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Abstract

The response of composite sandwich plates to low-velocity impact is the subject of this research.

The objective of the research is to analytically model the response of composite sandwich plates to

low-velocity impact. A displacement based, plane stress, finite element code is modified for this

purpose. Major new algorithms include 5' order Hermitian interpolation, three-dimensional

equilibrium integration for transverse stress calculations, sandwich core modeling as an elastic-plastic

foundation, loading by simulated contact with a spherical indentor, adaptive mesh, damage prediction,

damage progression via stiffness reduction, and local-global analysis for displacement. An

experimental effort is also included in which composite sandwich plates with graphite-epoxy

facesheets and Nomex honeycomb core are subjected to low velocity impact (instrumented impactor)

and static indentation. Comparison of static and dynamic results indicates limitations for the quasi-

static assumptions typically made. Dynamic simulation of the impact event is provided by a one-

dimensional, three-degree of freedom model. Classical three-dimensional and cylindrical bending

elasticity solutions attributed to Pagano are modified for Hertzian contact and sandwich structures,

providing an exact solution against which the finite element analysis is benchmarked. The two-

dimensional (plane stress) finite element analysis, when combined with the three-dimensional

equations of stress equilibrium predicts the three-dimensional state of stress in an undamaged

composite sandwich under contact-type loading. The three-dimensional stresses obtained from the

equilibrium equations and the in-plane finite element stresses compare favorably with the elasticity

solution. When compared to the experimental data, the finite element analysis shows the ability to

model some of the important features of static indentation of composite sandwich structures. In

particular, the slope of the load displacement curve (stiffness), including contact, before damage is

well represented. Core failure load is predicted by the analysis within ten percent of the experimental

value. Delamination patterns predicted by the analysis are similar in shape to the delaminations

observed by C-scans from the experiments, but are smaller for the same load.
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LOW-VELOCITY IMPACT ON COMPOSITE SANDWICH PLATES

1. Introduction

1.1 Motivation

Sandwich structures have long been recognized as one of the most efficient constructions for

resisting bending loads. These hybrid constructions consist of two relatively dense and stiff outer

facesheets that are bonded to either side of a low-density core. The facesheets usually carry axial

loads and the core sustains shear and compressive stresses normal to the panel while preventing

wrinkling or buckling of the facesheets under axial compressive loading [1]. The core usually

contributes little in-plane and flexural stiffness to the sandwich structure, but it can have

significant transverse stiffness and adequate shear stiffness. The existence of the core places the

facesheets away from the plate bending neutral axis, enhancing the bending resistance of the

facesheets. The result is a thicker plate or shell with a higher bending stiffness-to-weight ratio than

the facesheets alone. Considering that corrugated cardboard is a sandwich structure, sandwich

constructions are perhaps the most common means employed to enhance the bending stiffness to

weight ratio of a material.

The need for stiff, lightweight structures in aerospace vehicle components then, has

motivated the design and analysis of sandwich plates and shells using composite materials. The

aerospace industry, with its many bending stiffness dominated structures and its need for low

weight, has employed sandwich constructions using aluminum honeycomb cores extensively. The

most common currently fielded sandwich constructions suffer from two major maintenance

problems: corrosion damage to the core from trapped moisture, and low-velocity impact damage.

The core corrosion problem can be greatly reduced by using a non-corrosive core such as Nomex

honeycomb. Low-velocity impact damage to such structures is the subject of the present research.

A principal drawback of laminated composite panels in general and composite sandwiches in

particular is their susceptibility to low-velocity impact damage such as that brought about by

dropped tools and runway/taxiway debris. In particular, significant loss of compressive strength

has been found to occur without any visible sign of damage [2-4]. This situation is a major
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concern for both manufacturers and end-users who need to locate damages and define criteria for

acceptance and/or repair of structural members. There remains considerable room for

improvement of composite sandwich low-velocity impact damage resistance (ability to resist low-

velocity impact without structural damage) and low-velocity impact damage tolerance (ability to

resist design loads after damage from low-velocity impact). Increasing either the low-velocity

impact damage resistance of a structure or its low-velocity impact damage tolerance requires

understanding of its response to low-velocity impact loads. The response of laminated composite

sandwich plates to low-velocity impact loads is also considered in the present research.

Predicting the response of laminated composite plates to mechanical loads is complicated

due to effects such as: through-the-thickness property variation, geometric and material

nonlinearity, transverse shear, and multiple and coupled damage modes. The addition of a low-

density core in sandwich constructions further complicates the analysis. Closed-form methods are

limited to linear solutions (with many simplifying assumptions) for specific geometries, lay-ups,

and boundary conditions. Experimental testing can yield response data for a particular plate and

load, but it is not generally practicable, in terms of time and monetary expense, to experimentally

characterize the effects of a wide range of variables. Such characterization is required to direct an

optimization of any design. The characterization is also needed for modification and repair design

since any structural variation must be evaluated in terms of its contribution to low-velocity impact

damage resistance and low-velocity impact damage tolerance of the structure.

In contrast to experimental testing, numerical techniques like the finite element method

(FEM) can be applied to plates and shells of different shapes, sizes, compositions, loadings and

supports without the expense and lead time required for testing. The accuracy and practicality of

FEM are dependent on the governing theories, model complexity, mesh refinement, user's skill

(in the representation of the geometric structures, material properties, boundary conditions and

loads), and a given computer's memory capacity, speed, and precision. The failure modes

commonly observed in low-velocity impact to composite sandwich plates (fiber failure, matrix

cracking, delamination, core crushing [5]) are driven by three-dimensional stress states. This

implies that any model representing low-velocity impact to composite sandwich plates should be

capable of accurately predicting three-dimensional stresses. The obvious approach is to employ a

three-dimensional FEM, but the detail required in such a model very quickly overwhelms the

1-2



computational capacity available to the analyst. A two-dimensional FEM that can accurately

represent low-velocity impact to composite sandwich structures can dramatically reduce the

computational expense.

A simple hypothetical example will illustrate this. Suppose an analysis of a typical simply

supported, center loaded, 20 cm x 20 cm, 64-ply (0.127 mm ply thickness) laminated plate is

required. What computational capacity would one need to model such a structure? Three-

dimensional stresses will determine failure. A three-dimensional model seems appropriate. A

reasonable approach is to use a stack of 24 degree-of-freedom, eight noded (3 displacements per

node) three-dimensional brick elements. Maintaining a maximum aspect ratio of seven, the

maximum in-plane element dimension is a tiny 0.89 m. The minimum number of elements for

the model is 115 x 115 x 64 = 846,400. The model has over 2.5 million degrees-of-freedom. If

plate elements are used instead, a symmetric 11 x 11 = 121 element grid of shear deformable, 56

degree-of-freedom, four noded (see Chapter 4 for description of this element) plate finite elements

will probably prove sufficient. The number of elements in each in-plane direction is reduced by an

order of magnitude because two-dimensional elements do not suffer the aspect ratio problems

associated with the small ply thickness. After boundary conditions are applied, this model has less

than 1800 degrees-of-freedom. For this scenario, the number of degrees-of-freedom required by

the three-dimensional model is at least 1400 times that of the two-dimensional model. If the plate

was a sandwich construction, the difference is even more dramatic. This is admittedly a contrived

problem. The analyst could choose to accept poorly shaped elements (in the regions of small

stress gradients) without significant loss of accuracy. This example nevertheless illustrates the

advantage of a plate solution of a laminated composite. Considering the nonlinearities associated

with contact, geometry, and material properties, a full three-dimensional solution is, in many

cases, prohibitively expensive. Therefore, an accurate method to account for low-velocity impact

induced damage of a composite sandwich plate without resorting to a three-dimensional FEM

should prove to be a significant contribution.

1.2 Objective

The object of this research is to provide understanding of and ultimately predict the initiation

and progression of damage to a composite sandwich plate due to low velocity impact. This
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prediction will be based on a two-dimensional finite element model will. The finite element

program developed for this research is capable of modeling composite sandwich plates while

extracting quasi three-dimensional stress values by employing the differential equations of

equilibrium for a deformable continuous body [221]. Geometric nonlinearity and transverse shear

effects are modeled. Contact between the plate and the impactor is also modeled. Appropriate

damage initiation and progression criteria are identified and the code reduces the stiffness of the

damaged elements to model the effects of matrix cracking, delamination, fiber failure, and core

crushing damage progression.

1.3 Approach

This research involved both experimental and analytical efforts.

1.3.1 Experimental investigation.

To provide a basic understanding of the physical processes involved in low-velocity impact

to composite sandwich plates and to validate the analytical developments of this study, an

experimental investigation was performed. Several plates of a particular material and geometric

configuration were impacted by a free-falling (drop weight) or free swinging (pendulum)

hemispherical-nosed mass (the tup). Contact force was monitored throughout the impact event

through the use of an instrumented impactor. In addition, plates of each configuration were

subjected to static indentation simulating one or more of the same impact loads. After impact or

static loading, each specimen was carefully analyzed to determine the damage modes present and

the extent of damage by each mode. A range of impact energies provided a characterization of the

damage as a function of impact energy. Comparison of the static and impact damages over a

range of facesheet thicknesses provided insight into the range of applicability of quasi-static

assumptions commonly made in thin monolithic laminate analyses to sandwich constructions in

general and thick facesheet structures in particular. This information fills voids in the published

data [5] (particularly at low impact energies), indicates when dynamic analyses are required, and

validates the finite element program.
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1.3.2 Analytical development.

Transverse impact damage progression in a composite sandwich panel is a three-dimensional

phenomenon. This can be seen by a superficial examination of the failure modes exhibited in

typical damages while considering the stresses that can give rise to them. Fiber failure is driven

most strongly by in-plane direct stress in the fiber direction. Matrix cracking is driven most

strongly by transverse shear stress and in-plane direct stress normal to the fibers. Delamination is

driven by transverse shear stress and transverse direct stress. Core crushing is driven by

transverse direct stress. A two-dimensional (plane stress) model of the plate in which transverse

shear strain is compatible at the lamina interfaces has the significant limitations that transverse

direct stress is assumed to be zero (plane stress) and transverse shear stress is not necessarily

compatible at the lamina interfaces (due to constitutive differences from ply to ply). These

limitations must be overcome if a plane stress model is to be used for predicting damage

progression in a composite sandwich panel. It is here that the three-dimensional differential

equations of equilibrium of a deformable continuous body are employed.

The approach for this effort involves a local/global method. The local model represents a

single facesheet and its supporting core by plate finite elements (the facesheet) with an elastic

foundation (the core). The global model represents the entire sandwich structure by plate finite

elements in which the facesheets and the core contribute to the stiffness of each element. In both

cases the plate elements incorporate cubic kinematics and in the local model a post-processing

algorithm integrates three-dimensional equilibrium equations producing a quasi three-dimensional

stress tensor. Contact between the plate and the tup is assumed to produce a Hertzian pressure

distribution under the tup. In the local model, the transverse strains (obtained from the three-

dimensional stresses) are integrated to establish the contact surface between the plate and the

impactor. The contact radius is a product of the local model and is obtained through an iterative

algorithm in which the three-dimensional shape of the top surface of the plate under the load is

made to conform to the known shape of the tup. In this way, an iterative scheme produces a stress

field satisfying compatibility (via the plate finite element model), the contact problem, and the

approximately satisfying the three-dimensional differential equations of equilibrium for the plate.

Once this contact radius is known from the local model, it establishes the distribution of load

on the global model since the total force is known for the given load increment and the form of
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the distribution of the force is assumed to be Hertzian. The sandwich plate (global) FEM is then

run to obtain the midplane displacement of the sandwich. This is required because the local model

includes no sandwich plate midplane displacement and it is desired to compare displacement with

the experimental data. In particular, the top surface displacement is taken to be the sum of the top

surface displacement in the local model (for which sandwich midplane displacement was zero) and

the midplane displacement from the global model.

The six components of stress within the top facesheet resulting from this procedure are used

with failure criteria to update the constitutive relationship in the local finite element model. When

the transverse load of the plate reaches sufficient magnitude, the failure criteria indicate localized

failure of the composite sandwich structure via fiber failure, matrix cracking, and delamination.

The displacement from the local finite element model establishes an average core stress by an

empirical elastic-plastic relationship between core strain and core stress derived from the core

manufacturer's uniaxial compression test data [128]. This core stress provides the foundation

pressure distribution that supports the facesheet. The displacement from the local finite element

model divided by the core thickness is taken to be the average core strain. The failure of the core

is predicted by a simple maximum strain criteria in which the core is assumed to fail (core

crushing/crippling) when the strain reaches the magnitude of the failure strain in a uniaxial

compression test [128]. In this way, appropriate failure criteria estimate both the modes and

extent of the failure at any given load increment. As the individual plies or interfaces fail, a

stiffness reduction routine simulates the varying material response, smearing the effect of the

damage over the damaged element(s). As the core fails, the foundation stiffness for a given

element is reduced to simulate the fact that a crushed/crippled core does not provide transverse

support to the facesheet.

Thus, the analytical code developed for this dissertation simulates many of the important

features of composite sandwich plate impact.

1.4 Novelty

With regard to empirical data for low-velocity impact to composite sandwich plates, this

research extends, bridges gaps in, and most importantly provides an interpretative framework for
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the existing database. The current work also provides a cost effective analytical tool for modeling

the low-velocity impact event in composite sandwich plates. The novelty of this research lies in

six principal areas. The first three relate to the experimental investigation: (1) the effects of

instrumented impactor dynamics on impact test results; (2) a correlation of instrumented impactor

load data to damage progression in composite sandwich plates; and (3) the time-dependence of the

low-velocity impact response of composite sandwich plates and its implications for quasi-steady

analyses and tests. The last three areas are the means by which the following are accounted for in

a low-velocity impact to composite sandwich plate analysis: (1) through-the-thickness stresses; (2)

local deformations in the contact zone; (3) core, intra-ply, and inter-ply damage progression.

1.5 Overview

Chapter 2 presents the background for the current work and reviews some of the literature

contributing to the understanding of the physical processes involved in the initiation and

progression of damage in laminated composites in general and sandwich structures in particular.

Some of the literature relevant to: modeling sandwich plates, failure theories, progressive

damage, three-dimensional equilibrium considerations, finite element solution, contact, impact

dynamics, and instrumented impactor testing are also briefly reviewed.

Chapter 3 presents the characterization and improvements to the experimental test systems

used in the experimental investigation portion of the current work. Corrections to the data

reduction algorithms to account for tup dynamics are also developed.

Chapter 4 presents the experimental investigation portion of the current work. Static

indentation and impact test data for composite panels with graphite-epoxy cross-ply face sheets

and Nomex honeycomb core are presented and interpreted. The two primary variables of interest

in these tests were facesheet thickness (number of cross plies) and impact energy. General trends

are identified and discussed. Implications of these data relevant to modeling of the structures and

damage processes involved are addressed.

Chapter 5 extends the elasticity theory of Pagano [236-237] to sandwich strips and plates

with contact-type loads simulated by a Hertzian pressure distribution. This provides exact (elastic)

solutions with which to benchmark the finite element code.
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Chapter 6 briefly reviews finite element theory as it applies to the current work and presents

the theory developed for the several new algorithms in the analytical code.

The results of some geometrically and materially linear analyses are given in Chapter 7.

Comparisons to the elasticity solution of Chapter 5 are presented for the cases of a plate in

cylindrical bending with a known small contact half-width and a square plate simply supported on

its perimeter and loaded in the center with a known large contact radius.

Nonlinearities are introduced in Chapter 8. Geometric nonlinearity, nonlinear contact, and

nonlinear material properties (damage) are included. Comparisons to the experimental results of

Chapter 4 are made.

A summary and some conclusions are given in Chapter 9.

Mathcad templates for the three-degree of freedom model of sandwich plate impact and for

generating the elasticity solution for Hertzian contact loaded sandwich plates are given in

Appendix A. Mathematica source code used in the development of the SANDI (Sandwich

indentation) program, instructions for use, and a sample input form which doubles as an

abbreviated users manual are found in Appendix B.

1.6 Sponsorship

This work is sponsored by William Baron (WL/FIBA) of the Air Force Flight Dynamics

Directorate of Wright Laboratories.
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2. Background

Due to the importance of composite structures and their susceptibility to low-velocity impact

damage, low-velocity impact to monolithic laminated composite structures has been the subject of

intensive study for a number of years. The quantity of existent published material specifically

addressing low-velocity impact to composite sandwich plates is, by comparison, small.

Nevertheless, since an article need not specifically address low-velocity impact to composite

sandwich plates to be of interest to that research, a very substantial database (well over 700

articles) of material relating to the research topic has been collected by the writer. The fact that

this database by no means exhausts the literature base is evident from the fact that one area of the

research, finite element method in contact-impact problems, is represented in the literature by at

least 469 articles published between 1980 and 1993 [14]. It is therefore necessary to limit the

scope of this review to those articles which: 1) have provided direction to this research; 2) support

a particular claim of this dissertation; or 3) are representative of other theories or approaches

which should be considered.

2.1 Sandwich Plate

Low-velocity impact to composite sandwich plates can be addressed from two perspectives,

"damage resistance," and "damage tolerance." Damage resistance considers the amount of

damage a material or structure sustains from a particular event, i.e. the relationship between the

type and "magnitude" of the event and the resulting damage. The "particular event" is either low-

velocity impact by a hard blunt object, or static indentation. Damage tolerance considers the

ability of the material or structure to sustain design loads after damage. For composite sandwich

structures, the "design loads" are generally taken to be uniaxial compression because the types of

damage normally present after impact can substantially reduce the residual uniaxial compression

strength.

Damage resistance, and not damage tolerance, is the focus of this research. In the following

sections, relevant work in the area of low-velocity impact damage resistance of composite

sandwich plates is briefly reviewed, but the much more extensive body of literature on of low-

velocity impact damage resistance of monolithic laminated composite structures is also reviewed
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where it provided guidance for this research. The review papers of Cantwell and Morton [16] and

Abrate [13] are excellent starting points for review of the low-velocity impact resistance of

monolithic laminates as are the "Previous Work" chapter of Tsang's Ph.D. thesis [151 and the

review paper of Noor et al [240] for composite sandwich structures.

2.2 Failure Criteria

There are three fundamentally different types of damage that result from low-velocity

impact to composite sandwich plates: 1) intraply damage within the facesheet lamina (e.g. fiber

breakage, matrix cracking); 2) interply damage (delamination) in the facesheet laminates; and 3)

compressive (e.g. buckling, crippling, or crushing) damage to the core. In a typical impact

analysis, a mathematical model representing the equations of motion of the of the structure is

"loaded" by force and displacement boundary conditions. The output of the model is the predicted

response of the structure including displacements and internal loads (stresses). Often in such

models, an underlying assumption is that the strain energy stored in the structure is monotonic

with applied load. Real materials do not behave this way. Instead, with increasing load there is

often range of load over which the strain energy drops due to the propagation of internal material

flaws. Failure criteria are used to predict the onset of this flaw propagation process. Typical

failure criteria define a metric based on stress, strain, or internal energy which is supposed to

have a critical value (often unity) which can be identified with the onset of material failure. Scores

of failure theories are documented in survey papers in the literature [17-20] and several have been

applied to composites [17-55]. The relative merits of most of these theories are summarized in

Nahas [17].

The four failure theories used most in composite design are maximum strain, maximum

stress, Azzi-Tsai, and Tsai-Wu. Of these, maximum strain and maximum stress determine the

failure mode and have the benefits of ease of use and applicability to the core failure as well as

facesheet failure. Azzi-Tsai, and Tsai-Wu do not, by themselves determine the failure mode. With

the assumption that matrix cracking occurs well before fiber and fiber-matrix bond failure in low-

velocity impact and the recognition that these theories can not predict delamination or core failure,

these theories can be assumed to "determine" the failure mode. That is, violation of these criteria

in low-velocity impact problems can be assumed to indicate matrix cracking. In this research,

maximum strain, maximum stress, a generalized, three-dimensional form of Azzi-Tsai by Hashin
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[21, 32, 242] which is capable of predicting delamination, and a three-dimensional quadratic form

similar to Tsai-Wu by Lee [66] were considered. In the following criteria, o (i= 1,2,3) refers to

the direct stress in the fiber, lateral, and transverse directions and z (ij = 1,2,3; i # j) refers to

the shear stress on the "i" plane in the "j" direction. The strengths of the lamina in uniaxial

tension and compression parallel to the fibers are X, and X,, perpendicular to the fibers they are Y,

and Y, and the shear strengths are corresponding to iij are Sij.

2.2.1 Fiber failure criteria.

The first failure criteria to be addressed is for fiber failure. Two different stress-based

criteria were used to predict fiber failure. The following inequalities define stress states in which

fiber failure was assumed to exist.

maximum stress: Hashin [242]:

case a-, > 0, case o > 0,W 2 
2 13 > 1 (2-1)

xt) 2) 13

case au < 0, case -1 < 0,W2 2>1 LrJ >-1

The first case in each of the inequalities in equation 2-1 represents a tensile fiber failure mode

while the second case represents a compressive (fiber buckling) mode. The difference between

these two criteria is that Hashin considers the contribution of shear to fiber tensile failure while

maximum stress considers only the fiber direct stress.

2.2.2 Matrix failure criteria.

Three different matrix cracking failure criteria were used to predict damage to the

facesheets. These are, maximum tensile stress, Lee [66], and Hashin [242]. The maximum matrix

tensile stress is based on the direct in-plane stress seen by the matrix, while the Lee criterion

considers only in-plane and transverse shear. In contrast, the Hashin criterion considers direct in-

plane and transverse stress seen by the matrix as well as in-plane and transverse shear. The

criteria are given in equations (2-2).
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Hashin [242]:

maximum stress: Lee [66]: case (-2 + a 3) > 0,

case - 2  > 0, 2 12 2 U2 U3
2+$23 > , S232

\yt) Sl2)2 2
K-+ 2 2 + 13 >1

case a-2 <0 , S12
2  S132

case (o2 + 03) <0, (2-2)

E+ 3D{ (-(3 }-23

2 2U2 + U3 >1

2  2
+ 2 + 3  + T23  U2,3

2S23 D2
2 2

+ "12 + 1 3 >1

S12  S13

2.2.3 Delamination failure criteria.

The last stress-based failure criteria to be addressed is for delamination. Three different

stress-based criteria were used to predict delamination. The following inequalities define stress

states in which delamination was assumed to exist.

maximum stress: Lee [66]: Hashin [242]:

case 3 > 0, case - 3 > 0,CD 2 2 2 D 2 23 1 T13  T23  0,3 T13 + 1232Yt .J (-13-, \-23) >- 1 \Yt ) - S 132 -1 (-)

case a3 < 0, case o-3 < 0,

no failure 2-13 - 22

S132

2.3 Progressive Damage

Progressive damage of composite structures has been investigated extensively both

experimentally and analytically [6, 8, 10, 17, 21, 24, 28, 32, 34, 36, 37, 39-41, 43, 51, 52, 56-

112]. Experimental investigations have demonstrated the complex and coupled nature of the

processes involved. The analysis of progressive damage with arbitrary lay-ups and loading

requires both a laminate stress analysis model that can account for general states of stress and a

failure model that can account for general modes of damage. After pointwise stresses in each
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layer of the composite are known from laminate analysis, failure of the composite is predicted

either by employing a phenomenological failure criterion at the macromechanical (lamina) level or

by relating the lamina stresses to the stresses in each constituent of the composite and employing a

failure criterion at the micromechanical level. Micromechanical criteria were not considered for

this research.

2.3.1 Monolithic laminate (facesheet) damage.

Talreja [75] classified the effects of transverse cracking on the constitutive response of

composite laminates including the constraints provided by plies neighboring the cracking plies.

For orthotropic laminates, his method required four material constants obtained from test data for

damaged and undamaged specimens for which crack density is known. His method showed better

agreement with experimental data than the ply discount method.

Hwang and Sun [21] developed a three-dimensional finite element model for damage

prediction in laminated composite materials. They used the Tsai-Wu failure criterion to predict

failure. They set the stiffness properties related to the predicted mode of failure to zero in each

damaged element. For example, when fiber failure occurred in an element, the material stiffness

coefficients Q11, Q12, Q13, Q55, and Q66 were set equal to zero in that element. When only matrix

failure was predicted, the coefficients Q12, Q22, Q23, Q44, and Q66 were set equal to zero. The entire

stiffness matrix was set to zero if fiber and matrix failure modes occurred. Good agreement with

experimental results was obtained for angle-ply and cross-ply tension specimens.

Allix and Ladeveze [61] modeled fiber fracture, matrix cracking, and fiber-matrix

debonding at the lamina level, with damage in the form of microcracks being coupled with plastic

behavior of the matrix. Strain energy based damage evolution laws were developed employing

two experimentally determined material constants. Delamination at edges of laminates was also

analyzed by modeling the three-dimensional stress state in these regions. The entire procedure

was implemented into a nonlinear finite element code. No direct-comparisons with experimental

results were given.

Pandey and Reddy [113] and Reddy and Reddy [19] each developed a two-dimensional

nonlinear finite element code for laminate analysis and performed progressive failure analysis

using several different lamina failure criteria. They found that the various failure criteria predicted
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quite different failure loads, with the disparity in predictions greater for nonlinear analysis than

for linear analysis.

Micromechanics based matrix damage models of various sorts were developed by Averill

[58], Bakuckas et al [114], Joshi and Goode [115], among others.

Wang [116] and the references there cited present the theory for application of fracture

mechanics (stress singularity) principles to the investigation of delamination problems in

composite materials. Without exception, the assumed geometry and loading are much simpler than

that inherent in low-velocity impact.

Comninou [117], Comninou & Schmueser [118], Comninou & Dundurs [119], and

Gautesen & Dundurs [120-122] taken together provide an approach which incorporates contact

zones at the crack tips (zones with normal tractions only in which the cracks slide but do not

separate near the tip, avoiding the overlapping problem inherent in a perfect-bond/traction-free

discontinuity at the tip seen by England [123] and Malyshev & Salganik [124]). The work was

two-dimensional (plane strain) and extension to three-dimensions as this research requires is not

obvious.

Corigliano [7] takes interface models several steps further. He makes particular reference to

composite delamination, discusses the difficulties of using them in numerical analyses, proposes a

numerical integration scheme for the interface constitutive laws, and presents an algorithm for

structural analysis in the presence of softening interfaces. It works like this: a nonlinear

constitutive law is integrated elastically (via FEA) in a predictor phase, checked for consistency,

and run through a plastic-damage corrector phase to obtain displacement discontinuities from

tractions. These displacement discontinuities are the new degrees-of-freedom in the delaminated

element proposed (but not developed) by the present research.

Another method to account for progressive damage is the displacement step function

method. Here the discontinuity is accounted for by Heaviside step functions in the kinematic

expressions. Chattopadhyay and Gu [6] used a new plate theory including Heaviside step

functions in the kinematics to investigate delamination buckling and growth within composite

laminates. In that paper, in-plane displacements are assumed to be forth-order polynomials in z.
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Those authors apply their method to one-dimensional (beam) delamination problems using strain

energy release rate as the crack growth indicator. The kinematics in this paper inspired the new

delamination-capable finite element proposed in the present research.

Ladeveze [561 presents a damage mechanics delamination model. A bridge between damage

mechanics and fracture mechanics is outlined in this paper and a strain energy-based damage

evolution law is employed. The interface is considered a thin resin rich zone having the following

characteristics: orthotropic behavior, unilateral damage normal to the in-plane direction (there is

no damage under mode I compression), stiffness variation indicates damage, interface behavior is

elastic-damage. The ideas in this paper are the basis for the delamination propagation modeling

within the new delamination-capable finite element proposed in the present research. Other

damage mechanics based analytical investigations of delamination progression in laminated

composites are documented [6, 28, 59, 60, 125] among others.

Chang and Kutlu [125] considered a plane strain model of a pressure loaded cylindrical

shell with a delaminated strip along its length. A nonlinear finite element code and a two mode

(modes I and II) strain energy release rate criterion for crack extension were used. Mode II was

found to dominate.

Hu [60] used offset node beam elements in a dynamic model to predict delamination

growth.

2.3.2 Core properties/damage.

2.3.2.1 Experimental investigations.

Experimental investigations of nomex honeycomb core properties/damage are documented

in the following references [5, 126-131]

2.3.2.2 Analytical investigations.

Analytical investigations nomex honeycomb core properties/damage are documented [69,

101, 130, 133]. Hussein et al [133] treated the core as a semi-infinite medium in which the

displacement is an exponentially decaying function of distance from the facesheet. Damage to the

core was not considered. Oplinger and Slepetz [130] modeled the core as an elastic foundation.
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Damage to the core was not considered. Tsang [131] treated the core as a homogeneous isotropic

plate attached to two homogeneous transversely isotropic plates. Each of the previous treatments

did not consider damage to the core. On the other hand, Minguet [69] assumed the undamaged

core to behave as a linear orthotropic solid without shear/extension coupling. After damage, the

core stiffness was reduced by employing a change of variable technique to enforce o = 0 at the

interface.

2W

2.4 Three-Dimensional Equilibrium Considerations

The displacement-based shear-deformable FEM in which stresses are obtained from strains

(via constitutive relations) and strains are calculated from displacement derivatives often produce

good results for in-plane stresses, but neglect transverse direct stress a, and produce poor

estimates of transverse shear stresses ux and ay. In order to improve the prediction of the

transverse stress components many researchers (beginning perhaps with Pryor and Barker [134]

but including [41, 135-171]) have abandoned the constitutive relations for calculating urz and oy

in favor of satisfying the three-dimensional equilibrium equations with the FEA in-plane stresses

as a means of estimating both transverse direct stress c, and transverse shear stresses 0-, and Uz.

The stresses thus obtained are an improvement over those obtained from the constitutive equations

alone [172]. This is the approach used for the present work.

2.5 Finite Element Solution

The references available for finite element analyses are much too numerous to consult them

all, let alone cite them here. The principal references used for this research are Cook et al [173],

Palazotto & Dennis [172], Dennis [174], Siler [153], and Tsai & Palazotto [175]. In addition,

many other reference books, papers, and dissertations have provided insights and guidance for

this research.

2.6 Contact Problem

The majority of the analytical work on low-velocity impact of composite laminates to date

has used some variation of a Hertzian contact law to load the laminate. The references here cited

are the exceptions, in which the mixed boundary value problem (displacements under the

impactor and traction free surfaces elsewhere) is considered. Some references are [32, 34, 47, 52,
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67, 153, 176-191]. Jung [32] deals with an axisymmetric problem, and presents an elegant

algorithm in which the load is incremented in steps sized to bring the contact degrees of freedom

into contact one at a time. He also considers friction, but finds premature matrix failure to result.

Keer et al [177] considers both normal and tangential contact loads between spheres for which

global slip is an issue. They conclude that a Amontons-Coulomb frictional law in the contact

region produces good results for the transverse shear stresses. The review articles of Jaeger [241],

and Zhong and Mackerle [14] provide a good starting point for a review of the mechanics of

impact contact.

2.7 Non-Conservative Forces

For thin laminates and large contact radii (related to large impactor radii) such that the ratio

of contact radius to laminate thickness is > > 1, through the thickness shear stress is commonly

neglected [178, 193, 194] (and two references called out in [178]). This implies that the surface

traction is also zero. This criteria is not met by the sandwich plates within the present study.

Most low-velocity impact papers tacitly assume this surface traction can be neglected,

among these are all those assuming Hertzian-like or pressure type contact laws: e.g. Lie [195],

Kan et al [196], Ramkumar & Chen [197], Takeda & Sierakowski [198], Sun [186], Thangjitham

et al [199], Tan & Sun [187], Yang & Sun [200], Jackson & Poe [201], Koller [202, 203],

Oplinger & Slepetz [130], Wu & Springer [46, 204], Choi & Chang [205], Siler [153], Thomsen

[188], Sun [206], Greszczuk [207], Bucinell & Nuismer [208], Sankar & Sun [209]; as well as the

following that use a rigid-elastic or elastic-elastic model: Liu [51, 182], Liu & Chang [34], Wu &

Yen [189], Whitcomb [210]. To the author's knowledge, none of these papers address the

assumption directly. Warnings about neglecting surface traction (but no help in quantifying when

it is important) can be found in: Liu [67]. Frictionless contact is justified by comparison with

experiment for [On,90m,On] beams (n and m in the range 2-8) in Liu & Kutlu [52]. Nothing

relating transverse (normal) impact energy to contact surface tangential traction was found in the

literature search performed in support of this research. No one seems to be concerned about it

except Liu [67] and his warning was in the context of fiber-matrix bonding on the

micromechanical level.
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For the present research, the contact radius (and hence the distribution of the applied force)

was a function of the finite element displacements. This implied that the force on a given element

was a function of the displacement of the element and therefore potentially non-conservative. The

argument made to justify proceeding with a solution for a conservative system follows. First, it

must be observed that the method used to obtain the transverse displacements away from the finite

element midplane was explicitly dependent on the finite element solution; there was no coupling

between the three-dimensional stresses and the two-dimensional finite element solution. Thus it

need only be demonstrated that a conservative two-dimensional finite element solution procedure

was appropriate. The pressure distribution on a given element depended on the displacement, but

the integral of that pressure over all of the loaded elements (i.e. the applied force) was

independent of the displacement (conservative). The area over which the force acted was small

compared to the dimensions of the plate, so by Saint-Venant's principle, the distributed pressure

was statically equivalent to a point load (which would be conservative). In practice, the finite

element solution was very minutely effected by the small changes in contact radius made during

the contact iteration, instead, it was the transverse stresses (obtained by post-processing after the

finite element solution was obtained) which were strongly dependent on the contact radius. Thus,

the finite element solution responded as if the loading were conservative. Since the transverse

stresses were determined explicitly by the finite element solution, they too were unaffected by the

potentially non-conservative nature of the loading.
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3. Instrumented Impactor System Characterization

Experimental studies of the impact force history resulting from low-velocity impact on

composite plates [e.g. 5, 217, 218] have revealed that the impact force is not a smooth function of

time. Load drops on the impact force vs. time plot are often taken to be indicative of strain energy

release due to damage propagation within the plate. When an instrumented impactor system is

used for impacts at energy levels low enough to avoid significant damage to the plate, regular

localized load peaks and valleys have still been observed. The impact force histories of such an

elastic event are reminiscent of the superposition of a half sine wave with a sine wave having an

order of magnitude greater frequency and lower amplitude than the half sine wave (figure 3-1).

Excitation of some plate or plate-lumped-mass normal mode has been speculated as the source of

the secondary oscillations. Yet higher frequency tertiary oscillations are also observed most

prominently following an abrupt change in load. In order to resolve the sources of these

oscillations and establish an understanding of the results of an instrumented impactor test (thereby

enhancing confidence in the results and boldness in their interpretation) a significant effort was

made to characterize the instrumented impactor test system.

3.1 Energy Calculations

In instrumented impactor tests, impact energy and specimen absorbed energy are often used

to characterize the event. Impact energy is the kinetic energy of the impactor (tup) at the instant

that it strikes the specimen. Impact energy is usually controlled by varying the mass of the tup,

m., and the height from which it is dropped (or swung in the case of a pendulum impactor). Thus

the potential energy of the tup before release is an upper bound for its kinetic energy at the time of

impact. Energy losses during the acceleration of the tup (sliding friction at the guide rails, air

resistance, etc.) are typically accounted for by measuring the velocity of the tup just prior to

impact, Vu(O). Impact energy is then calculated by the relation,

Impact energy =-- V" (0)-
2 (3-1)
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The impact event transfers energy between the initially moving tup and the initially stationary

specimen. Specimen absorbed energy (usually called "absorbed energy") is that net portion of the

impact energy at any given time, which has been transferred to the specimen. It includes the strain

energy of the specimen, the kinetic energy of the specimen, the total strain energy released from

the specimen up to that time through damage progression, and frictional losses in the contact area

and at the boundaries of the plate. Frictional losses at guide rails and air resistance during the

impact event are usually assumed small, but they are actually implicitly included in the absorbed

energy. The absorbed energy is calculated by the kinetic energy loss of the tup in which the tup

velocity, V,(t), is integrated from the contact force, F(t), by the relation

Vt.P(t) = VP(O)_ Jo) I t F(r)dv (3-2)
mtup ,0

and the kinetic energy loss of the tup, called the "absorbed energy" or often just "energy" and

labeled E(t), is then

E(t) = Vt m 0) tu (

Thus, absorbed energy is a calculated, not directly measured, quantity. Its accuracy depends on the

accuracy of the measured velocity V,(O), the measured contact force F(t), the measured mass m,,,

and the neglected frictional losses during the impact event. Figure 3-1 is a typical load and

absorbed energy history from a low-velocity impact event in which the specimen was a composite

sandwich plate and the force was measured using an instrumented impactor (in this case drop

weight). After the event of figure 3-1, no damage was detected in the specimen.
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Figure 3-1 Typical force and energy histories for an event without damage [5].

In figure 3-1 it can be observed that the absorbed energy for an impact event which produced

no damage detectable by C-scan, in the sandwich plate indicates that a significant amount of energy

is not returned to the tup (absorbed energy does not return to zero when force does). This residual

energy (absorbed energy at the end of the impact event) poses a problem to those interpreting the

results. If the panel were damaged, one could attribute this residual to energy released in the

process of damage production. For the undamaged plate, some energy will be dissipated by

damping (perhaps over many cycles if the plate "rings" after being hit) but intuition might lead one

to expect such energy to be small compared with the impact energy for a near-elastic collision.

Other losses such as vibration modes in the impactor, air resistance, and frictional losses at the

plate boundaries and in the contact region are also expected to be small. As shown in the figure 3-

1, the calculated residual energy can be a large portion (more than 60 percent) of the impact

energy (the maximum on the energy plot) for low-velocity impact to composite sandwich plates.

That is, if the absorbed energy in the plate is correct, the undetectable damage and other losses

absorbed the majority of the impact energy. The author considers it more likely that an error has

been introduced in the calculation of absorbed energy (the kinetic energy lost by the tup). A

subsequent test of a thin steel plate at very low impact energy (elastic) in which the calculated

residual energy was actually greater than the impact energy (not physically possible) supported this

conjecture.
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3.2 Possible Error Sources

The possible sources of error in the calculated energy are: 1) inaccurate tup mass, 2)

inaccurate initial velocity measurement as described in [214], or 3) inaccurate force measurement.

Any of these sources is capable of producing apparent residual energy in the plate. To illustrate

this fact as well as quantify the magnitude of the error that is required in any of these parameters to

produce the apparent absorption of impact energy shown in figure 3-1, a simple model proves

valuable. Consider the time dependent force in figure 3-1 to be the superposition of two sine

waves. Letting time zero be defined as the time the that the force starts to increase from zero, the

first sine wave has a period of twice the time at which the force returns to zero (2.3 msec in figure

3-1) and an amplitude roughly equal to the peak contact force. Since this sine wave defines the

primary features of the event, call it the primary sine wave. The second sine wave defines the

wiggles seen on the contact force in figure 3-1. These oscillations are of smaller amplitude and

higher frequency than the primary sine wave, so call the second sine wave the secondary sine

wave. A good representation of the force is provided by the function

F(t) = F sin(- t) + F, sin(- t) (34)
tf tf

in which F, and F2 are chosen to match the primary and secondary amplitudes of the force while tf

is the event time and n is the number of secondary half-cycles observed within the event time. For

the test in figure 3-1, the chosen parameters are

F1 = 6377 newton
F2 = 250 newton (3-5)

tf = 0.0023 sec

n=15

while the measured parameters for the impact event are given in [5] to be

ntup = 3.62 kg (3-6)

Vup (0) = 1.6 rn/sec
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The integration of equation 3-1 with the substitutions of equations 3-4 through 3-6 combined

with the application of equation 3-3 produces the simulation for the event shown in figure 3-2. The

apparent residual energy at t = 2.3 msec is

E(tj) = 2.93 J (3-7)

Comparison with figure 3-1 shows good agreement.
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Figure 3-2 Simulation offorce and energy histories offigure 3-1.

The force model of equation 3-4 used to generate figure 3-2 can now be used to evaluate the

influence of the three parameters suspected of responsibility for the apparent residual energy,

namely; m,, V(O), and Fl. Frictional losses during the impact event will not be considered.

Though it is possible that multiple errors contribute to the residual energy, we consider only one at

a time. With regard to each parameter, the questions of interest are: if an error in this parameter

is responsible for the residual energy, how big and in what direction is the error? and; is such an

error likely?

1) Assume the only error is in m,,p.

Let the measured tup mass be m,,p as labeled in equation 3-6 and the unknown true tup mass

be m,,. The other parameters in equations 3-5 and 3-6 are, for the moment, assumed correct. It is
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evident that the calculations of equations 3-1 through 3-3 were in error and the true impact energy,

velocity, and absorbed energy were

True impact energy = --2 , V() 2

1 *t

.(t) =V (O)- - F(O)dv (3-8)
mrue 0o

Etme(t) = true (V COr)2 -Ve(t)2)

Further assume that the event was without losses so that true absorbed energy returned to zero at

the end of the impact event, i.e.

Etre (tf) = 0 (3-9)

Substituting equations 3-8 into equation 3-9 and manipulating we find

I f F(zr)d =2mtrueVp(O)  (3-10)

The left hand side of equation 3-10 can be evaluated by integrating equation 3-4.

tf = tf Flsinr] + F2sin d= 2 tfF +_L2 (3-11)

Ft~- tsi 5) +r ,.i )] /

Equating the right hand sides of equations 3-10 and 3-11 and solving for mrue.

mtrue- tfp() + '5' 2.93 kg (3-12)

Thus, for an error in measured tup mass to be responsible for the residual energy, the error was,

Tup mass error m  -=mtrue =24% (3-13)
mtrue

That large an error does not seem likely to the author for two reasons; 1) because 24% is very

gross and the measurement is very simple, and 2) the error is just as likely to be a low

measurement in mass as a high one but none of the instrumented impactor data the author has seen
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show the characteristic of a low m,, measurement (negative residual energy, i.e. E(tf) < 0). It is

concluded that tup mass measurement error is not the cause of the apparent residual energy.

2) Assume the only error is in V.p(0).

Let the measured initial velocity be V,(O) and the unknown true initial velocity be Vr (O).

The other parameters in equations 3-5 and 3-6 are, for the moment, assumed correct. As for the

m,, error calculations, it is evident that the calculations of equations 3-1 through 3-3 were in error

and the true impact energy, velocity, and absorbed energy were

True impact energy = 2-. (0)2

(V 2
Vtre(t) = rue(0)~ J_1.1[ F(r)dr (-4

m~ o

E,=.) (Vr() - V(t)2)

Again we assume that the event was without losses so that true absorbed energy returned to zero at

the end of the impact event so that equation 3-9 still holds. Analogous to equation 3-10 we find

F(r)d7=2m V. (0) (3-15)

Equating the right hand sides of equations 3-15 and 3-11 and solving for Vrue(0) we obtain,

V, (0)- tf (F +- 1.29 (3-16)

Thus for an error in initial velocity to be responsible for the residual energy, that error had to be

Initial velocity error- VP (0) - =". (0) 24 %

V1. (0)

Error is expected because of the measurement must be taken while the tup is still accelerating in

"free fall" and can not be taken immediately at the time of impact [214]. The potential for error in

the initial velocity is more pronounced for lower velocity tests due to the simple fact that a given
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error is a greater percentage of a small velocity than of a large one. The expected error, however,

is in the other direction (measured < actual). The measured value will not include the acceleration

that takes place after the velocity measurement and before impact, and should therefore be low, not

high. It is concluded that initial velocity measurement error is not the cause of the apparent residual

energy.

3) Assume the only error is in contact force measurement, F1.

