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Abstract

The approach of modeling measured signals as superimposed exponentials in

white Gaussian noise is popular and effective. However, estimating the parameters

of the assumed model is challenging, especially when the data record length is short,

the signal strength is low, or the parameters are closely spaced.

In this dissertation, we first review the most effective parameter estimation

scheme for the superimposed exponential model: maximum likelihood. We then

provide a historical review of the linear prediction approach to parameter estimation

for the same model. After identifying the improvements made to linear prediction

and demonstrating their weaknesses, we introduce a completely tractable and sta-

tistically sound modification to linear prediction that we call iterative generalized

least squares. It is shown, that our algorithm works to minimize the exact maximum

likelihood cost function for the superimposed exponential problem and is therefore,

equivalent to the previously developed maximum likelihood approach. However, our

algorithm is indeed linear prediction, and thus revives a methodology previously

categorized as inferior to maximum likelihood.

With our modification, the insight provided by linear prediction can be carried

to actual applications. We demonstrate this by developing an effective algorithm

for deep level transient spectroscopy analysis. The signal of deep level transient

spectroscopy is not a straight forward superposition of exponentials. However, with

our methodology, an estimator, based on the exact maximum likelihood cost function

for the actual signal, is quickly derived. At the end of the dissertation, we verify that

our estimator extends the current capabilities of deep level transient spectroscopy

analysis.

x



PARAMETER ESTIMATION FOR SUPERIMPOSED

WEIGHTED EXPONENTIALS

L Introduction

1.1 Problem

This dissertation is focused on the superimposed weighted exponential parame-

ter estimation problem. Many processes throughout applied science and engineering

are modeled by this paradigm, e.g. (59, 23, 2, 32, 45). For example, in high frequency

radar applications, a reflecting body of interest can be approximated as a collection

of independent scattering centers. Under this assumption, the electromagnetic fields

associated with each scattering center are modeled in the frequency domain as com-

plex exponentials, and the net scattering from the body is considered to be the

phasor sum of all the individual scattering centers (59). Estimates of the parame-

ters of this model, when applied to actual radar signals, are used for radar imaging

and analysis. Improved accuracy in the estimates directly improves resolution and

increases capabilities.

Another use of the superimposed exponential model is seen in the analysis of

signals associated with the free induction decay of nuclei in nuclear magnetic reso-

nance (NMR) experiments. Both the concepts of NMR spectroscopy and magnetic

resonance imaging (MRI) are predicated on the assumption that a volume of sample

contains a finite number of different types of nuclei. Each type of nucleus is asso-

ciated with the unique parameters of a complex exponential, and the total signal

emanating from the volume is considered to be a finite sum of these complex expo-

1



nentials (23:342). Estimating the model parameters is essential to identifying the

composition of samples in NMR spectroscopy or rendering an image in MRI.

Our research, in particular, is motivated by a class of applications interested

in identifying the parameters of signals modeled by the sum of real decaying expo-

nentials. Signals of this nature arise in many physics, chemistry, biophysics, and

biochemistry experiments (2). Accurate parameter estimates can convey important

information about molecular structure, reaction rates, and physical make up of the

specimen.

Typically, exponential or multi-exponential signals are measured in experi-

ments involving some type of perturbation. An external forcing parameter is pulsed

or stepped on to a system, previously in an equilibrium state, and the resulting tran-

sient is monitored. For example, in the case of some fluorescence decay experiments,

an exciting lamp flash is used to perturb proteins, protein conjugates, or nucleic acid

conjugates for fluorimetric observation (32:1090). In relaxation kinetics, a sudden

change in a chemical system's temperature, pressure, or electric field is used to invoke

a concentration change in one or several species of the system (2:178). Spectropho-

tometric, fluorimetric, polarimetric, or conductometric detection methods are used

to monitor the transient immediately after the perturbation.

A specific physics experiment that requires real exponential analysis is deep

level transient spectroscopy (DLTS). DLTS is a capacitance transient thermal scan-

ning technique used to characterize defects present in semiconductors (45:3023).

Good characterization of the defects in semiconductors directly impacts semicon-

ductor manufacturing, quality assurance, and technical advancement in general. For

these reasons, accurate parameter estimation capability in the DLTS experiment is

critical. In the latter chapters of this dissertation, we concentrate on the real ex-

2



ponential parameter estimation problem and the DLTS experiment. Ultimately, we

identify improved parameter estimation algorithms created for DLTS.

Before developing the improved algorithms, we review the applicable contri-

butions that have already been made for superimposed exponential parameter es-

timation. To keep the review as general as possible, the derivations and examples

presented are application independent. In this vein, the model notation is now in-

troduced.

1.2 Model

We assume y[m] is an observed, complex signal plus noise element from a

sequence of length M produced by N superimposed weighted exponentials with

additive white Gaussian measurement noise,

(1) y[m] =s[m]+w[m], m= 0,1,...,M- 1

where

(2) s[m = cA + C2A+... +CNA

Unless specified otherwise, the model order (or number of modes), N, is as-

sumed to be known and always less than the data record length, M. The complex

exponentials, A.,, are not equal to zero and are not repeated, i. e., Ai 5 Aj for

i 0 j, ij = 1, 2,... N. The complex amplitude coefficients, c,, are also not equal

to zero. Finally, the additive measurement noise contributions, w[m], for each y[m]

are complex Gaussian random variables uncorrelated across all m with uncorrelated

real and imaginary components, each of mean zero and variance o-2/2.

3



Note, the Gaussian noise assumption is employed to scope the research. Al-

though the assumption is often reasonable, we recognize the potential for it to be

inappropriate. Many of the methodologies developed in this research may be ex-

tended for alternative measurement noise assumptions, but we defer that subject to

future research.

Also note, when the purely real signal, y[m], is considered, we assume the

parameters A, and c, are real. Additionally, the additive noise contributions, w[m],

are assumed to be real Gaussian random variables uncorrelated across all samples

with mean zero and variance o2.

In vector notation, the observed signal and noise are written as

(3) =V + .

where

r ]T

= [y] y[1] ... y[M-1]]

V = [D(Ai) V(A2 ) '.. (AN)]

(,)= 1 A", A2 ... m

E C1  C2  ... CN]

(4) = [w[O] w[1] w[M -1]].

The M x N matrix V has Vandermonde structure. In Appendix A we show that

with distinct exponentials, An, the columns of V are linearly independent. Therefore,

with M > N, the matrix V has full column rank, N.

4



1.3 Overview

In Chapters II and III, we identify two competing methodologies for estimating

the parameters of superimposed weighted exponentials: maximum likelihood and lin-

ear prediction. Except at the end of Chapter III, the work developed in Chapters II

and III is background information already presented by other researchers. In Chap-

ter II, we review the maximum likelihood methodology and exalt it by identifying

its relationship to the Cramer-Rao bound. In Chapter III, we review an alterna-

tive methodology: linear prediction. At the end of the Chapter, we introduce an

extension to the linear prediction methodology that allows us to create an estimator

equivalent to the estimator developed from maximum likelihood. This original find-

ing allows us to simultaneously utilize the insights acquired during the development

of linear prediction and, in general, the flexibility of the linear prediction method,

while obtaining an estimator with performance capabilities approaching the Cramer-

Rao bound. The equivalence of the two estimators is shown through a common cost

function which is subject to minimization. In Chapter IV, a detailed review of tech-

niques for minimizing the common cost function is given. In the review, we introduce

new insight into the minimization problem by identifying equivalent minimization

approaches and conditioning issues that were previously overlooked. In Chapter V,

we transition to an analysis for the restricted case of superimposed real exponen-

tials. The lessons learned in the previous chapters are applied, and the intricacies

of the real exponential problem are considered. Our analysis for the superimposed

real exponential problem is completely original work and can not be found in the

literature.

With these subjects thoroughly investigated, our knowledge is applied to the

DLTS application. The development and results are presented in Chapter VI. Be-

5



cause of our preparation, we are able to develop estimators for DLTS that signifi-

cantly outperform the estimators currently in use. This contribution to DLTS has

been accepted for publishing (31).

In Chapter VII, we conclude the dissertation by reviewing the primary and

ancillary contributions of our research and addressing areas for immediate additional

work.

6



II. Maximum Likelihood

2.1 Chapter Introduction

A parameter estimation method is coined maximum likelihood (ML) when it

works to maximize the probability density function (PDF), f(9; 0), associated with

the observed realization, 9, and the assumed signal and noise model. The signal

and noise model is parameterized by the vector j. An ML estimate of j is rendered

by finding the parameters that maximizes f(9; 0) for a given realization of P. The

premise is that after observing 9, the maximizing parameters, 0, are the most likely

parameters of the signal and noise model. When a PDF, f(9; j), is considered in

this fashion, with a known 9 and unknown 0, it is called a likelihood function.

Estimating parameters with the ML approach is motivated by its relation to

the Cramer-Rao bound (CRB). The Cramer-Rao bound identifies a lower bound

for the variance of all unbiased estimators that is unique to the signal and noise

model (35:27). Therefore, it provides a benchmark against which all unbiased esti-

mation approaches can compete. An estimator derived from the ML approach is not

guaranteed to attain the CRB, but it has been proven that if an unbiased estimator

can attain the CRB, the ML approach will provide it (35:186-187). The theory of the

CRB is presented at the end of this chapter and developed in Appendix C. First, we

follow the methodology of Hogg and Craig (24:80-89), Kay (35:500-508), Ziskind and

Wax (74:1554-1555), Lanczos (44:272-280), and Bresler and Macovski (4:1082-1084)

to develop an ML estimator for the superimposed weighted exponential problem. All

the work discussed in this chapter is review. It is presented to provide background

and motivation for our research.

7



2.2 Maximum Likelihood Estimator

Temporarily let a signal plus noise element, y[m], take the complex represen-

tation y[m] = yr + jY2 . Also let the signal model take the complex representation

s[m] = s, + jsi, where y,, yi, s,, and si are real. Because the measurement noise

real and imaginary components are Gaussian distributed with mean zero and vari-

ance uo2/2, and because y[m] is a linear combination of the deterministic s[m] and

stochastic w[m], y, and y. are distributed as

(5) f(yr; Sr, 02 ) - 1 2exp [ -_ ) (Y Sr - )

2i [2 (zl)J

and

(6) f(y;s,, 2) 1 [p 2 (Yi - )2

Because the measurement noise real and imaginary components are uncorrelated and

Gaussian, they are stochastically independent. Therefore, the PDF f(yr, yi; Sr, Si, a 2)

is the product of f(y,; s., a2 ) and f(y;s, U2) so that

2) 1 ( )2 +(y,-'))

(7) f(y ,y; Sr,,2)- 1 exp ((Y - Sr S)2)

Incorporating the definitions of y[m] and s[m], Equation 7 becomes

(8) f(y[m];s[m],. 2) - exp [- [ y[m] - s[m]12]

where II * 112 represents the 2-norm.

Likewise, because each element, y[m], is uncorrelated and Gaussian-therefore

stochastically independent-the PDF of the vector 9 is the product of the PDFs for

8



each y[m] so that

M-1

f (P;YE,0 ) = JI f(y[m]; s[m], 02)

(9) 1 [cy2~~ M-i 1~] smI~
(9) - 7M0 .2M exp 2 M-1

M=O

In equivalent vector notation,

(10) f(9; V, a, a 2) = 2M [-1-(9 - VE)H(p - V)

where H is the conjugate (Hermitian) transpose.

In abbreviated notation,

(11 fl,. CN(VE, U21)

implies 9 is distributed complex Gaussian (complex normal) with mean vector Va

and covariance matrix ur21. The identity matrix, I, is of dimension M x M. Notice

that the common and uncorrelated variance, a2 , affects a covariance matrix with

constant diagonal only terms.

Returning to the ML task of finding the V, E, and a 2 that maximize f(9; V, a, r2)

for the observation Y, we find it easier to first take the natural logarithm of f(9; V, a, a2 )

so that

L(V, a, 2 ) = lnf(9;V, a, 2 )

(12)= -Mln-7r- Mlnor 2 - (Y- _v)H(q _ VE).
(12)

9



The function L is known as the log-likelihood function, and because the natural

logarithm is a monotonic function, L will maximize at the same parameters as the

PDF. Additionally, since M ln 7r is not a function of V, Z, or a 2, it is equivalent to

maximize

(13) L(V, ,o 2 ) = -MIna 2 - 1 - VE) H (- _V).

We also know at the maximum,

(14) OL(V, E, a 2) -0

where

(L(V, E,0 2) M 1(15) - 2 + ( v)(- v).

Therefore, at the maximum of L,

-.: + - 6 (p - yV E) H(p _y ) =0

(16) = 2M = (9 - vE)H(p_ VE)

or2 = I(2 YE)H(p _ VE).

If we substitute the expression for ua2 back into L, we can now say we need to

maximize

(17) L(V, E) = -Mln (V - VE)H( - VE)) - M.

10



Again, because M is a constant and the natural logarithm is a monotonic function,

maximizing L is equivalent to minimizing

(18) L(V, E) = (9 - vE)H(p - Va).

To simplify L further, we can remove the dependence on E by considering the

current expression for L at its minimum, but before doing so, we need to define real

and complex vector gradients. Our definitions are consistent with Kay (35:517-527)

and Therrien (70:686-690). We define the gradient of a scalar L with respect to a

real parameter vector j, as

QL

OL
(19) aL -~

OL

At a stationary point,

aL
(20) -- -o

where the notation 0 defines a vector of zeros. If we define the complex parameter

vector

(21) 0 = . + AN,

11



where Ur and 0i are both real vectors, we can also define the gradient of any scalar

L with respect to a complex parameter vector j as

(22) L 1 (DL aDL)(22) _L0 2( 30_

and

3 DL 1 (L L)
(23)_ i_

o,- 2 + a,

where * denotes the complex conjugate.

Notice that the log-likelihood function is a real scalar function. These gradient

definitions allow us to calculate a stationary point for a real scalar function with

complex parameters. Alternative definitions do not allow this because a real scalar

function with complex parameters is not analytic (35:518). At a stationary point,

(24) D L DL - 0.

Therefore,

DL -
(25)o = 0

and

aL
(26) - = 0DO*

are both valid gradient expression for determining stationary points.

12



Returning to the ML estimator development, we know

(27) OL(V, j) = o(pH - aHVHg - HVa + EHVHVE)
a* ca*

Under the gradient definition just presented,

=0*a(9HVH9) - o

a(HV) - VH

(28) V(vHvE) = VHVa.

This implies

(29) aL(V, E) - + VHVE.

The last three gradients of Equation 28 are derived in Appendix B. Therefore, at

the minimum of L,

(30) VHva = VHg

E = (VHV)-VH9.

Recall that V is of full rank N with M > N. Therefore, VHV is also of full rank N,

and (VHV) - 1 exists.

13



This expression for E can be substituted into L so that minimizing L is equiv-

alent to minimizing

L(V) = - V(VHV)-lVHV)H( - V(VHV)-IVH9)

- ((I - V(VHVyVH)V)H ((I - V(VHV)1VH)p)

= -H(I-- V(VHV)-lVH)H(I _ V(VHV)-IVH)p

(31) = -H(I-- V(VHV)-lVH)g.

Equation 31 is the exact maximum likelihood cost function for the superimposed

exponential problem reduced to just the N A,, parameters in V. The expression

(32) (I - V(VHV)-lVH)p

is recognized as the projection of the observation vector 9 onto the orthogonal com-

pliment of the range space of the columns of V. Under the maximum likelihood

approach, we desire the exponential parameters, A., for the columns of V that mini-

mize this projection. If the minimizing A,, can be accurately estimated, we can then

estimate the amplitude coefficients, E, by solving

(33) E= (VHV)-lVH.

With V and E estimated, we can even estimate the measurement noise variance, a2,

with the earlier expression

2= 1(-V)(-v)
(34) 2 1

14



The range space of the columns of V is referred to as the signal subspace, and

its orthogonal compliment is referred to as the annihilator subspace. The maximum

likelihood solution seeks to minimize the projection of the observation vector onto

the annihilator subspace. To accomplish this by finding the A,, that minimize the

cost function L is a highly nonlinear task. With some astute insight, the process

can be simplified by building an alternative projection matrix specifically for the

annihilator subspace. What follows is the derivation of such a projection matrix.

We know from differential equation theory, the noiseless signal model

(35) s[m] = cm + c2 A +... + cNAm

is a solution to the homogeneous, constant coefficient, linear difference or linear

prediction (LP) equation

(36) bos[m] + bis[m - 1] +... + bNs[m - N] = 0.

To see this, substitute the solution into the LP equation so that

bo [c1AT, + c2 A + ... + CNA;] +

b1 [ciA-1 + C2 A- +... + cNA-] +... +

bN [ClAN + c 2
-N +... + N -N] = 0

= [bocAm + bc 1Am NcIAm-N] +

(37) [boc 2Am + b1 c2 A - ' +... + bNc 2 A -N] +... +

[bocNAm + blCNA - 1 +-... + bNCN)7 - N] = 0

cIAm- N  [bAN + b 1A -  -... -+-bN] +

c2 AmN [b2 + b1 N -1  + .. + bN] +.. . +

cN -N [b0  + b1 4- 1 +... + bN] = 0.
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Because c.,, and A,, are non zero, the LP coefficients, bo... bN, must be such that

1

(38) [bN bN-1 ... bo] 2 = 0

A N

for all n. Also, the roots z of the characteristic polynomial formed from the LP

coefficients

(39) b0zN + b1zN - 1  
... + bN

are equal to the exponentials, A , .

If we propose the (M - N) x M Toeplitz matrix

bN bN-1 "" bo 0 ... 0

0 bN bN-1 ... bo(40) B-=
: " . " . " . " . " . 0

0 ... 0 bN bN-1 ... bo

we can see

(41) BV=O.

Thus, every row of B is orthogonal to every column of the Vandermonde matrix V

described earlier. Also, because each row of B is linearly independent, the rank of

B is M - N. Therefore, the rows of B form a basis for the orthogonal compliment
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of the range space of the columns of V, and through the projection matrix, we know

(42) BH(BBH)-IB = I - V(VHV)-VH.

When this information is brought back to the maximum likelihood derivation,

minimizing L is equivalent to minimizing the alternative maximum likelihood cost

function

L(b) = p HBH(BBH)-IBP

(43) = bHyH(BBH)-lYb

where

Y = [ o 91 ... 91N]

9n = [y[N-n] y[N +l-n] ... y[M - l - n]]

(44) b = [bo b . bN]T.

The data matrix Y is (M - N) x (N + 1) with Toeplitz structure. If we let

(45) R(b) = BBH

we can rewrite L as

(46) L(b) = 6HyHR()-y'Y.
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Minimizing the alternative L is still a nonlinear task, but if we use a previous

estimate of b, labeled hi_ 1 , to create a fixed R(bi- 1) we attain the quadratic expression

in bi

(47) bIyH R(b_4 )-1Yb.

where bi identifies the current unknown. Techniques for finding the bi that mini-

mizes a quadratic are well known and are examined further in Chapters III and IV.

An iterative approach that utilizes this quadratic expression naturally follows and

is known as the iterative quadratic maximum likelihood (IQML) algorithm. The

algorithm is most concisely presented in a paper by Bresler and Macovski (4), but

its origins and alternative deliveries can be found in papers by Evans and Fischl (15)

and Kumaresan, Scharf, and Shaw (39).

