulus) with a
1.5-inch-diameter circular cross section with 0.125-inch wall thickness. The diagonal s have auminum
end fittings which are fastened to the truss with two bolts and a half-clevisjoint at both ends. Thetruss
has 4 bays in each of the two sections for atotal of eight bays. The two sections are bolted together
with two bolts at each longeron end. Four bolts at the base of each longeron secure thetrussto a 1-inch
thick aluminum plate which is securely bolted to the laboratory floor. The bolt-in diagonasallow quick

structural modifications to simulate a damaged structure.
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Figure 8.8 Joint construction for the FTE.
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Figure 8.9 Linear actuators for the FTE.
8.3.1.2 Actuators. Input excitation to the truss for frequency response testing is

provided through the use of two linear momentum exchange (reaction mass) actuators. Each actuator is
capable of approximately 1-pound-force peak output. Power is provided to the actuators by individual
current drive circuits. The actuators use a linear dc motor with the armature fixed to a base and
the permanent magnetic field suspended on shafts and linear bearings. Two linear springs provide
the centering force for the mass. The resonant frequency for each actuator is approximately 0.9 Hz,
with an effective viscous damping ratio of approximately ten percent of critical. For comparison, the
fundamental frequency of the truss is approximately 7 Hz. Mounting plates were fabricated to attach
the actuators atop two longerons on the free-end of the truss. Driving the actuators in phase with one
another excites the bending modes in one axis. The torsional modes are excited by driving the actuators

180 degrees out-of-phase. A sketch of the actuator is shown in Figure 8.9.

8.3.1.3 Sensors and Supporting Equipment. Acceleration measurements are made
using eight Sunstrand QA-1400 single-axis inertial accelerometers. These accelerometers were chosen

for their high sensitivity and low noise characteristics. Initially, the eight accelerometers were placed
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Figure8.10 Low freguency mode shapes for the FTE.

along onelongeron at the node location at each bay. For signal processing, a Tektronix 2642A Fourier

Analyzer is used to measure and average the frequency response functions.

8.3.2 Modd Tuning.

8.3.21 FiniteElementModel. TheFTEwasmodeled in ASTROSusing fivedifferent
types of beam elements for atotal of 96 elements. The five types were: aluminum vertica longeron
elements, aluminum horizontal batten elements, Lexan diagonal elements, aluminum horizontal mid-
batten elements, and aluminum horizontal top-batten elements. The different batten configurations
are due to the fact that the FTE is constructed of two 4-bay sections which can be bolted together.
Lumped masses were included to account for the actuators, top-plates (actuator attach points), “K”
brackets (used to secure the diagona members) and mid-plates (bolt assemblies used to secure the
two 4-bay sections together). Care was taken to accurately obtain the mass properties, area properties
and moments of the structural elements. The elastic properties were determined from laboratory tests
on individua elements. These parameters were al used to construct a baseline data deck for input

into ASTROS. Using the results of the baseline finite element analysis along with software written in
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MATLAB®to display and animate mode shapes, acharacterization of thelow frequency (below 70 Hz)
behavior of the FTE was performed. Mode shapes were classified into four categories as: X-bending,
Y-bending, torsion, and breathing. An illustration of these four different mode shapes are shown in
Figure 8.10. Unlikethe NASA truss, the FTE did not have diagonal members in the batten plane and
thus exhibited a breathing mode. The breathing mode correspondsto an expansion and contraction of
the truss in the batten plane, similar to the motion of the human rib cage. The diagonal battensin the
NASA truss sufficiently stiffened the batten plane to preclude this type of motion at low frequencies.
The presence of this fourth type of mode increased the modal density and consequently increased the
difficulty in themodal parameter identification process. Dueto the near symmetry, the Y-bending mode
shapes are similar to the X-bending shapes and are not shown. Note that the frequencies appearing
in the figure are for the analytical modd prior to tuning. The next step was to compare the analytical

results to measured data.

8.3.2.2 Testing Procedure.  Experimental measurements were performed on the FTE
using random vibration testing. Measured eigendata of the FTE were obtained from the 16 FRFs
between the two linear actuators and eight single-axis accelerometers placed as shown in Figure 8.7.
The input excitation to each actuator was a band limited (0 - 50 Hertz) pseudo-random signal. There
were 4096 discrete sample points recorded by the spectrum analyzer, providing afrequency resolution
of 0.031 Hertz. Frequency averaged transfer functions between the input excitation and the eight ac-
celerometersweremeasured. Theinversediscrete Fourier transformsof thesetransfer functionsyielded
the impul se response functions which were input into ERA to obtain measured modal frequencies and
shapes, as described in Chapter IV. Distinguishing between bending modes and torsion modes was
easily facilitated by exciting the structure in both bending (actuators in phase), and torsion (actuators
180 degrees out-of-phase). Figure 8.11 shows the resulting averaged FRF output at accelerometer #8
for the two different types of excitation, measured using a 100 Hz bandwidth.

8.3.2.3 Sensor Prioritization.  The sensor prioritization method presented in Chap-
ter VII was applied to the FTE to determine the prioritized location of the eight single-axis accelerom-
eters for damage identification. During initial testing, it was determined that the initia locations of
the eight sensors, along one longeron as was shown in Figure 8.7, was not a good choice. For these

sensor locations, it was not possible to measure the Y-bending mode. Additionally, severa of these
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Figure8.11 Comparison of bending and torsional excitation on the FTE.

locations yielded small gradient values as determined by the sensitivity analysis. For the anaysis, the
first eight modes were used, which represented al the globa modes within the frequency band (0-50
HZ) measured. These modeswere used to prioritizethe eight sensor locations. The prioritized locations
of the eight sensors are shown in Figure 8.12. The output of these eight sensors was used to obtain the

partial mode shapes used in the tuning agorithm.