Let the measured amplitude of the primary sine wave of the contact force be F and the

unknown true amplitude be Fltrue. The other parameters in equations 3-5 and 3-6 are, for the

moment, assumed correct. Equation 3-1 is then correct while equations 3-2 and 3-3 were in error

and the true velocity, and absorbed energy were

VtIre (t) = Vtp (0) __1 It Frue(T)dr
mup0

(3-18)

Etre t =- (V" ( O)2 _ Vre(t)

in which,

Jot Fru r)dr = .t [Ft, esin(itf ) + F2sin( ff )dr (3-19)

so that,

f Frue (r)d Jtf [Fltuesi sm F±) + F2sin =)idr -- -t +F2 J (3-20)

Again we assume that the event was without losses so that true absorbed energy returned to zero at

the end of the impact event so that equation 3-9 still holds. Analogous to equation 3-10 we find

Jtf Ftru(z)dr = 2mV.P (O) (3-21)

Equating the right hand sides of equations 3-20 and 3-21 and solving for Fl,re we obtain,
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FinVe =L2mup
tup() 2 tF 2 2- =7894 NF (3-22)

Thus for an error in contact force amplitude to be responsible for the residual energy, that error

had to be

Contact force amplitude error = F - FItre -- 19% (3-23)
Ftrue

Error is expected because the measured force is the force acting on a load cell within the impactor

and not actually the force acting between the tup and the specimen.

Of the three parameters initially suspected of responsibility for the apparent residual energy

(namely; mup, Vv(0), and F), m,,p, and V,(O) can be eliminated as sole sources of the residual

energy. This leaves force measurements as the principle, if not lone, suspect. The remainder of

this chapter deals with an attempt to account for, and correct, force measurement error in

instrumented impactor tests.

3.3 Measured Force in Load Cell

A bit of background information which proved most useful is that the force data taken for

these experiments using the instrumented impactor system came from a load cell inside the tup. In

the drop weight configuration, most of the tup mass is above the load cell, but there is a small

portion of the tup mass below the load cell (the hemispherical impactor) which is usually neglected.

For static loads, there are no inertial forces, so the mass below the load cell has no effect on the

measured force. This is not the case for dynamic loading. Several simplified dynamic models of

the test system were considered in an effort to understand how the measured force in the load cell

differed from the actual force applied to the plate and correct for this error.

3.4 One- and Two-Degree of Freedom Models

A single degree of freedom system (figure 3-3a) was used by Caprino et al [211] to analyze

results from a drop-weight impact test of small glass cloth-polyester panels (80 x 80 x 3.5 mm)

with a 4.90 kg impactor. The spring constant, k, corresponds to the static rigidity of the panel at

the impact point. Very good agreement with experimental results was reported for this series of

tests. It should be noted that the mass of the plate is negligible compared to that of the impactor
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and that contact times are relatively long, so that the dynamics of the plate can be neglected.

Rotem [212] used the same model to study the impact of a simply supported composite beam by a

mass. The response of beams to the impact of a mass using one and two degree of freedom models

was compared to that predicted using continuous beam models by Chou and Flis [213]. It was

shown that the simple models are accurate when the mass of the beam is small compared to that of

the impactor.

mm km k

k.k
k - ks

...k ->k,

(a) (b) (c) (d)
Figure 3-3 Schematics of one- and two-degree-of-freedom models [13].

Sjoblom et al [214] suggested the use of a two-degree-of-freedom model (figure 3-3b), where

k is the rigidity of the plate and K is a highly nonlinear spring representing the contact rigidity. No

discussion of how to derive k and k, is included. In the spring-mass model of Lal [215] (figure 3-

3c), three different springs are used to represent the flexural (kb), shear (ks), and contact (k)

stiffnesses. Deflections larger than the plate thickness are considered, so that membrane effects are

included using the large deflection theory of plates. Lal [216] also considered the effect of material

degradation during impact by modeling the variation of rigidity during a static test.

Shivakumar et al [40] presented a spring-mass model for analyzing the impact of a circular

plate by a sphere. The model consists of four springs representing bending (kb), shear (k),

membrane (kin), and contact (k) rigidities (figure 3-3d).

The most notable deficiency the author sees in these models is that they all assume the tup to

be rigid. Any strain energy in the tup is neglected.
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3.5 Three-Degree of Freedom Model

Simple models allow us to understand the main features of impact and are useful in reducing

experimental data. An approach consists of representing the structure by an assemblage of springs

and masses so that a discrete system with few degrees of freedom is analyzed instead of a

continuum. The above mentioned one-degree of freedom and two-degree of freedom spring-mass

models have been used to analyze the results of drop-weight impact tests of panels [13]. In these

models, the impactor is assumed to be rigid and is modeled as a single mass. The instrumented

impactor, used in this research, has an internal load cell which has a finite stiffness and a split

mass in which the majority of the mass is above the load cell, but some portion of the mass (the

tup tip mass) is below the load cell. Thus, the force measured by the load cell is different from the

contact force. This difference is usually neglected. It is hereby proposed that for cases in which

the impactor mass is small (less that -50 x the tup tip mass) the difference should not be

neglected and can be accounted for with a few parameters for the system and the plate.

3.5. 1 Equations of motion (three-degree of freedom model).

To model the instrumented impactor, two unequal masses connected by a stiff spring were

used in this study, bringing the total degrees of freedom to three. The spring-mass model used in

this study includes separate masses for tup main mass (m), tup lower mass (in2), and plate

effective mass (m3). Three springs model the stiffnesses of the load cell (kl), contact stiffness (k2),

and plate stiffness (k3). These are connected in series as in figure 3-4.

TUP k, 1x

...................... .........................- x
k2

PLATE M3 X

k 3

Figure 3-4 Schematic of three-degree offreedom modeL
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Thus two stiffnesses are associated with the plate as in the previous two-degree of freedom

models, while a new stiffness (kj) is associated with the load cell. Clearly, the real impactor is not

rigid as the one- and two-degree of freedom models assume. Force is measured using strain gages

in the load cell, implying that the load cell stiffness is not infinite. This new stiffness, kj, is the

ratio of load cell force to displacement of the tup tip (m2) relative to the impactor main mass (in,).

It represents the internal strain within the impactor. The new degree of freedom allows relative

motion between the two masses that form the tup.

To illustrate the difference between contact stiffness and plate stiffness consider figure 3-5.

In that figure, the plate top and bottom surfaces are represented by solid lines while the plate

midplane is represented by a broken line. The total motion of the tup from initial impact is shown

as x2. This motion is the sum of the midplane motion of the plate (x3) and the indentation of the

plate (x2-x3). The contact stiffness (k2) is the force generated between the tup and the plate by a

unit plate indentation (x2-x3), whereas the plate stiffness (k3) is the force generated between the

plate and its supports by a unit plate midplane deflection (x3). It should be noted that for dynamic

problems, these forces differ by the plate's inertia.

0 X2-X3

Figure 3-5 Plate indentation and contact stiffness.

3.5.2 Exact solution (three-degree offreedom model).

From free-body diagrams of each mass in figure 3-4 and the application of Newton's second

law, the equations of motion for the three-degree of freedom system with linear springs are easily

obtained as:

MX+KX=O (3-24)

In which the displacements x,, x2, and x3, are functions of time and
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X ,t\-(t)l [mi 1 ad[ki -kj
X(t)=XE(t) ,  M= ME  and K= -k1  k1 +k2  -k2  (3-25)

x 3 (t)J M3  -k 2  k 2 + k 3 j

With the assumption of simple harmonic motion of angular frequency co, phase angle (, and

displacement amplitudes Ai (i = 1,2,3),

X = A2 sin(ct + (p), so that _=)2 A2 sin(a + (3-26)
A3  A3

and the equation of motion becomes

K-Mo2{A2 sin(otwt+qp)=O (3-27)
LA3

a generalized eigenvalue problem.

In solving the eigenvalue problem, the eigenvalues may be represented by ki and the

corresponding eigenvectors by j. The general solution can be expressed as the sum:

3X= Bi4.s in(jt + oq) (3-28)
i=1

in which six constants Bi and q(i (i = 1,2,3) have been introduced and which can be expressed as

[Blsin(jfi-t + qOl)1
X : B2sin(JA t + (o2) (3-29)

B3sin(F3 -t + V3)J

in which [d is a matrix formed by arranging the eigenvectors in columns and we now have six

constants to be determined by the initial conditions. The initial conditions are

[01 V.P (0)
X(O) = , and X(O) = Vtup(0) (3-30)
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where V, (0) is the impact velocity.

The first three initial conditions give rise to

= { (3-31)

and with these the second three of equations 3-30 can be expressed as

B,~J 0

from which the other three constants can be determined as

IB2 L= V4] A2  j P ~ ,(0) (3-33)

Hence, the solution in terms of displacement and velocity is

[s in(FFJ t) 1 sin(Jqlt) 1'W(0j

X(t) = [4i]B 2sin(,F-t) = []  sin(-t) [2] 0R11 lV o(0)

LAsin( At)J sin(F t)- 0 (3-34)

and

t si[(--tsin 0 ]] Vt {M (0)} (3-35)

With the displacements known in terms of the eigenvectors and eigenvalues by equation 3-34, the

forces developed by the springs shown in figure 3-4 are simply proportional to the relative

displacements of the masses and can be expressed as
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fX (x(t) - 2()k
F(t) = (X2 (t) - x t)2(3-36)

x3(t)k 3  J

The most important result of this model is that a correction for force is now available. The

first component of force in equation 3-36 corresponds to the load cell force actually measured in

instrumented impactor tests, Fce(t). The force which must be integrated in equation 3-2 to

obtain the correct tup velocity and plate energy (equation 3-3) is the contact force, Fcopjaa(t), which

corresponds to the second component of force in equation 3-36. That is,

F1(t) = Foadceit(t), and, F2 (t) = Fcota(t) (3-37)

The ratio is the appropriate time-dependent correction for force. Thus, the force of interest, F 2(t),

is now known as a function of the force measured, F(t), by the relation

F2 (t) = F k(t)2L (x2(t) - x3(t)) (3-38)

k( (X I(t)- x 2(t))

In equation 3-38, xi are known in terms of the initial conditions, eigenvectors, and

eigenvalues, via equation 3-34. It is desirable to have a correction factor rather than a time-

dependent correction. A correction factor may provide a time-averaged correction, but the time-

dependent portion of the error will not be corrected. To obtain a correction factor, we choose to

correct for the lowest frequency mode (2.j, 41). The lowest frequency mode corresponds to the

"primary sine wave" in the simulated contact force history of figure 3-2, which is given as the

first term on the right hand side of equation 3-4. This can be considered a first-order correction

because it corrects the largest component of the force. Retaining only the first eigenvalue and first

eigenvector, equation 3-34 reduces to

X(t) - 1tup e~()sfl-,, (3-39)

so that the time dependence of equation 3-38 cancels out to produce
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Fc, 1A k2 ( 2 3)Fcntact(t) '. FloadcelIt) k2( 1 (3-40
ka (4) - (340

Equation 3-40 can be used as a first order correction to the contact force. The measured

load cell force is simply scaled by the factor shown to obtain an estimate of the contact force. Use

of equation 3-40 requires that the eigenvalue problem defined by equations 3-25 and 3-27 be

solved. This solution requires knowledge of the specimen and the impact test system masses and

stiffnesses used in equations 3-25.

3.5.3 Empirically derived parameters.

There are still seven parameters in the model to be specified. These are the three masses,

the three stiffnesses, and the impact velocity. It is these seven parameters which uniquely define a

particular impact event. Of the seven, in,, m2, kj, k3, are readily measured, k2 (contact stiffness) is

measurable with more difficulty, and V,(O) is assumed to be known. This leaves one less-easy-to-

pin-down quantity, m3 (effective plate mass). Effective plate mass will depend on the actual mass

of the plate as well as the plate stiffness and the boundary conditions of the test. Turning to test

data for help here, m 3 can be determined by recognizing that the secondary oscillations in the

force history of an undamaged of a typical non-damaging impact event (e.g. figure 3-1) have a

known frequency. Assuming that the secondary oscillations are the result of the plate vibrations

and not impactor vibrations and that the mass of the plate is much less than the mass of the

impactor, we isolate the plate from the rest of the system shown in figure 3-4 as shown in the left

schematic of figure 3-6. The right schematic in figure 3-6 represents a separate test in which the

free vibration frequency of the specimen (not in contact with the tup) has been measured by a

strain gage.

j<-- k2 k 3 = m 3(.ree) 2

PLATE in3  K3  )

<;>k3 -o: k3

Figure 3-6 Schematic of the one-degree offreedom systems used to estimate plate effective mass.
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In the systems shown in figure 3-6, the free vibration frequency cofa is related to m3 and the plate

stiffness k3 as shown. The secondary the vibration frequency O)s.ondary is related to m3 and the

effective plate stiffness kEff by:

£Osecondary = kEff (3-41)
m3

where:

kEff = k2 + k3  (3-42)

From this then, an estimate of m3 is available from the test data. This also leads to a simple

way to estimate the contact stiffness, k2. The plate effective stiffness kEff must be such that the

model predicts the correct (empirical) event time. In the three-degree of freedom model, the event

time is the time at which the force returns to zero or half of the period of the first vibratory mode

of the plate-lumped mass system. Since k3 is known from m3 and COf, k2 is thereby determined.

Having thus measured or inferred all seven parameters, the three-degree of freedom model can

now be applied to an elastic (at least no apparent damage) impact event to show the salient

features of the dynamics which have now been modeled.

3.5.4 Contact force history, comparison to previous test data.

The three-degree of freedom model was applied to the impact event of figure 3-1 observed

by Harrington [5]. The model was able to resolve several important features of the impact force

history. That is, with appropriate parameters, the following output quantities matched (to some

degree) the instrumented impactor data (figure 3-6).

1. time scale of the event

2. peak load seen

3. frequency of secondary oscillations

4. magnitude of secondary oscillations

5. calculated energy history
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Figure 3-7 Comparison of experiment and three-degree offreedom model

Additional insights into the test system were now available since the forces on each spring

were known exactly. For all cases modeled, the load cell force was always below the contact

force. This indicates a correction should be applied to the instrumented impactor test results

because the contact force is the actual load the plate responds to while the load cell force is the

only force quantity measured by the system. For the parameters chosen, a simple empirically-

derived correction by the tup mass ratio defined as

Fcontact (t) Foadcel (t)(tup mass ratio) (3-43)

in which,

tup mass ratio - mi + m2  (3-44)

ml

does the same as the more involved calculation of equation 3-40 since it brings the primary

component of the impact force (the half sine wave) to the correct values. It should be noted that

while the correction of equation 3-40 has physical and mathematical justification, tup mass ratio is

purely empirical and its range of validity has not been tested. The value of the correction of

equation 3-43, where it can be shown to be valid, is that unlike the correction of equation 3-40, it

has no stiffness dependence and hence should be applicable even when there is damage in the

plate. The secondary component (secondary oscillations reminiscent of a smaller amplitude
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modulated sine wave added to the primary component) is not corrected by either of these means,

though it can be corrected by equation 3-38 for impact events without damage.

The three-degree of freedom model is next used to highlight the error inherent in assuming

that the load cell force, which is measured, is the same as the contact force, which is not

measured. We define the error as

force error =Fontact - F (3-45)

in which Fcoac is the exact contact force known for the three-degree of freedom model and F

represents the load cell force, F,, or corrected force F1(tup mass ratio). The time-dependent nature

of the error is illustrated in figure 3-8 where the uncorrected force error is plotted with the

corrected force error. For the chosen parameters, which model the test data of figure 3-1, tup

mass ratio and the correction factor given by equation 3-40 are very close (less than 0.1 percent

difference). It is evident that the tup mass ratio correction greatly reduced the force error. In this

case, the tup mass ratio was 1.17.

8200

e400

200

0

0.5 1 1.5 2 1

-200 . . . . . .. . . . . . . ... .
time (msec) T~vocod

Figure 3-8 Three-degree offreedom model contact force error with and without the tup mass ratio correction.

3.5.5 Source of high frequency oscillations.

In the three-degree of freedom solution, the load cell force has a relatively small tertiary

oscillatory component (notice the high frequency oscillations in the error in figure 3-8), while the

contact force (the force actually seen by the plate) has only the half sine wave and a secondary

oscillatory component. Removing m2 entirely confirmed that the secondary oscillatory component
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on the plate response force is attributable to the plate dynamics while the tertiary oscillatory

component on the load cell force is attributable to the dynamics of the tup. In some cases (such as

for low range load cells in which k, is significantly less than the example cited here) the plate

dynamics frequency could be similar to the tup dynamics frequency and this may lead the

researcher to incorrectly attribute all of the oscillations observed to plate dynamics when in fact a

significant portion could be tup dynamics in the instrumented impactor data. It is apparent that tup

dynamics have the potential to produce both steady-state (correctable) and time-varying (non-

correctable) errors in instrumented impactor force data.

3.5.6 Absorbed energy implications.

Perhaps the most important result of the three-degree of freedom model is the insight into

the energy calculations for instrumented impactor systems. Purely elastic impact should be

expected to return virtually all of the impact energy to the tup. Though this is the expected result,

the calculated plate energy could never return to zero because the load on which it was based was

lower than the actual contact load. That is, the force assumed to be doing work on the tup was too

low, so the work done by the force was too small, so the energy returned to the tup was too

small. This is illustrated in figure 3-9 which includes the calculated absorbed energy (calculated

from the load cell force, not the contact force) and the exact absorbed energy for the three-degree

of freedom model. The exact solution is available for the three-degree of freedom model by using

the contact force rather than the load cell force in equation 3-2. If presented with the calculated

values, one might conclude that there was damage in this event when actually it was perfectly

elastic. This underscores the fact that one must use caution in interpreting instrumented impactor

results. If the load cell is calibrated statically (so that during calibration the load cell force and

contact force are the same) and used for a dynamic test, then the calculated impact forces and

energies will be incorrect. A dynamic calibration should be used. Fortunately, a first-order

dynamic calibration is a simple scaling of the load cell output as described above. Corrected force

data improves the calculated absorbed energy values greatly as seen in figure 3-9. In that figure,

exact energy is calculated using the known contact force while the corrected energy is calculated

using the load cell force scaled by the tup mass ratio.
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Figure 3-9 Instrumented impactor model calculated and corrected energy histories.

The consequences of an error in instrumented impactor force measurement are particularly

significant if the calculated absorbed energy from this data is believed to be the actual absorbed

energy. The force error always increases the calculated absorbed energy at the end of the event. It

is apparent that tup dynamics have the potential to introduce significant errors to instrumented

impactor data and should be understood and controlled to the greatest extent possible. The present

correction does a good job of correcting the time-averaged errors in both force and energy.
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3.6 Tup Tip Mass

The tup mass ratio (equation 3-44) points to a better approach to getting higher fidelity force

and energy data from instrumented impactor tests. When the tup tip mass, m2, is very small

compared to the main tup mass, in,, the tup mass ratio approaches unity. This condition indicates

that the correction to remove the effects of tup dynamics becomes much less significant. In the limit,

no correction is required at all and the model is reduced to two degrees of freedom. Clearly, the tup

tip mass should be as low as it is practical to make it. This idea is illustrated graphically in figure 3-

9 in which the response of an instrumented impactor load cell (load range 0-15 kN) was subjected to

an axial impulse load from a hammer strike. With the manufacturer-supplied 151.4 gm tup tip a

large portion of the impact energy was evidently transferred to the first axial vibration mode of the

tup and slowly dissipated by light damping. Thus the tup "rings" as seen in the lowest curve.

Though it was not measured, one must conclude that a significant portion of the impact energy was

not returned to the hammer which lost contact with the tup after the first half-cycle. In contrast, the

center curve shows the impulse response with the tup tip removed. The much higher fidelity

impulse response indicates that very little energy is absorbed by tup vibrations. The upper most

curve in figure 3-10 shows the response with a much lighter tup tip fabricated for the current work.

It is evident that the new tup tip approximates the response of no tup tip. In practice the tup mass

ratio correction was not needed when the reduced-mass tup tip was used.

8.2 gm top tip

S tup tip removed

. 15 1.4 g m (m a n ufa c tu re r -
supplied) tip

0 0.002 0.004 0.006 0.008

time (sec)

Figure 3-10 Impulse response of instrumented impactor showing effect of tup tip mass.

The effect of the reduced-mass tup tip on the fidelity of the force history in an actual

composite sandwich plate impact event is illustrated in figure 3-11. In that figure the large amplitude
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oscillations present in the 151.4 gm tup tip data are not actually loads seen by the plate, but are load

cell loads induced by the dynamics of the tup. The two different 8.2 gm tests (#1 and #2) are shown

to indicate the variation of response from one event to another.

3000 \

load (N),' ,

2000 ,

151.4 gm 8.2 gm 8.2 gm tup
1000- tup tip tup tip #1 tip #2

0 2 4 6 8 10
time (msec)

Figure 3-11 Load histories showing effect of tup tip mass

Reducing the tup tip mass from the manufacturer-supplied 151.4 gm tip to the new 8.2 gm tip

has been shown to significantly enhance the fidelity of the load histories available from instrumented

impactor tests. The improvement is most valuable for more flexible (low range) load cells and

manifests itself most strongly following a load drop like those often seen in composite impact tests.

The lesson here is that the force oscillations following a load drop in an instrumented impactor test

can be the result of instrumentation dynamic response and should not be blindly attributed to the

dynamics of the specimen. For the load cell used in this work (15kN) a relatively low frequency,

relatively high energy axial vibration mode existed when the manufacturer-supplied tup tip was

used. This mode contributed significant error to the observed load history. Reducing the tup tip

mass presumably increased the frequency of the error but reduced its magnitude to the point that it

could not be observed in the impulse response of the system. Without this improvement the tup tip

dynamics can effectively mask the high frequency response of the plate (figure 3-11). With this

minor system improvement there is hope of being able to correlate load history with damage.

Without it, the noise overwhelms the signal and it appears very unlikely that such a correlation can
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be made. It should be emphasized that for a given load cell it is the tup mass ratio, and not the tup

tip mass per se, that dictates the strength of the tup dynamics (force noise). With the 15 kN load cell

and the main mass, in, used in this work, the 151.4 gm tup tip provided a tup mass ratio of 1.043

while the 8.2 gm tup tip reduced the ratio to 1.002. The stiffness of the load cell must also be

considered. Higher stiffness is better from the point of view of temporal resolution, but a tradeoff is

made here in that the higher the stiffness, the poorer the load resolution due too the fact that the

force is measured by internal strain gages and strain is inversely proportional to stiffness. When

load resolution requirements dictate a low stiffness load cell be used, minimizing the tup mass ratio

is shown to significantly improve the temporal fidelity of the load data produced by an instrumented

impactor test system.

3.7 Conclusions

The three-degree of freedom model was able to resolve several important features of the

impact force history and provide insight into the low-velocity impact event.

A simple empirically-derived force correction can significantly improve the energy histories

obtained from instrumented impactor tests.

Minimizing the tup mass ratio is shown to significantly improve the temporal fidelity of the

load data produced by an instrumented impactor test system.
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4. Experimental Investigation

To guide and validate the analytical developments of this study, an experimental investigation

of low-velocity impact to laminated composite sandwich plates was performed. Square, flat,

sandwich panels of uniform in-plane size and core thickness and varying facesheet thickness were

subjected to a transverse load applied at their center by a steel spherical indentor (tup). Both quasi-

static indentation and dynamic impact were considered and compared. Contact force was monitored

throughout the event through the use of an instrumented impactor.

4.1 Objectives

4.1.1 Understand damage initiation and progress.

The experimental parameter space was designed to reveal the course of events which transpire

when a composite sandwich plate is subjected to low-velocity impact. Loads applied, measurements

taken, calculations made, and both non-destructive and destructive inspections after impact were all

tailored to maximize the insights available into these events. These insights, in turn, can be used in

an attempt to identify general trends and, ultimately, guide subsequent research aimed at controlling

and reducing the degradation of residual properties of impacted composite sandwich structures.

4.1.2 Provide benchmark data for analysis.

In order to tie the analysis of Chapter 6 into the actual physics of the problem, empirical data

was required. In particular, load verses impactor displacement and damage verses impact energy

data for various facesheet thicknesses provide a means to determine the range of validity of the

analytical method, and suggest which assumptions and simplifications to the theory should be

relaxed in order to extend that range. For example, the difference between the empirical and the

analytical results can indicate that a more detailed analysis considering dynamics and/or full three-

dimensional displacement and/or crack tip singularity effects is required.

4.1.3 Relate damage to load history.

Instrumented impactor tests are attractive because of the simplicity of the procedure and the

relative swiftness with which a large number of impact events can be performed. The principal

measurement in instrumented impactor tests is load as a function of time. This load history is used
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to integrate the tup equations of motion to infer the displacement and absorbed energy of the plate.

To measure damage within the plate, more time- and labor-intensive procedures such as C-scan,

radiography, and photomicrography are generally employed. It is desirable to reduce or eliminate

these procedures if the needed information available by them can be obtained by other means.

Damage within the plate changes the plate stiffness and hence its response to load. In this way

damage can be expected to show up as an equilibrium change which may be observable in the load

history. One objective of the experimental portion of the current work was to correlate the observed

load history to the internal damage. This correlation has the potential to greatly reduce the cost of

testing these structures and/or increase the number of impact events (hence increase the resolution

or parameter envelope) any given test program can provide to the existing database.

4.1.4 Investigate relationships between absorbed energy, damage, and plate geometry.

Separate from the roles of providing benchmark data for the analysis and general

improvements to the methodology of impact testing of composite sandwich structures, the current

experimental effort had the objective of contributing to the existing database directly. As a matter of

fact, it is this role that originally justified the expense of fabricating the test articles. An example of

the contribution the database provides might be an answer to the following: "Bending stiffness

required of a given structure can be obtained with thin facesheets and thick core or thick facesheets

and thin core. Weight considerations drive toward the former. Impact damage resistance

presumably drives toward the latter. For a given anticipated impact event, how thin can one make

the facesheets without measurable damage?"

4.1.5 Validate quasi-static assumption.

An important simplification very common to low-velocity impact testing and modeling is that

the damage depends not upon the impact energy per se, but upon the peak load reached in the

process of transferring that energy. If this is the case, static tests and static analyses can be expected

to adequately simulate the impact event. The objective here was to validate this simplification and

(within the context of the parameters varied) define the boundaries of the usefulness of quasi-static

assumptions.

4-2



4.1.6 Investigate applicability of plate theory.

The analytical effort of the current work is based on a two-dimensional plate finite element

model. Such a model has inherent limitations for impact analyses in that it is based on a plane stress

assumption which is manifestly erroneous in the neighborhood of the applied transverse load.

Although this error may be partially alleviated through the post-processing, if a portion of the

parameter space shows that the structural response is fundamentally and globally three-dimensional,

then plate theory can not be expected to provide useful results. The question here might be posed

as, "Are these specimens acting globally like plates with a local three-dimensionality, or are they

acting like three-dimensional blobs of material bearing no resemblance to plates?"

4.2 Approach

4.2.1 Multiple facesheet lay-ups.

One of the very obvious decisions required of a designer of a composite sandwich plate

structure is how thick to make the facesheets. As mentioned above, bending stiffness will be a

principal consideration here. Damage resistance will be another important and potentially

constraining consideration. For this reason, a range of facesheet thicknesses were tested, providing

impact resistance data as a function of facesheet thickness. In an effort to limit the number of

parameters being varied, the core thickness was held constant for all tests. The fact that facesheet

thickness varied while core thickness was held constant necessarily meant that bending stiffness

varied with facesheet thickness. If a particular bending stiffness is required, these data alone can not

suggest the appropriate facesheet thickness. To provide this kind of information to a designer, an

experimental effort to characterize damage as a function of facesheet thickness and bending stiffness

(independently) would be needed. For such an experimental program, impact resistance data would

be required for a range of bending stiffnesses, each of which would require a range of facesheet

thicknesses (varying core thickness to keep bending stiffness constant). Unless a standard low-

velocity impactor shape and stiffness were agreed upon, the experimental program might be called

upon to vary these as well. All of this must then be done for a range of impact energies. Clearly, the

investment in such a test program would be great. In contrast, the approach anticipated by this

research uses the experimental work to validate and qualify an analytical code which can then be

exercised to fill in the needed parameter space. In this way, the experimental parameter space need

only be broad enough to provide confidence that the analytical code can be trusted for the parameter
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values of interest. Nevertheless, in reporting the current experimental work, general trends of plate

response as a function of facesheet thickness are observed and discussed.

4.2.2 Static and dynamic testing.

Although load histories for the "static" and dynamic events are on time scales several orders

of magnitude different, load verses displacement (equilibrium) curves for the two types of events

can be compared directly. Differences between these curves provide insight into the dynamics of the

impact event and the errors likely to be present in static analyses or simulations. Both static and

dynamic tests were performed in an effort to mark off that portion of the parameter space in which

time-dependence of the process of damage should not be ignored. The principal tool used to make

this judgment is the load verses displacement curve. If the process were indeed quasi-static, one

would expect the load verses displacement curve to be independent of the speed at which the load

was applied. Where inertial stiffening is significant, the dynamic equilibrium curve should have a

greater slope than the static. Where dynamic effects are not important to the damage process, such

characteristics as peak load before damage, the magnitude of the load drop associated with a

particular damage, stiffness after damage, and energy absorbed by the damage process should all be

independent of the loading rate. Thus, static and dynamic test data are compared and implications

for analyses based upon quasi-static assumptions are discussed.

4.2.3 Instrumented impactor.

A load cell mounted within the impactor/indentor provided load histories for all of the events.

As discussed in Chapter 3, a reduced-mass tup tip effectively removed tup dynamics from the

measurements providing excellent temporal fidelity in the load history (and hence velocity, energy,

and displacement histories).

4.2.4 Post-impact C-scan and photomicrographs.

After the load was removed, damage present in the specimens was observed through the use

of ultrasonic time-of-flight C-scans. Focused pressure waves were directed transverse to the top

facesheet and echoes were timed and recorded as the focal point was traversed over the surface of

the specimen. The first reflection (from the plate surface) was used to set the observation window

(in time) so that the time of any subsequent returns was indicative of their depth relative to the first

surface. By this process, delaminations are observed as returns and are recorded on a two-
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dimensional color map indicating, for each point, the depth of the delamination nearest the top

surface of the specimen. On the C-scans, the color at any point represents the time of the first

observed reflection after the reflection from the top surface. This reflection corresponds to the

shallowest (i.e. nearest the top surface) delamination present at the given point. Thus, only the

uppermost delamination was recorded at any given point. If, for example, at some point within the

specimen there were three delaminations located at ply interfaces 1, 3, and 5 (numbering interfaces

sequentially from the top of the plate), then the C-scan would show a color at that point representing

the depth of interface 1. The existence of the other two delaminations would not be observable at

that point in the C-scan. Neither fiber failure, matrix cracking, nor core crushing were observable

by C-scans. To see these modes of damage, several specimens were sliced through their thickness in

several equally spaced planes perpendicular to the fiber direction. The exposed surfaces were

stabilized with an epoxy potting compound, polished, and viewed under visible reflected light at

various magnifications. This process allowed the viewer to record (photographically and by sketch)

the damage present in any of the slice planes. The majority of the cross-section data used in this

research was observed by Harrington in reference [5].

4.2.5 Observed damage forms.

Damage observed was in the forms of matrix cracks, delaminations, and crushed core walls.

The delaminations observed in the slices were correlated to those observed in the C-scans and

interpolation between slices allowing a three-dimensional map of the delamination pattern to be

produced. Similarly, but without the aid of the C-scans, matrix cracking, and core crushing were

also mapped. It should be noted that only matrix cracks in the zero degree plies could be observed

in these slices due to the fact that the ninety degree fibers were in the plane of the slice.

4.3 Parameters

As mentioned, a primary purpose of the experimental portion of this research was to provide

validation data for the analytical work. Toward this end, a particular material and geometry set was

identified which provides the needed data while not overcomplicating the analysis. The panels

consist of AS4/3501-6 graphite-epoxy face sheets secondarily bonded to 1.27 cm thick HRH-10-1/8-

9.0 Nomex honeycomb core using two layers of FM300-2 film adhesive. The face sheets had the

following stacking sequences: [0/90]s, [0/90]2s, [0/9014s, [0/90]8s, and [0/ 90112s. In the following,

sandwich structures made from these facesheets are referred to as 4-, 8-, 16-, 32-, and 48-ply,
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respectively. Each of the panels from which the individual specimens were cut were C-scanned to

ensure no significant flaws were present before impact. The specimen size was 17.8 cm by 17.8 cm

and they were restrained in a steel fixture simulating simple supports [5] having dimensions of

12.7cm by 12.7 cm. The same restraint fixture was used for both static and dynamic tests. All tests

were performed at room temperature. The impactor/indentor radius was 1.27 cm and constant for

all tests. For pendulum tests the tup mass was 3.48 kg while that for drop weight tests was 3.49 kg.

Tup tip mass for the drop weight tests was 8.2 gm while that for the pendulum tests was 12.3 gm.

Drop height (or pendulum swing) was varied to provide impact energies between 0.06 and 25

joules. For each facesheet thickness the impact energies were chosen to span the damage initiation

energy (threshold) and extend for at least a factor of two above it. The entire impact test matrix is

given in figure 4-1.
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Figure 4-1 Impact test matrix.

4.4 Static Indentation Test System

The test system used to slowly (i.e., "statically") load the test specimens transverse to the

midplane was a United Calibration screw-type load frame. Control was provided by a dedicated PC.

The data were collected using a Nicolet digital data acquisition system triggered manually just prior

to the beginning of the test. A United Calibration 2000 lbf (8896 N) load cell was used to measure

load for the 4-, 8-, 16-, and 32-ply specimens and a United Calibration 20000 lbf (88960 N) load

cell was used for the 48-ply specimens. Crosshead displacement was known from the constant

crosshead velocity and a constant sampling rate. The crosshead was assumed to be rigid compared

to the plate so that crosshead displacement and top surface displacement under the point of load

were assumed identical. A displacement transducer (LVDT) was used to measure the displacement
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of the lower surface of the plate. The static test system is shown schematically in figure 4-2. The

principal features are: 1) a stiff crosshead driven down by precisely controlled screws; 2) a stiff load

cell mounted under the crosshead which measures the force between the crosshead and the

specimen; 3) a 12.7 mm radius hardened steel ball bearing between the load cell and the specimen

(this bearing served the same purpose as the tup tip in the dynamic tests); 4) a stiff restraint fixture

to hold the specimen; 5) an LVDT mounted under the specimen; 6) a control system; 7) signal

conditioners; and 8) a digital data acquisition system.

Screw-type Load Frame

Figure 4-2 Schematic of static indentation test system. (The direction of the applied displacement is shown by b).

4.4.1 Calibration.

The load cells were factory calibrated for the data acquisition system built into the dedicated

PC that also controlled the test system. A separate data acquisition system was used for these tests

due to the fact that the built-in system could not be easily modified to read the LVDT output. This

meant that the load cells had to be calibrated for the new data acquisition system. The calibration

was performed by noting the load output on the built in system before the test and the maximum

value reached during the test. Using these two values and the measured voltage change gave the

appropriate scaling from volts to force units. The crosshead velocity was calibrated in the factory

and confirmed to be correct with a ruler and a stop watch. The range of the LVDT used for this

work was 25 mm while the maximum displacement of the tup was 3.5 mm. Since the bottom

surface displacement measured by the LVDT was always less than the tup displacement, only a

relatively small portion of the LVDT range was used, resulting in a rather noisy signal. To smooth

the signal, a low-pass (100 Hz) filter was used. The LVDT was then calibrated by driving it with

the crosshead at a constant velocity and fitting a straight line to the resulting voltage verses
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displacement curve. In this way, LVDT voltage was related to known LVDT displacement (a linear

function of time due to the constant velocity).

4.4.2 Data reduction.

The data recorded for each test consisted of voltages representing force and bottom surface

displacement and time. The data acquisition system provided two ASCII text files for each test. The

first contained load cell voltage and time while the second contained LVDT voltage and time. Data

were recorded at uniform time intervals (10 msec) and the crosshead velocity was known, so

crosshead position (top surface displacement) was calculated from the time integral of velocity. A

Mathcad template served as a data reduction program, reading these files and generating a third file

containing all of the values of interest with the appropriate units. These included top and bottom

surface displacements (where the load was applied), load, average transverse strain, indentation

depth, and time. Average transverse strain under the loading point was calculated from top and

bottom surface displacements and the known thickness of the particular plate.

In each test data set, five distinct time intervals were present. These are represented in figure

4-3. The first interval represented the time before the crosshead began to move. During this time, a

nominal 10 N pre-load was present which served to remove the majority of the slack from the

system. At the beginning of the second interval, the crosshead began to move at a predefined rate,

usually 5.08 mm/min. The acceleration from rest to this velocity was ignored. The third interval

began when the crosshead was manually stopped. The command to stop the crosshead was given via

the PC that controlled the test system and was issued when the load reached the predetermined

stopping value or immediately after the first major load drop. It is the latter case for the example

shown in figure 4-3. Since this control was manual and the load was fluctuating during the test, it

was generally not possible to precisely control the stopping load. The forth interval followed when a

manual input directed the crosshead to begin returning (unloading). This motion was also at a

constant velocity, usually 12.7 mm/min. Each of the above intervals was readily detectable in the

load data by an abrupt change in slope of the load verses time curve. The Mathcad data reduction

template presented the user with detailed views of the data in the areas of transition from one

interval to the next and the user manually chose the four points that broke the data into the five

intervals as shown in figure 4-3. The beginning of the fifth interval was the end of the unloading

sequence (when the crosshead lost contact with the plate) and was less easily discerned due to the
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fact that the slope of the load verses time curve approached zero asymptotically as the slack in the

system was allowed to accumulate. The end of the unloading was taken to occur when the locally

averaged (smoothed) load dipped below the initial 10 N preload. With practice, all transition points

could be chosen consistently by this method. Intervals 2, 3, and 4 captured the entire event and

intervals 1 and 5 were cropped from the data by the Mathcad template.

70001 1.6

3 4 55000 1.4

1

4000 E
E

° i 0.8
S3000 E

0 0.6 08E
(U

2000 a
-0.4 '

1000 - t0' 0.2
0 0

1 6 11 16 21 26
-1000 -0.2

time (sec) force
top surface displacement
bottom surface displacement

Figure 4-3 Typical "static" loading sequence. (100 data points were recorded per second).

4.5 Dynamic Impact Test Systems

Force and energy histories are part of the reduced data generally available from instrumented

impactor impact test systems. To facilitate comparisons with static test data as well as static analysis

data, force verses tup displacement plots were also generated. For the analytical investigation, the

degree to which the predicted contact force verses tup displacement matches that of the experiments

(including load drops) was a principal measure of success. If the analytical investigation predicts

both the peak value and the magnitude of the first significant load drop and then follows the

experimental load verses tup displacement any further, it is judged to be a success. Clearly, contact

force verses tup displacement data are required from the experiments, yet neither contact force nor
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tup displacement were measured directly. An instrumented tup measured a force close to, but not

the same as, the contact force (Chapter 3), and integration of the tup equations of motion produced

the tup displacement.

In the early portion of the testing, a drop weight impact testing system made by Dynatup was

used to impact 8- and 16-ply sandwich specimens. The minimum energy for which data could be

obtained with this system was -0.5 J. This minimum was found to be unacceptable because the

initiation of damage in the 8-ply specimens occurred at less than this value. In order to obtain data

for lower energies, the remainder of the test matrix was filled using the same load cell, but

mounting it in a pendulum impact test system. The minimum energy at which the pendulum system

could be used (without reducing tup mass) was found to be less than 0.05 J and this was low enough

to resolve the initiation of damage in the 8-ply as well as the 4-ply specimens.

4.5.1 Drop weight test system.

The Dynatup drop weight test system used for all of the 16-ply and part of the 8-ply portion of

the test matrix is shown schematically in figure 4-4. Its principal features are: 1) a stiff, guided,

near-free-falling mass; 2) a stiff load cell mounted under the falling mass which measures the force

between the mass and the specimen; 3) a spherical 12.7 mm radius hardened steel tup tip between

the load cell and the specimen; 4) a light gate to measure tup velocity just prior to impact; 5) a stiff

restraint fixture to hold the specimen; 6) a control system including brakes to prevent multiple hits;

and 7) a digital data acquisition system.

Vguide rods-4

Tup I s //A light gate

oad cell

tup tip

Figure 4-4 Schematic of Dynatup drop weight impact test system
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4.5.2 Pendulum test system.

The pendulum impact test system had several advantages over the drop weight test system.

Not only could it reliably take data at an order of magnitude smaller impact energy for the same tup

mass, but also it had the singular advantage of measuring both impact velocity and rebound

velocity. Thus absorbed energy was effectively measured, providing a check for the integrations of

the tup equation of motion. In addition, the fact that these velocity measurements were taken at the

bottom of the pendulum swing (when the tup acceleration is near zero) provided a greater degree of

consistency in the impact velocity measurements than was available from the drop weight system.

The handicap that the drop weight system had in this regard was that the acceleration of the tup at

the time that impact velocity was measured was not zero, in fact the acceleration was constant

during the whole drop. Thus any small variability in the location of the velocity measurement light

gate with respect to the specimen had a significantly greater effect on the drop weight impact

velocity calculation than it would have had on the pendulum impact velocity calculation. In short,

the pendulum was a more forgiving system.

The pendulum impact test system was used for all of the 4-, 32-, and 48-ply tests and the low-

energy part of the 8-ply tests. The system is shown schematically in figure 4-5. Its principal features

are: 1) four 3.6 m kevlar strings positioned so as to provide a 3.37 m effective pendulum arm with a

stable planar swing and a consistent impact point; 2) a stiff suspended mass; 3) a stiff load cell

mounted on the swinging mass which measures the force between the mass and the specimen; 4) a

spherical 12.7 mm radius hardened steel tup tip between the load cell and the specimen; 5) a light

gate to measure tup velocity just prior to and just after impact; 6) a stiff restraint fixture to hold the

specimen; and 7) a digital data acquisition system. Control of the pendulum was significantly less

automated than the drop weight system. For example, to control the energy of impact the user must

calculate the appropriate "swing length" via the relation,

swing length = Vdrop height x (2 x string vertical length -drop height) (4-1)

and then manually (and deftly, so as not to induce any off-axis motion) release the tup after pulling

it back that distance from the specimen. The user must then physically catch the tup after the event

to prevent a second hit.
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Figure 4-5 Schematic of pendulum impact test system

4.5.3 Impact test calculations.

Other differences aside, the calculations required for the pendulum and drop weight data were

nearly identical. The fact that the pendulum is horizontal and the drop weight system was vertical

did not influence the calculations. In the first place, the deflections were small, so the change in tup

potential energy while in contact with the plate was neglected. In the second place, the acceleration

due to gravity was assumed to be small compared to the acceleration produced by the impact force.

Both of these higher order effects would have had a much greater influence on the drop weight

calculations than on the pendulum. The important calculations for the dynamic impact tests are

outlined below.

4.5.3.1 Velocity. Newton's second law for the tup is integrated to calculate velocity as a function

of time. Initial velocity, V(O), is a measured quantity. Time zero is the instant that the tup first

makes contact with the specimen and is taken to be that time when the force increases from

nominal zero. This calculation is important because the net loss in tup kinetic energy is taken to

be the energy absorbed by the specimen and is used as a measure for damage. The tup velocity,

V,,p(t), is integrated from the contact force, F(t), by the relation
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tl F(r)dr (4-2)
mtup

The trapezoidal rule was used to carry out the time integration in equations 4-2 and 4-3. Since the

time interval between data points was a constant 10 msec, 100 force registers were read per second.

4.5.3.2 Displacement. Determining displacement as a function of time requires an additional

time integration. Initial displacement, (0), is zero. This calculation is important because load

versus displacement is used to compare static and dynamic test data in order to judge the

applicability of the quasi-static assumption. The tup displacement, 6(t), is integrated from the tup

velocity, V,,p(t), by the relation

( t) ' (4-3)

4.5.3.3 Energy. Three energies are important to this work. The first, impact energy, is a

principal measure of the severity of the impact event. The second, tup kinetic energy, is a

measure of the system energy not residing in the plate. Here it should be noted that the tup is

assumed to be effectively rigid so that tup strain energy is ignored. The limitations and liabilities

of this assumption were discussed in Chapter 3. The third and last important energy is the

arithmetic difference between the first two and is called the absorbed energy. Absorbed energy is

similar to the strain energy of the specimen but it also includes system losses. The losses are both

those within the plate (e.g. strain energy release, viscous damping) and those outside the plate

(e.g. friction, dissipated tup strain energy, etc.).