It is important to emphasize the IQML algorithm does not directly minimize

the maximum likelihood cost function but rather a quadratic approximation of it.

Nevertheless, the IQML algorithm is the most popular and accurate of all parameter

estimation schemes for the superimposed exponential problem.

2.3 Cramer-Rao Bound

Confidence in all ML based estimators is gained when the relationship between

maximum likelihood and the Cramer-Rao bound is understood. In this section, key

properties of the theory of the CRB are presented to show the relationship. In

Appendix C the theory necessary to justify the properties is developed. For both

this section and the appendix, the books of Scharf (61:221-227), Kay (35:30-45),

and Papoulis (54:260-265) were the primary references.
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Ideally, we desire a function of the data, g(p), that provides the best estimate of

the parameters 9 where, in our case, j is a vector representation of all the parameters

in V, E and a2 . Recall the log-likelihood function, initially defined in Equation 12,

where

(48) L(j) = In f(9; j).

In deriving the alternative maximum likelihood cost function

(49) L(b) = bHyHR()-y'Y,

we have shown that finding the b that minimizes L(b) is equivalent to finding the

j that maximizes L(j). Therefore, the IQML algorithm serves as a function of the

data, g(p), that estimates 0 for maximizing L(j).

In developing the IQML algorithm, and all other ML based estimators, we

exploit the requirement that at the maximum,

(50) OL(j) Oln f(;)0
(50 - 00.

The gradient of the log-likelihood function

(51) 9 In f(9; j)

is a key concept for the theory of the CRB and links maximum likelihood with the

CRB.

Before identifying the significant properties of the CRB, we need to review and

develop a few more concepts. If g(p) is an unbiased estimator of 9, then the mean
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vector or expected value of g(p) is equal to O. Symbolically,

(52) E {g( )} = L g( )f( ; 9)a =

The covariance matrix of g(P) is defined as

(53) C = E {(g()Eg(P)I)(g(P) - Eg())},

but for the unbiased estimator

(54) C = E {(g(9)- )(g(P) - 0)H}

The expression

(55) g(P) -

is known as the estimator error vector.

Returning to the gradient of the log-likelihood function, L, we find that if a

"regularity" condition is satisfied,

(56) a1n f(9; j)

has statistical properties of its own. The "regularity" condition assumes

(57)f (9; j) d9l = 0 f (P; 0) dg].

This is generally true whenever the domain of the non-zero portion of the PDF is not

a function of 9 and is definitely true in our application. The need for this condition
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is critical to the derivation of the CRB in Appendix C and is recognized here to

satisfy the last concept required for identifying the following significant properties

of the theory of the CRB:

Property One. If a PDF, f(9; j), satisfies the "regularity" condition, then the error

covariance matrix, C, of any unbiased estimator, g(p), must satisfy the condition that

C - F(j)- is positive semi-definite. The matrix, F(j), is the Fisher information

matrix and is defined as the covariance matrix of the gradient of the log-likelihood

function

(58) F(j) = E { ( n fY;O j) ()H

For the difference of matrices, C - F( ) - , to be positive semi-definite, each element

of the diagonal of C must be greater than or equal to each element of the diagonal

of F(O) - . This implies

(59) C, = E I(g( )n - - )H} F(j)n.

In words, the nnth element of the inverse of the Fisher information matrix

is a lower bound on the variance of the nth parameter estimated by the unbiased

estimator g(p). Calculating the Fisher information matrix for a known PDF to

test the performance of an unbiased estimator is straight forward. For the complex

superimposed exponential problem, closed form expressions for the calculations are

presented by Steedly and Moses in (67).
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Property Two. An unbiased estimator, g(p), may be found that attains the CRB,

in that C = F(j)-1, if and only if

(60) =1nf( ; = F(j) (g(q)-j)

The resulting estimator, g(p), is the minimum variance unbiased (MVU) estimator

of 0.

With regards to the second property, the ability to manipulate the log-likelihood

function into the form

(61) F(j ) (g(9) - j)

may be difficult. This is definitely the case for our superimposed exponential prob-

lem, but we can demonstrate the capability by considering a simplified version of the

same problem. Assume the exponentials, A, in V, and the noise variance, or2, of the

superimposed exponential PDF, f(q; V, E, a 2), are known. Therefore, the amplitude

coefficients, j, are the unknown parameters to be estimated. From the development

in the last section, the log-likelihood function of the superimposed exponential PDF

is

21(62) n(Z ) = -Mlnr - Mln_ 2 - 1 v-)H(9 _ Vj).
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Since L in this case is only a function of c, we can maximize L by solving for E at

the stationary point " = 0 or o2* = 0. From Appendix B we know

() (_VH9 + VHV,)

= --

(63) = H2 ((VHv)-lvH -.2

From the second property of the theory of the CRB,

(64) F-'(Z) = C = o2 (VHV)- 1

and

(65) g(q) = (VHV)-VH.

Recall from the development of the ML estimator in the previous section, after

accurately estimating A,,, the amplitude coefficients, Z, are estimated by solving the

same expression

(66) j = (VHV)-lVH9 = g(=).

Furthermore, knowing 9 is distributed

(67) 9 " CN(Vc, 0,21),
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we can use the linear transformation or pseudo-inverse, (VHV)-IVH from Equa-

tion 66 to determine the distribution of the estimator g(p) (61:59). The result is

(68) g(P) - ((VHV>' VHVj, (VHV>1 VHO.21V (VHv)

Indeed, g(9) is an unbiased estimator with mean vector j and covariance matrix

o2(VH V)-1 as identified from the second property of the theory of the CRB.

This exercise highlights the relationship between maximum likelihood estima-

tors and the CRB. Although we did not use the second property of the CRB for

developing the ML estimator of the completely unknown superimposed exponential

problem, we do use the first property to calculate the CRB for testing all the unbi-

ased estimators discussed in this dissertation. Additionally, the second property is

implicitly referenced anytime we claim an estimator to be MVU.

2.4 Chapter Conclusion

In this review chapter, we developed the maximum likelihood cost function for

the superimposed exponential parameter estimation problem. We showed equivalent

relationships for representing the ML cost function in terms of all the parameters,

V, E, and o2; just the exponentials, V; and even the linear prediction coefficients,

b. With a previous estimate of the LP coefficients, we identified how the ML cost

function can be approximated by a quadratic for a new b estimate.

The impetus for developing a maximum likelihood estimator comes form its

relationship to the Cramer-Rao bound. We showed this relationship and identified

two significant properties of the theory of the CRB. At this point, we can conclude

that the ML approach is a logical methodology for finding the estimator that is, or
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gets as close as possible to being, the MVU parameter estimator for the superimposed

exponential problem. In the next chapter, we present an alternative methodology,

solely based on linear prediction, for comparison.

25



III. Linear Prediction

3.1 Chapter Introduction

Linear prediction (LP) based parameter estimators for the superimposed ex-

ponential problem date back to 1795 and were originally proposed by le Baron de

Prony (9). Although initially inadequate, they have been continually improved upon.

In this chapter, we begin with the original Prony estimator and highlight the sig-

nificant improvements made to LP estimators over their history. We culminate the

chapter by deriving our own linear prediction based estimator that possesses a cost

function identical to that of the maximum likelihood (ML) cost function developed

in Chapter II. With an identical cost function, the LP estimator acquires all the

desirable attributes associated with ML and the theory of the Cramer-Rao bound

(CRB). Establishing an equivalence between the linear prediction based methodology

and the maximum likelihood based methodology is an original contribution of this

dissertation. Giving linear prediction the capability to possibly obtain the minimum

variance unbiased (MVU) estimator provides an alternative to the ML methodology

and allows us to retain the critical insight gained during linear prediction's long and

arduous development. In Chapter VI, this insight leads to a significantly improved

estimator for deep level transient spectroscopy (DLTS) applications. The same esti-

mator would be extremely difficult to directly develop from maximum likelihood.

3.2 Least Squares

Consider the noiseless superimposed exponential signal

(69) s[m] = cA+ c2 A+... +NA-
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From the equation, it is apparent that each element, s[m], is a linear weighted

combination of the A, exponentials. If, once again, we assume the exponentials

are known and the weights or amplitude coefficients, c,, are the parameters to be

estimated, we are inclined to solve for C1 ... cN with a system of N linear equations

and N unknowns. Only N realizations of s[m] are necessary to construct an exactly

determined system of linear equations, implying that, without noise, the solutions

for c1 ... CN are exact.

When the exponentials are also unknown, the linear relationship in Equation 69

is no longer apparent. Prony has been credited with realizing that the summed

exponential signal of Equation 69 is the solution to a linear difference or linear

prediction equation (61:489)

(70) bos[m] + bls[m - 1] +... + bNs[m - N] = 0.

This fact was demonstrated in Chapter II. Recall that the exponentials, A,,, are the

roots of the polynomial formed by the linear prediction coefficients, b0 ... bN. The

LP polynomial takes the form

(71) b0zN + b1z N - 1 +... + bN.

Notice that Equation 70 is a linear weighted combination of consecutive re-

alizations of s[m]. Once again, we are inclined to construct an exactly determined

system of linear equations to solve for the LP coefficients b0 ... bN. If we assume

b0 normalizes to 1, the soluble roots of the LP polynomial are unaffected, and only

2N realizations of s[m] are necessary to develop N equation for the N unknowns,

bl... bN.
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After solving b, ... bN and rooting the exponentials, A,, from the LP polyno-

mial, the amplitude coefficients, c,, can be exactly determined from the previous

system of linear equations based on the noiseless signal model Equation 69. This

methodology is known as the original Prony method. It conveys the fundamental

concepts of linear prediction in the context of parameter estimation for the super-

imposed exponential problem. The elegance of this estimation technique is easily

overlooked. It embodies the classic approach of decomposing a nonlinear problem

into separate problems which are solved using linear methods, and as long as the

data is completely modeled and noiseless, an exact solution is obtained.

To emphasize further, we will apply the original Prony method to four data

points from a noiseless two mode signal. Step One of the original Prony method-and

all other LP based methodologies for estimating the parameters of a superimposed

exponential signal-requires the construction of the system of linear equations

s[21 bjs[1]+b 2s[0] = 0

(72) s[3] + bis[2] + b2s[1] = 0

or

(73) s[1] s[O] bi _ s[2]

s[2] s[1] b2 -s[3]

for solving for the LP coefficients b, and b2. After solving for b, and b2 we root A1

and A2 from the LP polynomial

(74) z2 + biz + b2.
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Step Two requires the construction of the system of linear equations

s[O] = ciAO+C 2 A °

(75) s[l] = cA ± c2A)

or

(7 )1 1 c1 [0]

A,1 A2 C2 8[1]

for solving for the amplitude coefficients cl and c2.

When noise is added to the signal, neither the system of linear equations for

the LP coefficients nor the system of linear equations for the amplitude coefficients

yield exact solutions. Because the LP coefficient estimator is developed solely from a

noiseless LP equation, its estimates are easily corrupted by noise (44:275). To make

matters worse, in most LP methodologies, the amplitude coefficient estimates from

Step Two are based on exponential estimates from the roots of the LP polynomial

formed from LP coefficient estimates in Step One. Inaccuracies in the LP coefficient

estimates from Step One are compounded throughout the algorithm.

To further analyze the effects of noise and introduce improvements made to

linear prediction, consider all the data points of the noisy signal in the vector notation

(77) =V + ,7

or

(78)
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Even though we have an assumed distribution for zf, the assumption is unnecessary

for the development that follows. The vector fv is simply the error vector between

the observed noisy signal, p, and the assumed model, VE. One possible approach to

estimating the parameters of the assumed model is to search for the A,, and c. that

minimizes the sum of the squared error

J(V, E) = @

(79) = (9- yV)H ( p - VE).

This approach is known as least squares (LS), and in this case, the least squares

cost function, J(V, E), is identical to the maximum likelihood cost function, L(V, E)

developed in Chapter II.

With unknown V and E, minimizing J(V, E) is a non-linear least squares prob-

lem, but for further insight, once again assume the exponentials are known. Min-

imizing J(E) is a linear least squares problem and in Chapter II we developed the

minimum solution to be the pseudo-inverse estimator

(80) E= (VHV)-lVH.

We can prove the pseudo-inverse estimator obtains a unique minimal solution by

completion of squares. Let jo = (VHV)-IVHY and expand J(E) so that

J(a) = (9Z - V(E + 0 - E0))H(q - V(E + Zo - o))

(81) = (9Z3- Vo)H(pe- VEO) + (E_ Eo)VVHV(E - Eo).
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The left term of Equation 81 is not a function of E and is therefore fixed by the data.

The right term of Equation 81 is of quadratic form in E. In Appendix A we show V

has full column rank. Because V has more rows, M, than columns, N, we also know

VHV is positive definite (33:26). This implies

(82) (E- o)VVHV(c - Co) > 0

for all : AE0. Therefore, the unique minimum J(E) occurs when E = E0 = (VHV)-IVHy.

Also, recall that when the uncorrelated zero mean Gaussian distributional assump-

tion about iiv is made,

(83) =(VHV)lVHg

is the MVU estimator for the simplified superimposed exponential problem.

Therefore, when considering the completely unknown parameter estimation

problem, if we can accurately estimate the exponentials in Step One of the LP

methodology, we can utilize the pseudo-inverse estimator to attain the best possible

estimate of the amplitude coefficients, even in noise. Thus, linear prediction research

for the superimposed exponential parameter estimation problem is focused on Step

One of the LP methodology: estimating the linear prediction coefficients.

As mentioned before, the LP equation

(84) bos[m] + bls[m- 1] +... + bNs[m - N] = 0
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is only exact under the noiseless signal assumption. If we substitute the noisy real-

izations, y[m], for the noiseless realizations, s[m], we can say

(85) boy[m] + bly[m - 1] +... + bNy[m - N] = e[m]

where e[m] is the unknown error invoked by the substitution. Using all the available

data, we can construct the overdetermined system of linear equations

(86) Yb=j

where

Y = [Y0 .Y YN]

= y[N-n] y[N+ 1-n] ... y[M-1-n]

b = b b b .. bN ]T

(87) = e[N] e[N+ 1] .. e[M- 1] .

The data matrix, Y, has dimensions (M - N) x (N + 1) and Toeplitz structure.

With the previous least squares development, it is logical to assume we can improve

our LP coefficient estimates by minimizing the sum of the squared error

j(b) = e e

= (yb)H(yb)

(88) = bHyHyb.
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Before continuing further, note that unlike J(E), J(b) is not identical to its

counterpart, L(b), developed with the maximum likelihood methodology in Chap-

ter II. Under maximum likelihood,

(89) L(b) = bHyH(BBH)-Iyb.

Therefore, the b that minimizes J(6) is not a maximum likelihood estimate.

In the iterative quadratic maximum likelihood (IQML) algorithm, we addressed

this by using a previous estimate of b to calculate and fix (BBH)- 1 for a new estimate

of 6. If an initial estimate of

(90) 
b 1 0 ... 0

is used for the IQML algorithm, the resulting matrix

(91) (BBH)- 1 = I

shows that the initial estimate is equivalent to starting the IQML algorithm with

a least squares estimate. This is a popular technique for initializing the IQML

algorithm and is discussed in detail in Chapter V.

Historically, the least squares improvement was introduced to linear prediction

by Hildebrand in the 1950s (22:457-462). At the time, the relationship between the

least squares cost function and the maximum likelihood cost function was unknown.

Dubbed the extended Prony method, the least squares modification offers consider-

able improvement over the original Prony method (33:225). The covariance method

presented by Makhoul in 1975 is identical to the extended Prony method but is de-
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rived under entirely different assumptions (50:564). In this dissertation, we find it

informative to reference the extended Prony method as the least squares algorithm.

Before demonstrating the improved performance gained by the least squares

algorithm over the original Prony method, we will further define the least squares

LP coefficient cost function J(b). Let

(92) = 1 92 ... N]

and

(93) bb] b2 biv

so that

J(b) = (yb)H(y b )

= fo+ ?)(fo+

(94) = J(b).

Again we have assumed b0 normalizes to 1. Also, Y is an (M - N) x N data matrix

with Toeplitz structure. In Appendix A we describe how Y is assumed to have

full column rank N. Therefore, we assume yHy is invertible and like J(E), we can

minimize J(b) with the unique pseudo-inverse solution

(95) b = (yHy)-lyH0

In review, the least squares algorithm, for estimating the parameters of super-

imposed exponential signals, follows the same LP methodology as the original Prony
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method. However, in both the LP coefficient estimation portion and the amplitude

coefficient estimation portion, the exactly determined solutions of the original Prony

method are replaced with overdetermined, least squares, solutions.

To show the superior performance of the LS algorithm over the Prony method,

simulated noisy signals were analyzed in a Monte-Carlo experiment. A complex, 25

data point, two mode, noiseless signal was created with parameters cl = C2 = 1,

A1 = ej21r(.20), and A2 = e j2,(.22). Two randomly generated 25 element vectors were

then added to the real and imaginary elements of the noiseless signal, respectively.

The randomly generated elements of each vector were Gaussian distributed with

mean zero and variance ao2 /2. The variance was governed by SNR, in dB, under the

formula

(96) 02 c-
10--i*

so that

(97) SNR = 10 log1 (Icl 12)

Two hundred realizations of the noisy signal were created for each SNR. The

parameters of each realization were estimated with both the LS algorithm and the

original Prony method. For each parameter, the error between each estimate and

the actual parameter was calculated and recorded in both magnitude and phase.

After two hundred realizations, the magnitude and phase bias was calculated for

each parameter by summing the error and dividing by the number of realizations.

Also, the mean square error (MSE) was calculated by summing the square of each
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Figure 1. The A1 phase inverse MSE of the LS algorithm and the original Prony
method over a range of SNRs. Also plotted is the CRB.

error and dividing by the number of realizations. This process was repeated for every

SNR ranging form 0 dB to 100 dB in 2 dB intervals.

The results of the experiment are displayed in plots of magnitude and phase

MSE versus SNR and magnitude and phase bias versus SNR for each parameter

estimated. The MSE plots include the CRB for reference and the ordinate of the

MSE plots is scaled to 101ogl 0(1/MSE). The 10log10 scaling is justified because

the CRB obeys a log-linear relationship with respect to SNR. In the plot, the linear

bound assists with visualization. The inverse of MSE is justified by the convention

of plotting superior performance above inferior performance.

The performance of both estimators can be assessed in Figures 1, 2, 3, and 4.