8.3.24 Measured Data. Numerous problems were encountered in obtaining the
measured modal properties. The first was in the choice of the excitation. The original choice was to
use the two actuators in-phase and out-of - phase as previously described. This presented a difficulty in
measuring the breathing modes. Examination of thetransfer functionsdepicted in Figure8.11, illustrate
the absence of the breathing modes (=22 Hz, ~34 Hz) in the measured transfer functions. Although
ASTROS-ID does not require that al modes be included in the objective function, without inclusion
of the breathing modes, numerous mode swaps ocurred as the breathing modes “wandered” during the
tuning process. For damage identification to be successful, it isimportant that the simulated anal ytical

damage closely match the measured data of the damaged structure as previously discussed. Thisisbest
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Figure8.12 Prioritized sensor locations on the FTE.

accomplished by ensuring al modesincluding the breathing mode match the physical structure as best

aspossible. An additional discussion on thistopicis contained in Reference 11.

To measure the breathing mode, the actuators atop the longerons were rotated ninety degrees.
Thisallowed direct excitation of the breathing modeby exciting out-of -phase, and X -bending excitation
by exciting in-phase. Inthisconfiguration however, both Y-bending and torsion modeswerenot excited
and hence could not be accurately measured. Thesimple solution seemed to beto taketwo measurement
setsinthefirst excitation configuration, and two additional measurement sets with the actuators rotated
ninety degrees. While all modes were now clearly identifiable in the transfer functions, anew problem
was observed. Theinertiaproperties of the rectangular linear actuator’s affected the measured response
depending on their orientation, and thus a shifting of the modes resulted whenever the actuator position
was changed. A compromise was achieved by using the two actuators atop two longerons diagonally
from one another and mounted ninety degrees to one another. In this configuration each acutator was
excited independently, one exciting X-bending and breathing, and the second exciting Y-bending and
torsion. This till did not represent an ideal situation for the following reason. As one actuator was

being excited, the other actuator’s proof mass was fixed. This effectively changed the apparent inertia
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properties atop either longeron, depending upon which actuator was being excited. Again, a small
shift was observed in the measured frequencies, however, this was determined to be an acceptable
compromise, not requiring actuator re-design. Note that the difficulties with the actuator excitation
all arose as the result of using non-ground based excitation, which represented a significant mass at
the tip of the cantilevered frame. For future space application studies, actuator design is an important

consideration in obtaining accurate modal data.

Having finally determined the sensor and actuator positions, the modal extraction method using
ERA was performed. Due to the closely spaced modes, an additional problem was encountered.
Although the modal frequencies were easily identified, the extracted mode shapes were observed as
linear combinations of one another for the closely spaced modes. This was especially troublesome
during theidentification of partial mode shapes for the damaged structure. Damage Case 2, asdescribed
in Section 8.3.4 was chosen to illustrate the problem. The measured modes along with the analytical
modes for the eight sensor locations are depicted in Figure 8.13. As shown in the figure, there
is considerable discrepancy in the data, particularly for the closely spaced fourth, fifth, and sixth
modes. Additiona testing using four independent excitations, where each mode was individually
excited, yielded close results to the analytical shapes. However, when only two actuators were used,
for the reasons expounded upon above, the modes appeared as linear combinations of one another.
To determine the linear combination, a least squares solution was used to determine the coefficients
required to best match the measured modes to the modes of the simulated damaged analytical modd.
Two coefficients were computed to separate modes 1 and 2, and three different coefficients were used
to separate modes 3, 4, and 5. The de-coupled mode shapes are shown in Figure 8.14. The abscissa
represents the eight sensor measurements numbered one through eight. A line is shown connecting
the eight discrete pointsto aid in visuaization. Note that this de-coupling method was only possible
because of the known location of the damage for the smulation. In actual practice, a re-design of
the input actuators would be required to correctly obtain the measured modes without resorting to
the analytical model. This problem was not observed in the data on the NASA truss, which did not
use non-ground based actuators, nor exhibit a breathing mode. In all cases, there was no trouble in
obtaining the torsion shapes, which were clearly separated from the bending and breathing shapes.
Additional research on determining partial mode shapes for closely spaced modes isrecommended for

future work.
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Figure 8.13 Analytica and measured mode shapes before de-coupling, Case 2.
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Figure8.14 Analytica and measured mode shapes after de-coupling, Case 2.
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Figure8.15 Comparison of initial analytical model and measured frequency response.

8.3.25 Moded TuningResults.  Despitetheeffort expendedin constructing thebaseline
finite element model of the FTE, it did not agree well with the measured data. The poor correlation
between the baseline analytical and measured data is depicted in Figure 8.15, which showsthe transfer
function between a col ocated sensor and actuator at thetop of the FTE. Prior to computing the anal ytical
transfer functions, damping wasincluded in the model by assuming avalue of one half of one percent of
critical damping for al modes (atypical measured value). Thiswas done only to avoid the unbounded
resonant spikes dueto an undamped model, and thusthe height of the resonant peaks between analytical
and measured datais insignificant. It is clear from Figure 8.15 that the basdline finite element model
doesnot adequately represent the measured dynamic characteristics of the FTE and would hence benefit

greatly from model tuning.

