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Abstract

The research focused on the development of a new method to identify damaged structural

elements from a large flexible space structure on-orbit, using limited measured modal data. Limited

measured modal data is loosely defined as measured data containing only a few modal frequencies

and less than 10% of the total structural degrees-of-freedom. This effort was decomposed into four

specific tasks. The first is the identification of partial modal properties from measured data of the

nominal space structure. Second, the finite element model must be adjusted to match the measured

nominal partial data. The third task is an analysis of the extent to which structural damage can be

localized to individual structural elements using the measured data. In conjunction with this task is

the determination of where to best place the limited number of sensors on the structure. Lastly, the

identification of structural damage must be performed using the limited measured modal data from a

damaged space structure.

Identification of the modal parameters was accomplished using the Eigensystem Realization

Algorithm, a time domain based method, adopted for use with averaged measured frequency response

functions. Model tuning was performed using the Automated Structural Optimization Software pack-

age, adapted for model tuning. The method minimizes a cost function based on the mismatch between

the measured and analytical eigenstructure. The minimization is solved using the eigenvalue and eigen-

vector sensitivities at each iteration step. The determination of prioritized sensor locations and damage

localization is performed using the eigenvalue and eigenvector sensitivities. Damage identification is

performed using a newly developed assigned partial eigenstructure method, which determines required

stiffness changes, consistent with the finite element formulation to achieve the measured data.

The theory for each task is presented and illustrated on an analytical example of a 41-element

free-free planar truss. Two experimental demonstrations were performed and the results reported. The

first was a cantilevered truss modeled with 104 rod elements with a total of 96 degrees-of-freedom. The

measured data consisted of the first five flexible modal frequencies, and only eight components of the

five corresponding eigenvectors. The second experiment was a cantilevered frame assembly modeled

with 96 beam elements with a total of 192 degrees-of-freedom. The measured data consisted of the first

eight flexible modal frequencies, and only eight components of the eight corresponding eigenvectors.
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The research showed that in each test case, the structural damage could successfully be localized to a

small portion of the structure. The extent to which damage can be localized was limited by both model

fidelity and accuracy of the measured modes.



STRUCTURAL DAMAGE IDENTIFICATION FROM LIMITED MEASUREMENT

DATA

I. Introduction

Over the past decade, both the size and complexity of military and civilian spacecraft have

increased considerably. Future Air Force space systems will continue to increase in size due to mission

requirements, while minimizing weight to remain within launch constraints of the booster inventory.

In addition to the size and complexity increase, the on-orbit lifetime has increased as a result of

new advances in solar power generation and battery storage devices. These advances coupled with

NASA’s demonstrated ability to perform on-orbit repair and replacement of flight critical items, further

extend a satellite’s usable lifetime. As a result, future large flexible space structures will have an

unprecedented requirement for verifying the structural integrity of such space structures on orbit, on a

periodic basis over the lifetime of the space system. The potential degradation of structural components

from long term exposure to the space environment was documented with the retrieval of NASA’s Long

Duration Exposure Facility. [44] Additional damage is also possible due to loads introduced during

orbital maneuvers, spacecraft docking operations, and from collisions with space debris. NORAD

currently tracks over 5000 objects 10 centimeters in size or larger in low Earth orbit. [2] Information

on both the location and extent of structural damage will be critical in assessing required in-space

repair missions and/or deviations from the planned mission profiles. The current configuration of the

International Space Station Alpha is shown in Figure 1.1. [27] This research focuses on identification of

damage to structural sub-assemblies typical of large orbiting space platforms. The truss-like structure

of International Space Station Alpha’s solar array sub-assembly is depicted in Figure 1.2. [28]

One method of structural verification is visual inspection, however this method may be impracti-

cal due to the extra-vehicular activity man-hours required, or impossible as in the case of unmanned and

high altitude missions. Thus an alternative solution to visual inspection is desired, and is the main focus

of this research. Two current disciplines, closely related to this topic, are system identification theory

and analytical model tuning from experimental data. These two disciplines will be briefly reviewed,

and their correlation to structural damage identification will be highlighted.
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Figure 1.1 On-orbit configuration of International Space Station Alpha.

Figure 1.2 Solar array sub-assembly from International Space Station Alpha.
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Vibration testing has been used extensively in industry to monitor rotating machinery. From

observations of input/output relationships, the frequency signature of a system can be used to detect

failures. Identifying specific failure modes can then be accomplished by a comparison of the frequency

signature to that of a predetermined set for each failure mode. For a large system, this failure mode

set may be impractical to produce or store and interpolation is not necessarily possible between failure

modes. Thus an alternative to searching a frequency signature database is sought. One alternative is

the use of a system identification algorithm.

System identification techniques are based on determining the underlying physical system from

a given set of input/output relationships. For non-parametric system identification, the physical system

can be viewed as a ‘black box’ and thus no inherent knowledge of the structure of the system is

required. The primary measure of the effectiveness of the system identification is in how well the

identified mathematical model produces an output which matches the measured output for a given

input signal. Since there is a direct relationship between the time and frequency domain through

the Fourier transform, the identification can be accomplished in either domain. System identification

methods have been shown to be very effective in producing models which exactly (theoretically) or

closely match (to within the experimental error) the true system; however, they typically do not directly

give information about the physical structure of the system. For structural damage identification, the

system identification techniques are useful in obtaining the eigenstructure of the physical system, which

will be shown to be sufficient to determine structural damage. The feasibility of identifying modal

frequencies, damping ratios and shapes from on-orbit testing has been addressed in previous studies.[43]

Unlike the non-parametric identification, model tuning is a parametric approach to system

identification which includes a detailed physical model with well defined parameters of uncertain

values. Model tuning attempts to match the input/output relationships of an analytical model and

the physical system by varying parameters in the mathematical model. Differences in model tuning

methods depend on the assumptions made on how to vary these parameters. For physical structures,

one approach is to vary the material properties of the elements in the model. This is typically done

by adjusting the stiffness and mass and/or damping matrices of the model. This method assumes the

existence of a finite element method (FEM) model which produces simulated output which is reasonably

close to experimental measurements. To exactly match experimental data, only small perturbations to

the model matrices are required. Model tuning can then be approached as an optimization problem.
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For a given input, a minimization on the difference between the model output and the measured output

can be performed through the use of an appropriate metric, while iterating on the perturbation of the

matrices. The key distinction between different model tuning methods, important to structural damage

identification, is whether or not the physical connectivity of the structure is retained. Clearly, to

correctly determine a change in a structural element, the tuned model must not remove load paths or

introduce load paths not present in the physical structure.

An additional complexity with model tuning algorithms is in obtaining complete experimental

information. A typical FEM model of a large flexible space structure will include hundreds or thousands

of nodes with as many as six degrees-of-freedom at each node. In contrast, typical experimental data

will include accurate information on only the lower frequency modes of vibrations, taken at only a small

subset of the nodes in the FEM model. Furthermore, typically only translational degrees-of-freedom are

measured which further reduces the available data. Thus an additional distinguishing feature between

model tuning algorithms is in how to incorporate the reduced experimental data sets into the model.

Several model reduction/expansion algorithms have been used to correlate the model to experimental

data. [25,29,63] A common attribute of these methods is the use of the nominal FEM model to obtain the

unmeasured degrees-of-freedom. For damage detection however, the FEM model is the unknown and

hence cannot be used as the basis for the reduction/expansion.

Having briefly motivated the problem of on-orbit damage identification, along with introducing

the concepts of system identification and model tuning, a statement of the research objective can now

be given. The research focused on the development of a new method to identify damaged structural

elements from a large flexible space structure on-orbit, using limited measured modal data. This effort

was decomposed into four specific tasks. The first is the identification of partial modal properties from

measured data of the nominal (i.e. undamaged) space structure. Second, the FEM model must be

adjusted to match the measured nominal partial data. The third task is an analysis of the extent to

which structural damage can be localized to individual structural elements using the measured data. In

conjunction with this task is the determination of where to best place the limited number of available

sensors on the structure. Lastly, the identification of structural damage must be performed using the

measured data from a damaged space structure.

This chapter briefly introduced the research effort and outlined some of the related work in this

area. Chapter II presents a background of related work in system identification and model tuning and
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discusses the relevance to damage identification. The subsequent chapters develop the four tasks of the

on-orbit damage identification problem in detail, beginning with an overview of the methodology for

each task in Chapter III. The four tasks were integrated into a single software package which is presented

Appendix B. Lastly, validation of the research effort was performed using laboratory experiments which

exhibit the same dynamic properties as large flexible space structures, and is presented in Chapter VIII.
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II. Background

2.1 Motivation

The problem of producing analytical models capable of predicting dynamic responses has been

widely studied. While these solution methods may result in analytical models which match (typically

in a weighted least squares sense) experimental data, they most often do not directly address the

problem of relating perturbations of the analytical model to changes in the physical parameters of the

structure. Direct identification of failed structural components is exactly the information required to

adjust mission profiles to minimize structural dynamic loading and to enable development of repair

missions where possible. Thus a method which directly identifies damaged structural members from

experimental data is highly desirable. Due to the similarities among damage identification, system

identification and model tuning, an overview of existing methods for system identification and model

tuning will be presented as well as current methods of damage identification.

2.2 System Identification Techniques

The problem associated with system identification is: given the measured response to a known

input, determine a mathematical representation of the system which reproduces the output sequence

given the input sequence. Differences in algorithms are based on the assumptions of the underlying

system, which then establishes the structure of the analytical model. For large flexible space structures,

a finite-dimensional linear time-invariant model can adequately represent the dynamics of the structure

and hence will be the subject of this investigation. In general system identification theory, such a

restrictive assumption need not be imposed.

To illustrate the general approach to system identification, a sampled data single-input single-

output system will be considered. This presentation is based on work by Ljung. [49] Given an input

sequence u(t) and an output sequence y(t) where t = (0; 1; : : : ;N� 1), the discrete-time system can

be represented as:

y(t) = G(z)u(t) + v(t) (2.1)
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with G(z)u(t) representing the convolution summation of the system’s impulse response sequence

g(t) with the input sequence u(t), and is given by:

G(z)u(t) =
1X
k=0

g(k)u(t� k) (2.2)

The function v(t) represents the measurement noise (uncertainty) associated with obtaining the output

sequence. The term G(z) represents the system’s transfer function and is defined as:

G(z) =
1X
t=0

g(t)z�t (2.3)

where z represents the time-shift operator such that:

z�1y(t) = y(t� 1) (2.4)

A parametric approach to system identification is then confined to the determination of a set of

parameters which fully describe G(z). To illustrate the different approaches, a more general form of

Equation (2.1) is used to form a general parametric model given as the following convolution:

A(z)y(t) =
B(z)

F (z)
u(t) +

C(z)

D(z)
e(t) (2.5)

where A(z); B(z); C(z); D(z), and F (z) are polynomials in the time shift operator z as follows:

A(z) = 1 + a1z
�1 + : : :+ anaz

�na (2.6)

and similarly for the remaining four polynomials. The order of the polynomials is given byna; nb; nc; nd

and nf respectively. The sequence e(t) is assumed to be a white noise sequence and is shaped by

C(z)

A(z)D(z)
to produce the measurement noise v(t) of Equation (2.1). The commonly used linear models

are all special cases of the general form of Equation (2.5). The autoregressor with exogenous input

model is obtained by setting nc = nd = nf = 0. Similarly, the autoregressor with moving average

and exogenous input is obtained by setting nf = nd = 0. The output error model corresponds to

na = nc = nd = 0, while the Box-Jenkins model is obtained by setting na = 0. A large set of

models can thus be obtained from the general form given in Equation (2.5).
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Although the above development was in transfer function form, an equivalent state-space repre-

sentation is also possible. The state-space representation of Equation (2.5) is given as:

x(t+ 1) = Ax(t) +Bu(t) (2.7)

y(t) = Cx(t) +Du(t) + v(t) (2.8)

where A;B; C, and D are redefined as constant matrices. Equation (2.7) can be rewritten in terms of

the time shift operator as:

zx(t) = Ax(t) + Bu(t) (2.9)

Solving for x(t) yields:

x(t) = (zI �A)
�1
Bu(t) (2.10)

Substituting this result into Equation (2.8) yields the convolution:

y(t) =
h
C (zI �A)

�1
B +D

i
u(t) + v(t) (2.11)

Thus the transfer function is directly related to the state-space quadruple (A;B; C;D) by:

G(z) = C[zI � A]�1B +D (2.12)

Hence the system identification problem is equivalent to determining the constant matrices of the

quadruple (A;B; C;D) which accurately reproduces a given measured response from a known input.

A further distinction between techniques involves whether the inputu(t) and output y(t) are represented

in the time or frequency domain. The foundation of these two methods will be briefly discussed.

2.2.1 Time Domain. System identification in the time domain seeks to reconstruct the

transfer function based on identification of the system’s impulse response function. For the scalar case,

if the input is a pulse defined as:

u(t) =

(
a t = 0

0 t 6= 0
(2.13)

then the output y(t) becomes:

y(t) = ag(t) + v(t) (2.14)
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where g(t) is the unit-impulse response sequence and v(t) is the measurement noise. If the signal to

noise ratio is high, then v(t) << ag(t) and can be neglected. An estimate of the impulse response is

then simply:

g(t) =
y(t)

a
(2.15)

with an error of v(t)

a
. An estimate of the transfer function can then be determined directly from the

estimated impulse response.

G(z) =
1X
t=0

g(t)z�t (2.16)

A disadvantage with the above method is the requirement to excite the system with an impulse.

This can be approximated with a finite pulse input, but may be impractical to implement on certain

systems, and it may be difficult to obtain response levels which are significantly above the measurement

noise levels. An alternative procedure known as correlation analysis overcomes this shortcoming by

requiring the input is a zero-mean white noise sequence, i.e. it’s auto-correlation function is given as:

Ruu(�) =

(
� � = 0

0 � 6= 0
(2.17)

Then, from Equation (2.1) the cross-correlation between the input and output is given as:

Ryu(�) = �g(�) (2.18)

where g(�) is the desired impulse response sequence. By definition, [50] the cross-correlation between

two zero-mean sequences is given as:

Ryu(�) = lim
N!1

1

N

N�1X
t=0

y(t)u(t� �) (2.19)

where it is assumed that the limit exists. An estimate of the correlation is then obtained by selecting N

sufficiently large. Thus the correlation estimate is defined as:

Ryu(�) �
1

N

N�1X
t=0

y(t)u(t� �) (2.20)
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Using the estimated correlation, an estimate of g(�) can then be obtained from the input and output

sequences using Equations (2.18) and (2.20).

g(�) =
1

�N

N�1X
t=0

y(t)u(t� �) (2.21)

Although the assumption was made that the input u(t) was white noise, this is not a restrictive

assumption since a shaping filter can always be constructed to produce the actual sequence u(t). [53]

The output sequence can then be filtered through this same filter and the estimate is computed using

Equation (2.21) with filtered data. Although presented here for the scalar case, the method is applicable

to multiple input/output combinations.

Based on these concepts, a vast array of system identification methods have been studied and

presented in the literature. From these methods, the eigensystem realization algorithm (ERA) was

singled out as one which has demonstrated it’s ability to accurately produce a minimum system

realization from multi-input/multi-output (MIMO) experimental data typical of large flexible space

structures. [32] The ERA method is presented in Chapter IV.

2.2.2 Frequency Domain. The aforementioned methods were based on reconstruction of the

impulse response in the time domain. An alternative method is identification of the system’s transfer

function in the frequency domain. This method is commonly referred to as spectral analysis and is

included here for completeness.

The frequency response function of the system in Equation (2.1) is found by evaluating the

transfer function G(z) on the unit circle z = ej!. Furthermore, the noise sequence v(t) can be

described in terms of its power spectral density �vv(!), where the power spectral density function is

defined as the Fourier transform of the autocorrelation function. Thus the input output relationship of

Equation (2.1) is completely specified from knowledge of G(!) and �vv(!). If initially we assume

the measurement noise is negligible, the frequency response function can be found from sine-dwell

testing. In this method, the system is given a known sinusoidal input.

u(t) = a sin(!t) (2.22)
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For a linear time-invariant system, it is well known that the steady-state output response after the

transients die out is given by: [62]

yss(t) = a jG(!)j sin(!t+ �) + v(t) (2.23)

where � is given by the phase angle of G(!). In this way, an estimate of the transfer function can

be found by repeated application of the input sinusoid at frequencies of interest and measuring the

magnitude and phase of the response. A reconstruction of the transfer function from the data can then

be performed.

In the preceding analysis it was assumed that the measurement noise was small and hence was

neglected from the analysis. A less restrictive assumption is to assume u(t) and v(t) are independent,

but v(t) not necessarily negligible. The relationship between input and output given in Equation (2.1)

corresponds to a relationship between the power spectra of:

�yy(!) = jG(!)j2 �uu(!) + �vv(!) (2.24)

and

�yu(!) = G(!)�uu(!) (2.25)

Estimates of the frequency response function and the noise power spectrum are obtained by computing

the appropriate estimates of the correlation functions using Equation (2.20) and their corresponding

power spectra (by Fourier transformation).

G(!) =
�yu(!)

�uu(!)
(2.26a)

�vv(!) = �yy(!)�

����yu(!)
���2

�uu(!)
(2.26b)

The above highlights the general aspects of spectral analysis. A more complete derivation of spectral

analysis is contained in Newland. [57] The preceding material was based on a discrete time analysis,

since this is the form of measured data. The material presented in the remainder of this chapter and all

subsequent chapters is based on a continuous time analysis unless otherwise stated.
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2.3 Model Tuning Techniques

As opposed to system identification techniques where no a priori model is required to perform

the identification, model tuning assumes the existence of an analytical model. For flexible structures,

the model can be written as:

Mx+ Cx +Kx = Ff (2.27)

where M;C;K represent the mass, damping, and stiffness matrices respectively for the degree-of-

freedom vector x. The matrix F represents the influence matrix to a given input vector f . This

analytical model is the result of an application of Newton’s second law, and most likely produced

as the output of a FEM program and used to simulate the dynamic response of the actual structure.

Note that the matrices M;C;K; F of the second-order Equation (2.27) can be related to the first-order

quadruple (A;B; C;D) as given in Equations (2.7) and (2.8). The transformation from second-order

to first-order form for a state vector [x; x]T is given by:

A =

"
0 I

�M�1K �M�1C

#
(2.28a)

B =

"
0

M�1F

#
(2.28b)

C = [ I 0 ] (2.28c)

D = [0] (2.28d)

Due to violation of modeling assumptions and to inherent uncertainties in material properties, joint

properties, boundary conditions, etc. in developing the analytical model, there will exist an imperfect

correlation between the experimental and analytical results. If the correlation results are unsatisfactory,

an adjustment to the finite element model is necessary. The common attribute of model tuning

techniques is that they attempt to minimize the required modification to the matrices, assuming the

FEM model is a reasonable approximation to the physical structure. Additionally, for realistic structures,

the FEM model will include a large number of degrees-of-freedom (dimension of x) of which only a

small subset will be measured. The differences in the techniques stem from how to incorporate the

reduced data set and on what restrictions to make on the set of allowable perturbations to the existing

matrices as well as the selection of what error metric is to be minimized. Further classifications can
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be made on whether damping is considered in both the model and the measurements. For cases where

damping is neglected, C = 0 in Equation (2.27), the distinction is whether adjustments are made to

the mass matrix, stiffness matrix, or both. The adjustments are the result of the solution of eigenvalue

problems, orthogonality relationships, and eigenstructure assignment techniques. Several relevant

techniques will now be reviewed.

2.3.1 Sensitivity Based. A straightforward approach to adjusting the matrices in Equation

(2.27) is to establish an objective function which is a measure of the difference between the experimental

and analytical model data. [66] The eigenstructure (eigenvalues and eigenvectors) has been widely

accepted as an acceptable method of measuring correspondence between models. [70] This is due to the

fact that the eigenstructure is invariant under a state transformation and thus allows direct comparisons

of different realizations. Sensitivity is the quantification of changes in the objective function due to

changes in the design variables. The sensitivity of the objective function with respect to the design

parameters is determined for each parameter in the matrices. A numerical optimization problem is

then solved by searching over the entire parameter space using the sensitivity information to determine

search directions. An advantage of this method is that the updated models are consistent with the FEM

formulation and thus the connectivity is preserved.

While this method can yield acceptable results for small problems, the major drawback is the

large number of design parameters contained in the search space. [9,21] For larger problems, the selection

of a suitable set of parameters to search over may not be intuitive. Its advantage in structural damage

identification, however, is that a set of parameters can be chosen that reflect physical failure modes,

such as searching over an elastic modulus value or the cross-sectional area of each member. Preliminary

knowledge of the damage location may be required for large structures to minimize the required search

space. Hemez and Farhat applied this procedure to damage detection. [14,24] Success of the detection

algorithm relied on the extent of the damage and the sensitivity to the chosen design variables.

2.3.2 Orthogonality Based. If the underlying physical system is assumed to be linear and

either undamped or proportionally damped, then the mode shapes of the structure will be orthogonal

with respect to the mass matrix. [5,7] Modal orthogonality can then be represented as:

�TM� = I (2.29)
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where� is the matrix composed of the measured eigenvectors (mode shapes). Using this orthogonality

requirement, small adjustments can then be made to the mass matrix M to force the orthogonality

requirement. Note that confidence in the analytical mass matrix is assumed higher than the confidence

in the stiffness matrix. For the undamped structure, the corresponding eigenvalue problem can then be

written as:

�TK� = � (2.30)

Adjustments to the stiffness matrix are then made such that Equation (2.30) is satisfied. In Equations

(2.29) and (2.30), both � and � are required to have the same dimension as the analytical model.