The first two figures pertain to the MSE and bias of phase errors in the A1 parameter

estimates. As described earlier, we consider A,, estimates to be the primary indicators

of estimator performance because of their influence on the remainder of most LP
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Figure 2. The A1z phase bias of the LS algorithm and the original Prony method

over a range of SNRs.
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Figure 3. The A2 phase inverse MSE of the LS algorithm and the original Prony
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Figure 4. The A2 phase bias of the LS algorithm and the original Prony method
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algorithms. For this complex experiment, performance assessment in the phase of

A, is appropriate because the phase of A,, is the only discriminator between both

modes of the underlying signal. In the A, phase inverse MSE plot, Figure 1 we see

that above 30 dB the LS algorithm estimates are consistently closer to the CRB

than the original Prony method estimates. From the A1 phase bias plot, Figure 2,

we see that the bias becomes erratic below 70 dB for the original Prony method and

below 30 dB for the LS algorithm. Above those SNRs, the estimators appear to be

unbiased. Consequently, their comparison with the CRB in the inverse MSE plot

is relevant. Below those SNRs, the erratic bias makes comparison with the CRB

inappropriate. The rapid increase in MSE (portrayed as a decrease in the inverse

MSE plot) of the LS algorithm estimator at 30 dB is called the noise threshold. The

noise threshold is prevalent in many of the algorithms considered in the dissertation.
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Because the associated erratic bias, few conclusions can be drawn below the noise

threshold from the inverse MSE plots.

Figures 3 and 4 are the phase inverse MSE and bias plots for estimates on

the A2 parameter. The performance of both estimators on the A2 parameter is very

similar to the performance on the A1 parameter. The ultimate direction of the bias

is the only real difference and because it occurs below the noise threshold we give it

no attention.

The significant contribution from the experiment is verification of the least

squares improvement on the linear prediction methodology. In the next section, we

consider another modification to linear prediction that realized improved estimator

performance but ultimately stifled further improvement until our introduction of a

more appropriate alternative.

3.3 Overmodeled Least Squares

Over history, numerous researchers have realized that applying LP methodolo-

gies with model orders in excess of the assumed underlying model order normally

leads to improved parameter estimates, e.g., (47, 72, 71, 41, 42, 57). Bresler and Ma-

covski categorized these approaches as "heuristic modifications of algorithms that

yield exact results when there is no noise or the amount of available data is infi-

nite (4:1081)." They support this statement by recalling that the cornerstone of all

LP methodologies, the LP equation

(98) bos[m] + bis[m - 1] +... + bNs[m - N] = 0,

is only valid in the noiseless case. Nevertheless, the practice of overmodeling was

and still is accepted by many. Methodologies that incorporate overmodeling avoid
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iterations, and when the SNR is sufficient, obtain estimates that are comparable to

maximum likelihood (38:1208-1209).

The premise of overmodeling is that the extraneous modes model the noise

component of the observed data while the N actual modes appropriately model the

signal component of the observed data. The artificial model order, P, has been

dubbed the prediction order. Modifying the LS algorithm to incorporate overmod-

eling is not difficult. We refer to the new algorithm as overmodeled least square

(OLS). Instead of N + 1 coefficients, the LP equation in OLS has as P + 1 coeffi-

cients. Therefore, the LP polynomial roots to P exponentials, A.. At this point in

the algorithm, a requirement exists to sort the N actual A. from the P - N extrane-

ous A,, estimates. After sorting, the algorithm resumes the previous LS methodology

for estimating the amplitude coefficients.

Numerous sorting schemes have been suggested. Kumaresan "qualitatively

argued" that all extraneous A,, are distributed uniformly around the inside of the unit

circle (42:218-220). Empirically, this appears to be the case for a good range of SNRs,

but exceptions occur as SNR decreases. Kumaresan used this argument as a sorting

criterion for parameter estimation problems where the exponentials are constrained

to the unit circle (sinusoids). In his algorithm, the P - N A,, estimates farthest

inside the unit circle are deemed extraneous. Kumaresan and Tufts also applied the

criterion to complex signals with decaying exponentials (41). They realized that, in

noiseless conditions, if the data matrix Y is created with the data in reverse order,

the resulting LP coefficients root to estimates that are the inverse of the N actual

A,, values. Therefore, they lie outside the unit circle. However, despite the reverse

order of Y, the P - N extraneous A,, estimates still typically lie inside the unit circle.
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Consequently, Kumaresan and Tufts developed a sorting scheme that capitalized on

this behavior.

We have found an alternative criterion, known as the energy sort, to be reliable

and in our opinion, more tractable. Although heuristic as well, the energy sort

has been successfully applied in radar applications (60). It is predicated on the

calculation of the amplitude coefficients with the unique pseudo-inverse solution

(99) Z= (VTV)-IVT9

derived earlier. The E estimator will also utilize the signal vector, 9, and an overmod-

eled matrix V,,,,. to appropriately represent the overmodeled amplitude coefficients

in an overmodeled vector aover. When an exponential, A,,, is extraneous to the ob-

served signal, Y, its corresponding amplitude coefficient, c., is typically small. If we

estimate the overmodeled c, and A,, with the LS algorithm, the extraneous mode

estimates can be sorted and separated by mode energy. The energy of a single mode

is defined as

M-1E = Z Ic A [2

m=0

(100) -
Icnl2 ( I - 1- 2M 1

I Ic, 12M, nI, = 1

Under the energy sort criterion, the N modes with the highest energy, En, are

considered to be the actual modes of the signal. With N actual modes selected,

the amplitude coefficient estimator is reapplied to acquire N amplitude coefficient

estimates.
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Figure 5. The A, phase inverse MSE of the OLS and LS estimators over a range of
SNRs. Also plotted is the CRB.

Figures 5, 6, 7, and 8 are A, phase inverse MSE and bias plots for comparing

the performance of the OLS and LS estimators. The Monte-Carlo experiment

performed to create the plots was identical to the previous Monte-Carlo experiment

for comparing the LS algorithm and the original Prony method. A prediction order,

P, of 12 was used on every OLS execution.

In the phase bias plots, we see an extended SNR range in the unbiased region

for the OLS estimator. In the phase inverse MSE plots we see a corresponding

SNR range where the OLS estimator performance is closer to the CRB than the

LS estimator performance, but as SNR increases, the OLS estimator performance is

inconsistent. This is not a desirable feature for parameter estimators in low noise

scenarios.

The erratic behavior as SNR increases can be attributed to a near rank de-

ficiency in the overmodeled data matrix. For explanation purposes, let Yver and
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Yove represent overmodeled data matrices identical to Y and Y except that their

dimensions are expanded from the model order N to the prediction order P. In Ap-

pendix A, we discussed how the theoretical rank of Yover is P-due to the stochastic

nature of its columns-even though the underling signal matrix rank is N. As SNR

increases and the noise decreases, the contrast in rank begins to influence the con-

dition of Yo.,,Yoe in the pseudo-inverse estimator

~H 7 -1k

(101) bover - (YoerYover ) - -

Further insight into this problem is gained by observing the pseudo-inverse esti-

mator in terms of the singular value decomposition (SVD). It has been shown (25:414)

that for any M x P matrix Y, there exists an M x M unitary matrix

(102) U = [l , i 2 ,'' ,fLM]
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and a P x P unitary matrix

(103) W = [w1 ,D 2 ,' ,Cp]

such that

(104) UHyW=

where E is an M x P matrix of zeros except on the diagonal. The diagonal entries

of E are real and non-negative. When M > P they are ordered

(105) On _ U22 > "" > Upp > 0.

If the rank of Y is less than P, say N for example, then

(106) ON+I,N+I = 'N+2,N+2 = ... = OPP 0 O.

Hereafter, we reference the diagonal elements of E as the singular values and use the

abbreviated index, or,. Since the singular values are ordered by size, the columns of

U and W have order as well and are referenced as the left and right singular vectors,

l, and T,, respectively.

With the SVD defined, we can return to the pseudo-inverse estimator for boer.

With the guidance of Golub and Van Loan (19:242), we introduce the SVD to this

problem. Recall that we desire the bo. that minimizes the sum of the squared error

J(bover) = (0 + Yoverbover) H (90 + Yoverbover)

(107) 2 o+Yvroe~
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Let

(108) UHyoverW = over

as defined by the SVD. Because orthogonal transformations do not change the 2-

norm of a vector,

J(bover) = uH 0 g+ (UH overW) (WH 6over)2

(109) = uHfo + 2over (WHbover) 2

Also let a = WHb0oer, so that

J(bover) = IeUHo + over t52

P
(110)= Z ugHo + 0aa1 2.

From the last expression in Equation 110, we see that an = is the minimal
O'n n~

solution to the LS problem. Therefore, since bover = Wd, the unique minimum

estimate of bover is

(111) kbver = W2+er UH-0

where +  is a P x (M- N) matrix of zeros except on the diagonal where + -

The matrix W2+er UH is also the pseudo inverse of Yover, and when Yoe is full rank,

over ~ =H -

(112) -- (YoerYove)- e -
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Since the underlying signal matrix of Yor has a rank of N, we know as SNR

increases, the smallest P - N singular values approach zero. Therefore, the inverse of

UN+1 ... Up, on the diagonal of tover, approach oo. This action corrupts the estimate

of bo,,r and leads to an erroneous but unique solution. To alleviate this problem,

Tufts and Kumaresan (72) propose intervening at the b,e estimate and forcing the

last P - N singular values to zero. The effect of this action is to create a low rank,

N, approximation of Yover, call it Yover, where

(113) UHyoverW = Eover.

The unitary matrices, U and W, are the original unitary matrices from the SVD of

Yover, and the matrix Eo,,r is the original ovr with the last P - N singular values

set to zero. Although, with a rank deficient data matrix, a unique solution no longer

exists, the SVD can be utilized to obtain a minimum 2-norm solution for bover. For

this reason, a rank deficient data matrix is preferred over a near rank deficient data

matrix (3:510-511).

A proof of the minimal 2-norm solution follows the same derivation from Golub

and Van Loan (19:242) as the full rank LS problem with the SVD. In the rank

deficient scenario,

J(bover) = 0 + Eover6
2

N P(114) - Nl'o + &aH-2 + E I oI2

n=1 n=N+l
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because &N+1 = &N+2 = ... = p 0. Again, a,, - -u n 0 obtains the minimal

solution to J(bove,). Therefore,

(115) boer = WYover go

¢+ H

is a minimal 2-norm solution for bover. Note that with W~ o UH, the pseudo-inverse

is calculated even with a rank deficient Yov..

In 1982, Tufts and Kumaresan used the SVD and a low rank approximation

of Yover for the superimposed exponential parameter estimation problem to effec-

tively remove the erratic behavior seen in the OLS estimator at high SNR (72). In

1987, Rahman and Yu (57) used the SVD and a low rank approximation in a total

least squares (TLS), rather than a least squares, methodology for estimating the LP

coefficients. With this adjustment, they were able to attain slightly better parame-

ter estimates. Ironically, four years before Rahman and Yu, Tufts and Kumaresan

incorporated the same adjustment into their algorithm (36), but the equivalence be-

tween their new algorithm and Rahman and Yu's algorithm was not realized until

1991 (13). We will now introduce total least squares as a subtle extension to the

SVD enhanced OLS algorithm just developed in this dissertation. Our delivery is

unique and tractable.

Conceptually, TLS dates back to the early 1900s. Wide spread use of TLS did

not occur until the 1980s when Golub and Van Loan utilized the SVD to increase

the method's ease of implementation and understanding (18). For the superimposed
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exponential problem, TLS can be applied to minimize the sum of the squared error

2J(bover) 1190 + Y overboverf 12
2

(116) = Yover [ er

From Appendix A, we know the rank of Yover is P +-1 even if it is near rank deficient.

Therefore, there is no solution, other than a vector of zeros, that will cause J(bover)

to equal 0. In other words, a vector of zeros is the only vector in the null space

of Yov,.. The minimizing problem of Equation 116 can be recast, equivalently, as a

search for the minimum perturbation of Yover so that [1 ]Tis a solution to

(117) (Yover - AYover) =

where Ayo~e is the perturbation (28:33). For the nonzero solution, [ 61 b JT,

to exist, the perturbation matrix must be such that (Yover - AYover) has a rank

less than P + 1. As shown previously, the SVD can be used to create a low rank

approximation of Yov,, call it kYo0 , by forcing the smallest singular values of Yover to

equal zero. The Eckart-Young-Mirsky matrix approximation theorem (51) proves, in

the matrix 2-norm and the Frobenius norm, that a low rank matrix approximation

created with the SVD accomplishes the rank reduction with the minimum possible

perturbation. Consequently, the SVD facilitates the TLS methodology.
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The simple least squares approach can also be recast into a search for the

minimum perturbation of go so that

(118) (go - Ago) + Yojrvboier = 0

where Ago is the perturbation (28:33). The prevailing argument for TLS is that

the ability to perturb the entire data matrix instead of just one column of the data

matrix obtains a better estimate of bover e.g., (57, 27, 13, 1, 6). We address this

issue further in Chapter IV, but for the overmodeled LP approach, it appears TLS is

slightly more effective than LS. We believe a portion of the improvement, if not all of

the improvement, is due to a lesser exalted minimum norm solution provided by TLS

and essential to the overmodeled application. The minimum norm solution was also

identified by Golub and Van Loan in their introductory TLS article (18:891-892).

To develop it we need to review another feature of the SVD.

We know for any M x P matrix Y with rank less than P, say N,

UHYW== E

(119) = YW = U

Therefore, the right most linearly independent vectors of W, -N+1 ... 'Wp, span the

space where N+1... u7p equals zero. Consequently, YIVN+l ... YwFp equals 0. Thus,

the right most (N + 1) ... P singular vectors of W are a basis for the null space of

Y. In other words, the range space of N+1 ... "zvp is the null space of Y.

In our application, if we only require the low rank approximation Yover to have

a rank 1 less then the rank of Y..., there is only one vector, fvp+l, in the null space

of Yo,,,. If we normalize that vector by dividing the first element, 'D1,p+1 , into all the
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elements of i 1
WpA-, we have the unique minimum solution for [ 1 Typically,

in the overmodeled LP coefficient estimation problem, we desire to approximate

Yve, of rank P + 1, with a matrix Y.ver, of rank N, where N is significantly less

than P. Therefore, the null space of over is the range space of ZivN+i ... 7p and an

infinite number of solutions exists.

To develop Golub and Van Loan's technique for determining the minimum

norm solution with a multi-dimensional null space, let the P x 1 vector

(120) bTLS =
7

symbolize the minimum norm solution. Also let

(121) W 2 =[IN+1 WN+2 ... Wpq-]

represent the basis of all solutions. We desire a linear transformation, H, such that

(122) W2H=[.0 I
X (P+1)x(P-N+)

Thus, the goal of H is to rotate the energy of the top row of W 2 into 7 so that one

column of W2 H has the largest 7 in the range space of W 2 . With the maximum

7, the solution, bTLS = is minimized for any norm (18:892). By definition,

a readily available Householder matrix can be computed to accomplish this task.

Additionally, since only the last column of W 2H is of interest, only a portion of H

is necessary for the transformation. (57:1443).

In review, with the SVD and a minimum norm solution technique, it is easy to

incorporate total least squares into the overmodeled LP methodology. We refer to

51



70 1 1 1 1 1

CRB

60 - LS
..... OLS

.. OTLS
50'

40.- .. ....

0 5 10 15 20 25 30 35 40 45 50
SNR dB

Figure 9. The A, phase inverse MSE of the OTLS, OLS, and LS estimators over a
range of SNRs. Also plotted is the CRB.

the improved algorithm as overmodeled total least squares (OTLS). In the algorithm,

after the overmodeled LP coefficients are estimated in a total least squares sense,

the energy sort is used to identify the extraneous exponentials, A\,. After that, the

pseudo-inverse is used to estimate the amplitude coefficients, c.

Figures 9, 10, 11, and 12 are phase inverse MSE and bias plots for comparing

the performance of the OTLS estimator with the non SVD OLS estimator and the

regular LS estimator derived earlier. Again, the same Monte-Carlo experiment

as that for OLS, LS, and the original Prony method was accomplished. The pre-

diction order, P, for OTLS was 12. From the inverse MSE plots, we see that the

OTLS estimator almost achieves the CRB and performs consistently better than the

previously derived estimators.

Despite the improved performance, there are significant drawbacks to over-

modeling in general. For example, to attain the best results, the OTLS estimator
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was executed at various prediction orders. For the experiment, a prediction order of

12 obtained estimates nearest to the CRB. Recall that for the CRB to be plotted,

knowledge of the underling signal parameters is required. With unknown param-

eters, the proper choice of P may be critical to the success of the algorithm and

most likely will introduce another heuristic to the methodology. Also, the increased

degree of the LP polynomial, brought on by the artificially high model order, is dis-

turbing. Rooting the polynomial for the A, estimates is an inherently ill-conditioned

numerical procedure and it is well known that rooting errors are greatly exacerbated

by increasing the polynomial's degree. When these drawbacks are coupled with the

fact that even under straight forward simulations, the estimator was unable to at-

tain the CRB, we question the use of overmodeling in the superimposed exponential

parameter estimation problem.
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In the next section, we introduce our modification to linear prediction which

is not heuristic and does not utilize overmodeling. The modification is completely

couched in tractable statistics. In fact, the resulting cost function is identical to the

cost function derived from maximum likelihood.

3.4 Iterative Generalized Least Squares

The development that follows is original work and extends on the LP equation

introduced in the beginning of this chapter. Recall the equation

(123) boy[m] + bly[m - 1] + ... + bNy[m - N] = e[m]

as a noisy modification to the noiseless LP equation

(124) bos[m] + bs[m - 1] +... + bNs[m - N] = 0.

Also, recall that

(125) y[m] = s[m] + w[m]
SIM] = yIm] - wIm].

If we substitute the last expression for s[m] into the noiseless LP equation, we get

the same noisy modified relationship as in Equation 123, only the LP equation error

(126) e[m] = bow[m] + biw[m - 1] +... + bNw[m - N].

Now, the LP error, e[m], has known structure. It is the sum of weighted Gaussian

random variables, and although each w[m] is uncorrelated over all m, each e[m] is

correlated with the ±N adjoining elements of e[m].
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In vector notation,

(127) Yb= .

With Equation 126, we know the statistics of the LP equation error vector, E. Since

each w[m] in e[m] has mean zero, the mean vector of is 0. The LP error covariance

matrix, u2R, of E is defined as the (M - N) x (M - N) matrix

(128)

E{e[N]e*[N]} E{e[Nje*[N + 1]} ... E{e[N]e*[M - 1]}

2= E{e[N+ 1]e*[N]} E{e[N+ l]e*[N+ 1]}... E{e[1]e*[M- 1]}

E{e[M - 1]e*[N]} E{e[M - 1]e*[1]} ... E{e[M - 1]e*[M - 1]}

where, from (126),

E{e[mjje*[m 21} =

(129) E { 1 (biw[mi - n])E (bw[M 2 - ril)

and

(130) m1 = N,N + 1,... ,M- 1, m 2 = N,N + 1,... ,M- 1.

When the product from (129) is carried out for each element of the matrix a2R

and the uncorrelated assumption, E{w[mI]w[m 2]} = 0 for m71 5 M2, is invoked for
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the cross terms, we calculate

EJk=o bkbk+j-i, i < j

(131) Rij E1 0 b-b J > j
S k= kk+i-j,

0, ji - Ji > N

Alternatively,

(132) R=BBH

where, as defined in Chapter II, B is an (M - N) x M Toeplitz matrix of LP

coefficients in the form

b0  b1  ... bN 0 ... 0

o b0  b1  ' bN "' :

(133) B = . .. . .

o ... 0 bo b1  ... bN

The matrix B has full row rank M - N. Therefore, R has full rank M - N and

is positive definite. A Cholesky decomposition of R provides a nonsingular, lower

triangular, (M - N) x (M - N), matrix R, such that the LP equation error covariance

matrix is factored as

(134) RIR = R.