Using ASTROSID, the basdline finite element model was tuned to the measured data. For the
tuning, the frequencies and shapes of the first eight modes were included in the objective function.
Twenty three design variableswere chosen for the tuning process. A description of the design variables
as well as the tuned values, are given in Table 8.7. Values in the table are normalized, such that the

initially assumed value for each design variable is unity. To acoount for the added stiffness in the
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Table 8.7 Design variable valuesin the FTE finite element model.

‘ DV # ‘ Description ‘ Tuned value ‘
1 battens (el astic modulus) 1.00
2 mid-battens(el astic modulus) 1.00
3 longerons (el astic modulus) 0.80%
4 | diagonds (elastic modulus) 1.20¢
5 top-battens (el astic modulus) 0.99
6 battens (1) 0.79
7 mid-battens (1) 0.67
8 longerons (/) 0.58
9 diagonals (/) 1.18
10 top-battens (/) 0.84
11 battens (/) 111
12 mid-battens (1) 114
13 longerons (/2) 1.99
14 diagonals (/) 1.00
15 top-battens (1) 1.00
16 battens (mass) 151
17 mid-battens (mass) 1.26
18 longerons (mass) 0.42
19 diagonals (mass) 281
20 “K” brackets (mass) 0.50%
21 actuators (mass) 1.00
22 mid-plates (mass) 0.84
23 top-plates (mass) 1.28

tValues were normalized such that initial values are all unity.

+Value on boundary of allowable excursion limit for this variable.

joints resulting from the welded assemblies, the bending stiffness of the elements was chosen as a
design variable by alowing the I; and I, propertiesto vary in addition to the elastic modulus for each
element. To account for the symmetry of the structure, all common elements were linked to asingle
design variable. The tuning process converged in six outer-loop iterations requiring 18 minutes of
CPU time. Convergence was defined as a less than one half of one percent change in the objective
function value between two consecutive outer-loop iterations. The results of this tuning are shown in

Figure 8.16, depicted for the same actuator/sensor combination as used in Figure 8.15.

The results show excellent agreement over the 40 Hz frequency band spanned by the modes
included in the objective function. The first four columns of Table 8.8 lists the frequencies for the

first eight modes, comparing the measured data to the tuned finite element model. The objective
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Figure8.16 Comparison of the tuned analytical model and measured frequency response.

function, Equation (3.2), included the termsa; and b;; to weight individua contributionsto the overall
value. For the tuning, al a; coefficients were set to 100 and all b;; were set to unity. This represents
equal confidence in the measurement data for al frequenciesincluded in the objective function, with a
stronger emphasis placed on tuning the modal frequencies than the shapes. In general, selection of the
weighting coefficients is dependent upon the confidence with which each mode is measured, as well
as the designer’s desire to minimize a selected portion of the correlation error. For this case, emphasis

was placed on minimizing the frequency correlation errors.

8.3.3 Damage Localization Analysis. Using the tuned analytical model, the damage lo-
calization method presented in Chapter VIl was applied to the FTE. Based on repeatability of the
measurement data, and the existing correlation errors between the finite element model and the mea-
sured data, the detectability threshold values were set at 10%. The threshold for 5, was set at 7%
and the S, threshold at 25%. This reflected the increased confidence in measuring the eigenvalues
over the eigenvectors, reflecting the difficulty in measuring the closely spaced modes. Using the eight

sensor locations chosen in Section 8.3.2.3 and the first eight modes, the extent to which damage can be
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Table 8.8 Analytica and measured natural frequencies of the FTE.

Frequency (Hz)
Damaged
Nomina Casel Case 2
Mode# | Description | FEtuned | measured | FE | measured | FE | measured
1 1st Y Bending 6.32 6.32 6.32 6.34 6.23 6.20
1st X Bending 6.33 6.33 5.85 5.86 6.32 6.30

1st Torsion 1251 12.64 11.38 11.27 12.27 12.37
1st Breathing 22.26 22.29 22.26 2331 22.26 2210
2ndY Bending | 23.97 24.02 22.01 21.48 23.17 23.48
2nd X Bending | 24.09 24.18 24.03 24.15 24.04 24.20
2nd Breathing 34.01 34.03 33.36 33.63 33.71 33.79
2nd Torsion 36.46 36.31 36.07 35.89 36.15 36.02

O ~NO OTh WN

localized was determined by classifying the 96 elements using the U/S/| format. The results indicate
that 26 elements cannot be identified, and the remaining 70 elements are arranged in 15 symmetric
groups. The 26 undetectable elements were al batten elements. The remaining 15 symmetric groups
consisted of either longerons, battens, or diagonal elements localized to either a single bay or adjacent
bays. This analysis was used to define the initial search space for a damage identification algorithm
using APE. The results of the damage localization analysis are given in Table 8.9. A description of the

element numbering is contained in Table 8.10.

8.3.4 Damage |dentification Results.  For the APE method, the tuned elemental parameters
of the finite element beam model were used to construct the matrix B according to Equation (6.13)
along with the tuned mass and stiffness matrices M and /. The measured partial eigendata of modes
1 through 8 were then used to determine structural damage. Two damage configurations were tested.
Thefirst (Case 1) was the full removal of a diagona strut in the sixth bay (as measured from the free
end). The second (Case 2) damage configuration was the replacement of adiagonal strut in the seventh
bay with one in which &~ 50 percent of the strut’s cross sectional area was removed. The analytica
and measured natural frequencies for the first eight modes are contained in Table 8.8. Mismatches
between the analytical and measured frequencies are the result of both measurement uncertainty as

well as moddling errors.