As previously discussed, the sets of measured eigendata will be much smaller than the number of

degrees-of-freedom in the analytical model. Thus, to apply the orthogonality equations, either a modal

expansion on the measured data or a modal reduction on the analytical model must be performed. As

presented by Berman, a modal expansion can be performed on the test data as follows. [7] The analytical

matrices are first ordered such that the coordinates associated with the measured degrees-of-freedom

are ordered above the remaining coordinates. The eigenvalue problem for each mode can then be

written as:

[K � �iM ]�i = 0 (2.31)

This equation can then be partitioned as:

("
k1 k2

kT2 k4

#
� �i

"
m1 m2

mT
2 m4

#)(
�1i

�2i

)
= 0 (2.32)

The unknown lower partition of the eigenvector can then be solved using the following:

�2i = �(k4 � �im4)
�1(kT2 � �im

T
2 )�1i (2.33)

This result is repeated for each measured mode. This method represents an interpolation of the measured

modes at the unmeasured degrees-of-freedom. The accuracy of this technique is clearly dependent on

how accurately the analytical model represented the physical structure. It should be noted that if the

frequency dependence in the above equation were ignored, this would result in the standard Guyan

reduction relationship.
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Having obtained full-length eigenvectors, the adjusted mass matrix is then formed from the

solution of a constrained minimization problem. [7] An objective function of the form:

J =



M�1=2

a (M �Ma)M
�1=2
a




 (2.34)

is used which penalizes deviations from the analytical model. In the original work the Frobenius

norm was chosen. The subscript a denotes the analytical model. The orthogonality constraint is then

appended with Lagrange multipliers as follows:

L = J +
nX
i=1

nX
j=1

�ij(�
TM�� I)ij (2.35)

DifferentiatingLwith respect toM and setting derivatives equal to zero yields a solution to the adjusted

mass matrix which now satisfies the orthogonality relationships and has minimized deviations from

the analytical mass matrix according to the applied norm in the objective function. The corrected mass

matrix is given by:

M = Ma�m
�1(I �m)m�1�TMa (2.36)

with m defined as:

m = �TMa� (2.37)

Although not presented in the original work, an iterative scheme could be used becuase the interpolated

value of � will change for the adjusted M . Having obtained the adjusted mass matrix, the stiffness

matrix is then obtained in a similar manner. The objective function is formed as an appropriate weighted

norm on the difference between the analytical and adjusted stiffness matrices. In Berman’s work which

was an extension of the stiffness matrix adjustment method of Baruch, [5] the analytical mass matrix

was chosen as the appropriate weighting function for the individual elements. This seems appropriate

only when elemental stiffness values are directly related to the mass of each element. Certainly,

there are structures which contain mass elements which do not contribute to the overall stiffness of the

structure. With the norm chosen, the eigenvalue equation is then appended as a constraint with Lagrange

multipliers. An additional constraint to ensure symmetry of the stiffness matrix is also appended. The

adjusted stiffness matrix is then found from a differentiation with respect to the elements of Ka and
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setting them equal to zero. The resulting adjusted stiffness matrix is given as:

K = Ka +�+�T (2.38)

where

� =
1

2

�
M�(�TKa�+ �)�TM

�
�Ka��

TM (2.39)

Although the presentation above based on the work of Berman and Baruch did not consider damping,

it could be expanded to include the proportional damping case. The advantage of this method is the

straightforward mathematical formulation of the adjusted matrices. Furthermore, this method will

result in a tuned analytic model which exactly reproduces the experimental data. Its shortcoming is

that it does not guarantee the closeness to unmeasured modes not used in the tuning process. This is

a result of potentially unrealistic changes in the stiffness matrix such as the introduction of load paths

which physically do not exist. The introduction of fictitious load paths is undesirable when identifying

damaged elements since the stiffness changes can not be directly related to physical elements.

The orthogonality based approach described above is essentially a matrix update approach

in which perturbation mass, damping, or stiffness matrices are determined that, when added to the

analytical matrices, reproduces the measured result. Brock originally examined this problem while

enforcing symmetry and positive-definiteness of the solution. [8] Success of this method is dependent on

the ability to accurately measure or reconstruct the modal matrix�. When using limited measurements,

an accurate � matrix is not a realistic expectation.

2.3.3 Connectivity Based. To overcome some of the shortcomings of Baruch’s method of

stiffness matrix adjustments, Kabe introduced an objective function which ensures stiffness terms are

corrected in a relative manner such that the connectivity of the analytical model is preserved. [35,37] This

method was also expanded to include a weighting function which assigns a confidence level to each

term in the stiffness matrix. Kabe’s algorithm uses a percent change in stiffness value cost function

and then appends a constraint on the sparsity pattern of the stiffness matrix to preserve the original

load paths. The addition of the structural connectivity information enables Kabe’s method to identify

stiffness changes exactly in some cases, even when only a limited number of measurements were used.
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A mathematically equivalent but more intuitive method was developed by Kammer using an alternative

matrix minimization formula. Similar work has been investigated by Smith and Beattie.[64]

In all of these methods, the minimization of a matrix norm (typically the Frobenius norm) of

the difference between the measured and analytical models can be justified when the goal is model

refinement. This method tends to make small changes across all the matrix elements, whereas damage

to a structural element will create a large localized change.

2.3.4 Residual Force Based. Another approach which has been applied to both model

tuning and damage identification is the residual force approach. This technique, developed by Chen

and Garba, is based on computation of a residual force vector which represents the mismatch between

the analytical model and the modal data. [10] For simplicity, assume an undamped structure. The solution

to the second-order homogeneous equation:

Mx +Kx = 0 (2.40)

is given by the eigenvalues and eigenvectors (�i;�i) in Equation (2.31). If the mass matrix M is

assumed correct, and the stiffness matrix K is written as:

K = Ko +�K (2.41)

then substitution of Equation (2.41) into Equation (2.31) yields:

�K�i = (�iM �Ko)�i (2.42)

The residual force vector �K�i is essentially equivalent to the modal force error proposed by

Ojalvo. [59] The residual force vector for the ith mode can then be written in terms of the unknown

elements of the stiffness matrix �kij and the connectivity matrix Ci for the ith mode. Construction

of Ci is based on nodal geometry, elemental physical properties, and the measured eigenvector for the

ith mode. An example construction of Ci is given in Reference 10. Equating the result to the residual

force vector yields:

�K�i = Ci�kij (2.43)
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The length of the residual force vector corresponds to the number of degrees-of-freedom of the system,

while �kij is a vector whose length is equal to the number of independent elements in the stiffness

matrix. A least squares solution to �kij is found using:

�kij = C
#
i �K�i (2.44)

The (�)# notation denotes the pseudoinverse operation. If multiple modes are used, the equations are

stacked so that:

�kij =

2
664
C1

C2

...

3
775
# 2
664
�K�1

�K�2

...

3
775 (2.45)

Advantages of this method include its ability to handle a subset of the total number of modes of

the system. However, when forming the least squares solution without a full set of eigendata, there is

no guarantee that a realistic �kij will result. This method was demonstrated using a FEM model of a

78 element triangular truss. The author used 3 iterations and constrained �kij values to lie between

0 and 100% stiffness reduction from the unbroken values. The use of a reduced length eigenvector

(when the number of sensors is less then the degrees of freedom) was not addressed.

The residual force vector in Equation (2.42) was also investigated by Kaouk and Zimmerman. [38,39]

Using this method, the problem is approached in a decoupled fashion, using the residual force vector to

localize the damage and then using the minimum rank update to determine the extent of damage. This

method works well when all the degrees-of-freedom can be measured, but degrades rapidly when the

size of the measurement set is reduced. The determination of the extent of damage varied, depending on

which modes were used in the algorithm. Best results were obtained using only modes with significant

changes from their nominal values.

Additional work on establishing which modes to use in damage identification algorithms has

been presented by Kashangaki. [42] In this work, calculation of the strain energy associated with each

mode in each member is performed using the analytical model. It is assumed that elements which are

highly strained in a given mode will be more readily identified using the eigendata for that particular

mode. This information could easily be incorporated into Chen’s work once an assessment of initial

damage location was performed.
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2.3.5 Assigned Eigenstructure Based. An alternative approach to model tuning, more

frequently formulated in a controls setting, is through eigenstructure assignment. With this technique,

a set of desired eigenvalues/eigenvectors is achieved in closed-loop manner by the selection of a

proper set of feedback gains. The following paragraphs discuss some general results for eigenstructure

assignment, along with a closed form solution for obtaining the desired eigenstructure.

Consider a linear time-invariant system represented as:

x = Ax +Bu (2.46a)

y = Cx (2.46b)

u = Ky (2.46c)

The dimensions of the state, control, and output vectors x; u and y are of dimension n;m and r

respectively. If the system is both controllable and observable, and the matricesB and C are full rank,

then the following results can be proven [4] :

1. The position of max(m; r) closed-loop eigenvalues can be arbitrarily assigned, with the

stipulation that complex eigenvalues must be assigned in complex conjugate pairs.

2. A total of min(m; r) elements of the closed-loop eigenvectors can be assigned, with the

same complex conjugate stipulation.

3. The assigned eigenvector associated with the assigned eigenvalue �i, must lie in the

subspace spanned by (�iI �A)�1B.

As applied to structural damage identification, the matrixA is obtained from the analytical mass

and stiffness matrices of the tuned finite element model, as given in Equation (2.28a). The matrix B,

which represents the control influence matrix, can be constructed from the connectivity matrix of the

structure. For realistic structures this matrix can always be chosen to be full rank from proper selection

of the structural elements. The rank of the measurement matrixC will primarily depend on the number

of sensors chosen. As will be shown, this will be a critical factor in obtaining the desired eigenstructure

from condition 2 above.
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A closed-form solution to the eigenstructure assignment problem has been developed by Liebst

and Garrard. [45] The solution involves determination of a feedback gain matrix G, such that for all

desired closed-loop eigenvalue/eigenvector pairs (�i;�i), the following relation holds.

(A+ BKC)�i = �i�i (2.47)

This is equivalently written as finding the vectors wi such that:

(�iI � A)�i = Bwi (2.48)

Determination of the gain matrix G once the wi’s have all been calculated is:

G = W [C�]�1 (2.49)

where W = [w1w2 : : :] and assuming the matrix productC� is non-singular.

In general, the desired eigenvectors may not be achievable. In this case, it is desirable to select

thewi’s such that a minimization between the desired and achievable eigenvectors is obtained. For the

minimization, a weighted cost function is established as:

Ji = (�i � �d
i )
�Pi(�i � �d

i ) (2.50)

The achievable and desired closed-loop eigenvectors are denoted by�i and �d
i respectively. The (�)�

notation denotes the complex conjugate operation. The positive definite symmetric weighting matrix

Pi can be chosen to weight certain elements of the vector of differences in the desired and achievable

eigenvectors more heavily than others. Thus for a given desired eigenvalue�i, it is desirable to minimize

Ji subject to Equation (2.48). The solution is found by appending Equation (2.48) to Equation (2.50)

with a Lagrange multiplier �i.

Ji =
1

2
(�i � �d

i )
�Pi(�� �d

i ) + ��i [(�iI �A)�i �Bwi] (2.51)
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The cost Ji is minimized in equation 2.50 when:

@Ji

@wi

= ���i B = 0 (2.52)

@Ji

@�i

= (�i � �d
i )
�Pi + ��i (�iI �A) = 0 (2.53)

Writing equations 2.48, 2.52, and 2.53 in matrix form yields:

2
664
(�iI � A) �B 0

0 0 BT

Pi 0 (�iI � A)�

3
775
2
664
�i

wi

�i

3
775 =

2
664

0

0

Pi�
d
i

3
775 (2.54)

or equivalently,

Ni

2
664
�i

wi

�i

3
775 =

2
664

0

0

Pi�
d
i

3
775 (2.55)

The obtainable �i and wi are then given by:

2
664
�i

wi

�i

3
775 = N�1

2
664

0

0

Pi�
d
i

3
775 (2.56)

It can be shown that Ni is always non-singular with positive definite Pi and B full rank, even if �i

is not moved from it’s open-loop value. If an eigenvalue/vector pair (�i;�i) is not to be altered,

setting the corresponding wi = 0 assures that the open-loop values are retained. As developed above,

this algorithm requires the selection of a set of desired eigenvalues/vectors. Since in general when

performing modal tests on a structure, only eigenvector elements corresponding to the instrumented

degrees-of-freedom are identified, the technique as presented is not suitable for damage detection. The

eigenvector expansion method presented in Equation (2.33) is not suitable to use with damage detection

since it requires knowledge of the damaged mass and stiffness matrices which are unknown.

Using the basic concepts of eigenstructure assignment, a method for correcting FEM models

using eigenstructure assignment was developed by Zimmerman and Widengren. [70] Their solution

method is based on a symmetric eigenstructure assignment technique in which the symmetry (not

necessarily the connectivity) of the change in the stiffness matrix is preserved. A standard output
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feedback assignment [65] is used, but a set of pseudosensors C and pseudoactuators B are judiciously

chosen to yield a symmetric feedback matrix. The pseudoactuator matrix is chosen such that the

measured eigenvectors lie in the achievable eigenvector subspace. Thus each mode has it’s own

corresponding pseudoactuator matrix. For a given B, the corresponding C is found from the solution

of a generalized algebraic Riccati equation. Since there will exist a set of non-unique real solutions,

this set must be evaluated for one which yields the ‘best’ adjusted stiffness matrix. In the solution

technique, only necessary (but not sufficient) conditions are used and hence some solutions will be

asymmetric and can be immediately discarded.

Again, the assignment algorithm requires full length eigenvectors. The eigenvector elements

corresponding to the unmeasured degrees-of-freedom are obtained using an optimal least-squares

expansion into the achievable eigenvector subspace. An alternative to the least squares expansion

has also been developed by posing it as an orthogonal Procrustes problem which yields similar, but

computationally more efficient results. [39]

Using the symmetric eigenstructure assignment technique does not preserve the load paths. An

iterative scheme was introduced to zero out stiffness matrix elements which were zero in the analytical

stiffness matrix. The disadvantage of this method is the requirement to solve the generalized algebraic

Riccati equation and then sort through the potential solution sets in an iterative fashion.

An alternative to the symmetric eigenstructure assignment is presented by Lindner. [47] In this

method, eigenstructure assignment is performed for each element of the truss, using the elemental

stiffness value as the pseudocontrol variable. Location of the damaged element is based on the

assumption that for each eigenvalue and eigenvector pair (�i;�i) assigned, only the assignment using

the damaged element will consistently return the same required stiffness change to assign each (�i;�i)

pair. Hence this algorithm requires a complete search over all the elements, but in a non-iterative

fashion. A full set of sensor information (full length eigenvectors) was assumed in this work. An

advantage of this approach is that it does not require the inverse connectivity problem, i.e. finding the

element(s) corresponding to the change in the stiffness matrix. This is done initially in the problem

formulation. A disadvantage in the detection scheme is that an increasing number of experimental

modes are required to better assess which element is the actual damaged element. The method is

also unsuitable for multiple element failures, since each eigenstructure assignment uses only a single

pseudocontrol variable.

2-17



2.3.6 Realization Theory Based. A conceptually straightforward approach to damage

detection would be to simply compare the first-order matrices of the analytical model to those obtained

using an identification algorithm. A direct comparison however, is only possible when the two systems

are represented using the same state-space realization. An algorithm developed by Alvin and Park

called the common basis-normalized structural identification procedure performs this transformation.[3]

This procedure requires the identified model to be the same order as the analytical model, which may

be difficult to obtain. When smaller realizations are identified, a reduced order model is obtained. A

reduction of the analytical model will destroy the connectivity information and make damage detection

difficult. In subsequent work by the same authors, this technique was applied to an eight-bay truss

structure, instrumented with three degree-of-freedom sensors at each node. [60] The use of a complete

set of sensors at each node allowed a post analysis to determine individual element damage. This

method was also shown to be very sensitive to experimental imprecision.

As previously mentioned, when performing model reduction the sparsity of the stiffness matrix

and hence connectivity information is not preserved. The advantage of the reduced model is that the

number of sensors can correspond directly to the degrees-of-freedom of the model. A compromise

solution was developed by Kim in which an intermediate set of coordinates is chosen, greater than

the number of measurements but less than the number in the analytical model. [43] The experimental

modes were expanded using a modal expansion technique, and the analytical model was reduced using

a standard model reduction algorithm. Using this intermediate coordinate set, an optimal matrix update

was performed as developed by Baruch. [6] Using this intermediate set, the location of the damage can

be localized, but can no longer be determined to within an individual element.

2.4 Summary

A large collection of techniques for system identification, model tuning and damage detection

have been presented. For system identification, the ERA method was singled out as the method

of choice for obtaining the modal parameters form the measured response data. Common to most

model tuning techniques was the minimization of a matrix norm on the perturbation to the stiffness

matrix required to match experimental data. For damage detection, a matrix norm minimization is not

necessarily desirable. Additionally, several approaches to the damage detection problem have been

reviewed. All approaches require full-length eigenvectors (or construction thereof) in their formulation.
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Of the methods presented, it is the author’s opinion that the assigned eigenstructure based approach has

the best potential to be computationally efficient, but must be adapted to handle limited measurement

data. Using the desirable aspects of each method, such as load path preservation and computational

efficiency, a solution was formulated in the subsequent chapters which specifically addresses damage

identification when only a minimal number of sensors are used.
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III. Damage Identification Methodology

The terms damage detection and damage identification appear frequently in the literature. In this

work, the term detection applies to the process of monitoring, typically on line, the measured response

of the system. From the response, a decision is made as to whether or not ‘damage’ has occurred.

Damage can be defined as a failed sensor or actuator, or an actual change in the dynamics of the

structure. In contrast to detection, structural damage identification, as used herein, refers to the off-line

analysis of the measured response to determine damage to individual structural elements. Clearly

damage detection must occur to begin the damage identification phase. Current fault detection schemes

include monitoring residuals in an on-line estimator. [30,31] The residual is the difference between the

measured output and the predicted output of an on-line estimator such as a Kalman filter. A fault

is indicated by the residual level rising above some predetermined threshold. Different threshold

levels are investigated in Faitakis. [15] Furthermore, since the residual using a properly tuned estimator

should appear as white noise, additional research has focused on monitoring the ‘whiteness’ of the

residuals. [22,68] In this research effort, it was assumed that a suitable damage detection algorithm is

available and thus was not further investigated. Each reported test case began with the assumption that

damage had already been detected. The research focused on the identification of damaged element(s),

using the measured data.

Once damage has been detected, the off-line damage identification process is initiated. The

identification process can be divided into four main tasks: (1) identification of partial modal properties

from measured data of the nominal space structure, (2) adjusting the FEM model to match the measured

nominal partial data, (3) analyzing the extent to which structural damage can be localized to individual

structural elements using the measured data, and finally (4) the identification of structural damage

using measured partial modal data from a damaged space structure. The methodology for each task is

overviewed in the subsequent sections of this chapter, while the mathematical development is deferred

to later chapters. The four tasks are based on a FEM model of the space structure where structural

damping is assumed negligible and is omitted from the analysis for simplicity. The free vibration of

the undamaged structure is modeled as:

Mx +Kx = 0 (3.1)
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with the symmetric mass and stiffness matrices M and K 2 <n�n, x representing the state vector

and x denoting a double time differentiation on x. The eigenvalue and eigenvector for the ith mode

of Equation (3.1) is given as (�i;�i) whereas the measured eigenvalue and partial eigenvector for the

same mode is represented as (�i,�i). The relationship between the n dimensional eigenvectors �i and

the s dimensional partial eigenvectors �i is �i = C�i. The matrix C 2 <s�n maps the full length

eigenvectors into the partial eigenvectors corresponding to the measured degrees-of-freedom,�= C�.

With minimal sensor information available, a natural cost function representing the mismatch between

the eigenstructure of the finite element model and the measured eigendata is:

J =
rX

i=1

ai

�
�i

�i
� 1

�2
+

rX
i=1

sX
j=1

bij

�
�ij � �ij

�2
(3.2)

where the analytical eigenvalue for the ith mode is denoted as �i and �ij denotes the jth element of

the ith eigenvector from the analytical modal matrix �. The overbar indicates a measured quantity.

The positive coefficients ai and bij allow for individual weightings in the objective function. The

summation upper limits r and s represent the number of eigenvalues/eigenvectors, and elements of the

eigenvectors, respectively, from the measured data. With the objective function defined, each task can

now be discussed by examining its relation to Equation (3.2).

3.1 Identification of Modal Parameters from Measured Data

The first task is the extraction of the system parameters (�i; �ij) from the measured response

data. This is accomplished through the use of the ERA method. ERA is a time domain approach based

on the system’s impulse response functions. On orbit, there are several difficulties associated with

directly measuring impulse response functions. It is both difficult to apply the impulse, and difficult

to obtain adequate signal/noise levels without imparting physical damage. An alternative method is

to measure frequency response functions, and then perform an inverse Fourier transform to obtain

the impulse response functions. The frequency response functions are averaged before performing

the inverse operation to minimize the effect of noise corruption. Additionally, since acceleration

measurements are used, a time integration (a division by j! in the frequency domain) is used to obtain

velocity measurements, and a second integration for displacements. The ERA method is then applied to

the impulse data to determine a discrete-time state-space realization. This realization is then converted
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to a continuous model and the modal properties determined via an eigenanalysis. The identified modal

properties are used in the evaluation of Equation (3.2) either initially to tune the baseline FEM model

or subsequently to identify damage.