The LP coefficients in R are unknown, but for a moment assume we know R.

If so, the inverse of R1, R 11, can be used to linearly transform the LP error vector, .

A linear transformed Gaussian distributed error vector, with mean vector zero, also
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has mean vector zero, and a linear transformed Gaussian distributed error vector,

with covariance matrix o2 R, has covariance matrix U 2 R- 1 R(R I 1)H (61:59). Because

R = RIR', we know

(135) RT'R =
= R1R(Ri-1)H = I.

Therefore the covariance matrix of R1-'E is a21 and R71 e is distributed

(136) R -- CN(O, , 2I).

Since b0 can be normalized to 1 without affecting the A,, estimates, the equation

(137) Y =

can, once again, be rearrange to

(138) Oo +Yb= .

This implies

(139) R-19,0 + R- 1 Yb = Ri-E.

Estimating b in Equation 139 can be cast as a linear least squares problem. In this

form, we know the unique minimum solution is obtained with the pseudo-inverse
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estimator

= - ((RI'k)H(RI'k)) - I (RI )H R ' go

= - ( (RIR )-f) - '1r (R RH)-1

(140) = -(HR-ly)-lyHR-V .

Recall from Chapter II, since R,-' is Gaussian distributed with mean vector zero

and covariance matrix a21, the pseudo-inverse estimator is also the MVU estimator.

Linearly transforming a least squares problem to decorrelate the error vector is known

as generalized least squares (GLS) (64:60-64).

In our application, R is unknown because b is unknown. To overcome this,

we turn to an iterative generalized least squares (IGLS) approach which is similar

to the IQML algorithm of Chapter II. In IGLS, previous estimates of b are used to

create R for re-estimating b with the GLS estimator (140). The commonality of our

IGLS algorithm and the IQML algorithm is in the cost function they both attempt

to minimize. Since

(141) Y6=

we know

(142) RT1 Yb = R1 1.
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In the least squares problem, we wish to minimize the cost function

J(b) = (R-1i)H(RI 'i)

= (RI 'Yb)H (RI 'Yb)

= bHyH (R 1 Y 

= bHyH(R)-iYb

(143) = bHyH(BBH)-Iyb.

This expression for J(b) is identical to the maximum likelihood cost function L(b)

for the superimposed exponential problem. Attempting to minimize L(b) by using a

prior estimate of b to fix (BBH)- I and then solving the remaining quadratic problem,

is similar to using a prior estimate of b to fix Ri- 1 and then solving the generalized

least squares problem. Like IQML, we typically initialize IGLS with a least squares

estimate. We discuss, in detail, the intricacies of minimizing the cost function in

Chapter IV. Figures 13, 14, 15, and 16 are phase inverse MSE and bias plots for

comparing the performance of the IGLS algorithm with the OTLS estimator and the

non SVD OLS estimator derived earlier. Again, the same Monte-Carlo experiment

as that for OTLS, OLS, LS, and the original Prony method was accomplished. The

number of IGLS iterations utilized in every execution was 10. From the figures,

we see that the IGLS algorithm shares a common noise threshold with the OTLS

estimator, but above the noise threshold, the IGLS algorithm attains the CRB. The

performance of IGLS completely corroborates the development of this chapter and

the maximum likelihood chapter.
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3.5 Chapter Conclusion

In this chapter, the methodology of linear prediction based parameter esti-

mation for the superimposed exponential problem was developed from its earliest

beginning. The introduction of least squares to linear prediction was explained, and

then the heuristic path of overmodeling was examined. We concluded that although

overmodeling initially improved linear prediction, it ultimately inhibited linear pre-

diction from attaining truly maximum likelihood quality performance. To address

this problem, we introduced a methodology that demonstrated how the noiseless

LP equation can be modified to function in the noise corrupted scenario without

heuristics. The result is a statistically sound, tractable, LP based algorithm for the

parameter estimation problem with maximum likelihood performance. We call the

algorithm iterative generalized least squares.

We concede IGLS differs little from the algorithm developed with maximum

likelihood, but we insist our development, from linear prediction, is valuable. Maxi-

mum likelihood built its case at the expense of linear prediction (4:1081). Undoubt-

edly, this tarnished all previous linear prediction efforts. By giving linear prediction

the capability to possibly obtain the MVU estimator, we allow the principles of

the LP methodology to be maintained and carried to new applications. For some

applications, it is more intuitive to construct an estimator with our methodology

than with the maximum likelihood methodology. The application motivating our

research-deep level transient spectroscopy-is in this category. In Chapter VI, we

demonstrate how our linear prediction based methodology facilitates an estimator

for DLTS and how deriving the same estimator from maximum likelihood is dif-

ficult. Before doing so, the next two chapters are used to analyze the details of

implementing IGLS.

63



IV. Cost Function Minimization

4.1 Chapter Introduction

In Chapter II, we identified the exact maximum likelihood (ML) cost function

for superimposed exponential parameter estimation. In the same chapter, we out-

lined an iterative quadratic minimization algorithm for minimizing the ML cost func-

tion. The algorithm is known as iterative quadratic maximum likelihood (IQML).

In Chapter III, we developed our own linear prediction (LP) based estimation algo-

rithm. The algorithm ultimately attempts to minimize the same ML cost function.

We called it iterative generalized least squares (IGLS). In this chapter, we further

analyze and compare the IQML and IGLS algorithms. We also introduce a simi-

lar total least squares (TLS) based algorithm for minimizing the ML cost function.

The iterative total least squares (ITLS) algorithm is an original contribution of this

dissertation. By introducing ITLS, we can address TLS without the heuristic of over-

modeling and-,by comparing IQML, IGLS, and ITLS-bring considerable insight to

the minimizing task.

Before continuing, we need to re-emphasize an important issue. Despite the

effectiveness of the IQML, IGLS, and ITLS algorithms, they do not directly minimize

the ML cost function. Even in its simplified-LP coefficient based-form, the ML

cost function,

(144) L(b) = bHyH(BBH)-IYb,

is nonlinear. When a previous estimate of b is used to calculate and fix (BBH) - 1,

the cost function has been "linearized". All three algorithms are variations of this

assumption. They are not guaranteed to converge, and even if they converge, they
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are not guaranteed to obtain the global minimum (38:1218). Excellent empirical

performance is our best measurement for acceptance.

4.2 Iterative Quadratic Maximum Likelihood

When (BBH)-1 is calculated with a previous estimate of b, the expression

(145) yH(BBH)-ly

is Hermitian, and

(146) bHyH(BBH)-Iyb

has quadratic form. To avoid the trivial solution while minimizing Equation 146,

the vector b must be constrained. One way to constrain b is to insist 6H6 = 1 or

I 2  1. Because we eventually root the LP polynomial formed from b, we are

not concerned with the actual values of b,, in b, but rather the ratios between them.

Therefore, the nontriviality constraint bHb = 1 is reasonable.

Before explaining how to minimize the ML cost function with the H _ 1

constraint, we need to note that in the past, researchers have minimized the cost

function with a different nontriviality constraint, e.g. (39, 4, 40, 8). Because recent

implementations of IQML, (52, 26), utilize the H6 = 1 nontriviality constraint, we

are associating the bHb = 1 constraint with IQML for this dissertation.

With this established, note bHb is a real scalar function of b, and

(147) bHyH(BBH)- Iyb
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is also a real scalar function of b, we can introduce a real Lagrange multiplier, A, and

recast this problem to one of minimizing the Lagrangian (70:691-694)

(148) L(b, A) = bHyH(BBH)-lYb + AC(b)

where

(149) C(b)= 1 b.

At a stationary point, we expect

(150) 
-(b, A) -0

and

(151) 0L(b,.A)

From Appendix B, we know

(152) IL(b, A) - yH(BB H)_'y _ Ab,ab*

and by definition, we know

(153) L(b, A) = 1 _

Therefore, at a stationary point,

(154) yH(BBH)-Iyb = Ab
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and

(155) bHb = 1.

Equation 155 is the desired constraint, and Equation 154 is an eigenvalue-eigenvector

expression. The Lagrange multiplier, A, is an eigenvalue of YH(BBH)-Y. There-

fore, the eigenvector, b, associated with the minimum eigenvalue, A,, from the eigen-

value decomposition of YH(BBH)-Y is the unique minimizing solution for b.

The IQML algorithm is initialized with a previous estimate of b (typically

from a least squares solution). With that estimate, yH(BBH)-Y is calculated

and eigenvalue decomposed. From the decomposition, the minimizing eigenvector is

selected as the next estimate of b. The process is continued until an iteration limit

or minimum estimate change limit is met. Maximum estimate improvement usually

occurs in the first few iterations. When the signal consists of pure sinusoids in noise,

as is the case in radar applications, the algorithm can be initialized with an estimate

obtained from a spectral analysis of the signal.

4.3 Iterative Total Least Squares

At this time, we introduce our iterative total least squares approach for min-

imizing the ML cost function because it is analytically equivalent to IQML. As in

Chapter III, let

(156) RIR H =R=BBH
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where R, is the nonsingular, lower triangular, (M - N) x (M - N), Cholesky de-

composition of R. Now we can re-express the ML cost function as

L(b) = bHyH(BBH)-Iyb

= bHyH(R RH)-Iyb

= bHyH(R-l)HR-lyb

(157) = [Rt'YbII2.

Recall from the singular value decomposition (SVD), there exists unitary matrices

U and W, and a diagonal matrix E, such that

(158) Y = v'WH.

Therefore,

yHy = (UWIH)HUEWH

= WEUHUyWH

(159) = WEFY3WH.

This implies

(160) yHy" =

Using the SVD to decompose Ri'Y from Equation 157, let

(161) RI'Y = UEWH
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so that

(RI-1y)H(RI Y)i-, = (yH(R-I)HR1-lY) 7,V

= yH(BBH)-lyi,

2-(162) = -nWl.

This relationship is exactly the same as the eigenvalue-eigenvector relationship,

Equation 154, developed in the previous IQML section. Therefore, through the

Lagrangian, we know the singular vector w~n associated with the minimum singular

value, Oa, is the minimizing solution for b. In the vein of TLS, we say that the

minimum perturbation of R1T-that reduces its full column rank by one and al-

lows the right most singular vector of W into the null space-occurs when a low

rank approximation of R1-IY is created by zeroing the smallest singular value of its

SVD (51). Therefore, the singular vector 'zN+l of R1-'Y is equal to the eigenvector

of yH(BBH)-Y associated with the smallest eigenvalue, and is also the minimiz-

ing solution of the linearized ML cost function. Consequently, the ITLS algorithm

is identical to the IQML algorithm except that the eigenvalue decomposition of

YH(BBH)-Iy is replaced with the singular value decomposition of R,'Y.

The ITLS and IQML equivalence was demonstrated to add insight to the

b 1 constrained approach to minimization. For example, researchers in TLS

have developed a closed form expression for b based on the assumption that b0

can be normalized after solving for b (28:36-37). With the demonstrated equiva-

lence, this insight applies to IQML and ITLS as well. Assume, after normalization,

b [1 bT ]T. Recall that when b is the minimizing solution,

(163) (R- Y)H(R-lY)b = ,2+ i.
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Therefore,

[RT19o; R-_1' ]H [R19o; R _' ] = "2+1 [
(164)bb [(RI 19o)H (RI'go) (RI 19)H(RT1)]1 2 1

(RIlY)H(RIl'o) (RI1f)H(R -1Y)J6 N+1 [
From the bottom row of Equation 164,

(R-lH(RrlPo) + (R1Y)H (R-1Y)b =1 1 "+1 I  RNl1 o
(165) = ((RI -1)H(R-1k) 2Y-1 )H

(jHR-1 - N 1 R-1g

Only the smallest singular value of RT'Y is necessary to express b in a closed form

solution.

Notice the closed form solution is not used in either the IQML or the ITLS

algorithms. It was developed here to provide insight in the algorithm analysis section

at the end of this chapter. Also note, b0 = 1 is not constrained when determining

the smallest singular value. It is only a result after assuming b0 of the solution b can

be normalized. In the next section, b0 = 1 is a constraint for minimization.

4.4 Iterative Generalized Least Squares

In Chapter III, we developed the IGLS algorithm from linear prediction. For

continuity with this chapter, we recast the IGLS algorithm as a development from
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the ML cost function. Recall from the previous section that

L (b) = b H YH(BB H)-lYb

(166) = IIRT'YbI12

where RR H = BBH. For IGLS, a previous estimate of b is also utilized to calcu-

late and fix R1, but, instead of the 6Hb = 1 nontriviality constraint, the b0 of b is

constrained to be one. With this constraint, we have the familiar relationship

(167) RlYb = R-lo + R'lYb = R1-'j

for minimizing the linearized ML cost function. In Chapter III, we showed that the

pseudo-inverse estimator

= _ ((RT1)H(Ri-T)) - I (Rly)H R i -'go

(168) _ (yHR-1k)-1yHR-l o.

is the unique minimum solution for the sum of the squared error, (RI )H(RI

and that the R,- 1 pre-multiply has a decorrelating affect on the LP equation error

vector, E. In Chapter II, we showed that the pseudo-inverse estimator is the minimum

variance unbiased (MVU) estimator for uncorrelated processes.

What naturally follows, is an iterative algorithm where the previous estimate

of b is used to create R -11 for a new estimate of b with the pseudo-inverse estimator.

Each iteration is known as a generalized least squares solution and, in theory, as

each b estimate improves, a better decorrelating matrix, R1-1, is created. Like IQML

71



and ITLS, the algorithm is typically initialized with a least squares (LS) estimate

for b, and maximum estimate improvement usually occurs in the first few iterations.

We have now developed three similar algorithms for attempting to minimizing

the ML cost function-IQML, ITLS, and IGLS. In the next section, we analyze the

performance of each of the algorithms.

4.5 Algorithm Analysis

A Monte-Carlo experiment was conducted with the same parameters used

throughout Chapter III. Two hundred, 25 point, noisy, data vectors were created-

with underlying parameters cl = c2 = 1, A1 = e j 2 ' 2 0) , and A, = ei 21r (' 22 )-for every

2 dB of SNR between 0 dB and 50 dB. At each SNR, 10 iterations of each algorithm

were performed on each realization. In every case, the algorithms were initialized

with a least squares estimate.

Figures 17, 18, 19, and 20 are phase inverse MSE and bias plots for comparing

the performance of the three algorithms. As expected, every plot from the ITLS

algorithm is identical to that of the IQML algorithm. From this, we conclude that

numerical differences between the singular value approach of ITLS and the eigenvalue

approach of IQML can not be visualized. On the other hand, a difference between

the IGLS algorithm and the other two algorithms can be visualized. We note that

the IGLS algorithm, with its b0 = 1 nontriviaity constraint, obtains slightly better

performance than the ITLS and IQML algorithms, with their bHb = 1 nontriviality

constraint.

The potential for better performance with the b0 = 1 constraint was identified

in Golub and VanLoan's introductory TLS article (18:888-890), and complete stud-

ies of the subject have been accomplished by VanHuffel and Vandewalle (29) and
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Figure 17. The A, phase inverse MSE of the IGLS, ITLS, and IQML algorithms
over a range of SNRs. Also plotted is the CRB.
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of SNRs.
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Stewart (68). Analytically, the difference between the IGLS algorithm and the other

two algorithms can be seen in the IGLS pseudo-inverse estimator

(169) bIGLS = -(ffHR-lk)-lH R-l ,

and the closed form expression for b developed in the ITLS section

(170) bITLS/IQML ( H R-k -U2 - J-1 7HR1o.

The subtraction of a2+1I is the only difference between the three estimators. The

ramification of the uN+II subtraction is now considered. Recall from the noiseless

LP equation,

(171) 0 +Sb+ =

or

(172) S=0.

In Appendix A we show that the rank of S is N. Therefore, the smallest singular

value of S, 0 N+, is 0. Equation 171 is said to be consistent because

(173) Sb = -go.

From the estimators in Equations 169 and 170, we see that if crN+1 = 0, then

DIGLS = kITLS/IQML. When noise is considered,

(174) 9o +Yb 0.
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The smallest singular value of Y is not zero, and in fact, as SNR decreases, aN+1

increases. The linear problem is said to be conflicting and when aN+l is large, the

problem is highly conflicting. When the closed form expression for bITLS/IQML is

considered for a highly conflicting problem, the o2+lI subtraction on the diagonal

of the matrix YHR-'Y is significant. This is an ill-conditioning effect on a matrix

that is to be inverted. Golub and VanLoan call it deregularization and note that the

condition of a TLS problem is always worse than the condition of the corresponding

LS problem (18:889). Stewart in (68) shows that least squares estimates and total

least squares estimates are equivalent within second order terms, and he asserts

there is no reason to prefer using TLS because of the potential ill-conditioning. In

our application, we know aN+l is large when SNR is low. Therefore, we actually

discourage the use of TLS related algorithms like ITLS and IQML.

With regards to the overmodeled total least squares (OTLS) algorithm devel-

oped in Chapter III, we disagree with the claim that the slightly improved perfor-

mance of OTLS, over the other overmodeled approaches, is due to an increase in

perturbation capability (57, 27, 13, 1, 6). Given the insight we have gained in this

chapter, the most likely reason for improved performance in OTLS is the readily

available minimum norm solution for the near rank deficient structure artificially

induced by overmodeling.

Returning to the task of minimizing the exact ML cost function, we must

recognize a case where the b0 = 1 nontriviality constraint is inappropriate. Re-

searchers focused on estimating the parameters of exponential constrained to the

unit circle (sinusoids) have found the performance of IQML can be significantly im-

proved by placing an additional constraint, other than nontriviality, on the vector

(39, 4, 52, 66). It was recognized in (39) that for the roots of b to lie on the unit
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circle, the LP coefficients of b must posses conjugate symmetry

(175) bk =b'N* k = 0, 1, ... , N.

The symmetry constraint can be implemented in various ways, but it was noted

by Nagesha and Kay that the b0 = 1 nontriviality constraint can conflict with the

symmetry constraint (52). The conflict arises because constraining b0 to one also

constrains the imaginary component of b0 to zero. A symmetry constraint with the

b0 = 1 constraint can be too restrictive. However, when the symmetry constraint

is applied with the 6H6 = 1 constraint, no assumption about b0 is made, and the

IQML algorithm can accurately estimate the parameters of any two closely spaced

sinusoids at SNRs below 10 dB (52). Accurate estimates at those SNRs are 5 to 10

dB below the noise threshold of the IGLS algorithm with only the b0 = 1 constraint.

Unfortunately, our research is not limited to exponentials on the unit circle.

Therefore, we utilize the b0 = 1 nontriviality constraint implemented with the IGLS

algorithm.