Using the results of the damage localization analysis, the search space consisted of fifteen

elements, one eement from each APE symmetric group. Since no a priori knowledge of the damage
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Table8.9 Damagelocalization results for the FTE.

Element # \ Equivalent Symmetric Elements

17 18, 19, 20

29 30, 3132

33 34, 35, 36

37 39

38 40, 42, 44

41 43, 46, 48

45 47, 49, 52

50 51, 53, 55

54 56, 57, 59

58 60, 62, 63

69 70,71,72,73,74,75, 76

77 78,79, 80

81 90, 95, 96

82 89, 94, 97

83 84, 85, 86, 87, 88, 91, 92, 93, 98, 99, 100
Undetectable Elements 5-16,21- 28,61, 64 - 68

Table 8.10 Element numbering and descriptions for the FTE.

Description
BayT # Longeron Diagona Batten

1 65, 66, 67,68 | 85, 86, 91, 100 | 33, 34, 35, 36
2 61,62,63,64 | 84,87,92,99 | 29, 30, 31, 32
3 57,58,59,60 | 83,88,93,98 | 25,26, 27, 28
4 53,54,55,56 | 82,89,94,97 | 21,22,23,24
5 49,50,51,52 | 81,90,95,96 | 17,18,19, 20
6 45,46,47,48 | 77,78,79,80 | 13,14,15,16
7 41,42,43,44 | 73,74,75,76 | 9,6 10,11, 12
8 37,38,39,40 | 69,70,71,72 56,7,8

tBays are numbered consecutively starting from the free end.
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Table8.11 APE damage identification results on the FTE.

True APE APE cpu

Test failed identified symmetric time
Case | dement # | element #s element #s (sec.)
1 77-100% | 77 -104% 78 79 80 530
2 75-50% | 69-40% | 70717273747576 | 543

location is assumed, and the measurement and model uncertainty for both test cases are identical, the

search space for each test case isidentical.

The results of the two test cases are presented in Table 8.11 and depicted in Figure 8.17. In
each case, the damage was correctly localized to asmall area of the truss containing the true damaged
element. Further damage identification refinement to the exact element would require either additional
measured data, or a closer correlation between measured data and the analytical model. Improving
model correlation requires a higher fidelity model and/or less measurement uncertainty. In each test

case, the correct element and exact amount of damage was determined when noise free anaytical
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Figure 8.18 Effect of structura damage on the measured response.

simulated data was used in lieu of the measured data. A representative frequency response, showing

the effect of damage (Case 1) isdepicted in Figure 8.18.

84 Summary

The damage identification process was illustrated on two experimenta structures and the results
reported. Thefirst was a cantilevered truss modeled with 104 rod elements with atotal of 96 degrees-
of-freedom. The measured data consisted of the first five flexible modal frequencies, and only eight
components of the five corresponding eigenvectors. The second experiment was a cantilevered frame
assembly modeled with 96 beam elements with a total of 192 degrees-of-freedom. The measured
data consisted of the first eight flexible modal frequencies, and only eight components of the eight
corresponding eigenvectors. In each test case, the structural damage could be localized to a small
portion of the structure. The extent to which damage can be localized was limited by both model

fidelity and accuracy of the measured modes.
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IX. Conclusions and Recommendations
9.1 Research Conclusions

A method was presented to identify damaged structura elements from limited measurement
data. The problem was broken into four distinct tasks: identification of modal parameters, model
tuning, damage localization, and damage identification. The research showed that structura damage
can be identified using only a small measured subset of the eigenstructure. Experimenta tests were
conducted ontwo separate structures. Thefirst was acantilevered trussmodel ed with 104 rod elements
with a total of 96 degrees-of-freedom. The measured data consisted of the first five flexible modal
frequencies, and only eight components of the five corresponding eigenvectors. The second experiment
was a cantilevered frame assembly modeled with 96 beam elements with a total of 192 degrees-of-
freedom. The measured data consisted of the first eight flexible modal frequencies, and only eight
components of the eight corresponding eigenvectors. Two key factors in the ability to identify the
damage are: the accuracy of the measured data, and the fidelity of the analytical model. In the case of
perfect measurements and perfect model correlation, the exact damage can be identified. To account
for imperfect measurements and model correlation errors, the concept of damage localization was

introduced. In such cases, damage can belocalized to asmall sub-section of the structure.

Also investigated was the relation between increasing the number of sensors and increasing
the number of measured modes. The results showed that more information on structural damage is
gained from the ability to measure an additional moda frequency than from the ability to measure
one more degree-of-freedom. Previous studies investigated which modes should be used in a damage
identification algorithm by determining which modes change the most. In this research work, it was
found that as many modes as can accurately be measured should be used. Modes which are unchanged
from damage contain information on elements which are undamaged, and thus help further narrow

down the search space.