There are at least three alternative methods of calculating impact energy: 1) from the potential

energy of the tup before release; 2) from the kinetic energy of the tup just prior to impact; and 3)

from the maximum of the absorbed energy history (the energy calculated to be in the plate when the

tup is stopped). Of the three, the last has by far the most opportunity for error since nearly every

measurement made and two time integrations on the force history contribute to it. The potential

energy before release is the method used to attempt to obtain a particular impact energy, but it has a

great deal of potential human error in it. The author considers the kinetic energy of the tup just prior

to impact to be the most reliable and objective measure for the impact energy.
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Impact energy: Eimp act = T(O) = m, V(O)2  (4-4)

Unlike impact energy, only one way is used to calculate the tup kinetic energy and absorbed

energy histories.

Tup kinetic energy: T(t) = m pV(t) 2  (4-5)

Absorbed energy: Eabsorbed(t) = T(O) - T(t) - U(t) (4-6)

For the pendulum tests, tup velocity (hence kinetic energy) is measured both before and after

impact. This provides a check for absorbed energy history calculation since the difference between

the tup kinetic energy before and after the impact event is the energy absorbed (or dissipated, or

otherwise lost by the tup). Note, tup potential energy, U(t), is assumed to be constant during the

impact event (small displacement) and is therefore eliminated.
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4.6 Damage Analysis

4.6.1 C-scan.

The primary tool used for both pre-impact and post-impact non-destructive inspection of the

test articles was pulse echo ultrasonic time-of-flight C-scan. It was established by Harrington [5] that

for low-velocity impact to the specimens used in the current work damage, when present, is

confined to the upper facesheet and the core. Therefore, after impact only the upper facesheet was

scanned for the present work. The specimens were first immersed a bath of water which acted as an

acoustic coupling agent. An ultrasonic probe with a 7.6 cm focal length was used for all scans. This

probe produced pressure pulses which the water coupled to the specimen surface. Two significant

reflections were then observed in a known virgin portion of the specimen. The experienced

technician operating the C-scan system identified these two reflections as those from the top surface

of the plate and from the lower surface of the adhesive layer that bonded the top facesheet to the

core. The time difference between these reflections was converted to a relative distance from the

probe by the C-scan system software. The difference between the distances of the reflective surfaces

confirmed that the two surfaces producing the significant reflections were separated by the facesheet

thickness, consistent with the technicians identification of the sources. A time window was set to

pick up any reflection from a surface between these two surfaces. Where no delaminations existed,

no such surfaces existed (at least not perpendicular to the probe) and the reflection from the lower

surface of the adhesive layer provided a background return. The adhesive layer was not uniform in

thickness due to the filleting of the adhesive into the interface between individual cell walls and the

facesheet. This unevenness can be seen in the C-scans from which one can make out the general

pattern of the honeycomb. By this process delaminations patterns were observed and are recorded

on a two-dimensional color map. Only the first subsurface return was recorded so that if more than

one delamination were present at any given point, only the depth of the delamination nearest the

probe was indicated for that point by color.

4.6.2 Photomicroscopy.

The C-scans could not resolve multiple delaminations through the thickness. In addition, other

damage types were not observed by the C-scans. In particular, fiber failure, matrix cracking, and

core crushing were not seen by C-scans. To overcome these limitations, several specimens were
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sliced through their thickness in equally spaced planes perpendicular to the fiber direction. After

being stabilized with an epoxy potting compound, the exposed surfaces were polished, and viewed

under visible reflected light at various magnifications. This process allowed the viewer to record

(photographically and by sketch) the damage present in any of the slice planes. The particular

damages seen by this method include delaminations, matrix cracking, and core crushing. While the

C-scans provided a vertical view of the damage pattern, the sectioning of the specimens provided

the only in-plane view. Melding the two views and interpolating between slice planes provided a

near-three-dimensional representation of the damage.

4.7 Results

As indicated by the impact test matrix given in figure 4-1, two parameters were varied for the

dynamic portion of this research. These are, facesheet thickness (or number of plies) and impact

energy. For each event, a number of measures can provide insight into the physics. The measures

found most prominently in the literature are force history, absorbed energy history, and C-scans. In

addition to these, other measures were found to be quite useful in the present research. These

include absorbed energy at the end of the event, photomicrographs, and most significantly load-

displacement curves. In discussing the results of a test matrix varying facesheet thickness and impact

energy, one could choose to take one facesheet thickness at a time and show the effect of different

energies on each measure, or one energy at a time and discuss the effect of facesheet thickness on

each measure. In contrast to these admittedly logical presentation orders, the organization of the

following was chosen because it enhances the communication of the key ideas gleaned from these

data while minimizing the repetition of words. For this presentation, the measures (not the

experimental parameters) provide the top level discussion points and the effects of first facesheet

thickness and then impact energy are discussed in relation to each measure.

4.7.1 Absorbed energy.

In the case of drop weight tests post-impact (rebound) velocity was not measured. Absorbed

energy was calculated from tup velocity which was calculated from force history and initial velocity

via equation 4-2. For pendulum tests the measured post-impact velocity allowed direct calculation of
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absorbed energy at the end of the impact event by substituting equations 4-3 and 4-4 into equation 4-

5.

The difference between the kinetic energy of the tup at the beginning of the impact event and

that at the end of the impact event is here called the absorbed energy. Many processes could be

responsible for this loss of energy. Some possible energy loss mechanisms are friction at the

boundaries of the plate and within the contact area; high frequency vibration modes of the tup,

specimen, and supports; velocity measurement errors; and strain energy release associated with the

accumulation of damage within the specimen. Friction is not believed to be a significant contributor

because the in-plane displacements at the boundaries and under the tup are very small. Vibratory

modes of the tup are a greater concern as outlined in Chapter 3, but with the reduced tup tip mass

they should also be small compared to the impact energy. Dynamics of the specimen have not been

rigorously evaluated for their contribution to absorbed energy, but the analyst would expect that the

energy absorbed by higher frequency vibration modes of the specimen would increase with impact

energy and specimen mass (i.e. facesheet thickness). Vibration of the supports was minimized by

making them both massive and stiff compared to the tup and specimen. Velocity measurement

errors could be either random noise or a linear error in velocity which would produce a quadratic

error in energy. If the pre-impact and post-impact velocity measurements were such that the post-

impact measurement were consistently low, then the ratio of absorbed energy to impact energy for

an elastic event would be a nonzero constant for all impact energies and facesheet thicknesses. In

addition, post-impact velocity calculated from the tup equation of motion should be consistently

different from that measured by the light gate.

For the pendulum tests, a flag was attached to the tup and two light gates were located in the

path of the flag such that as the pendulum approached the specimen the leading edge of the flag

blocked first gate 1 and then gate 2 just prior to impact. On rebound the gates were cleared by the

leading edge in opposite order. Velocity was measured by recording two time intervals,

At1 = time gate 2 blocked - time gate 1 blocked

At2 = time gate 1 cleared - time gate 2 cleared

The light gates were set 2.54 cm apart, so the velocity (m/sec) was calculated by
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impact velocity: 0.0254m
At, (4-8)

rebound velocity: 0.0254 m4
At2

Error in the velocity measurement could have resulted from inaccurate relative placement of the

light gates, chronometer error, or differences between the gates in terms of the time it takes the

photocells in the light gates to turn on and the time it takes them to turn off. That is, the leading

edge progressively blocks the light from the light source in gate 1 over some finite time. During that

time the gate 1 photocell voltage is dropping. At some point the voltage is low enough that the

electronics start the clock for At1. Later the leading edge progressively blocks the light from the

light source in gate 2. If the two gates do not have identical light sources, photocells, and

electronics, a different amount of blockage might trigger gate 2 than gate 1 and the tup may have

moved more or less than 2.54 cm past the point where it was when the clock for At1 started when

the gate 2 electronics stop the clock for At,. The only calibration of the light gates that was done

specifically for this research was to verify the physical spacing between the gates. Discounting the

possibility of chronometer error as remote due to modern quartz technology, the effect of any of the

other errors just discussed would be of the same form. The distance that the tup traveled in the

measured time interval would be other than 2.54 cm. The error (difference between actual velocity

and the measured velocity) would be linear with velocity.

Equations 4-4 through 4-6 demonstrate the importance of velocity measurement to the energy

calculations. There were two different methods of obtaining rebound velocity used in this research.

In order to show the difference between the two, impact velocity (Vin) as well as rebound velocity

(Vout) as obtained by these two methods are shown in figures 4-6 through 4-9 for 4-, 8-, 32-, and

48-ply specimens. Since only the drop weight impactor tests were performed on the 16-ply

specimens, no light gate rebound velocity data were available for 16-ply specimens. In figures 4-6

through 4-9, the two ways of obtaining rebound velocity were 1) measurement by the light gate

(labeled "from light gate") and 2) calculation from force history and initial velocity via equation 4-2

(labeled "from load history").
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Figure 4-6 4-ply Velocities of impact (Vin) and rebound (Yout) versus impact energy. Pendulum data only.

Figure 4-6 shows that for the 4-ply tests the rebound velocity calculated by the integration of

the force history is close to, but consistently greater than, the velocity measured by the light gate. If

the light gate is correct, the force is too low (equation 4-2) leading to an error in rebound velocity

(too high), and the absorbed energy calculated from the load history will be too low. If the force is

correct, then the rebound velocity from the light gate is too low and the absorbed energy calculated

from the light gate rebound velocity will be too low. This line of reasoning provides the key to

discerning which of the velocity calculations is the most trustworthy. Of the two methods, the one

that produces the highest absorbed energy must be the better method.

4-20



1.6

1.4 8-ply
1.4

0.8 E E

>0. --*-.Vinro light gate (pnulum)l

0.4-

0.2 -- 5- Vout from load history (pendulum)

--- Vout from load history (drop weight)

0 0.5 1 1.5 2 2.5 3 3.5 4

impact energy (J)

Figure 4-7 8-ply Velocities of impact (Vin) and rebound (Vout) versus impact energy. Pendulum and drop weight
data.

Figure 4-7 shows that for the 8-ply tests the trend of load history calculating greater rebound

velocity identified in the 4-ply data continues, but the difference between the rebound velocity

calculated by the integration of the force history and that measured by the light gate is more

significant than it was for the 4-ply tests. Significantly, at the low energies where no major load

drop was observed, the rebound velocities calculated by integration of the force histories are nearly

the same as the impact velocity, indicating that nearly all the impact energy is returned to the tup.

The fact that the rebound velocity calculated by the force history does not exceed the impact

velocity provides some confidence that the force could be correct.

4-21



3

CL 32-ply ,

2.5

0 2

impctenegy(J

2 -

SVin f rom light gate

0.5 ---- - Vout from light gate

A-l- Vout from load history

02 4 6 8 10 12 14

im pact e ne rgy (J)

Figure 4-8 32-ply Velocities of impact (Vin) and rebound (Vout) versus impact energy. Pendulum data only.

The rebound velocities calculated from the force histories for the 32-ply data shown in figure

4-8 show the same trend as those of the thinner facesheets. An important difference between this

figure and figures 4-6 and 4-7 is that no matter which way rebound velocity was calculated, it was

significantly less than the impact velocity even at impact energies for which no major load drop was

observed. This suggests that the thicker facesheet specimens have an energy absorbing process

(damage mechanism) that takes place at energies lower than that required to produce a major load

drop.

4-22



R 48-ply

~~ 2.k

3.5 "-"-. <,..

E~ II

1.5--

--- Vin from light gate

--- Vout from fight gate

0.5 -- Vout from load history

0 5 10 15 20 25

impact energy (J)

Figure 4-9 48-ply Velocities of impact (Vin) and rebound (Vout) versus impact energy. Pendulum data only.

For the 48-ply data shown in figure 4-9, three load histories were lost due to failure of the

oscilloscope which was recording the data to trigger. As a result, Vout could not be obtained from

the load histories for those tests. Breaks in the line connecting the square markers in figure 4-9

identify the missing data. The rebound velocities calculated from the force histories for the 48-ply

data shown in figure 4-9 show the same trends as those of the 32-ply specimens. Like the 32-ply

specimens, no matter which way rebound velocity was calculated, it was significantly less than the

impact velocity even at impact energies for which no major load drop was observed. This supports

the conjecture made above that the thicker facesheet specimens have an energy absorbing process

(damage mechanism) that takes place at energies lower than that required to produce a major load

drop.

It has been suggested that velocity measurement errors could be either random noise or a

linear error in velocity. To investigate this, the difference between the two rebound velocity

calculations was plotted against rebound velocity and is shown in figure 4-10. In such a plot, a

linear error in velocity would show up because all of the data would collapse to a straight line

regardless of the facesheet thickness, while a random error in velocity would show up as scatter.
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Figure 4-10 Rebound velocity calculation difference versus rebound velocity. Pendulum data only.

While there is a definite increasing trend in the difference between these velocity calculations

with increasing rebound velocity, figure 4-10 does not collapse all of the data to a straight line. If

the light gate was in error as discussed above, these data should be much closer to linear.

In figures 4-11 through 4-15 absorbed energy has been nondimensionalized by impact energy

and plotted versus impact energy.

4-24



1001

90 4-ply
80

C 70

60

: C 50
E
* 30'

3u

S 20 t
from light gate (pendulum)

10 -0-from load history (pendulum)

0 . ..

0 0.2 0.4 0.6 0.8
Impact energy (J)

Figure 4-11 4-ply Absorbed energy versus impact energy showing threshold near 0.3 J. Pendulum data only.
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Figure 4-12 8-ply Absorbed energy versus impact energy showing threshold near 0.45 J. Pendulum and drop weight
data.
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Figure 4-13 16-ply Absorbed energy versus impact energy showing threshold near 1.0 J. Drop weight data only.
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Figure 4-14 .32-ply Absorbed energy versus impact energy showing threshold near 5.1 J. Pendulum data only.
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Figure 4-15 48-ply Absorbed energy versus impact energy showing threshold near 8.5 J. Pendulum data only.

Several important trends are observable in figures 4-11 through 4-15. First, the absorbed

energy based on the light gate velocity measurement is almost universally greater than that based on

the load history. As discussed, this indicates that the light gate velocity measurement (and energies

based on it) are more likely to be correct than the load history velocity calculation (and energies

based upon it. Secondly, for all of the pendulum data (figures 4-11, 4-12, 4-14, and 4-15) at least 15

percent of the impact energy was not returned to the tup. This was the case even for impact energies

low enough to produce no detectable damage. Thirdly, in each figure a threshold impact energy is

evident below which the absorbed energy has one relationship to impact energy and above which a

significantly larger portion of the impact energy is absorbed. This threshold impact energy

corresponds precisely with the damage initiation impact energy determined by post-impact

inspections of the specimens. Absorbed energy appears to be a reliable indicator of damage. This is

to be expected since the strain energy release associated with damage progression is an energy loss

to the system. What is interesting is how sharply the threshold can be seen as each plot

approximates a step function. The fourth important trend is that, after the damage initiates, the

absorbed energy increases linearly with impact energy. This trend can be seen in figures 4-11

through 4-15 by observing that for impact energies above the threshold impact energy the absorbed

energy/impact energy ratio is independent of impact energy. This constant ratio implies that
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doubling the impact energy will simply double the absorbed energy. Since the absorbed energy is

related to the damage in the specimen, an empirically derived relationship between impact energy

and damage may be possible. This relationship is conveyed in the rest of this chapter by various

statements concerning the damages discussed and the impact energies at which they initiated. A fifth

trend is that the absorbed energy/impact energy ratio for damaged specimens seems to increase with

facesheet thickness. That is, as facesheet thickness increases the energy absorbed in the process of

damage also increases. An interpretation of this may be, damage is delayed (i.e. threshold impact

energy is increased) by increasing facesheet thickness but at the cost of making the damage more

severe when threshold is breached.

It is also of interest to consider what effect increasing facesheet thickness has on the damage

brought about by a given impact energy. Though the test matrix (figure 4-1) was not designed to

show this, it did include similar impact energies for different facesheet thicknesses, so the effect of

increasing facesheet thickness while holding impact energy constant could be observed from this

data. In order to present the data in a concise form, a suitable scalar measure of damage proved

helpful. The damage measure chosen was the absorbed energy/impact energy ratio, since it so

clearly identified the damage threshold in figures 4-11 through 4-15. Figure 4-16 shows how the

absorbed energy/impact energy ratio changes with facesheet thickness for several impact energies.

The most important and obvious trend shown by figure 4-16 is that increasing the facesheet

thickness reduces the absorbed energy/impact energy ratio associated with a given impact energy.

That is, thicker facesheets absorb a smaller portion of the impact energy. This stands to reason,

since the threshold impact energy increases with facesheet thickness. The lesson here is that

sandwich plates with thicker facesheets are more damage resistant than those with thinner

facesheets. No inferences with regard to damage tolerance should be made from these data.
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Figure 4-16Absorbed energy/impact energy versesfacesheet plies showing decreasing absorbed energy ratio (hence
decreasing relative damage) from a given impact energy as the facesheet thickness is increasedL

4.7.2 Force history.

Force histories for several impact energies near the threshold impact energy for each facesheet

thickness are shown in figures 4-17 through 4-21. In each of those figures the facesheet thickness is

held constant and the impact energy is varied. To keep the data from each event distinct, as well as

to give the reader a graphic feeling for how the events change with impact energy, each event

history is offset to the right (i.e. the time of the beginning of the event is shifted) by,

ti,j = ti,j + Timescale x Eimpac. j  (4-9)

in which, j delineates a particular impact event, i a particular data point, t is time (sec), and

Timescale (sec/J) is a scaling chosen distinctly for each plot to spread the ordinates of the data out in

an appealing fashion. This shifting of the data ordinates makes it possible to observe the relative

magnitudes of the impact energies for each event simply by visually observing the ordinate shift.
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Figure 4-17 4-ply Force histories offset by impact energy showing possible damage initiation near 400 Nin the 0.094
J event whilefirst major load drop does not occur until near 550 Nin the > 0.3 J events. Note the 0.11 J and 0.22 J

events do not evidence damage even though the lower energy 0.094 J event does. Pendulum data only.
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Figure 4-18 8-ply Force histories offset by impact energy showing possible damage initiation near 1000 N in the 0.47
J event whilefirst major load drop does not occur until near 1100 N in the > 0.4 J events. Pendulum (<1 J) and drop

weight (> 1 J) data.
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Figure 4-19 16-ply Force histories offset by impact energy showing damage initiation near 2700 N in the impact
energy > 1.3 J events. Drop weight data.
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Figure 4-20 .32-ply Force histories offset by impact energy showing damage initiation near 8000 N in the impact
energy > 5.2 J events. Pendulum data.
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Figure 4-21 48-ply Force histories offset by impact energy showing damage initiation near 14000 N in the impact
energy > 10.0 J events. Pendulum data.

Some general trends which can be seen in these data are:

1. At impact energies below the threshold impact energy, the loading and unloading is

relatively smooth and not unlike a half sine wave with a superposed smaller-amplitude higher-

frequency secondary sine wave.

The secondary sine wave feature is most clearly identifiable in the thicker specimens,

but is present in all cases. The three degree of freedom model in Chapter 3 predicts

such a feature. In that model, it is the dynamics of the plate with the "attached" tup

mass that produces the secondary sine wave. A significant difference between the three-

degree of freedom model and this result is that in the experiment the oscillations die

away during the unloading while in the model they do not. An explanation of this is

suggested by considering a few of the known weaknesses of the three degree of

freedom model. The model includes no damping and employs a linear contact spring.

Damping alone could explain the difference, but the fact that the oscillations do not

appear to be strongly damped until after the peak load is reached indicates that

something more is going on. In the model, the linear contact spring provides a force

proportional to the relative motion of the plate mass to the tup tip mass. Linearity

implies that if the plate moves away from the tup tip a fictitious tensile force will be
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produced. This tensile force obviously can not exist in the experiment since the tup is

free to lose contact with the plate. Though the tup may never actually lose contact with

the plate in the experiment, the relative displacement of the plate and tup can fluctuate.

Perhaps during the loading portion of the event the contact is firm (i.e. the relative

displacement of the plate and tup is large and negative) because the plate mass is

constrained to follow the tup displacement and the contact stiffness is large and constant

(linear). During unloading, the contact is softer because the relative displacement of the

plate and tup is smaller because the plate mass is no longer constrained to follow the tup

displacement. This softer contact stiffness smoothes out the force history during

unloading.

2. Increasing the facesheet thickness increases the prominence of the secondary sine wave.

This fact supports the conjecture that the secondary sine wave may be attributable to

specimen-tup dynamics. The specimen mass, and therefore the maximum specimen

kinetic energy increases with facesheet thickness. Thus the prominence of the dynamics

is expected increase with facesheet thickness.

3. For any given facesheet thickness, as impact energy increases, eventually a point is reached

where the load history is no longer smooth, instead, a major load drop occurs and is followed

by multiple cycles of loading and partial unloading.

It is of interest to identify the damage or damages that give rise to the major load drop.

The damage that is responsible is a major energy absorbing process. Clearly, the

principal reason for this and all structural research is to influence decisions made in the

design of structural members. Whether the design criteria drives toward increasing

energy absorption (as in vehicle structures designed to protect the occupants during a

crash) or decreasing energy absorption (damage resistance) the damage associated with

the major load drop is of interest. Force history alone can not reveal the damage that

produces this load drop, but the current work does eventually identify the damage

associated with the major load drop.

4. For any given facesheet thickness, the load at which the major load drop occurs is

independent of impact energy.
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This is the fact often observed in the literature which motivates the idea that damage

from low-velocity impact is controlled by the maximum load reached and not by the

energy of the impact. From this, the assumption that quasi-static analyses and static

indentation tests can be used to model and simulate impact tests was born. The range of

validity of this assumption is of concern in this work and will be investigated by

comparing load displacement curves and C-scans from statically and dynamically

loaded specimens.

5. Increasing the facesheet thickness increases the load at which the major load drop occurs.

This idea is intuitive, a thick facesheet is more damage resistant than a thin one. If there

is a design requirement that a certain impact event be sustainable without damage, that

requirement apparently translates to a particular minimum facesheet thickness. This line

of thinking, of course, assumes that no other means are available to increase damage

resistance. It may prove better to change something else such as ply orientations,

material properties, core design, or move to a textile facesheet, but these are beyond the

scope of the current work.

6. Increasing the facesheet thickness increases the magnitude of the major load drop.

This idea agrees with the absorbed energy data which found that the thicker facesheet

specimens absorbed a greater proportion of the impact energy when they did receive

damage.

7. The average initial loading rate (slope of the load history at the beginning of the event) and

final unloading rate (slope of the load history at the end of the event) are of the same magnitude

for those events not showing a major load drop, while the final unloading rate drops off for

those events showing a major load drop.

The major load drop has been attributed to damage. The damage can be considered a

loss of stiffness. The reduction in the final unloading rate (without noticeable reduction

unloading rate immediately after the damage) may indicate that the damage present

induces a nonlinearity in the stiffness. The effect of the nonlinearity is to locally soften

the structure for small displacements (or loads) but for large displacements (or loads)

the global stiffness of the structure dominates and the structure stiffens. This effect will

be considered more directly in the discussion of the load versus displacement curves.
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8. The major load drop is followed by a response that appears to have a superposed secondary

sine wave of nearly the same frequency as was seen before damage but with much greater

amplitude.

The major load drop appears to the undamaged portion of the plate to be a negative step

function in load. It is to be expected that such an abrupt change in load will excite a

broad range of natural frequencies of the plate (or plate with a lumped mass, the tup).

The most prominent of these frequencies is the same as that seen before damage,

indicating that the global stiffness of the specimen has not changed significantly. This

point argues for a localized damage.
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4.7.3 Global and local stiffness.

A measure of the stiffness of a centrally loaded plate is the ratio of applied load to resulting

center displacement. When the load is confined to a small portion of the plate surface, the stiffness

will depend upon the vertical location at which center displacement is measured. This is due to the

three-dimensional nature of the displacement in the vicinity of the applied load. Two different

stiffnesses then can be defined. Away from the point of application of the load (global) and

immediately under the load (local). For a sandwich construction in which the transverse core

stiffness is significantly less than the transverse stiffness of the facesheets, the difference between

global and local stiffness will be more significant than it is in a monolithic laminate.

A composite sandwich structure differs from a monolithic laminate in that the sandwich is

composed of two distinct monolithic laminates (the facesheets) that are separated by a relatively

flexible core. Before damage, the primary coupling between the transverse displacement of the top

and bottom facesheets of a sandwich is provided by the transverse direct stiffness of the core which

may be an order of magnitude smaller than that of the facesheets. When the core fails in

compression, little or no transverse direct stiffness of the core remains in the damaged area to keep

the facesheets from moving toward one another. Instead, the vertical load is resisted by bending of

the top facesheet and is transferred to the undamaged core by shear.

Low-velocity impact often involves small contact areas (typically in the range of 1.0 to 4.0

nun for the current research). Small contact areas will lead to high transverse applied stresses. For

example, a unit force distributed over a very small contact area will produce a high applied

transverse direct stress whereas the same force applied over a much larger contact area will produce

a much smaller applied transverse direct stress. This idea is expressed graphically for Hertzian

contact in figure 4-22. Composite sandwich structures can be particularly susceptible to damage

from high transverse stresses due to the fact that the transverse compressive strength of the core

may be an order of magnitude less than that of the facesheets. Near the applied load then, one

should expect the plate response, and particularly damage to be dominated by the applied stress.

Saint-Venant's principle indicates that far from the applied load the effect of these high stresses will

not be apparent. We can therefore conclude that for low-velocity impact two regions can be

considered. A local region in the vicinity of the contact region dominated by the applied stress

profile, and a global region away from it which responds to the applied force. Local stiffness is here
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defuied as the slope of the curve representing transverse force verses top surface displacement,

where the top surface displacement is taken to be that at the center of the application of the force

(i.e. the center of the specimen). This definition is flawed by the fact that displacement at the center

of the plate actually has both local and global displacements superposed. The definition proves

useful nevertheless. It is important to recognize that local stiffness will depend not only upon the

properties of the specimen, but also on the radius of the impactor (since this affects the distribution

of the load). For all of the current research the impactor radius was 12.7 mm (spherical). Impactor

radius should not be confused with contact radius. For a given impactor radius the load is applied,

the contact radius changes. In this way, the applied stress is a function of both the applied force and

the plate response to that force since plate response dictates the contact radius. Local displacements

are dependent on the applied stress (not just force) while global displacements depend only on the

applied force (not the applied stress, i.e. they are independent of contact radius for a given applied

force).

0.5 .

CL- 0.45 i

E 0.4 -
(U

0.35

0.3
• 0.25

,. 0.2
0.15

C- 0.1

0.05

0 -......................-- -.... __

0 2 4 6 8 10

contact radius (mm)

Figure 4-22 Peak transverse stress for unit (I N) transverse force assuming Hertzian contact law.

The local response of a composite sandwich structure will be greatly affected by the presence

of low-velocity impact induced damage. Damage in the forms of matrix cracking, delaminations,

and core failure all serve to soften the response of the plate to transverse loading. Core damage will

have a significant effect because it fundamentally changes the way the transverse load is transferred

within the plate. Local stiffness will therefore be strongly influenced (reduced) by the presence of

low-velocity impact induced damage while global stiffness is expected to be little affected. Unless a
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significant portion of the facesheet lost membrane stiffness, global stiffness would not change

drastically. Local stiffness is typically the only stiffness available from instrumented impactor tests

because the calculated displacement (equation 4-3) is that of the tup (i.e. right under the load). In

order to provide insight into the process of damage within a composite sandwich plate, some

measure of global stiffness is desirable. A true measure of global stiffness must be made outside the

region near the contact because the displacement used in the true global stiffness must be unaffected

by the localized high stresses. In the current work, a less than true measure of global stiffness (the

ratio of load to bottom surface displacement) was adopted which was able to show some of the

global characteristics of the plate response.

In addition to the impact tests of figure 4-1, three specimens of each facesheet thickness were

subjected to static indentation. Figure 4-23 shows a representative sample of the static indentation

test data. In these tests displacement of both the top surface and the bottom surface of the plate at

the point of application of the load were measured (section 4.4). The addition of the bottom surface

displacement measurement provided a measure of the global plate stiffness as well as insight into the

damage mechanisms which affected the response of the plate. For the purposes of the following

discussion, global stiffness is defined as the slope of the load verses bottom surface displacement

curve, where the bottom surface displacement is taken to be that at the center of the plate. Like the

definition of local stiffness, this definition is flawed by the fact that the displacement of the bottom

surface actually includes components of both the global plate bending and the local displacement.

That is, the displacement of the bottom surface at the center of the plate is not sufficiently removed

from the point of application of the load to be considered truly global. The influence of local effects

on the "global stiffness" can be seen in figure 4-23. The leftmost loading/unloading curve in that

figure shows the applied load verses bottom surface displacement. The slope of this curve is the

"global stiffness" as defined here. The curve is concave up, indicating that for small loads the

stiffness is lower than for large loads. This stiffening effect can be explained by considering the

three-degree of freedom model of the impact (or in this case indentation, since the load was applied

"statically") event as shown in figure 3-4. In that figure, static indentation as performed in the test

represented in figure 4-23 consists of an applied x2 displacement. The stiffness, kf, resisting such a

displacement by generating a response force is the combined stiffness of k2 and k3, in which k2 is the

contact stiffness and k3 is the plate bending stiffness. These combine as,
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Figure 4-23 16-ply Static force verses displacement showing "global" and "local" response including the effects of
damage.

Equation 4-10 provides the key to the explanation of the concave-up nature of both loading curves

in figure 4-23. While bending stiffness k3 is essentially constant, k2 is highly nonlinear [214]. As the

displacement increases, k2 becomes large compared to k3 so that kEff increases. In the limit of large

k2, kEff is equal to k3. Thus, the initially soft plate stiffens as the contact develops, accounting for the

concave-up nature of the loading curves. While this effect is expected in the local response, the fact

that the "global" response shows this effect indicates that the bottom surface loading curve does not

provide a true global stiffness, except, perhaps, in the limit of large displacements. One can view

the bottom surface loading as follows. Initially, the bottom surface displaces both from a local

"bulging" due to the high peak applied transverse stress associated with the initially small contact

radius (figure 4-22) and from a global bending of the entire plate due to applied transverse force.
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The bottom surface displacement is the sum of the global displacement and the local displacement

characterized as "bulging" due to the high peak stress. As the displacement and applied force

increase, the contact radius increases, reducing the peak stress. While the global displacement

increases linearly with increasing applied force, the local displacement increases more slowly or

may actually decrease.

To show the inverse relationship between applied force and peak stress, a small set of tests

was conducted in which contact radius was measured by placing a piece of carbon paper and a piece

of parchment (carbon toward the parchment) between the indentor and the specimen. The specimens

were then loaded "statically" to a given load and then unloaded. The specimens used for these tests

were the same material as the 16-ply specimens cut to half of the in-plane dimensions of those of the

impact tests, so they were placed on a rigid support rather than in the 12.7 cm simple support

fixture. The imprint of the carbon on the parchment provided a record of the contact footprint

(hence contact radius) for the given load. Peak applied stress was then calculated for Hertzian

contact by,

3 x applied force
peak stress 3 pledfre) (4-11)27c x (contact radius)2

Only one facesheet thickness was used, and the boundary conditions were different than the impact

and static indentation tests, but the inverse relationship between applied force and peak stress can be

seen in figure 4-24.

Before damage (the drop in load visible at 1 mm displacement in the top surface load curve of

figure 4-23), both the top surface and the bottom surface displacement curves show a nonlinear

displacement stiffening effect. While one might be tempted to interpret this as membrane stiffening,

it is clearly not that. The displacements shown (less than 3 mm) are for a plate nearly 17 mm thick,

so membrane effects are almost certainly negligible. The nonlinearity of the top surface stiffness is

expected because the contact problem is nonlinear. As the load increases, the area of the top surface

in contact with the indentor increases and the load is continuously redistributed over this growing

area. The peak pressure under the indentor is thus decreasing with increasing load so that three-
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dimensional effects become less important. The compliance of the initial contact problem is

gradually depleted as the contact area develops.

2501 4

= 3.5
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---- contact radius

0 500 1000 1500 2000 2500

applied load (N)

Figure 4-24 Contact radius and peak stress (assuming Hertzian contact) as afunction of applied load on a 16-ply
specimen showing an inverse relationship between applied force and peak stress.

Several other points should be made from figure 4-23. As expected, the global stiffness (the

slope of the load verses bottom surface displacement curve) is greater than the local stiffness (the

slope of the load verses top surface displacement curve). The major load drop seen at 1.0 mm top

surface displacement is seen to be the result of a process that permanently changes the equilibrium

curve of the top surface while the bottom surface "unloads" and subsequently reloads along the

same equilibrium curve. In fact, the unloading and reloading data for bottom surface at the first

major load drop (2200 N in figure 4-23) lie on top of each other and are indistinguishable from the

undamaged (prior to the load drop) portion of the loading curve. This indicated that the effect of the

damage, while locally significant, has little effect on the global stiffness of the structure. An analyst

seeking to model this event with a global-local model might justify ignoring damage in the global

model. This approach was taken for the analytical portion of the present research (Chapter 6).

The unloading portions of the load verses displacement curves in figure 4-23 tell a tale as

well. The load verses bottom surface displacement curve shows loading and unloading to be nearly

along the same path, while the load verses top surface displacement curve shows a very significant

difference between the loading and unloading slopes. Indeed, were it not for the abrupt load drops,

the top surface curve would resemble an elastic, work hardening equilibrium curve for a metal in
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uniaxial tension. This analogy suggests that what is going on in the post-load-drop portion of the

curve is not simply a new elastic equilibrium brought about by damage which took place suddenly

(at the load drop) but is a near-continuous progression of damage under continuing displacement.

Significantly, note that the final loading and initial unloading slopes are the same for the bottom

surface while they differ greatly for the top surface. This suggests a "plastic" behavior which may

be the progressive crushing of the core and/or the growth of delaminations and matrix cracks.

Finally, the residual displacement shown in figure 4-23 represents a very visible depression

left in the top surface of the specimen after the load was removed.

4.7.4 Transverse strain

The average (through the thickness) transverse strain immediately under the indentor gives

additional insight into the damage processes. Knowing the displacement of both surfaces vo and

iB,, as well as the original sandwich thickness, average transverse strain is defined as

average transverse strain T 5 TOp - (Bottom (412)thickness

This quantity is plotted against tup displacement for specimens of each facesheet thickness in figure

4-25.
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Figure 4-25 Transverse strain verses displacement for static indentation showing strain jumps presumed to be
indicative of multiple cell core failure.

The value of the transverse strain measure outlined above is that it highlights the points in the

loading sequence when the top surface and the bottom surface moved toward each other abruptly.

That is, the top surface moved down slowly with the crosshead and the bottom surface followed

except for certain times when it moved rapidly back up. In figure 4-23, this can be seen by

recognizing that displacement control was used so that the load drop seen in the top surface data is

not accompanied by a change in top surface displacement while the bottom surface curve shows

unloading (back down the same equilibrium path) is accompanied by a reduction in displacement.

That is, the top surface stays still while the bottom surface moves back up. These rapid movements

of the bottom surface generally coincided with load drops. A drop in load for a given top surface

displacement indicates strain energy release, or damage progression. The question is, what form or

forms of damage are producing these load drops? Undamaged core between the facesheets resists
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transverse strain. By Hooks law, an abrupt increase in transverse strain indicates either an abrupt

increase in transverse stress or and abrupt decrease in transverse stiffness. Since the load, and hence

the transverse stress, is dropping (or at least not increasing) these jumps in transverse strain must

indicate a drop in transverse stiffness. Of the two possible contributors to this stiffness drop,

facesheet and core, core has by far the greater potential for causing such a large strain jump. If the

top facesheet failed by delamination or matrix cracking without core failure, the transverse facesheet

strain jumps implied by the observed average transverse strain jumps are unreasonably high (e.g.

-8 percent for the 16 ply case). Therefore, the observed average transverse strain jumps are

assumed to indicate abrupt core failure. If the core had no attached facesheets and were under

compression from the indentor directly, only that portion in contact with the indentor would fail.

The facesheet distributes the transverse stress over an area of core that is larger than the contact

area through shear. The facesheet effectively spreads the transverse load out over the core. The

thicker the facesheet, the greater the core area over which the transverse stress is spread. Thus

sandwiches with thicker facesheets should be expected to take a higher load before the core fails. In

addition, when they fail, a larger portion of the core should be expected to fail so that the strain

energy released should be expected to be greater.

To check out these ideas, we make the switch now from static indentation data to low-velocity

impact test data, in which absorbed energy was calculated from impact and rebound velocities. We

assume for the moment that net absorbed energy at the end of the impact event is directly related to

strain energy released by damage progression. Given this assumption, both of the intuitive ideas of

the previous paragraph are supported by the impact data as shown in figure 4-26. In that figure, the

peak load and absorbed energy for the lowest impact energy event showing a major load drop is

plotted against the number of plies in the facesheets.
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Figure 4-26 Load and absorbed energy associated with first major load drop. This shows that thicker facesheets take
a greater load before the first major load drop and that they dissipate more energy in the damage associated with that

load drop.

4.7.5 Dynamic and static compared.

A major question addressed by this research is the range of validity of the assumption that

low-velocity impact to composite sandwich plates is a quasi-static process. This question bears

directly on the applicability of the analytical portion of the research, which is a static finite element

based code. Chapter 3 addressed the problem from an analytical point of view, but only for

undamaged plates. In that chapter it was shown that certain characteristics of the loading history can

be attributed to simple vibratory modes of the testing system. In this portion of the experimental

effort, a first look at the importance of these dynamics on the processes of damage initiation and

progression is available. Three metrics will be used to compare static and dynamic data, C-scan,

load verses tup displacement curve, and absorbed energy.

4.7.5.1 C-scan. After impact or static indentation, all specimens were ultrasonically inspected

for damage using the time-of-flight C-scan technique. The images thus produced show

delamination patterns and can be used to qualitatively compare damages from different events.

Figure 4-27 shows a direct comparison of C-scans for static and impact events. The events were

chosen for that comparison based upon a similarity in the load histories. In particular, the impact

4-45



events were performed first and the lowest energy event that showed a major load drop wa S

These events are the same as those of figure 4-26 and their load histories are identified as 0.34 J,

0.47 J, 1.35 J, 5.24 J, and 10.08 J respectively in figures 4-17 through 4-21. The static events were

created specifically for this comparison based on a similar criteria, that is, the crosshead

displacement was slowly increased until the first major drop in load was observed and then the

crosshead displacement was slowly decreased. The comparison static and dynamic impact damages

shown in figure 4-27 then, is not based on equivalent peak loads. The conventional wisdom that,

"equivalent peak loads produce equivalent damage," was not validated by this research. This idea

will be discussed when the load verses displacement curves are compared. The equivalence found in

this research is based on load drops rather than peak loads, so the static and dynamic data associated

with the first major load drop are compared in figure 4-27.

Static

Impact i

Figure 4-27 C-scans for static and dynamic events fund to exhibit the first wajor load drop (inagnified 150%).

The colors in the C-scans of figure 4-27 indicate the depths (distance from the top suriace) oi

the delaminatios present in the specimens after impact. The scales relating color to delamination
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depth are different for each scan, so colors should not be compared between scans. The colors are

shown to give the overall perspective that delaminations are occurring at different depths and that

the delaminations become larger in the deeper interfaces. The colors also allow a better view of the

in-plane shapes of the delaminations. The C-scans in figure 4-27 show some similarity between the

damage associated with the first major load drop in a static test and the damage associated with the

first major load drop in a dynamic test. This similarity can be seen in figure 4-27 by comparing the

overall sizes and shapes of the delaminations. The similarity is present for all facesheet thicknesses

tested. In particular, the overall size of the deepest and shallowest delaminations, the number of

interfaces (different colors) found to have delaminations, and the general shape of the delamination

pattern all compare well between static and dynamic data.

If a comparison were made of C-scans of statically and dynamically loaded plates with similar

peak loads, a very different story would be obtained. The essence of the difference is that the

dynamically loaded plates reached a higher peak load before failure. Thus, dynamic events reaching

the same peak loads as the static events of figure 4-27, show no delaminations in the C-scans.

Alternatively, however, static events reaching the same peak loads as the dynamic events of figure

4-27, show delaminations similar to those of figure 4-27. Peak load, then, is not an appropriate

equivalence between the static indentation and dynamic impact events for composite sandwich plates

since two specimens loaded to the same peak load (one impact, the other static) may or may not

show similar damages. This indicates that quasi-static analysis and testing in which peak load is

compared with the peak load from a dynamic event, may indicate failure at a lower peak load than

an actual impact event would find.

Comparison of the C-scans in figure 4-27 might lead one to conclude that there are both

similarities and differences between the static and dynamic delamination fields. A word of caution is

appropriate here. At best, the general shapes (hour glass and crossed hour glasses) and gross size of

the delamination patterns of the 4- and 8-ply data are repeatable. There is also a good deal of

randomness in the patterns observed. This randomness can be seen in figure 4-27 when one

considers the fact that all loads, material properties, and boundary conditions possessed bilateral

symmetry while the delamination patterns deviate from this symmetry somewhat. Less can be said

for the thicker facesheet specimens. For the thicker facesheet specimens, the gross size may be

repeatable and the general feature of delaminations becoming wider as the depth increases is
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characteristic of all of the data, but to try to compare color by color and shape by shape is asking

too much of these data. The purpose of figure 4-27 is to show overall similarity of delamination

patterns and sizes for static indentation and dynamic impact loaded composite sandwich plates.

Meaningful comparisons stop there.

4.7.1.1 Load-displacement curves. In C-scans, a time integrated result of the damage processes

is in view. No information about the equilibrium states leading to damage or the effect of the

damage on those states is available from C-scans. Thus, C-scans can give a perspective of what

happened but can tell very little about how it happened. In contrast to this, a load verses

displacement curve is essentially a record of the equilibrium states before, during, and after

damage. No information about the physical effect of the damage processes is available from a

load verses displacement curve. In an attempt to make a definitive statement about quasi-static

assumptions in low-velocity impact to composite sandwich plates, load verses displacement

curves provide a direct comparison of equilibrium states between the static and dynamic

processes.

Figures 4-28 through 4-32 show load verses displacement curves under static loading as well

as several impact loadings with and without damage. By these figures the reader is intended to

observe both the similarities and differences between static indentation and dynamic impact for the

several facesheet thicknesses tested. The load histories for the impact events in figures 4-28 through

4-32 were previously given in figures 4-17 through 4-21. In all but the 4-ply case (figure 4-28), the

static displacement was increased until the first major load drop, then it was decreased. For the 4-

ply case, the first "major" load drop was a more subjective judgment (load drops occurred at 270

N, 330 N and 530 N as well as the easily seen drop at 690 N) so data for the full range of static

displacement is shown in figure 4-28.
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Figure 4-28 4-ply Static and dynamic force verses displacement showing the effects of damage.

The first major load drop was difficult to distinguish in the 4-ply impact data. Damage is

apparent in the 0.34 J event and in the 0.094 J event (see figure 4-17) but not in the 0.11 J and 0.22

J events. It is thought that for this very thin facesheet the contact pressure is transferred almost

directly to the core. That is, the facesheets have very little bending stiffness and hence do a poor job

of spreading out the contact stress. As a result, a very small area of the core sees all of the

transverse load. This small portion of the core may be a single cell or just part of a cell. The loaded

portion of the core begins to fail very early but since it is so small the strain energy released by the

failure is also small. Thus the almost imperceptible load drop at 325 N in the static case may in fact

be the first core failure. Another drop at 510 N in the static case is more readily discerned and may

represent the failure of adjoining cell walls. The next few drops near 700 N in the static case are

easy to see and are more like those seen on the thicker facesheet specimens, perhaps indicating that

the contact is fully established and core failure and facesheet delamination are happening en mass. If

this explanation is correct, then turning to the dynamic data, the anomaly of damage in the 0.34 J

event and in the 0.094 J event but not in the 0.11 J and 0.22 J events could be simply the result of

minor differences of the impact point with respect to the honeycomb cells. Suppose the 0.094 J

event had the impact point directly over a cell wall while the 0.11 J and 0.22 J events had the

impact point near the center of a cell. In this case, the 0.094 J case might be expected to fail at a

lower load because a fewer cell walls were available to react the load. For impact energies above

0.3 J, the 4-ply data are consistent in showing a first major load drop near 600 N.
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Figure 4-29 8-ply Static and dynamic force verses displacement showing the effects of damage.