3.2 Model Tuning

The objective of model tuning is the determination of small adjustments to the matrices in

Equation (3.1) such that Equation (3.2) is minimized. An additional requirement is placed on the

tuning method not to add or delete load paths in the model. This is imposed for two reasons. The first is

so the model will correlate well with measured data of the damaged structure when the model is used to

simulate a damaged configuration. The second is to ensure that changes in the matrices can be directly

related to physical elements of the structure. The model tuning task was accomplished using ASTROS-

ID, an automated multidisciplinary software package. [18] The method employed uses a mathematical

optimization strategy to minimize deviations between measured and analytical modal frequencies and

partial mode shapes. Search directions are determined based on eigenvalue and eigenvector sensitivities

to design variables. A mode tracking algorithm is also incorporated to identify and account for mode

switching during the optimization process. It will be demonstrated in Sections 6.4 and 8.2.4 that

ASTROS-ID can also be utilized for damage identification by restricting the allowable changes to the

matrices in Equation (3.1), only allowing changes which are consistent with structural damage.

3.3 Damage Identification Using Assigned Partial Eigenstructure

An alternative to the sensitivity based approach to the minimization of Equation (3.2) is achieved

through the use of an assigned partial eigenstructure (APE) method. Using the identified eigenstructure

of the damaged structure (�i; �i), and the tuned FEM model (M;K), the APE method is applied to

determine the magnitude of the combinations of the fictitious actuators required to match the measured

data. For damage identification, it is assumed that the damage is confined to changes in the stiffness

matrix (K) of the FEM model which are consistent with the FEM formulation. Additionally, only

decreases in the stiffness matrix are permitted. The results of a damage localization analysis is used

to establish the initial search space for the given measured data. The minimization of Equation (3.2)

is accomplished by appending the eigenstructure constraint of Equation (3.1) along with the structural

constraint to form the Lagrangian, which is then differentiated to determine the necessary conditions.
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When only a subset of the total degrees-of-freedom are measured, an iterative scheme is required to

solve the necessary conditions.

3.4 Sensor Prioritization and Damage Localization

With only minimal sensor information available, two questions naturally arise: (1) at which

locations should the sensors be placed, and (2) to what extent can damage be identified with the

selected sensor locations? An eigenstructure sensitivity based method is presented to answer these

questions. The method presented is based on examining the first-order partial eigenstructure sensitivity

to changes in the structural stiffness of each element of a finite element model. No a priori knowledge

of the damage location is assumed. Two aspects of the partial eigenstructure sensitivity are explored.

First is the amount by which variations of the elemental stiffness values change the measured partial

eigenstructure. Independent of the damage detection scheme used, elements which produce little or no

change in the measured data, and consequently in the cost functionJ of Equation (3.2), will be difficult

or impossible to detect when damaged. Second is the direction of change in the partial eigenstructure.

Elements which produce similar or identical changes in the partial eigenstructure will be difficult or

impossible to distinguish between when damaged. Therefore, sensor locations are chosen so that the

change in the measured partial eigenstructure due to damage is maximized. Localization of the damage

to an element(s) is based on both the amount and direction of change to the partial eigendata for the

chosen sensor locations.

3.5 Summary

This chapter provided an overview of the four tasks associated with damage identification and

presented the methodology that will be used to accomplish each task. In the following chapters,

the mathematical basis for each task will be presented along with a description of how this was

implemented in software. An analytical example using a 41-element 8-bay planar free-free truss is

presented to illustrate each task.
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IV. Identification of Modal Parameters from Measured Data

4.1 Overview

Independent of the damage identification or model tuning method used is the requirement to

measure modal data (�i; �i). System identification using ERA reconstructs the transfer functions

based on identification of the system’s impulse-response functions. A disadvantage with this method is

the requirement to excite the system with an impulse. This may be impractical to implement on certain

systems, and it may be difficult to obtain response levels which are significantly above the measurement

noise levels. An alternative procedure is obtained using time-averaged frequency response functions

to obtain the impulse response functions, as discussed next.

4.2 Obtaining Measured Data

It is assumed that the flexible space structure is equipped with at least one disturbance actuator

(input) and is instrumented with at least one accelerometer (output). From random vibration testing, the

averaged frequency response functions are computed for each input/output combination. This is done

by exciting the structure with a band-limited pseudo-random noise sequence applied to each actuator.

The method below details the computations for a single applied input series u(t) and a single measured

output series y(t). The extension to the MIMO case is simply a matter of subscripting the input/output

pairs. The definition of the discrete Fourier transform of each measured input and output time series

u(t) and y(t), consisting of N points sampled with sample period T is given as:

U(k) =
N�1X
i=0

u(i)e�j
(2�ik)
N k = 0; 1; : : : ;N� 1 (4.1)

From this, the auto spectra 	uu(k) and cross spectra 	uy(k) are computed using:

	uu(k) =
T

N
U(k)�U(k) k = 0; 1; : : : ;N=2� 1 (4.2)

and

	uy(k) =
T

N
U(k)�Y (k) k = 0; 1; : : : ;N=2� 1 (4.3)

where (�)� represents the complex conjugate operation and U(k) and Y (k) are the discrete Fourier

transforms of the sampled input/output time series. Averaged spectral estimates 	uy(k), are then
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obtained from m sample sets by:

	uy(k) =
1

m

mX
p=1

	uyp(k) k = 0; 1; : : : ;N=2� 1 (4.4)

The averaged frequency response functions (FRF) denoted as Huy(k), are then obtained from:

Huy(k) =
	uy(k)

	uu(k)
k = 0; 1; : : : ;N=2� 1 (4.5)

The impulse response function h(i), is computed for each input/output combination from the definition

of the inverse Fourier transform, given as:

h(i) =
N�1X
k=0

Huy(k)e
�j

(2�ik)

N i = 0; 1; : : : ;N� 1 (4.6)

This “averaged” impulse response function can then be used as an input to a time domain identification

algorithm such as the ERA.

4.3 Eigensystem Realization Algorithm (ERA)

ERA is based on the singular value decomposition of the block Hankel matrix. [62] Consider the

MIMO discrete-time linear system described by:

x(k + 1) = Ax(k) +Bu(k) (4.7a)

y(k) = Cx(k) +Du(k) (4.7b)

where (A;B; C;D) are of dimension (n� n), (n� p), (q� n), and (q� p) respectively. A solution

to the Markov parameters � is determined from a unit impulse response Y as:

Y (k) = CAk�1B (4.8)

�The discrete impulse sequence is commonly referred to in the literature as the Markov parameters. [32]
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The ERA method determines the Markov parameters by forming the block Hankel matrix H(k),

composed of the sampled unit impulse response.

H(k� 1) =

2
664

Y (k) � � � Y (k + nc)
...

. . .
...

Y (k + nr) � � � Y (k + nr + nc)

3
775 (4.9)

where nr and nc are arbitrary integers satisfying the inequalities qnr � n and pnc � n. The singular

value decomposition of H evaluated at k = 1 is expressed as:

H(0) = PDQT (4.10)

The matrices P and Q contain the left and right singular vectors respectively, and D is a diagonal

matrix containing the singular values. The discrete-time minimum-order model is then computed from

the decomposition as:

Ad = D�1=2n PT
nH(1)QnD

�1=2
n (4.11a)

Bd = D1=2
n QT

nEp (4.11b)

Cd = ET
q PnD

1=2
n (4.11c)

Dd = Y (0) (4.11d)

The subscript n represents the first n columns of P and Q. The matrix Dn is a diagonal matrix

composed of the n non-zero singular values. ET
p is [Ip; 0], and ET

q is [Iq; 0] where Ip and Iq are

identity matrices of order p and q respectively and 0 is the zero matrix. A transformation from the z-

plane to the s-plane based on the sample rate of the impulse data, can then be performed if a continuous

model is desired. The original development of the ERA algorithm is given in Juang and Pappa.[32] The

condensed derivation presented above was based on work by Crassidas et al. [12] Determining Dn from

D in Equation (4.10) when using noise corrupted data may be difficult since there are no longer only

n non-zero singular values. The effects of noise on the sampled data is presented in subsequent papers

by Juang and Pappa [33] , and Akers and Bernstein. [1] Alternative strategies have been investigated to

handle noisy measurements and are found in the literature. [26,34,54]
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The ERA identified quadruple (Ad; Bd; Cd; Dd) is used as the basis for the identified eigenstruc-

ture. However, when comparing eigenvectors as in Equation (3.2), it is required that the components

of the eigenvectors represent the same coordinates for a meaningful comparison. Clearly the eigen-

vectors of the Ad matrix will vary depending upon the realization used. The ERA method produces

an equivalent (from the input/output point of view) but different state-space realization. Although the

full-length state vector can never be recovered if only limited sensors are used, the measured partial

eigenvector can be directly related to the instrumented degrees-of-freedom through the transformation:

�i = Cd�ci (4.12)

The matrix Cd is the output matrix determined by ERA. The vector �ci is the ith eigenvector of the

matrix Ac. The matrix Ac is the state-space Ad matrix from ERA after a conversion from the discrete

to the continuous domain based on the sample rate. The relationship between continuous and discrete

time is given as:

Ad = eAcT (4.13a)

Bd =

TZ
0

eAc�Bcd� (4.13b)

Cd = Cc (4.13c)

Dd = Dc (4.13d)

This assumes a zero-order hold on inputs over the sample period T . The subscripts c and d denote

continuous and discrete respectively.

4.4 Software Implementation

When using experimental frequency response data obtained from accelerometer measurements,

some pre-processing of the frequency response measurements is required. The first is a double time

integration to obtain displacement measurements. This enables the identification of strictly proper

transfer functions. This also results in compatible data between the measured and FEM data, since the

FEM eigenvector data represents nodal displacement and rotation information. The time integration is

accomplished efficiently by a division of the frequency response function by the complex number j!
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where ! is the frequency in radians corresponding to each data bin. For the double time integration,

the divisor is simply �!2. Next, to avoid the consequence of dividing by zero, the first few data

points in the frequency response function are artificially set to zero and no division is performed. This

is equivalent to removing any bias from the measurements. The first few bins represent the steady-

state component. Typically, the accuracy of the accelerometers for very low frequencies is poor, and

therefore no valuable data is lost by zeroing out this portion. Lastly, for the particular analyzer used

in this experiment (see Hardware Section 8.3.1), only data corresponding to 0 - 80% of the Nyquist [17]

frequency of the complex frequency response is output for analysis. Thus, before an inverse Fourier

transform can be performed, the data is padded with zeros (acting as low pass filter) up to the Nyquist

frequency, and then reflected about the real and imaginary axes to obtain the full symmetric spectrum.

For example, data consisting of 4096 real sampled time points, results in 2048 unique complex points.

Of the 2048 complex points, only 1601 are statistically reliable due to aliasing effects, and thus this is

all that is available for analysis. To obtain a discrete-time model based on the same sample rate as the

recorded data it is necessary to use the full 4096 point symmetric spectrum for use in Equation (4.6).

To achieve this, the 1601 complex points are expanded to 2048 points by padding with zeros, and then

the symmetric portion is reconstructed to achieve the full 4096 complex points. This reconstructed set

of 4096 points is used in the computation of the impulse response function as given in Equation (4.6).

This is repeated for each measured frequency response function.

From the impulse response functions, the block Hankel matrix is constructed according to

Equation (4.9), using the results of Equation (4.6). The size of the block Hankel matrix is chosen

based on the desired number of modes to be identified and is selectable as a parameter in the software.

In general, the block Hankel matrix is not square, unless there are an equal number of inputs and

outputs. For computational efficiency only the singular values and vectors corresponding to the

smaller dimension need be computed. The state-space representation is found from the singular

value decomposition using Equations (4.11). After a conversion from discrete to continuous time

using MATLAB R
’s d2cm algorithm, the measured frequencies and shapes are obtained from an

eigenanalysis of the matrixAc and Equation (4.12) to obtain (�i; �i). The sequence of events required

for the identification of the modal parameters is depicted in Figure 4.1.

4.5 An Analytical Example
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Figure 4.1 Sequence of events for identification of modal parameters.
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Figure 4.2 41-element free-free planar truss example showing degree-of-freedom numbering.
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Figure 4.3 41-element free-free planar truss example showing element numbering.

4-6



To illustrate the contribution of each of the four tasks to the damage identification problem, a

41-element 8-bay planar free-free truss was chosen, which is the planar analogue of the Flexible Truss

Experiment described in Section 8.3. The truss was modeled using forty-one rod elements, with two

translational degrees-of-freedom per node. The vertical and horizontal members were constructed of

aluminum with a cross-sectional area of 0.373 square inches and thirty inches in length. The diagonal

members were modeled as Lexan (polycarbonite), with a cross-sectional area of 0.540 square inches,

an elastic modulus 20 times less stiff than aluminum and 70% percent less dense. The density of all

members was equally scaled to produce natural frequencies for the first few flexible modes on the order

of 10 Hertz. This configuration was also chosen because it exhibits attributes common to on-orbit

flexible structures which include: a low fundamental frequency, rigid body motion, minimal structural

damping, and structural symmetry. Redundant diagonal members were included in each bay to help

illustrate the concept of damage localization. Figure 4.2 shows the degree-of-freedom numbering

scheme and Figure 4.3 show the element numbering scheme. An excitation actuator was simulated

at degree-of-freedom # 2 for vibration testing. Four accelerometers were placed at degree-of-freedom

numbers 2, 10, 18, and 26.

To test the ERA method, a simulation of the measured data was performed. The analytical model

was used to generate four sampled-data time series at the instrumented degrees-of-freedom to a random

input sequence. A second random sequence was added to each output time series to simulate the effect

of noise corruption. A metric of the root-mean-square (RMS) value of the noise signal divided by the

RMS value of the original signal was used to define the noise corruption level. Fourier transforms

of these simulated signals were computed and averaged to compute the averaged frequency response

functions as described in Section 4.2. The data was sampled at a 100 Hz rate using 1024 sample points

and 25 averages. One percent of critical damping for all modes was included in the analytical model to

ensure the response functions were bounded. Using these simulated frequency response functions, the

ERA identified eigenvalues and eigenvectors were computed and compared to the FEM results. The

results are tabulated in Table 4.1 for the first five flexible modes.

A study was conducted to illustrate the effect of both the noise level on the measurements

as well as the selected size of the block Hankel matrix. The number of sample points used in the

construction of the block Hankel matrix for a fixed number of inputs/outputs (1/4) was varied, as well

as the measurement noise level. Increasing the number of sample points increases the computation
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Table 4.1 41-element free-free planar truss eigenvalues.

True ERA (Hz)y
Mode # Frequency (Hz) clean 10% noise

1 5.90 5.90 5.90
2 10.59 10.59 10.59
3 15.67 15.67 15.67
4 20.35 20.35 20.34
5 25.14 25.14 25.13

yData presented for 75 sample points used in construction of the Hankel matrix.

time required to decompose the block Hankel matrix. The results shown in Figure 4.4 illustrate that,

for an increase in noise, a larger number of sample points is required to achieve the same relative

error in the measured eigendata. The identification error was the value of J as defined in Equation

(3.2) with unity weightings. For the actual test configuration, the number of sensors available and the

noise level are predetermined quantities. Thus, in the determination of (�i; �i), it is desirable to use

as many sample points as computationally feasible in the construction of the block Hankel matrix. All

subsequent identification using ERA will adopt this approach.

In general, a similar study can be performed to illustrate the effect of adding additional inputs

or outputs to extract the modal quantities. This is particularly important when there are modes which

are either uncontrollable or undetectable from the chosen input/output set. For this analytical example

however, the first five flexible modes are both controllable and observable from the input/output set,

and thus no further ERA analysis on this model was performed. In a separate study, this software was

applied to an experimental large, lightly damped space structure to produce a state-space representation.

The results are reported in Reference 69.

4.6 Summary

The identification of modal parameters from measured frequency response functions was pre-

sented using the ERA method. Averaging in the frequency domain was performed to mitigate noise

effects. A description of how this algorithm is implemented in software was presented along with the

results of the method applied to an analytical example. The identified (�i; �i) pairs can then be used

either to tune the FEM model as described in Chapter V, or identify structural damage as described in

Chapter VI.
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V. Model Tuning Using ASTROS-ID

5.1 Overview

Accurate prediction and simulation of the dynamic behavior of large flexible space structures

require analytical models which agree with measured data. Unfortunately, uncertainty in a finite element

model (FEM) implies less than perfect correlation between analytical and measured data. When the

disagreement is deemed unacceptable, it is necessary for the design engineer to make adjustments to the

FEM. For large problems the number of potential parameters to adjust, such as elemental areas, elastic

moduli, inertia moments, etc., quickly becomes overwhelming. Thus a systematic method is required

to ensure that the adjustments produce the desired results. To this end, a method is introduced which

poses a numerical optimization problem. Namely, given a set of measured eigenvalues and partial

eigenvectors, determine the values of selected physical parameters of the model which minimize the

weighted deviations from the analytical eigenvalues and eigenvectors.

ASTROS-ID represents an automated method of adjusting analytical finite element models to

measured data. The algorithm uses a mathematical optimization strategy to minimize deviations

between measured and analytical modal frequencies and partial mode shapes. A mode tracking

algorithm is used to identify and account for mode switching during the optimization process.

A critical aspect to any model tuning algorithm is its practical implementation. Key advantages

to the method presented herein include its ability to handle a small subset of the total eigenstructure

of the system without using an eigenvector expansion method, and the ability to track mode switches

during the tuning process. This optimization strategy was implemented using the Automated Structural

Optimization System (ASTROS) software package, developed by Wright Laboratory. [58] The present

research work is an extension to the work begun by Gibson on the software modules ASTROS-ID, an

enhancement to ASTROS to incorporate system identification. [18] The overall intent of this software

enhancement is to enable the user to input a set of desired modal frequencies and partial modal

vectors and then iterate on a set of structural parameters to minimize deviations between analytical and

experimental measurements.
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5.2 Theory

Model tuning is performed by minimizing an objective function based on a weighted sum of

deviations from measured eigenvalues and partial eigenvectors. The free vibration of the structure is

modeled as:

Mx +Kx = 0 (3.1)

Assuming real eigenvalues and eigenvectors, the objective function as previously defined is given as:

J =
rX

i=1

ai

�
�i

�i
� 1

�2
+

rX
i=1

sX
j=1

bij

�
�ij � �ij

�2
(3.2)

The summation upper limits r and s represent the number of eigenvalues/eigenvectors, and elements

of the eigenvectors, respectively, chosen to be tuned. The minimization of the objective function J is

carried out in an inner and outer loop fashion. The outer loop consists of performing the eigenanalysis,

normalizing and matching analytical and measured modes, calculating design parameter sensitivities,

updating design variables, and detecting solution convergence. The inner loop solves an approximate

optimization problem after each outer-loop eigenanalysis using the new design variable sensitivity

information. The inner loop is an approximate solution because the sensitivity information is used

to project new values of the analytical eigenvalues and eigenvectors for given changes in the design

variables without recomputing the eigenanalysis. Once the approximate problem is solved by a general

constrained optimization method, control is passed to the outer loop where the variables are updated

and a new eigenanalysis is performed. The details of computing the sensitivity information as well as

the mode normalization and tracking is discussed next. The problem considered herein assumes a real

eigenanalysis with unique eigenvalues, and for simplicity is not developed for the case where damping

is included in the finite element formulation.

5.2.1 Eigenvalue Sensitivity. A second-order Taylor series expansion is used to project new

eigenvalue values to given design variable changes contained in the vector�g. The expansion is given

as:

�i �= �oi +r�Ti �g +
1

2
�gT(r2�i)�g (5.1)
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where �oi denotes the initial eigenvalue resulting from the eigenanalysis. The jth element of the

eigenvalue gradient vector r�i is given as: [61]

�i;j =
�T
i [K;j � �iM;j] �i

�T
i M�i

(5.2)

where a comma denotes differentiation with respect to a design variable. The elements of the Hessian

matrix r2�i are given as:

�i;jk =
�T
i [Fi;j�i;k + Fi;k�i;j]� [�i;j�

T
i M;k�i + �i;k�

T
i M;j�i]

�T
i M�i

(5.3)

with Fi;j defined as:

Fi;j � K;j � �iM;j � �i;jM (5.4)

The notation (�)i;j represents differentiation with respect to the jth design variable of some quantity

(�), associated with the ith mode. The decision to include a second-order approximation, rather

than only a first order, was due to the fact that the terms appearing in the second-order eigenvalue

gradient are already computed when calculating the first-order eigenvector gradients. Equations (5.2)

and (5.3) include the scalar normalization term �T
i M�i. Thus the eigenvector normalization will

scale the eigenvalue gradients. Proper choice of eigenvector normalization is addressed in the next

section. Design sensitivities of the mass and stiffness matrices M and K are known explicitly

from the finite element formulation, and can thus be computed using either analytical derivatives or

finite-difference methods. Eigenvalue sensitivity for each mode included in the objective function is

computed according to Equations (5.2) and (5.3). The eigenvector derivatives in Equation (5.3) can be

computed by a modal expansion [16] or more efficiently by Nelson’s method [56] when only a subset of

eigenvectors are involved, as explained next.

5.2.2 Eigenvector Sensitivity and Normalization. A first-order Taylor series expansion is

used to project the new value of the eigenvector based on the current eigenvector value �oi and the

eigenvector gradient r�i. The expansion is computed for each degree-of-freedom in the eigenvector

set. The expansion of the kth term of the eigenvector for the ith mode is given as:

�ik �= �oik +r�Tik�g (5.5)
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The eigenvector gradient is found by first differentiating the eigenvalue equation for each mode with

respect to each design variable:

[K � �iM ] �i;j = [�i;jM + �iM;j �K;j] �i (5.6)

Since the bracketed term on the left hand side is necessarily singular by definition, the solution to�i;j

is found by employing Nelson’s method. The problem is solved by separating �i;j into the sum of a

particular and homogeneous solution given as:

�i;j = cij�i + Vij (5.7)

Assuming there are no repeated roots, and [K � �iM ] is an (n � n) matrix, then its rank is n � 1.