For the case where structural damageis confined to changesin the stiffness of structural elements,
it was shown that the resulting natural frequencies from damage can only decrease. Placing an
upper limit on the target frequencies corresponding to the nominal frequency of the anaytical model
minimized the problem of mode switching during the iteration process and produced results which

were closer to the true damage.
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An objective function was introduced which represents the mismatch between the measured and
analytical partial eigendata. Two methodswere used to minimizethisfunction: ASTROS-ID, and APE.
A comparison of these two methodsfollows. Both solution methods use an iterative solution technique
to minimize the same obj ective function and aresuitable with partial measured modal data. (Aniterative
method is not required for the APE solution when perfect full length eigenvector measurements can be
obtained.) For ASTROS-ID, design variables can be any elemental mass or stiffness values, whereas
for APE the design variables are limited to changes in elementd stiffness. The advantage of the APE
method is that it does not require an eigenanalysis and the computation of the sensitivity valuesto each
design parameter at each outer-loop iteration step. APE however requiresthe decomposition of alarge,
sparse, possibly singular matrix, which requires sparse matrix techniques to make it computationally
competitive. Both techniques benefit greatly from an initial sensitivity analysis to reduce the search
space prior to initiating either method. Due to the algorithm percolation process used in the APE
method, APE typically reduces the solution space to fewer elements than the ASTROS-ID method. As
currently coded, the APE method is computationally an order of magnitude faster than ASTROS-ID.
The success of either method is contingent upon accurate measured data and an analytical model which
correlates well with the measured data for the nominal, as well as the damaged configuration. Neither

method is guaranteed to converge to a globa minimum.

9.2 Recommendationsfor Additional Research

During thecourse of any research investigation, additional understanding of theproblemisalways
accompanied with additional questions. During the experimenta portion of modal identification on
the FTE, considerable difficulty was associated with extracting partial modal datafor modeswhich are
spaced very closely in frequency. The use of additional input/output rel ationships helped to minimize
this problem, but may not be possible on orbit. Thus, it is recommended that additional research be
conducted on extracting mode shapes for closely spaced modes using non-ground base actuators. For
model tuning, several methods can be adopted to speed up the ASTROS-ID agorithm. Currently, the
design variable sensitivity isperformed through afinite-difference method. Since these sensitivitiesare
known explicitly from thefinite element formulation, the finite-difference method can be replaced with
either an analytical method in the current version of ASTROS (12) or the use of the matrix operator P

as used in APE. Additional research can be conducted in the percolation of either agorithm for damage
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identification. For either method, an adaptive method to narrow the search space can be employed to
speed the processing time. The ASTROS-ID search space currently is not reduced during the solution
process, and hence requires the sensitivity calculation during each outer-loop iteration step for al
design variables included in the initial search space. For the APE method, the search space is reduced
during the iteration process by fixed initial tolerances on the damage fractions. A method of gradualy
tightening these tolerances as the solution progresses is desirable, and requires further investigation.
With respect to damage localization and sensor prioritization, the results are dependent on the chosen
thresholds for both detectability and colinearity. Although thethreshold values are problem dependent,
additional studies would enhance future selection of these design parameters. Both methods can be

expanded to include structural damping in the formulation.

Lastly, the damage identification method presented in this study should be applied to other
structural applications. This method is suitable to any modeled structure where practicality dictates
that only asmall portion of the el genstructure can be measured. The method isideally suited for remote
monitoring where more conventional non-destructive testing methods, such as x-raying and acoustic

emissions, cannot be employed.
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Appendix A. ASTROSID Software Modules

A full description of the initial version of ASTROS-ID is contained in the work by Gibson.™
However, during the courseof thisresearch effort, several shortcomingsof the softwarewere discovered,
requiring either modification or replacement of the original software code. The overall intent has not
been altered from that originally proposed by Gibson. This section is intended only to provide a
brief description of the software component modules used in ASTROS-ID that were modified or
altered after the origina work. Errors encountered using the origina code included runtime errors
when using non-consecutively numbered modes, as well as when using a different number of mode
shapes than moda frequencies. Other problems encountered included gradient calculations that did
not properly account for mode normalization and mode switches which were not identified, as well as
errors in the reporting of results. Second-order eigenvalue gradient information was also included in
the sensitivity calculations. Changes in the software are listed below which corrected these problems.
The mathematical foundation was presented in Chapter V. Thislist should be used to supplement the

origina work. Information on the use of ASTROS can be obtained in Reference 55.

A.1 Modified Software Modules

1. MAPOL-ID.SEQ The mapol sequence was modified to incorporate the non-consecutive
eigendata, correct for point normalization, and incorporate the use of second-order gradi-

ents.

2. TUNE.FOR This module was modified to incorporate the non-consecutive eigendata and
incorporate the use of second-order gradients. Also included was the ahility to set the
optimization parametersfromthe input datadeck, and incorporate the numerical optimizer

Design Optimization Tools (DOT)™ for the inner-loop optimization.

3. REPORT.FOR This module was updated to correct numerous formatting errors when

reporting results.

4. Misc. The origina code included an unstructured data base entry caled ‘MTRACE'
which kept track of the mapping between mode numbers during the iteration process. A

simpler method of renumbering the stored input data whenever a mode switch occurred
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A2

wasincorporated. Asaresult, most subroutines required a minor modification to remove

the MTRACE reference.

New Software Modules

. ORTHTEST.FOR Thisroutine checksfor modeswitching by performing amatrix search on

the modal correlation coefficient matrix, and updates the TSHAPE and TFREQ relational
entities corresponding to switched modes. This routine replaced the previously used
orthogonalization test.

. MTCHINDX.FOR This routine matches mode numbers and index numbers between fre-

guencies and shapes required when non-consecutive data is input.

. GETDLAM2.FOR This routine retrieves entities required for the second-order gradient

term calculations.

. DLAM2.FOR This routine computes the second-order eigenvalue gradient terms.
. UTMCOPY.FOR Matrix utility routine to copy a matrix entity in the data base.