4.6 Chapter Conclusion

In this chapter, we considered the details of minimizing the exact ML cost

function with the IQML and IGLS algorithms. We separated the two approaches as

one that applies the 6HL = 1 nontriviality constraint (IQML) and one that applies the

b0 = 1 nontriviality constraint (IGLS). We also introduced our own ITLS algorithm

and demonstrated its equivalence to IQML. Because of the closed form solution of

TLS, we were able to bring considerable insight to the minimizing task with the

ITLS algorithm.
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We note, in signal processing, much has been written about the 6H; = 1

and the b0 = 1 nontriviality constraint, e.g., (39, 4, 40, 52). In the most recent

correspondence, Nagesha and Kay conclude that the physical significance of the

coefficients of b usually suggest an appropriate choice (52). Because of the potential

ill-conditioning associated with the H6 = 1 constraint, we strengthen the conclusion

by saying, the b0 = 1 constraint should always be used unless the physical significance

of the coefficients dictates otherwise.
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V. Real Exponentials

5.1 Chapter Introduction

From Chapter II we know the maximum likelihood solution is attained when

the cost function

L(V) = 9H(I - V(VHV)-IVH)p

(176) = H -HV(VHV)-lvHq

is minimized. For the particular scenario of parameter estimation with signals con-

sisting of a sum of real exponentials, we now elaborate further. First, the Hermitian

transpose, H, can be replaced with the traditional transpose, T. Also, because qHy

is not a function of V, the Maximum Likelihood solution can be attained by finding

the V that maximizes

(177) L(V) = VTV(VTV)-IVT9.

Additionally, we restrict ourselves to the study of decaying signals (transients). This

implies that "stable" exponentials, A,, are considered only on the open interval (0, 1).

Exponentials with A,, = 1 (constants), are addressed in the deep level transient

spectroscopy chapter of this dissertation. Finally, the amplitude coefficients, c.,,

must also be real, but may be negative as well as positive.

With a building block approach in mind, we begin this chapter with an in

depth analysis of maximum likelihood estimation for "simple" signals comprised of

one real exponential. We then extend to the important case of two real exponentials,

and conclude with the case of, N, real exponentials. For comparison with iterative
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generalized least squares (IGLS), we develop maximum likelihood algorithms, unique

to the specific cases, that realize a slightly more accurate ML solution. Ultimately

though, we conclude that the IGLS algorithm is a very robust and efficient estimator

for the superimposed real exponentials problem.

The analysis that follows is original work. Additionally, the maximum like-

lihood algorithms developed for the one and two mode cases can not be found in

the literature. They contribute to signal processing as more appropriate maximum

likelihood estimators when the real exponential problem can be scoped to a specific

case, and, more importantly, they serve as an excellent benchmark for verification of

the multi-mode IGLS algorithm.

5.2 One Real Exponential

For the one mode problem, N = 1, the signal model is

(178) -- (Aj)Ej + i0

where

(179) ;V(Al)-[ 1 A, 1A2 ... Am-']

is appropriate. Therefore, the cost function, L, is explicitly

(180) =
-T-

where the A, reference is dropped from the U(A1 ) symbol.
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Figure 21. One mode real exponential cost function evaluations over the range of
A, (0, 1) at various SNRs. The underlying signal's true exponential is
A=.8

The behavior of the cost function L, over the range of A, (0, 1), for various SNRs

is displayed in Figure 21. The 25 data point observation vector, y, was generated

with c = 1, A = .8, and the standard a-2 definition

(181) 02 Icl
10 Y"

Recall that the noise vector z- is composed of M Gaussian random variables, w[m],

uncorrelated across all m and identically distributed with mean zero and variance

2

From the figure, it appears the cost function L(A) evaluated over the range of

A is unimodal until the SNR is very low. The exact SNR where L(A) becomes multi-

modal is dependent on the specific observed realization p and therefore is ultimately
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random. Even though the SNR threshold for multi-modality is random, we have

observed a rather small variance in its value over many realizations.

5.2.1 Unimodal Search. Our first efforts for finding the A that maxi-

mizes the cost function L were for the case of observations p above the multi-modal

SNR threshold. Therefore, we used a unimodal search algorithm. Following the

developments in Forsythe, Malcolm, and Moler (17:179-182) and Cheney and Kin-

caid (7:457-463), we settled on a golden section search algorithm for accomplishing

this task.

By definition, any continuous unimodal function, f, over an interval [a, b] has

one maximum (or minimum). With two evaluations of f at a' and b', where a < a' <

b' < b, we can determine if the maximum is in the interval [a, b'], if f(a') > f(b'), or

in the interval [a', b], if f(a') < f(b'). Iteratively, we rename the interval with the

maximum, to [a, b], evaluate f at two new points, a' and b, inside the new interval,

and isolate the maximum to a new [a, b'] or [a', b]. At each iteration, the new search

interval, called the interval of uncertainty, is reduced.

The goal of an efficient search plan is to reduce the interval of uncertainty

with the minimum number of function evaluations. Intuitively, we can evaluate f

at a' = a + 1(b - a) and b = b - 1(b - a) and reduce the interval of uncertainty by

1 .3333 at every iteration with two evaluations. Alternatively, we can evaluate f
3

at a' = a+ (1 -r)(b-a) and b'= b- (1 -r)(b- a) where

-1 + /-5
(182) r = .6180

2
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Figure 22. Iteration of the golden section search identifying the interval of uncer-
tainty reduction and the common function evaluation between itera-
tions. The maximum resides in the interval [a, b] of iteration k.

and satisfies the quadratic equation

(183) r2 + r- 1 =0.

This golden section search reduces the interval of uncertainty by a factor of (1 - r)

.3820 at every iteration and eliminates one function evaluation in the next iteration.

The eliminated function evaluation is inherent in the property that either f(a') of

the current iteration will equal f(b') of the next iteration or f(b') of the current

iteration will equal f(a') of the next iteration depending in which interval, [a, b'] or

[a, Ib], the maximum is determined to lie in.

Consider Figure 22, where the maximum is determined to be in the interval

[a, b]. Let 1 = b - a and P' = b - a. In the current iteration,

(184) a' =a+(1-r)l.
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In the next iteration,

(185) Y = b- (1- r)l' = a + rl'.

Since P' = rl,

(186) b' = a + r 2 = a + (r - 1)l.

Therefore, a' of the first iteration equals b of the next iteration.

The large reduction in the interval of uncertainty at every iteration and the

eliminated function evaluation at the next iteration make this search plan close to

optimal (17:182). The plan is known as the golden section search because of its

association with the golden ratio, 1 - 1.6180. Its performance against the IGLS

algorithm is illustrated in the inverse MSE and bias plots of Figures 23 and 24.

For the figures, 400 Monte-Carlo realizations of 9 were created under the same one

mode signal and noise parameters as before.

The performance of the golden section search and IGLS algorithms can be

differentiated by the IGLS estimator's dependence on a good initial estimate, and

its relatively complex update routine. At low SNR these factors contribute to an

inferior performance when compared to the golden section search plan. However, the

performance of IGLS is quite good when recalling that, unlike the one dimensional

golden section search, IGLS has robust multi-exponential capability.

5.2.2 Multi-modal Search. To assess the ramifications of the unimodal as-

sumption, an estimator, capable of determining the maximum of a multi-modal cost

function in one variable, was derived. First, we began by considering the maximum
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Figure 23. The inverse MSE of the golden section and IGLS algorithms versus the
Cramer-Rao bound (CRB) over a range of SNRs. The underlying signal
is of one real exponential with A = .8
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Figure 24. The bias of the golden section and IGLS algorithms over a range of
SNRs. The underlying signal is of one real exponential with A = .8
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likelihood cost function in summation notation so that

(187) L(A)= (A) z y[mAm) 2m=0

If we let c and A represent the amplitude coefficient and exponential of the underlying

signal of y[m], respectively, and we let z represent the unknown exponential for

estimation, we can say

(EM_(CAm + w[m])Z)2

(188) L(z; c, A, M) = " M=: (c 2
m=0

Since

M-1 1 z 2M

(189) E z2m-
m=O 1-Z 2

in closed form, we know

(1- z 2) (MzM= CA"Zm " + ELMj w[m]zm)
2

L(z; c,A7,M) == 2 =

1 - z2M

2 M-1

c2(1 - z2) (Zm:0(Az)m)

1=2M+

2c(l1 - z2 M) (Az)M W [m]zm
1 -z2M +

(z2) JM__ w[m]z)2
(190) (1-) Z2M

Also, since

M-1 1- A m

(191) - 1 - (Az)M
m=0 1 - Az
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in closed form, we know

c2 (1 -(Az)M) 2 (1 - z 2 )
L(z;ec, A, M) = (1 - z2M)(1 - Az) 2  +

2c(1 - (A z) M )(1 - Z2) Z oM-1 w[m]zm

(1 - z2M)(1 - Z) +

(192) (1 - w[m]zm) 2

1 - z2M

Observe that the first rational function of Equation 192 exactly models the cost

function of the noiseless signal, and therefore, the additional two rational functions

exactly model the contribution of measurement noise in the cost function of the

noisy signal, L. Our maximization plan is predicated on the fact that there exists

coefficients for the numerator and denominator polynomials of the rational functions

that model L. If known, these coefficients could be used with the derivative of L

to find the z values that locally maximize and minimize L. The real value of z,

in the interval (0,1), that yields the global maximum of L, gives the maximum

likelihood solution. Unfortunately, the three rational functions that sum to L each

have numerator and denominator polynomials of at least 2M degrees. With any

significant length of signal, M, finding an analytical solution for the maximum of L

is difficult. With some insight though, a rational low order function approximation

of L can be created with a relatively small degree numerator polynomial and an even

smaller degree denominator polynomial. To do so, we first observe the behavior of

the functions 1 - (Az)M and 1 - z2M as M increases. From Figures 25 and 26 we

see that function evaluations, for z near A = .8, quickly go to one as M increases.

For approximating L, we assumed that by M = 25 both functions evaluate to one.
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Therefore,

L(z;c,A,M) . c2(1 - z2)+

(1 - Az) 2

2c(1- Z2) Z oMJ W[m]Zm
(1- Az)

(1- z2) (Ziwo W[m]z=)

1
c2(1 - z2 )

1 - 2Az + A2z 2 +

2c(1 - Az - z 2 + Az3 ) Z w[m]zmM=0 +1 - 2Az + A2z2

(1 - 2Az + (A2  1)z 2 + 2Az 3 - A~z) (zmz- w[m]zm)(193) 1 - 2Az + A2z2

Again the first rational function of the model for L represents the noiseless

signal. The noiseless function is a quadratic polynomial over a quadratic polynomial.

To verify our assumptions and modeling thus far, we used an interpolation routine to

estimate the coefficients of a quadratic over a quadratic rational function that fit the

cost function of a noiseless, one real exponential signal. We then used the coefficients

to determine the z that maximizes L with the analytical derivative approach just

described.

The interpolation routine used stems from the Cauchy rational interpolation

problem and utilizes the principle of "divided differences" as explained in Hilde-

brand (22:51-79) and Scharf (61:505-508). In 1990, Kumaresan applied divided

differences-to estimate the coefficients of the transfer function associated with

summed exponentials-with some success (37). It was his work that inspired us

to use divided differences for estimating the coefficients of the rational maximum

likelihood cost function. Unlike ourselves, Kumaresan's effort was not motivated by
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the maximum likelihood approach to parameter estimation. His algorithm was a

frequency domain analog of the extended Prony method with the same performance

as the original extended Prony method (37).

We introduce approximation by divided differences for our application, by first

illustrating its relationship to the linear interpolation problem and then extending it

to the rational function interpolation problem. The properties of divided differences

are numerous. We only identify those properties that lead to the rational function

coefficient estimator.

Assume U(z) is exactly defined by the linear model

(194) U(z) = Uo + Ulz

over a defined range of z. We can then say the ratio

(195) U(zi) - U(zo)
Z1 - Z0

is a constant, independent of z0 and z, in the range of z. The ratio is called the first

order divided difference of U(z) and is denoted

(196) U[zo, zi] - U[z l] - U[zO]
Z1 - Z0

where U[zi] = U(zi).

Furthermore, if U(z) is exactly defined by a two degree polynomial, then

U[zo, z1] is a function of z, and the ratio

(197) U[zlz 2] - U[zOzi]
z 2 - Zo
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is also a constant, independent of zo, zj, and z 2 in the range of z. This ratio is called

the second order divided difference of U(z) and is denoted

(198) U[zo, Z1, z 2] = U[zi, z2] - U[zo, Z1]
Z2 - Z0

Recursively, we can continue increasing the order, K, of the divided difference

ratio with the equation

(199) U[zo, Zl,... , ZK] - U[zI ' Z2, ' ZK] - U[zo, zi''' I ZK-1]

ZK - Z0

For example, assume U(z) is exactly defined by a two degree polynomial such that

(200) U(z) = uo + uz 2 z 2.

Then as defined,

T~rl 2
U[ZO] = Uo + U1Zo + U2Z0

U[zoZi = o + U 1ZI + u 2zz - (uo + uIzo + U z)
Z1 - Z0

U1(zI - zo) + 2(z - z )

ZI - ZO

= U1 + u2(z1 + zo)

U [ZOZ,Z 21 I + U 2 (z2 + z) - (ul + 2 (zI + zo))
Z2 - Z0

U 2 (Z 2 + ZI - ZIz 0 )

Z2 - z0

=U2 constant

U[zo,zI, z 2, z 3] U2 - U 2

Z3 -z o

(201) = 0.
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This example illustrates an important property of divided differences: when

the order of the divided difference exceeds the degree of the underlying polynomial,

the divided difference ratio is zero. This property extends to all orders of divided dif-

ferences that exceed any degree polynomial when the underlying function is exactly

defined by the polynomial (22:57). If we assume a function is closely modeled by

a Qth degree polynomial, we also assume all Kth order divided differences greater

than Q are equal to 0.

Another feature of divided differences, needed to explain our rational function

coefficient estimator, can be extracted from the recursive definition of the Kth order

divided difference, Equation 199. We see that the desired order divided difference

is a function of the previous order divided differences. When the definitions of the

previous order divided differences are substituted back into Equation 199, a more

generalized divided difference equation results (22:55). In the new equation

(202) U[zo,z,... , ZK] = E (z
i- W(Z)

where

K

(203) W(zi) = II(zi - z3)
j=O

j74i

Returning to the rational maximum likelihood cost function, let L take the

form

(204) L(z) = rTO v _z V(z)
Zq0 qzq - U(z)
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implying that the degrees of the numerator and of the denominator of L are R and

Q, respectively. Equivalently, let

(205) V(z) = L(z)U(z).

From our previous divided difference example, we know that if we assume V(z) is

well modeled by an Rth order polynomial, we have

K V(z-)z-
(206) V[zo, z,... ,zK] = E W(z) % 0

i=0

provided that K > R. Furthermore, if K > R + s,

K V(z.)z 0
(207) V[zo,z,... ,ZK] = z

i= W(z)

holds for the polynomial V(z) times the polynomial z'. When we combine Equa-

tion 205 and Equation 207 we obtain, for K > R + s,

K[~c L(zi)U(zi)z = 0
2-,=0 w(zi)=0

(208) EK ZO W-2 Z?=0 qzz = 0
i= KL( q q+Z9 _ 0

q=o Uq Zzo w(~z,), -Z

Recall that Equation 208 holds for all zi in the range of z associated with

the polynomial assumption. By choosing at least Q values of s and designating

K + 1 values of zi, (zo, z,... , ZK), where K > R + s, we can develop a system

of linear equations for estimating the Q + 1 coefficients of U(z), (u0 , uj,..., uQ).

In the noiseless approximation of L for example, the numerator and denominator

polynomial degrees, Q and R respectively, are equal to two. Therefore, after choosing
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an s of 0 and 1, and letting u0 normalize to 1, we can create the exactly determined

system of two equations

ZK>
2  L(z j) ~1 -K>

2  (z) _ -K>2 _L(Lz 0
(209) i_,=o w(Zj) Z .i=o w(M z " ul = - .i=o w(--i) "

Lz>3 2 L' F3 -_ K>3 L(zIL._'_K _ L .l 7 - K>3 L zi) U2
., =0 w ( )- Z ..i=0 w ( ) I-U2i=0 w ( ) i

where L(zi) is evaluated with the data, y[m], under the maximum likelihood cost

function
MI-1 yMZ mn)

(210) L(z,) = M-1 Z2m
m=0Z

After estimating the coefficients of U(z) with Equation 209 we return to the

relationship

(211) V(zi) = L(zi)U(zi)
(R 0 vr4 L(zi) q=0 UqZi"

With T + 1 values of zi designated, where T > R, Equation 211 can be used in

a system of equations for estimating the coefficients of V(z). Under the noiseless,

Q = R = 2, model assumption we can create the overdetermined system of linear

equations in the unknowns vo, vi,... VR

0 1"2 2=U Z
q

z° zO zO L(zo) _,qo Uq 0
o 0 i 2 1O L(z) E=0UqZYzoz o q0uz

(212) zv = L(Izo 2

0 2 V2 F=

z o  ZT L(ZT) 'q Uq4
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Continuing with the noiseless model of L analysis, the estimated numerator

and denominator polynomial coefficients can be used with 2Lto find the maxima

and minima of L. The derivative of L takes the form

Oz Oz + u1z + u 2z2

(vi + 2v2z)(1 + uIz + u 2z 2) - (Vo + vIz + v2z2)(u1 + 2u 2z)

(1 + u1Z + u2z2)
2

(vi - ulvo) + 2(v2 - u 2vo)z + (uiv2 - U2 Vi)Z 2(213) (lu=uz)
(1 + u1Z + U2z2) 2

We know 0L= 0 when the numerator of L is equal to zero. Therefore, we attain
aLZ

the maxima and minima by rooting the numerator polynomial of -L-. The real root

in the range (0, 1) that effects the global maximum L evaluation is considered the

maximum likelihood solution.

Figures 27, 28, and 29 serve to validate our divided differences based estimation

algorithm and model assumptions for the noiseless case. In the figures, actual L

and modeled L evaluations are plotted over the range of z, for data record lengths

of M = 10, 25 and 50 respectively. The noiseless signal was created with the same

parameters used at the beginning of this chapter. A fourth order, K = 4, divided

difference, with five equally spaced values of zi between (0, 1), was used in an exactly

determined system of equations for estimating the coefficients of the two degree

denominator polynomial, U(z). Because two equations were necessary for the two

unknown coefficients (u0 was assumed normalized to 1), s values of 0 and 1 were

sufficient. Therefore, K = 4 > R + s satisfies the minimum divided difference order

for both equations. One hundred values of zi, equally spaced on the interval (0, 1),

were designated to estimate the coefficients of the two degree numerator polynomial,

V(z). This resulted in 100 equations for the three unknowns in the overdetermined
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Figure 27. Evaluation of the actual L and the noiseless modeled L over the range
of z for noiseless data with a record length of 10. The signal exponential
is A = .8 and the maximum L modeled occurs at z = .8125.
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Figure 28. Evaluation of the actual L and the noiseless modeled L over the range
of z for noiseless data with a record length of 25. The signal exponential
is A = .8 and the maximum L modeled occurs at z = .8005.
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Figure 29. Evaluation of the actual L and the noiseless modeled L over the range
of z for noiseless data with a record length of 50. The signal exponential
is A = .8 and the maximum L modeled occurs at z = .7995.

linear system. After the coefficients were estimated, maximizing z values of .8124,

.8005, and .7995, for M = 10, 25, and 50 respectively, were calculated from the
maximizing roots of the numerator polynomial of O

From the figures and maximizing values of z, we see that the algorithm and

model assumptions are accurate and valid for the noiseless case. As expected, in-

creasing the data record length from 10 to 25 increased the estimator accuracy, but

increasing the data record length from 25 to 50 had no appreciable affect, because at

those values of M the low degree model assumption is appropriate. We also noted

that increasing the divided difference order, K, for the U(z) coefficient estimates

was unnecessary and in fact reduced estimator accuracy. Additionally, varying the

number of equations for the V(z) coefficient estimates from 50 to 200 had little effect

on the solution.
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Figure 30. Evaluations of the actual L and the modeled L over the range of z for
noisy data with a record length of 25. The signal exponential is A = .8
and the SNR is 3 dB. The rational function model consisted of a two
degree polynomial over a two degree polynomial.