Thus the homogeneous solution is found by eliminating a row and column and then performing the

inverse.

~Vij =
h
~K � �i ~M

i
�1 h

�i;j ~M + �i ~M;j � ~K;j

i
~�i (5.8)

and

Vij =
h
~V1j; : : : ; ~V(l�1)j; 0; ~Vlj; : : : ; ~V(n�1)j

iT
(5.9)

The ~(�) notation denotes matrices reduced by one row and column, or vectors reduced by one element.

Nelson’s method removes the row and column corresponding to the maximum entry in �i. Equation

(5.9) shows the expansion of ~Vij to Vij for the maximum entry occurring in the lth entry. Note that

the matrix inverse in Equation (5.8) need not be explicitly calculated. Rather, the reduced matrices

can be used in Equation (5.6) and solved through matrix decomposition followed by forward and

back substitution. To solve for the unknown scalar constant cij in Equation (5.7), a normalization

constraint must be applied. The objective of the optimization is to minimize differences between

measured and analytical modes, which clearly can only be computed when the eigenvectors are

normalized in the same manner. To achieve this objective, a point normalization scheme is used in

which eigenvectors are normalized such that the degree-of-freedom with maximum amplitude in the

measurement set is set to unity. Presumably, this would also correspond to a degree-of-freedom in

which there was high measurement confidence (i.e., high signal/noise ratio). This is important because

the analytic gradient of this degree-of-freedom will be identically zero. It is not practical nor useful for

5-4



optimization to normalize eigenvectors based on the analytical model, such as by mass normalization,

since the analytical matrices are the unknowns in the optimization routine. However, mass normalized

analytical eigenvectors are useful in detecting mode switches as discussed in the next section. After

each eigenanalysis in the outer loop, the eigenvectors used in the objective function must be point

normalized per the measurement data. Having chosen the degree-of-freedom normalization point for

each mode, the normalization constraint for each mode can be expressed as:

�T
i Si�i = 1 (5.10)

where the matrix Si contains only one non-zero entry, a one in the row and column corresponding to

the normalization point for the ith mode. Differentiating the constraint Equation (5.10) with respect to

each design variable and substituting the result from Equation (5.7) yields:

�T
i Si [cij�i + Vij] = 0 (5.11)

Due to the special form of the matrix Si Equation (5.11) simplifies to:

cij = �(Vij)norm:pt: (5.12)

which is the negative of the element in vector Vij corresponding to the normalization point for the ith

mode. The point normalized eigenvectors must be used in calculating the term �T
i M�i in Equations

(5.2) and (5.3) to ensure proper scaling of the eigenvalue and eigenvector sensitivities. The eigenvector

sensitivity is computed for each mode included in the objective function. For measured modes where

only frequency information (not shape) is available, a first-order Taylor series expansion is used in lieu

of Equation (5.1).

The assumption of [K � �iM ] having no repeated roots for use in Equation (5.8) can potentially

cause difficulties for structures with closely spaced modes. However, no difficulty was observed for

the models tuned during this research effort, even though they contained closely spaced modes. An

examination of the effects of repeated roots, and the required extension to Nelson’s method to handle

this case, is a recommended topic of future research.
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5.2.3 Mode Switch Detection. For convenience, the engineer typically will assign a number-

ing scheme to the set of measured modes from an experimental analysis. It is imperative that the same

numbering scheme be employed when comparing measured modes to analytical modes. Prior to the

start of the optimization, this numbering scheme is most easily facilitated through the use of computer

aided software capable of displaying mode shapes. At this point, the designer can pair up measured

and analytical modes. Once the optimization starts however, it is necessary for the software to track

the analytical mode sequencing. As the design variables change it is highly likely that mode switching

will occur. Without mode tracking, an optimization scheme would become hopelessly lost trying to

match bending modes to torsion modes, for example, and vice-versa. Mode tracking can be performed

using cross orthogonality checking. [18] If the eigenvectors are mass normalized, mode tracking can be

accomplished by computing the modal correlation coefficient matrix between successive eigenanalysis

solutions. The cross orthogonality matrix is given as:

O = �(n�1)TM (n)�(n) (5.13)

The modal matrix � includes only the eigenvectors computed in the eigenanalysis. The superscript

n denotes the iteration number. Assuming mass orthonormalization, near unity values in O indicate

high correlation between modes. Mode tracking is accomplished by searching overO successively for

the largest absolute value. If the entry is in a diagonal location, this mode has not changed between

iterations. An absolute maximum in a non-diagonal entry indicates the mode number switch between

two iterations by its row and column position. After each mode is paired, the corresponding row and

column are eliminated fromO, and the search for the next pair is accomplished on the reduced matrix

until all modal pairs are found. As discussed previously, mode switch detection is done in the outer

optimization loop, just prior to point normalization and eigensensitivity calculations.

5.3 Software Implementation

This model tuning technique was implemented using the structural design software ASTROS.

This software uses an executive control sequence called MAPOL (Matrix Analysis Problem Oriented

Language) to develop the solution sequence. MAPOL allows the user to incorporate custom software

modules into the solution sequence while maintaining full access to the ASTROS solution modules.
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5.4 Selection of Tuning Parameters

Before the optimization can be performed, the designer must choose a set of design variables.

In ASTROS, the design variable for a beam element is the beam’s cross-sectional area, because weight

minimization is typically the overall objective. In model tuning however, other properties such as the

elastic moduli, mass, or both may be the desired design variables. To accommodate the ability to tune

more than one property of an element, superposition can be used. To illustrate this method, consider

tuning the mass and elastic modulus of a beam between two nodes. Using two beam elements, one with

the elastic modulus set to zero and a second with the density property set to zero, will have the combined

effect of a single beam element. However, now both properties can be set as design variables. Note

that adjusting the cross-sectional area of a beam with a zero elastic modulus is equivalent to adjusting

the density property of that beam. A similar relation is true for the beam element with zero mass

density. In a similar fashion, the torsional properties of the beam can be varied independently. Using

this technique allows the user a wide choice of design variables.

Selection of which design variables to vary is dependent on the designer’s objective and is

problem dependent. If in the development of the finite element model some of the more complicated

geometries were simplified using equivalent but uncertain parameters, then these parameters are the

natural choice for the design variables. If however, the objective is damage identification, then design

variables must be chosen which relate directly to damagable elements. Furthermore, a design variable

may be associated with a group of elements. For tuning, it may be desirable to assign a single design

variable to the elastic modulus of all the longitudinal elements. In this way, any symmetry present in

the structure will be retained throughout the tuning process. For damage identification, it is required

that a unique design variable be assigned to each element, in order to isolate the damage. In general, the

search space (number of design variables) will be much larger for the damage identification problem

than for model tuning. A method of reducing the initial search space is presented in Chapter VII on

damage localization. A discussion of the choice of design variables is presented for the analytical

example below, and for the experimental models in the Chapter VIII.

5.5 An Analytical Example

To illustrate the use of model tuning using ASTROS-ID, a 41-element free-free planar truss

depicted in Figures 4.2 and 4.3 was modeled with the density of all the elements at 90% of the true
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Table 5.1 Frequency values for the tuned 41-element free-free planar truss.

Frequency (Hz)
Mode # True value Initial value Tuned value

1 5.90 6.51 5.90
2 10.59 12.01 10.59
3 15.67 17.89 15.67
4 20.35 23.37 20.35
5 25.14 28.90 25.14

value and the elastic modulus at 120% of the true value for the diagonal elements. The measured data

(�i; �i) was taken to be that of the truss using the true density and stiffness values (see Table 4.1). The

design variables were chosen as follows. Because the uncertainty in the density of all members was

assumed equal, the density of all structural members was set to a single design variable. To account

for the possible uncertainty in the joint connections, the elastic modulus of the vertical, horizontal, and

diagonal members was chosen as three separate design variables. For this set of design variables, the

elastic modulus of the different types of members could be varied independently, but all members of

the same type (horizontal, vertical, diagonal) would vary simultaneously. Note that the selection of

these four design variables was made only to illustrate the tuning method, and do not represent any true

uncertainty in this theoretical model.

The measured data consisted of the first five flexible modes at the same four instrumented

degrees-of-freedom (2, 10, 18, 26), as used in Chapter IV. Equal weighting was placed on all measured

values in Equation (3.2). The results of the tuning are listed in Table 5.1 for the changes in the natural

frequencies. The corresponding design variable changes are listed in Table 5.2. Three outer-loop

iterations were required, which decreased the objective function seven orders of magnitude. To the

numerical precision of the input data, the objective function was zero. As can be seen from the data in

Table 5.1, the true values were not completely recovered, although the objective function was zero. This

is a result of using only partial data in the objective function. The achieved solution is not necessarily

unique. This is particularly true when both the mass and stiffness values are allowed to vary, as was the

case for this example. For damage identification, variations will be confined to the stiffness matrix.
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Table 5.2 Design variable values for the tuned 41-element free-free planar truss.

Design variable True Initial Tuned

density (all) 1 .9 1.02
horizontal stiffness 1 1 1.02

vertical stiffness 1 1 1.00
diagonal stiffness 1 1.2 1.02

3 iterations in 46.5 seconds of cpu time.

5.6 Summary

An algorithm was developed to tune finite element models to measured eigendata. Careful

attention was placed on eigenvector normalization, and how the normalization relates to the computation

of the eigenvalue and eigenvector sensitivities. Mode switches were successfully tracked through an

analysis of the correlation coefficient matrix. Implementation of this algorithm in ASTROS makes

this tuning procedure readily accessible to the design engineer during the finite element design phase.

This level of experimentally validated automated tuning represents a substantial improvement over

current capabilities. Natural applications of this algorithm include the identification of uncertain

structural parameters, as well as the identification of damaged structural elements. This technique was

successfully applied to an analytical model. Experimental results using ASTROS-ID for both model

tuning and damage identification are contained in Chapter VIII.

ASTROS-ID requires an eigenanalysis and gradient evaluations at each outer-loop iteration,

which can be computationally expensive. An alternative method to minimizing Equation (3.2) is

pursued using an assigned eigenstructure method developed in the next chapter. Reduction of the

initial search space, which will ease the computational burden, is presented in Chapter VII.
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VI. Damage Identification Using Assigned Partial Eigenstructure

6.1 Overview

Presented is an algorithm to identify individual damaged structural elements of large flexible

space structures using on-orbit data. Using measured partial eigendata, a control theoretic approach is

applied in which fictitious actuators corresponding to each structural element are assumed. Using the

identified partial eigenstructure (�i; �i) and these fictitious actuators, an assigned partial eigenstructure

(APE) technique is employed on the analytical model of the undamaged structure. An identification

of structural damage is obtained directly from the required control of the fictitious actuators (stiffness

adjustment) to achieve the desired eigenstructure. This method represents an alternative to the gradient

search technique using ASTROS-ID presented in Chapter V.

6.2 Theory

With minimal sensor information available, a natural cost function representing the mismatch

between the eigenstructure of the finite element model and the measured eigendata is:

J =
rX

i=1

ai

�
�i

�i
� 1

�2
+

rX
i=1

sX
j=1

bij

�
�ij � �ij

�2
(3.2)

with all quantities as previously defined. A minimization of Equation (3.2) was developed in Chapter V

to perform model updating using ASTROS-ID, in which the minimization is solved using the eigenvalue

and eigenvector sensitivities at each iteration step. An alternative to computing these sensitivities (which

still requires an eigenanalysis at each iteration step) is accomplished using APE, developed below.

The APE method is based on minimizing the same cost function given in Equation (3.2). Two

initial assumptions are made. First, structural damage is confined only to changes in the stiffness

properties of the structure. Second, structural damping is negligible. These two assumptions are

consistent with most on-orbit damage scenarios of large flexible space structures. The free vibration

of the undamaged structure is modeled as:

Mx +Kx = 0 (3.1)
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with the symmetric mass and stiffness matrices M;K 2 <n�n, x representing the state vector and

(�) denoting a double time differentiation. With damage confined to the stiffness matrix, the damaged

structure is modeled as:

Mx+ (K ��K)x = 0 (6.1)

where �K represents an unknown perturbation to the stiffness as the result of structural damage.

The eigenvalue and eigenvector for the ith mode of Equation (6.1) is given as (�i;�i) whereas

the measured eigenvalue and partial eigenvector for the same mode is represented as (�i; �i). The

relationship between the n dimensional eigenvector �i and the partial eigenvector �i is �i = C�i.

The matrix C 2 <s�n maps the full length eigenvectors into the partial eigenvectors corresponding to

the measured degrees-of-freedom. For the APE method, the cost function in Equation (3.2) based on

the errors between the finite element model and the measured modes is rewritten in vector notation and

is given as:

J =
1

2
(�� �)TA(�� �) +

1

2

rX
i=1

(�i � �i)
TWi(�i � �i) (6.2)

where � = [�1; �2; : : : ; �r] for the r measured modes, with s degrees-of-freedom measured for each

mode. The positive-definite constant matricesA and W can be used to weight the contribution of each

term in the overall cost function. This cost function is then minimized subject to the eigenstructure

constraint:

(��iM +K ��K)�i = 0 (6.3)

where only r of the (�i;�i) coupled with only s components of �i are able to be measured. Addi-

tionally, to ensure �K is consistent with the finite element formulation, the structural constraint is

represented as:

�K = BGBT (6.4)

whereB is constructed from the nodal connectivity information and the elemental parameters, andG

is a diagonal matrix composed of the fraction of damage for each element. The parameterization of

�K is best illustrated using a simple example. For a two degree-of-freedom spring mass system as

shown in Figure 6.1, the equations-of-motion obtained from an application of Newton’s second law

are:

m1x1 = �k1x1 � k2(x1 � x2) (6.5)
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Figure 6.1 Example two degree-of-freedom system.

m2x2 = �k2(x2 � x1) (6.6)

These equations can then be written in matrix form as:

"
m1 0

0 m2

#
x+

"
k1 + k2 �k2
�k2 k2

#
x = 0 (6.7)

where the stiffness matrix K can then be written as:

K =

"
k1 + k2 �k2
�k2 k2

#
=

"
1 �1

0 1

# "
k1 0

0 k2

# "
1 �1

0 1

#T
(6.8)

The matrix pre-multiplying the diagonal matrix in Equation (6.8) contains the structural connectivity

information. For example, the first column corresponds to spring k1, which is connected only to

degree-of-freedom x1, and hence has only a single non-zero entry in row one. The second column

corresponds to spring k2, which is connected to both degree-of-freedom x1 and x2, and hence both

rows have non-zero entries. Direction cosines are used to determine the values of the non-zero entries,

based on the relative position of the nodes. For this linear example, the direction cosines are plus and

minus one. In the same fashion, the stiffness perturbation matrix �K can be expressed as:

�K =

"p
k1 �

p
k2

0
p
k2

# "
g1 0

0 g2

# "p
k1 �

p
k2

0
p
k2

#T
= BGBT (6.9)
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Note that with 0 � gi � 1, any combination of decreases in the spring elements can be modeled in

�K. For a truss structure constructed from p rod elements, B is written as:

B = [B1 � � �Bp] (6.10)

Bi =

s
AiEi

Li

� [0; : : : ; 0; c1; c2; c3; 0; : : : ; 0;�c1;�c2;�c3; 0; : : : ; 0]T (6.11)

G = diag(g1 � � �gp) 0 � gi � 1 (6.12)

with c1; c2; c3 representing the direction cosines for the ith element, inserted at the degrees-of-freedom

associated with the ith element. The variables Ai, Ei and Li are the cross-sectional area, elastic

modulus, and length of the ith element respectively. A value of gi= 0 corresponds to an undamaged

element whereas, gi = 1 corresponds to a complete loss of stiffness to the ith element. For beam

elements with six degrees-of-freedom per node, the expression for Bi becomes:

Bi = Ri �

2
6666666666666666666666666666666664

1

2

Li

2

Li

1

�1 1

1 1

�1
�2

Li

�2

Li

�1

�1 �1

1 �1

3
7777777777777777777777777777777775

�diag
�
Ei

Li

(Ai 3I1i 3I2i �iji I1i I2i )

�1=2

(6.13)

where Ri is the rotation matrix between the ith element’s local coordinate frame in which the inertia

properties I1 and I2 are defined, and the global coordinate system. The variables�i and ji are Poisson’s

ratio and the torsional stiffness of the ith element respectively. Only the non-zero portion of Bi is

shown, which occurs in the rows corresponding to the global degrees-of-freedom associated with the

ith element. For beam elements, G is now a block diagonal matrix, with each diagonal block linked
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to a single design variable gi (gi � I6, where I6 is the 6 � 6 identity matrix). Although developed

explicitly herein only for rod and beam elements, any element’s symmetric matrix�Ki can be written

as BGiB
T using the non-zero singular values and singular vectors of �Ki. The minimization of

the cost function in Equation (6.2) is solved by forming the Lagrangian and establishing necessary

conditions. The appended cost function Ji for the ith mode is:

Ji =
1

2
ai(�i � �i)

2 +
1

2
(�i � �i)

TWi(�i � �i) + �Ti (��iM +K �BGBT )�i (6.14)

where �i is a vector of Lagrange multipliers for the ith mode. With �i = C�i this becomes:

Ji =
1

2
ai(�i � �i)

2 +
1

2
(�i � �i)

TCTWiC(�i � �i) + �Ti (��iM +K � BGBT )�i (6.15)

It is then assumed: 9G 3 �i = �i ; 8 i = 1; : : : ; r implying there are sufficient design variables

(structural elements) to achieve the measured eigenvalues. This is satisfied if the measured data

is consistent with actual damage. For the case of noise corrupted measurements, �i � �i ; 8 i =

1; : : : ; r, and is assumed to contribute negligibly to the cost function. With these assumptions, Equation

(6.15) reduces to:

Ji =
1

2
(�i � �i)

TCTWiC(�i � �i) + �Ti (��iM +K �BGBT )�i (6.16)

The necessary conditions for the minimization become:

@Ji

@�i
= (��iM +K �BGBT )�i = 0 (6.17)

@Ji

@G
=

@

@G

�
�Ti BGB

T�i

�
= 0 (6.18)

@Ji

@�i

= CTWiC(�i � �i) +
h
�Ti (��iM +K � BGBT )

iT
= 0 (6.19)

which can be rewritten as:

(��iM +K)�i � BGBT�i = 0 (6.20)

@

@G

�
�Ti BGB

T�i

�
= 0 (6.21)

6-5



CTWiC�i + (��iM +K)�i �BGBT �i = CTWi�i (6.22)

To pose this non-linear optimization problem as an approximate linear problem, it is necessary to

introduce the matrix operator ~P (�; �). In the case where there is only one column of the matrix B

associated with each design variable, such as for spring and rod elements as given in Equations (6.10

through 6.12), ~P (�; �) is defined as:

~P (�; �) with ~P and � 2 <n�p ; � 2 <n�1 ~Pij =
nX

k=1

�k�ij�kj (6.23)

where ~Pij is the ith row and the jth column of the matrix ~P . In terms of the operator ~P , terms of the

form ���T� can be written as:

���T� = ~P (�; �)
 where 
 = diag(�) ; � 2 <p�p(diagonal) (6.24)

When there are multiple columns ofB associated with a single design variable, such as given in Equation

(6.13) for beam elements, an additional summation of the columns of ~P is required for each design

variable. In the case where there areq columns ofB for each design variable,B 2 <n�pq; G 2 <pq�pq

and hence ~P 2 <n�pq according to Equation (6.23). The summation is then defined as:

P = [
qP

j=1

~Pj
2qP

j=q+1

~Pj � � �
pqP

j=(p�1)q+1

~Pj ] ; P 2 <n�p (6.25)

where ~Pj is the jth column of ~P . Note thatP = ~P for the case where q = 1. Furthermore, constructing

P from ~P gives the design engineer the ability to link multiple elements to a single design variable

gi as desired. In terms of the operator P , the following substitutions can be made in the necessary

conditions:

BGBT�i = P (�i; B)g (6.26)

@

@G

�
�Ti BGB

T�i

�
= P (�i; B)

T�i (6.27)

BGBT �i = P (�i; B)g (6.28)

The necessary conditions, with these substitutions become:

(��iM +K)�i � P (�i; B)g = 0 (6.29)
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P (�i; B)
T�i = 0 (6.30)

CTWiC�i + (��iM +K)�i � P (�i; B)g = CTWi�i (6.31)

which can now be written in matrix form for the ith mode as:

2
664
(��iM +K) 0 �P (�i; B)

0 P (�i; B)
T 0

CTWiC (��iM +K) �P (�i; B)

3
775
2
664
�i

�i

g

3
775 =

2
664

0

0

CTWi�i

3
775 (6.32)

Then since g, the vector of fractional structural damage for each element (gi) is the same for each

measured mode, the necessary conditions can be assembled as:

N

2
6666666666664

�1

�1
...

�r

�r

g

3
7777777777775
=

2
66666666666666664

0

0

CTW1�1
...

0

0

CTWr�r

3
77777777777777775

(6.33)

where

N =

2
66666666666666664

(��1M +K) �P (�1; B)

P (�1; B)
T

CTW1C (��1M +K) �P (�1; B)
. . .

...

(��rM +K) �P (�r ; B)

P (�r; B)
T

CTWrC (��rM +K) �P (�r ; B)

3
77777777777777775

(6.34)

and N2 <(2n+p)�r�(2nr+p) , representing an over-determined set of linear equations whenever r > 1.