. PUTSCAL.FOR This routine alows multiple calls to put scalars into a matrix in the data

base from within the same loop.

. NORMINDX.FOR Thisroutine determines the interna degree-of-freedom corresponding

to the normalization point.

. NORMAL.FOR This routine point normalizes the analytical eigenvectors such that the

degree-of -freedom corresponding to the max measured degree-of -freedom from the input
(TSHAPE) datais unity. A warning message is displayed (and the proper normalization
performed) if the input mode shapes were not normalized to maximum entry equals one.

Eigenvectors not used in the tuning process are mass normalized.
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Appendix B. APEWARE: Damage I dentification Integrated Software

rﬂ Integrated Damage Identification Toolbox
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5
R

“Richard G. Cobb, Capt. USAF
— Hir Force Institute of Technology
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FigureB.1 Software opening menu.

The four tasks associated with damage identification were combined into an integrated software
tool which was progranmed in MATLAB®. This software package provides the design engineer an
easy to use tool to aid in determining system identification reguirements, sensor placement, damage
localization studies, and damage identification using the assigned partia eigenstructure method. Also
included is pre and post-processing routines for use with ASTROS-ID. This appendix isintended only
to provide the reader with a brief introduction to the functionality and capabilities of the software
package. The algorithms for each task are based on the work presented in the main text, and were
briefly described under the software implementation section for each task. The specific agorithm
descriptions are not provided. Familiarity with MATLAB®is assumed. Information on the use of
MATLAB®is contained in Reference 52. The software was written and implemented on a Sun Sparc-
10 workstation running under Unix/Sun4. While most routines are ascii ‘.m’ format which can be
run on any platform, routines related to the sparse matrix operations were written in FORTRAN and
compiled as‘.mex4’ code. These routines must be re-compiled when changing to a different platform.
The routines are bspar s.mex4(bspars.f), fillmat.mex4(fillmat.f), and spgr mex.mex4(available from

MATLAB®technical support).
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FigureB.2 APE control menu.

The program is initiated from the MATLAB®command line with the command ‘apeware’ .
Program control isfacilitated through the main control panel as depicted in Figure B.2. Mode filesare
loaded into the workspace by depressing the [L OAD] button. The model files consist of information
on the finite e ement model matrices, grid data, and element connectivity data. A complete description
of the required datain the model file along with alist of utilities which can be used to generate the data

isincluded in Section B.5. The remaining buttons are described below.
[ERA ] Initiatesthe ERA submenu used for system identification asfurther definedin section B. 1.

[Display.] Produces awire frame drawing of the model, showing all instrumented degrees-of-

freedom. A typical display isshownin Figure B.3.

[Anim.] Initiates the animation submenu used to display and animate deformed geometry for
any mode contained in the model file. Modes may be produced either from the measured data using
ERA, or from the results of an eigenanalysis on the FEM model. Thisfeature is further described in

Section B.2.

B-2



rLI Model View

=30
=20 -]

150

FigureB.3 Geometry display screen.

[Opt. sens.] Performsan anaysis to prioritize the degrees-of-freedom to instrument based on
the modes selected (using the [Man] selection) and the tolerances set in [Tol]. This feature is further
discussed in Section B.3.

[Man.] Opens adiaogue box as shown in Figure B.4, alowing the user to input the measured
modes, theinstrumented degrees-of -freedom and the element numbers of the e ements used for the APE
method. The instrumented degrees-of-freedom and the element numbers are updated automatically
when using the[Vis] and [Sens. Anal.] selections respectively, as discussed below.

rﬂ Case Set
oK
Modes: | 15
Sensor DOFs: | 1471028 31
Elements: | [32, 47, 52:60, 76]
1

Figure B.4 Manual input dialogue box.
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FigureB.5 Sample graphical sensor selection window.

[Vis] Producesawire-framedrawing of themodel, and includes additional buttonswhich alow
the user to select, via the pointing device, the degrees-of-freedom to instrument. The [Direction]
button shows the current degree-of-freedom direction (X, Y, Z, Rx, Ry, Rz) corresponding only to
the degrees-of-freedom included in the model. Repeatedly depressing this button toggles through the
selections. Selecting the [ nput] button alows the user to select degrees-of-freedom by clicking (right
mouse button) on the node to instrument. Nodes which are selected can be deselected in a similar
fashion. All selected nodes for the current degree-of-freedom direction are highlighted. The selection
process is terminated by making the fina selection with the left mouse button. The [View] button
initiates the 3-D viewer, used to rotate the wire frame for ease of node selection. The[ DONE] button
terminates the [Vis] command. A typica screen display is depicted in Figure B.5. The 3-D viewer is
shown in Figure B.6.

[Sens. Anal.] Initiates the sensitivity analysis for damage detectability and damage localization.
Thisfeatureis described in Section B.3.
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FigureB.6 Sample 3-D view selection control.

[Tol.] Initiates the tolerance menu containing the tolerance values for sensor prioritization,
damage detectability, damage localization, and the APE method. The tolerance menu is depicted in
Figure B.7.

[APE.] Performs the APE method for the search space defined in [Man] using the current
tolerance values. Graphical results obtained using APE are described in section B.4.

[Els] Opens adiaogue box which alows the user to key in element numbers. Depressing the

[SHOW] button displays the keyed in elements on the wire-frame model in red.

[Close.] Terminates the software package.