The divided differences maximum likelihood estimator just developed is not

predicated on a unimodal cost function. When the actual cost function is multi-

modal over the range of z-as is the case in low SNR scenarios-a rational function

will model multi-modality. Disregarding the inadequacies of a two degree polynomial

over a two degree polynomial rational function for modeling the cost function of a

noisy signal, the noiseless divided difference algorithm just created was utilized on

the same signal with additive noise at 3 dB SNR. The data record length was 25.

Figure 30 illustrates the results. The modeled L is indeed multi-modal, but its

maximum is not in the vicinity of the actual maximum of L.
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When we recall the noisy model of L,

c2(1 - z 2)
L(z; c, A,M ) c - A +A z

1 - 2Az + A2Z2 +
2c(1 - Az - z2 + Aza) M-' w[m]zmM=0 +

1 - 2Az + A2z 2

(214) (1- 2Az + (A2 - 1)z2 + 2Az 3 - A2z4) (z M=0w[m]z) 2

1 - 2Az + A2Z2

we note a common two degree denominator polynomial exists, but the second and

third rational function numerators are calling for M+ 2 and 2M+ 2 degree polynomi-

als respectively. Therefore, a divided difference algorithm for noisy signals requires a

higher degree numerator polynomial in its noisy rational function model. Increasing

the degree to 2M+2 is not acceptable because of the increased numerical complexity.

We observed that the first few terms of

M-1

(215) E w[m]z m

M0

are the most influential because of the decreasing nature of zm as m increases, and

used this rational to justify a smaller degree increase in the numerator polynomial.

The coefficients for at least a four degree numerator polynomial are clearly supported

in the third rational function of Equation 214. Thus, we assumed a four degree

polynomial over a two degree polynomial rational function would be sufficient for

modeling the noisy L.

The previous divided difference algorithm is easily generalized for accommodat-

ing a four degree numerator polynomial. A divided difference order, K = 6 > R + s,

was utilized to estimate the two unknown coefficients of the denominator polyno-
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Figure 31. Realization 1 evaluations of the actual L and the modeled L over the
range of z for noisy data with a record length of 25. The signal expo-
nential is A = .8 and the SNR is 3 dB. The rational function model
consisted of a four degree polynomial over a two degree polynomial.

mial, U(z), and 200 zi values between (0, 1) were designated for estimating the five

unknown coefficients of the numerator polynomial, V(z).

We see from Figures 31 and 32 that the divided difference algorithm, with a four

degree numerator polynomial over a two degree denominator polynomial, provides

a modeled L similar to the actual L of a noisy 25 data point signal at 3 dB SNR.

Note that for two different realizations, neither the maximum of the modeled L or

the actual L resides at the correct z estimate of .8. This variance can be anticipated

when recalling from CRB theory that the minimum variance of all estimators must

increases as SNR increases.

To accurately access the performance of the noisy divided difference algorithm,

the same Monte-Carlo experiment, as performed on the golden section search and

IGLS algorithms, was conducted. For a quick review of the experiment's parame-
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nential is A = .8 and the SNR is 3 dB. The rational function model
consisted of a four degree polynomial over a two degree polynomial.
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Figure 33. The inverse MSE of the divided difference, golden section, and IGLS
algorithms versus the CRB over a range of SNRs. The underlying signal
is of one real exponential with A = .8

ters, 400, twenty-five data point realizations of 9 were created for each SNR. The

underlying signal possessed a A of .8 and a c of 1.

The performance of all three estimators is illustrated in Figures 33 and 34.

The divided difference algorithm performed slightly better than the other two

algorithms at low SNR. The improved performance is attributed to its multi-mode

fitting capability. As the SNR increased, the divided difference algorithm performed

slightly worse than the other two algorithms. This trend continues as the SNR

increases to its maximum for machine precision.

The divided difference based estimation algorithm is best suited for noise cor-

rupted signals with low SNRs. At moderate to high SNRs, the algorithm is too

complex and the modeling is excessive. However, further experimentation with the

algorithm itself is recommended. Investigation for appropriate divided difference
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Figure 34. The bias of the divided difference, golden section, and IGLS algorithms
over a range of SNRs. The underlying signal is of one real exponential
with A = .8

orders, K, and system of equations sizes will provide additional insight into the

problem. Additionally, simplified cost functions for two and three mode, complex

and real applications may exist.

In conclusion of the one real exponential general analysis, the divided difference

algorithm's minimal improvement over the golden section search, at low noise, re-

moves our concerns for estimator degradation due to multi-modality. If the proposed

problem can be restricted to that of a single real exponential in noise, we recommend

the golden section search because of its consistently good performance over all SNRs.

However, if the SNR of the signal is not very low, the IGLS algorithm's performance

is definitely satisfactory.
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5.3 Two Real Exponentials

The next phase of our real exponential parameter estimation analysis includes

adding a second exponential for an in depth look at the summed exponential problem.

The two real exponential problem is especially enlightening because minimization of

the classical maximum likelihood cost function can be visualized on a two dimensional

contour plot. Consider the 25 data point observation, 9, with underlying parameters

cl = .5, c2 = 1, A1 = .8, and A2 = .5 and the maximum likelihood cost function

(216) L(zl, z 2 ) - T(I - V(VTV)-lVT)y

where

V= [ V(zi) ;V(Z 2)]
T

(217) ;i(z,) = 1 z z ..

and z, and z2 represent the unknown exponential values to be estimated. Figure 35 is

a contour plot of the surface generated by the cost function evaluated over the range

of z, and z2 at an SNR of 30 dB. The two plus signs identify the location of two

desired solutions and help illustrate the symmetry of the solution space. The intense

relief on the diagonal is brought about by the singularity that occurs in (vTv)- 1

when z, - z2 . Additionally, we observed that the general shape of the maximum

likelihood contour surface is relatively invariant to changes in SNR. Like in the one

mode analysis, additional multi-modal curves do not appear until SNR low.

A two mode nonlinear search of the cost function for the maximum likelihood

solution appears to be achievable, but before embarking on that path, consider the
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Figure 36. Contour plot of the maximum likelihood cost function evaluated over
the range of bl and b2 with underlying parameters cl = .5, c2 = 1,
A1 = .8, and A2 = .5 at an SNR of 30 dB.

cost function after being transformed by the relationship

(218) (I- V(VTV)-IVT) = BT(BBT)- 1 B.

Figure 36 is a contour plot of the 30 dB, two mode, linear prediction coefficient based,

maximum likelihood surface. A plus sign identifies the desired solution. To facilitate

a one-to-one mapping between z, and b,,, b0 was assumed to be one. Immediately,

we see that there is no symmetry in the linear prediction coefficient based contour

plot, and that the curved valley, enclosing the maximum likelihood solution in the

previous plot, is now represented as a straight valley.

A closer review of the transformation on the parameters z, and z2 limits the

feasibility region of the linear prediction coefficient based contour plot as well. Be-

cause z1 and z2 are only considered in the interval (0, 1), and because they are the

quadratic roots of the polynomial formed by the linear prediction coefficients, we
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know

(219) bi= -(z1 + z2)

and

(220) b2= Z1Z2.

Therefore,

(221) -2 < b, < 0

and

(222) 0 < b2 < 1.

Additionally, from the quadratic equation

(223) =' -b 1 ± bW:-4b2
2

we know that a real z,, mandates

(224) Vb -4b 2 >0.

Therefore,

(225) b2 < 1 b 2
41
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Finally, since

(226) /b2 -4b 2 > ,

and z is confined to the interval (0, 1), we know

-bl+ N

2

V : b-4b 2  < 2+b

b 2-4b 2  < 4+4b1 +b2

11± 1= -b2 < 1 + b,

b2 > -b, - 1.

The boundaries of the inequalities just identified are illustrated in Figure 37.

The label A is assigned to the b2 > 0 boundary, the label B is assigned to the

b2 > -bl - 1 boundary, and the label C is assigned to the b2 < lb2 boundary. The

boundaries are not a function of SNR, and their relationship to the 30 dB SNR

maximum likelihood contour plot is identified in Figure 38. Interestingly, the curved

boundary C equates to the case of z, = z2, but in the linear prediction coefficient

based representation, the cost function is not subject to the same singularities as

previously noted in the z, versus z2 plot.

When considering a search plan for the two mode maximum likelihood so-

lution, the straight valley-prevalent in all two mode, linear prediction coefficient

based, contour plots-attracts particular attention. The valley consistently runs

through the feasibility region, and if the two mode problem could be reduced to

a one dimensional line search along the valley, considerable efficiency would be at-

tained.
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Figure 37. Boundaries of the feasibility region for the sum of two decaying real
exponentials.
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Figure 38. Contour plot of the maximum likelihood cost function evaluated over
the range of b, and b2 at an SNR of 30 dB. The boundaries of the
feasibility region are also identified with solid lines.
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Initially, a simple algorithm was devised to search the line, drawn between

the minimums of the A and B borders, for a minimal solution. The behavior of

the maximum likelihood cost function along the A and B, and even C, borders was

similar to that of the previous one mode section: L evaluated unimodally, over the

range of the border, under all but very low SNR scenarios. A golden section search

was utilized to determine the minimums of the A and B borders and thus estimate

the endpoints of a line in the valley. A third golden section search was utilized to

identify the minimum along the line of the valley. The algorithm always provided

reasonable estimates, but as SNR decreased, the line of the valley appeared to only

graze the true minimum. This resulted in estimates slightly, but consistently inferior

to the IGLS method of searching the maximum likelihood surface.

To identify the reason for this inferior performance, the linear valley assumption

was reconsidered. The behavior of the valley in general is explained by the summed

exponential's relationship to the linear difference, or linear prediction, equation.

Recall that the underlying, two mode, noiseless signal is a solution to

(227) s[r] + bis[m - 1] + b2s[m - 2] = 0

Again b0 is assumed to be normalized to 1. Equation 227 can be rearranged to take

the form of a line expressed in the unknowns b, and b2 ,

-s[m - 2] s[m- ]*(228) s2 - -2]2

The slope and intercept of the line varies as s[m] varies from m = 0, 1,... , M - 1,

but all lines defined by Equation 228 intersect at the desired solution for b, and b2.

In figure 39 the lines defined by Equation 228 are incorporated with the feasibility
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Figure 39. Contour plot of the maximum likelihood cost function evaluated over the
range of b, and b2 at an SNR of 30 dB. The boundaries of the feasibility
region and the linear prediction solution lines are also identified with
solid lines.

region and the contour plots for the 30 dB, two mode, problem. Only the upper and

lower lines are displayed for clarity. From the figure, the relationship between the

intersecting lines and the valley of the contour plot is illustrated.

Although this relationship has been identified, the lines defined by Equa-

tion 228 consist of entirely unknown information in an estimation context. In theory,

a line in the valley could be used for a one dimensional search of the minimum. In

practice, accurately estimating the parameters of such a line requires the same, if

not more, effort as the original plan of searching for the two dimensional minimum.

With the one dimensional search option dismissed, attention was given to im-

proving the two dimensional search. The linear prediction coefficient based graphical

representation just created for the real, two mode, problem provides considerable in-

sight into the mechanics of the IGLS algorithm. As discussed in Chapter IV, initial-

izing the IGLS algorithm with a least squares estimate of b is equivalent to building
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Figure 40. Location of b, and b2 for each iteration of the IGLS algorithm plotted
with respect to the feasibility region for the 40 dB SNR, two mode, real
exponential problem.

the B matrix, for an IGLS iteration, with b0 = 1 and bl, b2 ,... , bN = 0. In the two

mode real exponential problem, the point b = b2 = 0 resides at the A and C border

intersection of the feasibility region. In Figure 40, b, and b2 estimates from each

iteration of the IGLS algorithm for the 40 dB SNR problem are identified. We see

that after initializing at b, = b2 = 0, the first iteration estimates b, and b2 in the

valley and near the center of the feasibility region. In subsequent estimates, b, and

b2 track up the valley to the desired solution.

When each iteration of the IGLS algorithm is observed at lower SNRs, subse-

quent estimates of b, and b2 occasionally occur outside of the feasibility region. In

Figure 41 we see the first update of b, and b2 is in the valley but well below the

feasibility region. For this realization and SNR, subsequent estimates of b, and b2
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Figure 41. Locations of b, and b2 for each iteration of the IGLS algorithm plotted
with respect to the feasibility region for the 25 dB SNR, two mode, real
exponential problem.
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Figure 42. Locations of b, and b2 for each iteration of the IGLS algorithm plotted
with respect to the feasibility region for the 20 dB SNR, two mode, real
exponential problem.

track up the valley to the desired solution. However, returning to the feasibility

region in subsequent updates is not always the case. In Figure 42 we see, for a

realization at 20 dB, the first update occurs outside of the feasibility region, and

the subsequent updates track further away from the region. To avoid this malady,

alternative initialization points for the IGLS algorithm were considered.

In the previous work, we efficiently found the location of the minimums on

the borders of the feasibility region with a golden section search. The A and B

border minimums typically occur in the valley of the linear prediction coefficient

based contour plots, even at low SNR. Similarly, for the same realizations, the C

border minimum typically occurs very near the desired solution. In Figure 43, the
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Figure 43. Minimums identified on the A, B, and C borders of the feasibility region
for the real, two mode, problem at 5 dB SNR.

border minimums are identified for a realization of the standard two mode problem

at 5 dB SNR.

With this information, a Monte-Carlo experiment was conducted to asses the

affect of initializing the IGLS algorithm from the A, B, and C border minimums.

The results of the experiment are displayed, in terms of inverse MSE and bias, in

Figures 44, 45, 46, and 47. The performance of the IGLS algorithm, initialized

from the least squares estimate (b, = b2 = 0), versus the IGLS algorithm, initialized

from each border minimum, is illustrated in each plot. In every case, 15 iterations

of the IGLS algorithm were implemented. From the figures, we conclude that very
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Figure 44. The A, inverse MSE of the standard IGLS algorithm, initialized from
b, = b2 = 0, and the IGLS algorithm, initialized from the minimums of
the A, B, and C borders. Also plotted is the CRB.
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Figure 45. The A, bias of the standard IGLS algorithm, initialized from b = b2= 0,
and the IGLS algorithm, initialized from the minimums of the A, B, and
C borders, over a range of SNRs.
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Figure 46. The A2 inverse MSE of the standard IGLS algorithm, initialized from
b, = b2= 0, and the IGLS algorithm, initialized from the minimums of
the A, B, and C borders. Also plotted is the CRB.
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Figure 48. Realization 1 locations of bl and b2 for each iteration of the IGLS algo-
rithm, initialized at two different points. One starting point was at the
least squares solution and the other starting point was at the minimum
of the C border. The SNR was 20 dB.

little is gained by initializing the IGLS algorithm at a point nearer to the desired

solution.

We postulate that given enough iterations, the IGLS algorithm will terminate

at the same estimate regardless of being initialized at the least squares solution

or a border minimum. This statement is corroborated by observing the b, and b2

estimates from each IGLS iteration on a realization that terminates outside of the

feasibility region. In Figure 48 the b, and b2 estimates from each iteration of the

IGLS algorithm initialized at the C border minimum are overlayed on estimates from

the IGLS algorithm initialized at the least squares solution. The same realization,
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Figure 49. Realization 2 locations of b, and b2 for each iteration of the IGLS algo-
rithm, initialized at two different points. One starting point was at the
least squares solution and the other starting point was at the minimum
of the C border. The SNR was 20 dB.

at 20 dB SNR, used in Figure 42 was used for Figure 48. Both applications of the

IGLS algorithm terminated at the same location outside of the feasibility region.

The same phenomena for a different realization at 20 dB SNR is demonstrated

in Figure 49. In this case, the successive estimates of b, and b2 from the IGLS

algorithm, initialized at b, = b2 = 0, track towards the feasibility region but fall short

of the A border. The successive estimates of b, and b2 from the IGLS algorithm,

initialized at the C border, track below the A border towards the same point outside

of the feasibility region as well.

From the Monte-Carlo experiment and these sample realizations, we conclude

that the IGLS algorithm is a robust estimator for the global minimum of the max-
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imum likelihood surface. The algorithm is essentially unaffected by alternative ini-

tializations on the feasibility region border and by departures from the feasibility

region for subsequent iterations.

A final Monte-Carlo experiment was conducted to investigate the relationship

between the global minimum of the maximum likelihood surface and the feasibility

region. With a well defined feasibility region and a readily available maximum likeli-

hood cost function-as is the case for the real, two mode problem-implementation of

a constrained optimization routine is straight forward. For this reason, the MATLAB

constr function was utilized on the same realizations of 9 created for the previ-

ous Monte-Carlo experiment. The MATLAB constr function employs a sequential

quadratic programming (SQP) method which can be assisted with closed form ex-

pressions for the first derivatives of the cost function and region constraints (20:3-

9,3-12). The derivative of the cost function and region constraints are developed

in Appendix D. Similar to the alternative initializations of the IGLS algorithm, the

SQP algorithm was initialized from the minimums of the A, B, and C borders.

The performance of the SQP algorithm, in terms of inverse MSE and bias is

compared to the IGLS algorithm, initialized at the least squares solution, in Fig-

ures 50, 51, 52, and 53. From the inverse MSE plots, it appears that the SQP

algorithm performs slightly better than the IGLS algorithm at lower SNR, but the

behavior of the bias at the same SNR makes the estimates suspect. Also note, the

alternative initializations have minimal effect on the SQP algorithm. Regardless,

any improved performance is minor when realizing that the IGLS algorithm is not

restricted to the real, two mode, problem. Additionally, the IGLS algorithm is com-

putationally more efficient than the SQP algorithm.
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Figure 50. The A1 inverse MSE of the standard IGLS algorithm, initialized from
b, = b2 = 0, and the SQP algorithm, initialized from the minimums of
the A, B, and C borders. Also plotted is the CRB.
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Figure 51. The A1 bias of the standard IGLS algorithm, initialized from b = b2= 0,
and the SQP algorithm, initialized from the minimums of the A, B, and
C borders.
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Figure 52. The A2 inverse MSE of the standard IGLS algorithm, initialized from
b, = b2= 0, and the SQP algorithm, initialized from the minimums of
the A, B, and C borders. Also plotted is the CRB.
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Figure 53. The A2 bias of the standard IGLS algorithm, initialized from b = b2= 0,
and the SQP algorithm, initialized from the minimums of the A, B, and
C borders.