Only the non-zero entries are shown. The desired solution vector g is then found from a least squares

solution to Equation (6.33) using a QR [19] decomposition and back substitution. SinceN = N(�i; �i),

an iterative scheme is introduced updating (�i; �i) with the results of the previous iteration. The initial
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guess at (�i; �i) is to use the nominal vector �i from the undamaged model, with the measured ��i

elements inserted at the measured degrees-of-freedom. It is assumed that structural damage did not

result in catastrophic damage, and thus the nominal eigenvectors are a reasonable initial guess. Some

typical deviations in the eigenvectors resulting from damage to a small number of structural elements

are shown in Section 6.4. Vector normalization and sign convention is accounted for by setting

kC�ik2 =



�i




2
= 1 and (C�i)

T � �i > 0. The Lagrange multiplier vector �i is initially assumed

to be zero. During the iteration process, values of the damage fraction gi outside the allowable range

are removed from subsequent iterations, further reducing the parameter search space. The weighting

matrix Wi is nominally set to the identity matrix (scaled such that kWik � kKk) corresponding to the

case where all measurements are assumed at the same level of uncertainty.

Having presented both the ASTROS-ID and the APE methodology for the minimization of

Equation (3.2), a comparison can now be made, illustrating the different nature of the two solution

techniques. Because the APE method assumes the eigenvalues can be achieved exactly, it is equivalent

to placing a very high weighting on the eigenvalues. Additional design degrees-of-freedom are then

used to achieve the desired eigenvector components. However, if the weighting on the eigenvalues in

ASTROS-ID is too large as compared to the eigenvector weightings, then the eigenvector information

is negligable in the cost function, and it is equivalent to only using the eigenvalue information. This

tends to spread the assigned damage over several elements. Furthermore, since their are no constraints

placed on the solution vector in the APE method until after the decomposition and back substitution is

formed, unrealistic stiffness changes often result, which are then easily identified and removed from the

search space. This establishes a natural and simple method to reduce the search space for subsequent

iterations. No such search space reduction is currently available for ASTROS-ID, and is listed as a

topic for future research. Note that in either case, convergence to the global minimum is not guaranteed.

Solution techniques used to minimize Equation (3.2) can be classified as either a mathematical

programming approach or an optimality criterion approach. Mathematical programming, also referred

to as a direct search method, is based on establishing search directions to arrive at the solution. This

technique is used in ASTROS-ID. In contrast, optimality criteria methods seek to directly satisfy the

optimality criteria, iteratively using a recursion formula. Satisfaction of Equation (6.33) is the optimality

criterion used in APE. An overview of the two approaches as applied to structural optimization can be
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For the initial construction of N using the measured (�i; �i) data, two preprocessing steps are

required. The first is a pairing of the measured mode shapes with the nominal mode shapes. This is

accomplished by normalizing the 1-norm of the partial mode shapes to unity and then checking the

cross-orthogonality relation as given in the following:

O = �T� ; � and� 2 <s�r (6.35)

Modes are paired based on the maximum values in the row and column positions of the matrix O. A

second check is performed to verify the measured modal frequencies of the damaged structure are at

or below the corresponding frequencies of the undamaged analytical model, i.e., �i � �i 8 i. For

each mode, measured frequencies above the analytical frequencies are set to the analytical values.

Structural damage, when confined to decreases in the stiffness matrix, can only decrease the natural

frequencies. This requirement can easily be shown by establishing the negative definiteness of changes

in the eigenvalues to changes in the stiffness matrix. As will be developed in Chapter VII, these

changes to first order can be expressed as:

@�

@g
= ��TP (�; B) (6.36)

For this first-order model, it is sufficient to show the negative definiteness of the ith eigenvalue with

respect to the jth stiffness value change. This relationship is given as:

@�i

@gj
= ��T

i P (�i; Bj) (6.37)

which, using the definition of P from Equation (6.23), valid for rod elements, and carrying out the

vector multiplication yields:
@�i

@gj
= �

nX
l=1

nX
k=1

�li�kiBljBkj (6.38)

Rearranging the summation yields:

@�i

@gj
= �

nX
l=1

�liBlj

nX
k=1

�kiBkj (6.39)
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which simplifies to:

@�i

@gj
= �

 
nX
l=1

�liBlj

!2

(6.40)

which is a negative definite quantity. If the more general definition of P is used as given in Equation

(6.25), an additional summation is required over the corresponding columns of B associated with the

jth design variable. Again, this is a negative definite quantity since it is the sum of negative definite

terms from Equation (6.40).

The APE iterative solution technique involves the least squares solution of the matrix N in

Equation (6.34). This matrix is classified as a large sparse rectangular matrix which is possibly

singular, and therefore the solution technique is tailored to this matrix classification. A sparse QR

algorithm is used to decompose N and then a back-substitution to compute the solution vector. Due

to the size of N , a sparse solver is required for all but small pedagogical problems. Column pivoting

in the QR decomposition is not incorporated since pivoting does not preserve the matrix sparsity and

increases the number of fill-ins. For the case whenN is singular, the nature of the solution is different

than that of the Moore-Penrose pseudo-inverse. The solution vector contains as many zero entries as the

rank deficiency of N . This is a desirable attribute when determining damage detection, since typically

damage is localized in the structure, and hence only a small number of elements have non-zero damage

fractions. The APE algorithm was coded using MATLAB R
, with portions written in Fortran to handle

the sparse matrix manipulations to speed processing time. MATLAB’s spqrmex algorithm was used

to perform the decomposition. In practice, the range of allowable damage fractions (0 � gi � 1) was

widened to ensured gi’s were not discarded prematurely before convergence.

An additional consideration in damage detection algorithms is that of uniqueness. With only

partial modal data available, the problem is generally ill-posed and hence there may exist multiple

damage fractions which result in the same partial eigendata. This problem is exacerbated when

noise corrupted measurements are used. The use of the structural constraint as given in Equation

(6.4), combined with the restriction that the damage fraction g lie within an allowable range, helps to

minimize the problem of non-uniqueness. For a given problem, solution uniqueness is dependent on

the number of modes, the number of eigenvector components measured, the quality (signal/noise) of

the measurements, the finite element model, and the numerical accuracies of the detection algorithm.

To account for non-unique solutions in the APE algorithm, an off-line sensitivity analysis is performed
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Figure 6.3 41-element free-free planar truss showing element and degree-of-freedom numbering.

once the size and quality of the measurement set has been determined. Using the results of this

analysis, the parameter search space is confined to elements which produce unique and identifiable

eigenstructures. Elements whose damage results in an identifiable change in the measured partial

eigenstructure are defined as detectable. Next, APE symmetric elements are defined as damaged

structural elements which produce the same measured partial eigenstructure. The results of the APE

algorithm indicate damage fractions which are confined to an APE symmetric element set. Further

refinement to an individual element within the set is not possible without additional or higher quality

measurement data.

Numerous tests of the APE algorithm were conducted using finite element models of sizes

ranging between 16 and 192 degrees-of-freedom constructed of 8 to 104 structural elements using

either spring, rod, or beam elements. In all cases, when using analytical eigendata simulating both

perfect measurements and model correlation, the APE algorithm converged to the correct damaged

element(s), and indicated the correct percent of damage. In each case, less than ten percent of the

total degrees-of-freedom were included in the measurement set, and only a small number of the natural

frequencies. An additional attribute of the algorithm is that, in the case where the entire eigenvector

can be measured exactly, the exact solution is obtained without iterating.

6.4 An Analytical Example

The APE method was applied to the 41-element free-free planar truss shown in Figure 6.3.

Structural damage was arbitrarily defined as a 50% reduction in stiffness to element #7 and a 30%

reduction to stiffness in element #18. An eigenanalysis of the FEM model using the reduced stiffness

values produced the (�i; �i) measured data. The frequencies and partial shapes corresponding to
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Table 6.1 Damage identification results on the 41-element free-free planar truss.

True APE ASTROS-ID
element # % damage element # % damage element # % damage

7 50 7 50.0 7 34.3
18 30 18 30.0 10 34.4

18 19.1
19 12.6

cpu time 14.6 (sec.) 540.2 (sec.)

the same instrumented degrees-of-freedom (2, 10, 18, 26) as used in Chapter IV for the first five

flexible modes were used. Figures 6.4 and 6.5 show the resulting change in modal frequency and

shape from structural damage. The damaged configuration is plotted using dashed lines, while the

nominal configuration is plotted using solid lines. As can be seen from the figures, the change in the

shapes due to the damage is minimal, justifying the use of the nominal eigenvectors for the unmeasured

degrees-of-freedom to initiate the APE algorithm. The 41 fictitious actuators corresponding to the 41

structural elements were used to construct B according to Equation (6.10).

The results of the APE method are listed in Table 6.1. Nineteen iterations were used in the

solution process, starting from an initial search space of 41 elements. An analysis using ASTROS-ID

with 41 design variables corresponding to the stiffness of the 41 elements was also performed. The

results are listed in Table 6.1, along with the required CPU times for each method. Four outer-loop

iterations were used in obtaining the ASTROS-ID results. Equal weighting on the eigenvalue and

eigenvector components were used in the objective function, since all quantities are known exactly.

Note that although both methods were run on the same CPU platform (Sparc-10 workstation), the

methods were implemented in two different software environments. Because of this, there may be

some small percentage of the CPU times reported that is associated with processing unique to the

software environment and not the solution computation. Table 6.1 does illustrate the difference in the

nature of the solutions. Using the APE method, the solution space is reduced to the fewest number of

elements which can achieve the measured eigenstructure. Using ASTROS-ID, the damage is equally

assigned between elements which have the same eigenvalue and eigenvector sensitivities. Elements

number 7 and number 10 have exactly the same eigenvalue sensitivity and nearly the same eigenvector

sensitivity to the measured data. The same is true for elements 18 and 19. In the case where uncertainty

exists in the measured data, it becomes increasingly difficult, if not impossible to distinguish between

6-13



−50 0 50 100 150 200 250
−20

−10

0

10

20

30

40
Nominal:  15.67 Hz        Damaged:  15.40 Hz

Nominal ___________    Damaged  _ _ _ _ _ _ _ 

−50 0 50 100 150 200 250
−20

−10

0

10

20

30

40
Nominal:  10.59 Hz        Damaged:  10.28 Hz

−50 0 50 100 150 200 250
−20

−10

0

10

20

30
Nominal:   5.90 Hz        Damaged:   5.86 Hz

Figure 6.4 Change in frequencies and shapes due to structural damage for the first three flexible
modes.
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which element to correctly assign the damaged value. A slight perturbation in the measured data can

result in the APE method assigning a 50% damage to element 10 rather than element 7. The problem

of distinguishing between elements with similar sensitivities is termed ‘damage localization’ and is

discussed in Chapter VII.

6.5 Summary

A method was presented to achieve a set of measured eigenvalues and eigenvectors through

changes in the stiffness matrix which are consistent with the finite element formulation. The method

does not require the use of full-length eigenvectors in its formulation, and is suitable for use with

minimally instrumented structures. The method was demonstrated on an analytical model, accurately

identifying the damaged elements. A comparison between ASTROS-ID and APE was also performed.

Common to both methods is the question of which degrees-of-freedom to instrument to facilitate

damage identification, and to what extent can the damage be localized from the measured data. These

two questions are addressed in Chapter VII.
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VII. Sensor Prioritization and Damage Localization

7.1 Overview

For large space structures, practicality dictates that only partial modal data can be measured. With

minimal sensor information, two questions naturally arise: at which locations should the sensors be

placed, and to what extent can damage be identified with the selected sensor locations? An eigenstruc-

ture sensitivity based method is presented to answer these questions. While sensor placement methods

have been presented by Lim [46] , Kammer [36] , and Liu and Tasker [48] , they focused on maximizing

either controllability or observability and not damage detection. Kashangaki [41] introduced a modal

sensitivity parameter as a quantitative measure of the eigenvalue and eigenvector sensitivity, and used

this to determine which modes should be used in a damage detection scheme. In practice however, for

a given complex structure, only a few of the lower frequency global modes can be accurately identified.

At higher frequencies, the separation of local and global modes becomes increasingly difficult, if not

impossible. Furthermore, only a few degrees-of-freedom can be instrumented. Therefore, emphasis

herein is placed on prioritizing sensor locations and on the ability to localize damage from partial

eigendata for a given number of modes, and not on which modes to measure.

The method presented is based on examining the first-order partial eigenstructure sensitivity to

changes in the structural stiffness of each element of a finite element model. No a priori knowledge

of the damage location is assumed. Two aspects of the partial eigenstructure sensitivity are explored.

First, is the amount by which variations of the elemental stiffness values change the measured partial

eigenstructure. Independent of the damage detection scheme used, elements which produce little or

no change in the measured data will be difficult or impossible to detect when damaged. Second, is the

direction of change in the partial eigenstructure. Elements which produce similar or identical changes

in the partial eigenstructure, will be difficult or impossible to distinguish between when damaged.

Therefore, sensor locations are chosen so that the change in the measured partial eigenstructure due to

damage is maximized. Localization of the damage to an element(s) is based on both the amount and

direction of change to the partial eigendata for the chosen sensor locations.
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7.2 Sensitivity Theory

Eigenvalue and eigenvector sensitivity to changes in structural elements will be based upon the

finite element model of the structure. For on-orbit damage scenarios of large flexible space structures,

two assumptions are made. First, structural damage is confined to changes in the stiffness properties

of the structure. Second, structural damping is negligible. With these assumptions, the free vibration

of the structure is modeled as:

Mx+ (K ��K)x = 0 (6.1)

with all variables as previously defined. The eigenvalue and eigenvector for the ith mode of Equation

(6.1) is given as (�i;�i) whereas the measured eigenvalue and partial eigenvector for the same mode

is represented as (�i; �i). The relationship between the n dimensional eigenvectors �i and the s

dimensional partial eigenvectors �i is �i = C�i. The matrix C 2 <s�n maps the full length

eigenvector into the partial eigenvector corresponding to the measured degrees-of-freedom. With

minimal sensor information available, a natural cost function representing the mismatch between the

eigenstructure of the finite element model and the measured eigendata is:

J =
rX

i=1

ai

�
�i

�i
� 1

�2
+

rX
i=1

sX
j=1

bij

�
�ij � �ij

�2
(3.2)

Of interest for sensor location determination is how to choose the matrixC such that structural damage

results in observable changes in�i and�i and hence in J . OnceC is determined, damage localization is

concerned with the uniqueness of changes in �i and �i for variations in the matrix �K. As developed

in Chapter VI, the structural constraint can be imposed on �K by expressing it as:

�K = BGBT (6.4)

where B is constructed from the nodal connectivity information and the elemental parameters. G is

a diagonal matrix (G = diag(g1 : : : gp)) composed of the fraction of damage for each element (gi).

A value of gi = 0 corresponds to an undamaged element whereas gi = 1 corresponds to a complete

loss of stiffness to the ith element. The eigenvalue and eigenvector sensitivity to structural damage

is computed based on the method presented by Fox and Kapoor. [16] The sensitivity calculations are
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consistent with the method presented in Chapter V, however with damage being confined to the stiffness

matrix the calculations are further simplified. Furthermore, the matrix operator P (�; �) as defined in

Chapter IV is used to develop the sensitivity equations. The eigenvalue equation is written as:

(��iM +K � BGBT )�i = 0 (7.1)

With the assumption that changes from structural damage are confined to the perturbation matrix�K,

Equation (7.1) is differentiated, which after simplifying results in:

M�i

@�i

@g
+

@

@g
(BGBT�i) = 0 (7.2)

As developed in Chapter VI, the matrix operator P (�; �) is defined as:

P (�; �) with P; � 2 <n�p ; � 2 <n�1 ; Pij =
nX

k=1

�k�ij�kj (6.23)

where Pij is the ith row and the jth column of the matrix P . In terms of the operator P , the matrix

product in parenthesis in Equation (7.2) can be written as:

BGBT�i = P (�i; B)g where g = diag(G) ; G 2 <p�p(diagonal) (7.3)

Each eigenvector is normalized so that �T
i M�i = 1. Premultiplying Equation (7.2) by �T

i and using

the operator P , the eigenvalue sensitivity from Equation (7.2) can be written as:

@�i

@g
= ��T

i P (�i; B) ;
@�i

@g
2 <1�p (7.4)

In a similar fashion, eigenvector sensitivity is computed by differentiating Equation (7.1) and using the

results of Equation (7.4). The eigenvector sensitivity for the ith mode is:

�
K � �iM � BGBT

� @�i

@g
=
�
M�i�

T
i + I

�
P (�i; B) ;

@�i

@g
2 <n�p (7.5)

The matrix I denotes the n� n identity matrix. The method introduced by Nelson [56] is used to solve

Equation (7.5). This is necessary due to the singularity of the matrix [K � �iM �BGBT ]. Assuming
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no repeated roots, this method involves separating the solution into a particular and homogeneous

solution, where:
@�i

@g
= �ici + Vi (7.6)

with:

~Vi =
h
~K � �i ~M � ~B ~G ~BT

i
�1 h

~M ~�i
~�T
i + ~I

i
~P (�i; B) (7.7)

and

Vi =
h
~Vi1; : : : ; ~Vil�1; 0; ~Vil; : : : ; ~Vin�1

iT
(7.8)

The ~(�) notation represents matrices reduced by one row and one column, or vectors reduced by one

element. Nelson’s method removes the row and column corresponding to the maximum entry in �i.

Equation (7.8) corresponds to the maximum entry occurring at the lth element. For computational

efficiency, a decomposition and substitution is preferable to explicitly computing the inverse. The

constant row vector ci is given as:

ci = ��T
i MVi (7.9)

With the first-order eigenvalue and eigenvector sensitivities defined, letr� be the matrix whose

ith row and jth column entry is defined as:

r�ij =
@�i

@gj
� 1
�i

= ��T
i P (�i; Bj)

�i
(7.10)

The term �i is introduced to correct the scaling of the different modes. With this definition, each

column of r� corresponds to different structural elements and each row to a different mode. The

eigenvalue change from changes in the structural elements �g 2 <p�1, to first order, is given as:

�� = r��g (7.11)

where

�� = [��1; : : : ;��r]
T

and ��i =
�i � �oi

�oi
; 8i = 1; : : : ; r (7.12)

The vector �� 2 <r�1 consists of the fractional changes to the rmeasured eigenvalues of the structure

due to damage. Similarly, the vector ��o 2 <r�1 contains the eigenvalues of the structure evaluated
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at BGoB
T . For the undamaged structure, BGoB

T = 0. Since Equation (7.11) is valid only for

small changes of �g, it is not possible to use it directly to determine damaged elements. However,

for the purpose used herein, Equation (7.11) is adequate to examine the relationship between �� and

�g. Information on the amount and direction of changes in �� are contained in the matrix r�. With

�gi 2 [0; 1], rows of r� with negligible norms will contribute negligibly to changes in ��. Rows in

r� which are similar or identical to one another will have values of �gi that affect �� similarly or

identically, and hence will be indistinguishable from one another. For this analysis, it is assumed that

kgk2 is small and that, although individual elements in �g may be close to unity, the overall effect on

the global nature of the structure is small, i.e. no catastrophic failures.

Using the results from Equation (7.5), the partial eigenvector sensitivity for the ith mode is

defined as:

r�i = C
@�i

@g
; r�i 2 <s�p (7.13)

where C is determined from the measured degrees-of-freedom as previously defined. With this

definition, changes in the partial eigenvector for the ith mode, to first order in �g, is given as:

��i = r�i�g where ��i = �i � �io (7.14)

The vector �i 2 <s�1 is the partial eigenvector for the instrumented degrees-of-freedom, and �io 2

<s�1 contains the partial eigenvector of the finite element model evaluated at BGoB
T . Similar to

the eigenvalue case, information on the amount and direction of change of ��i is contained in the

matrix r�i. Note that there is one matrix r�i for each measured mode. Information on which to

base both sensor location and damage localization is contained in the matrices r� and r�i. Two

properties of these matrices are investigated, which are referred to as the detectability and colinearity.

Detectability is a measure of the amount of change which occurs from changes in a design variable,

whereas colinearity is a measure of the direction of change.