B.1 System ldentification

I dentification of modal parameters from measured frequency response functions is fully auto-
mated using the apeware package. The processis initiated by depressing the[ERA] button from the
main control panel, which displays the ERA control panel as shown in Figure B.8. |f the measured
transfer functions are not included in the mode! file, they can beloaded into the workspace either from
the command line or through the [L OAD] button on the main control panel. Information on how the
data was recorded, (sample rate, number of sample points, etc.) should be keyed in using the [ERA
specs] button, which initiates the parameters control panel as shownin Figure B.9. An explanation on
each parameter is obtained by depressing the [HEL P] button. After setting the ERA parameters, the
ERA method, including the inverse Fourier transforms to obtain the time domain data, is performed
by depressing the [ERA] button. The state-space identified quadrupleis contained in the workspacein
the variables (aera,bera,cera,dera), in either continuous or discrete form as determined by the setting

in the ERA parameters panel. If desired, a display of the singular values of the block Hankel matrix is
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FigureB.7 Tolerance menu.

provided to alow the user to select the number of singular values to retain, using the pointing device.
Simulated frequency response functions of the identified state-space quadruple can be computed and
displayed according to the value entered in the [plot fit] parameter box. A comparison of a simulated
frequency response function(s) of the identified model can then be obtained and displayed, as shownin

FigureB.11. Anadditiona optiontoinclude alow-passfilter onthe measured datais also incorporated.

The extraction of the moda parameters (frequencies and shapes) from the measured data is
performed using the [Extract] button. The resulting control screen is shown in Figure B.12. Modes
are selected by using the pointing device to click on amodal pesk in the displayed frequency response
function(s). The eigenvalue of the model corresponding to the closest mouse pick is automatically
determined, along with the partia eigenvector for this mode. The selected partial mode shape is
displayed aong with a polar plot indicating the phase of the identified eigenvector. When used on
measured data of structures with minima structural damping, the phase of the eigenvectors should
lie along the abscissa (corresponding to real eigenvectors). The polar plot is used as a check on the
identified eigenvector. If the phaseis scattered off the abscissa, the mode was poorly identified. Each

identified eigenvalue and eigenvector must be assigned a mode number. The software automatically
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compares the identified partial eigenvector with the stored eigenvectors of the analytical model. A
figure-of-merit (FOM) is listed on the display screen along with the mode number of the analytical
model with the highest FOM. The FOM is a measure of the colinearity, with a maximum value for
perfect colinearity at unity. Depressing the [Store] button saves the identified eigenval ue/eigenvector
pair for future use. The mode numbers can be changed by changing the entry in the displayed mode
number box. This pairing of the identified and analytical modes is performed to account for mode
swaps occuring in the damaged structure. Note that when using only partial eigenvectors, no guarantee
ismade that the highest FOM corresponds to the correct mode number, and thus care must be exercised
when assigning mode numbers. The [Clear modes] button can be used to clear the previously stored
modes from the workspace. The currently stored modes are listed on the display screen, and isupdated
after each store operation. The mode selection process is repeated by depressing the [Select again]
button for each mode desired. The [Zoom] button can be used to help the selection of closely spaced
frequency peaks. A green circle is displayed on each peak selected to aid in the identification process.
Modal peaks can be selected from any frequency response function. Because the frequency functions
aredl based on the same ERA identified model, they all contain the same modal information. However,
some modes may not be visible from the selected transfer function. Different transfer functions are
selected by changing the [ nput] and [Output] numbers on the ERA control menu. Multiple transfer
functions can be displayed by including several combinations in the Input/Output boxes. The[clear]

button is used to clear the plotting window.

B.2 Modd Tuning

Model tuning is performed using ASTROS-ID, a software package independent of the apeware
package. ASTROS-I1D however lacks a graphical pre and post-processor. Apeware partially accomo-
dates this deficiency by providing an easy to use graphica interface to display deformed geometries and
animate mode shapes. Thisinformation is useful in classifying mode shapes and correlating analytical
and measured mode shapes. Thisfeatureis initiated using the [Anim] button (animation) on the main
control panel. The mode view control pand is depicted in Figure B.13. Severa types of displayed
results are possible. Deformed geometries using the wire-frame model can be displayed for any stored
mode, from either the anaytical data asin Figure B.14, measured data, or both. Additionally, mode

shapes can be animated at fifteen frames per second to aid in the classification process. Alternatively,
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FigureB.8 ERA control menu.
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FigureB.9 ERA parameters control panel.
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g APE Info Window

ERA Farameters
QUTPUTS = # of sensors
IMPUTS = # of actuators
LHFACTOR is a factor € = |h < length{FRF)/ns to
determine the size of hankel matrix typically
3 — 8. The resulting hankel matrix is nxn where n
is approximately ns*nmeas*ninput*lh/g
STATES = # number of states for model
INTEGEATIONS = # of integrations on data
(setto 1 for accel to velocity, etc.)
FILTER ORDER = butterworth filter order, ignored
if break is negative
BREAL. = cutoff for low pass filter of impulse
response in Hz, set break < 0 for no filtering
LFEROE = # of zeros af low freq end of spectrum
PLOT = figure number for first plot (<0 to surpress
Cor D = 1 for continuous model or 2 for discrete
CUT = 1 to prompt for singular value cutoff
MOPTS = number of original sample points
(ie 2N, 512,1024,2048) set to zero

FigureB.10 ERA help menu diaogue box.

rLI Model View

FigureB.11 Sample frequency response showing measured data and simulated data from an ERA
identified model.
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FigureB.12 Control panel to extract measured modes.

the mode shapes can be viewed using a line plot format, using either the full length eigenvectors as
in Figure B.16, or the partia eigenvectors corresponding to the instrumented degrees-of-freedom asin
Figure B.15. Vector normalization and sign convention are automatically accounted for in the displayed

results.