122



5.4 Chapter Conclusion

Beyond the real, two mode, problem, visualization of the mechanics of the

IGLS algorithm is difficult. As dimensionality increases, estimation accuracy de-

creases, but given the performance of the IGLS algorithm for the one and two mode

problem, we find no reason to search for a better multi-dimensional maximum like-

lihood algorithm. We have shown, in isolated scenarios at low SNR, specialized

algorithms can be developed to estimate parameters slightly better than the IGLS

algorithm, but ultimately, these efforts serve better to exalt the robust capabilities

of the IGLS estimator. We move on to the application portion of the dissertation

with confidence in the IGLS algorithm.
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VI. Deep Level Transient Spectroscopy Application

6.1 Chapter Introduction

As alluded to throughout this dissertation, a particular physics experiment that

motivates our real exponential analysis is deep level transient spectroscopy (DLTS).

DLTS is a capacitance transient thermal scanning technique used to characterize

defects present in semiconductors (45:3023). We begin this chapter by developing the

fundamentals of DLTS. Ultimately, we show that the signals from a DLTS experiment

are well modeled by superimposed, real, decaying exponentials. Each exponential,

and corresponding amplitude coefficient, characterize a defect. Typically the number

of detectable defects, N, is small.

Previous approaches to estimating the parameters of DLTS signals include box-

car integrator analysis (45), modulating function waveform analysis (58), and linear

prediction (LP) analysis (65). The boxcar integrator approach is the original tech-

nique proposed by Lang-the founder of DLTS-in 1974. It is an analog approach

and is still popular today. In the DLTS fundamentals section, we show why it is

limited. The modulation function approach, like linear prediction, is digital, but

unlike linear prediction, is heuristic. Recently, Doolittle and Rohatgi published a

series of papers highlighting the benefits of linear prediction analysis over modulat-

ing function analysis (10, 11, 12). The LP approach they use for DLTS analysis is

taken from the work of Shapiro et al. published in 1984. In our research, we have

developed concepts, unavailable to Shapiro et al., that significantly improve on the

LP approach to DLTS analysis. This work has been accepted for publication by the

DLTS community (31). The increased fidelity in our parameter estimates has lead
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to defect characterizations that were previously unobserved. These too have been

submitted for publication (62).

After developing the fundamentals of DLTS, we review the LP approach of

Shapiro et al. As we review the previous LP approach to DLTS analysis, we introduce

our improvements. We then verify our contribution on actual DLTS signals. At the

end of the Chapter, we include additional algorithms, developed by us, for DLTS.

6.2 DLTS Fundamentals

In this section, we identify the DLTS signal and its relationship to the su-

perimposed exponential model. We begin by developing the semiconductor and pn

junction theory necessary for explaining DLTS. Volumes 1 and 2 of the series by

Pierret and Neudeck (55, 53), and the book by Sze (69) are our primary references.

The actual DLTS signal development follows the methodology of Lang (45, 46) and

Elsaesser (14). Elsaesser clearly extends DLTS to the digital signal processing (DSP)

environment.

Consider the n-type and p-type semiconductor materials of Figure 54a prior to

contact. Both n-type and p-type materials are crystal lattices primarily composed

of atoms with four valence electrons such as silicon, Si. The lattice in the n-type

material is doped with a small quantity of atoms with five valence electrons such

as arsenic, As. The lattice in the p-type material is doped with a small quantity

of atoms with three valence electrons such as boron, B. The doped atoms of both

n-type and p-type materials are called impurities even though their introduction into

the crystal lattice is intentional. The four valence electrons of the primary atoms in

the lattice tend to share electrons with the other atoms to form covalent bonds. At

room temperature, the impurities described are more likely to form covalent bonds
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Figure 54. Doped n-type and p-type semiconductor materials (a) before and (b)
after forming a pn junction.

with the primary atoms of the lattice than keep their neutral states. Therefore,

the four valence electrons of the impurity atoms in n-type material form covalent

bonds with the primary atoms of the lattice, and the fifth electrons are "donated"

to the conduction band. The impurity atoms in this case are called donors, and

the material is called n-type because of the addition of negatively charged carriers.

With p-type material, the exact opposite occurs. The impurity atoms, with three

valence electrons, "accept" electrons from the primary atoms of the lattice to form

covalent bonds. Consequently, positively charged "holes" are created in the valence

band. The impurity atoms in this case are called acceptors, and the material is

called p-type because of the addition of positively charged carriers. The covalent

bonding and resulting charged carriers are illustrated for n-type and p-type silicon

in Figure 55.

The impurities described thus far ionize, or emit electrons or holes, at room

temperatures. Their ionization energies are just inside the energy band gap bound-

aries. The ionization energy of donors in n-type material is just below the conduction
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band edge, and the ionization energy of acceptors in p-type material is just above

the valence band edge. Consequently, we refer to these intentional impurities as

shallow donors and shallow acceptors, respectively. Impurities with more than five

or less than three valence electrons can be unintentionally introduced into n-type or

p-type material as well. Their ionization energies are typically deep into the energy

band gap, and their emission of electrons or holes is significantly more complicated

than that of shallow donors and acceptors. Without knowing more about the deep

level impurity, it must be assumed that each impurity has the potential to capture,

as well as emit, both electrons and holes. Defects in the crystal structure, alone or

in combination with deep level impurities, also are assumed to have the potential

to capture and emit both electrons and holes. In general, we refer to deep level

impurities and crystal structure defects as deep level defects. DLTS is a technique

for identifying and characterizing theses deep level defects.

Before explaining DLTS, we need to develop some key concepts for pn junc-

tions. Consider the n-type and p-type materials joined in Figure 54b, and assume

there are no defects in either materials. Because of the larger concentration of

electrons on the n-type side of the junction versus the p-type side of the junction,

electrons diffuse into the p-type material. Likewise, holes from the p-type material

diffuse into the n-type material. Recall, the impurity atoms are covalently bonded

into the lattice. With the negatively charged carriers leaving the n-type material, a

positive space charge forms on the n-type side of the junction. likewise, a negative

space charge forms on the p-type side of the junction. This space charge differential

creates an electric field, E, in the direction from positive space charge to negative

space charge. See Figure 54b. The electric field is opposite the direction of diffusion

for both the negatively and positively charged carriers. Therefore, an equilibrium be-

tween diffusion and space charge differential is achieved. At equilibrium, the electric
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field is significant. It sweeps all the positively and negatively free charged carriers

out of a region near the junction. Consequently, this region is dubbed the depletion

region. Again, see Figure 54b.

The width, w, of the depletion region is a function of the concentration of

shallow donors, ND, and acceptors, NA, doped into the n-type and p-type materials.

It is also a function of the built in voltage, VBI, due to the space charge differential.

The equation for the width is (69:78)

(229) [ _ NA+ND] VB1)

where E is the dielectric constant of the semiconductor and q is the electronic unit

charge. If NA > ND, the depletion region is shifted over to the n-type side of the

pn junction. If NA >> ND the portion of the depletion region on the p-type side of

the junction is so small that the depletion region can be considered to exist only in

the n-type material (69:78). The junction is denoted p+n, and Equation 229 can be

simplified to

1

(230) w = (2EV )

See Figure 56a. In our development, we only consider p+n junctions. The develop-

ment for n+p junctions is complementary and straight forward. We will see that one

sided junctions assist DLTS by isolating the location of deep level defects.

By observing Equation 230 we can see a relationship between the width of the

depletion region and the voltage. If a reverse bias voltage, VR, is added to the built

in voltage, VBI, the width of the depletion region will increase. See Figure 56b. The

129



Junction

(a)

(b)

-+

VBI + VR

(c)
+-

1 I

VBI VF

Figure 56. Doped p+n junction with a variable depletion region width dependent
on (a) built in voltage, (b) built in voltage plus reversed biased voltage,
and (c) built in voltage minus forward biased voltage.
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governing equation is (69:80)

(231)= (qND VR)) ).

Similarly, if a forward bias voltage, VF, is subtracted from the built in voltage,

the width of the depletion region will decrease. See Figure 56c. In this case, the

governing equation is complicated by the fact that the forward bias voltage forces

charged carriers into the depletion region. The actual equation is unnecessary for

our development and, for clarity, is omitted.

We have now established that under biased voltage conditions, the width of

the depletion region can be varied. Because the shallow donors are easily ionized

at room temperature, and because the charged carriers are quickly swept out of the

depletion region by the electric field, changes in the bias voltage result in changes in

the width of the depletion region with very little temporal lag. This is not the case

when deep level defects are present. In DLTS, deep level defects can be characterized

by their temporal influence on the width of the depletion region after changes in the

bias voltage are made.

As mentioned earlier, we assume each deep level defect has the potential to emit

and capture electrons and holes. The propensity of these four events is governed by

the conservation of energy. Possible energy interactions with a deep level defect are

the absorption or emission of phonons (thermal processes), the absorption or emission

of photons (optical processes), and interactions with free conduction band electrons

or valence band holes (Auger processes). If bias voltages on the p+n semiconductor

are applied in the dark-which is always the case in DLTS-optical processes can be

ignored. Also, under forward biased conditions, Auger-capture processes dominate,

over emission processes. If the width of the depletion region is made small enough
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by forward biasing, the previously depleted region is flooded with free electrons and

holes. If the duration of this even is sufficient, we can assume any deep level defect in

the n-type material has captured electrons or holes. If the defect primarily captures

electrons, we call it an electron trap, and if the defect primarily captures holes, we

call it a hole trap. If after forward biasing, the width of the depletion region is

opened and held at its built in voltage width, or even further at a reversed biased

width, thermal processes will prompt the traps in the depletion region to emit their

captured electrons or holes with an emission rate that can be used to characterize the

particular defect. If temperature is held constant (isothermal) during emission, the

decrease in concentration of traps with captured electron or holes, N., is modeled

with (14:26)

(232) N (Tt) = NT e6

where r is the electron or hole emission rate, and NT is the total concentration of the

trap-with or without captured electrons or holes. The temperature dependence, T,

is brought in to Equation 232 through the emission rate and is discussed in detail

shortly. Finally, because the electric field sweeps the free charged carriers out of the

depletion region, re-trapping under reversed bias conditions does not occur.

Consider a p+n junction with a single deep level electron or hole trap in the

depletion region of n-type material. If, under isothermal conditions, we forward bias

the semiconductor to fill the trap with electrons or holes, and then reverse bias the

semiconductor to insure the trap is well inside the depletion region, the width of

the depletion region will change as the capture concentration of the trap changes

with time due to the change in depletion charge. By incorporating the capture

concentration model, Equation 232, into the reverse biased depletion region width
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equation, we can model this change with (14:27)

(233) w( ',t)- 2 E(VBI + VR)

(q(ND + NTe-t)/

The process just described is the procedure employed in DLTS. The width

of the depletion region can be monitored by measuring the capacitance across the

region. The measured capacitance is governed by the classic relationship (46:95)

(234) C = A
W

where A is the area of the junction. Therefore, the capacitance per unit area, C, for

the depletion region is

(235) C( ,t) qE(ND + NTe - t) 2

This implies

C 2 (T,qt) qND + qNTe- t

2(VBI + VR) 2(VBI + VR)

(236) qcND + qEND NT -rt
2(VBI + VR) 2 (VBI + VR) ND

In both terms on the right side of Equation 236, we know

(237) 2(VBI + VR) (W)
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This is the square of the capacitance per unit area of the reversed biased depletion

region after the trap has emitted all of its captured electrons or holes. Let

(238) c2 = qEND
SS =2(VBI + VR)

where C,, is the steady state capacitance per unit area. Then, we can say

C2 NT-rt
(239) c2(T, t) = CQ2 + 2,2-Ne-

ND

In a DLTS experiment, this is the square of the measured capacitance of the depletion

region, at a constant temperature, for the time period immediately after the forward

bias is removed and the reverse bias is applied. If the trap is primarily an electron

trap, the charge distribution is such that -- is negative and the capacitance transientND

will increase to C,,. If the trap is primarily a hole trap, the charge distribution is

such that Nz is positive and the capacitance transient will decrease to C,,.ND

Multiple hole or electron traps are linearly modeled by (14:34)

(240) c 2 (T,t) = c, + e Ci.,
n=1 ( N)

If discretized, this expression can fit the form of the superimposed exponential signal

model used throughout this dissertation. Let

N

(241) s[m] = Co + E cnAn-
n=1
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where

C O -- C 2 s

=C2 (NT)

(242) An = e 6

and 8 is the sample interval. Also, for now, assume the baseline constant co is

the amplitude coefficient of an added exponential with A0 = 1. The estimation

algorithms developed thus far can provide estimates of co, c, and An. In the latter

sections of this chapter, we will address more appropriate approaches to estimating

the intercept co. Nevertheless, with estimates of cn and An, we can solve for the

trap concentration NT and the emission rate, r, of each defect. With trap emission

rate estimates obtained over a range of temperatures, we can further characterize

the trap. To do so, we first need to develop more background on electron and hole

trap emission rates.

In the DLTS experiment, we can limit our discussion to thermal emission rates

which can be modeled as a function of temperature (14:13-17). Because the thermal

emission rate has dependence on the thermal capture rate, we can show

(243) rnp = Qn,pT 2Cn,pe - AE , v

where the n subscript indicates electron trap, the p subscript indicates hole trap, Qn,p

are assumed constants, 7'n,p are thermal capture cross sections, k is the Boltzmann

constant, and AEn is the separation energy between the lower edge of the conduction

band and the energy level of an electron trap (AEn = E, - ET), and AEp is the
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separation energy between the energy level of a hole trap and the upper edge of the

valence band (AEp = ET - E,).

Lang's analog DLTS analysis technique (45), which is also explained shortly,

estimates the inverse of the trap emission rate, T = 1. Therefore, estimating r,T

rather than r, has become the convention. From the thermal emission rate equation,

consider

7.p= (Q,41,p '2c,.,,p)l1 eAEn,P k1T2 -1A&

(244) T. = Q e P kT

In (' 2 ,,,) = - n (Q,,,&an,) + AE,pk.

The last expression has linear form. If isothermal capacitance transient signals are

created and measured at various temperatures, and the emission rates are estimated

for each signal, In (Ti' 2 rr,,) can be plotted versus !. The slope of the plot corresponds

to AE, which can be solved for the energy level of the trap, and the intercept of the

plot corresponds to In (Qn,pa,), which can be solved for the thermal capture cross

section of the trap. Plots of this nature are called Arrhenius plots.

When Lang introduced DLTS, high speed digitizers were not available for dig-

ital analysis. Despite this, he proposed an easy to implement analog approach for

estimating the r of various isothermal transients and subsequent Arrhenius plotting.

At this time, Lang's approach is developed to identify its limitations and to give

physical insight into the DLTS problem. At the end of this chapter, Lang's ap-

proach is used to highlight the difficulty of obtaining adequate estimates on actual

DLTS data.

First, Lang assumes there is only one trap in the depletion region and that its

concentration, NT, is much less than the concentration of the shallow donors, ND.
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Figure 57. Capacitance transients for a single hole trap in the depletion region of

a p+n junction at various temperatures. Also shown is the AC(T) for

t, and t2 in each transient. The figure was obtained from Lang (46).

Then, a binomial expansion of Equation 239 leaves

NT _-_L(245) c(T, t) = c".1 + Q -Ne ..

The left side of Figure 57 is a plot of the capacitance transients for a hole trap

at various temperatures. As expected with the thermal emission rate equation, -r

decreases as temperature increases. Notice, from the right side of Figure 57, the
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change in capacitance between times tj and t2,

(246) AC( ) = C( t1) - C(r,Q,

is minimal at low temperatures, minimal at high temperatures, and maximal at one

temperature in the middle. With the capacitance transient model for a single trap,

Equation 245, we can obtain an analytical expression for AC(T) where

NT _ NT _u
AC( ') = "+C8 e_ es C82ND s2NDe

(247) = c s NT .. .

2ND

From the previous development, we know AC(T) is a function of temperature

through the inverse of the thermal emission rate, r. By differentiating AC(T) with

respect to T, and equating to zero, we see

(248) -- tl

ln(t 2/tl)

Therefore, referring to Figure 57, the temperature associated with AC( ')ma= corre-

sponds to a singe trap capacitance transient with Tmax - n(t2 /t1 )

By changing ti and/or t 2, the peak for AC(T)max changes and a new temper-

ature associated with AC(T)mx corresponds to a new Tmax = lt2 1. The process

can be repeated as many times as necessary to plot In (T ' 2T) versus1 in an Arrhe-

nius plot. This approach is known as the rate window approach. By anticipating the

tj and t2 samples necessary to produce an adequate Arrhenius plot, double boxcar

integrators can be placed in line to calculate AC(T) for every transient. The rate
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window approach is quick and simple, and yields single trap parameter estimates

without a digitizer.

However, the rate window approach does not have multi-trap capability, and

as will be shown at the end of this chapter, degrades with noise. The advent of

high speed digitizers and improvements in digital signal processing, namely linear

prediction, have provided some relief to these problems. In the next section, we

review an early LP approach to DLTS analysis and present our improved iterative

generalized least squares (IGLS) approach.

6.3 Linear Prediction for DLTS Analysis

As mentioned in the beginning of this chapter, Shapiro et al. (65) introduced

an LP based approach for DLTS analysis in 1984. Their proposed algorithm is

essentially the overmodeled least square algorithm (OLS) developed in Chapter III.

In DLTS, Shapiro et al. recognized that because the concentrations of any deep

level traps, NT, are usually much smaller than the concentration of the donors, ND,

the baseline constant, co, is usually much larger than the amplitude coefficients, c,.

Treating co as the amplitude coefficient of an additional exponential, A0, without

properly constraining A0 to equal one, seriously degraded the performance of their

algorithm. They improved their estimates by differencing the discrete transient

at successive points prior to implementing OLS (65:3457-3458). In a sense, they

obtained estimates from the derivative of the data, which eliminated the constant.

At the end of this section, we take a similar tack, but first we must recognize another

approach.

In 1992, Doolittle and Rohatgi (10) introduced hardware to estimate and re-

move (null) the baseline constant from the capacitance transients. They then applied
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the OLS algorithm of Shapiro et al. and obtained good results. For comparison, we

simulated capacitance transient data without a baseline constant and tested the

performance of the IGLS algorithm against the OLS algorithm.

It should be noted, that-from the work of Kumaresan and Tufts (72)-Shapiro

et al. (65) and Doolittle and Rohatgi (11) both assumed any extraneous A, estimates

would be complex and used this as a criterion for actual A, acceptance. We find this

criterion to be insufficient and have added the energy sort described in Chapter III

to all OLS estimates.

For our simulation, one hundred data point realizations of 9 were created with

randomly generated Gaussian noise and the underlying signal parameters: cl = -1,

C2 = -. 5, A1 = .8, A2 = .9. The noise contributions were governed by SNR, in dB,

under the standard formula. For each realization, 10 iterations of the IGLS algorithm

and three separate runs of the OLS algorithm, with prediction orders P = 20, 30

and 40, were performed.

Figures 58, 59, 60, and 61 are inverse MSE and bias plots for comparing the

performance of the IGLS algorithm with the OLS algorithm. The MSE and bias

were calculated after 200 Monte-Carlo simulations for each SNR. From the figures,

we note IGLS consistently provides lower variance estimates than OLS, regardless

of prediction order, over a usable range of SNRs. Also, above an SNR threshold-

approximately 45 dB-IGLS essentially attains the CRB. The performance of OLS

decreases as SNR increases because the overmodeling becomes inappropriate.