7.2.1 Sensor Location Prioritization. Initially with C = I , r�i from Equation (7.13)

contains information indicating which degrees-of-freedom to instrument. As previously discussed, on

orbit only a few of the low frequency modes can be measured. Given this fact and the problem of

solution non-uniqueness associated with using partial measurement data, it is assumed that any mode
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which can be measured should be used in a damage detection scheme. Given then that there are r

measured modes, the detectability in the measured eigenvectors at the lth degree-of-freedom from

changes in the p elements of the structure is defined as:

D�l =

pX
k=1

rX
i=1

j[r�i]lkj (7.15)

The vector D�= [D�1 : : :D�n ]
T is then sorted in descending order, initially prioritizing the sensor

locations based on detectability. A threshold is set based on the measurement uncertainty and the finite

element modeling errors. Values of D�l below this threshold indicate degrees-of-freedom which are

unaffected by structural damage for the measured modes. Next, a colinearity check is made to determine

degrees-of-freedom which yield similar information on the damaged elements. The colinearity, denoted

S, between any two vectors � and � is defined as:

S�� = �T� k�k2 = k�k2 = 1 (7.16)

which is simply the cosine of the angle between the two vectors. A value of S�� = 1 indicate perfect

colinearity whereas S�� = 0 indicates orthogonal vectors. With this definition, the colinearity of the

eigenvector sensitivity between measured degrees-of-freedom l and m is defined as:

S�lm =

"
1

r

rX
i=1

�
r�i � r�Ti

�#
lm

(7.17)

Again a threshold from unity is set based on the measurement uncertainty and the finite element

modeling errors. Values in S�2 <n�n within this threshold are declared colinear, indicating that at

these degrees-of-freedom for thermeasured modes, the changes in the eigenvector are indistinguishable

from one another to changes in the structural elements. Using this information, multiple colinear entries

in vector D� are removed, leaving only one entry from each colinear grouping. The remaining first

s elements of vector D� represent the prioritized s degrees-of-freedom to place sensors. With Ds
�

defined as the first s elements of the reduced and sorted vector D�, the matrix C is chosen such that

Ds
� = CD� is satisfied. An analytical example is presented in a subsequent section, following the

discussion of damage localization.
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7.2.2 Damage Localization. Given the r modes measured at the s degrees-of-freedom

as determined above, damage localization determines the extent to which damage can be isolated to

individual elements. Similar detectability and colinearity metrics are used, which are now restricted to

the instrumented degrees-of-freedom. The detectability in the measured eigenvalues from changes in

the kth structural element is defined as:

D�k =
rX

i=1

jr�ikj (7.18)

whereD�=
�
D�1 : : :D�p

�T
. Eigenvalue colinearity information is contained in S�. The jth row and

kth column ofS� indicates the colinearity of the eigenvalue changes between the jth and kth structural

elements and is defined as:

S� k
=
�
r�T � r�

�
jk

(7.19)

The eigenvalue colinearity is independent of the degree-of-freedom at which it is measured. Similarly,

detectability in the measured eigenvectors from the kth structural element is defined as:

D�k =
sX

l=1

rX
i=1

j[r�i]lkj (7.20)

where D� =
�
D�1 : : :D�p

�T
. Eigenvector colinearity information is contained in S�. The jth row

and kth column of S� indicates the colinearity of the eigenvector changes between the jth and kth

structural elements and is defined as:

S� k
=

"
1

r

rX
i=1

�
r�Ti � r�i

�#
jk

(7.21)

Note the similarity between Equations (7.15) and (7.17) and Equations (7.20) and (7.21). For this

reason, sensor prioritization and damage localization are considered dual problems, either of which can

be determined with only a slight modification to the same algorithm. Notationally, detectabilityD and

colinearity S were multiply defined, once for sensor prioritization and again for damage detection. It

should be clear from the context of the problem which definition applies.

With these definitions, damage localization proceeds as follows. Elements in D� and D�

which are below the modeling and measurement uncertainty threshold level are declared undetectable.
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Damage in an undetectable element cannot be identified from the measured data. Of the remaining

elements, colinear elements, as indicated by elements in S� and S� above the uncertainty level are

indistinguishable from one another. From the measured data, structural damage can only be localized

to a colinear group, and not to an individual element within the group. Elements contained in a colinear

group are referred to as symmetric elements.

7.3 Software Implementation

The sensor prioritization and damage localization method was implemented using MATLAB R
 [52]

software. For a given number of modes, the eigenvalue and eigenvector sensitivities are computed

using Equations (7.4) and (7.6) respectively. From these, the detectability metrics D� and D� are

computed using Equations (7.18) and (7.20). The colinearity metrics S� and S� are computed using

either Equations (7.15) and (7.17) for sensor prioritization or using the transposes as given in Equations

(7.19) and (7.21) for damage localization. These metrics are then compared against threshold values

based on model and measurement uncertainty. The uncertainty is determined by how well the finite

element model correlates to the measured data, for nominal as well as damage configurations. The

detectability threshold was established as a percentage of the maximum element in the vector D. For

colinearity the threshold was a percentage decrease from unity value. With the thresholds established,

the elements of the structure are then classified as either undetectable (U) usingD� andD�, symmetric

(S), or identifiable (I). For computational efficiency, detectability is checked first. Any elements

with values below the detectability threshold are classified as U and are removed from the sensitivity

gradient matrices before forming the colinearity metrics. Colinearity groupings are then determined

from the colinearity matrix by replacing the entries of the matrix with either ones or zeros based on

being above or below the colinearity threshold. In this way, a nonzero entry in the ith row and jth

column indicates symmetry between the ith and jth elements. Note that only the entries above the main

diagonal need be computed. Based on these entries, the elements are classified as either S or I. For

a colinear grouping of elements as determined by S� and S�, one element is classified as identifiable

and the remaining as symmetric. The selection of the weighting between emphasis on S� and on

S� is dependent on the damage identification scheme used. For damage identification based on the

cost function minimization, such as given in Equation (3.2), the metric results should be combined

consistently with the cost function weighting coefficients. For example, a high relative weighting on
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the eigenvalues corresponds to an increased emphasis on the S� metric. A decision flow chart for the

damage localization process as implemented for use with the APE method is shown in Figure 7.1. The

decision chart reflects the emphasis the APE method places on eigenvalues over the eigenvectors.

Independent of the algorithm used for damage identification, the advantage of the U/S/I classifi-

cation is apparent. It quickly indicates which damaged elements cannot be detected from the measured

data. Furthermore, only elements in the I classification need be included in the search space. It has

been observed that decreasing the search space precludes singularities of the N matrix in Equation

(6.34) and significantly reduces the required solution time.

7.4 An Analytical Example

To demonstrate the use of the detectability and colinearity metrics, an analytical example of both

the sensor prioritization and damage localization was performed using the same 41-element free-free

planar truss assembly as shown in Figure 7.2 and described previously in Chapter IV.

The first analysis was an examination of the relationship between increasing the number of

measured modes and increasing the number of sensors. Table 7.1 contains the tabulated results. The

data clearly shows that, if possible, increasing the number of modes measured is preferable to increasing

the number of sensors to enhance damage localization. For all cases, the threshold values were fixed at

10% for detectability and 5% colinearity. It should be noted that the tabulated results in some instances

show that adding additional sensors had an adverse effect on identifiability. This trend is an artifact of

using different length vectors, due to a different number of sensors, compared against a fixed threshold.

The data as presented is intended only to show the overall trends.

To demonstrate sensor prioritization, the locations of three sensors were selected using a fixed

number of modes and the same thresholds as stated above. As shown in Table 7.2, the prioritized

locations increase the number of identifiable elements over two randomly chosen sensor locations.

A third analysis was performed to demonstrate the validity of using only first-order sensitivities,

evaluated at the nominal configuration, over the range of�g. Table 7.3 lists the symmetric elements as

determined byS� for the first five flexible modes, for the same threshold values as used above and using

a single sensor. As an example, the results indicate elements 8, 9, 33, and 34 are symmetric to the partial

measured data, and thus only one element should be included in the damage detection search space.
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Table 7.1 Damage localization results for a 41-element free-free planar truss.

Measured Flexible Modes
# Sensors 1 1,2 1,2,3 1,2,3,4 1,2,3,4,5

1 29/9/3y 21/15/5 21/15/5 9/25/7 9/24/8
2 29/9/3 21/8/12 21/3/17 9/6/26 9/1/31
3 29/2/10 21/2/18 21/0/20 9/3/29 9/1/31
4 29/0/12 21/1/19 21/0/20 9/4/28 9/0/32
5 29/0/12 21/3/17 21/0/20 9/3/29 9/0/32
6 29/0/12 21/3/17 21/0/20 9/2/30 9/0/32

Locationsz 34,2,1,3,33,35 1,35,3,33,9,27 1,35,33,3,36,2 1,35,33,3,36,2 1,35,3,33,16,22

yData presented in U/S/I format where U denotes the number of undetectable elements, S the number of symmetric elements,
and I the number of identifiable elements. The sum of U, S, and I equals the total number of elements of the structure.
zThe locations of the sensors were chosen using the prioritization method presented and are reported by degree-of-freedom
number in prioritized order.

Table 7.2 Damage localization for different sensor locations for a 41-element free-free planar truss.

Method Sensor Locationy Damage Localization (U/S/I)z

Prioritized 1,35,3 9/1/31
Random 3,11,19 9/5/27
Random 2,4,34 9/3/29

yReported by degree-of-freedom number.
zBased on measuring the first five flexible modes.
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Table 7.3 Damage localization based on eigenvalue sensitivity using the first 5 flexible modes, for
the 41-element free-free planar truss.

Element # Equivalent Symmetric Elements (S�)y

2 5,37,40
3 4,38,39
7 10,32,35
8 9,33,34

12 15,27,30
13 14,28,29
17 20,22,25
18 19,23,24

Undetectable Elements 1,6,11,16,21,26,31,36,41
yResults are independent of selected sensor location.

The measured eigenvalues with damage to element 8, g8 2 [0; 1] corresponds to the same eigenvalues

for an equivalent break in either elements 9, 33, or 34. For an example with multiple breaks, elements 8

and 30 were reduced by 70% and 50% respectively. Using any combination of two elements, selecting

one element from the symmetric set (8,9,33,34), and one element from the symmetric set (12,15,27,30),

reduced by 70% and 50% respectively, the changes in the measured eigenvalues were within 2% of

each other. This is well within the uncertainty level established in the threshold for S� used to select

the symmetric sets.

7.5 Summary

A method was presented which prioritizes the degrees-of-freedom to instrument when used to

collect modal data for damage detection. It was shown that this method can also be used to determine

the extent to which damage can be localized from these sensor locations. The method represents a

computationally attractive alternative to an exhaustive search over the parameter space and is a valuable

tool during the design phase to determine measurement and/or modeling accuracy requirements. An

analytical example was presented which showed that the extent to which damage can be localized is

limited by the amount and quality of the measured data. It was also shown that increasing the number

of measured modes is of greater benefit than increasing the number of sensors.

Having developed the four tasks associated with damage identification, each task was combined

into an integrated software package and programmed in MATLAB R
. A description of this software
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tool is provided in Appendix B. Using this software, the four tasks of damage identification were

applied to experimental structures, the details of which are discussed in the Chapter VIII.
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VIII. Experimental Validation of Theory

8.1 Test Objective

The test objective is the experimental demonstration of the ability to identify structural damage

from a simulated damaged space truss using limited measurement data. In choosing an experimental

apparatus to validate a new technique, it is important for the experiment to exhibit the common dynamic

characteristics of the intended application. For large flexible space structures, these characteristics

include a low fundamental frequency (on the order of 1 Hz) and high modal density at low frequencies

with low modal damping ratios, and a truss-like structure. Furthermore, it is important that both

the excitation actuator and measurement sensors be non-grounded since only these type devices are

applicable to space-based applications. Lastly, to demonstrate the detection of actual damage, it

is desirable to have a structure which contains structural elements which can easily be modified or

removed to simulate a failure. Two different test beds where chosen to validate the theory. The first

validation was through the use of experimental test data obtained from NASA’s 8-bay truss test bed,

and the second using AFIT’s six-meter Flexible Truss Experiment.

8.2 NASA Test Data Analysis

8.2.1 Hardware. NASA’s 8-bay truss test bed consisted of eight cubic bays of a hybrid

space truss cantilevered from a rigid backstop plate. This configuration represents a scaled section of

the proposed International Space Station. Each bay is a half meter in length, constructed of aluminum

members. A typical joint configuration is shown in Figure 8.1. The truss was fully instrumented with

one triaxial accelerometer at each of its 32 unconstrained nodes. Disturbance excitation was achieved

using two ground-based dynamic shakers attached at two different node points. A complete description

of the hardware and the testing procedure is contained in the work by Kashangaki. [40]

8.2.2 Model Tuning. The NASA truss was modeled using 104 rod elements, with three

translational degrees-of-freedom per node. The material properties of all elements were identical.

Lumped masses were incorporated into the model to account for the mass of the node balls, standoffs,

sleeves, collars, and instrumentation. The data received from NASA (T. Kashangaki) consisted of the

identified natural frequencies and shapes for the first five flexible modes of the truss, for the nominal

as well as several damage configurations. The first five modes in numerical order consisted of the
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Figure 8.1 Joint construction for the NASA 8-bay truss experiment.

first bending modes about the ‘X’ and ‘Z’ axes, the first torsional mode about the ‘Y’ axis, and the

second bending modes about the ‘X’ and ‘Z’ axes. A typical frequency response function is depicted

in Figure 8.2, measured at the free end of the truss. Both the nominal and damaged measurements are

shown. As can be seen in the figure, identification of global modes past 80 Hertz is difficult due to the

presence of local element modes in this regime. Hence only the first five modes could be accurately

measured. Also depicted in the frequency response functions is the effect of structural damage. For

this particular damage case which corresponds to the removal of a longeron element at the cantilevered

end, damage is manifest in the frequency response by a separation of the first two flexible modes only.

Nine damage cases were tested. The damage configurations were the full removal of one or two

elements of the truss. The different damage configurations are shown in Figures 8.3, 8.4, and 8.5. For

the nominal configuration, i.e. no damage, the results of the finite element analysis and the measured

data are compared in Table 8.1. Although the FEM model is in fair agreement with the measured data,

any disagreement will result in the damage identification method assigning a percentage of damage to

an element(s) to account for the disagreement. Therefore, tuning was performed using ASTROS-ID

to ensure the initial disagreement was as minimal as possible. A total of 110 design variables were
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Table 8.1 Measured natural frequencies of NASA’s 8-bay truss.

Frequency (Hz) % difference
Mode # Measured Initial Tuned Initial Tuned

1 13.88 13.79 13.88 0.65 0.00
2 14.48 14.31 14.47 1.19 0.07
3 48.41 50.53 48.40 4.37 0.02
4 64.03 65.98 64.03 3.05 0.00
5 67.46 71.20 67.52 5.55 0.08

used to tune the model, which included the elastic modulus of the 104 rod elements. Two design

variables were used for the mass of the rods, one for the half meter length rods and a second for the

diagonal members (1=
p
2 in length). The remaining four design variables were used to adjust the mass

properties of the lumped nodal masses. There were four different nodal configurations, depending on

how many members were connected at a node point and whether or not an external shaker attachment

was included. To tune the model, all five measured modes were used with equal weighting on all

frequencies. Eigenvector information was not included in the tuning process for several reasons.

First, the prioritized sensor locations were not chosen until after the model was tuned, and thus which

elements of the eigenvector to include in the tuning process was yet unknown. (Eigenvalue information

is independent of the sensor locations, assuming a sensor is not located at a node point for a particular

mode.) Note that although the full length eigenvectors are available from the test data, this does not

represent a realistic on-orbit capability and thus complete knowledge of the eigenvectors was not used.

A second reason for not including eigenvector information was the desire to maintain the symmetry

of the structure. With 110 design variables, there was adequate design freedom to nearly achieve

any partial measured eigenvectors. Thus any measurement error in the partial vectors could alter the

symmetry of the model. The result of the tuning is listed in Table 8.1. The tuning process required 23.4

minutes of CPU time for four outer-loop iterations, and resulted in a decrease in the objective function

by four orders of magnitude. All design variables remained within 10% of their nominal values.

Using the tuned model, an eigenanalysis for each of the nine damage cases was performed.

The results, along with the experimentally measured data from the damaged structure, is presented

in Table 8.2 for comparison. In order for the objective function minimization to be successful, it is

important that the analytical model with simulated damage correlate well with the measured data of the

damaged structure. Unfortunately, tuning to the nominal as well as the damaged data is only possible
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Table 8.2 Changes in natural frequencies from damage on the NASA truss.

Frequency (Hz)
Damage case Mode #1 Mode #2 Mode #3 Mode #4 Mode #5

Nominal 13.88 / 13.88y 14.48 / 14.47 48.41 / 48.40 64.03 / 64.03 67.46 / 67.52
A 13.94 / 13.88 9.50 / 9.43 48.52 / 48.40 64.16 / 64.03 65.91 / 64.98
B 13.47 /13.16 14.12 / 14.25 35.65 / 34.25 60.18 / 59.06 65.86 / 65.90
C 13.97 / 13.88 11.39 / 11.29 48.53 / 48.40 64.50 / 64.03 59.90 / 58.51
D 13.21 / 13.16 14.44 / 14.24 36.68 / 35.92 61.35 / 61.20 66.95 / 65.97
E 13.96 / 13.88 11.42 / 11.30 48.57 / 48.40 64.61 / 64.03 59.91 / 58.60
F 13.94 / 13.88 9.50 / 9.42 48.50 / 48.40 64.08 / 64.03 65.80 / 64.91
G 12.29 / 12.26 14.50 / 14.47 48.67 / 48.40 50.65 / 48.60 67.76 / 67.52
H 13.73 / 13.70 14.55 / 14.47 48.68 / 48.40 54.76 / 54.30 67.71 / 67.52
I 13.74 / 13.58 9.86 / 9.74 36.66 / 35.89 63.35 / 62.56 58.86 / 57.46

yData presented in (measured / FEM simulated ) format, where the first number represents the measured frequency and the
second is the result of an eigenanalysis on the FEM model with the damaged element(s) removed.

with a priori knowledge of the damage. An attempt to ensure the simulated damaged analytical model

correlated well with the measured data was the rationale behind maintaining symmetry during the

tuning process.

8.2.3 Sensor Prioritization and Damage Localization Analysis. After tuning the analyt-

ical model, a prioritization of the degrees-of-freedom to instrument was performed as developed in

Chapter VII. To demonstrate the capabilities of the APE software, a small number of sensors (8) were

chosen. Threshold values of 10% for detectability and 7% percent for colinearity were used for both the

sensor prioritization and the damage localization method. These threshold values represent the assumed

combined uncertainty in both the measurement error and the modeling error. These values were chosen

by performing three analyses for threshold values of 5, 7, and 10%, and then comparing overall results

against values in Table 8.2. The eight prioritized sensor locations are shown in Figure 8.6. These eight

degree-of-freedom locations were used to construct the eight elements of the partial eigenvectors for

the damage identification process.

Having identified the sensor locations, a damage localization analysis was performed. The

results of this analysis are contained in Table 8.3, listing the undetectable, symmetric, and identifiable

elements. Table 8.4 presents a description of the element numbering used. The results show that using

only the first five modes and the 8 component eigenvectors, 64 of the elements are undetectable from the

measured data. This indicates that changes in the measured data are insignificant from damage in these
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Figure 8.6 Prioritized sensor locations for the NASA truss.

elements. These results are consistent with a similar analysis on this truss presented by Kashangaki,

Smith and Lim [42] showing that 95% of the total strain energy associated with the first six modes

was contained in only 40 elements. The unidentifiable elements are categorized as either battens, or

elements located near the free end of the truss. The remaining 40 elements of the localization analysis

are divided among 23 symmetric groupings containing one, two or four elements. One element from

each of the 23 symmetric groups is used to define the initial search space for the identification process.

8.2.4 Damage Identification Results. Using the results of the sensor prioritization to define

the measured data, the tuned analytical model, and the damage localization analysis to define the

initial search space, damage identification using APE was performed. The results are contained in

Table 8.5. On average, the results were achieved in one minute requiring 20 iterations. In six of the

nine cases, the damage was localized to a single element or a single symmetric grouping. For Case D

and Case E, a repeated use of the APE method using the results of the first identification application

as the initial search space, was able to localize the damage down to the single correct element or

8-7



Table 8.3 Damage localization results for the NASA 8-bay truss.

Element # Equivalent Symmetric Elements

32 36, 45, 49
34 38
47 51, 60, 64
58 62, 71, 75
59
61
63
65
72
73 77, 86, 90
74
76
78
84 88, 97, 101
85
87
89
91
98
99 103

100
102
104

Undetectable Elements 1-31,33,35,37,39-44,46,48,50,52-57,66-70,79-83,92-96

Table 8.4 Element numbering and descriptions for the NASA 8-bay truss.

Description

Bayy # Longeron Diagonal Battenz

1 6, 8, 10, 12 7, 9, 11, 13 1, 2, 3, 4, 5
2 19, 21, 23, 25 20, 22, 24, 26 14, 15, 16, 17, 18
3 32, 34, 36, 38 33, 35, 37, 39 27, 28, 29, 30, 31
4 45, 47, 49, 51 46, 48, 50, 52 40, 41, 42, 43, 44
5 58, 60, 62, 64 59, 61, 63, 65 53, 54, 55, 56, 57
6 71, 73, 75, 77 72, 74, 76, 78 66, 67, 68, 69, 70
7 84, 86, 88, 90 85, 87, 89, 91 79, 80, 81, 82, 83
8 97, 99, 101, 103 98, 100, 102, 104 92, 93, 94, 95, 96

yBays are numbered consecutively starting from the free end.
zIncludes diagonal members in the batten plane.
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single symmetric group. A capability could be incorporated into the APE algorithm to adaptively re-

initialize the algorithm. Also noted in the these two cases is assigned damage values which are greater

than 100%. Unlike ASTROS-ID, the APE method cannot constrain the values of gi to lie strictly

within zero and one. These constraints can only be enforced by removing from the search space the

corresponding elements with gi’s outside the allowable range. As previously discussed in Chapter VI,

to avoid prematurely discarding elements and allow for modeling error, the allowable range ofg should

be widened. For the results reported, the allowable range was set to (0 � gi � 2). An additional

capability to slowly reduce the allowable range as the iteration progresses could be incorporated. The

exact method to accomplish both the re-initialization and allowable range reduction are referred to as

algorithm percolation methods, and is listed as a topic of future recommended research. For damage

Case I, the compound break, damage to element #71 was not identified. Damage to element #71 (a

longeron in the sixth bay) was assigned to a longeron in either bay three or four. This difficulty is

in part due to the fact that the measured data for this damage case does not correlate well with the

simulated damaged analytical model, as indicated by the values given in Table 8.2. The true culprit,

modeling error or measurement error, cannot be determined from the known information. Anytime the

simulated damage to the analytical model does not agree with the measured data for the same damage

configuration, any method based on matching the partial measured data will have difficulty in obtaining

the true solution.