The 8-ply data in figure 4-29 show loading and unloading for the 0.19 J and 0.28 J events to

be almost perfectly following the same path. This fact is thought to indicate that no damage is taking

place and that the energy absorbed by the dynamics of the system is small. Interestingly, the 0.28 J

event reaches a load which is equal to the load for the first major load drop in the higher energy

events and is more than 15 percent greater than that which caused the first major load drop in the

static indentation data. In figure 4-29 it can be seen that the static test shows the first major load

drop near 830 N while the impact tests show it near 1100 N. The tendency for the static loading to

bring about the first major load drop at a lower applied load than the dynamic loading was

consistent among all facesheets tested. The slopes of the curves here represent the local stiffness of

the plate. In the dynamic tests, the applied force can be thought of as having two components. The

first is the product of the static stiffness and the displacement, and the second is the product of the

plate effective mass and acceleration (Newton's second law). For the purposes of the following

discussion, the second term will be referred to as the "inertial stiffening force." In the 8-ply data the

inertial stiffening effect is more pronounced than in the 4-ply data as can be seen by the "waviness"

of the slope in the impact curves before the first load drop. This is believed to be an effect brought

about by the increased inertia related to the larger mass of the thicker specimens.
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Figure 4-30 16-ply Static and dynamic force verses displacement showing the effects of damage.

Similar to the 8-ply data, the 16-ply data in figure 4-30 show loading and unloading for the

0.47 J and 0.88 J events to be nearly following the same path. Much more dramatic than the 8-ply

data, however, is the magnitude of the first major load drop. Since the magnitude of the load drop

reflects the strain energy released, these data indicate that much more energy is absorbed by the

damage causing first failure in the 16-ply specimens than in the 8- and 4-ply specimens. In these

data it can be seen that the static test shows the first major load drop near 2300 N while the impact

tests show it near 2800 N. Also, the magnitude of the load drop is roughly 600 N for the static test

while it ranges from 800 N to 1100 N for the impact tests. In the 16-ply data the inertial stiffening

effect is even more pronounced than in the 8-ply data as can be seen by the greater initial slope of

the load verses displacement curve for the impact events. This is believed to be an effect brought

about by the increased mass of the specimen.
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Figure 4-31 32-ply Static and dynamic force verses displacement showing the effects of damage.

Unlike the 8- and 16-ply data, the 32-ply data in figure 4-31 show loading and unloading for

events not exhibiting a major load drop ( 3.49 J, 3.90 J and 4.40 J) do not follow the same path.

There are evidently more energy losses in these tests than in the thinner facesheet tests. The

dramatic load drop of the 16-ply data continues in the thicker 32-ply data. The static test shows the

first major load drop near 5800 N while the impact tests show it near 8000 N. Also, the magnitude

of the load drop is roughly a factor of 2.0 lower for the static test than it was for the impact tests.

The inertial stiffening effect continues to become yet more pronounced than in the thinner

facesheets.
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Figure 4-32 48-ply Static and dynamic force verses displacement showing the effects of damage.
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All the trends observed in the 32-ply data continue in the 48-ply data. The static test shows the

first major load drop near 10500 N while the impact tests show it greater than 13000 N. The

magnitude of the load drop is roughly a factor of 1.5 lower for the static test than it is for the impact

tests.
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Figure 4-33 8-ply Static and dynamic force verses displacement showing the dynamic equilibrium effects of damage
progression.

Figures 4-33 and 4-34 are included to show that after the initial load drop the static and

dynamic events behave quite differently. The large load fluctuations present in the dynamic case and

absent from the static case can be seen in the load histories (figures 4-18 and 4-19). The load

histories show that the fluctuations are not pure noise, they have identifiable frequency components.

The lowest of these frequencies is presumed to be associated with the first vibratory mode of the

plate-lumped mass system. The effect these force oscillations have on the damage progression is

unknown. The load drops can be thought of as an inverse step function. Such a function would

excite the vibratory modes of the system. The load fluctuations following the first major load drop

are thought to be the dynamic response of the specimen to the inverse step function loading that is

produced by the dramatic load drop. Since dynamics are eliminated from the static case, the

fluctuations are not present in the static loading curves. The smaller load drops and constant-load
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motions visible in the static data are believed to be indications of core damage progression. Core

failure is present in the dynamic tests as well, but it is mixed in with the dynamic fluctuations.
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Figure 4-34 16-ply Static and dynamic force verses displacement showing the dynamic equilibrium effects of damage
progression.

A general statement about the influence of facesheet thickness on the dynamics of the impact

event can now be made. The load verses displacement curves of the static and dynamic tests

compare better for thin facesheets than for thick ones. Thus, increasing the facesheet thickness

makes the dynamics of impact more important. This is expected because the additional mass of the

thicker facesheets increases the inertia of the specimens.
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Figure 4-35 Comparison of load at the first major load drop for static and dynamic tests showing that specimens fail
at lower load under static than dynamic tests.

Figure 4-35 summarizes the failure load information from figures 4-28 through 4-32. Note

that the load is given with a logarithmic scale so that the magnitude of the difference between the

static and dynamic failure loads is much greater for the thick facesheets. The tendency for the static

tests to show the first major load drop at a lower load than the impact tests indicates that static tests

and analyses are likely to be conservative if used to predict the effects of low-velocity impact. This

conservatism becomes is more pronounced for the thicker facesheet sandwiches.

4.7.1.2 Absorbed energy. Absorbed energy relates directly to strain energy release and is

therefore a measure of damage. The area enclosed by the load verses displacement curve (figures

4-28 through 4-32) during loading and unloading is taken to represent the energy absorbed during

the event. Integrating the load verses displacement data for both the loading and unloading

portions of the test using a simple trapezoidal rule produces the energy which is not returned to

the tup during the event. This energy is taken to be the energy absorbed by the specimen. Figure

4-36 shows that the energy absorbed by a composite sandwich plate subjected to static indentation

until first major load drop is below that of a specimen loaded dynamically to the same criteria

(first major load drop). This again highlights the conservatism of the quasi-static assumption since

the absorbed energy is in some sense a measure of the damage. Beyond this, in the opinion of the
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author, figure 4-36 indicates the range of validity of the quasi-static assumption may be limited to

the thin facesheet regime.
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Figure 4-36 Comparison of energy absorbed in the first major load drop for static and dynamic tests showing that
specimens absorb less energy with static than dynamic tests.
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4.8 Conclusions

4.8.1 Corrected absorbed energy seems to indicate damage. Figures 4-6 through 4-10

demonstrate a jump in absorbed energy at the impact energy that initiates damage. It is possible

to determine if there is failure within a composite sandwich plate subjected to low-velocity impact

by an instrumented impactor without relying on post-impact inspection of the specimen.

4.8.2 Thick and damaged sandwiches are not quasi-static. The assumption that low-velocity

impact damage within a composite sandwich plate is independent of the loading rate does not

appear to be valid in these cases. The static and dynamic events differ significantly in the load at

which the first major load drop occurs and the energy that is absorbed in the damage process

associated with the first major load drop.

4.8.3 Important damage information may be obtained from force history. For the range of

parameters in this study, the first major load drop observed in the load history is associated with

core failure.

4.8.4 3-dimensional effects are localized. The global stiffness of the plate is independent of the

damage produced by low-velocity impact. In a global-local model of the event, contact is a local

effect which can be removed from the global model.
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5. Elasticity Solution

Low-velocity impact to composite sandwich plates is a three-dimensional problem. The

current work is based upon two-dimensional plane stress finite elements. The basic assumption

(plane stress) is that transverse direct stress is zero, but this is violated by the applied load on the

top surface. In addition, plane stress theory is applicable when the plate is thin, but composite

sandwich structures may not satisfy this criteria either. Three-dimensional equilibrium post-

processing partially alleviates this inconsistency, but since failure criteria will be stress based,

good three-dimensional stress results are required. To check the stresses, comparison to an exact

theoretical solution is invaluable. In what can be called a classical series of papers on the

application of elasticity theory to the analysis of composite laminates, Pagano wrote two papers in

1969 which have become de facto standards for benchmarking approximate solutions. In the first

[236] he presented a solution for elastic cylindrical bending of bi-directional (cross-ply) laminates

and in the second [237] he extended this solution to rectangular bi-directional composites

laminates and sandwich plates.

The analytical portion of the current work involves a highly iterative, geometrically and

materially nonlinear system for which the experimental work provides a final benchmark. Before

proceeding with all of complications from these nonlinearities, linear elastic benchmarks for the

finite element portion of the analysis (with three-dimensional equilibrium post-processing) were

developed from Pagano's elasticity solutions. The loading in [236] is a half sine wave in the span

direction while that of [237] is sinusoidal in both in-plane directions. This loading was found to be

quite benign from a three-dimensional point of view when compared to a Hertzian contact load

representing an impactor. An algorithm which can accurately reproduce the stresses of an exact

solution for a simple sinusoidal load may still fall far short when a Hertzian contact load is

applied. Therefore, the elasticity solutions of [236] and [237] were extended to Hertzian contact

loading by the principle of superposition and a Fourier sine series approximation for the load. In

this way, a more representative benchmark for models of impact loaded plates is provided.

Mathcad templates for the solutions presented in [236] and [237] are given in Appendix A and

FORTRAN programs which extend these solutions to generalized Fourier series loading and

generate the Fourier coefficients for a Hertzian contact loading are given in Appendix B.
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5.1 Objectives

The objective of this portion of the current work was to provide an elasticity theory solution

for a simply supported, rectangular, bi-directional, composite sandwich plate loaded by a Hertzian

contact stress. This solution was then available to meet several objectives of the current work as a

whole.

5.1.1 Analytical solution for undamaged plate.

Chapter 4 showed that as long as the load applied to a composite sandwich is below some

critical value (which may be different for static and dynamic loading), damage does not initiate

and the deflections are small. In such a case, a linear elastic solution may accurately model the

structure. Insights gained from this solution play an important role in understanding the errors

introduced by some of the approximations needed to solve the more complicated case after

damage. These approximations include assumed kinematic relationships, laminated plate theory,

interpolation functions, and load distribution.

5.1.2 Failure criteria checkout.

The issue of appropriate criteria for damage initiation and progression in impact loaded

composite sandwich plates is by no means resolved. Many failure theories have been used with

varying degrees of success. The exact solution provided by the current work coupled with the

experimental data of Chapter 4 provides a near-ideal environment for comparing the various

failure theories as they apply to the problem of interest. The majority of these failure theories are

based on stress. The elasticity solution can potentially provide exact three-dimensional stresses

(within the assumptions of elasticity) at the value of load at which the experimental program

indicates failure initiates. These stresses produce failure indices (normalized to unity at failure) by

application of the various failure criteria. The failure criteria can then be judged by how close

they come to producing unit indices for the stress field which elasticity theory says existed just

prior to the empirically observed failure.

5.1.3 Benchmark for FEA.

In addition to the role of guiding the interpretation of the computational results, the elasticity

solution provides a benchmark for the computational algorithm in a regime close to, but not in,

the realm of interest (where exact solution is not currently available). Just -as would-be-successful
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armies must "train like they intend to fight" so also would-be-successful algorithms must be

benchmarked on problems as near to the intended application as possible. The only extrapolations

from the elasticity benchmark for this effort (where the quality of the solution is known in detail)

to the application of the algorithm (where the quality of the solution is known only to the detail

available from empirical measures) are: 1) the contact algorithm including the assumed load

profile; and 2) the damage algorithm.

5.2 Cylindrical Bending Solution

A first step toward understanding the response of composite sandwich plates to impact loads

can be made by solving a simpler problem having many similar features to the problem of

interest. It has been pointed out that the impact problem is three-dimensional whereas the

proposed finite element based solution is essentially two-dimensional (plane stress) with the

transverse effects brought in via equilibrium. Transverse stresses from the finite element solution

then, are expected to be less accurate than in-plane stresses. Considering a slice through the

thickness at the center of impact, a two-dimensional cylindrical bending analysis of that slice may

reveal some of the important transverse effects. An elasticity solution that includes transverse

stresses was found in the literature and applied here. Pagano [236] presented an elasticity solution

for bidirectional (0°-90') layered composite laminates in cylindrical bending. The solution as

applied in this research is briefly described here, and an example of how it was used is provided

in Appendix A.

In figure 5-1, a laminate composed of m orthotropic layers such that the axes of material

symmetry are aligned with the plate axes x, y, z is considered. The body is in a state of plane

strain with respect to the xz plane and is simply supported on the ends x = 0 and x = L. A

normal traction q(x) is applied to the upper surface z = h/2.
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z q(x)

(M)

Figure 5-1 Cylindrical bending plate notation.

For each layer, the orthotropic constitutive relations for plane strain are given by [236

reference 4]

-c = RllO'x + R13cr

v, = R13ax + R33o-

Yxz = R55-rx (5-1)

R = Sj - !S 3  (ij = 1,3,5)
S33

In which the R, are the reduced compliance coefficients for plane strain, and the SU are the

compliances with respect to the axes of material symmetry. The equations of equilibrium for plane

strain in the xz plane are

cI7xz + Txzz = 0 (5-2)

Uzz+ '-Z, =0

and the linear strain-displacement relations are

'x = U,x ez = Wz rxz = U,z+W,x (5-3)

These complete the governing equations for the problem, and it should be observed that all stress,

strain, and displacement components are independent of the y coordinate. The stress boundary

conditions on the upper and lower surfaces are given by
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C' z(X' h) = -q(x)

0 - ( x =-e i ) = 0 ( 5 -4 )

and the simple support conditions are

cix(O,z) = or(L,z) = 0
w(O,z) = w(L,z) = 0 (55)

Next, we introduce the index i to identify the lamina such that the top lamina corresponds to

i= 1, and define construct a local coordinate system xi, zi on the center of the i lamina at the end

x = 0. Further, define hi to be the thickness of the ih lamina. Stress and displacement continuity

between lamina can be expressed as

=(-i + hi+j1

" (X, iJ = xz (i+1)x(i = 1,2,...m - 1)

u(i)(x,) = u ,(5-6)

w(i)x Xi = w(i+1)(xhi+1

Taking now a particular form for q(x), namely

q(x) = qo sin(px)

qo= constant (5-7)

L

Pagano [236] shows that the solution of the boundary value problem described by equations

5-1 through 5-7 can be found by putting

x= fi'(z) sin(px)

Z p 2 i (z) sin(px) (5-8)

Txz= -Pfi'(z) cos(px)
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in which the functions f(z) are expressed by

4

f1 (z)= EAjiemJzl (i = 1,2...m)
j=1

Aji are constants

a1 = -(-1)jp (5-1

ai = 55 U
) + 2R 3 U)

bi = ]a i2 - 4RIl")R33(i)

ci = 2R I i)

The stresses then can be expressed as

4

0ji) = sin(px).Ajimjiemizi
j=1

4
Cz (i) = _p 2 sin(px)- Ajiemizi (5-10)

j=1

4
Txz(i) = -p cos(px)- AjimjiemJizi

j=1

and the displacements can then be expressed as

cos(pX) 4 (/)2 - R1 ()m 2 )emjizi

i i R13 " 'jiP j = s 5 - 1
wi=sin(px)l Aji R(i ) R3 -_3L p 2 emjizg

= j= 1 3 m mji

which satisfy the simple support boundary conditions (equations 5-5) identically. Satisfaction of

the remaining boundary conditions, equations 5-4 and 5-6 leads to a system of 4m equations for

the 4m unknowns Aji. This system was set up for the present research by placing the Aji in a (4m x

1) vector, AA

AAj+4(iI) = Aji (5-12)
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and defining a matrix B which, premultiplying AA produced a vector, BC, of the boundary

conditions.

BC1 = qo

BCj+4(iI) = 0 (j = 1,2,3,4; i = 1,2,... m; ij # 1)

(5-13)

B AA =BC

(4mx4m) (4mx 1) (4mx 1)

For example, a, on the top and bottom surfaces (the LHS of equations 5-4) was placed into

equation 5-13 by setting

B1i  = p2 e 2mlh

Blj+4(m-1) = p2e_+m~h (5-14)

The contributions to B from the other boundary conditions and interface continuity conditions are

given in Appendix A. AA was then obtained by inverting B.

AA = B-1 BC (5-15)

The stresses and displacements were then obtained by equations 5-10 through 5-12 with AA from

equation 5-15.
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5.2.1 Material properties.

Material properties for the specimens used for the present research were obtained from the

manufacturers test data or chosen to be consistent with that data. The properties used in the

elasticity solution calculations are summarized in table 5-1. In table 5-1, the numerical subscripts

for the facesheet properties (1,2,3) refer to the longitudinal, lateral, and transverse lamina

directions while for the core properties they refer to the ribbon, lateral, and transverse directions.

X, Y, and Z are the strengths in the longitudinal, lateral, and transverse lamina directions, and S,

are the shear strengths.

facesheet core

(AS4/3501-6) (IRI10-1/8-4.0)

El 144.8 GPa 80.4 MPa
E2  9.7 GPa 80.4 MPa

E3 9.7 GPa 1.005 GPa
G23 3.6 GPa 75.8 GPa

G13 6.0 GPa 120.6 MPa

G12 6.0 GPa 32.2 MPa

V23 0.34 0.02

V13 0.3 0.02

V12 0.3 0.25
Xt 2.17 GPa N/A

-1.72 GPa N/A

Yt 53.8 MPa N/A
YC -205.5 MPa N/A
ZI -205.5 MPa 3.83 MPa

S23  89.3 MPa 142.3 MPa
S13  120.7 MPa 177.9 MPa
S1 120.7 MPa N/A

Table 5-1 Material properties.

5.2.2 Sinusoidal load, same material and geometry as test specimens.

Appendix A is a Mathcad template which was created to apply the solution given in [236] to

sandwich structures having the material properties and dimensions of interest in the current

research. As noted above, the loading in this solution is transverse pressure distributed as a half

sine wave over the top surface of the plate and the supports are simple. The geometry is shown in

figure 5-2. The solution of this problem is exact, within the assumptions of elasticity, and thus

serves as an appropriate benchmark for the computational algorithm developed in Chapter 6. It is
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compared to that obtained from finite element analysis (with equilibrium post-processing) of a

plate strip in chapter 7.

z q0 sin (nx/L)

Num ply*h,y

_ _ _ _ L _

Figure 5-2 Geometry for sinusoidally loaded sandwich plate in cylindrical bending.

5.2.3 Extension for indentation problem.

The sinusoidal load of the previous solution is distributed over the entire plate top surface,

whereas the load for the impact problem will be concentrated over the small portion of the top

surface which is in contact with the impactor. In order to more accurately model the load profile

of an impact problem, a truncated Fourier sine series approximation of a Hertzian contact load

distribution was applied to the elasticity solution algorithm of Appendix A. In this case, however,

a FORTRAN program was used in place of the Mathcad template because the computational

effort required did not lend itself to solution within Mathcad's interactive environment. The

increased computational intensity resulted from the fact that the problem had to be solved for each

term in the odd (i.e. sine since all cosine terms vanish) Fourier series and the solutions

superposed. For small contact radii, the number of Fourier terms required to accurately represent

a Hertzian load can be more than one hundred. Figure 5-3 shows a Hertzian load with a small

contact radius (1.59 mm) and the equivalent Fourier series truncated to 50, 150, 250, and 350,

terms. It should be observed in that figure that to show the differences, only the portion of the

load near and to the right of center (63.5 mm < x < 67 mm) is plotted. The 1.59 mm contact

radius was chosen for this illustration because it is typical of those measured for 8-, 16- and 32-

ply specimens before damage in the static indentation tests discussed in Chapter 4. The small

improvement in fidelity obtained by increasing the number of odd Fourier terms above 150 for

this contact radius was not judged to be worth the significant additional computational expense.
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The FORTRAN program ETPSFL (elasticity theory, cylindrical bending, Fourier load) developed

for this solution is included in Appendix A. In that program, a user-supplied subroutine fills an

array of the odd Fourier coefficients. A Mathcad template written to calculate the Fourier

coefficients for that subroutine is also included in Appendix A. As with the previous sinusoidal

load, the solution of this problem is exact, within the assumptions of elasticity and for the

approximated load distribution, and thus serves as another appropriate benchmark for the

computational algorithm developed in Chapter 6. It is compared to that obtained from finite

element analysis of a plate strip loaded with the same truncated Fourier series load in chapter 7.

• II I

0

0.5

0 1  ,,m, ........

64 65 66 67
x (nun)

Exact Hertzian
Fourier series, 50 terms

-----..-... Fourier series, 150 terms
......... Fourier series, 250 terms
N a M Fourier series, 350 terms

Figure 5-3 Hertzian load approximation by truncated Fourier series for the 1.59 mm contact radius case showing
that minimal improvement is obtained by increasing the number of terms above 150.

5.2.4 Cylindrical bending solution to Hertzian loaded sandwich plate.

This cylindrical bending solution to a simply supported, Hertzian loaded, sandwich plate

provided both a benchmark for the finite element analysis before damage and a tool to judge the

appropriateness of the various failure theories in the context of impact to composite sandwich

structures. The cylindrical bending solution required only a one-dimensional Fourier series for the

loading and thus hundreds of terms could be used to represent a contact-type load over a very

small contact area without encountering solution matrix singularity problems associated with a

two-dimensional Fourier series. Cylindrical bending elasticity solution stress data for two cross-
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sections of the specimens (the planes defined by the 0' and 90' ply orientation directions) were

then studied to develop a general understanding of how a contact load is distributed into a

sandwich plate and the role that facesheet thickness plays in the process. This solution was found

to be so valuable for this purpose that it suggests an entirely new study beyond the scope of this

research in which parameters such as core thickness, core stiffness, impactor radius, and facesheet

material properties can all be varied and their influences presented in a usable form for designers

of these structures. It is possible that rules-of-thumb to aid the designers in the many tradeoff

decisions inherent in any structural application of composite sandwich plates could result from

such a study.

Figure 5-4 shows the variation of transverse direct stress a, through the thickness predicted

by cylindrical bending elasticity theory for the various specimens tested in the experimental

portion of the current work. The intuitive idea that the thicker facesheets distribute the load over a

greater portion of the core and thus reduce the peak core compressive stress is both verified and

quantified by these data. The top surface of the core in the 4-ply specimens apparently was under

56 percent of the peak applied stress. The thicker facesheets lowered the peak stress at the top of

the core to such an extent that the top surface of the core in the 48-ply specimens apparently was

under only 8 percent of the peak applied stress.

5-11



48-ply

7.5 ... 16-pl

~top faces heet/core
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normalized transverse direct stress (ND)

Figure 5-4 Normalized transverse direct stress under the center of a Hertzian load showing how thicker facesheets
serve to reduce the compressive stress seen by the core, thus delaying core failure Contact hatf-width was 1.59 mm

and normalization is by the peak applied stress.

One advantage of sandwiches with the thicker facesheets (which can be seen in figure 5-4) is

that they will achieve a higher peak load before core failure will happen. This advantage is, of

course, tempered by the fact that for a given impact energy the thicker facesheets, being stiffer,

also produce greater loads. To account for this, the stress data in figure 5-4 were scaled by

empirical data from Chapter 4. The plane stress elasticity solution was run using the particular

contact radius and peak stress at the first major load drop from the experiment for each facesheet
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thickness. The transverse stress profile from this solution was used as an estimate of the transverse

stress profile through the thickness which was present at the first major load drop. The result is

plotted for each facesheet thickness in figure 5-5.

12.5 4-j
48-ply

.0

E
00 : 16-ply

-7.5 -:. f _ _ - 4pt_ ..... { p lyehe tC

.... ....--- --- --- ------- - -- ----- -------- -----:y -- -top faeesheet ----core --

N
.2

COR
EOR

n -2.5

Ci

{- - -- - -s-- -t-------- ---- -- . . . . ...... .. - .

50 0 -50 -100 -150 -200 -250 -300 -350 -400 -450

transverse direct stress associated with the first major load drop (MPa)

Figure 5-5 Transverse direct stress under the center of a Hertzian load scaled to match the peak stress and contact
radius for the first major load drop seen in the experiments. For comparison, uniaxial core strength is also plotted

indicating that the core achieves a stress higher than its uniaxial compression strength before failure.

The scaling of figure 5-5 allows another point to be observed. The only compression

strength data available for the core is from uniaxial compression and shear tests [128]. Uniaxial

compression strength is shown as the vertical line in figure 5-5. In the experiments of Chapter 4,

core failure always occurred near the interface between the core and the top facesheet. As

facesheet thickness increased, figure 5-5 clearly indicates that the transverse compressive stress
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associated with the first major load drop decreased at the interface between the core and the top

facesheet. None of the specimens, however, apparently experienced core failure until this stress

was well above the uniaxial core strength. Chapter 4 demonstrated that the first major load drop

was associated with core failure. This suggests that a maximum stress failure criterion

incorporating uniaxial core strength is highly-conservative for predicting core failure. The error

decreases with increasing facesheet thickness, but is significant for all facesheet thicknesses tested.

Other criteria incorporating shear are not expected to significantly improve upon maximum stress

either, since both transverse and in-plane shear are zero at the center. This presents a potentially

critical problem to any analysis intending to predict failure based upon stress, particularly Chapter

6 of the current work. A semi-empirical maximum stress failure criterion incorporating a

facesheet-thickness-dependent core strength is given in equation (5-16).

3 F.ai

apparent core strength = Fad

2r gcontat 2

= normalized transverse direct stress at top of core (from elasticity solution)

FFail = load at first major load drop (empirical)
Rcontact = contact radius at first major load drop (empirical)

3
= load to peak stress conversion factor for Hertzian contact

2g~contact2

The semi-empirical maximum stress failure criterion given in equation (5-16) allows the

analysis to predict core failure from the stress at the top surface of the core. By providing the

through-the-thickness transverse direct stress profile, the cylindrical bending elasticity solution

bridges the gap between the experimental data and the needed core strengths. Figure 5-6 shows

the semi-empirical apparent core strength as a function of facesheet thickness.

5-14



0_
10 20 30 40

-20 -

Z -40 { - - - Uniaxial compression test

Iapparent core strength based on

-60{ semi-enpirical nethod

-80

-100

-12 0 .. . .. .. .. .. .....

facesheet plies

Figure 5-6 Apparent core strength as calculated by equation (5-16).

Figure 5-7 shows the in-plane stress ax normalized by the peak applied stress for the

cylindrical bending elasticity solution. The first and most obvious bit of information to gain from

this scaling is that thicker facesheets lead to lower in-plane loads for static indentation problems.

This comes as no surprise since thicker facesheets imply that the same load can be spread out over

more plies, reducing the average stress in each ply. More interesting in figure 5-7 is the fact that

the facesheet bending stresses which effectively resist the transverse load and distribute that load

over a larger portion of the core are clearly visible. Considering first the 4-ply data, one can see

that the top facesheet is fully in compression while the bottom facesheet is fully in tension. Thus

global plate bending is of at least as great importance to the 4-ply in-plane stress as is local

facesheet bending which gives rise to a linearly varying stress through the thickness. If one

considers the total stress to be the sum of these global and local components, the fact that (rx is

near zero at the bottom of the top facesheet indicates that local and global bending are canceling

each other and are therefore contributing approximately equal (but opposite) stresses at that

location. This indicates that roughly half of the peak stress at the top of the top facesheet comes

from facesheet bending while half comes from global bending. Increasing facesheet thickness

increases the global bending stiffness much faster than it does the local facesheet bending stiffness

because of the proportionality shown in equation 5-17. This explains the fact that the data in

figure 5-7 show progressively more local bending stress and relatively less global bending stress

as the facesheet thickness increases.
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Alocal (facesheet) bending stiffness cc Ai 3

2) 3 (5-17)

while, Aglobal (plate) bending stiffness cc 2 + A)

The last observation from figure 5-7 is that the top facesheet does have more local bending

than the bottom facesheet for all of the facesheet thicknesses. This is the expected result because

the core serves to relax the coupling between the bottom and top facesheet motions so the radius

of curvature of the bottom facesheet is greater than that of the top.

Since a, is the principal contributor to fiber failure and has little contribution to the other

failure mechanisms, the preceding comments apply almost directly to the influence of facesheet

thickness on fiber failure. Figure 5-8 scales the data of figure 5-7 to show estimates for the fiber

stresses at the applied load that produced the first major load drop. This alarming plot indicates

that sandwich plates of all of the facesheet thicknesses should have shown fiber failure prior to the

major load drop. This could account for the increased noise in the load histories often observed

just prior to the major load drop as individual fibers failed. Perhaps the most alarming thing about

this is that fiber failure was not observed in the specimens when they were sectioned, polished,

and viewed under magnification. Also, the peak compressive fiber stress occurs at the top surface

of the plate and the significant fiber failure indicated by figure 5-8 should be observable on the

surface even without sectioning the specimen. No such failure was observed in this or the

previous experimental effort [5]. These data indicate that maximum stress may be an overly-

conservative criterion for fiber failure, but since no fiber failure has been observed in the

experiments, ignoring this potential failure mechanism may be justifiable on that basis.
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Figure 5-7 In-plane direct stress under the center of a Hertzian load normalized by peak applied (transverse) stress

showing the reduction in in-plane stress brought about by thicker facesheets. Contact half-width was 1.59 mm and

normalization is by the peak applied stress.
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Figure 5-8 Transverse direct stress under the center of a Hertzian load scaled to show values for the first major
load drop seen in the experiments. For comparison, ultimate tensile and compressive strengths of thefacesheets are
also plotted indicating that the facesheets achieve a stress higher than ultimate strength before the first major load

drop.

Transverse shear stress is the dominant driver for matrix cracking and delamination. Unlike

fiber failure, these damage mechanisms have been observed extensively in all the damaged

specimens. Unlike transverse or in-plane direct stress, shear does not have a peak in the center of

the plate. To locate the x dimension of the peak of transverse shear, as well as to show the x-
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dependence of transverse shear, the shear at the midplane of the top facesheet is plotted against x-

dimension in figure 5-9.
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Figure 5-9 Normalized transverse shear stress in the midplane of the top facesheet showing how thicker facesheets
serve to reduce the peak transverse shear stress and move its location away from the center of the plate. Contact

half-width was 1.59 mm and normalization is by the peak applied stress.

Figure 5-9 shows that increasing the thickness of the facesheets has at least three important

affects on transverse shear and therefore both delamination and matrix cracking. The first, and

most dramatic is the reduction in the peak value which will serve to delay initiation of damage.

The second is that it moves the peak value away from the plate center so that the damages will be

initiating from a location further from the point of application of the load. The third is that the

peaks are broadened and flattened so that damage will not be as well defined and repeatable. This

conjecture is based on the assumptions that shear dominates the initiation of damage and that

damage can occur when shear is within a range and not only at a specific value. Thus a broad, flat

peak puts a relatively large portion of the facesheet within the critical stress range and matrix

cracking and delamination initiation may start from anywhere within that range. Once started,

strain energy released in the process of damage, load redistribution, and stress singularities at the
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crack tips will bias the progression of the damage in a way that is dependent on the initiation

point. Though simplistic, these ideas do explain the fact that C-scans show damage in thin

facesheet specimens impacted at the same energies are more consistent than those of thick

facesheet specimens. C-scans from thin facesheet specimens also show more bi-directional

symmetry which is consistent with these ideas.

12.5
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7.5 8-ply 4-ply

top facesheetcore
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

normalized transverse shear stress (ND)

Figure 5-10 Transverse shear stress at the location of the peaks found in figure 5-9, normalized by peak applied
(transverse) stress, showing the reduction in transverse shear stress brought about by thicker facesheets. Contact

half-width was 1.59 mm and normalization is by the peak applied stress.

Normalized transverse shear stress at the x-locations of the peaks in figure 5-8 is plotted

through-the-thickness in figure 5-10. This figure shows very clearly why delaminations and matrix

cracks are found in the top facesheets but not in the bottom facesheets. These data are scaled to

the first major load drop values in figure 5-11. This figure indicates that for the thin facesheet

specimens facesheet damage in the form of matrix cracking and or delaminations should precede

core failure if indeed the major load drop is an indicator of core failure as found in Chapter 4.
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Figure 5-11 Transverse shear stress at the location of the peaks found in figure 5-9, scaled to show values for the
first major load drop seen in the experiments. For comparison, ultimate shear strengths of the 0 and 90 degree plies

of the facesheets are also plotted indicating that for most facesheet thicknesses a maximum stress criteria would
indicate matrix cracking before the first major load drop.
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5.2.5 Failure criteria checkout.

The cylindrical bending elasticity solution can be used to qualitatively judge the failure criteria

that are available to predict damage in the sandwich structure. One must keep in mind that the

empirical data available are for a center loaded square plate while the cylindrical bending solution

directly applies to a line loaded strip of infinite depth. The differences of the loads and boundary

conditions are illustrated in figure 5-12.

cylindrical bending

Three-dimensional

Figure 5-12 Cylindrical bending and three-dimensional plate geometries.

Obviously, for the same load profile and plate depth, the cylindrical bending model

experiences a much greater total load and is supported more flexibly, so the deflections and in-plane

stresses will be expected to be greater. Nevertheless, in a plane cut through the center of the load in

the three-dimensional case, the applied transverse direct stress is the same as the cylindrical bending

case and the conditions consistent with a symmetric boundary exist due to the symmetries of the

loading and geometry. Thus, one would expect the transverse direct stress within that plane to be

similar to that of the cylindrical bending model. At the very least, it must satisfy the same boundary
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conditions on the top an bottom surfaces of the plate. Transverse direct stress is the principal driver

for core damage. These ideas then, taken together, point toward an analogy between the three-

dimensional and the cylindrical bending at least as far as core crushing is concerned.

Transverse shear stress is not so analogous between the two. Letting the transverse dimension

of the cutting plane be labeled z, and the other dimension be labeled x, and considering the third

differential equation of equilibrium,

o.,, + oy,,y + o., = 0, (5-18)

one can see that for the cylindrical bending case,

'yz = ='y 0
so that,

'r + Ozz,z 0 (5-19)

and, for a known rzz, Oxz can be written as,

This differs significantly from the three-dimensional case in which, though

ryz = 0, its gradient, -y,,y # 0,

(it is, in fact, a maximum at the center).

so that o-xz must now be written as, (5-20)
x

=x -f(aozl + ayld

The additional (underlined) term in the expression for az is generally not small. All this is to say

that the transverse shear stresses from the cylindrical bending model are not expected to model those

of the three-dimensional case. This can explain the disparity between figure 5-11 which indicates all

but the thickest facesheet specimens should have facesheet shear-type damages well before the first

major load drop and the empirical data of Chapter 4 which found no such damages until after the

first major load drop. Evidently, the transverse shear through-the-thickness profile provided by the

elasticity solution does not represent the profile of the three-dimensional experimental test in those

areas where three-dimensional effects are very strong (e.g. under the tup). This is unfortunate, since

it would be of the greatest value there.
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The first failure criteria to be addressed is for fiber failure. As noted above, the cylindrical

bending model experiences a greater total load per unit depth and is supported on only two of its

four sides allowing greater deflections so in-plane stresses (and hence tendency toward fiber failure)

are expected to be greater than those of the three-dimensional case. Two different criteria have been

used to predict fiber failure in the cylindrical bending case. The following are applied only to the

plies having fibers running parallel to the cutting plane.

maximum stress: Hashin [242]:

case a-, > 0, case - > 0,

+2 12  > (5-21)

case - < 0, case a-1 < 0,

D2  C~2
The left hand side of the appropriate inequality in equation 5-21 served as a damage metric for

fiber failure. Since the solution is linear, the relative magnitude of the metrics indicates which of the

criteria is more conservative. The fiber failure metric can be compared to the other damage metrics

(i.e. matrix cracking, delamination, and core failure) to indicate which damage is predicted to

happen at the lowest load.
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Elasticity solution

4-ply, Rcontact=0.96 mm, qo=285 MPa, Fo = 550 N
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dimensional indentation tests of the 4-ply specimens. This shows that the in-plane stress predicted by the cylindrical
bending assumption is very high compared to the actual three-dimensional experiment which saw no fiber failure.

Positive z is up and load is applied to the positive z side of the plate in the negative z direction.

For fiber failure in the cylindrical bending case of low-velocity impact, Hashin and maximum

stress are nearly identical criteria because the peak in-plane stress is compressive (figure 5-8) and

they are identical for compressive stress (equation 5-21). Where the in-plane stress is tensile (as seen

in figure 5-8) the shear term that differentiates between Hlashin and maximum stress is small as seen

in figure 5-11. The three-dimensional plots like figure 5-13 become even more difficult to read

when the number of facesheet plies increases, so rather than present them all, a two-dimensional

summary showing only the values at the center of the plate is given in figure 5-14. In figure 5-14,
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the 00 fiber failure metric at the center of the plate for the load that produced the first major load

drop in the experiments is plotted through the thickness for each specimen. A value of one indicates

that the fibers fail.

12.5
1. 

48-ply

32-ply

16-ply

7.5 8-ply

4-ply~top faces heet/core
interf ace

N

CF 2.5
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4-ply interface

-7.5 8-py
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32-ply

48-ply
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Hashin fiber failure metric associated with first major load drop (ND)

Figure 5-14 Cylindrical bendingfiberfailure metric at the plate center for applied load that produced first major load
drop in the three-dimensional indentation tests. Hashin criterion.
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Figure 5-14 should be read to indicate that fiber failures occur at the center of both top and

bottom facesheets well below the load associated with the first major load drop for all of the

facesheet thicknesses considered. Such fiber damage was not found in the experimental results.

This premature fiber failure illustrates the idea previously discussed that the cylindrical bending case

could be expected to produce in-plane stresses that were much higher than those of the experiment.

That is, for the two-dimensional boundary conditions, the structure is more flexible than the three-

dimensional case (figure 5-12) and for two-dimensional loading of a given peak pressure and contact

half-width, the force per unit plate depth is much higher than the three-dimensional case with the

same peak pressure and a contact radius equal to the contact half-width of the two-dimensional case.

Thus, the in-plane stresses from the two cases can not be meaningfully compared. For this reason,

the fiber failure criteria applied to the elasticity solution could not be meaningfully compared with

the experiment. The only experimental verification of the appropriateness of the fiber failure criteria

for this research was that they should not produce widespread fiber failure when applied to the

center loaded plate finite element model, since none was observed in the experimental post impact

analysis. In this respect, maximum stress and Hashin are identical except for the lower portion of

the top facesheet and the upper portion of the bottom facesheet (where a, > 0) where Hashin is

slightly more conservative. Hashin's fiber failure metric was chosen for the balance of this research.

Three different matrix cracking failure criteria were used to predict damage to the facesheets.

These are maximum tensile stress, Lee [66], and Hashin [242]. The Lee criteria reduces to what

appears to be a maximum shear criteria because in this case in-plane shear is zero. The criteria are

given in equations (5-22). As noted above, transverse shear stress in the cylindrical bending model

may differ considerably from that in the three-dimensional specimens, so failure criteria based on

transverse shear stress (Lee and Hashin) may produce failure metrics which are not consistent with

the actual failures observed in the experiments. Also, failure criteria based on in-plane stress

(maximum stress and Hashin) may predict early failure because in-plane stresses for the cylindrical

bending case are high compared to the three-dimensional actual tests. The following are applied

only to the plies having fibers running perpendicular to the cutting plane.
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maximum stress: Lee [66]: Hashin [242]:

case o 2 > 0, case (- 2 + o73) > 0,

U-2 C 2 +C3 "23 -2" 3

S2

case a-2 < 0, case (u-2 + u-3 ) < 0, (5-22)
a-] U2 ( o + C-3-(Y 1

( C 2 2

_ + U+3 + "23 C'2"3 >1
\ 2S s 2  -

As for fiber failure, the left hand side of the appropriate inequality in equation 5-22 served as

a damage metric for matrix cracking. It is this quantity that is plotted in the cutting plane in the

following. Matrix cracking found in the experiments was confined to the top facesheet. Tensile in-

plane stress was present in the bottom facesheets (figure 5-8). The magnitude of the tensile stress in

the plies orthogonal to the cutting plane was greatly reduced compared to those plies with fibers in

the plane, but it was non-zero. This positive 72 lead both maximum stress and Hashin criteria to

predict matrix cracking on the bottom facesheet for the 4-ply case. Since the in-plane stresses are

known to be high compared to the experiment and no failure has been found on the bottom

facesheet, failure indication on the bottom facesheet was ignored. Therefore the following plots,

focus in on what is happening in the top facesheet near the point of application of the load.
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Elasticity solution

Maximum stress matrix failure metric

4-ply, Rcontact=0.96 mm, qo=285 MPa, Fo 550 N
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Figure 5-15 4-ply specimen cylindrical bending matrix failure metric in the top facesheet near the plate center for
applied load that produced first major load drop in the three-dimensional indentation tests.
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Elasticity solution

Maximum stress matrix failure metric
8-ply, Rcontact=1.18 mm, qo=377 MPa, Fo = 1100 N
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Figure 5-16 8-ply specimen cylindrical bending matrix failure metric in the top facesheet near the plate center for
applied load that produced first major load drop in the three-dimensional indentation tests.
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Elasticity solution
Maximum stress matrix failure metric

16-ply, Rcontact=1.70 mm, qo=445 MPa, Fo = 2700 N
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Lee matrix failure metric

Hashin matrix failure metric

6-

Figure 5-17 16-ply specimen cylindrical bending matrix failure metric in the top facesheet near the plate center for
applied load that produced first major load drop in the three-dimensional indentation tests.
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Elasticity solution

Maximum stress matrix failure metric 32-ply, Rcontact=3.08 mm, qo=403 MPa, Fo = 8000 N
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Elasticity solution

48- y, Rcontact=4.51 mm, qo=317 MPa, Fo 13500 N

Maximum stress matrix failure metric
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Figure 5-19 48-ply specimen cylindrical bending matrix failure metric in the top facesheet near the plate center for
applied load that produced first major load drop in the three-dimensional indentation tests.
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Using the photomicrographs from the experimental work by Harrington [5], direct comparison

between matrix failure metric and experimentally observed matrix cracking can be made. In

particular, the figure numbers for the photomicrographs in Harrington's thesis that correspond to

the matrix failure metrics in the present figures 5-15 through 5-19 are given in table 5-1.

Harrington's photomicrographs are included here as figures 5-20 through 5-33. The comparison

between the experimental cross sections and the matrix failure metrics applied to the elasticity

solution reveals several important features of the three failure criteria and was the basis for the

choice of matrix failure criterion for the work of Chapter 6.

Specimen Failure metric figure Harrington figures Cross-section figures

4-ply 5-15 3.9, 3.10, 3.11 5-20, 5-21, 5-22

8-ply 5-16 3.47, 3.48 5-23, 5-24, 5-25

16-ply 5-17 3.90, 3.91 5-26, 5-27, 5-28

32-ply 5-18 3.119, 3.120 5-29, 5-30, 5-31

48-ply 5-19 3.161, 3.162 5-32, 5-33

Table 5-2 Cylindrical bending matrix failure metric figures with their experimental counterparts.

Figure 5-20 Part A of 0 'cross section of 4-ply specimen after 1.4 J impact (25X). From [51figure 3.9. Label D
identifies a matrix crack and label I identifies afailed core cell wall
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Figure 5-21 Part B of 0 'cross section of 4-ply specimen after 1.4 J impact (25X). From 151 figure 3. 10. Label B
identiies matrix cracks with a delamination. Label A identifies nearly vertical matrix cracks The arrow shows the

approximate x-location of the point of impact and labels F and G identify faded core cell walls adjacent to the point
of impact.