Interactive compiled FORTRAN routines (db2mate, db2xyz, db2dvs) can be used to extract
the eigenvalues and eigenvectors, the finite dement model, and the tuned design variables from
the ASTROS data base. The results are stored in MATLAB®binary format for use with apeware.
Additionally, the MATLAB®routineswrtshape and wrtfreq can be used to generate the TSHAPE and
TFREQ data cards from the identified data, for usein ASTROS-ID.

B.3 Sensitivity Analysis

Thesensitivity analysisis performed using the stored analytical model. Theanaysisisperformed
on the modes keyed in using the [Man] button on the main control panel. Parameters for both the
damage localization and the sensor prioritization are determined from the keyed in entries on the

tolerance menu obtained using the [Tol] button. The sensor prioritization is performed by depressing
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FigureB.13 Mode viewer control panel.
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FigureB.14 Sample display of deformed geometry.
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FigureB.15 Sample line plot of a partial measured eigenvector corresponding to the sensor points
only.
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FigureB.16 Sample line plot of afull eigenvector.
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FigureB.17 Sample sensor location gradient information.

the [Opt. Sens] button. The results of the sensor prioritization are shown in two separate display
windows. Thefirst is the gradient information, depicting the values of D ; for each sensor location as
showninFigureB.17. Alsolisted are the degrees-of-freedomwith values of D, below the detectability
threshold level, and degrees-of-freedom within the colinearity 5, threshold level. A second figurelists

the prioritized locations in order, starting from the upper left, as shownin Figure B.18.

Damage localization is performed by depressing the [Sens. Anal.] button on the main con-
trol panel. The results are displayed in two separate figures. Eigenvalue and eigenvector gradient
information contained in D, and D, is displayed as shown in Figure B.19. The colinearity analysis
results are displayed as shown in Figure B.20, which lists the symmetric elements as well as the un-
detectable elements. Element numbers are color coded, with each symmetric set assigned to a distinct
color. For reference, a wire-frame model is also displayed with the elements color coded according
to the displayed information. Bright green elements are classified as undetectable and white elements

correspond to elements which can be uniquely identified.
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FigureB.18 Sample sensor location prioritized list.
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FigureB.19 Sample damage localization gradient results.

B-14



(i APE

40
20 . -
RGO
-20F
40 50 100 150 200
APE undetectable elements: APE symmetric elements:

Modes usedin APE: 4 5 & 7 8

FigureB.20 Sample damage localization analysis results.

B.4 Damage |dentification

Damage identification using APE is performed using the [APE] button on the main control
panel. The APE iteration proceeds according to the parameters set in the tolerance menu as shown
in Figure B.7. The iteration tolerance vaues are explained using the [HEL P] button. The numerical
results of the APE method are displayed as shown in Figure B.21. If the[show graphics] box is set to
1, theresultsare also shownin graphica format as depicted in Figure B.22, with the identified damaged
elements color coded according to the percent damage identified. If [show graphics] is set to 2, the

intermediate results for each iteration step are displayed.

B.5 Modd File Requirements

The following is a list of variables and their descriptions, which must be contained in a
MATLAB®binary file. This file must be loaded into the workspace after initiating the apeware pro-
gram. The existing workspace is purged when the program is initiated. Note also that MATLAB®is

case sensitive.
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FigureB.21 Sample damage identification numerical results.
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FigureB.22 Sample damage identification graphical results.
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1. M Finite element mass matrix.

2. K Finite element stiffness matrix.

3. C ldentity matrix the size of M.

4. eol Sorted eigenvalues of M, K.

5. vol Sorted eigenvectors of M, K.

6. B Matrix as defined in Equation (6.10) or (6.13) suchthat K; = B; B! .
7. nb Number of columnsin B corresponding to asingle element (scalar).
8. DOFTY PE Number of degrees of freedom per node (scaar).

9. xyz Matrix containing the grid point coordinates, one (x,y,2) triplet for each node. Matrix

sizeis (# of nodes x 3).

10. con Matrix whose ' row points to the row of grid points in xyz for the "" element.

Matrix sizeis (# of elements x 2).

11. CONINDX Vector which points to rows in con that have columns in B (# of design

variables).
12. connodes Vector listing nodes which are constrained.

13. DOFSTR String vector of degree-of-freedom labels, (‘X’, ‘Y’, ‘Z’, ‘RX’, ‘Ry’, ‘RZ'),
used in the model.

B.5.1 Utilities. Toaid in construction of some of the model file requirements, the following

utilities are available.

1. db2mate Executable routineto extract the mass, stiffness, circular frequencies, and eigen-

vectors from an ASTROS data base.

2. db2xyz Executable routine to extract the xyz and con matrices from an ASTROS data

base.

3. db2dvs Executable routine to extract the tuned design variables and elemental properties
from an ASTROS data base.
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4. bildbeam MATLAB®.m file to construct the B matrix for beam elements from the

elemental properties.

5. bildrod MATLAB®.m fileto construct the B matrix for rod elements from the elemental

properties.

6. eigsrt MATLAB®.m file to construct the sorted eigenvaue (eol) and eigenvectors (vol)

matrices from M and K.
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