For comparison purposes, ASTROS-ID was performed on Cases D, H, and I using the same 23

element initial search space as used for the APE method. The results are reported in Table 8.6. In the

objective function, Equation (3.2), the eigenvalues were all assigned equal weighting of 100 for all

five modes (ai = 100), and all eigenvector components were assigned unity weighting (bij = 1). For

Case D, ASTROS-ID identified damage to diagonal elements in the last four bays of the truss, but did

not isolate it down to a single element. For Case H, damage was identified to longeron elements in the

third and fourth bay of the truss. As for APE, ASTROS-ID could not correctly idenitify damage Case

I, due to the measuement and/or modeling error as previosuly discussed. For Case I, both methods did

identify damage in both longerons and diagonal elements.

Comparing the overall results, the ASTROS-ID method tended to spread the assigned damage

over several elements, whereas the APE method typically assigned damage to a single element or

symmetric group. This comparison illustrates the different nature of the two solution techniques, as
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Table 8.5 APE identification results on the NASA truss.

True damage APE Identified
Damage case Element # % damage Element # % damage cpu time (sec.)

A 84 100 84(88,97,101)y 85 33
B 85 100 85 96 80
C 71 100 58(62,71,75) 94 65
D 78 100 78 98 76

104 110
E 62 100 58(62,71,75) 110 56

32(36,45,49) 103
F 97 100 84(88,97,101) 89 32
G 51 100 47(51,60,64) 88 85
H 34 100 34(38) 97 43
I 71 100 32(36,45,49) 80 63

78 100 78 99
yData presented in I(S) format where I is the number of the identified element and S is the symmetric element numbers.

previously discussed in Section 6.2. Differences in the solutions are also in part due to the method

used to establish the initial search space from the sensitivity analysis. Both methods used the results of

the same damage localization analysis, however the analysis as described in Section 7.3 was tailored

for the APE method. In general, an order of magnitude increase in CPU time was required for the

ASTROS-ID solution.

8.3 Flexible Truss Experiment (FTE)

8.3.1 Hardware. The six-meter FTE was assembled at the Air Force Institute of Technology

from excess hardware received from the Structural Dynamics Branch of Wright Laboratory after

termination of the 12-Meter Truss Active Control Experiment. [20] The hardware consists of the truss

assembly, actuators and their power drivers, accelerometer sensors, and real-time digital control and

signal processing equipment. As presented in the documentation on the 12-meter truss, there was

considerable difficulty in obtaining a model of the 12-meter truss which correlated well with measured

data. Although only half the structure is currently used due to physical space limitations, the difficulty

in modeling the structure makes it ideally suited to use in validating a model tuning algorithm. It

should also be noted that the experiment’s name is somewhat of a misnomer. Although the word truss

is used, the structure is actually a frame structure with rigid connections between members. The term

truss typically is used for structures with pinned connections.
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Table 8.6 ASTROS-ID identification results on the NASA truss.

True damage ASTROS-ID Identified
Damage case Element # % damage Element # % damage cpu time (sec.)

D 78 100 61 65 793
63 36
65 93
76 15
78 88
91 64

104 24
H 34 100 34(38) 96 602

47(51,60,64) 73
I 71 100 32(36,45,49) 40 541

78 100 58(62,71,75) 83
61 84
63 50
65 94
78 90

84(88,97,101) 94

8.3.1.1 Truss Description. The basic structure of the experiment is a lightly damped

six-meter truss, cantilevered vertically from a rigid support base. The FTE is depicted in Figure 8.7.

The truss is composed of two equal length frames of welded tubular aluminum alloy longerons and

battens with bolt-in tubular Lexan diagonals in a back-to-back “K” pattern. A section of the FTE is

depicted in Figure 8.8. The assembled truss has a square cross section of 20 inches on a side. The

longerons are made from 6061-T6 aluminum alloy tubes with a 1.5-inch-square cross section and

0.065 inch wall thickness. The battens are 6061-T6 tubes with 0.5-inch-square cross section and 0.063

inch wall thickness. The diagonal members are Lexan tubing (270,000 psi elastic modulus) with a

1.5-inch-diameter circular cross section with 0.125-inch wall thickness. The diagonals have aluminum

end fittings which are fastened to the truss with two bolts and a half-clevis joint at both ends. The truss

has 4 bays in each of the two sections for a total of eight bays. The two sections are bolted together

with two bolts at each longeron end. Four bolts at the base of each longeron secure the truss to a 1-inch

thick aluminum plate which is securely bolted to the laboratory floor. The bolt-in diagonals allow quick

structural modifications to simulate a damaged structure.
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Figure 8.10 Low frequency mode shapes for the FTE.

along one longeron at the node location at each bay. For signal processing, a Tektronix 2642A Fourier

Analyzer is used to measure and average the frequency response functions.

8.3.2 Model Tuning.

8.3.2.1 Finite Element Model. The FTE was modeled in ASTROS using five different

types of beam elements for a total of 96 elements. The five types were: aluminum vertical longeron

elements, aluminum horizontal batten elements, Lexan diagonal elements, aluminum horizontal mid-

batten elements, and aluminum horizontal top-batten elements. The different batten configurations

are due to the fact that the FTE is constructed of two 4-bay sections which can be bolted together.

Lumped masses were included to account for the actuators, top-plates (actuator attach points), “K”

brackets (used to secure the diagonal members) and mid-plates (bolt assemblies used to secure the

two 4-bay sections together). Care was taken to accurately obtain the mass properties, area properties

and moments of the structural elements. The elastic properties were determined from laboratory tests

on individual elements. These parameters were all used to construct a baseline data deck for input

into ASTROS. Using the results of the baseline finite element analysis along with software written in
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MATLAB R
to display and animate mode shapes, a characterization of the low frequency (below 70 Hz)

behavior of the FTE was performed. Mode shapes were classified into four categories as: X-bending,

Y-bending, torsion, and breathing. An illustration of these four different mode shapes are shown in

Figure 8.10. Unlike the NASA truss, the FTE did not have diagonal members in the batten plane and

thus exhibited a breathing mode. The breathing mode corresponds to an expansion and contraction of

the truss in the batten plane, similar to the motion of the human rib cage. The diagonal battens in the

NASA truss sufficiently stiffened the batten plane to preclude this type of motion at low frequencies.

The presence of this fourth type of mode increased the modal density and consequently increased the

difficulty in the modal parameter identification process. Due to the near symmetry, the Y-bending mode

shapes are similar to the X-bending shapes and are not shown. Note that the frequencies appearing

in the figure are for the analytical model prior to tuning. The next step was to compare the analytical

results to measured data.

8.3.2.2 Testing Procedure. Experimental measurements were performed on the FTE

using random vibration testing. Measured eigendata of the FTE were obtained from the 16 FRFs

between the two linear actuators and eight single-axis accelerometers placed as shown in Figure 8.7.

The input excitation to each actuator was a band limited (0 - 50 Hertz) pseudo-random signal. There

were 4096 discrete sample points recorded by the spectrum analyzer, providing a frequency resolution

of 0.031 Hertz. Frequency averaged transfer functions between the input excitation and the eight ac-

celerometers were measured. The inverse discrete Fourier transforms of these transfer functions yielded

the impulse response functions which were input into ERA to obtain measured modal frequencies and

shapes, as described in Chapter IV. Distinguishing between bending modes and torsion modes was

easily facilitated by exciting the structure in both bending (actuators in phase), and torsion (actuators

180 degrees out-of-phase). Figure 8.11 shows the resulting averaged FRF output at accelerometer #8

for the two different types of excitation, measured using a 100 Hz bandwidth.

8.3.2.3 Sensor Prioritization. The sensor prioritization method presented in Chap-

ter VII was applied to the FTE to determine the prioritized location of the eight single-axis accelerom-

eters for damage identification. During initial testing, it was determined that the initial locations of

the eight sensors, along one longeron as was shown in Figure 8.7, was not a good choice. For these

sensor locations, it was not possible to measure the Y-bending mode. Additionally, several of these
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Figure 8.11 Comparison of bending and torsional excitation on the FTE.

locations yielded small gradient values as determined by the sensitivity analysis. For the analysis, the

first eight modes were used, which represented all the global modes within the frequency band (0-50

Hz) measured. These modes were used to prioritize the eight sensor locations. The prioritized locations

of the eight sensors are shown in Figure 8.12. The output of these eight sensors was used to obtain the

partial mode shapes used in the tuning algorithm.

8.3.2.4 Measured Data. Numerous problems were encountered in obtaining the

measured modal properties. The first was in the choice of the excitation. The original choice was to

use the two actuators in-phase and out-of-phase as previously described. This presented a difficulty in

measuring the breathing modes. Examination of the transfer functions depicted in Figure 8.11, illustrate

the absence of the breathing modes (�22 Hz, �34 Hz) in the measured transfer functions. Although

ASTROS-ID does not require that all modes be included in the objective function, without inclusion

of the breathing modes, numerous mode swaps ocurred as the breathing modes “wandered” during the

tuning process. For damage identification to be successful, it is important that the simulated analytical

damage closely match the measured data of the damaged structure as previously discussed. This is best
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Figure 8.12 Prioritized sensor locations on the FTE.

accomplished by ensuring all modes including the breathing mode match the physical structure as best

as possible. An additional discussion on this topic is contained in Reference 11.

To measure the breathing mode, the actuators atop the longerons were rotated ninety degrees.

This allowed direct excitation of the breathing mode by exciting out-of-phase, and X-bending excitation

by exciting in-phase. In this configuration however, both Y-bending and torsion modes were not excited

and hence could not be accurately measured. The simple solution seemed to be to take two measurement

sets in the first excitation configuration, and two additional measurement sets with the actuators rotated

ninety degrees. While all modes were now clearly identifiable in the transfer functions, a new problem

was observed. The inertia properties of the rectangular linear actuator’s affected the measured response

depending on their orientation, and thus a shifting of the modes resulted whenever the actuator position

was changed. A compromise was achieved by using the two actuators atop two longerons diagonally

from one another and mounted ninety degrees to one another. In this configuration each acutator was

excited independently, one exciting X-bending and breathing, and the second exciting Y-bending and

torsion. This still did not represent an ideal situation for the following reason. As one actuator was

being excited, the other actuator’s proof mass was fixed. This effectively changed the apparent inertia
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properties atop either longeron, depending upon which actuator was being excited. Again, a small

shift was observed in the measured frequencies, however, this was determined to be an acceptable

compromise, not requiring actuator re-design. Note that the difficulties with the actuator excitation

all arose as the result of using non-ground based excitation, which represented a significant mass at

the tip of the cantilevered frame. For future space application studies, actuator design is an important

consideration in obtaining accurate modal data.

Having finally determined the sensor and actuator positions, the modal extraction method using

ERA was performed. Due to the closely spaced modes, an additional problem was encountered.

Although the modal frequencies were easily identified, the extracted mode shapes were observed as

linear combinations of one another for the closely spaced modes. This was especially troublesome

during the identification of partial mode shapes for the damaged structure. Damage Case 2, as described

in Section 8.3.4 was chosen to illustrate the problem. The measured modes along with the analytical

modes for the eight sensor locations are depicted in Figure 8.13. As shown in the figure, there

is considerable discrepancy in the data, particularly for the closely spaced fourth, fifth, and sixth

modes. Additional testing using four independent excitations, where each mode was individually

excited, yielded close results to the analytical shapes. However, when only two actuators were used,

for the reasons expounded upon above, the modes appeared as linear combinations of one another.

To determine the linear combination, a least squares solution was used to determine the coefficients

required to best match the measured modes to the modes of the simulated damaged analytical model.

Two coefficients were computed to separate modes 1 and 2, and three different coefficients were used

to separate modes 3, 4, and 5. The de-coupled mode shapes are shown in Figure 8.14. The abscissa

represents the eight sensor measurements numbered one through eight. A line is shown connecting

the eight discrete points to aid in visualization. Note that this de-coupling method was only possible

because of the known location of the damage for the simulation. In actual practice, a re-design of

the input actuators would be required to correctly obtain the measured modes without resorting to

the analytical model. This problem was not observed in the data on the NASA truss, which did not

use non-ground based actuators, nor exhibit a breathing mode. In all cases, there was no trouble in

obtaining the torsion shapes, which were clearly separated from the bending and breathing shapes.

Additional research on determining partial mode shapes for closely spaced modes is recommended for

future work.
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Figure 8.15 Comparison of initial analytical model and measured frequency response.

8.3.2.5 Model Tuning Results. Despite the effort expended in constructing the baseline

finite element model of the FTE, it did not agree well with the measured data. The poor correlation

between the baseline analytical and measured data is depicted in Figure 8.15, which shows the transfer

function between a colocated sensor and actuator at the top of the FTE. Prior to computing the analytical

transfer functions, damping was included in the model by assuming a value of one half of one percent of

critical damping for all modes (a typical measured value). This was done only to avoid the unbounded

resonant spikes due to an undamped model, and thus the height of the resonant peaks between analytical

and measured data is insignificant. It is clear from Figure 8.15 that the baseline finite element model

does not adequately represent the measured dynamic characteristics of the FTE and would hence benefit

greatly from model tuning.

Using ASTROS-ID, the baseline finite element model was tuned to the measured data. For the

tuning, the frequencies and shapes of the first eight modes were included in the objective function.

Twenty three design variables were chosen for the tuning process. A description of the design variables

as well as the tuned values, are given in Table 8.7. Values in the table are normalized, such that the

initially assumed value for each design variable is unity. To account for the added stiffness in the
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Table 8.7 Design variable values in the FTE finite element model.

DV # Description Tuned valuey

1 battens (elastic modulus) 1.00
2 mid-battens(elastic modulus) 1.00

3 longerons (elastic modulus) 0.80z

4 diagonals (elastic modulus) 1.20z
5 top-battens (elastic modulus) 0.99
6 battens (I1) 0.79
7 mid-battens (I1) 0.67
8 longerons (I1) 0.58
9 diagonals (I1) 1.18
10 top-battens (I1) 0.84
11 battens (I2) 1.11
12 mid-battens (I2) 1.14
13 longerons (I2) 1.99
14 diagonals (I2) 1.00
15 top-battens (I2) 1.00
16 battens (mass) 1.51
17 mid-battens (mass) 1.26
18 longerons (mass) 0.42
19 diagonals (mass) 2.81

20 “K” brackets (mass) 0.50z
21 actuators (mass) 1.00
22 mid-plates (mass) 0.84
23 top-plates (mass) 1.28

yValues were normalized such that initial values are all unity.
zValue on boundary of allowable excursion limit for this variable.

joints resulting from the welded assemblies, the bending stiffness of the elements was chosen as a

design variable by allowing the I1 and I2 properties to vary in addition to the elastic modulus for each

element. To account for the symmetry of the structure, all common elements were linked to a single

design variable. The tuning process converged in six outer-loop iterations requiring 18 minutes of

CPU time. Convergence was defined as a less than one half of one percent change in the objective

function value between two consecutive outer-loop iterations. The results of this tuning are shown in

Figure 8.16, depicted for the same actuator/sensor combination as used in Figure 8.15.

The results show excellent agreement over the 40 Hz frequency band spanned by the modes

included in the objective function. The first four columns of Table 8.8 lists the frequencies for the

first eight modes, comparing the measured data to the tuned finite element model. The objective
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Figure 8.16 Comparison of the tuned analytical model and measured frequency response.

function, Equation (3.2), included the terms ai and bij to weight individual contributions to the overall

value. For the tuning, all ai coefficients were set to 100 and all bij were set to unity. This represents

equal confidence in the measurement data for all frequencies included in the objective function, with a

stronger emphasis placed on tuning the modal frequencies than the shapes. In general, selection of the

weighting coefficients is dependent upon the confidence with which each mode is measured, as well

as the designer’s desire to minimize a selected portion of the correlation error. For this case, emphasis

was placed on minimizing the frequency correlation errors.

8.3.3 Damage Localization Analysis. Using the tuned analytical model, the damage lo-

calization method presented in Chapter VII was applied to the FTE. Based on repeatability of the

measurement data, and the existing correlation errors between the finite element model and the mea-

sured data, the detectability threshold values were set at 10%. The threshold for S� was set at 7%

and the S� threshold at 25%. This reflected the increased confidence in measuring the eigenvalues

over the eigenvectors, reflecting the difficulty in measuring the closely spaced modes. Using the eight

sensor locations chosen in Section 8.3.2.3 and the first eight modes, the extent to which damage can be
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Table 8.8 Analytical and measured natural frequencies of the FTE.

Frequency (Hz)
Damaged

Nominal Case 1 Case 2
Mode # Description FE tuned measured FE measured FE measured

1 1st Y Bending 6.32 6.32 6.32 6.34 6.23 6.20
2 1st X Bending 6.33 6.33 5.85 5.86 6.32 6.30
3 1st Torsion 12.51 12.64 11.38 11.27 12.27 12.37
4 1st Breathing 22.26 22.29 22.26 23.31 22.26 22.10
5 2nd Y Bending 23.97 24.02 22.01 21.48 23.17 23.48
6 2nd X Bending 24.09 24.18 24.03 24.15 24.04 24.20
7 2nd Breathing 34.01 34.03 33.36 33.63 33.71 33.79
8 2nd Torsion 36.46 36.31 36.07 35.89 36.15 36.02

localized was determined by classifying the 96 elements using the U/S/I format. The results indicate

that 26 elements cannot be identified, and the remaining 70 elements are arranged in 15 symmetric

groups. The 26 undetectable elements were all batten elements. The remaining 15 symmetric groups

consisted of either longerons, battens, or diagonal elements localized to either a single bay or adjacent

bays. This analysis was used to define the initial search space for a damage identification algorithm

using APE. The results of the damage localization analysis are given in Table 8.9. A description of the

element numbering is contained in Table 8.10.

8.3.4 Damage Identification Results. For the APE method, the tuned elemental parameters

of the finite element beam model were used to construct the matrix B according to Equation (6.13)

along with the tuned mass and stiffness matrices M and K. The measured partial eigendata of modes

1 through 8 were then used to determine structural damage. Two damage configurations were tested.

The first (Case 1) was the full removal of a diagonal strut in the sixth bay (as measured from the free

end). The second (Case 2) damage configuration was the replacement of a diagonal strut in the seventh

bay with one in which � 50 percent of the strut’s cross sectional area was removed. The analytical

and measured natural frequencies for the first eight modes are contained in Table 8.8. Mismatches

between the analytical and measured frequencies are the result of both measurement uncertainty as

well as modeling errors.

Using the results of the damage localization analysis, the search space consisted of fifteen

elements, one element from each APE symmetric group. Since no a priori knowledge of the damage
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Table 8.9 Damage localization results for the FTE.

Element # Equivalent Symmetric Elements

17 18, 19, 20
29 30, 31 32
33 34, 35, 36
37 39
38 40, 42, 44
41 43, 46, 48
45 47, 49, 52
50 51, 53, 55
54 56, 57, 59
58 60, 62, 63
69 70, 71, 72, 73, 74, 75, 76
77 78, 79, 80
81 90, 95, 96
82 89, 94, 97
83 84, 85, 86, 87, 88, 91, 92, 93, 98, 99, 100

Undetectable Elements 5 - 16, 21 - 28, 61, 64 - 68

Table 8.10 Element numbering and descriptions for the FTE.

Description

Bayy # Longeron Diagonal Batten

1 65, 66, 67, 68 85, 86, 91, 100 33, 34, 35, 36
2 61, 62 , 63, 64 84, 87, 92, 99 29, 30, 31, 32
3 57, 58, 59, 60 83, 88, 93, 98 25, 26, 27, 28
4 53, 54, 55, 56 82, 89, 94, 97 21, 22, 23, 24
5 49, 50, 51, 52 81, 90, 95, 96 17, 18, 19, 20
6 45, 46, 47, 48 77, 78, 79, 80 13, 14, 15, 16
7 41, 42, 43, 44 73, 74, 75, 76 9, 10, 11, 12
8 37, 38, 39, 40 69, 70, 71, 72 5, 6, 7, 8

yBays are numbered consecutively starting from the free end.
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Figure 8.17 APE identified damage regions on the FTE.

Table 8.11 APE damage identification results on the FTE.

True APE APE cpu
Test failed identified symmetric time
Case element # element #s element #s (sec.)

1 77 - 100% 77 - 104% 78 79 80 530
2 75 - 50% 69 - 40% 70 71 72 73 74 75 76 543

location is assumed, and the measurement and model uncertainty for both test cases are identical, the

search space for each test case is identical.

The results of the two test cases are presented in Table 8.11 and depicted in Figure 8.17. In

each case, the damage was correctly localized to a small area of the truss containing the true damaged

element. Further damage identification refinement to the exact element would require either additional

measured data, or a closer correlation between measured data and the analytical model. Improving

model correlation requires a higher fidelity model and/or less measurement uncertainty. In each test

case, the correct element and exact amount of damage was determined when noise free analytical
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Figure 8.18 Effect of structural damage on the measured response.

simulated data was used in lieu of the measured data. A representative frequency response, showing

the effect of damage (Case 1) is depicted in Figure 8.18.