~ ...: ' i.... At • : : : ,' : i : ~

Figure 5-22 Part C of 0 "cross section of 4-ply specimen after 1.4 J impact (25)Q. From [51 figure 3.11. Label E
identifies matrix cracks and label H ident/ies a failed core cell wall.
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For the 4-ply case, Harrington's minimum impact energy of 1.4 J was well above the damage

initiation impact energy of 0.3 J found in the present work for this facesheet thickness. This was

presumably due to the fact that Harrington used the drop weight impact test system exclusively and

could therefore not get data at impact energies low enough to resolve initiation of damage in the 4-

and 8-ply specimens. The result is that damage is already well developed in the specimen shown in

Harrington's micrographs. Harrington observed matrix cracking in the center two plies as all of the

failure metrics predict in figure 5-14. Harrington observed extensive matrix cracking from the point

of impact out to approximately 5 mm to either side. The peaks of all three failure metrics extend

over a similar 5 mm range from the center. The widest of the cracks seen in Harrington's

micrographs are located approximately 0.7 mm from the point of impact. This is very near the

peaks of the Lee and Hashin failure metrics, while maximum stress finds a peak at the center. By

this then, matrix cracking in the 4-ply experiment appears to be dominated by shear and Lee and

Hashin do equally well at predicting its location and extent. The 4-ply experimental data thus

reduces the field of candidate failure criteria from three to two.

Figure 5-23 Part A of 0 'cross section of 8-ply specimen after 2.7 J impact (25X). From [51 figure 3.47. Label G
identifies matrix cracks and labels E andD identify failed core cell walls.
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Figure 5-24 Part B of 0 'cross section of 8-ply specimen after 2.7 J impact (25) . From [5]figures 3.47 and 3.48.
The arrow shows the approximate x-location of the point of impact. Label H identifies matrix cracks and label F

identifies afailed core cell wall under the point of impact.

Figu re 5-25 Part C of 0 'cross section of 8-ply specimen after 2.71J impact (25)9. From [51 figure 3.48. L abels C, B,
andA identify major delaminations.
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For the 8-ply case (figures 5-23 through 5-25), Harrington's minimum impact energy of 2.7 J

was also well above the damage initiation impact energy of 0.5 J found in the present work for this

facesheet thickness. Again, the drop weight impact test system's impact energy lower limit is to

blame. The result is that damage is already well developed in the specimen shown in Harrington's

micrographs. Harrington observed matrix cracking in the four 900 plies as both Lee and Hashin

failure metrics predict in figure 5-15. Maximum stress fails to predict matrix cracking in the lower

90' plies. The cracks observed in Harrington's micrographs extend from about 1 mm to about 4

mm from the point of impact on either side. Again the peaks of the Lee and Hashin failure metrics

have a very similar range. Maximum stress, with its characteristic center peak, does not compare

well in this respect either. It is concluded from this then, that matrix cracking in the 8-ply

experiment, as in the 4-ply, appears to be dominated by shear and Lee and Hashin do equally well

at predicting its location and extent. The 8-ply experimental data thus confirms the conclusion

drawn from the 4-ply data that maximum stress is not an appropriate criterion in this situation, but

still does not distinguish between Lee and Hashin, both do equally well.

--- /

Figure 5-26 Part A of 0 ocross section of 16-ply specimen after 4.1 J impact (25X). From [51figure 3.90.
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Figure 5-28 Part C of 0 'cross section of 16-ply specimen after 4.1 J impact (25X). From [5]figure 3.91.

For the 16-ply case (figures 5-26 through 5-28), Harrington's minimum impact energy of 4.1

J was still well above the damage initiation impact energy of 1.3 J found in the present work for this

facesheet thickness. As a result, damage is already well developed in the specimen shown in

Harrington's micrographs. Harrington observed matrix cracking in all eight 900 plies as both Lee

and Hashin failure metrics predict in figure 5-16. Maximum stress fails to predict matrix cracking in

three of the 90 ° plies near the midplane of the facesheet. The matrix cracks observed in

Harrington's micrographs extend from about 1 mm to about 6 mm from the point of impact on

either side. Again, the peaks of the Lee and Hashin failure metrics have a very similar range. As

before, maximum stress, with its characteristic center peak, does not compare well in this respect

either. The 16-ply case is the first case in which the difference between Lee and Hashin becomes

significant. Lee, including only shear, is unaffected by the tensile in-plane stress in the lower
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portion of the top facesheet. Hashin includes the effect of this tensile stress, but since the magnitude

of the in-plane loads are exaggerated by the cylindrical bending assumption, this effect is

exaggerated as well. It is concluded from this then, that matrix cracking in the 16-ply experiment,

as in the 4- and 8-ply, appears to be dominated by shear and Lee is sufficient to predict its location

and extent. The more elaborate Hashin criterion is may, in fact, be just as good or better given the

correct stress field, but this can not be confirmed by the experimental data. Hashin suffers, perhaps

unjustly, from the cylindrical bending assumption in this analysis, but more important is the fact that

for the 16-ply data, the shear-based matrix cracking criterion of Lee has all the complexity required.

Evidently, three-dimensional in-plane stresses in the actual test are not sufficient to initiate matrix

cracking. The 16-ply experimental data thus confirms the conclusion drawn from the 4- and 8-ply

data that maximum stress is not an appropriate criterion in this situation. The 16-ply cylindrical

bending case distinguishes between Lee and Hashin for the first time and shows that Lee does well

at predicting the location and extent of matrix cracking.
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Figure 5-30 Part B of 0 'cross section Of 32-ply specimen after 5.0 J impact (25A9. From [51 figure 3.120. The arrow
identifies the approximate location of the impact point.
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Figure 5-31 Part C of 0 'cross section of 32-ply specimen after 5.0 J impact (25A9. From 151 figure 3.120.

-For the 32-ply case (figures 5-29 through 5-31), Harrington's minimum impact energy of 5 J

was the same as the damage initiation impact energy of 5 J found in the present work for this

facesheet thickness. As a result, damage in the specimen shown in Harrington's micrographs can be

considered the initial damage for the first major load drop. Harrington observed matrix cracking in

most of the 90' plies as both Lee and Hashin failure metrics predict in figure 5-17. Maximumn stress

fails to predict matrix cracking in the 900 plies near the midplane of the facesheet. The matrix

cracks observed in Harrington's micrographs extend from about 2.5 mm to about 5 mm from the

point of impact on either side. The peaks of the Lee failure metric has a very similar range. As for

the thinner facesheets, maximum stress, with its characteristic center peak, does not compare well in

5-44



this respect either. For the cylindrical bending solution of the 32-ply case, the in-plane tensile loads

in the lower portion of the top facesheet (figure 5-7) have become so significant that even the 900

plies carry enough load to produce matrix cracking as seen in the Hashin metric in figure 5-17. This

has no correspondence to the actual three-dimensional experiment. The discussion in the 16-ply case

concerning the comparison between Lee and Hashin applies here as well. It is concluded from this

then, that matrix cracking in the 32-ply experiment, as in the thinner facesheets, appears to be

dominated by shear and Lee is sufficient to predict its location and extent. The 32-ply experimental

data thus confirms the conclusion drawn from the thinner facesheet data that maximum stress is not

an appropriate criterion in this situation. The 32-ply cylindrical bending case shows that Lee does

well at predicting the location and extent of matrix cracking.
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Figure 5-32 Part A of 0 'cross section of 48-ply specimen after 9. 7J impact (25X). From [5]figure 3.161. The arrow
identifies the approximate location of the impact point.
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Figure 5-33 Part B of 0 'cross section of 48-ply specimen after 9.7 J impact (25)9. From [51figure 3.162.

For the 48-ply case (figures 5-32 and 5-33), Harrington's maximum impact energy of 9.7 J

was just below the impact energy of 10.7 J found to produce the first major load drop in the present

work for this facesheet thickness. As a result, the damage in the specimen shown in Harrington's
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micrographs is damage that occurs before the first major load drop. It is for this reason even more

interesting than the thinner facesheet micrographs because the damage is less developed. This data

shows that before the major energy absorbing damage, matrix cracking and delamination are

present in the 48-ply specimens while core failure is not. This supports the conclusion of Chapter 4

that core failure precipitates the major energy absorbing processes in low-velocity impact to

composite sandwich plates. Harrington observed matrix cracking in and near the center-most 901

plies as the peak of the Lee failure metric predicts in figure 5-18. The matrix cracks observed in

Harrington's micrographs are located at about 3 mm from the point of impact on either side. The

peaks of the Lee failure metric are at very nearly the same location (see the peak in the shear stress

in figure 5-8). The discussion in the 16-ply case concerning the comparison between Lee and

Hashin applies here as well. It is concluded from this then, that matrix cracking in the 48-ply

experiment, as in the thinner facesheets, appears to be dominated by shear and Lee is sufficient to

predict its location.

Three different delamination failure criteria were considered to predict damage to the

facesheets. These are: maximum transverse tensile stress, Lee [66], and Hashin [242]. Maximum

transverse tensile stress could be immediately eliminated as a candidate because the transverse direct

stress in the analysis was consistently compressive. The other two are given for the cylindrical

bending case in equation 5-23.

Lee [66]: Hashin [242]:

case a 3 > 0,

_i_ -(5-23)

case q3 < 0,
Txz >1

For the case in which the transverse direct stress is compressive, all three criteria give the

same metric at the interfaces of 0' and 90' plies as the Lee criteria for matrix cracking. Thus the

Lee matrix failure metric, the Lee delamination failure metric, and the Hashin delamination failure

metric are identical at the interfaces of 0' and 90' plies in the cylindrical bending case. The

cylindrical bending results then, can obviously not be used to distinguish between these failure
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criteria and judge which is best. A general comment can be made that delaminations and matrix

cracking observed in Harrington's data happened together and generally at the same locations,

though delaminations extended further from the point of application of the load. Since 1) the Lee

matrix cracking criterion appears to correctly predict matrix cracking, and 2) matrix cracking and

delaminations happen together, and 3) it is the same as these delamination criteria, it stands to

reason that these criteria correctly predict delamination in the cylindrical bending case.

Prediction of core failure could be based upon a maximum stress criterion. The issue to be

resolved then, would be the value of strength to be used in that criterion. The criterion is:

Z, > (5-24)

Figure 5-5 indicates that using the uniaxial compression strength in the criterion may predict

core failure at a load that is an order of magnitude too small. The apparent core strength depends on

the facesheet thickness as shown in figure 5-6. This is not a problem, from the point of view of the

analyst, as long as empirical data exists for the given core and facesheet thickness. The strengths of

figure 5-6, the core failure metric defined as the left hand side of equation (5-24), and the

cylindrical bending solution with the applied load that produced the first major load drop in the

experiments, were used together to produce an estimate of the core failure metric distribution just

prior to core failure. The value of the metric at the center of the specimen is plotted through the

thickness in figure 5-34. The value of the metric at the top of the core is plotted as a function of the

in-plane coordinate in figure 5-35.
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Figure 5-34 Core failure metric at the center of the specimen for the applied load that produced first major load drop.
This shows that the strengths of figure 5-5 effectively normalize the metric to uniy at the top of the core when thefirst

major load drop occurs.
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Figure 5-35 Core failure metric at the top of the core for the applied load that produced first major load drop. This
shows that the strengths offigure 5-5 effectively normalize the metric to unity at the center of the specimen when the

first major load drop occurs.

The cylindrical bending elasticity solution has been shown to be a useful tool for qualitatively

judging some of the failure criteria which will be needed to predict damage in composite sandwich

plates subjected to low-velocity impact. In addition, the cylindrical bending elasticity solution has

proven to be a valuable tool for interpreting experimental data because it relates the internal stresses

in a cylindrical bending model to the externally applied load in the experiment. This allows the

analyst to relate the load applied to the damage resulting in a meaningful way. The effects of
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different material properties, dimensions, and loads can be quickly estimated from an exact

cylindrical bending elasticity solution similar to the three-dimensional problem of interest. Of

course, if a beam or strip were of interest rather than a center loaded plate, the solution could prove

even more valuable.

5.3 Three-Dimensional Solution to Hertzian Loaded Plate

The difficulties found in relating a cylindrical bending solution to a truly three-dimensional

problem could have been avoided if a true three-dimensional elasticity solution was available. Such

a solution for a rectangular sandwich plate under a sinusoidal loading does indeed exist [237]. This

solution is a valuable tool for benchmarking the finite element analysis, and is used for that purpose

in Chapter 7. A Mathcad template was written to carry out the very burdensome manipulations and

is included in Appendix A. The low-velocity impact problem differs from the sinusoidally loaded

plate chiefly in the relative area over which the load is applied. The Fourier series representation of

the Hertzian contact load used in the cylindrical bending solution suggests the possibility of applying

a double Fourier series to the three-dimensional plate to approximate the contact load. This is

nothing more than extending the cylindrical bending solution to a third dimension. In theory, it

sounds like a great idea whose time has come. In practice, there are some difficulties. The coding of

the solution is an extension of the program ETPSFL written for the cylindrical bending solution. A

FORTRAN program called PAG3D was written using, as much as possible, variable names that

suggest what they represent in Pagano's paper [237]. PAG3D is included in Appendix B and its

output is compared to the finite element solution in Chapter 7. A severe limitation to the usefulness

of the three-dimensional solution for low-velocity impact problems is that when the large number of

odd Fourier terms needed to accurately represent a Hertzian contact load was used the matrix solver

failed due to the fact that the coefficient matrix became numerically singular. The solution

procedure outlined in this chapter effectively limited the number of odd Fourier terms that could be

used to represent the Hertzian load to eight in each in-plane direction or 64 total terms. It is possible

that a modified procedure in which the direct matrix inversion of equation 5-15 was avoided could

relieve this limitation, but such a procedure was not attempted for this research. The actual

maximum number of odd Fourier terms was larger for thin facesheet sandwiches (1 lxl 1) and even

larger for thin monolithic laminates (25x25) but was considered inadequate to represent the load

which was applied experimentally. The loads are shown in figure 5-36.
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Figure 5-36 Truncated Fourier sine series representations of Hertzian contact with 1.59 mm contact radius showing
poor representation of loading with the number of terms for which a three-dimensional solution was available. The

maximum number of terms for a sandwich was 11 (4-ply).
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Figure 5-37 Truncated Fourier sine series representations of Hertzian contact with 12.7 mm contact radius showing
marginal representation of loading with the number of terms for which a three-dimensional solution was available.

A Hertzian load that could be marginally well represented by a Fourier series truncated to a

few terms is shown in figure 5-37. The contact radius of this load is 12.7 mm. This large contact

radius implied an unrealistic tup radius (many meters) rather than the 12.7 mm actual tup radius. In

short, the three-dimensional elasticity solution could not be used to interpret experimental data as

the cylindrical bending elasticity solution was, because the contact radius of the two could not be

matched. Without matching contact radii, the applied pressure (and hence az) could not be matched.

Thus, any comparison between the experiment and the analysis would be meaningless. Even so, the

three-dimensional elasticity solution with this large contact radius did provide a benchmark for the
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finite element code because the loading on the finite element model could matched to the truncated

Fourier series for which the three-dimensional elasticity problem could be solved. The two are

compared in Chapter 7.

5.4 Conclusions

The elasticity solution is a useful tool for developing a general understanding of the

characteristics of the stress field produced in a composite sandwich plate by a contact type load. It

has been used to choose an appropriate criteria for matrix cracking and delamination. While the

three-dimensional solution can only be used for unrealistically large contact radii, the cylindrical

bending solution can be used for realistic contact dimensions.

5-53



6. Theory and Approach

As noted in Chapter 1, several elements of the present research involve novel approaches

and/or extensions to the current state-of-the-art. The theoretical aspects of these are addressed first

and the more practical aspects of including them in the analytical development are addressed

afterward.

6.1 Sandwich Plate

While the majority of the literature on impact to composite laminates is focused on

monolithic plates and shells, this research focused on sandwich plate constructions. The basic

geometry and assumptions involved in sandwich plate analyses are here described.

6.1.1 Geometry and coordinate systems.

Figure 6.1 illustrates the geometry and coordinate systems which were used for modeling

sandwich plates. The facesheets are composite laminates of arbitrary stacking sequence. The

facesheets are perfectly bonded to an assumed homogeneous core of Nomex honeycomb. Both X-

Y-Z (X1-X2-X3) and L-T-Z represent orthogonal systems. The longitudinal and lateral directions

correspond to the principal material directions of an orthotropic ply. As shown in figure 6-1, a

ply's orientation angle 0 is the angle from X to L (or from Y to T). All plates analyzed in this

research were symmetric about their midplanes (z=0), that is, 0(z) = 0(-z). This symmetry was

chosen for convenience; it is not required by the theory.
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faces he e tNomex ! i:"

honeycomb: ZJ 0:tLf h = total thickness
core h , : h = thickness of core

faces hee thf = thickness of facesheet

XL (longitudinal)

> or X2

T (lateral)

Z or X3

Figure 6-1 Sandwich plate geometry and coordinate systems.

6.1.2 Plate assumptions.

Several assumptions are inherent in most plate analyses and are retained or relaxed in the

present research. These are here described. A plate is assumed to be in a state of plane stress at

distances from the datum surface. As a result, all transverse normal stresses or,, are zero, and plate

behavior can be described by displacements and rotations at and relative to the midsurface.

Transverse normal strains e, are nonzero in general, but they are consequences (due to Poisson

effects) of the other strains and do not affect the stress state. Transverse shear strains 6x, and y,

are assumed to have parabolic distributions in the Z-direction. This distribution satisfies the

boundary conditions of zero transverse shear on the top and bottom plate surfaces.

6.2 Kinematics

6.2.1 Plate midplane displacements without delamination.

Various plate theories are available to describe the through-the-thickness variation of strains.

Displacements of the midplane of the plate are used to characterize displacements throughout the

plate. Polynomial functions of z are most often employed with the order of the theory based on the

highest order polynomial present in the kinematics. The order of the transverse shear is typically

one less than the order of the displacement function, so for example, a parabolic shear

deformation theory will require cubic terms in the in-plane displacements. Parabolic shear

deformation theory was used for this research due to its presumed ability to capture the most
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important features of the transverse shear with relatively few degrees of freedom. Displacement

functions for a few of the classical theories are described below leading to that used in this

research.

6.2.1.1 Kirchhoff kinematics.

The Kirchhoff assumption is that straight lines originally normal to the undeformed middle

surface remain straight and normal to that surface after deformation. In this case, a simple rotation

of the plate normal takes place and the angle of rotation of the normal is the same as the slope of

the midplane. Displacement functions through-the-thickness are linear functions of the through-

the-thickness coordinate z:

u (x, y,z) = u(x, y) + zw(x, y), 1

u2(x,y,z) = v(x,y) + zw(x,y), 2  (6-1)
U3 (x,y,z) = w(x,y)

where u, v, and w are the displacements of the midplane and w,j and w, 2 represent the first

derivatives of w in the x- and y-directions respectively.

6.2.1.2 Reissner kinematics.

The Reissner assumption is that straight lines normal to undeformed middle surface remain

straight (no warping) but not necessarily normal to that surface after deformation. In this case, a

simple rotation of the plate normal takes place but the angle is generally different from the slope

of the midplane w,a. Displacement functions through-the-thickness are linear functions of the

through-the-thickness coordinate z:

Ul(x,y,z) = u(x,y) + ZV1(x,y)

u2(x,y,z) = v(x,y) + zf 2(x,y) (6-2)
U3(x,y,z) = w(x,y)

where u, v, and w are the displacements of the midplane, and V/1 and V2 represent the bending

rotations of a line element originally normal to undeformed middle surface about the y- and x-axes

respectively. Of interest in these theories is their representation of transverse shear. The linearity

of the displacement leads to a constant transverse shear (i.e. independent of z). With these

kinematics, the only way to satisfy the boundary conditions of zero transverse shear on the top
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and bottom surface is for transverse shear to be zero everywhere. Linear transverse shear has the

same problem. This limitation leads to interest in cubic kinematics to represent parabolic

transverse shear.

6.2.1.3 Parabolic Transverse Shear.

With this theory straight lines normal to undeformed middle surface remain neither straight

nor normal to that surface after deformation.

u (x,y,z) = u(x,y) +zY I (x,y) +z 2
1 (x,y) +Z 30 1 (X,y)

U2 (Xy,Z) = V(x,y) + Zp2 (X,y) + z 242 (x,y) +z30 2(x,y) (6-3)

u3 (x, y, z) = w(x, y)

in equation 6-3, 01, 01, 0, and 02 are determined from the boundary conditions of zero transverse

shear on the top and bottom surfaces of the plate. Using linear strain displacements for these, the

transverse shear engineering strains are:

2y 13 = U1,3 + U3,1 = 2#1 + 3Z20, +w,
(6-4)

2723 = u 2,3 + u3,2  = 2 + 242 + 3z 202 + W12

Setting these to zero on the top and bottom surface yields:

V/ 1 + h~l + 3h 20 + W.

0 = /1- hql + 3h 201  1 (6-5)

=/2 +h2 +-h 2O2 +w, 2

O= f2 -h 02 +-h 2 0 2 +w, 2

Solving for the four constants:

CPl = 2 = 0

01 2-- (w1 + Wl) (6-6)

02 3h2 + 
W2

Leading to the familiar flat plate, parabolic shear deformation theory displacement field:
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u1(x,y,z) = u+ZV/1 +z 3k(V/1 + w,1 )

U2 (x,y,z) = V + Z V2 + z 3k(/ 2 + w, 2 ) (6-7)

u3(x,y,z) = w

k = -4 / (3h 2 )

W2 u
W, 2 S ij v

WI W
w

Figure 6-2 Plate displacement vector components.

Each point within the plate's midsurface has seven displacement components as shown in

figure 6-2. Displacements u, v and w are translations in the X, Y and Z directions. The terms w,1

and w, 2 are physical slopes of the midsurface in the X-Z and Y-Z planes, while 1 and W2 are

rotations due to bending alone in those respective planes. Transverse shearing in a single plane is

described by the algebraic sum of the two rotations. Translational displacements away from the

midsurface are evaluated through the previous plate kinematics.

6.2.2 Plate midplane displacements with delamination.

In order to include delamination between plies within the element, there must be some

means to independently describe the motion of the sublaminates above and below the

delamination. New degrees of freedom could be included to allow the sublaminates to move

independently. This independence could be accomplished by including Heaviside step functions in

the kinematic expressions. Chattopadhyay and Gu [6] used this type of kinematic representation in

their work. Additional displacement functions must be defined. The new degrees of freedom

represent the displacement jumps across the delamination. Applying these ideas to the cubic

kinematic equations (6-3) (before they are reduced) it is convenient to re-label the z coefficients in

the displacements.
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U00  U

V V

w0o

U01  YlI
VoI =Y 2  (6-8)

U02

V2

U03  01

Where the U, V, and Ware indicative of the directions X, Y, and Z while the subscript zero

refers to the midplane and the second subscript of U and V identify the exponent of z in the

kinematic expressions. That is, (Uoo, Voo, W) are the displacements of a point (x,y) on the

midplane and (Uoi, Voi; i=1,2,3) are the ih order transverse shear correction terms. Let a

delamination exist at a ply interface at z = hi, and a point within the delamination be designated

(x,y,hl). There will be a discontinuity of displacements (a jump) at the z location h,. The values of

f1,h 1< 0

the displacement jumps are labeled (Ujo, VjO, W) where j p2,h 1 < 0 As an example, for the

X-direction displacement, the value of the jump is U10 when the delamination is above the

midplane and U20 when the delamination is below the midplane. These jumps are illustrated for X-

direction displacement in figure 6-3.

U=0 -0

-h/2 -h/2

delamination} I '
- - -- - - - - --

X ::z~h 1  -
1 .L>0o-

=UH= I delamination

+h1/2 h/2 1>=0

+z +z

Delamination above plate midplane. Delamination below plate midplane.
U20 0 = UJo 0
U1o0 U20 0

Figure 6-3 X-direction displacement jump across a delamination.

The correspondence between midplane displacements (Uoo, VOO, W) and delamination

displacement jumps (Ujo, Vjo, W) is direct. Similarly, define jumps for the i' order transverse
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shear correction terms as (Uji, Vji; i= 1,2,3; j = 1,2). Displacements can be described as a function

of z with the use of the Heaviside step function defined as

Fl,z < h1H= H(z-h)=lo0z <h (6-9)

With these step functions multiplying the jump magnitudes, and providing for the

delamination to be arbitrarily located (h/2 > h > -h1/2) either above or below the midplane,

equations 6-3 are re-written for delamination as,

UI = U0 + (1- H)U 10 +HU 20 + z(U01 + (l- H)UI +HU 21 )

+ Z2(U 02 + (1 - H)U12 + HU 22 ) + z3 (U03 + (I - H)U 13 + HU 3 )
U2 = V0o + (1 - H)Vlo +/-V2o + z(V01 + (1 - n)Vx I-+-/V21)  (6-10)

+ z2 (V02 + (1- H)V12 + HV22) + z 3(V3 + (1- H)V13 +HV23)

u3 = W0 + (1- H)WI +HW2

The values of these displacement jumps at the nodes will become degrees of freedom in the

finite element model. Whereas equation 6-3 had nine coefficients (not all independent after

boundary conditions are examined) equation 6-10 has 27. It is apparent that we have now tripled

the degrees of freedom in the model. Actually, when a delamination is defined, it will have a

specific z location (specified ply interface). The sublaminate containing the geometric midplane

will have no jumps, hence only half of the new degrees of freedom will be active. Thus we have

doubled, and not tripled the degrees of freedom in the delaminated region. One might ask what

we have gained over simply modeling the delamination with two separate elements as Sankar and

Rao [219]. The multiple element approach is certainly valid, but one must then know a priori

where (between which plies and over what area) the delamination will take place. The new

formulation can proceed without knowing the location of the delamination until the failure

criterion indicates a particular location and interface, and it can simply activate degrees of

freedom as they are required to model the progression of the delamination. Thus a more

integrated, automated solution sequence is possible. In addition, the multiple element approach

requires some method (such as a gap element) to ensure that the sublaminates do not pass through

one another, while that problem is addressed more directly in the new formulation by specifying

that certain degrees of freedom take on only non-negative values. For the present discussion, only

one delamination was considered. Extension of the theory for multiple delaminations will prove
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more cumbersome, but not more complicated. A single delamination is sufficient to demonstrate

the merits (or lack thereof) of the method.

With the well-known modified von Karman plate (PSDT) kinematics it was possible to

reduce the 9 displacement components to 7 by enforcing zero transverse shear on the plate

surfaces. A similar approach is taken here, except that zero transverse shear is enforced on the

top, bottom and both interior (above and below the delamination) surfaces. With the von Karman-

type nonlinearity and the MACSYMA program [220, Appendix B], the transverse shear strains

can be expressed in terms of the displacement components as:

713 = (Z3(U 236(z-h1)-U38(z-h)) +Z2( U226(z-hl)-U 126(z-h1)) +z(U218(z-hl)-U,1 (z-

h)) + U206(z-hl)-U,08(z-h) + 3z2(U23H(z-h) + U13(1-H(z-h)) + U03) +2z(U 22H(z-

h1) + U 2(1-H(z-hj)) + U02) + W2,1H(z-h) + U2jH(z-h) + W,j(l-H(z-hl)) + U1 (1-

H(z-hj)) + Wo,0 + Uoj)/2

723 = (z3(V236(z-hl)-V 36(z-hl)) +z2(V22 (z-hl)-Vl26(z-h)) +z( V216(z-h 1)- V,18(z-

hl)) + V206(z-hl)-V o(z-h) + 32(V23H(z-hl) + VI3(1-H(z-hl)) + V03) + 2z(V 22H(z-

hl) + Vl2(1-H(z-h)) + V02) + W2,2H(z-hl) + V21H(z-hl) + W1,2(1-H(z-h)) + V (1-

H(z-hl)) + W, 2 + V01)/2

(6-11)

In equation 6-11, 27 displacement components are included, Uj, Vj, and Wi=i =0,1,3; j =0,1,2,3).

As mentioned above, locating the delamination (i.e. specifying the ply interface) will reduce these

to 18. To illustrate this reduction, consider the delamination occurring in the lower facesheet of

the plate (or anywhere below the midplane). Then,

Ujj = Vj = W, = 0 (j =0,1,2,3) (6-12)

which reduces the shear expressions to:

713 = (Z3( U238(z-h1)) +z2( U228(z-hl)) +z( U218(z-h1)) + U20 (z-h) + 3Z2( U23H(z-

hl) + U03) +2z(U 22H(z-h) + U02) + W2,1H(z-hl) + U2,H(z-hl) + Wo,i + Uol)/2

723 = (z3(V236(z-h1)) +z2(V226(z-h1)) +z(V 2,5(z-hl)) + V208(z-hl) + 3z2(V 23H(z-

hl)) + V 3) +2z( V22H(z-h) + V02) + W2,2H(z-hl) + V21H(z-hl) + W, 2 + Vo)/2

(6-13)
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It is important to show that these reduce to equation 6-4 when delamination is not present,

i.e. when U2j = V2j = W2 = 0 for (j=0,1,2,3). With these substitutions,

713 = (3z 2(Uo3)+2z(Uo2)+WO,1 + Uo)/2
(6-14)

723 = (3z 2(Vo3)+2z(Vo2)+ W,2+Vo0)/2

which is the same as equation 6-4 with the re-labeling defined by equation 6-8.

Evaluating equation 6-13 at z=h/2, -h/2, and h,+, and h, (the surfaces, including those of

the delamination as well as the top and bottom of the plate) produces eight algebraic equations

which are used to determine U 2, V02, U22, V22, U03, V 3, U23, and V23 in terms of the other

displacement components. In this way only 14 displacement components including Wo1, W2,1,

Wo,2, and W2,2 are required. Specifically, the dirac delta function has a value of zero throughout

the laminate (its singularity is "in" the delamination) hence it can be ignored at all boundaries,

and H has the following values at the boundaries:

z-= -h/2 hI- h1
+  h/2

H= 0 0 1 1

(6-15)

The transverse shears evaluated at the four boundaries are:

0 = 3 (-h/2)2(U 3)+2(-h/2)(Uo2)+Wo,+ Uol

0 = 3 (-h/2)2(V0 3) +2(-h/2)( V02) + W, 2+ V1

0 = 3(h02(U03) +2 (h02) + Wo + Uol

0 = 3 (h) 2(V03) + 2 (h(V 2) + Wo,2 + Vol

0 = 3 (h)2(U23 + U03) + 2 (h)(U22 + U02) + W2,1 + U21 + WO1 + Uol (6-16)

0 = 3 (h 1 )
2

(V 23 + V 0 3) + 2 (h 1)(V 22 + V02 ) + W 2,2 + V 2 1 + Wo ,2 + Vol

0 = 3(hl2)2(U23+U03)+2 012)(U2+U02)-+W, +-U21 -WO, I+UoI

0 = 3 (h/2)2(V23 + V03) + 2 (h/2)(V22 + V02) + W2,2 + V21 + W,2 + Vo
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Writing these equations as a matrix equation in the displacement components to be

eliminated,

h k Uo2  1 1 U1

h k U22  U21

-2h- -3h- U23  1 1 V,

-2hi -3hi U23  V211

-2h1 -2h1  -3h2 -3h 2 V2 1 1 1 1 WI
-2hi -2hi -3h 2  3h2  V 1 1 1 1 W,1

-h -h k k V03 1 1 1 1 WO,2

-h -h k k .J3  11 11 W,2

3h
2

4
(6-17)

In equation 6-17, the matrix on the left-hand-side is nonsingular, so that each of the eight

displacement components on the left-hand-side can be expressed in terms of the eight

displacement components on the right-hand-side. These substitutions (equation 6-17 solved for the

vector on the left-hand-side) as well as those of equations 6-15 and 6-12 are made in equation 6-

10 so that only 14 displacement components remain in the kinematics. The kinematic expressions

are no longer polynomials in z due to the step functions (H). The new kinematic expressions as

well as the 14 component displacement vector (qH) are given in equation 6-18.
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1 0 0- T

0 1 0 K0

z2(k + 4)+z 3k3(-2H) 0 0 Wo1  midplSz 2(k +k 4) + z3k3(1-2) 0 WO displacenetsS z+z 2(k+-k4 )+z 3 k3(1-2H) 0 0 Uo

0 Z + Z2k +(k 1 +4) + z3 k3 ()(1 - 2/- 0 VUl

U 2  H 0 0 U20u3 0 H 0 V20 delarin..ion

0 0 H W2  interface

z2/k -z 3
2&k3  0 0 W2,1  displameno z2 -102 - Z3/-13  0 W2,2  junp

zn+z2 -k2 -z 3Hk 0 0 U21
0 zH+z2 -K2 -z 3M!3 0- V2,

3xl 3x14 14x1 (6-18)

qH4.

k__2h_- h  2h1+h k3 2 k4=2
2hlh 2h1h 3hlh h

in which the midplane and interface displacement vector qH has been defined.

Equation 6-18 shows how the assumed kinematics relate the displacements everywhere

within the delaminated plate to seven midplane displacement components and seven delamination

displacement components. Importantly, all z dependence is included in the 3x14 matrix and all x

and y dependence is included in the midplane and interface displacement vector on the right-hand-

side. This decoupling should be exploited in the finite element stiffness matrix integration.

6.3 Strain-Displacement Relations

6.3.1 Full nonlinear strain displacement relations.

Full nonlinear Green strain displacement relations were not used in this analysis. It is

required to consider what effects were neglected by the assumption of von Karman-type relations.

The full nonlinear Green strain displacement relations in Cartesian coordinates are given in Saada

[221, equations 6-3.3]. When the assumed kinematic relations (PSDT without delamination

capability) are applied to them (using MACSYMA [220]) the following in-plane strains are the

result (underlined terms are not included in the von Karman plate equations):
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1 - = ( ____ . + v) 2 /2 ± (k(W ljj±M{)z+jgfz+u,)i/2

+k(w, I + V/ 1,1)Z3 -+ VI,'Z+(W, )z/2+u,

+k(w, 22 + V 2 ,2 )z 3 
+ V 2,2 z + (w, 2 /2+v,2

x= 2 ( (k(_w Z 2_. ------- z + zvA 2,± + + v2 ,)L2

+ (k(w, 21 + fE,j)Z 3 +k(w 2 + r1E)Z3 + M, 1Z + /12Z + v, + u,2)/2 + (k( _ 1 J)Z3

.±ZTZ+-1 ) 1_i 12±0 2  z i 2_+_w w 2)

(6-19)

6.3.2 Von Karman-type nonlinear strain displacement relations.

For this research, von Karman strain-displacement relations and parabolic shear deformation

theory kinematics (equation 6-7) were used. Though the plate displacements are expected to be

small, the deflections of the top surface of the plate in the contact region are not. In particular, the

solution is expected to be improved by inclusion of the slopes of the midplane in the strain-

displacement relations. The von Karman-type strain displacement relations are [172]:

1 2-'1 = U./IIL-WI

'62  = U2 2 + ,2 22

66 = U 1 ,2 +U 2, 1 +W, 1 w, 2  (6-20)

84 )Y, = (1 + 3z 2k)(w, 2 +y'2 )

65 =7x,, = (1 + 3Z2 k)(w,l+V/,)

Taking in-plane derivatives of equations 6-7,

Ul 1 = U'l +Z /1 '1 +z 3k(ql 1 +w,,

Ul '2 = U,2 +Z V 1, 2 +z 3k(V/1,2 +W, 12 )

U2,1 = v,1 +zV/2,1 +z3k(Vf 2,1 +w,12 ) (6-21)

U2'2 = V, 2 +ZV/ 2, 2 +z 3k(/212 + W, 2 2 )

U3,1 
= 

W,1

U3,2 = W,2

Substituting the assumed kinematic expressions into the von Karman strain displacement relations,

the strains used in this analysis are expressed in terms of the displacement components as:
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1 =u,1 +Z I 1 ,1 +z3 k(' 1, 1±+w,ll )+ w,1

82 = V, 2 +Z i22 +z3 k(vf2 ,2 +w, 22 ) + 1 w, 2
2  (6-22)

6 = U, 2 "VI+Z( 1 ,2 +V/2 ,1) + z 3 k(Vf1 , 2 +Vf2 , 1 +2w, 1 2 ) + w, 1 w, 2

The differences between equations 6-19 and 6-22 are the underlined terms in equations 6-

19. Neglecting these terms removes the higher order membrane effects. The nonlinear terms

included are only the last term in each equation. The assumed nonlinearity allows that w, 1 and w, 2

are not so small that their squares and product are negligible while any other displacement

derivatives are so small.

Before considering the strains resulting from delamination-capable kinematics, it is

convenient at this point to rewrite equation 6-22 as an operator on the displacements. This

notation will simplify the development of the equilibrium equations later on.

C2 02 u' 2 0 (6-23)

2
66 02 1 cu 3 ,102

where a, = a/ax,, c = 1 for von Karman strain displacement relations or c = 0 for linear strain

displacement relations, and recognize from equation 6-18 that,

U3 = W + HW2, so that U3,, = W1OI + HW2, and u3,2 = WO,2 + HW22  (6-24)

equation 6-23 can then be rewritten for delamination-capable kinematics as,

~[e 00 1  [ 0 W1 +2HW2,, 0 0 0 0 00H 2 W 2 1  0 0
= 0 0 +c2 0 0 0 W 2 +2HW,,2, 0 0 0 0 0 0 H2W 0

6 c2 u 3 0 0 0 2Wo,2+2HIg 2H2 1  0 0 0 0 0 0 2H 2 W2,, 00

(6-25)

Substituting equation 6-18 into equation 6-25, the strain displacement relations are expressed

in terms of the midplane and interface displacement vector qU as
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01 0 02
0 dTdo

0 0 0

(Z2(k, +(Hk) ++z((1--22H)) 0 (Z2(k +Hk4 )+zk3 (1-2H))92

0 (z+z2(k + Hk4)+ z 3k3 (X- 2H))d2 (z + z2(k, + Hk4 ) + z3k3 (1 - 2H))O

2 0 H92 H4 q H

6 0o0 0

(zWHA, -z )Hk45 0 (z, - Z )Hk4)

o (Z2H/-z3Hk- )' (H )- z 3 Hk

(z)+z 2Hk-z2 -H k) 0 (zH+Z2Hk2 - z Hk3 )9

o (ji+z2H -z-3HA, )2 (+z2Hk-z3Hk4)5,

[000 %, + 2HW2,, 0 00000 H2
W 0

+ 0 0 0 Wo,2 +2HW,2, 0 0 0 0 0 0 H2 W2 2 0 02 [0002Wo,2+2HW22  2HW2., 0 0 0 0 0 0 2H 2 W2 1 0

(6-26)

6.4 Constitutive Relations

6.4.1 Before damage.

Before damage, all ply materials are assumed linearly elastic and orthotropic. The three-

dimensional kh ply constitutive relations for stress and strain are:

a,1 k  Q11  Q12  Q 13  
Q 16 - k  61, k

U2 Q 12  Q 22  Q 23  Q 26  '62

U3 -Q13  Q 23  -33 Q36 63 (6-27)
U4 Q44 Q 4 5  C4

U-5 Q45  Q5 5 ___ 5

-Q 16  Q 26  Q 36  Q66 -6

where the numerical subscripts on the stress and strain represent the following indexing of the

stress and strain tensor components:
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71  U6 5 0 xx (TY

(7 C 6  C2 aT4  ax a,, 0
5 0 4  C'3  zx Cyz Tzz (6-28)

dir ciE6 on2 2 4 E 12 )'Y 2 yZ xy 3z
5 

1
5 

4  
c3 -2 rxz 2 yz YZ Joz -CZX °EYZz°zZ

and the k' ply constitutive matrix [Q]k is transformed to the laminate axis system by the modified

direction cosine matrix for the k' ply, [T]k.

[]k = [T]k[Q]k[T] (6-29)

The in-plane k' ply constitutive relations for stress and strain for the originally assumed

transverse direct stress (q 3 = 0) are a simple contraction of the three-dimensional constitutive

relations:

k k k
UC1]k Q11 Q 12  Q16  6l1l

0C2  Q12  Q22 Q26  v (6-30)

L6 Q16 Q26 Q 66 1 -L6

6.4.2 Matrix damage.

Matrix cracking softens the material properties. For matrix cracking, this softening was

represented by a modified constitutive relation for the damaged ply. On the micromechanic scale,

matrix crack propagation through the ply thickness and along the fiber direction takes time and is

also load dependent. On the macromechanic scale, matrix cracks accumulate so that matrix crack

density changes with time and loading. For this research, the time scale of the micromechanic

processes were assumed to be very short, so that for the purposes of this analysis they happen

instantaneously. To include the growth of the matrix crack density would require either a very

highly detailed secondary FEM or an empirical relationship between ply strain and matrix crack

density [75]. Neither were included in this research. Matrix failure was assumed to be complete

when it was present. For cross-ply and angle-ply laminates in which, for example, the k' ply is

constrained by the (k-l)1 and (k+ 1)f plies which are oriented so as to provide some fiber stiffness

to resist the lateral strain of the kh ply (i.e. any lay-up in which there are not multiple lamina with

the same orientation found sequentially in the stack) Talreja [75] found that the "ply discount

method" over predicted the stiffness reduction. Such are the facesheets of interest in this study.
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Conservatively then, the matrix damage for any given ply within any given element were assumed

to be either nonexistent or fully developed. Analyses based on this assumption have shown good

agreement with experimental results for both angle-ply and cross-ply tension specimens [21]. For

fully developed matrix damage within a ply, the constitutive coefficients Q12, Q22, Q23, Q44, and

Q66 should be set to zero. For the purposes of this research, they were reduced by three orders of

magnitude from their undamaged values in order to avoid the numerical difficulties of zeros.

6.4.3 Fiber failure.

Fiber failure is not a principal damage mode for the low energy portion of low-velocity

impact of composite sandwich plates [5]. Before a composite sandwich absorbs enough energy for

fiber failure to occur on an important scale, delamination has degraded the residual strength to the

point that it can no longer resist its design load. This research focuses on the low-energy portion

of the impact test envelope. Nevertheless, fiber failure is considered here for completeness. To a

greater degree than matrix cracking, fiber damage will soften the material properties. As with

matrix cracking, this softening can be represented by a modified constitutive relation for the

damaged ply. Similar to the handling of matrix cracking, failure of an entire ply (within an

element) can be assumed when the failure criteria indicate this mode of damage. Analyses based

on this assumption have shown good agreement with experimental results for both angle-ply and

cross-ply tension specimens [21]. For fully developed fiber damage within a ply, the constitutive

coefficients Q1 , Q12, Q13, Q55, and Q66 were reduced by three orders of magnitude from their

undamaged values. When both matrix and fiber damage are present, the entire ply stiffness was

be effectively removed.

6.4.4 Core properties/damage.

The principal functions of the core in a sandwich construction are to resist transverse

compression (supporting the facesheets) and transfer shear loads. Nomex honeycomb core is

known to exhibit nonlinear load deflection relations in both compression and shear before any

damage [128]. In order to model the core as a linear elastic material up to the point of failure,

certain assumptions are required. The reasoning leading to the model to be used in this research is

as follows. The deformation of a sandwich plate under low-velocity impact can be considered as

having two components, overall plate bending, and localized response to the impactor. The

increased bending stiffness of a sandwich plate over a monolithic plate having the same mass
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decreases impact damage resistance because it increases the impact force. In pure bending, the

primary load taken by the core is shear. In pure bending, a core shear failure mode should be

considered. On the other hand, for impact problems, in the local area surrounding the impact

point, the primary load taken by the core is transverse compression. The core's principal

contribution to impact damage resistance then, is in supporting the impacted facesheet by resisting

transverse compression [95, 129, 130, 131]. Since local effects such as facesheet bending give

rise to the principal failure modes of matrix damage, fiber fracture, and delamination within the

facesheets [133], core shear resistance is of secondary importance as long as the contact area is

small compared to the overall plate geometry. The other principal failure mode, core crushing, is

also a localized effect [5, 126, 127] dependent on transverse compression. It is therefore believed

that a core constitutive model that includes a linear secant modulus for the ratio of transverse

direct stress to transverse direct strain before core damage is appropriate. In particular taking the

core to be in-plane isotropic before damage,

core -core core

(T2 82

0"3 Q33  83 (6-31)

U4 Q44 Q45  64
U5 Q 4 5  Q 55  -c5

U 6 , Q 66  -6,

where

3- (6-32)
CZZcrush

After damage, entire core stiffness was effectively removed. Core failure was considered to

be a localized event and was not considered in the global model. The local model represented the

core as an elastic foundation supporting a monolithic facesheet. In a sandwich structure under a

contact load, the effect of damaged core is that the core no longer supports the facesheet, this

effect was modeled by removing the stiffness provided by the elastic foundation in the local finite

element model. The condition a3 = a 4 = c75 = 0 was enforced in the core locally at the interface

between the core and the facesheet [69] by zeroing the limits of integration on the equilibrium

equations (this integration will be discussed later) from which the transverse stresses were

obtained.
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6.4.5 Core/facesheet adhesive bondline damage.