8.4 Summary

The damage identification process was illustrated on two experimental structures and the results

reported. The first was a cantilevered truss modeled with 104 rod elements with a total of 96 degrees-

of-freedom. The measured data consisted of the first five flexible modal frequencies, and only eight

components of the five corresponding eigenvectors. The second experiment was a cantilevered frame

assembly modeled with 96 beam elements with a total of 192 degrees-of-freedom. The measured

data consisted of the first eight flexible modal frequencies, and only eight components of the eight

corresponding eigenvectors. In each test case, the structural damage could be localized to a small

portion of the structure. The extent to which damage can be localized was limited by both model

fidelity and accuracy of the measured modes.
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IX. Conclusions and Recommendations

9.1 Research Conclusions

A method was presented to identify damaged structural elements from limited measurement

data. The problem was broken into four distinct tasks: identification of modal parameters, model

tuning, damage localization, and damage identification. The research showed that structural damage

can be identified using only a small measured subset of the eigenstructure. Experimental tests were

conducted on two separate structures. The first was a cantilevered truss modeled with 104 rod elements

with a total of 96 degrees-of-freedom. The measured data consisted of the first five flexible modal

frequencies, and only eight components of the five corresponding eigenvectors. The second experiment

was a cantilevered frame assembly modeled with 96 beam elements with a total of 192 degrees-of-

freedom. The measured data consisted of the first eight flexible modal frequencies, and only eight

components of the eight corresponding eigenvectors. Two key factors in the ability to identify the

damage are: the accuracy of the measured data, and the fidelity of the analytical model. In the case of

perfect measurements and perfect model correlation, the exact damage can be identified. To account

for imperfect measurements and model correlation errors, the concept of damage localization was

introduced. In such cases, damage can be localized to a small sub-section of the structure.

Also investigated was the relation between increasing the number of sensors and increasing

the number of measured modes. The results showed that more information on structural damage is

gained from the ability to measure an additional modal frequency than from the ability to measure

one more degree-of-freedom. Previous studies investigated which modes should be used in a damage

identification algorithm by determining which modes change the most. In this research work, it was

found that as many modes as can accurately be measured should be used. Modes which are unchanged

from damage contain information on elements which are undamaged, and thus help further narrow

down the search space.

For the case where structural damage is confined to changes in the stiffness of structural elements,

it was shown that the resulting natural frequencies from damage can only decrease. Placing an

upper limit on the target frequencies corresponding to the nominal frequency of the analytical model

minimized the problem of mode switching during the iteration process and produced results which

were closer to the true damage.
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An objective function was introduced which represents the mismatch between the measured and

analytical partial eigendata. Two methods were used to minimize this function: ASTROS-ID, and APE.

A comparison of these two methods follows. Both solution methods use an iterative solution technique

to minimize the same objective function and are suitable with partial measured modal data. (An iterative

method is not required for the APE solution when perfect full length eigenvector measurements can be

obtained.) For ASTROS-ID, design variables can be any elemental mass or stiffness values, whereas

for APE the design variables are limited to changes in elemental stiffness. The advantage of the APE

method is that it does not require an eigenanalysis and the computation of the sensitivity values to each

design parameter at each outer-loop iteration step. APE however requires the decomposition of a large,

sparse, possibly singular matrix, which requires sparse matrix techniques to make it computationally

competitive. Both techniques benefit greatly from an initial sensitivity analysis to reduce the search

space prior to initiating either method. Due to the algorithm percolation process used in the APE

method, APE typically reduces the solution space to fewer elements than the ASTROS-ID method. As

currently coded, the APE method is computationally an order of magnitude faster than ASTROS-ID.

The success of either method is contingent upon accurate measured data and an analytical model which

correlates well with the measured data for the nominal, as well as the damaged configuration. Neither

method is guaranteed to converge to a global minimum.

9.2 Recommendations for Additional Research

During the course of any research investigation,additional understanding of the problem is always

accompanied with additional questions. During the experimental portion of modal identification on

the FTE, considerable difficulty was associated with extracting partial modal data for modes which are

spaced very closely in frequency. The use of additional input/output relationships helped to minimize

this problem, but may not be possible on orbit. Thus, it is recommended that additional research be

conducted on extracting mode shapes for closely spaced modes using non-ground base actuators. For

model tuning, several methods can be adopted to speed up the ASTROS-ID algorithm. Currently, the

design variable sensitivity is performed through a finite-difference method. Since these sensitivities are

known explicitly from the finite element formulation, the finite-difference method can be replaced with

either an analytical method in the current version of ASTROS (12) or the use of the matrix operator P

as used in APE. Additional research can be conducted in the percolation of either algorithm for damage
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identification. For either method, an adaptive method to narrow the search space can be employed to

speed the processing time. The ASTROS-ID search space currently is not reduced during the solution

process, and hence requires the sensitivity calculation during each outer-loop iteration step for all

design variables included in the initial search space. For the APE method, the search space is reduced

during the iteration process by fixed initial tolerances on the damage fractions. A method of gradually

tightening these tolerances as the solution progresses is desirable, and requires further investigation.

With respect to damage localization and sensor prioritization, the results are dependent on the chosen

thresholds for both detectability and colinearity. Although the threshold values are problem dependent,

additional studies would enhance future selection of these design parameters. Both methods can be

expanded to include structural damping in the formulation.

Lastly, the damage identification method presented in this study should be applied to other

structural applications. This method is suitable to any modeled structure where practicality dictates

that only a small portion of the eigenstructure can be measured. The method is ideally suited for remote

monitoring where more conventional non-destructive testing methods, such as x-raying and acoustic

emissions, cannot be employed.
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Appendix A. ASTROS-ID Software Modules

A full description of the initial version of ASTROS-ID is contained in the work by Gibson. [18]

However, during the course of this research effort,several shortcomings of the software were discovered,

requiring either modification or replacement of the original software code. The overall intent has not

been altered from that originally proposed by Gibson. This section is intended only to provide a

brief description of the software component modules used in ASTROS-ID that were modified or

altered after the original work. Errors encountered using the original code included runtime errors

when using non-consecutively numbered modes, as well as when using a different number of mode

shapes than modal frequencies. Other problems encountered included gradient calculations that did

not properly account for mode normalization and mode switches which were not identified, as well as

errors in the reporting of results. Second-order eigenvalue gradient information was also included in

the sensitivity calculations. Changes in the software are listed below which corrected these problems.

The mathematical foundation was presented in Chapter V. This list should be used to supplement the

original work. Information on the use of ASTROS can be obtained in Reference 55.

A.1 Modified Software Modules

1. MAPOL-ID.SEQ The mapol sequence was modified to incorporate the non-consecutive

eigendata, correct for point normalization, and incorporate the use of second-order gradi-

ents.

2. TUNE.FOR This module was modified to incorporate the non-consecutive eigendata and

incorporate the use of second-order gradients. Also included was the ability to set the

optimization parameters from the input data deck, and incorporate the numerical optimizer

Design Optimization Tools (DOT) [13] for the inner-loop optimization.

3. REPORT.FOR This module was updated to correct numerous formatting errors when

reporting results.

4. Misc. The original code included an unstructured data base entry called ‘MTRACE’

which kept track of the mapping between mode numbers during the iteration process. A

simpler method of renumbering the stored input data whenever a mode switch occurred
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was incorporated. As a result, most subroutines required a minor modification to remove

the MTRACE reference.

A.2 New Software Modules

1. ORTHTEST.FOR This routine checks for mode switching by performing a matrix search on

the modal correlation coefficient matrix, and updates the TSHAPE and TFREQ relational

entities corresponding to switched modes. This routine replaced the previously used

orthogonalization test.

2. MTCHINDX.FOR This routine matches mode numbers and index numbers between fre-

quencies and shapes required when non-consecutive data is input.

3. GETDLAM2.FOR This routine retrieves entities required for the second-order gradient

term calculations.

4. DLAM2.FOR This routine computes the second-order eigenvalue gradient terms.

5. UTMCOPY.FOR Matrix utility routine to copy a matrix entity in the data base.

6. PUTSCAL.FOR This routine allows multiple calls to put scalars into a matrix in the data

base from within the same loop.

7. NORMINDX.FOR This routine determines the internal degree-of-freedom corresponding

to the normalization point.

8. NORMAL.FOR This routine point normalizes the analytical eigenvectors such that the

degree-of-freedom corresponding to the max measured degree-of-freedom from the input

(TSHAPE) data is unity. A warning message is displayed (and the proper normalization

performed) if the input mode shapes were not normalized to maximum entry equals one.

Eigenvectors not used in the tuning process are mass normalized.
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Appendix B. APEWARE: Damage Identification Integrated Software

Figure B.1 Software opening menu.

The four tasks associated with damage identification were combined into an integrated software

tool which was programmed in MATLAB R
. This software package provides the design engineer an

easy to use tool to aid in determining system identification requirements, sensor placement, damage

localization studies, and damage identification using the assigned partial eigenstructure method. Also

included is pre and post-processing routines for use with ASTROS-ID. This appendix is intended only

to provide the reader with a brief introduction to the functionality and capabilities of the software

package. The algorithms for each task are based on the work presented in the main text, and were

briefly described under the software implementation section for each task. The specific algorithm

descriptions are not provided. Familiarity with MATLAB R
is assumed. Information on the use of

MATLAB R
is contained in Reference 52. The software was written and implemented on a Sun Sparc-

10 workstation running under Unix/Sun4. While most routines are ascii ‘.m’ format which can be

run on any platform, routines related to the sparse matrix operations were written in FORTRAN and

compiled as ‘.mex4’ code. These routines must be re-compiled when changing to a different platform.

The routines are bspars.mex4(bspars.f), fillmat.mex4(fillmat.f), and spqrmex.mex4(available from

MATLAB R
technical support).
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Figure B.2 APE control menu.

The program is initiated from the MATLAB R
command line with the command ‘apeware’.

Program control is facilitated through the main control panel as depicted in Figure B.2. Model files are

loaded into the workspace by depressing the [LOAD] button. The model files consist of information

on the finite element model matrices, grid data, and element connectivity data. A complete description

of the required data in the model file along with a list of utilities which can be used to generate the data

is included in Section B.5. The remaining buttons are described below.

[ERA.] Initiates the ERA submenu used for system identification as further defined in section B.1.

[Display.] Produces a wire frame drawing of the model, showing all instrumented degrees-of-

freedom. A typical display is shown in Figure B.3.

[Anim.] Initiates the animation submenu used to display and animate deformed geometry for

any mode contained in the model file. Modes may be produced either from the measured data using

ERA, or from the results of an eigenanalysis on the FEM model. This feature is further described in

Section B.2.

B-2



Figure B.3 Geometry display screen.

[Opt. sens.] Performs an analysis to prioritize the degrees-of-freedom to instrument based on

the modes selected (using the [Man] selection) and the tolerances set in [Tol]. This feature is further

discussed in Section B.3.

[Man.] Opens a dialogue box as shown in Figure B.4, allowing the user to input the measured

modes, the instrumented degrees-of-freedom and the element numbers of the elements used for the APE

method. The instrumented degrees-of-freedom and the element numbers are updated automatically

when using the [Vis] and [Sens. Anal.] selections respectively, as discussed below.

Figure B.4 Manual input dialogue box.

B-3



Figure B.5 Sample graphical sensor selection window.

[Vis.] Produces a wire-frame drawing of the model, and includes additional buttons which allow

the user to select, via the pointing device, the degrees-of-freedom to instrument. The [Direction]

button shows the current degree-of-freedom direction (X, Y, Z, Rx, Ry, Rz) corresponding only to

the degrees-of-freedom included in the model. Repeatedly depressing this button toggles through the

selections. Selecting the [Input] button allows the user to select degrees-of-freedom by clicking (right

mouse button) on the node to instrument. Nodes which are selected can be deselected in a similar

fashion. All selected nodes for the current degree-of-freedom direction are highlighted. The selection

process is terminated by making the final selection with the left mouse button. The [View] button

initiates the 3-D viewer, used to rotate the wire frame for ease of node selection. The [DONE] button

terminates the [Vis] command. A typical screen display is depicted in Figure B.5. The 3-D viewer is

shown in Figure B.6.

[Sens. Anal.] Initiates the sensitivity analysis for damage detectability and damage localization.

This feature is described in Section B.3.
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Figure B.6 Sample 3-D view selection control.

[Tol.] Initiates the tolerance menu containing the tolerance values for sensor prioritization,

damage detectability, damage localization, and the APE method. The tolerance menu is depicted in

Figure B.7.

[APE.] Performs the APE method for the search space defined in [Man] using the current

tolerance values. Graphical results obtained using APE are described in section B.4.

[Els.] Opens a dialogue box which allows the user to key in element numbers. Depressing the

[SHOW] button displays the keyed in elements on the wire-frame model in red.

[Close.] Terminates the software package.

B.1 System Identification

Identification of modal parameters from measured frequency response functions is fully auto-

mated using the apeware package. The process is initiated by depressing the [ERA] button from the

main control panel, which displays the ERA control panel as shown in Figure B.8. If the measured

transfer functions are not included in the model file, they can be loaded into the workspace either from

the command line or through the [LOAD] button on the main control panel. Information on how the

data was recorded, (sample rate, number of sample points, etc.) should be keyed in using the [ERA

specs] button, which initiates the parameters control panel as shown in Figure B.9. An explanation on

each parameter is obtained by depressing the [HELP] button. After setting the ERA parameters, the

ERA method, including the inverse Fourier transforms to obtain the time domain data, is performed

by depressing the [ERA] button. The state-space identified quadruple is contained in the workspace in

the variables (aera,bera,cera,dera), in either continuous or discrete form as determined by the setting

in the ERA parameters panel. If desired, a display of the singular values of the block Hankel matrix is
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Figure B.7 Tolerance menu.

provided to allow the user to select the number of singular values to retain, using the pointing device.

Simulated frequency response functions of the identified state-space quadruple can be computed and

displayed according to the value entered in the [plot fit] parameter box. A comparison of a simulated

frequency response function(s) of the identified model can then be obtained and displayed, as shown in

Figure B.11. An additional option to include a low-pass filter on the measured data is also incorporated.

The extraction of the modal parameters (frequencies and shapes) from the measured data is

performed using the [Extract] button. The resulting control screen is shown in Figure B.12. Modes

are selected by using the pointing device to click on a modal peak in the displayed frequency response

function(s). The eigenvalue of the model corresponding to the closest mouse pick is automatically

determined, along with the partial eigenvector for this mode. The selected partial mode shape is

displayed along with a polar plot indicating the phase of the identified eigenvector. When used on

measured data of structures with minimal structural damping, the phase of the eigenvectors should

lie along the abscissa (corresponding to real eigenvectors). The polar plot is used as a check on the

identified eigenvector. If the phase is scattered off the abscissa, the mode was poorly identified. Each

identified eigenvalue and eigenvector must be assigned a mode number. The software automatically
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compares the identified partial eigenvector with the stored eigenvectors of the analytical model. A

figure-of-merit (FOM) is listed on the display screen along with the mode number of the analytical

model with the highest FOM. The FOM is a measure of the colinearity, with a maximum value for

perfect colinearity at unity. Depressing the [Store] button saves the identified eigenvalue/eigenvector

pair for future use. The mode numbers can be changed by changing the entry in the displayed mode

number box. This pairing of the identified and analytical modes is performed to account for mode

swaps occuring in the damaged structure. Note that when using only partial eigenvectors, no guarantee

is made that the highest FOM corresponds to the correct mode number, and thus care must be exercised

when assigning mode numbers. The [Clear modes] button can be used to clear the previously stored

modes from the workspace. The currently stored modes are listed on the display screen, and is updated

after each store operation. The mode selection process is repeated by depressing the [Select again]

button for each mode desired. The [Zoom] button can be used to help the selection of closely spaced

frequency peaks. A green circle is displayed on each peak selected to aid in the identification process.

Modal peaks can be selected from any frequency response function. Because the frequency functions

are all based on the same ERA identified model, they all contain the same modal information. However,

some modes may not be visible from the selected transfer function. Different transfer functions are

selected by changing the [Input] and [Output] numbers on the ERA control menu. Multiple transfer

functions can be displayed by including several combinations in the Input/Output boxes. The [clear]

button is used to clear the plotting window.

B.2 Model Tuning

Model tuning is performed using ASTROS-ID, a software package independent of the apeware

package. ASTROS-ID however lacks a graphical pre and post-processor. Apeware partially accomo-

dates this deficiency by providing an easy to use graphical interface to display deformed geometries and

animate mode shapes. This information is useful in classifying mode shapes and correlating analytical

and measured mode shapes. This feature is initiated using the [Anim] button (animation) on the main

control panel. The mode view control panel is depicted in Figure B.13. Several types of displayed

results are possible. Deformed geometries using the wire-frame model can be displayed for any stored

mode, from either the analytical data as in Figure B.14, measured data, or both. Additionally, mode

shapes can be animated at fifteen frames per second to aid in the classification process. Alternatively,
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Figure B.8 ERA control menu.

Figure B.9 ERA parameters control panel.
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Figure B.10 ERA help menu dialogue box.

Figure B.11 Sample frequency response showing measured data and simulated data from an ERA
identified model.
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Figure B.12 Control panel to extract measured modes.

the mode shapes can be viewed using a line plot format, using either the full length eigenvectors as

in Figure B.16, or the partial eigenvectors corresponding to the instrumented degrees-of-freedom as in

Figure B.15. Vector normalization and sign convention are automatically accounted for in the displayed

results.

Interactive compiled FORTRAN routines (db2mate, db2xyz, db2dvs) can be used to extract

the eigenvalues and eigenvectors, the finite element model, and the tuned design variables from

the ASTROS data base. The results are stored in MATLAB R
binary format for use with apeware.

Additionally, the MATLAB R
routines wrtshape and wrtfreq can be used to generate the TSHAPE and

TFREQ data cards from the identified data, for use in ASTROS-ID.

B.3 Sensitivity Analysis

The sensitivity analysis is performed using the stored analytical model. The analysis is performed

on the modes keyed in using the [Man] button on the main control panel. Parameters for both the

damage localization and the sensor prioritization are determined from the keyed in entries on the

tolerance menu obtained using the [Tol] button. The sensor prioritization is performed by depressing
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Figure B.13 Mode viewer control panel.

Figure B.14 Sample display of deformed geometry.
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Figure B.15 Sample line plot of a partial measured eigenvector corresponding to the sensor points
only.

Figure B.16 Sample line plot of a full eigenvector.
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Figure B.17 Sample sensor location gradient information.

the [Opt. Sens.] button. The results of the sensor prioritization are shown in two separate display

windows. The first is the gradient information, depicting the values of D� for each sensor location as

shown in Figure B.17. Also listed are the degrees-of-freedom with values ofD� below the detectability

threshold level, and degrees-of-freedom within the colinearity S� threshold level. A second figure lists

the prioritized locations in order, starting from the upper left, as shown in Figure B.18.

Damage localization is performed by depressing the [Sens. Anal.] button on the main con-

trol panel. The results are displayed in two separate figures. Eigenvalue and eigenvector gradient

information contained in D� and D� is displayed as shown in Figure B.19. The colinearity analysis

results are displayed as shown in Figure B.20, which lists the symmetric elements as well as the un-

detectable elements. Element numbers are color coded, with each symmetric set assigned to a distinct

color. For reference, a wire-frame model is also displayed with the elements color coded according

to the displayed information. Bright green elements are classified as undetectable and white elements

correspond to elements which can be uniquely identified.
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Figure B.18 Sample sensor location prioritized list.

Figure B.19 Sample damage localization gradient results.
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Figure B.20 Sample damage localization analysis results.

B.4 Damage Identification

Damage identification using APE is performed using the [APE] button on the main control

panel. The APE iteration proceeds according to the parameters set in the tolerance menu as shown

in Figure B.7. The iteration tolerance values are explained using the [HELP] button. The numerical

results of the APE method are displayed as shown in Figure B.21. If the [show graphics] box is set to

1, the results are also shown in graphical format as depicted in Figure B.22, with the identified damaged

elements color coded according to the percent damage identified. If [show graphics] is set to 2, the

intermediate results for each iteration step are displayed.

B.5 Model File Requirements

The following is a list of variables and their descriptions, which must be contained in a

MATLAB R
binary file. This file must be loaded into the workspace after initiating the apeware pro-

gram. The existing workspace is purged when the program is initiated. Note also that MATLAB R
is

case sensitive.
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Figure B.21 Sample damage identification numerical results.

Figure B.22 Sample damage identification graphical results.
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1. M Finite element mass matrix.

2. K Finite element stiffness matrix.

3. C Identity matrix the size of M .

4. eol Sorted eigenvalues of M , K.

5. vol Sorted eigenvectors of M , K.

6. B Matrix as defined in Equation (6.10) or (6.13) such that Ki = BiB
T
i .

7. nb Number of columns in B corresponding to a single element (scalar).

8. DOFTYPE Number of degrees of freedom per node (scalar).

9. xyz Matrix containing the grid point coordinates, one (x,y,z) triplet for each node. Matrix

size is (# of nodes x 3).

10. con Matrix whose ith row points to the row of grid points in xyz for the ith element.

Matrix size is (# of elements x 2).

11. CONINDX Vector which points to rows in con that have columns in B (# of design

variables).

12. connodes Vector listing nodes which are constrained.

13. DOFSTR String vector of degree-of-freedom labels, (‘X’, ‘Y’, ‘Z’, ‘Rx’, ‘Ry’, ‘Rz’),

used in the model.

B.5.1 Utilities. To aid in construction of some of the model file requirements, the following

utilities are available.

1. db2mate Executable routine to extract the mass, stiffness, circular frequencies, and eigen-

vectors from an ASTROS data base.

2. db2xyz Executable routine to extract the xyz and con matrices from an ASTROS data

base.

3. db2dvs Executable routine to extract the tuned design variables and elemental properties

from an ASTROS data base.
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4. bildbeam MATLAB R
.m file to construct the B matrix for beam elements from the

elemental properties.

5. bildrod MATLAB R
.m file to construct theB matrix for rod elements from the elemental

properties.

6. eigsrt MATLAB R
.m file to construct the sorted eigenvalue (eol) and eigenvectors (vol)

matrices from M and K.
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