Failure of the adhesive bondline between the core and the facesheets is a possible damage

mode for sandwich structures. Were this bondline to fail, it could not transfer transverse shear

loads or tensile transverse direct loads from the facesheet to the core. Compressive transverse

loads (;3 > 0) would be transferred. Thus, a nonlinear constitutive law would be required.

Fortunately, damage to this bondline was never observed in references [5, 95, 126, 127, 129] and

no mention of such damage is made in the other low-velocity impact to composite facesheet

sandwich plate references [e.g. 130, 131]. To the author's knowledge, adhesive bondline failure

has not been observed in low-velocity impact tests of composite facesheet honeycomb sandwich

panels. This bondline was assumed not to fail for the purposes of this research. Nevertheless, a

situation closely related to this bondline failure occurs when core crushing is manifest just below

the top facesheet [5]. The difference is that in core crushing all loads were assumed to vanish, i.e.

even compressive transverse loads as described above.

6.4.6 Interface (delamination) damage.

The approach for delamination used in this research was different from what would have

been used were the delamination-capable kinematics incorporated into the finite element code.

With the delamination-capable kinematics, when the interface is damaged, the ply constitutive

relations can be assumed unaffected. The k ply constitutive relations would be the same as

equation 6-30 modified as necessary for matrix cracking (section 6.4.2) or core damage (section

6.4.4) that may be present. For complete delamination of a given element, the "stiffness"

reduction implied by the delamination would manifest itself in strain discontinuities between plies,

not stiffness changes in the plies themselves. For the present work, damage to the interface was

simulated by reduction of the ply constitutive relations for the plies adjacent to the delamination.

The reduction was the same as described above for matrix cracking, i.e. for fully developed

delamination damage at an interface, the constitutive coefficients Q12, Q22, Q2, Q44, and Q66 for

the plies adjacent to that interface were reduced by three orders of magnitude from their

undamaged values. It should be pointed out that this model does not include the reduced in-plane

compressive stiffness which delaminations produce by allowing individual sublaminates to buckle

independent of one another.
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6.5 Impact Dynamics

Low-velocity implies that strain rate dependencies of the material properties can be

neglected. This assumption is made for the current research.

Low-velocity has been taken to imply that contact times are large compared to the time it

takes a stress wave to traverse the plate thickness. This assumption is less valid for thicker plates

and particularly for sandwich structures which have high bending stiffness (hence shorter contact

times) and more compliant cores (hence longer transit times for stress waves) than it is for thin

monolithic plates. This line of thinking leads the writer to question some of the quasi-static

assumptions often made in this business when they are extended to sandwich structures. It is

suspected that a static analysis may neglect some important contributions to the load and damage

progression mechanisms of the problem. Nevertheless, as a first step, a static analysis is

conducted for this research and impact dynamics are considered by the three-degree of freedom

model of Chapter 3.

6.6 Three-Dimensional Equilibrium Equations

6.6.1 Transverse stresses.

The displacement-based parabolic shear deformation theory FEM in which stresses are

obtained from strains (via constitutive relations) and strains are calculated from displacement

derivatives, produces good results for in-plane stresses, but neglects transverse direct stress a, and

produces poor estimates of transverse shear stresses u,, and cy. In particular, the transverse shear

strains are continuous, so at an interface between plies where the constitutive relations change the

transverse shear stresses are discontinuous. This fact is illustrated in figure 6-4, in which the

transverse shear stress obtained by this method is labeled "FEM Constitutive." In order to

improve the prediction of the transverse stress components this research will abandon the

constitutive relations for calculating a., and az in favor of satisfying the three-dimensional

equilibrium equations with the FEA in-plane stresses as a means of estimating both transverse

direct stress a, and transverse shear stresses a, and cy. The stresses thus obtained are an

improvement over those obtained from the constitutive equations alone [172]. This is also
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illustrated in figure 6-4, in which the transverse shear stress obtained by this method is labeled

"FEM Equilibrium."

-0.5

[0190/0] laminate -- 1
-0.3-

-0.2-

-0.1

0.1 I

0.2 - FEM Equilibrium
FEM Constitutive

0.3 -
___Elasfidty theory

0.4 -

-2.5 -2 -1.5 -1 -0.5 0

XZ shear stress (ND)

Figure 6-4 Transverse shear as calculated by elasticity theory, constitutive relations, and equilibrium equations for
sinusoidally loaded plate in cylindrical bending. Dimensions, material properties, and scaling from Pagano [236].

From elasticity, the three-dimensional differential equilibrium equations of a continuous

body expressed in terms of 2 'd Piola-Kirchhoff stresses are (Washizu, [238, equation 3.27]):

[(5i+u G]+j= 0 (i = 1,2,3) (6-33)

where PI, P2, P3 are the components of the body force vector. Neglecting body forces and

expanding the first two of these equations we obtain:

[(i + U, , )a, 1 L +[(u1 2 )Ul2I]'I +[(ul 93 )C03]

+ [(i + u 1 '1 )Ui21 1,2 [1(U1 '2 )22 1,2 +1(U1 ,3)23 1, (6-34a)
*+( + U 1 " ) (731], +[(U 1 2)032 L + (U 1 13)U33] 3 = 0

+ [(U2 ,1 )U211,2 +[Ql +u2 '2 )22 1,2 +[(U2 ,3)a23 1,2 (6-34b)
+ [(U2 " )a3 d,] +[(l +U2 ,2)0732 ]L+[(U 2,3)0 33] 3= 0
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Conjugate to the 2 d Piola-Kirchhoff stresses in equation 6-33 are Green strains. For the reasons

discussed in section 6.3.2, full nonlinear Green strain-displacement relations were not used for

this research, instead, von Karman plate strain-displacement relations were used (equation 6-22).

Consistent with the assumption of von Karman-type nonlinearity, namely,

ua ,6 << 1 (a,13 = 1,2) (6-35)

equations 6-34a and 6-34b are reduced to,

0-11 1 +0'12 '2 +0'13'3 = 0 (6-36a)

0712 ,1 + 022 ,2 +023,3 = 0 (6-36b)

and can be expressed in the x-y-z coordinate system as,

a,,,, + " xy, +y "  = 0 (6-37a)

vy, + - yy, +y ', 0 (6-37b)

The third of equations 6-33 is expanded as,

[(U3,1)O'11],1 +[(U3 ,2 )0-12],1 +[( 1 +U3,3)-13 ],1

+ [(U 3 ,1)- 2 1 1,2 +[(U3,2 )0-22 1,2 +[(1 ±U3 ,3)23 1,2 (6-38)

+ [(u3 , )- 311 ,3 +[(u3 ,2)0-32 1,3[( +u 3 ,3)0331,3 = 0

Further, expansion of the derivatives via the product rule produces,

(U311 11- + (U 3 '1)'711,1 "+ (U 3 ,12 )U- 2 + (U 3 , 2 )0 12 ,1 + 013,1 + (U 3 '13)013 + (U 3 ,3)013,1

+ (u 3 ,12)021 + (u 3 ,1)012,2 + (u 3 ,22)-22 + (u 3 ,2)-22,2 + 623,2 + (u 3 ,23 )0-23 + (u 3 ,3)-23,2 (6-39)

+ (U 3 , 13 )6 3 1 +(U 3, 1)U 13 ,3 + (U 3 ,23 )07 32 + (U 3 , 2 )" 2 3 ,3 +033,3 +(u 3 ,3 3 )" 33 + (U 3 , 3 )0 33 ,3 =0

Recognizing appropriate combinations of terms that add to factors multiplying the LHS of the first

two equilibrium equations (each of which is zero),
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(u3,1)(equation 6- 36a) + (u3,2)(equation 6 - 36b)

+ (u3,11) 7O11 + (u3,12) '12  + 131, + (U3 ,13) 713  + (u3,) 17 ,1 ( 4
"(U3 12) 21 +(U3,22) 22 + 023,2 +(U3 23)023 + (U3,3)023,(6-40)

+ (U 3 ,13 )0 3 1 + (U 3 , 23 )0 3 2 +0733,3 + (U 3 13 3 )0 33 + (U 3 ,3 )033, 3 = 0

Recognizing that u3,3 is the linear part of transverse direct strain, and hence u3,3 < < 1, so that,

(u3,11)611 + (U3 ,12)6 12 + 613 1

+ (u3,12)121 + (u3,22)6 22 + 6 23,2  (6-41)

+ (U3' 13 )073 1 +(U 3 23 )6 3 2 + 633,3 + (U3 3 3 )0' 33 = 0

Eliminating the cross derivatives of the transverse displacement (u3,13, u3,13, and u3,12) as higher

order, produces,

(U 3 '1 1 )0 11 + (U 3 , 2 2 )07 2 2 + (U 3 , 3 3 )0 33 + 0 13,1 + 0 23,2 + 7 33 ,3 = 0 (6-42)

The first three terms in 6-42 are stress times curvature which for the present research are taken to

be higher order, though for post buckling considerations the first two can be the driving terms,

i.e.

u3 'Iii -d H.O.T. (i = 1,2,3), (no sum) (6-43)

Leaving the third equilibrium equation to be,

6 13 ,1 + '72 3 ,2 + '733 ,3 = 0 (6-44)

which can be expressed in the x-y-z coordinate system as,

0 :xI 40yz + 40ZZ 9Z = 0 (6-45)

The first two equilibrium equations, (6-37a) and (6-37b), each contain a single unknown

and can be readily integrated through the thickness with traction free boundaries on the surface of

the plate and (potentially) on any delaminated ply interface to obtain oz, and ayz through the

thickness (h) of the plate. That is, for any given in-plane coordinate (x,y),
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Cr'(Z) f JZ(- a'-' (4) - O~
2 (6-46)

2

In equation 6-46, the integration must be done on a ply-by-ply basis. It is evident that the

boundary condition of zero transverse shear on the bottom surface of the plate is met identically

by this integration process, but in general the boundary condition of zero transverse shear on the

top surface is not. A least squares technique similar to that of [141] by which the bottom and top

boundary conditions, and the interface continuity conditions could be simultaneously

approximated in the least squares sense was developed and remains in the code, but was not

needed in practice. The difference between the transverse shear stresses at the top surface

resulting from the straight forward integration of equation 6-46 and zero was less than 1 percent

of the peak transverse shear stress and was neglected. With these quantities known, in-plane (and

with the von Karman terms, transverse) derivatives can be taken and the third equilibrium

equation can be integrated with a traction free boundary on the lower surface to obtain the

transverse direct stress, o-y. The integration involved is:

O'zz (Z) = Z , (4) - Oyz ,y (')d (6-47)
2

The integration given in equation 6-47 assumes continuity of transverse direct stress across

ply interfaces. The integration is carried out ply-by-ply from the bottom surface (zero stress) to

the top. A comment on the top surface transverse direct stress is in order. If carried out strictly as

shown in equation 6-47, the cr, at the top of the plate would not be constrained to meet the

boundary condition that it must equal the applied pressure profile. Here, a significant weakness

associated with using two-dimensional (plane stress) stresses and assuming them to be in three-

dimensional equilibrium became evident. The transverse direct stress resulting from that

assumption suffers much more than the transverse shear stresses. This is expected because the

plane stress assumption completely eliminates u, from the analysis while it allows transverse

shear stresses to result from transverse shear strains and be recovered by constitutive

relationships. Thus, the plane stress assumption in the finite element model is expected to produce

a stress field which is not in three-dimensional equilibrium and it is not surprising that the ac

stresses- from equation 6-47 are poorer than the transverse shear stresses from equation 6-46. To
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recover some useful information with regard to o, from the two-dimensional finite element/three-

dimensional equilibrium solution, the fact that the surface pressure profile (u,, on the top of the

plate) was known a priori was used. This pressure is the applied pressure from an assumed

Hertzian distribution from the contact with the tup. A constant, CHe, was added to the integrand

of equation 6-47. This constant was chosen to enforce the known boundary condition on the top

surface, qz(h/2) by the relation,

CHertz  + J2 (cTXX (g-+ o',y () (6-48)

h 2 9

This effectively added a linear function to the transverse direct stress resulting in a situation in

which equilibrium was not formally satisfied, but the known boundary conditions were. Thus the

transverse shear stress gradients in equation 6-47 provided the "shape" of the transverse direct

stress through-the-thickness profile (much the same as figure 5-4) while CHez scaled this to meet

the boundary conditions.

Integration of the three-dimensional equilibrium equations (6-46 and 6-47) is complicated by

the von Karman type strain displacement nonlinearity. The following details the complication and

the developments needed to handle it. The in-plane stresses are obtained from the FEM

displacement solution by applying the constitutive relations and strain displacement relations to the

displacement vector, q. The assumed displacement field for parabolic transverse shear

deformation theory (based on assumed linear strain displacement relations for the transverse shear

engineering strain at the top and bottom surface of the plate) are equations 6-7 (repeated here for

the convenience of the reader):

u(x,y,z) = u + V, z + k(w,1 )Z 3

v(x,y,z) = v + V/2z + k(w,2 +V 2 )Z 3  (6-7)

w(x,y,z) = w

where k = -413h2, and the italic quantities u, v, and w are the midplane displacements which are

independent of z so that, for example, u = u(x,y). It will prove convenient to express this

assumed displacement field in terms of the midplane displacement component vector, q:
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Uu Iz3k z +z 3w
1 w V{uv ~ zk k z + zkl ~l

V , (6-49)
V/2.

-1 3k z3k z + z3k

which is a degeneration of the delamination-capable kinematic relation found in equation 6-18

obtained by putting H=0 and h, =-h/2 in equation 6-18.

The in-plane components of the von Karman strain-displacement relations (equations 6-20)

are [153]:

61 = u(x,y,z), +±[w(x'y'z),]22

E2 = v(x,y,z),2+-±[w(x,y,z), 2]2  (6-50)

66 = U(x,y,z), 2 +V(X,y,z),I+W(Xy,Z), 1 W(x'Y'Z)' 2

With the assumed kinematics these become,

1= u' ,+ -C(W,1)2 + V, z+ wj1 3

62 = V, 2 + 2(w,2 )2 + V/2.2Z + k(w, 22 +w2,2)z 3  (6-51)

E6 = U,2 +V,1 +CW, 1 W,2 +(V/l, 2 + //2,1)Z + k(2w, 12 +V//1,2 + Of21)Z 3

in which the parameter "c" is included to trace the terms brought about by using von Karman-

type strain-displacement relations; i.e. c = 0 for linear strains and c = 1 for von Karman.

In order to calculate the transverse stresses, equilibrium is enforced with the in-plane

stresses. The following strain and stress gradients based on the von Karman plate equations were

needed in the first two equilibrium equations:
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611l1-- U'l I +ZYJ ], Il +Z34 k III I l +W'lll ) +- CW, I W, 1l

61 2 U'12 -ZY 1 12 +z'k(y 1 12 +W, 11 2 ) CW,1 W, 12

6211 V 21 +ZY 2 21 +z 3 k(p 2 ' 2 1 +W1 122 )+ CW, 2 W, 12

62 '2 V'22 +ZYJ2 '22 +z 3 k(p 2 '22 +W 22 2 ) + CW'2 W' 22

66 u1 ,' 2 1 -V'I 1 +Z(Y 1, 12 +Y2 11 ) + z 3k(y 1 12 + 2 '1 1 +2w,, 1 2 ) + cw,11 w, 2 +cw,1 w, 12

66= U'22 +V' 12 "Z(Y 1, 22 +Y 2 12 ) + z 3 k( 1, 22 +Y 2 ,1 2 +2w, 1 22 ) CW,1 W, 22 +CW, 2 W, 12

(6-52)
k -- k

0I- k Q11 12 Q16 F112
C"2 92 01Q2 Q022 Q26 &2 51
(76,1 Q16 Q26 Q66 62'2

702 L Q16 Q26 66  66,1

The strains can be expressed in operator/matrix form as:

1 U
0100 z 3ktM 0 (z +z~~ 0 3 ~ k 0 00

6110 0 0 zCkc' 2  0 0 0 WO
,52 = 0 2 0 0 z k92 0 (z + z k)"2 0 0 0 0 w,2 0 w',1

86 t92 el 0 2z 3k02  0 Z+z k)2 (Z+Z3k) l  0 0 cw,2  0 0 0 w,2

(6-53)

where a,, = a/8x,. Again, this is a degenerated form of the relation found for the delamination-

capable kinematics, equation 6-26. As in equation 6-26, the nonlinear terms have been isolated

into a separate matrix in order to provide insight into their role in the development. The in-plane

strain derivatives can be written (there is some liberty as to how to write this due to the cross-

derivative terms):
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0 0 3kd, 0 (z+Z3k oo .

1 2 0 0 0 w, 0 0 0

1 2 0 0 ,k2 2 'k0 w,2 2 0 0
2 '22 0

-'22 02 0 0 03k 0 z+z 3k 0 0 0 0 W'2 12 00 WI2
0t22 0 22 J22 000 2

-6'1 1 2d ~~ z0 k '2 1WI11 00 V
-'6 1 1  012 "123J' 2 (z +z3k)111 0 0 0 W'2 W1'200 V

"22'912 0 0 2z3 k'912 (Z + z 3k) 2 2 (z + z3kJt012

6x7 7x1

(6-54)

in which the 6x7 operator matrix (including linear and nonlinear portions) has been defined as

[aa]. There are no surprises in applying the same process to equation 6-26 to produce a 6x14

version of [Wa] which premultiplies qH to produce the strain derivatives (other than the fact that it

can no longer be printed legibly on a single page). For the present research the delamination

capable kinematics involved in equation 6-26 were not used. Writing the midplane displacement

vector as q, and considering the equilibrium equations and the stress-gradient/strain-gradient

constitutive relation given in equations 6-52, the transverse shear stress gradients can be written:

k

=-741 U2 Q 12 Q2 Q6 ,1

=713 [161

k

k1, (6-55)

Q11 Q12 Q16  1 1
F1 __ 22  Q26  --211

16 Q26 Q 66  -2,2/

Q16 Q26 Q66, -86,1

which can be written in a more compact form as:
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r 4 k -16k 1
'7, 16 Q12 Q26 Q22 Q66 Q2 6  q

075,3 LQ 11 Q 16 Q12 Q 26 Q16 Q66J[if (6-56)

2x1 2x6 6x7 7xl

In equation 6-56 it can be seen that the whole of the z dependence (for any given ply) is

contained in the [a] operator. The integration through the thickness for the nonlinear operator

[8a] portion is carried out as follows.

11 0 0_Z Z )I

010 0 z3k1l 0 (lz+z3k" 12  0 000 0 00

Zk 1 3k) 0 00 0 W'y " 0O
0 1 0 0 412 0 (Z+Z "12 + 02 00

12 0oOOOw9 ~ O
[ 0 0 kZ+ 00 00 0 w202 0 0

0 422ooow~ w~l9 00
0d12 4 3 0 2 12 1 0 0  0 W , w12 0 0

22 2-

22 12 02 12 (2 4J'9 2

(6-57)

in which the matrix of integration constants [C1]k is chosen to match the stress boundary condition

on the bottom of the kth ply. It should be noted that the condition of zero transverse stress on the

bottom (positive z) surface of the plate is used here to obtain the integration constants for the first

ply. For other plies, the condition of transverse stress continuity across the interface provides the

constants. In this way, zero transverse shear stress at the top surface is not, in general, satisfied.

This implies that there was a residual stress on the top surface, representing an error in the

analysis. This error was less than one percent of the maximum transverse shear stress and was

ignored.

Recognizing that this integration is ply-by-ply (it is not required to integrate over the

delamination) the step functions in the nonlinear operator for the delamination-capable case do not

pose a problem.

The three-dimensional equilibrium equations have provided an alternative means to obtain

the transverse shear stresses without the standard use of the constitutive relations, i.e.,
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-5J LQ1 Q16 Q12 Q26 Q16 Q66J

as opposed to [172],

{"4 _ Q44 Q45 k10 0 0 0 1 0 1]2(l+3kZ2  -59)

0 5 J LQ45 Q55 .L0 0 0 1 0 10

The third equilibrium equation (6-44) requires in-plane derivatives of these stresses. Here

the nonlinear portion of the [Da] operator complicates the situation. Taking derivatives of the

integrated [8a] times q expressions of equation 6-58 (in which both the operator and the vector

have in-plane coordinate dependencies):

4f(J[542Tzq)

11 0 0 z3ak lz+z3k 0

ll2  0 0 P 0 z+ P 112 0 0 0 0 W l9 0 0 0"

114 112 (2 4)1 11V

0k 0 0+ 0 0 0 0 w ,1 1 0 0

0 112 0 0 112 0 4Z+Z3 112 0 0 0 w,2 12 0 0 0
122 4122 W2+,)1 2 2 + 0w '2 w12 00

4 0 0 (1 3 k~ ~i-~+A~ 0 0 0 w,2 I1 11 0
31 k11 0 "1k12 0 -lz + Pk 112iz + Pk l 0 0 0 w'2 012 -'1112 0 0 2 "flJ

112 '1111 2 112 4ZZ) 11 2 (2i 421 12/121

0 9 0 0 LZ+ P 3 ,J + I
2 112 ( 4'122222 4)1 12

000 W,l12 0 0 0

0 0 0 0 W,11 W,12 0 0

+CZ
0 0 0 w,122 0 0 0 +[C2]

0 0 0 0 w,12 w,2 2 0 0

0 0 0 W,1 1 W,12 W,lIW, 12 0 0

000 ,12 W,W,22 0 0-

(6-60a)
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4f(J[t9]dzq)-
&c2

0112 0 4 '112 0 ( 2Z+ 4 '12  0

2 0 0 z3k 9' "10
1122 4 1122 0 (2z+z3 k

12 2  00 12

'112 0 0

0 9 0 0 Z3 k0 £9+ l3!i 0 0 0 0 w£191 0 0
4 122 0 4 

3
12 2 0 +0 0 0 w, 1 12 0 0 W"

0 222 0 0 z3k2 0 z+z
3
.g 222  0 0 0 w l2 _12 2 0 0

4 £92 4 0 0 0 W2122 0 0 0

122 2 0 2 1222 0 0 0 W '2 '22 W'1 22 0 0 V'

£ £9122 0z + z3 
k (Z z

3

222 122 2 02 w2 4 2 +4)o122

000 W,1 1 W,12  0 0 0
2

000 0 W,12  0 0

0 0 0 w,12 w, 22  0 0 0 +[C 3 ]k

0 0 0 0 w, 22  0 0
2

0 0 0 W,11 W,2 2  w, 12  0 0

0 0 0 w, 12 w,2 2 w, 12 w, 22 0 0

(6-60b)

In equations 6-60a and 6-60b, a second nonlinear matrix has been separated from the

operator matrix - displacement vector multiplication in each of these derivatives in order to better

display the higher-order nonlinearities present. As an example, the first row on the RHS of

equation 6-60b (without the constant) is,

zz4
ZU l2+(CZW ,I + k w,1 Z4Z 2 Z 4 "

+-,112 -+- k) f 1,112 +czw, 11 w,12  (6-61)

It should be observed that the transverse shear stress obtained in this way is forth-order in z as

compared to parabolic for the standard constitutive solution.

The third equilibrium equation solved for the transverse direct stress gradient becomes:

k e5( Jldzq ,, k

k Q16 Q12 Q 2 6 Q 2 2 Q6 6 Q26  (6-62)

LQ1 QI6 Q12 Q26 Q16 Q66 1 J f[ t5'tdzq)(
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and integrating through the thickness once more,

F ' f( f JkO~dydzq)' 
k

'-3 k =[Q16 Q12 Q2 6 Q2 2 Q6 6 Q26 k  (6-63a)
.Qll Q1 6 Q12 Q2 6 Q16 Q66- 4fJf[OclVdzq)}

where,

f(Jcj d4]d q)

, 0 Z3! k (Z+z3 2
112 10 112 O) 112

0 0 Z z+z3 Tkl 0 000 w, 1 2  0 00 U

12 122 0 1 22 0 31 o1 0 0 11 2 0 0 w
a 0k 0 0 1 , 3 -l 012 0010 ,12.12 + 2 0W 22 0 W12 0 a 0 0 00

0 '922310220)222 00 &0

w,212 '11

a a 0 02w2 0 0 !I2 000 & 11 00
122 1112 0z5 122 k0 (±3± ")g 3 10) 112 '2 V/212

a- 2 '6122  0 0 +[ '+z3,
5,122 (3 1ul~A3 10)1.

0 0 0, 1 1 wW 1 2  0 0 0

0 0 0 0 w,122 0 0

+C 2 0 00 W,1 2 w,2 2  0 20 0 riC4k
22 000 0 W,2  0o 0

000 W,11 W,22  w,12  0 0
0 0 0 w,12 w,2 2 w,12 w, 22 0 0

(6-63b)
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ff [t9dldzq)

33 k0 iiz + 03 k ,4

"il 0 0 Z il 0 )-'l 0
310 30

'1112 0 0 Z102 0 Z3 C 012 + 0 00 w,2 I 1 4" 0 00 1

422 12
0  0 112k4) 1

2.O/
2
2 3l~3k81)121f

)0 0 0 0 W0 0 0 0
0 0 0 1012 

1112 +000W2 0 00

2 1012 k3

2 0 0 0 0 0 0 0 '
122 0 0 1 0 12 2 10122 O w 2 112 W12

3 k 3 1 + Z3 k2 11 W'l1 11 0

0 0 0 WlW12 1 0 0

0 0 0 0 
3

- I ,1 0 0-~

0 00 MlI ,12 0lIW1 0 0

22 0 0 0 w,12 w,l w, 2 2 0 0-

(6-63c)

in which, as before, the matrices of integration constants [C4]k and [C5Ik are chosen to match the

stress boundary condition on the bottom of the k' ply. It should be noted that the condition of zero

transverse direct stress on the bottom (positive z) surface of the plate is used here to obtain the

integration constants for the first ply. For other plies, the condition of transverse stress continuity

across the interface provides the constants. In this way, zero transverse direct stress at the top

surface where no load is applied is not, in general, satisfied. This implies that there was a non-

zero stress on the top surface. The correction given by adding Ch, from equation 6-47 to the

integrand in 6-46 repaired this. As an example, the first row on the RHS of equation 6-63b

(without the constant) is,

z2 5 k) Is( Z3 "1 Z2

U,111+C-W+- -+ -lk, l-c-Z ,2 (6-64)
2 2 26 202

It should be observed that the transverse direct stress obtained in this way is fifth-order in z as

compared to zero for the standard constitutive solution.
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6.6.2 Inconsistency of in-plane stresses.

There is an inherent inconsistency in the method described above which is here addressed.

In formulating the equilibrium equations for the finite element method, the transverse stresses

included in the potential energy were those based on the assumed kinematics and constitutive

relationship with the assumption of zero transverse direct stress. The new transverse stresses

imply a different potential energy, hence the transverse stresses are inconsistent with the finite

element formulation. In order to approximately alleviate the inconsistency, the change in strain

energy between the finite element transverse stresses and the equilibrium transverse stresses can

be accounted for within the Newton-Raphson iterative scheme as follows.

The transverse direct stress calculated above is in general nonzero and implies a nonzero

transverse direct strain. The inverse stress-strain relation is then employed to obtain s3.

-3k = (S1 3 I + S 23 0"2 + S 33 U 3 )k (6-65)

This non-zero c3 can be used to update the in-plane stresses via the stress-strain relation.

k

1 Ik Q 11  Q12  Q 13  Q 61 k 2C k

l2 = Q 12  Q22 Q23 Q26 6 (6-66)

La6J [Q16  Q26  Q36 Q66 - 1-J

These updated stresses differ from the original FEM stresses equation 6-30 repeated here for the

reader's convenience). I k r- - - k k
1 QI1 Q12 QI6 k I 1

U2  =Q1 Q22  Q/6 -c2 (6-30)

U6 LQ 16  Q 26  Q66 J[ 6J

In terms of stress, the differences are the residual stresses

I Aa1 I
Aa2  = iQ 23 f (Si3 a" + S 23"2 + S 33 "3)k (6-67)
A'6J LQ36J

6-33



For any element (subscript "e") the strain energies associated with each of these residual stresses

are:

AUei = fJjJAcqi~idV (i =1,2,6 no sum) (6-68)
Ve

which is integrated ply-by-ply as,

rAU6 2 eA 6 6v
[ 6 j6 e kh4ik k A 6 6 e d(6-69)

-~j5 Ara6{,k~31 (SOUcr +S23U 2 +S33C 3 )kdz}

Q 36 6

Or, following the initial stress development initial stresses in Cook et al [173] section 4.1-6,

in terms of nodal forces the residuals are:

re = JJJBTAadV (6-70)
Ve

where B = [8][N], [a] is the nonlinear operator in equation 6-53 or equation 6-26, and [NI is the

matrix of shape functions. This contributes directly to the right-hand-side of the Newton-Raphson

solution in the form

KTAq = (rg) (6-71)

where r. is the vector of element residual nodal forces expanded to the global degrees of freedom,

KT is the tangent stiffness matrix, q is the generalized displacement vector, and Aq is the unknown

increment to the displacements. This correction, though attractive from a theoretical perspective

because it allows a three-dimensional correction to the two-dimensional finite element solution,

was not found to improve the transverse stresses obtained in this effort. Apparently, correcting the

three-dimensional effects by means of the forces as provided by equation 6-70, does not make up

for the fact that the kinematics inherent in the two-dimensional solution stiffness matrix in

equation 6-71 are not correct. This suggests that iterative improvement might be obtained with

more general (e.g. zig-zag kinematics. Confirming this idea was considered to be beyond the

scope of the current research.
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6.7 Finite Element Solution

Previous researchers have left the legacy of a working dynamic finite element code which

can handle undamaged monolithic shells [56, 174, 223]. Siler [153] made modifications to a static

monolithic finite element code to allow it to handle undamaged sandwich plates. The ideas, and,

wherever possible, the code, which previously existed were used as building blocks for this

research. Still, many and significant advances and whole new formulations were required. The

more important and new portions of the stratagem include: equilibrium integration of the finite

element in-plane stresses to approximate the transverse stresses (section 6.6), a new higher-order

element using 5' order Hermitian interpolation functions (section 6.72), a contact algorithm to

simulate contact with a spherical indentor (section 6.9), an adaptive mesh algorithm (section

6.10), a progressive damage algorithm (sections 6.8, 6.11, and 6.12), a local model including an

elastic-plastic foundation (section 6.13), and a local-global approach for the top surface

displacement (section 6.14). Most of the new code is exterior to the finite element algorithm itself.

In this section, those changes which effected the finite element algorithm are discussed.

6.7.1 General ideas.

Without the delamination kinematics of section 6.2.2, the only essential active degrees of

freedom are those related to the midplane displacements, slopes, and rotations of equation 6-7.

The analysis reduces to that of parabolic shear deformation theory, and rectangular plate elements

with four nodes and 28 degrees of freedom (seven per node as in figure 6-2) could be used. The

geometry of an individual element and the representation of its global, local and natural

coordinates are shown in figure 6-5.
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(Ax/2 Ay/2)1
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y Ay 2

Figure 6-5 Four-node plate element geometry and coordinate systems.

Displacements within the given element are interpolated from the nodal displacements

through appropriate shape functions. The displacement field for w requires C' continuity (as

defined in the textbook by Cook et al. [173]), therefore cubic Hermitian shape functions have

been used in previous research for nodal displacements w , w,l and w, 2 or, for the delamination-

capable element W, Wi,, and W/a (i = 0,1 or i = 0,2 depending on delamination location) . The

interpolation can be represented as,

Fqi
w( , 7) =[H H2 H 3 H4 (6-72a)

]q3fLq4J

HK 8 / AxK(+ K )( -I)(I+r17r) (6-72b)

t AY r/r:(a+ K )(r7K r-1)(l+r/7K r)'

qK = {w w, w, 2} v  (6-72c)

where K 1 through 4 represent the local node numbers for an element found at global position

(x,y). 4 K and r7K are the values of the natural coordinates at node K. Thus equation 6-72b

represents 12 cubic polynomial interpolation functions. These are determined as follows. Defining

a function for each degree of freedom, m (m = 1,2,...,12),

Hm(,q) =am +am4+am7+ am2 +amr+a' )2+2 3 am 4 am a 6(6-73)

ae43 + a r/2 +am r 2 +amr73 +ame77r+ a3 m 3
3
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in which the coefficients are different for each degree of freedom, its in-plane derivatives are

readily evaluated as,

Hm',, ' r/ =am + 2amz  + am;r/+ 3a'm 2 + 2am r7+ am' 2 + 3am 2r7 + a'/ 77
2a +a4 5 7 8 

1

9  11 12 (6-74)
HM,,(,7) =a' + an + 2amrni+ a m 2 + 2amrq+ 3am 7 2 + a' 3 + 3a -)72

We define a vector of the coordinates for each degree of freedom, m,

AAm ={al,a 2 ,a3,..., a, 2 }m (6-75)

And define an 12-dimensional vector function of the coordinates for each degree of freedom, m,

containing the interpolation functions and their derivatives evaluated at the nodes,

HHn (Am m ) =I~ ( ,TIH, (6-76), nr (,'])...

[Hm( a'774)'Hn' ( 4'174)'Hm',,
( 4 ' r 4 )  .(-6

We now let that vector function take on values of a unit basis vector for each degree of freedom,

m, i.e.,

HHn(AAm ) =,-m. (6-77)

Which we solve for the coefficients Am for each degree of freedom, m. With these then Hm is

fully defined and can be placed in the relationship given in equation 6-72b by separating them out

by nodes.

The other displacement fields only need C' continuity and employ Lagrangian shape

functions:

Su(x,y) 1 N 0 0 0 ... N4  0 0 0 fq
v(x,y) 0 N1  0 0 ... 0 N 4  0 0 q2  (6-78a)

yI (x,y) 0 0 N1  0 ... 0 0 N 4  0 q3

/ 2(x,y)J[ 0 0 0 N1 ... 0 0 0 N 4  q4

NK 4 (1 + K D( 1 + 7K 77) (6-78b)

qK {U V V/ V/2}K (6-78c)
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The formulation of such an element and the solution of the resulting finite element problem

for static analysis is fully described in the textbook by Palazotto and Dennis [172].

6.7.2 Higher order element development.

The 4-noded, 28 degree-of-freedom element of Palazotto and Dennis [172], used as the

starting point for this research, employs shape functions that are at most cubic polynomials in the

in-plane coordinates. In the displacement based, plane stress, finite element formulation, the

transverse direct stress is assumed zero and the transverse shear stress is assumed to be related to

the transverse shear strains via constitutive relationships. This is to say, the element is two-

dimensional, and the assumed kinematics limit the accuracy of the available transverse stresses.

To provide better transverse stresses, the current research solved the finite element problem to

obtain displacements (and strains), and then used constitutive relationships to obtain in-plane

stresses, and finally used three-dimensional equilibrium equations to obtain transverse stresses.

Since the three-dimensional equilibrium satisfaction did not affect the finite element solution, it

can be considered a post-processing algorithm. The equilibrium post-processing in the present

research required third derivatives of the in-plane and shear displacements and fourth derivatives

of the transverse displacement. This can be observed in equations 6-63a by noting the derivative

operators in 6-63b and 6-63c and the displacement vector components they operate on. Here the

interpolation used for the displacement vector becomes important. Clearly, if the displacement

vector contains at most cubic polynomials (as it does in the 28 degree of freedom element of

[172]) and third and fourth derivatives are taken of it, little will survive and the transverse stresses

of equations 6-58 and 6-63a have little hope of accurately representing the three-dimensional

effects. The approach taken for this research to get higher-order midplane displacement functions

for equations 6-58 and 6-63a was to increase the order of the polynomial shape functions

representing the displacements inside the element. This required a new element with more degrees

of freedom at the nodes. The capability to use the 28 degree of freedom element was retained by

writing the code to allow the user to select the order of the interpolation polynomials for the w,

V1, and 2 displacement functions. In particular, 3rd or 5' order polynomials could be chosen for

w, while linear or 3rd order polynomials could be chosen for V/1 and V2. Linear interpolation was

by Lagrangian functions as described in [172] providing Co continuity while Hermitian functions
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provided C' and C2 for the 3rd and 5 h order interpolations respectively. The terms included in the

Hermitian interpolation polynomials are illustrated in figure 6-6.

3rd order

x Y .5th order

X 2  XY y 2

x 2Y xy 2 y 3

X4  x3 y x y2 XY3 y 4

x xy x y x3y xy xy xy y7

Figure 6-6 Pascal's triangle showing interpolation polynomials for 3 rd and 5 h order shape functions. Note,
polynomials are complete to 3rd and 5 order, respectively.

The 3' order Hermitian functions are precisely the same as those defined above for w, but

for the higher order elements they can be applied to V, and Vf2 as well as w. Interpolation using

the 5' order Hermitian interpolation functions can be represented as,,f
w(x,y)=[H i  H2  H H4 ] q , (6-79)

jq3jLq4J

in which each HK is now a lx6 row vector rather than the 1x3 vector shown in equation 6-72b

and,

qK = {W W,, W,2  Wl, W,12  WE} (6-80)
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Thus equation 6-79 represents 24 5' order polynomial interpolation functions. These are

determined as follows. Defining a function for each degree of freedom, m (m= 1,2,...,24),

H'( ,q) =a' +am+amq+am2 +amr/+am q2 +
1 2 1 3 4 5 6m m2 m 2 m 3

a4 +as r+ag~r +a7o7 +a 3+m 32 m7 + a 72 +amq34

alm 4 +am 377+am 7 + am  q3 +am 77 + (6-81)1 m 12 m13 14 m153m

a, m 5 +am 67 +am 3 72 +am 4 2 773 +a' 4 +amn7 +
am e 7+ am eq 1' + an r/
22 2a~%3  24~q

in which, as before, the coefficients are different for each degree of freedom, its in-plane

derivatives of concern are now,

Hm ,,

H m

m

AAm a,a a (6-83)

and define an 24-dimensional vector function of the coordinates for each degree of freedom, m,

containing the interpolation functions and their derivatives evaluated at the 4 nodes,

Hm( ,rhi), H,, ( I, 77,),n H,r ( ,,r77),

Hm, ,/,),Hm,,r/ 7,7,), Hm,r/,V, ,

HH(AAm) =...., (6-84)
H' ( 4, 1]4), nH m ,, ( 4, 774), H m ,,r ( 4, q4),

Hm ,,, ( 4, 174), H m ,,¢r ( 4, 774), nm , ,rr( 4,/]4)j

We now let that vector function take on values of a unit basis vector for each degree of freedom,

m, i.e.,

HHn(AA m ) s=m (6-85)
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Which we again solve for the coefficients AA' for each degree of freedom, m. With these then,

H' is fully defined and can be placed in the relationship given in equation 6-79 by separating them

out by nodes. The 5' order Hermitian shape functions thus derived are,

"-(-1l+ -1+ )(8-7r-7r/ +3r3 +31 4 -7 +2r/-7e +2ri4 +2re +2e +3e +3e,

1(- _1 + 771+r/( + 0(- 5+277+2r/ +29+3e)

:' 1(- 1+ r/)2(- 1+ (1 +qr)(-5 +2r/+3l +29+2e)

- (- 1 + r -1 +±3( + 2
6(-1+r)2(1+7r)(- )(

(1+ 17)(_ 1 + O(1 + q/)2

(6-86a)

1( 1 r/ + 8 ( -+ 7 rq+ Yr/ + 2 r/ + Zr/ -3 r/ -3 r 4 -7 + 7e2-2 r -2ri +3e _3e )"4 T

1( 1 + 0 2(_ 1+7 _/(1 + 4-5+ 2r/+ 2r -24+3e2)

1 (_ 1+ 77) 2(1+ )(1 +)5-2q-3i +2-2e)H2 T21 (1- _ 7X_ I + 0)2(1 + 0 3

_1 + 17)2(1 + 77)(_ 1 + A 2

1 (1- _r7)3(1 + 0(1 + 77)2

(6-87b)

(1 +q)(l+ gV8+7r/- 7r/z +2r/g-2r2g- 3r/ +3r/4 +7 - 7e2-2r77e +2r/2e -3e3 +3e T

(1 + #)(l1+ q/)(_ 1 +45 +2r/-2rz +2 -3e2)

/_/3='_ (1 + 77)2(l + xX- I + r/X5 + 2r- 3r/ + 2 -2e)

T2(1+ 77X-l1+ 2(1l+3

6(_ + r)1+ /2-1+ O)(1 + 2

(_ 1 + 17)2(1 + 1)(1 + )3

(6-88c)
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'(1I+ )(- 1 +0(-8-7r7+7r/ +2rq -2r/2+3rj -3r/4 +7 +7e +277e -2r/e -3e +3e),T
1T2

T2-1 (1r)(1 + #5 +2r/-2ij -29-3e)

H,= 1(1+77)2(-1+O)(-1+ )(-5-2/+3ri2 +2+2e)
H4 T2 (1 + r)(1 + 02(l1- 01

T6(- + 17)(1 + 77)2(_-1 + 2(1 + 0
,2 (_ 1 +)r/)2(1- _0(1 + 77)3

(6-89d)

Nodal degrees of freedom for the linear case consisted of the values of displacement

functions at the nodes. Nodal degrees of freedom for the 3' order Hermitian interpolation

polynomials consisted of the values of displacement functions as well as the slopes of those

functions at the nodes. Nodal degrees of freedom for the 5' order Hermitian interpolation

polynomials consisted of the values of displacement function, the slopes of that function, and the

second and cross derivatives of the function at the nodes. Allowing the user to select the order of

the interpolation polynomials for the w, VIj, and V2 independently provided the possibility of using

elements having 7, 9, 10, 11, 12, or 14 degrees-of-freedom per node. Though the code is capable

of all of these elements, it was only exercised for this research using 7, 11, and 14 degrees-of-

freedom per node. After checking out the transverse stress results (via equilibrium) using these,

the 14 degrees-of-freedom per node element was settled on for the remainder of the work. The

element with 7 degrees-of-freedom per node has nodal degrees-of-freedom u, v, w, w,x, w,y, 1,'

and V2. The element with 11 degrees-of-freedom per node has nodal degrees-of-freedom u, v, w,

Wx, Wy, V,1, Vfl, y, 2, V '2,x, and k2,y. The element with 14 degrees-of-freedom per node has

nodal degrees-of-freedom u, v, w, w,x,, w, , wX, w,, W,,, j, q',, f, Vf, 2 and 2,y. All

elements used 5x5 point Gauss quadrature. These three elements and their nodal degrees-of-

freedom are illustrated in figure 6-7.
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Figure 6-7 Four-node plate elements with 7, 11, and 14 degrees of freedom per node.

6. 7.3 Higher order element testing.

A comparison of the elements using 7, 11, and 14 degrees-of-freedom per node is provided

here to justify the selection of the element used for the remainder of the research. As mentioned

previously, the need for the higher order elements becomes apparent when considering the

derivatives that must be taken of the displacement functions in order to evaluate the stress

gradients which are involved in integration of the equilibrium equations (6-58 and 6-60). To

compare these elements in a scenario similar to the intended application, plate strip composed of

21 rectangular elements with a simply-supported boundary on one end and a symmetric boundary

on the other end was employed. The plate was loaded with a one-dimensional Hertzian contact

load on the symmetric end. The contact half-width was 1.27 cm while the plate length was 6.35

cm (simulating a 12.7 cm full plate width). The boundary conditions were chosen such that plate
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was in cylindrical bending. The zero moment condition at the simple support was enforced by

setting the curvature (here, w,yy) to zero.

(Y)

simple support
boundary conditions:

symmetry w, w, = 0
boundary
conditions:

v, w'' V2 = 0 Plate 1 y

cylindrical bending boundary conditions:
at all nodes, w,,, w,., w, , y, , = 0

Figure 6-8 Geometry and boundary conditions for 7, 11, and 14 DOF per node element tests.

Both monolithic laminates and sandwich plates were compared based on transverse shear

stress and transverse direct stress. The elasticity solution of Chapter 5 provided an exact solution

by which each element could be judged. The sandwich plate elements chosen for this study were

the same as those tested experimentally for Chapter 4 (4-, 8-, 16-, 32-, and 48-ply). In addition to

the sandwich plates, monolithic (same material throughout, i.e. no core) plates representing just

the top facesheet were also compared to the elasticity solution. This was done because the local

finite element model described later in this chapter was based modeling just one facesheet on a

spring-type foundation. The monolithic elements chosen matched the individual facesheets of the

sandwiches. The choice of elements to compare with the elasticity solution then, was based on the

fact that the global model used in Chapters 7 and 8 used a sandwich element while the local model

used a monolithic plate (the facesheet) on an elastic foundation. For this reason, the accuracy of

the elements at predicting transverse stresses (via equilibrium) was of interest for both sandwich

and monolithic laminates with Hertzian contact loads. Because the accuracy will also depend on

facesheet thickness, each facesheet thickness was modeled. Insights into the strengths and

limitations of these elements for Hertzian contact problems were obtained and are expounded in

what follows. As described in Chapter 5, Hertzian contact is a much more severe loading than

uniform or sinusoidal loading. In particular, the in-plane stress gradients are much larger. An

element that can produce accurate transverse stresses for a slowly-varying load may still do poorly
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for a Hertzian contact loading. Testing with Hertzian contact while not sacrificing the exact

solution was possible because of the developments of Chapter 5. This provided a testing

parameter space for these elements which was similar to the intended application and was

therefore a good yardstick by which to determine the appropriate number of degrees of freedom

to be used in the low-velocity impact simulations of Chapters 7 and 8. In figures 6-7 through 6-

16, the applied load is,

y2 2' Y= > Rcontact

Rcontact '

(6-90)

Rcodact = 1.27 cm

Rco,,a, is the contact half-width and is shown in figure 6-8. In figures 6-9 through 6-18 and the

discussion following them, the different element solutions are indicated by the number of degrees

of freedom per node, so that for example 7 DOF stands for the element which has 7 degrees of

freedom per node. In those figures the normalized quantities here defined are plotted,

"mid Z-z (y,z of facesheet midplane) Normalized transverse shear stress

qo at the midplane of the top facesheet

_ Tyz (y of peak found in Vmid, z) Normalized transverse shear stressqo at the peak found in rmnid

crz (0,z) Normalized transverse direct stress

qo at the center of the plate
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Figure 6-9 Comparison of current and elasticity solutions for 4-ply sandwich plate.
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6.7.3.1 4-ply sandwich.

In figure 6-9a, it can be observed that the element with only 7 degrees of freedom per node

fails to pick up the high peak in transverse shear at the edge of the contact region (y = 12.7 mm).

This error is non-conservative. The 11 DOF and 14 DOF elements are very close, they both over-

predict the peak transverse shear stress (conservative), predict the correct y- and z-location of the

peak, and are significantly closer to the elasticity solution than the 7 DOF element. Figure 6-8b

indicates that all of the plate finite element solutions show transverse symmetry in the transverse

shear stress. This transverse symmetry is due to the fact that the finite element displacements

through the thickness are functions of the midplane displacements and assumed kinematic

relationships which do not show the true three-dimensional nature of the problem. The lower

facesheet peak is ignored in all of the current work since it is known to be fictitious and no

experimental failures of the bottom facesheet were observed. The difference between the various

elements in terms of transverse direct stress is not clear in figure 6-9c. The closeness of the

transverse direct stresses may be due to the fact that the facesheets are so thin that the transverse

stress does not change much within the facesheet. The linear variation through the core

overwhelms the small change in the facesheet, so all of the elements have similar transverse direct

stress profiles.
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6.7.3.2 8-ply sandwich.

In figure 6-10a, it can be observed that the 11 DOF and 14 DOF elements are very close to

the elasticity solution in predicting transverse shear stress at the midplane of the top facesheet in

the 8-ply sandwich case. The 14 DOF elements are able to meet the symmetric boundary

condition of zero transverse shear stress center of the plate while the 11 DOF elements do not.

The 11 DOF and 14 DOF elements both correctly predict the correct y- and z-locations of the

peak, and are significantly closer to the elasticity solution than the 7 DOF element (figures 6-10a

and 6-10b). The difference between the various elements in terms of transverse direct stress is not

considered significant (figure 6-10c). This may be due to the fact that the facesheets are so thin

that the transverse stress does not change much within the facesheet. The linear variation through

the core overwhelms the small change in the facesheet, so all of the elements have similar

transverse direct stress profiles.

6.7.3.3 16-ply sandwich.

In figure 6-1 la, it can be observed that the 11 DOF and 14 DOF elements are well below

the elasticity solution in predicting transverse shear stress at the midplane of the top facesheet in

the 16-ply sandwich case. Again, the 14 DOF elements are able to meet the symmetric boundary

condition of zero transverse shear stress center of the plate while the 11 DOF elements do not.

The 11 DOF and 14 DOF elements both correctly predict the correct y- and z-locations of the

peak, and are significantly closer to the elasticity solution than the 7 DOF element (figures 6-1 la

and 6-1 lb). The difference between the various elements in terms of transverse direct stress

begins to show in the 16-ply case (figure 6-11 c). In terms of transverse direct stress prediction,

the stress at the top of the core (z = -6.35 mm) is a good metric for judging the accuracy of the

elements. With this metric, the 14 DOF element is best (6% error), followed by the 7 DOF

element (6% error), while the 11 DOF element is poorest (14% error).

6.7.3.4 32-ply sandwich.

In figure 6-12a, it can be observed that the 11 DOF and 14 DOF elements are again well

below the elasticity solution in predicting transverse shear stress at the midplane of the top

facesheet in the 32-ply sandwich case. Again, the 14 DOF elements are able to meet the

symmetric boundary condition of zero transverse shear stress center of the plate while the 11

DOF elements do not. The 11 DOF and 14 DOF elements both correctly predict the correct y-

6-52



and z-locations of the peak, and are significantly closer to the elasticity solution than the 7 DOF

element (figures 6-12a and 6-12b). The difference between the various elements in terms of

transverse direct stress begins to wane in the 32-ply case (figure 6-12c) as the errors of all of the

elements become large. In terms of transverse direct stress at the top of the core, the 14 DOF

element is still best (20 % error), followed by the 7 DOF element (24 % error), while the 11 DOF

element is poorest (28% error). Figure 6-12c shows the weakness of the sandwich plate solution

with regard to predicting the core transverse direct stress. Particularly, when the contact radius

becomes small compared to the facesheet thickness, the three-dimensionality of the actual stress

field is not well represented by a two-dimensional sandwich finite element even with the three-

dimensional equilibrium post processing. This problem was addressed by abandoning the

sandwich finite element model for stress (using it to obtain displacements only) and using a local

finite element model in which the top facesheet was modeled as a monolithic element on an

elastic-plastic foundation. In this way the element kinematics need only represent the facesheet

displacements (not the core and two facesheets) and the result is that the motion away from the

midplane is much better represented.

6.7.3.5 48-ply sandwich.

All of the general comments made for the 32-ply case are applicable to the 48-ply case as

well. In terms of transverse direct stress at the top of the core, the 14 DOF element is still best

(25% error), followed by the 7 DOF element (30% error), while the 11 DOF element is poorest

(35% error).
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6.7.3.6 4-, 8-, 16-, 32-, and 48-ply monolith.

The 7 DOF element has a very significant error in transverse shear stress for the 4-ply

monolithic plate test shown in figure 6-14a. This error is non-conservative and is carried through

to all the facesheet thicknesses modeled (figures 6-15a, 6-16a, 6-17a, and 6-18a). The 11 DOF

and 14 DOF elements both are significantly closer to the elasticity solution than the 7 DOF

element for all facesheet thicknesses modeled. Figure 6-14b indicates that the transverse

symmetry of the transverse shear stress predicted by the plate finite elements is actually present in

this case. Since the core was not modeled for these tests, three-dimensional effects were not

prominent (the plates are relatively thin) in this case and therefore the two-dimensional plate

elements produce in-plane stresses that are very nearly in three-dimensional equilibrium. The

value of the higher order shape functions is not as evident in figure 6-14c as it is in figures 6-15c,

6-16c, 6-17c, and 6-18c. This is due to the vertical scaling of the figures chosen to facilitate direct

comparison between the different facesheet thicknesses. The higher order elements do

significantly better than the lower order elements in predicting transverse direct stress. Though the

difference between the transverse direct stresses predicted by the higher order elements and the 7

DOF element is significant for all facesheet thicknesses in the monolithic cases, the difference

between the 11 DOF element, the 14 DOF element, and the elasticity solution is not significant

(less than 1 % over the entire range).

6.7.4 Generalized Newton-Raphson method.

For this research, geometric nonlinearity of the response of a sandwich structure to load was

allowed by a generalization of the Newton-Raphson method. Letting the displacement be

represented by the vector q, the nonlinear stiffness of the structure be represented by the matrix

K(q), and the applied load be represented by the vector R, equilibrium of the structure with the

applied load can be represented by the matrix-vector equation,

K(q)q = R. (6-92)

When material nonlinearities are also present (as in the case of damage in the current research),

analysis must proceed in an incremental manner because the solution at any given displacement

may depend not only on the current displacement but also on the previous loading history [239].

The problem is linearized over any increment of load by considering two stiffness matrices KT(q),

and Ks(q), which represent the tangent and secant stiffnesses. An iterative procedure is employed
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for each load increment, i, to solve for qj. Let qi be the converged displacement vector for the (i-

1)' load increment Ri-. That is,

Ri_1 - Ks(qoi)q i 0 (6-93)

Then when the load is incremented, the solution is no longer in equilibrium,

R i - Ks(qoi)qoi - residual force # 0 (6-94)

We desire to modify the displacement vector in order to get the structure in equilibrium with the

new load. This update is done by solving,

KT(qoi)Aq = R i - Ks(qi)q0i, (6-95)

for Aq and updating q.

qli = q0i + Aq. (6-96)

For iteration stepj we solve,

KT(qj-li)Aq R i - Ks (q'-1i)qj-i, (6-97)

and update q,

qJi =qj-i + Aq. (6-98)

We continue this process until,

< convergence tolerance, (6-99)

in which the summations over n represent summations over each degree-of-freedom in the vector

q. So that,

R e - Ks(qi)q1i - 0, (6-100)

and then set,
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qoi+ = q l,, (6-101)

and proceed with the next load increment, i+ 1. Terminate when load increment Ri is at least

equal to the maximum load required for the given analysis.

Every quasi-three-dimensional case study in this research considered a square plate with

simply supported edges (u and v translations are free). Since all ply orientations were either 0 or

90 degrees, it was only necessary to generate finite element meshes for a single quadrant of each

plate by prescribing bi-axial symmetry. Figure 6-19 shows the displacement boundary conditions

which were applied to each square quarter-plate. In addition to the boundary conditions shown in

figure 6-19, the models using cubic Hermitian shape functions for y/ and y2 (11 DOF and 14

DOF) had yf,1 and Y,2 set to zero on the simple support boundaries and Vf,,2 and Vf2,1 set to zero

on the symmetric boundaries. The 14 DOF model used 5' order Hermitian interpolation for w

and had the additional boundary conditions of w,,, and w,22 set to zero on the simple support

boundaries and w,12 set to zero on the symmetric boundaries.

simply supported
X w w,2=Y2=0

symmetry a/2 simply supported
:v=0o ~ ~ l =

w,2=Y2=0 a/2

- y

symmetry
u=0
W,i= iO=

Figure 6-19 Boundary conditions common to each square quarter plate.

6.8 Failure Criteria

As discussed in Chapter 2, progressive failure analysis of composite structures with

arbitrary lay-ups and loading requires both a laminate stress analysis model and a failure model

that can account for general states of stress and modes of damage. After pointwise stresses in each

layer of the composite are known from laminate analysis, failure of the composite is predicted

either by employing a phenomenological failure criterion at the macromechanical (lamina) level or

by relating the lamina stresses to the stresses in each constituent of the composite and employing a
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failure criterion at the micromechanical level. Micromechanical criteria were not be considered in

this research. Failure criteria discussed in Chapter 2 were used for determining the extent of

matrix cracking and core damage as well as predicting the onset and progress of delamination.

These were compared with one another and with the experimental results in an attempt to

determine which are best for the particular mode in question.

6.8.1 Matrix cracking and core damage.

With the improved stress values anticipated from the three-dimensional equilibrium

integration, stress-based failure criteria looked particularly promising for this research. The

progression of matrix cracking and core damage was assumed to be governed by load transfer

associated with previous failures, so that the failure criteria combined with a reduced stiffness

routine was used to follow the progression of damage

6.8.2 Delamination.

Two classifications of analyses into which the published work can be separated are damage

mechanics and fracture mechanics. Damage mechanics, or progressive degradation modeling,

describes the damage with damage state variables, cracks are not directly modeled. Stress-based

damage evolution laws are typically used to model the progression of damage. The analysis can

begin without any damage. Fracture mechanics, on the other hand, follows the growth of a

particular crack. No crack initiation is predicted, instead an initial crack is assumed and its

progression is sought. A Griffith type energy release rate-based criterion is typically used to

predict the growth of the crack. The scales of these two classifications of analyses are typically

very different. Fracture mechanics often requires a smaller scale since a particular crack, rather

than a multiply cracked lamina for example, must be modeled. The delamination damage

progression tool used in this research was of the damage mechanics classification. A stress-based

failure criterion indicated delamination and a stiffness reduction was in the lamina adjacent to the

indicated delamination was used to model the effect of the delamination on the response of the

structure.
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6.9 Contact Problem

The interaction between the flexible plate and the near-rigid hemispherical tup is a very

important facet of the low-velocity impact problem for composite sandwich panels. The force that

the tup applies to the plate must be distributed over some area (contact area) so that finite stress is

induced in the plate. The induced stresses produce local deformations in the plate that tend to

conform the plate surface to the tup surface, changing the contact area. Since the contact area

influences the stress and the stress influences the contact area, the contact problem is evidently

non-conservative. As discussed in section 2.7, the non-conservative nature of the contact problem

was neglected.

The quasi-static assumption made here simplifies the approach by making the tup force a

program input rather than an unknown. The problem is reduced to that of an indentor in static

equilibrium (at any given load) with a deformed (and perhaps damaged) plate. In order to load the

finite element model simulating this event, a Hertzian contact law was employed to distribute the

tup force over the contact area. This contact law is axisymmetric (elliptical or proportional to

distance from the axis of symmetry to the 3/2 power). This contact law idea has its roots in

isotropic analyses where it has proved valuable. The validity of the assumed axisymmetric

pressure response of anisotropic plates to a hemispherical indentor or tup is certainly questionable,

since the plate properties are directional. For tup radii that are small compared to the global

curvature of the plate under load, the contact radii will be small and the particular form of the

contact pressure profile may be less important than the total load and the area over which it acts.

These two parameters, load and contact area, can be experimentally correlated to verify that the

analysis is distributing the load in a way that simulates the true load distribution of the experiment.

It should be kept in mind that the spherical indentor is itself a simulation of the generally-shaped

impactor (e.g. stone, dropped wrench, or other hard object) that these structures will encounter in

service. Hence the Hertzian contact law given in equation 6-90 (but with a variable Rco,) was

used for the current work.

The following describes the impact event which is of interest, and the static contact

algorithm employed for this research.
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A moving rigid mass (the tup) makes contact with a simply-supported, stationary, laminated

composite plate at time t = 0. The progress of the tup is impeded by the presence of the plate.

For the tup to continue its motion, it must move the plate or deform it. Rigid body motion of the

plate is prevented by the supports. The deformation of the plate stores elastic (and possibly, plastic

and damage) energy until the kinetic energy of the tup is reduced to zero (the tup does work on

the plate). The stored elastic energy then does work on the tup, accelerating it back up. In both

cases, the work is done by the force between the two bodies moving through a distance. Force

then can be considered the actual load applied to the plate, while the distribution of that force

(pressure profile or "footprint") is determined by the radius of the indentor and the local stiffness

of the plate. The quasi-static assumption has removed time from the picture.

tup)
top tu x or y

facesheet o

Plate

facesheet
bottom

z

Figure 6-20 Contact problem geometry and coordinate system.

Let the x-, y-, and z-direction displacements of the plate for a given tup force, F, be

u1(x,y,z,F), u2(x,y,z,F), and u3(x,y,z,F) to distinguish them from the midplane displacements

u(x,y,F), v(x,y,F), and w(x,y,F). Let the vertical displacement of the center of the contact area (the

point (0,0), where the tup and the plate first touch) be,

w,0P(O,O,F) = u3(0,0,- h ,F) (6-102)
2

Assume that when F is zero the configuration is that of figure 6-20 and the plate has just

made contact with the tup. The plate deflection is zero when F is zero. Choose some small

interval of load, AF such that no damage occurs below F = AF. The portion of the event between

F = 0 and F = AF is then of no concern to this analysis. Choose also some small radius of

contact, Rcomact, and assume that the load, AF, is distributed over the contact area as,
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0, I r > Rcontact.2

2 2' r R contact

contact

(6-103)
= 3F

2 = Rcontact2

Apply the first AF, so that at load F = AF the tup has moved a distance:

wo p(O,O,AF) = u 3(0,0,- h, AF) = K E- 1 (AF)AF (6-104)
2

in which K(F) is the nonlinear effective plate stiffness including both the plate bending stiffness

and the contact stiffness as described in Chapter 3. Neglecting the transverse strain, of the plate,

the two-dimensional finite element solution without the equilibrium integration produces the

situation illustrated in figure 6-21.

tap

..- x or y

------- o-. - ----

IF

z

Figure 6-21 Finite element displacements for initial small load.

Notice that this implies that the top surface and midplane of the plate move together with

the tup. This effectively equates the motion of the top of the plate with that of the midplane.

Though this assumption is common for plate problems, it is clearly wrong for transverse impact.

Equilibrium integration is used to improve on these assumptions.

When the load is applied to the finite element model, the resulting plate displacement

produces a response force from the stiffness of the plate (via FEM) as well as a transverse direct

strain profile through the thickness under the point of impact (via constitutive relationships and

transverse stresses found from the equilibrium equations and the in-plane stresses from the FEA).
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Call this first iteration value of the force F, and strain P3. With the appropriate terms from the

stiffness conceptually,

F, = K(KEff(AF)AF) (6-105)

wop (0,0, AF) = -u 3 (0,0,- h, AF) = KEff- 1 (AF). (6-106)
OT top I 2

This ties the FEM solution to the three degree of freedom model of Chapter 3. And suggests a

check of KEff with that derived empirically from the dynamic experimental data may be another

way to quantify the importance of dynamic effects. If Kf from equation 6-104 agrees with that

from equation 3-42, the dynamic effects may be negligible.

The transverse strain E;3(q) comes from equations 6-63a, 6-65 etc. and leads to relative

motion between the midplane and the top surface of the plate. That is, for a compressive strain,

the top surface moves toward the midplane (see figure 6-22). For any given load F, call this

relative motion Ah.

-h/2

Ah(x, y) = fo3 (x, y,z)dz (6-107)

This integration is carried out for all Gauss points (where stresses are calculated) within the

contact area prescribed by the assumed contact radius, Rcotact, and added to the midplane

displacements at those points to produce a top surface deflection profile under the tup.

wop(x,y) = Ah(x,y) + w(x,y) (6-108)

Figure 6-22 Afterfirst step of FEM/3D-equations of motion.
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The total displacement of the top surface illustrated in figure 6-22 does not, in general

enforce the condition that the tup is rigid and the plate can not occupy the space occupied by the

tup. Assuming the top surface of the center of the plate is in contact with the surface of the tup,

this constraint is simply that the top surface must displace at least as much as the surface of the

tup. The surface of the tup is illustrated in figure 6-23.

tup

R(R2_X2_y2) 112  RR

x-y plane

(X2+ y2)
1/2 F

z(xyv)

Figure 6-23 Tup surface as a constraint on the plate top surface displacement.

The constraint can be expressed as,

wo,(x,y,F) > Wtop(O,O,F) - R +R - - 2 (6-109)

where R is the tup radius and the inequality in equation 6-109 implies an iterative approach and

enforces the condition that the surface can not move into the space occupied by the tup (rigid

spherical contact surface).

Having shown how the top surface displacements are found (equation 6-108) and the

constraint that must be imposed upon them through the an iterative approach (equation 6-109), the

specific algorithm developed for the present research to enforce the constraint will now be

described. For an elastic spherical tup in contact with an elastic half-plane Timoshenko and

Goodier [243] give the relationship between contact radius Rcontact, applied load F, tup radius R,

and elastic modulus E, as,

Rcon act=1.1093 F (6-110)

E
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This suggests that for a given load and material, a proportionality should exist between the

contact radius and the tup radius, i.e.

Rcontact oc 3f (6-111)

This idea was used to iterate the finite element solution for any given load (and damage condition)

to obtain the contact radius. In particular, the radius of the top surface under the load was made to

be the same (within a specified tolerance) as the tup radius by changing the estimated contact

radius. The top surface displacement of all Gauss points within the assumed contact radius were

fitted to a sphere of arbitrary radius by a least squares method resulting in a calculated tup radius,

Plop, (the radius that best fits the top surface displacements) which was in general different from

the tup radius, R, which the simulation was intended to model. The contact radius is updated to

reflect the fact that it produced the wrong tup radius and another iteration of the solution is

performed with this new Rcomact. For iteration i, the estimate of the contact radius was given by,

R
R contacti = R contac,3 (6-112)

and the finite element solution was repeated with the new contact radius (and resulting Hertzian

contact pressure profile). This process continued until the calculated tup radius was the same as

the required tup radius within some small tolerance. In practice, this convergence took only 3 to 5

iterations. Both top surface radius, Rtop, and contact radius, Rco,zct are shown as a function of

contact iteration number in figure 6-24.
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Figure 6-24 Typical convergence of tup surface radius and contact radius with contact iteration.

When the contact solution had converged, the damage algorithm was invoked. At some

point, the damage criteria identified a damage. When that happened, the stiffness was modified

and the iteration continued with the contact algorithm again. The contact algorithm was iterated

within the local model and the resulting contact radius was used in the global model. Further

discussion will be subsequently presented to show how the contact algorithm was incorporated

into the local and global finite element models.
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6.10 Adaptive Mesh

As the contact algorithm is invoked, the contact radius changes, so that with a fixed grid,

the number of elements over which the contact load is applied may change. In particular, as the

load increases, the contact radius does as well. A mesh that is refined enough for one contact

radius may not be refined well enough for a different contact radius. To overcome this problem,

one could make a single grid which is refined tightly enough in the center for the smallest contact

radius anticipated and refined far enough away from the center for the largest contact radius

anticipated, but the number of degrees of freedom for such a model would be large compared to

that of a mesh refined for a single contact radius. The highly iterative nature of the solution

algorithm used in this analysis demanded the number of degrees of freedom be as small as

practical. To accomplish this, an adaptive mesh algorithm in which the plate dimensions, initial

contact radius, and number of elements was chosen by the user, but the adaptive mesh algorithm

set the grid spacing within the computational domain based on the current contact radius. The

equation defining the grid spacing was designed to place the majority of the elements within 2.5

contact radii of the center of the plate and provide near unit element aspect ratios in that region.

The equation defining the element x-dimension length was,

Ax1 = a{[(,i +(I-1+ S) 1power Dpower] [CS(i _ ))J +~ D 1+( )loeower}

where,

a = plate half width (63.5 mm)

power = 16 (6-113)

4Rcontact

a
n = number of elements in the x - direction

i =1,2,...n

in which the choices of s and power were made after a parameter study in which the resulting

grids were compared graphically and subjectively judged by the author with respect to the degree

of refinement near the contact region and the smoothness of the transition. With this choice of

parameters,
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n

and, (6-114)
n

n Ax i =a
i=1

Each time the contact algorithm modified the contact radius, the adaptive mesh algorithm

redefined the grid spacing, so that the new grid was tailored to the new contact radius. The

change in the position of the nodes required the finite element stiffness to be recalculated. It

should be observed that moving the nodes implied that the degrees of freedom from one contact

iteration to the other were not the same. An implication of the modified degrees of freedom was

that the displacements from one load increment to the next load increment may not be based on

the same nodal coordinates. The nodal coordinates were made consistent between load increments

by starting each load increment with the contact radius (hence nodal coordinates) found from the

previous load increment. Nodal displacements could not be compared directly between load

increments except at the comers of the model (one of which was at the center of the applied load),

because only there were the nodal coordinates fixed. In practice, the contact radius change

between load increments was small, and the change in the location of the nodes between load

increments was small. Particular results of the adaptive mesh algorithm, including grids

generated, are shown in the mesh refinement study given in Chapter 8.

6.11 Core Properties

As noted in section 6.4.4, the primary functions of the core in a sandwich construction are

to resist transverse compression (supporting the facesheets) and transfer shear loads. Although

Nomex honeycomb core is known to exhibit nonlinear load deflection relations in both

compression and shear before any damage [128], linear material properties were used in this

research up to the point of core damage. A core constitutive model that includes a linear secant

modulus for the ratio of transverse direct stress to transverse direct strain before core damage was

used. Similarly, the ratio of maximum transverse shear stress to transverse shear strain in each of

the in-plane directions will form the constitutive components for the 4 and 5 components. Having

no data from which to deduce Q45 or Q66, Q45 was assumed to be zero and Q66 was assumed to

have a value of 10% of the average of Q44 and Q55. The later was done to avoid problems
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associated with a zero stiffness in in-plane shear. In particular, the terms in equation 6-27 before

translation are:

Q33 - o- ,__ ,Q44 = 07YZ" ,Q55 QW - Q44 + Q5 ,Q 45 
= 0 (6-115)

3
cw h4anma x  c5@*ZXa 20

6.12 Damage progression

6.12.1 Matrix cracking.

Matrix cracking was assumed to be present in a particular lamina when one of the stress-

based failure criteria was violated. As noted in section 6.4.2, matrix cracking was handled as a

constitutive change in which the coefficients Q12, Q22, Q23, Q44, and Q66 were reduced by three

orders of magnitude. The progression of matrix cracking was based on load transfer within the

finite element model. It is assumed that all forms of damage are coupled, so that matrix cracking

will affect and be affected by core damage and delamination. Both core damage and delamination

were modeled in the local FEM as was matrix cracking. Matrix cracking progression was not

included in the global FEM. That is, the stiffness reduction associated with matrix cracking and as

well as the load transfer leading to the continuation of matrix cracking was included in the local

but not the global finite element model. The approach then, was not complicated. Within the local

model, after each FEA step, in-plane stress was calculated. Three-dimensional equilibrium was

approximately satisfied (section 6.6), producing transverse stresses and modified in-plane stresses.

These stresses are used in the failure criteria (section 6.8) to determine if matrix cracking was

present in any particular ply at any particular Gaussian point (all integration was done at these

points rather than the nodes). If matrix cracking was determined to exist, the constitutive relation

for that ply in that element was modified in proportion to the number of Gaussian points that

failed. That is, if one fifth of the Gauss points within a given element showed matrix cracking at

ply k, the constitutive terms for that ply were reduced by one fifth. The finite element solution

was repeated without changing the load. Within the damage algorithm, iteration continued until no

additional changes to the constitutive relation ensued.

6.12.2 Core damage.

In the global model, core damage was handled in much the same way as matrix cracking.

Comments in 6.11.1 apply directly to core damage as well as matrix cracking. After damage, the
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entire core stiffness was effectively removed (it was necessary to leave it nonzero to avoid

conditioning problems). In the local model, core damage was modeled by removing the elastic

foundation stiffness for elements found to have core damage. In addition to this stiffness change,

equilibrium integration for the local model was accomplished with zero stress at the bottom

surface of the facesheet (since the core stiffness is zero). This was done by integrating equations

6-56 and 6-63a through the facesheet and taking the lower boundary condition as zero. In this

way, the condition F3 = G 4 = a 5 =0 is enforced for the facesheet locally at the interface between the

core and the facesheet. This equilibrium change partially accounts for the fact that when the core

is damaged it does not support the facesheet. That is, the motion of the facesheet into the space

formerly occupied by the core will not induce any transverse direct or shear stress at the lower

surface of the facesheet. The effect was a much higher bending-type load within the top facesheet

as the transverse direct stress formerly taken by the core must be transferred by transverse shear

within the facesheet to the surrounding supported facesheet. The intact core immediately

surrounding the damaged core saw an increased transverse load since it acts as a fulcrum for the

bending top facesheet. The interaction between the tup, the top facesheet, and the core is

illustrated schematically in figure 6-25. In the figure, the core is represented by springs to

emphasize its role in providing vertical support for the top facesheet. The leftmost undamaged

spring in figure 6-25 is seeing a greatly increased transverse load as described above.

tup

Intact Core
Damaged

Cor

F
Figure 6-25 Schematic of core failure
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6.12.3 Delamination.

The effect of delamination on the plate response was considered in the local model through a

procedure very similar to that described above for matrix cracking. The only significant

differences were that the failure criterion was based on the interface stresses and constitutive

terms for both plies adjacent to the failed interface were reduced. In this way, the constitutive

terms contributing to transverse shear stiffness were reduced, but the in-plane stiffness of the

facesheet was unaffected by the simulated delamination.

6.13 Local Model Solution Algorithm

The algorithm developed for this research is local-global in that it incorporates a local model

which is solved first and a global model which depends on the local model solution. The local

model simulates the sandwich structure by modeling the top facesheet as a plate and the core as a

foundation supporting the facesheet. The core stiffness is constant (elastic) until the core stress

reaches the yield stress, taken to be the maximum stress attained in uniaxial compression [128].

The strain at which the core first attains the yield stress is the yield strain. Between yield strain

and failure strain, the core (secant) stiffness varies to maintain the core yield stress at the lower

surface of the top facesheet. Thus the foundation must be called elastic-plastic, even though the

finite element does not include plasticity. The principal feature not included in the local model

(hence the need for a global model) is midplane displacement of the sandwich. The motion of the

top facesheet relative to the sandwich midplane is modeled in the local model and the motion of

the sandwich midplane is modeled in the global model (a full sandwich plate). Facesheet damage

modes (fiber failure, matrix cracking, and delamination) are assumed to develop in such a way

that they can be approximated by a progressive reduction in plate stiffness through the constitutive

relations. Core crushing is also treated as a stiffness reduction of sorts, but is included as a

reduction in the foundation stiffness rather than a constitutive adjustment. In the global model,

facesheet damage made such a small difference to the global stiffness in the early runs, that it was

neglected for the later runs. The main features of the local model algorithm are presented in

flowchart form in figure 6-26. The applicable sections of this dissertation (where more details can

be found) are shown beside the steps.
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Figure 6-26 Local-global solution algorithm flowchart.

For a given load increment, the solution proceeds as follows. An estimated contact radius

(that of the previous load increment, or the user-supplied starting value for the first load
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increment) determines the mesh and applied pressure profile. The finite element model for these

boundary conditions is solved using a modified Newton-Raphson iterative procedure. The

displacements from the finite element solution are used to calculate in-plane stresses and the in-

plane stresses are used in the three-dimensional equilibrium equations to determine the transverse

stresses and the transverse direct strain. The transverse direct strain is integrated through the

thickness and added to the midplane displacements to estimate the top surface displacement

profile. The top surface displacements within the contact region are fit to a sphere using a lest

squares technique and the contact radius is updated based on the resulting surface radius. This is

iterated until the tup radius and the top surface radius are in agreement. When the contact radius

has thus converged, the core failure algorithm is invoked. The failure criteria are checked to

determine if any new core failures are found. If so, the foundation stiffness is modified for the

affected elements and contact algorithm is repeated. This iteration of the core failure continues

until no additional core failures ensue. At that point, facesheet damage is checked. If new

facesheet damage is found, the appropriate ply stiffnesses are reduced and the core failure

algorithm is repeated. The facesheet damage algorithm is iterated until no additional facesheet

damages are found. At that point, the contact, core, and facesheet algorithms have converged and

the global model is run using the present load and contact radius to determine the sandwich plate

midplane displacements. The load is then incremented and the process is begun anew.

6.14 Global Model Solution Algorithm

As mentioned above, the principal feature not included in the local model is displacement of

the sandwich midplane. It is desired to compare load verses displacement curves between the

analysis and the experiment. The displacements available from the local model are with respect to

the sandwich midplane and thus do not include the overall bending of the sandwich under the

applied load. This motivates the need for a global model in order to obtain the displacement of the

sandwich midplane. The displacements predicted by the local/global analysis are the sum of the

midplane displacement of the global model and the displacement from the local model. The global

model uses the same grid, boundary conditions (except it does not include a foundation), contact

radius, and load as the local model. Damage is not included in the global model, and contact is

not iterated so the global model solution algorithm is much simpler than the local model. The

global model solution algorithm is illustrated by a flowchart in figure 6-27.
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Figure 6-27 Global solution algorithm flowchart.

6.15 Local/Global Interaction

The local model determines the contact radius based on the deformations in the vicinity of

the tup. Localized stiffness changes due to core and facesheet damage are included. The only

interaction then, between the local model and the global model is the contact radius. For any

given load step, the local model is satisfied first. The contact radius determined by the local model

is used with the given load (and the assumption of Hertzian distribution) to produce the applied

pressure profile for the global model. The global model midplane displacement is added to the

local model displacement to obtain the predicted total displacement.

6.16 Summary

A solution algorithm has been developed which is believed to have the capability of

modeling the most important features of the problem of low-velocity impact to composite

sandwich plates. Though originally it was intended to use just the global model described here,

the transverse stresses available from that model for very small contact radii were found to be

unacceptable. Contact radius depends strongly on the transverse stresses. Since the finite element

solution for a monolithic plate with the dimensions of interest was found to produce significantly

better transverse stresses, a local-global solution algorithm was embraced. In the local model the

sandwich plate is modeled as a plate (the top facesheet) on an elastic-plastic foundation (the core).

The displacements from the local model are added to the midplane displacements of the global

(sandwich) model to correct the fact that the local model foundation was flat while the sandwich
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plate core displaced due to plate bending. The local model was solved first and the contact radius

from the local model was used to load the global model.
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7. Comparison to Elasticity Theory

The purpose of this chapter is to compare the results of the finite element analysis described

in Chapter 6 to the elasticity theory results obtained from the modified Pagano solution described

in Chapter 5. In particular, the stresses available from the local (facesheet on an elastic

foundation) and global (sandwich) models are compared to the elasticity solution. Though the

local model was actually a plate on an elastic-plastic foundation, for this chapter fixed contact

radii and unit loads were used so that core strains were in the elastic range. Thus, in this chapter

the local model is referred to as the elastic foundation model, rather than elastic-plastic foundation

model. There is no difference between the two except the magnitude of the load. Two test cases

were chosen for presentation here. The test cases were chosen in order to display both the

strengths and the weaknesses of the analysis. Since the major goal of this research was to

analytically model the response of composite sandwich plates to low-velocity impact, toward that

goal, this chapter provides a measure of the success of the finite element analysis at predicting

stress under contact-type loading. One facesheet thickness (16-ply) is chosen for comparison here.

7.1 General Ideas

As seen in figures 6-7 through 6-11, even for the 14 DOF element, the global (sandwich)

model stresses leave something to be desired as compared to the elasticity solution. The

comparisons in this chapter show how much better the stresses obtained by the local model are

and motivate the use of the local model to predict failure in the specimen and to follow the

progression of damage. In the current algorithm, contact, facesheet damage, and core damage are

all iterated in the local model. The global model provides the gross deformations (midplane

displacements) so that comparison of load verses displacement curves with the experiment can be

made.

Two distinct types of elasticity test cases were used to judge the finite element solution. The

two types are two-dimensional cylindrical bending of a plate strip and three-dimensional bending

of a square plate. Both cases were loaded in the center by a Hertzian load distribution (as

approximated by a Fourier sine series). In the two-dimensional case the stress was distributed over

the entire plate depth, while in the three-dimensional case the stress was symmetric about the z
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axis (figure 5-11). As discussed in Chapter 5, the three-dimensional elasticity solution was only

available for relatively few Fourier terms. For this reason, the Hertzian contact radii which could

be modeled by the three-dimensional elasticity solution were much larger than the contact radii

observed in the experiment. Thus, it was not possible to use the three-dimensional elasticity

solution to benchmark the finite element analysis for contact radii of the dimensions found in the

experiment. Instead, the three-dimensional elasticity solution was used to benchmark the finite

element analysis for large contact radii and the two-dimensional elasticity solution was used to

benchmark the finite element analysis for small contact radii. In the elasticity solution test cases

conducted for this research, sandwich plate structures were loaded by a Hertzian load distribution

(figures 5-2, and 5-36) simulating contact with a spherical indentor located at the center of the

plate and moved transverse to the plane of the plate. In the finite element based analysis

methodology developed for this research (Chapter 6), a sandwich plate was modeled using plane

stress elements and loaded with a Hertzian contact load. Two different models were actually

studied, a local model and a global model. In the local model, the top facesheet was modeled with

monolithic plate elements on an elastic-plastic foundation (simulating the core). In the global

model both facesheets and the core were modeled by a sandwich element having stiffness

contributions from each.

7.2 Three-Dimensional Solution

To benchmark the finite element analysis with a three-dimensional elasticity test case, the

8x8-term double Fourier sine series representation of a 12.7 mm radius Hertzian contact load

illustrated in figure 5-36 was used. To be sure the problem remained in the elastic regime, the

total force applied was 1.0 N. The finite element model was loaded with a Hertzian contact load

having a 12.7 mm radius and the same total force. In figure 7-1 through 7-3, the 16-ply results

are shown for both the global (sandwich) and the local (plate on elastic foundation) models. It

should be pointed out that the displacements for the global and local finite element models are not

comparable because of the very different nature of the restraints (simple supports verses simple

supports plus elastic foundation). Nevertheless, both models were designed to simulate the same

event, so the top facesheet stresses are comparable. It is these stresses that are shown in figures 7-

1 through 7-3.
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Figure 7-1 Comparison of topfacesheet in-plane direct stress, a, at the center of the platefor the large contact
radius, three-dimensional case (12.7 cm square sandwich plate, 16-ply facesheets, 1.0 N load, 12.7 mm contact

radius).

Figure 7-1 shows how the in-plane stresses compare between the finite element models and

the three-dimensional elasticity solution. As expected, the 0' plies, having much greater x-

direction stiffness than the 900 plies, are shown to take the majority of the load (observe the

abrupt changes in stress occur at the interfaces and the 0' plies are the . It should be noted that the

though the primary damage mechanism driven by in-plane stress is fiber failure (in compression

near the top surface), depending on the damage criteria chosen, matrix cracking could also be

affected. Taking the elasticity solution to be the correct one (within the approximation of the

Hertzian load and the assumption that the material behaves elastically) it can be seen that the

elastic foundation (local) solution is significantly better than the sandwich (global) solution,

particularly near the top surface where fiber failure will begin. An interesting observation that can

be made from figure 7-1 is that the elasticity solution shows the stress in the 00 plies to be almost

linearly related to z in the top facesheet. The elastic foundation finite element solution is able to

model this feature because the cubic kinematics can represent a linear function and only the top

facesheet is in the model. The sandwich finite element model is not able to represent a linear

function through the thickness of the top facesheet, because the core and bottom facesheet
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represent significant property variation through the thickness, and thus require the familiar "zig-

zag" kinematic relationship which is not well represented by the cubic kinematics in the model. It

is true that the properties vary through the thickness within the facesheets, but since the lamina are

thin and many, the error associated with averaging their properties through the facesheet thickness

is small. Thus, in a gross sense, the sandwich behaves as a three-ply laminate in which the two

facesheets are considered to be represented by two stiff plies and the core is a single flexible ply

between them. The in-plane displacement of such a laminate is known to take on a Z shape

[236,237] which is not well approximated by a cubic. For this reason, it is thought that including

zig-zag kinematics could improve the in-plane stresses of the sandwich model, but that the elastic

foundation model would be less drastically improved. It further suggests what the author believes

to be a new idea for the kinematics of sandwich plate elements. Rather than include full zig-zag

kinematics in which each lamina has its own linear (or higher) function of z (with the attending

complications and computational overhead), one could give the facesheets independent kinematic

relationships from the core while maintaining a polynomial kinematic relationship within each

facesheet and within the core. Continuity of displacement (but not of the slope) would be

maintained at the interfaces between the core and the facesheets. The resulting kinematics would

not increase the number of degrees of freedom in the model when the number of plies in the

facesheet increased. It would provide what may be the most important benefit of zig-zag

kinematics for sandwich structures (the ability to model the "kink" in the displacement curve at

the core-facesheet interfaces) while avoiding the most important liability of zig-zag kinematics

(model size grows with the number of distinctly oriented plies). Such an approach is similar to the

"warping functions" recently applied by Greer [244] to composite shells.
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Figure 7-2 Comparison of topfacesheet transverse direct stress, a. at the center of the platefor the large contact
radius, three-dimensional case (12. 7 cm square sandwich plate, 16-ply facesheets, 1.0 N load, 12. 7 mm contact

radius).

Figure 7-2 shows that a, for the large contact radius case is marginally well predicted by

either the sandwich or the elastic foundation model. It can be observed that the sandwich model

does somewhat better than the elastic foundation, but either one will be non-conservative for a

stress based core failure prediction since the q at the bottom of the top facesheet (z = -6.35 mm)

is identically the same as the stress at the top of the core. Thus, the low prediction of core stress

will presumably result in a high prediction of core crushing load if a stress based criteria for core

failure is employed. This result was not found for the elastic foundation model when the contact

radius was significantly reduced (section 7.3).
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Figure 7-3 Comparison of topfacesheet transverse shear stress, rx at the location of the peakfor the large contact
radius, three-dimensional case (12.7 cm square sandwich plate, 16-ply facesheets, 1.0 N load, 12.7mm contact

radius).

For the 16-ply large contact radius case, figure 7-3 shows the transverse shear stress, T"',

through the thickness at the x-location of the peak transverse shear stress (and y = 0). This

location is between 9.5 and 11.0 mm away from the plate centerline. As shown in figure 5-8, the

transverse shear stress is zero at the plate centerline but grows quickly in the x-direction, attaining

a peak near the edge of the applied load (12.7 mm in this case). While the sandwich finite element

model prediction is slightly low, the elastic foundation model prediction is very high. This result,

combined with that of figure 7-2 indicates that for the large contact radius case, the sandwich

model produces a better three-dimensional stress result than the elastic foundation model, albeit

non-conservative for shear. Both models correctly predict the peak shear in the middle two 90'

plies.

The fact that the transverse shear is nearly symmetric with respect to the facesheet

midplane, as seen for the elasticity case in figure 7-3, has implications with respect to the three-

dimensional nature of the large contact radius case. Considering the first equilibrium equation, (6-

37a), repeated here for the readers convenience,
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'xx + O'xy,y + u, = 0 (6-37a)

and recognizing that on the symmetric boundary y = 0, the in-plane shear gradient Uyy is zero, we

find that, on the y = 0 boundary,

a .,, = -C xzz . (7-1)

Clearly, if the transverse shear stress is symmetric with respect to the top facesheet midplane, its

transverse gradient is anti-symmetric with respect to the top facesheet midplane. Equation 7-1

indicates that the in plane stress gradient is then anti-symmetric with respect to the top facesheet

midplane. All this is to say that the bending effect of the applied load is felt by the bottom surface

of the top facesheet to the same degree that it is felt by the top surface of the top facesheet. Thus,

to the top facesheet, the loading is not fundamentally three-dimensional, but can be thought of as

the sum of a pure bending and a membrane load. The precise z-location of the application of the

transverse load is not important. In contrast to this, the small contact radius problem is truly three-

dimensional and the shear near-symmetry observed in the large contact radius case in figure 7-3 is

not present there (see figure 7-6 below).

7.3 Two-Dimensional (Cylindrical Bending) Solution

The contact radius used in the three-dimensional solution above was effectively limited to

the 12.7 mm value for which the 16-ply cases are shown above due to the numerical singularity in

Pagano's formulation of the elasticity equations when a large number of double Fourier series

terms are used. To benchmark the finite element analysis with a contact radius more

representative of those anticipated in actual test cases of Chapter 8, the two-dimensional elasticity

solution was used. A 250-term (single) Fourier sine series representation of a 1.0 mm radius

Hertzian contact load was used. This load is similar to that shown in figure 5-2 which shows a

series representation of a 1.59 mm radius Hertzian contact load. To be sure the problem remained

in the elastic regime, the total force applied was 1.0 N. The finite element model was loaded with

a Hertzian contact load having a 1.0 mm radius and the same total force. In figure 74 through 7-

6, the 16-ply results are shown for both the global (sandwich) and the local (plate on elastic

foundation) models. The top facesheet stresses are shown in figures 7-4 through 7-6.
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Figure 7-4 Comparison of topfacesheet in-plane direct stress, q, at the center of the platefor the small contact
radius, two-dimensional case (cylindrical bending, 12.7 cm wide sandwich plate strip, 16-ply facesheets, 4.65 N/im

load, 1.0 mm contact radius).

Figure 7-4 shows how the in-plane stresses compare between the finite element models and

the two-dimensional elasticity solution when the contact radius is small (1.0 mm). As with the

three-dimensional solution, the 0' plies, having much greater x-direction stiffness than the 900

plies, are shown to take the majority of the load. As for the three-dimensional case, it can be seen

that the elastic foundation (local) solution is significantly better than the sandwich (global)

solution, particularly near the top surface where fiber failure will begin. An interesting

observation that can be made from figure 7-4 is that the backward "S" curvature seen in the

elasticity solution shows up in the elastic foundation solution as well. The elastic foundation finite

element solution is able to model this feature because the cubic kinematics can represent a

backward "S" function and only the top facesheet is in the model. The sandwich finite element

model is not able to represent a backward "S" function through the thickness of the top facesheet

for the same reason that it could not represent a linear function in the three-dimensional case, ie.

the need for a zig-zag kinematic relationship. In fact, the elastic foundation solution stress in the

00 plies appears to follow the elasticity solution, but is off by a constant. One can think of the

constant as the membrane stress in the facesheet due to the gross bending of the sandwich. The
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elastic foundation solution does not have the sandwich plate bending, hence the compressive

facesheet membrane stress that would result from sandwich bending is missing.
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Figure 7-5 Comparison of topfacesheet transverse direct stress, cz, at the center of the platefor the small contact
radius, two-dimensional case (cylindrical bending, 12. 7 cm wide sandwich plate strip, 16-ply facesheets, 4.65 N/m

load, 1.0 mm contact radius).

Figure 7-5 shows that transverse direct stress, q, for the small contact radius case is

significantly better predicted by the elastic foundation model than it is by the sandwich model.

Since all the cases in Chapter 8 (comparison to experiment) have relatively small contact radii,

this motivates the use of the elastic foundation model, rather than the sandwich model, to predict

core failure. Depending on the choice of failure theories, matrix cracking and delamination may

also be influenced by q. For the purposes of the present research, all damage predictions,

including those in the facesheets, were based on stresses from the elastic foundation model.
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Figure 7-6 Comparison of topfacesheet transverse shear stress, r,, at the location of the peak for the small contact
radius, two-dimensional case (cylindrical bending, 12. 7 cm wide sandwich plate strip, 16-ply facesheets, 4.65 N/r

load, 1.0 mm contact radius).

For the 16-ply small contact radius case, figure 7-6 shows the transverse shear stress, 'r,

through the thickness at the x-location of the peak transverse shear stress (and y = 0). This

location is just less than 1.0 mm away from the plate centerline. The elasticity solution in this

figure shows that the small contact radius problem is truly three-dimensional because the shear

near-symmetry observed in the large contact radius case in figure 7-3 is not present here. This

implies that the loading in the top facesheet can not be considered to be the sum of pure bending

and membrane loads. The z-location of the application of the load (the top surface) is important.

In the finite element models, the load was always applied as nodal forces (i.e. at the midplane).

The resulting transverse shear stresses were typically characterized by symmetry with respect to

the midplane. In the case of the sandwich model, symmetry was with respect to the midplane of

the entire sandwich (see figures 6-7 through 6-11), while in the case of the elastic foundation

model, symmetry was with respect to the facesheet midplane (compare figures 6-12 through 6-

16). In figure 7-6, the elastic foundation model solution is arguably better than the sandwich

model solution. The elastic foundation model correctly predicts both the magnitude and the z-

location (second 0' ply from the top) of the peak shear stress for this case. The second peak near
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the lower surface of the top facesheet is thought to be a consequence of the two-dimensional

nature of the finite element solution. This lower peak shows up in the top facesheet of the elastic

foundation solution (see elastic foundation FEM plot in figure 7-6), and in the bottom facesheet of

the sandwich solution (see, for example the 11 and 14 DOF plots in figure 6-9b). Figure 7-6

indicates that for this case, with a shear stress failure criterion, the sandwich solution will predict

delamination and matrix cracking to first occur at the midplane of the top facesheet and the load at

which it first occurs will be 30 percent too high (as compared to the elasticity solution). This can

be seen by observing in figure 7-6 that the peak shear stress in the elasticity solution is

approximately 1.3 times the peak shear stress in the sandwich solution. In contrast to this, the

elastic foundation solution will predict delamination and matrix cracking to occur at the correct

load but simultaneously near the top and bottom of the top facesheet, while the elasticity solution

indicates only near the top. The author judges the elastic foundation solution to be better than the

sandwich solution because it gives both the correct failure load and the correct failure location,

even though it gives an extra failure location which is erroneous.

7.4 Conclusions

The three-dimensional stresses obtained from the equilibrium equations and the in-plane

finite element stresses compare favorably with the elasticity solution. The sandwich (global) model

does reasonably well for the case in which the load is distributed over a large portion of the top

surface, but for the small contact radius case, the elastic foundation (local) model does better. In

the balance of this research, the global (sandwich) model will be used to predict the plate

midplane displacements, but the state of stress will be predicted by the local (elastic-plastic

foundation) model. Due to the symmetry of the transverse shear stress predicted by the local

model with respect to the top facesheet midplane, delaminations and matrix cracks near the

bottom surface of the top facesheet may be erroneously indicated. The major goal of this research

was to analytically model the response of composite sandwich plates to low-velocity impact. The

data presented in this chapter indicates that the two-dimensional (plane stress) finite element

analysis, when combined with the three-dimensional equations of stress equilibrium can

reasonably well predict the three-dimensional state of stress in a composite sandwich under

contact-type (Hertzian) loading.
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8. Comparison to Experiment

The purpose of this chapter is to compare the results of the finite element analysis described

in Chapter 6 to the experimental results related to the static indentation tests of the experimental

program described in Chapter 4. Several test cases were chosen for presentation here. The test

cases were chosen in order to display both the strengths and the weaknesses of the analysis. A

major goal of this research was to analytically model the response of composite sandwich plates to

low-velocity impact. Thus, this chapter must provide some measure of the success of the finite

element analysis. Toward this end, several metrics are developed by which the ability of the

analysis to predict the experimental results can be judged. One facesheet thickness (16-ply) is

chosen for detailed comparison and more general comparisons are made of the other facesheet

thicknesses.

8.1 General Ideas

In the tests conducted for this research, sandwich plate structures were loaded both statically

and dynamically through contact with a 12.7 mm radius spherical indentor located at the center of

the plate which moved transverse to the plane of the plate (figures 4-2, 4-4, and 4-5). In the finite

element based analysis methodology developed for this research (Chapter 6), a sandwich plate

was modeled using plane stress elements and loaded with a Hertzian contact load. Two different

models were actually used, a local model and a global model. In the local model, the top facesheet

was modeled with plane stress elements while the balance of the plate was modeled by an elastic-

plastic foundation supporting the top facesheet. This local model was adopted because the

sandwich model transverse direct stresses in the core were in error, particularly when the contact

radius was small. The elastic stiffness of the foundation was the same as the core, so that local

deformations of the top facesheet relative to the bottom facesheet were obtained while the global

deformations of the entire sandwich were not. The finite element in-plane stresses were used with

the three-dimensional equilibrium equations to evaluate the transverse stresses, strains, and

displacements to obtain the displaced surface under the load. This surface was made to conform to

the tup surface through an iterative procedure described in section 6.9. In a second model (the

global model) the entire sandwich structure (both facesheets and the core) was modeled using

plane stress elements to obtain the gross deformations of the plate. The grids, loads, and edge
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boundary conditions for the two models were the same. The sum of the displacement of the

midplane of the global model and the displacement of the top surface in the local model was taken

to be the predicted displacement of the top surface of the sandwich plate. In this way, the global

model provides the solution for the sandwich plate bending while the local facesheet bending and

the contact between the indentor and the specimen were modeled by the plate on an elastic-plastic

foundation in the local model. Stress and failure were evaluated from the results of the local

model. Damage was modeled in the local model by constitutive (facesheet) and foundation (core)

stiffness reductions in the elements in which damage was indicated by stress and strain based

criteria.

A significant difference between the analysis and the experiment must be kept in mind when

interpreting these results, namely, the fact that the experiment was conducted using displacement

"control" while the analysis used load control. That is, in the experiment, indentor (or impactor)

displacement was the controlled parameter (input) while the load developed by the plate was a

result (output). In the analysis, the load applied by the indentor was the controlled parameter, and

the displacement was a result. Load control in the analysis was needed in order to maintain a

Hertzian contact pressure under the indentor, but it lead to the inability of the analysis to directly

resolve load drops associated with damage.

8.2 Mesh Refinement

The adaptive mesh algorithm described in section 6.9 was employed to set the geometric

spacing of the nodes in the grid for both the local and global models. By that algorithm, the mesh

in the vicinity of the applied load was refined as the contact radius decreased, but since this was

accomplished by moving the nodes, without increasing the total number of elements in the model,

it was at the expense of the refinement of the mesh away from the applied load and was limited by

the total number of elements in the model. In this way a given mesh was modified based on the

contact radius, but it was not globally refined by increasing the number of elements in the mesh to

improve the solution. In order to determine the number of elements required for the mesh,

refinement of the whole mesh was performed by increasing the number of elements in the model

(allowing the adaptive mesh algorithm to define their spacing) until additional elements ceased to

significantly change the solution. In order to keep number of elements (mesh size) the same for

each run, a single mesh size was sought. The mesh had to be refined enough that the most severe
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runs (those with the highest strain gradients) would not require further refinement. Two test cases

were identified which were thought to be more severe, from a strain gradient point of view, than

the experimental cases for which a model was required. The two cases involved the thinnest and

thickest facesheets (4-ply and 48-ply) and were sandwich plates. Sandwich plate analysis (i.e. the

global model) was chosen for this study because it was found to be more sensitive to mesh size.

Thus, a mesh that is refined enough for the sandwich (global) analysis was believed to be refined

enough for the for the foundation-supported facesheet (local) analysis.

For each case, a Hertzian load with the smallest empirically observed contact radius, 1.0

mm, was applied to meshes of elements with from 5 to thirteen elements in each direction (grids

5x5 through 13x13). Grids for the 5x5, 9x9, and 13x13 meshes with a 1.0 mm contact radius are

shown in figures 8-1 through 8-3.
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(see detail a) (detail a)
Figure 8-1 5x5 grid for contact radius = 1.0 mm. Maximum aspect ratio = 73.

8-3



SI I I I

60
2

1.5

20

0.5 --

0 20 0 I
0 20 40 60 0 0.5 1 1.5 2

x (mm) x (mm)

(see detail a) (detail a)
Figure 8-2 9x9 grid for contact radius = 1.0 mm. Maximum aspect ratio = 115.
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Figure 8-3 13x13 grid for contact radius = 1.0 mm. Maximum aspect ratio = 141.

It should be emphasized that the grids shown in figures 8-1 through 8-3 are for the smallest

contact radius observed in the experiment, so that the grid distortion shown in those figures (the

distortion of the elements from a square shape) is the maximum expected from the simulations of

the test data. That is, no actual test runs are expected to have poorer shaped elements, so if a

given mesh refinement is sufficient for these test cases, it should be sufficient for all of the actual
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test runs as well. As can be seen in figures 8-1 through 8-3, the adaptive mesh algorithm placed

the majority of the elements within 2.5 contact radii of the center of the plate, and bilateral

symmetry was exploited. Though the adaptive mesh algorithm did maintain square elements in the

vicinity of the applied load (where strain gradients are high), the aspect ratio of the elements far

from the applied load is seen to be very high. Thus, even the 13x13 mesh must still be considered

coarse away from the applied load. The problems associated with high aspect ratio elements were

not observed in these tests. This may be due to the fact that the stress in the poorly shaped

elements was nearly aligned with the long axis of the elements, and the strain gradients within

those elements were relatively small. Results from the 4- and 48-ply test cases with a 1.0 mm

contact radius and a unit (1.0 N) load are shown for the various grid sizes in figures 8-4, 8-5, and

8-6. Figure 8-4 shows that the center displacement of the plate increased with grid refinement, but

appears to asymptotically approach a limit. This figure indicates that the finite element model was

too stiff, as expected, but that the stiffness error is virtually eliminated by refining the mesh to a

9x9 grid. Increasing the grid size above 9x9 did not, in the opinion of the writer, significantly

improve of the stiffness of the finite element solution.

5.00E-07 .. ......... . . .......... 2.50E-08
.0 - . ............ 0 ......

0

o 4-plyU

4. -07 1.50E-08

4 5 6 7 8 9 10 11 12 13 14

grid size (elemrents per side)

Figure 8-4 Plate center displacement verses grid size (4- and 48-ply sandwich plate, L. 0ON load, contact radius = 1.0
mm), showing that above 9 elements per side, the solution does not significantly change.

As discussed in Chapter 6, the failure criteria employed for the facesheets in the analysis

were based on stress. It is therefore relevant to consider how mesh refinement effects the state of

stress predicted by the model. In-plane stresses are calculated from in-plane strains directly via the

constitutive relations while transverse stresses require in-plane gradients of the in-plane strains to

be integrated through the thickness. It is therefore expected that the in-plane stresses are less
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sensitive to grid refinement than are transverse stresses, since the latter require correct strain

gradients and not only correct strains. Facesheet midplane transverse shear stress in the y-z plane

is plotted against y in figures 8-5 and 8-6 for the 4- and 48-ply sandwich models with a 1.0 mm

assumed contact radius. Those figures illustrate how mesh refinement effected stress and indicate

that refining the grid more than the 9x9 grid does not significantly change the solution. For all of

the subsequent work, the 9x9 grid was employed, but the adaptive grid algorithm effectively sized

the elements to keep the same number of elements (indeed, the very same Gauss points) within the

quarter-circular contact region shown in figure 8-2.
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Figure 8-5 Top facesheet midplane transverse shear along they axis (4-ply sandwich plate, 1.0 N load, contact
radius = 1.0 m).
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Figure 8-6 Top facesheet midplane transverse shear along the y axis (48-ply sandwich plate, 1.0 N load, contact
radius = 1.0 mm).

8.3 Core Stress verses Strain

The elastic-plastic foundation was based on uniaxial stress-strain data obtained from the

manufacturer of the Nomex honeycomb core. The uniaxial core stress-strain data and the elastic-

plastic foundation stress-strain curve used in the studies which follow are shown in figure 8-7. The

uniaxial data in reference [128] did not continue past a strain value of 0.0284, so it was not

known what the actual failure strain was. For the current research failure strain was taken to be

0.035.
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Figure 8-7 Core stress verses strain curves.

8.4 Test Cases

For the 16-ply specimens, three test cases were run in order to highlight the roles of the

different damage mechanisms. For each case, the tup radius was 12.7 mm and the load varied in

16 equal increments from 409.1 N to 3477.2 N. The symmetric boundary conditions were those

shown in figure 6-17 in which a/2 took on the value of 63.5 mm so that the entire plate modeled

was 127 mm square as was the fixture in which the specimens were tested in the experimental

portion of this research as described in Chapter 4. The element employed had 14 degrees of

freedom per node and is described in Chapter 6. Each case employed a local model in which the

facesheet was modeled as a monolithic laminate on an elastic foundation, and a global model on

which both facesheets and the core were modeled by a sandwich element. Details peculiar to each

test case are described below.

8.4.1 Case 1, no damage.

In the first case, no damage was modeled. For each step in load, the contact problem was

solved iteratively with the local model. The core and facesheet material properties in the local

model were constant for all loads. The contact radius (as a function of load) obtained from the
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local model was used in the global model so that the applied load distribution on the global model,

for any given load, was determined by the local facesheet bending and core compression effects as

modeled in the local model. This case provided a baseline to show the effects of the damage in the

other two cases which included damage.

8.4.2 Case 2, core damage only.

In the second case, core damage was modeled, but facesheet damage was not. That is, in the

local model, the elastic-plastic foundation stiffness was reduced under each element that showed

core failure. This was done via the damage algorithm described in section 6.11.2. The reduction

of the stiffness was constant for the entire element and proportional to the number of Gauss points

within the element that failed due to core crushing. Within the local model, and for a given load

increment, if the core failed, the contact algorithm was reiterated until a new converged contact

radius was obtained. The damage algorithm was then re-invoked to determine if additional

damages were brought about by load shedding due to the core stiffness reduction or by load

redistribution due to the changed contact radius. This process was repeated for any given load step

until the damage did not change further and the contact algorithm indicated that the portion of the

top surface of the plate over which the load was applied was conformed to the known spherical

tup radius. Contact and damage algorithms were thus nested so that for any given load increment

the local model provided a converged damage profile and contact radius. The resulting contact

radius (as a function of load) was the same as that of case 1 until the load at which core damage

began (core damage initiation load) was reached. Beyond this core damage initiation load, the

contact radius for case 2 was generally different from that of case 1. The contact radius output

from the local model was used to load the global model with Hertzian contact loads. While the

core failure algorithm was employed for this case, the facesheet failure algorithm was not. The

material properties of the facesheets were constant for all loads. This case provided a means to

understand the role of core damage without facesheet damage.

8.4.3 Case 3, facesheet and core damage.

In the third case, core and facesheet damages (fiber failure, delamination, matrix cracking,

and core crushing) were all modeled together. Within the local model, facesheet damages were

allowed in the top facesheet only. This restriction was considered due to the fact that damage was

not found in the bottom facesheet in the experimental effort. No damages were modeled in the
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global model. The third case shows the ability of the algorithms developed for this research to

model the damage of a composite sandwich structure by transverse Hertzian contact-type loads

simulating low-velocity impact.

8.5 Metrics for Success of the Analysis

The analysis and the experimental data must be compared in some meaningful way to

determine how well the analysis did at predicting the experimental results. The particular

measures chosen as the basis for comparison between experimental and analytical results are,

contact radius as a function of load, the load verses displacement curves, and delamination

patterns. The metrics are here described.

8.5.1 Contact radius.

The first metric is contact radius as a function of load. This metric should indicate how well

the contact algorithm in the analysis models the actual event. The experimental data available for

contact radius were not measured directly. As described in Chapter 4, separate tests were

conducted in which a pressure sensitive paper was placed between the indentor and the specimen.

After loading to the prescribed load, the pattern left on the paper was an impression of the

"footprint" of the indentor for that load. The widest portion of the footprint was measured with a

ruler and taken to be twice the contact radius for that load. The edges of the footprint were not

well defined, so the measurements were rather subjective. For this reason, the experimental

contact radii should be considered rough estimates. The experimental error was not determined.

8.5.2 Load verses displacement curve.

The static indentation load verses displacement curves provide a stiffness check of the finite

element algorithm as well as a check of the load at which core failure begins. The load drops seen

in the experiment were not observed in the analysis because the analysis, being load controlled,

did not permit load reduction.

8.5.3 Delamination pattern.

The C-scans from the experimental portion of this research (some of which are shown in

figure 4-26) can be compared to the delamination patterns predicted by the analysis. Though the

analysis determined the delamination pattern at each interface, the C-scans provide only a single

8-10



pattern for the whole facesheet. The through the thickness variation of the delamination pattern

was provided by Harrington's photomicrographs [5].

8.6 Test Results

8.6.1 Case 1, no damage.

8.6.1.1 Contact radius.

Figure 8-8 shows the undamaged plate contact radius verses the applied load. The

experimental result, (which included damage) is also plotted on the same figure for comparison.

The apparently linear experimental result below the first major load drop (which occurred at 2250

N) is curious since the curve must go through the origin. It is well known that the initial contact is

a highly nonlinear process. It appears that in the experiment the nonlinearity of the initial contact

was not seen above 500 N. That is, above 500 N the contact radius was a linear function of load

until damage. This compares to the analytical result in which the nonlinearity continues to at least

1500 N. From this data, one might argue that the analytical result is in gross error. In particular,

the analysis under-predicts the contact radius. This error, if it is real, is serious because the

contact radius determines the peak load and the hence the failure initiation in the plate. The plate

should fail very early if the contact radius is this poorly represented.
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Figure 8-8 Contact radius predicted by local finite element model without considering damage (16-ply).

Core failure, being dominated by transverse direct stress, is most sensitive to contact radius,

especially for thin facesheets where the applied pressure load is felt almost directly by the core. A
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back-of-the-envelope calculation will illustrate the error in core failure load expected from an

error in contact radius. Assuming Hertzian distribution of the contact load, the core failure load

Fcorepjilure, is related to the contact radius Rcopjtc(F) by the relationship,

Fcore failure -- lo 24 R[ contact ( Fcre failure )] 2

F = q0 (8-1)
3

in which q0 is the peak pressure in the center of the plate and a is the normalized transverse stress

at the top of the core (see figure 5-4). As an illustration, a for 4-, 8-, 16-, 32-, and 48-ply

sandwich plates in cylindrical bending with a 1.59 mm contact radius are found from figure 5-4 to

be, 0.56, 0.34, 0.19, 0.10, 0.07 respectively. Equation 8-1 is nothing more than the relationship

between force and peak Hertzian contact stress with the appropriate substitutions for core failure

load. It can be seen from equation 8-1 that an in contact radius will be squared when it contributes

to core failure. That is, for example, if the contact radius were low by a factor of two, the

predicted core failure will be low by a factor of four.

Bearing in mind that the accuracy of the experimental contact radius was not determined and

the measurement was rather subjective, the core failure load will be used to confirm or deny the

implication from figure 8-8 that the analysis does a poor job of modeling the contact between the

indentor and the plate. If the core failure load is significantly low, this will support the indication

from figure 8-8 that the analysis poorly models the contact radius. If not, the unknown

experimental error in the contact radius measurements can be blamed for the disparity in figure 8-

8.

8.6.1.2 Load verses displacement curve.

The second metric used to judge the analysis is the load verses displacement curve. For the

undamaged case, this is basically a stiffness comparison between the experiment and the analysis.

In the experiment, top and bottom surface displacement were measured. These were used to

represent the local and global stiffnesses of the specimens in Chapter 4. In the finite element

model, these stiffnesses were available directly since the problem was broken up into local and

global parts. Figure 8-9 compares the local and global load verses displacement curves of the

analysis with the top and bottom surface load verses displacement curves from the experiment.
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Figure 8-9 Load verses displacement predicted by localfinite element model without damage (16-ply).

The initial nonlinear concave-up portions of the experimental loading curves shown in figure

8-9 are not fully captured by the analysis, but the slopes (stiffnesses) are very close. In figure 8-9,

Wtop is the sum of the midplane displacement of the global (sandwich) model and the top surface

displacement of the local (facesheet on an elastic foundation) model. This figure supports the idea

used in this analysis that the global and local displacements can be superposed to represent the

total displacement of the specimen.

8.6.2 Case 2, core damage only.

8.6.2.1 Contact radius.
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Figure 8-10 Contact radius predicted by local finite element model with only core damage considered (16-ply).

Figure 8-10 indicates that the failure of the core has very little effect on the contact radius in

the analysis. This is contrary to the experimental result that the core failure was always

accompanied by large increase in contact radius.

8.6.2.2 Load verses displacement curve.

Figure 8-11 shows the same data as figure 8-9, but with the addition of the data from the

analysis including core damage. Most significant in figure 8-11 is the fact that the core begins to

fail at very nearly the same load as seen in the experiment. While the experiment shows a load

drop when the core fails, this was not observed in the analysis due to the fact that the load control

was used. It should also be observed in figure 8-11 that core failure in the analysis does not

present a radical bifurcation, it appears to be a gradual process. This contrasts with the very

radical event in the experiment (the load drop). Failure of discrete core honeycomb cells could

account for some steps in the experimental load displacement curve. The finite element analysis

core (a continuous elastic-plastic foundation) could not resolve such discrete cell failure events.

Nevertheless, lack of the analytical ability to resolve individual cell failures can not fully explain

the difference between the failures seen in figure 8-11 because the load increments in the finite

element analysis were great enough that each time the core failed, a core area encompassing (what

is in the experiment) multiple cells failed.
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Figure 8-11 Load verses displacement predicted by local finite element model with and without
considering core damage (16-ply).

The large difference between the experimental top surface displacement the first time the

load reaches 2250 N and the top surface displacement the second time load reaches 2250 N can

better be explained by a discrete multiple cell failure in which failure of the highest loaded cells

precipitates failure of less highly loaded neighboring cells. That is, the core fails not in a

continuous process, but suddenly. In figure 8-11, at a top surface displacement of 1.0 mm the

failure of the cells immediately under the indentor results in transfer of the load to the cells

surrounding the failed cells. The additional load now taken by the cells surrounding the failed

cells causes them to fail as well. The failed core does not support the facesheet, so the facesheet

indentation increases, relaxing the sandwich midplane displacement (while keeping the top surface

displacement constant). This allows the strain energy in the sandwich to be released as the

sandwich midplane displacement is relieved. In this way the core failure propagates under

constant top surface displacement until the strain seen by the intact core is below the failure strain.

At this point, the load is well below the load that first caused failure of the core. Increasing the

top surface displacement following the load drop increases the load again, but the top surface

displacement has to be considerably greater (approximately 1.5 mm in figure 8-11) before the

load reaches 2250 N again.

8-15



8.6.3 Case 3, facesheet and core damage.

8.6.3.1 Contact radius.

4

3.5

3
E 2.5

E 2

0 1.5

1 Experiment

0.5 -- FEM (without damage)

-O- FEM (with core and facesheet damage)
0 .. ... .. _ _ _

0 500 1000 1500 2000 2500 3000 3500

applied load (N)

Figure 8-12 Contact radius predicted by localfinite element model with facesheet and core damage considered (16-
ply).
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3000

2500

2000

0 1500

-Wtop, from experiment __

1000
-~Wbot from experiment

-- Wmid from sandwich FEM (without damage)
500 - -W Wtop from FEM (without damage)

50
0 --. - --- - ---- ----- -- - ...

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

displacement (mm)

Figure 8-13 Load verses displacement predicted by local finite element model with and without
considering facesheet and core damage (16-ply).
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8.6.3 Case 3, facesheet and core damage.

The third case of interest includes the effects of facesheet damage in the forms of fiber

breakage, inter-ply delamination, and intra-ply matrix cracking in addition to the core damage

from case 2 and the contact algorithm from cases 1 and 2.

8.6.3.1 Contact radius.

In the analysis, the inclusion of facesheet damage in the form of reduced constitutive terms

- in the damaged elements has very little effect on the contact radius. This can be seen in figure 8-

11, in which facesheet damage was present for all loads above 1300 N.

3.5

3-

E 25-E
2

0 1.5 -

-Experiment

FEM (without damage)0.5-.

--O- FEM (with core and facesheet damage)

0 500 1000 1500 2000 2500 3000 3500

applied load (N)

Figure 8-12 Contact radius predicted by localfinite element model with facesheet and core damage considered (16-
ply).

As seen in the experimental data in figure 8-12, the contact radius in the experiment is very

profoundly effected by the presence of localized damage which occurred at 2250 N. The load of

2250 N is the load associated with the first major load drop in the static testing of the 16-ply

specimens (see the top surface load curve in figure 4-22). The localized damage associated with

this load in the experiment was to both the core and the facesheet. Even with the inclusion of both

of these damage types, the analysis does not show the experimentally observed jump in the

contact radius. The failure of the analysis to predict the jump in contact radius indicates a

limitation of the this research. The three-dimensional effects of the damage as they "soften" the

contact between the tup and the specimen are evidently not well modeled by the algorithm. This is

believed to be due to the fact that the algorithm reduces the stiffness of the facesheet in the area of
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damage, but still models the damaged facesheet as a single element through the thickness. A

single element with continuous kinematic relations through the thickness is not able to model the

reduction in local bending stiffness which must be present when delaminations exist. Locally,

delaminations change a single, relatively thick laminate into multiple, kinematically independent,

comparatively thin, sublaminates. The local bending stiffness provided by the sum of all of the

sublaminate contributions is much less than the local bending stiffness of the single laminate. The

facesheet damage algorithm used in this research reduced the shear stiffnesses of the plies adjacent

to the delamination, but did not allow the sublaminates to move independently. A thick laminate

with reduced shear stiffnesses is still stiffer in bending than would be the sum of the component

sublaminates. The effect of maintaining the single-plate kinematics in the presence of

delaminations is that the stiffness reduction in the damage algorithm does not adequately reduce

the local bending stiffness of the facesheet. Since the local bending stiffness of the facesheet is too

high, the midplane curvature under the load is too low. The top surface displacement is calculated

from the sum of the midplane displacement and the through the thickness integral of the transverse

direct strain. The low curvature of the midplane thus produces a low curvature of the top surface.

The contact algorithm uses the curvature of the top surface to determine what the next estimate of

the contact radius should be. In effect, the contact algorithm forces the top surface curvature to

conform to the curvature of the tup. If the midplane curvature is low, the contact radius will be

artificially small. Thus, the facesheet damage algorithm is believed to be responsible for the

inability of the analytical algorithm to model the contact radius jump observed in the experiments.

Modeling the delaminated facesheet with multiple independent elements stacked through the

thickness as in [9,11,56,61] may sufficiently model the local bending stiffness loss associated with

delamination to allow the contact radius jump to be predicted, but was considered to be beyond

the scope of this research. Another approach that may be able to improve the modeling would be

to include delamination capable kinematics as discussed in Chapter 6. It should be observed,

however, that the developments in Chapter 6 allow only a single delamination, whereas the

experiments, elasticity solution, and finite element solution all show multiple delaminations.

Extension of the delamination capable kinematics of Chapter 6 to multiple delaminations was also

considered beyond the scope of this research.

Another simplification in the analysis contributing to the contact radius error is the fact that

the contact algorithm is only used in the local model. Thus, sandwich midplane curvature can not
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effect the contact radius. The author believes this error to be small, but nothing was done to

quantify it.

8.6.3.2 Load verses displacement.

As for the contact radius, the inclusion of facesheet damage as modeled with reduced

constitutive terms in the damaged elements has very little effect on the local stiffness as shown in

the load verses displacement curves in figure 8-12. In that figure, the curves representing load

verses displacement including only core damage and that including both core and facesheet

damage are so close as to be indistinguishable. It should be noted that facesheet damage was

present for all loads above 1300 N.

3500-- ---

16-ply

3000

2500 -

-. 2000-

"2 1500 7' Wtop from experiment-Wbot from experiment

1000 Wtop from FEM (without damage)

Wmid from FEM (without damage)
500 500- Wtop from FEM (with core damage)

-B- Wtop from FEM (with core and facesheet damage)
0 1 1 T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

displacement (mm)

Figure 8-13 Load verses displacement predicted by local finite element model with and without
considering facesheet and core damage (16-ply).

As seen in the experimental data in figure 8-13 as discussed in Chapter 4, load verses

displacement curve is very profoundly effected by the occurrence of localized damage which

occurred at 2250 N. The load of 2250 N is the load associated with the first major load drop in
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the static testing of the 16-ply specimens. The localized damage associated with this load in the

experiment was to both the core and the facesheet. Since load control was used in the analysis, it

was not possible to predict the load drop associated with damage. Instead, it was expected that an

abrupt increase in displacement for a given small increase in load would be found. That is, if the

model were behaving as the experiment would under load control, at 2250 N the displacement

should jump from 1 mm to just over 1.4 mm (horizontally from the first peak in the Wtop from

experiment curve at 1 mm displacement and 2250 N to where the next 2250 N equilibrium point

at 1.43 mm displacement). Even with the inclusion of both facesheet and core damages, the

analysis does not show the experimentally expected jump in the displacement. An apparently

smooth and continuous digression from the undamaged load verses displacement curve can be

observed beginning between 2000 N and 2250 N in figure 8-13. The load associated with the

beginning of this new equilibrium curve is the load at which core damage begins. Though the

beginning of core damage is apparently well predicted by the analysis, the effect of the damage is

suppressed by the fact that the facesheet local bending stiffness has not been properly reduced to

account for the delaminations present there. The progress of core damage under a given (constant)

load is illustrated in figure 8-14.
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Figure 8-14 Illustration of the progress of core damage under a constant applied force.

When core damage is present in some localized area of the sandwich, the only resistance to

motion of the top surface toward the midplane (or vice versa in the static experiment) within the

damaged area is the local bending stiffness of the top facesheet. In the experiment core damage

leads to large movement of midplane of the specimen toward the top surface due to the flexibility

of the delaminated facesheet. This flexibility also is thought to lead to rotation of the facesheet at

the edge of the core damage region, so that the entire transverse load is reacted by a relatively

thin ring of the core surrounding the damaged core. This situation is illustrated as the "initial

position" in figure 8-14. The innermost portion of this thin ring of core experiences high stresses

(ultimate) and core failure continues, expanding the ring. The expanded ring, having more area
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due to a greater radius, reacts to the transverse load with a lower average stress. This situation is

illustrated as the "intermediate position" in figure 8-13. When the stress in the undamaged core at

the edge of the damage is above (less negative than) the compressive ultimate stress of the core,

the core failure is halted ("final position" in figure 8-14).

As discussed above, the delaminated facesheet in the analysis is relatively inflexible in

bending, so that the rotation that gives rise to the high stresses in the core at the edge of the core

damage region is under predicted. The core stress at the edge of the damaged region is therefore

too low. Thus, the tendency of the core damage to progress under a constant load as illustrated in

figure 8-14 is greatly reduced. In this way, it is thought that the facesheet damage model, as of the

current research, limits the ability of the analysis to model the progression of damage. Damage

initiation is correctly predicted, but damage progression is under predicted. A more accurate local

bending stiffness in the delaminated region should produce better damage progression results.

8.6.3.3 Delamination patterns.

Delamination can significantly reduce the residual compressive strength of a composite. It is

therefore important to determine the delaminations produced by a given impact event. For this

reason, delamination patterns were chosen as a metric to judge the analysis. The delaminations

predicted by the finite element analysis can be compared with the C-scans shown in figure 4-27.

The physical dimensions are not given in figure 4-27, but the scans are magnified by 150% so that

the maximum width of the 16-ply static case is 12 mm. Figure 8-15 shows the delamination

patterns produced by the analysis for the same load. The shapes of the delaminations predicted by

the analysis appear to be very good, while the size of the delaminations are too small by a factor

of 2.0. This is to be expected, because the contact in the analysis is overly stiff after facesheet

damage due to the facesheet damage algorithm as described above. The patterns shown in figure

8-15 are surprisingly close to those seen in the C-scan in figure 4-27 when one considers that the

analysis based delamination on stress alone and did not include a singularity (crack tip) or even a

physical discontinuity as was present in the experiment.
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8.7 Summary

The analysis shows the ability to model some of the important features of static indentation

of composite sandwich structures. In particular, the slope of the load displacement curve

(stiffness), including contact, before damage is well represented. Perhaps the most important

feature, core failure load, is predicted by the analysis within ten percent of the experimental

value. Damage progression is under predicted by the analysis. This is believed to be attributable

to the facesheet damage algorithm which evidently does not adequately reduce the local bending

stiffness of the top facesheet when delamination occurs. Delamination patterns predicted by the

analysis bear a striking resemblance to the C-scans from the experiments, but are smaller in size.

A more accurate model for the local bending stiffness in the delaminated region should produce

better damage progression results. Possible ways to do this without resorting to a full three-

dimensional finite element model are by modeling the delaminated facesheet as a stack of

independent sublaminates, or, including delamination capable kinematics as described in Chapter

6.
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9. Summary and Conclusions

The susceptibility of composite sandwich structures to low-velocity impact damage such as

that brought about by dropped tools and runway/taxiway debris has been addressed through an

experimental and analytical study of low-velocity impact on sandwich plates with

graphite/epoxy facesheets and Nomex honeycomb cores. In particular, simply supported, 12.7

cm square flat panels were impacted at their center by an instrumented impactor with a 12.7

mm spherical radius. Static indentation tests were also performed and comparisons of

equilibrium paths (load verses displacement curves) and resulting damage provided insight into

the range of validity of the quasi-static assumption commonly made in testing and analyzing

low-velocity impact specimens. Elasticity solutions available in the literature for simply

supported laminated plates in cylindrical bending and three-dimensional bending were extended

to simulate contact loading by representing the assumed Hertzian contact load by a Fourier sine

series. The resulting solution provided a benchmark for a finite element based model of the

impact event. A higher-order shear deformation theory, plane stress, finite element code was

extended to provide quasi-three-dimensional stresses via integration of the three-dimensional

equations of stress equilibrium. Contact between the plate and the impactor was simulated by an

algorithm which enforced the condition that contact area of the plate must have the same

curvature as the assumed rigid impactor.

Several advances were made in the characterization of instrumented impactor test systems

which provide a better understanding of the system dynamics and improve the data available

from these systems. A three-degree of freedom dynamic model was able to resolve several

important features of the impact force history of an instrumented impactor test and show the

difference between measured and actual contact force. A simple empirically-derived force

correction can significantly improve the energy histories obtained from instrumented impactor

tests. Without this correction, absorbed energy values can have significant error which masks

the damage initiation energy. With the correction, as impact energy is increased, a sharp jump

in absorbed energy was indicative of damage in these specimens. A simple predictor of the

temporal fidelity of instrumented impact test systems called the tup mass ratio was identified.

Minimizing the tup mass ratio is shown to significantly improve the temporal fidelity of the load
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data produced by an instrumented impactor test system. In particular, load cell dynamics are

effectively removed from force oscillations following a major load drop. This allows insight into

the actual dynamics of the impact event which was not previously possible. The first major load

drop excited the plate vibration modes and the force oscillations appear to have been the result

of plate vibrations. The frequency of the plate vibrations was not significantly effected by the

damage, indicating that the damage had little effect on the bending stiffness of the plate. This

correlated with the post impact inspections which indicated that the damage was localized in the

area of the impact.

Low-velocity impact tests on composite sandwich plates of several different facesheet

thicknesses were conducted. Load histories were recorded by the use of an instrumented

impactor. The equation of motion of the impactor was time integrated using the measured force

histories and impactor mass to obtain the velocity history (and hence kinetic energy history) of

the impactor. The difference between the kinetic energy of the impactor at the instant of initial

contact and the kinetic energy of the impactor at a given time during the impact event was taken

to be the "absorbed energy" of the specimen. The absorbed energy includes both the kinetic and

strain energies of the specimen. Absorbed energy at the end of the impact event seems to

indicate strain energy release occurred in some of the impact events. Post impact inspections

found the specimens showing this strain energy release to be damaged while those not showing

the strain energy release were not found to be damaged. Therefore these results indicate that it

is possible to determine if there is failure within a composite sandwich plate subjected to low-

velocity impact by an instrumented impactor without relying on post-impact inspection of the

specimen. The absorbed energy at the end of the impact event can be used as an indicator for

damage.

Low-velocity impact of sandwich structures with thick facesheets or damage does not

appear to be a quasi-static process. That is, for such structures, the "static" (actually slowly

time variant) and dynamic impact events differed significantly in the load at which the first

major load drop occurred and the energy that was absorbed in the damage process associated

with the first major load drop. Further, the equilibrium paths after the first major load drop (i.e.

damaged specimens) differed significantly as the static event showed that the load increased
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nearly monotonically with displacement while the dynamic event showed a much higher degree

of load fluctuation.

For the range of parameters in this study, the first major load drop observed in the load

history is associated with core failure. This was confirmed by static tests in which the

displacements of both the top and bottom surfaces were measured and the average transverse

strain under the impactor was found to jump when the first significant load drop occurred. The

measured bottom surface displacements were also used to show that the global stiffness of the

plate is independent of the damage produced by low-velocity impact. This fact was used to

argue that in a global-local model of the event, contact is a local effect which can be removed

from the global model.

The elasticity solution of Pagano was modified for a composite sandwich subjected to a

Hertzian contact load in either cylindrical bending or square plate configurations. It proved to

be a useful tool for developing a general understanding of the characteristics of the stress field

produced in a composite sandwich plate by a contact type load. While the three-dimensional

solution can only be used for unrealistically large contact radii, the cylindrical bending solution

can be used for realistic contact dimensions. Damage is not included in either of the solutions,

but failure criteria are used to indicate the load at which damage is anticipated.

The principal analytical tool developed for this research was a displacement-based finite

element code for low-velocity impact of composite sandwich structures. The major goal of this

research was to analytically model the response of composite sandwich plates to low-velocity

impact. The data presented in this dissertation indicate that the two-dimensional (plane stress)

finite element analysis, when combined with the three-dimensional equations of stress

equilibrium can reasonably well predict the three-dimensional state of stress in an undamaged

composite sandwich under contact-type loading. The three-dimensional stresses obtained from

the equilibrium equations and the in-plane finite element stresses compare favorably with the

elasticity solution. The sandwich (global) model does reasonably well for the case in which the

load is distributed over a large portion of the top surface, but for the small contact radius case,

the elastic foundation (local) model does better.
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The contact between the impactor and the sandwich plate is modeled by an algorithm that

forces the top surface under the load to conform to the shape of the impactor. The contact

radius is allowed to vary to match the top surface shape to that of the impactor. The contact

radius thus predicted is smaller than the radii measured experimentally. This error also caused

the predicted damages (delaminations) to be physically smaller than those observed

experimentally.

When compared to the experimental data of Chapter 4, the finite element analysis shows

the ability to model some of the important features of static indentation of composite sandwich

structures. In particular, the slope of the load displacement curve (stiffness), including contact,

before damage is well represented. Perhaps the most important feature, core failure load, is

predicted by the analysis within ten percent of the experimental value. Damage progression is

under predicted by the analysis. That is, whereas the effect of damage observed experimentally

is a radical departure from the undamaged equilibrium curve, the effect of damage observed

analytically is a gradual departure from the undamaged equilibrium curve. This is believed to be

attributable to the facesheet damage algorithm which evidently does not adequately reduce the

local bending stiffness of the top facesheet when delamination occurs. The phenomenon of

facesheet delamination is a three-dimensional phenomenon which was not well modeled by a

two-dimensional element. Delamination patterns predicted by the analysis are similar in shape to

the delaminations observed by C-scans from the experiments, but are smaller for the same load.
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This Mathcad template calculates the Fourier coefficients for a one-dimensional Hertzian
contact pressure distribution. The user supplies the length (L), the peak value (q0, usually
unity), number of Fourier terms to calculate (N), and the contact half-width (Rcontat)

ORIGIN -_1
User supplied paramenters:

Nurnx -_2000

length: L_ -i
In i _-.. Nurx

peakload: q 0 1 _,______* 1 L
Nunx - 1

in
contact R contact 0.0625 ~ PRINPRECISION 16
half-width: InPRNCOL WIDTH 24

number of N 00n- .
Fourier terms: N 00n1.

L
odd 2n - I

Calculations begin here:n

distance from center r(x) I xj Hertzian function f(x,R) =qo 1
2R

Load Function rx2

0.5 -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

The odd Fourier coefficients (CRC pg 403) Mathcad uses Romberg method:

-* R contact
2!

b -f (x,R contact)-sinl(p (odd Xdx
SL

2 contact
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Generate a file for the FORTRAN subroutine WRITEPRN(fourl000 dat) -Re(b)

read in the file (used when plotting profiles b fouIIOO dat)
and not regenerating b each time) Numx -- 400

The truncated series f i I.. Nu d

approximation of the function f I I Z .I( ..

x values to plot x. i- 0.0035 0.0635

Nurnx -1

0.8

0.6

N

20.4
z

0.2

0

I I I II

63.5 64 64.5 65 65.5 66 66.5 67

x (mm)

Exact Hertzian
Fourier series, 25 terms
Fourier series, 50 terms
Fourier series, 250 terms
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