Given the experiments we performed in Chapter III on the sum of two complex

exponentials, these results for the sum of two real exponentials are expected. The

IGLS algorithm should replace the OLS algorithm for linear prediction based DLTS

when the baseline constant, Co, is nulled with hardware. However, we claim, the
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Figure 59. The A1 bias of the IGLS and OLS estimators over a range of SNRs.
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need for the nulling hardware is unnecessary. Unlike the OLS algorithm, the IGLS

algorithm can be accurately extended to incorporate baseline constant estimation.

The extension is not obvious when the algorithm is derived form the maximum

likelihood (ML) methodology, but with the introduction of our linear prediction

methodology, the ML cost function for superimposed exponentials with a baseline

constant follows nicely.

In our development, we keep the differencing approach suggested by Shapiro

et al. (65). Incidentally, differencing was also recommended by Hildebrand (22:458-

462), in 1956, for the general superimposed exponential problem with a baseline

constant. Unfortunately, both Hildebrand and Shapiro et al. did not account for

the effects of noise in their linear prediction methodology. In this dissertation, we

have established the inferior performance of LP based estimators without accurate

noise analysis. The performance of differenced LP based estimators without accurate

noise analysis is even more degraded. As alluded to before, with our methodology,

properly accounting for the effects of noise in differenced linear prediction is straight

forward.

Let

yd[m] = y[m] - y[m +]

(249) = sd[m]+w[m]-w[m+ 1], m-0,1,...,M-2

where

N

(250) sd[m] =\Z( ) , A
n14
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The noiseless signal, sd[m] is also a solution to a difference equation with constant

coefficients. Therefore, if we let

(251) sd[m] = yd[m] - w[m] + w[m + 1]

we know

(252) boyd[m] + blyd[m - 1] + ... + bNYd[m - N] = ed[m]

where

ed[m] = bow[m] + blw[m- 1] +... + bNw[m - N] -

(253) -bow[m + 1] - biw[m] -... - bNw[m - N + 1].

The LP error ed[m] has more elements than the previous e[m] of Chapter III, but it

is still composed of a tractable sum of weighted Gaussian random variables. Under

an overdetermined set of linear equations, let

(254) Ydb= d

where

Yd = [dO Ydl .. " dN]

Pd. = yd[N - n] yd[N + 1 - n] ... Yd[M 2 - n]
... IT

= [bo b . bN]T

(255) = ed[N] ed[N + 1] ... ed[M - 21 •
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The data matrix, Yd, has dimensions (M - N - 1) x (N + 1) and Toeplitz structure.

The LP error vector ed is distributed with mean vector zero and covariance matrix

a2Rd. If we define the (M - N - 1) x (M - 1) Toeplitz matrices

b0  bi ... bN 0 ... 0

0 bo bi ... bN "(256) B1 =. . . . .o

0 ... 0 b0  bi ... bN

and

0 b0  bl ... bN+1 bN 0 ... 0

0 0 bo b, ... bN+j bN

(257) B 2 = . ".. . ".. . . 0

: : " . "' " . '. " . bN

0 0 .. ... 0 bo b " bN+1

then the differenced LP error covariance matrix is obtained with

(258) Rd = 2B1B T - B 1B' - B2 BI

and the generalizes least squares (GLS) estimator becomes

(259) b =

As before, an iterative algorithm naturally follows. After rooting, the am-

plitude coefficients, co and c., can be estimated from an expanded pseudo-inverse
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estimator

(260) c] = T V'.)- 1 V T-

where the matrix V,0 consists of an M dimensional column of ones appended in front

of the standard Vandermonde matrix, V.

In simulations, realizations of 9 were created with the same parameters as

earlier in this section, only a baseline constant, co, was added at an elevated value

of 50. The differenced iterative generalized least squares (DIGLS) estimator was

tested against a differenced overmodeled least squares (DOLS) estimator with an

energy sort. The experiment was conducted identical to that of the IGLS and OLS

estimators in this chapter.

Figures 62, 63, 64, and 65 are inverse MSE and bias plots for comparing the

performance of the DIGLS algorithm with the DOLS algorithm. Similar to

the experiment without co, DIGLS consistently performs better than DOLS over

a usable range of SNRs and attains the CRB. Figure 66 illustrates the difference

between DIGLS and IGLS for the A1 estimates. We see that adding the co constant

does not significantly effect the accuracy of the iterative estimators. Note, the error

associated with nulling is not reflected in the IGLS inverse MSE plot. Obtaining all

estimates with software may indeed be more accurate than introducing hardware for

assisting in the task. In the next section, the capabilities of the DIGLS algorithm

are verified on actual DLTS signals. Like many DLTS facilities, we do not utilize

hardware for co nulling. Therefore, we use the differenced approach.
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6.4 DLTS Experiments

The DIGLS and DOLS estimators were compared on the capacitance transients

of two different semiconductors. First, the arsenic anti-site defect, ASGa, in GaAs-

namely the EL2 level-was considered. The EL2 deep level was selected for initial

verification of the DIGLS estimator because of its well known trapping kinetics and

deep level parameters (43, 73). The EL2 capacitance transient signals were recorded

in both maximal and artificially reduced SNR scenarios. They were digitized at

isothermal increments of 4 K using conventional constant-voltage biasing (CVDLTS)

of Ti/Pt/Au Schottky diodes formed on low-temperature grown, Sb-doped, GaAs

substrate material. A large CVDLTS reverse bias voltage of -5.0 volts was utilized

to maximize the width of the depletion region and minimize the non-exponential

effects due to a free carrier tail at the edge of the depletion region. It has been

shown, that the large reverse bias voltage does not effect the expected separation
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energy, AE,, in EL2 (5). Forward bias filling pulse heights and pulse durations,

used to completely saturate the traps, were 1.5 volts and 10 ms respectively. The

resulting capacitance transients were sampled at 100 us intervals with 500 sample

points recorded to yield a 50 ms digitized transient period. Noise averaging at

each isothermal step was nominally high (100 transients) to facilitate the zero mean

Gaussian assumption. Artificial SNR reduction was accomplished using a double

correlated mode of DLTS operation (DDLTS) to control and reduce the volume of

space charge from which emission occurs. Specifically, the difference signal, resulting

from the capacitive decay for differing forward bias filling pulse heights under the

same measurement bias, was analyzed. Variations in the forward bias difference,

[VF1 - VF21, resulted in controllable variations of the SNR.

The Arrhenius plot shown in Figure 67 is for comparing the performance of

the DIGLS and DOLS algorithms on the EL2 deep defect. In all cases, the DIGLS

estimator was implemented with 10 iterations, and the DOLS estimator was im-

plemented with a prediction order P = 30 and an energy sort. The data shown

in the figure correspond to the solutions for a single mode (N = 1) analysis using

the DIGLS and DOLS estimators under the maximal SNR scenario. Immediately

apparent from the Arrhenius plots is the very significant extension of the range of

useful emission rate data in the case of the DIGLS estimator. In other words, the

DIGLS estimator is seen from the figure to be much more robust at the lower tem-

peratures where the capacitance transient is significantly truncated, or equivalently,

is characterized by slower emission rates. A more important point to make regard-

ing the data shown in the figure is that the separation energy, obtained from the

resulting linear slope of the DIGLS emission rate estimates, equals 791 meV. This is

in much better agreement with accepted transient spectroscopy values than that of

the DOLS estimates. The best fit to the linear region data obtained from the DOLS
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Figure 67. Arrlienius plot for EL2 with maximal SNR.
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algorithm yields a separation energy of 748 meV. This underestimates even the low

end separation energies obtained using alternative Hall effect measurements (48).

Figure 68 illustrates more concisely the superiority of the improved DIGLS

linear prediction algorithm. The data represents the DIGLS and DOLS estimates

on EL2 transients with artificially reduced SNR. The DIGLS algorithm slightly un-

derestimates the EL2 energy level (-10% ) but the DOLS estimator is completely

ineffective. For confidence in our experiment, we have shown in our article (31) that

the OLS algorithm, implemented by Doolittle and Rohatgi (12), obtains inferior

estimates to our DOLS estimator under equivalent EL2 conditions.

Finally, the extent of signal degradation and the significance of the improve-

ments afforded by the DIGLS estimator can be fully appreciated by observing the

rate window plots of the maximal and degraded SNR scenarios. They are illustrated

in Figures 69 and 70 respectively. By convention, six rate windows were applied

from each end of the transients with t 2/t ratios of 2, 5, and 10, respectively. The

degraded SNR rate window plot is unintelligible.

After verification under simulated and controlled DLTS experimental condi-

tions, the DIGLS and DOLS estimators were compared on a more general problem

potentially involving multi-mode transient decay. The 6H polytypic modification of

the SiC material system was analyzed. In n-6H-SiC bulk substrate material, we an-

ticipate a DLTS signal with two resolvable separation energies. To date, multi-mode

DLTS signals have not been resolved. Only heuristic arguments and postulation of

their existence, based on experimental data yielding closely spaced energy levels,

have been suggested (16).

Figure 71 is a rate window plot for n-6H-SiC material. Typically, broad over-

lapping peaks and shoulders are observed in the rate widow plots of multi-mode
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materials. This is not the case in Figure 71. Similarly, the DOLS estimator only de-

tected one decay mode. However, our DIGLS estimator revealed a definite indication

of the presence of two exponential decay modes. Figure 72 illustrates the resulting

Arrhenius analysis of the DIGLS fitted decay time constants showing convincing ev-

idence for a two mode transient decay. The separation energies of 509 and 543 meV

obtained from the linear slope are seen to deviate significantly from the rate window

peak analysis estimate of 760 meV. This is not surprising if we recall that the clas-

sical peak analysis method is invalid if more than a single decay mode exists (45).

The results presented, may be the first explicit DLTS data supporting the existence

of SiC deep level energetic pairs for an apparent spectral feature indicating single

mode decay.

The apparent success obtained in resolving closely spaced levels of the electron

traps in n-6H-SiC led us to apply the DIGLS estimator to a commonly observed

hole trap in p-611-SiC. This defect has been observed by us to be present in most

substrate wafer material and is readily formed upon ion-implantation into epitaxial

material (63). Figure 73 is the rate window plot for the CVDLTS transients. In the

figure, the shoulder (marked by the large arrow) is indicative of multi-mode decay.

However, both the IGLS and DOLS estimates for the transients indicate the pres-

ence of only a single exponential component with a separation energy of 861 meV.

Figure 74 illustrates the fitted data for this defect. The striking feature of the DIGLS

estimator is the extension of useful transient data by almost 50 K, or 10 transient

emission rate data points, on the low temperature side. Consequently, characteriza-

tion of the defect level in p-6H-SiC can be made with increased confidence.
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6.5 Additional Estimation Algorithms for DLTS

In the course of our research, we realized the exact maximum likelihood cost

function for the one mode DLTS signal can be minimized directly without differenc-

ing and without linear prediction coefficient representation. Let

(261) V4 0=[i 1]

where 1 is a M x 1 vector of ones and

(262) A, 2 .. AM-1]

so that

(263) Y= 13o cO +I.

From Chapters II and III we know the ML solution is attained by maximizing

(264) L(V 0) = ovco) co

We find the behavior of the one mode DLTS ML cost function is similar to the

behavior of the one mode real exponential ML cost function analyzed in Chapter V.

Over a large range of SNRs, the one mode DLTS ML cost function is unimodal.

Consequently, with only one variable, A1, a golden section search can be implemented.

Details of the golden section search are given in Chapter V.

Figures 75 and 76 are inverse MSE and bias plots for comparing the perfor-

mance of the DIGLS algorithm with the golden section search (Gold DLTS) algo-
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Figure 75. The inverse MSE of the DIGLS and Gold DLTS estimators over a range
of SNRs. Also plotted is the CRB.

rithm for the one mode DLTS problem. The Monte-Carlo experiment used to create

the plots is identical to the experiments accomplished earlier in the chapter except

the underlying signal consists of only one real mode with parameters cl = -1 and

A 1 = .8. As expected, the Gold DLTS algorithm is superior at lower SNRs. For

the one mode problem, the golden section search is more effective at maximizing

the exact ML cost function. However, the Gold DLTS algorithm is restricted to one

mode DLTS problems.

In addition to the one mode DLTS algorithm just delivered, we also developed a

multi-mode DLTS algorithm that performs differencing implicitly. In this algorithm,

we treat the baseline constant as an additional exponential, A0, with an amplitude

coefficient, CO, but we constrain A0 to equal one in an elegant and insightful way.

The algorithm essentially follows the development of IGLS.
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Figure 76. The bias of the DIGLS and Gold DLTS estimators over a range of SNRs.

With a model order of N + 1, consider the noiseless LP equation

(265) bos[m] + bis[m - 1] +... + bNs[m - N] + bN+1S[m - (N + 1)] = 0.

Recall, the estimates of A,, are the roots of the polynomial formed from the LP

coefficients. Therefore, we assume.

(266) bozN+1 + bizN + b2zN - I + ... + bN+ bN+j = 0.

Since co is a constant, we know A0 = 1 is a root of the LP polynomial, Equation 266.

Therefore,

(267) bo + bl + b2 +... + bN+ bN+l = 0

=: bN+l =-(bo bi -J- b2  ... bN).
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This is a constraint we can apply in the standard IGLS development. Since

(268) SIM] = yIm] -W[]

we know

boy[m] + bly[m - 1] + ... + bNy[m - N] + bN±1y[m - (N + 1)]

(269) = bow[m] + biw[m - 1I +... +bNW[rn- N] +±bN+lW[m - (N +1)].

When we introduce the constraint of Equation 267, we can say

bo(y[] - y[m -(N + 1@)+bi(y[m -11 -y[m -(N±+1)])-I-... +

bNY(m [r-N] - y[rn-(N±+1)])

= bow[m] +blw[m -1] +... +bNw[m -N] -

(bo+ b +b 2 +..+bN)W[r- (N±+ 1)]

(270) = e, [m].

The LP error e,[m] is still composed of a tractable sum of weighted Gaussian random

variables. Under an overdetermined set of linear equations, let

(271) Y6=E
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where

yC = *c c .. YeN]

Yen = [(y[N + -n] -y[O]) (y[N + 2 - n] - y[1])

y([M - 1- n]- y[M - N - 2])

b = [ b ... bN ]T...T
(272) [ e[N + 1] e,[N + 2] ... e,[M-1] •

The data matrix, Y, has dimensions (M - N - 1) x (N + 1) and Toeplitz structure.

The LP error vector E is distributed with mean vector zero and covariance matrix

a 2R,. If we define the (M - N - 1) x M Toeplitz matrix

(273)

b0  b, ... bN -(bo+bl+...+bN) 0 ... 0

0 bo bi ... bN -(bO+bl+...+bN)

: " . " . " . "' .". "'. 0

0 ... 0 bo bi ... bN -(bo+bl+...+bN)

then the differenced LP error covariance matrix is obtained with

(274) Rd = BCB T

and the GLS estimator becomes

(275) =-(I T R-'Y -'Y TR-1do.
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Figure 77. The A, inverse MSE of the DIGLS and IGLS cO estimators over a range
of SNRs. Also plotted is the CRB.

As before, an iterative algorithm naturally follows, and after rooting, the am-

plitude coefficients, co and c,,, can be estimated from the expanded pseudo-inverse

estimator

(276) [O 0

Figures 77, 78, 79, and 80 are inverse MSE and bias plots for comparing the

performance of the IGLS algorithm with the co constraint (IGLS co) and the DIGLS

algorithm derived earlier for the two mode DLTS problem. The performance

of the two algorithms is essentially identical until below the SNR threshold. This

is expected because both algorithms-although differing in appearance-attempt

to minimize the ML cost function. This bolsters our claim that introducing our
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Figure 78. The A, bias of the DJGLS and JGLS co estimators over a range of SNRs.

80-

60-

,M- CRB
r 4-- DIGLS

................................. IGLS GO

0

30 40 50 60 70 80 90 100
SNR dB

Figure 79. The A2 inverse MSE of the DJGLS and IGLS co estimators over a range
of SNRs. Also plotted is the CRB.
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LP methodology brings valuable insight to the superimposed exponential parameter

estimation problem.

6.6 Chapter Conclusion

We began the chapter by developing the fundamentals of DLTS, and its rela-

tionship with the superimposed exponential model. We discussed immediate esti-

mation applications of the work developed in the previous chapters for DLTS signals

with the baseline constant estimated and removed by hardware. Then, we expanded

our IGLS algorithm to estimate the baseline constant without the need of DLTS

hardware. Our differenced IGLS algorithm was facilitated by our understanding of

linear prediction and would be difficult to develop from maximum likelihood. The

performance of the DIGLS algorithm was verified with simulations and actual DLTS

data. Finally, we concluded the chapter with additional algorithms developed for
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DLTS and generated by our increased understanding of the superimposed exponen-

tial problem.
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VII. Conclusion

7.1 Primary Contributions

We began this dissertation by developing the exact maximum likelihood (ML)

cost function for estimating the parameters of superimposed exponentials in zero

mean, white, Gaussian noise. In the same chapter, Chapter II, we showed how the

ML methodology is related to the Cramer-Rao bound (CRB) and why the CRB

is useful for evaluating the performance of estimators. In the next chapter, Chap-

ter III, we gave a historical review of parameter estimators developed with the linear

prediction (LP) methodology. At the end of the chapter, we introduced critical-

previously omitted-statistical modeling considerations for linear prediction. With

our statistical considerations, we showed how the exact ML cost function, for the

superimposed exponential parameter estimation problem, can be developed with the

linear prediction methodology.

Attaining maximum likelihood performance with linear prediction is the most

important contribution of our work. Linear prediction can often provide critical in-

sight into the analysis of a problem. Previous to our work, the LP approach was

hindered by the erroneous assumption that estimators developed from linear predic-

tion are always inferior to estimators developed from maximum likelihood. With our

linear prediction methodology, researchers can utilize the insights and flexibility of

linear prediction and achieve maximum likelihood estimation performance.

We demonstrated this capability in our deep level transient spectroscopy (DLTS)

application chapter, Chapter VI. In DLTS, the signal is complicated by the presence

of a baseline constant. With our linear prediction methodology, the exact ML cost

function for the DLTS signal was intuitively developed for minimization. The result-
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ing algorithm provided DLTS parameter estimates significantly more accurate than

those of the estimators currently in use. Our algorithm was readily accepted by the

DLTS community because of their previous exposure to linear prediction and their

need for improved capability. In fact, our DLTS contribution has been accepted for

publication in the Journal of Applied Physics (30).

7.2 Ancillary Contributions

In our research, we developed additional contributions. In the linear pre-

diction chapter and the cost function minimization chapter-Chapters III and IV,

respectively-we proposed and defended an alternative explanation for the moderate

success of total least squares (TLS) as a linear prediction based approach for super-

imposed exponential parameter estimation. We suspect that the readily available

minimum norm solution, associated with overmodeling, in TLS is more influential

than the "increased perturbation" explanation often provided. In Chapter IV, we

showed how TLS, without overmodeling, is actually ill-conditioned at low SNR.

In that same chapter, we showed how TLS, without overmodeling, is equiv-

alent to the eigenvalue-eigenvector optimization technique used extensively for ML

cost function minimization. We compared both TLS, without overmodeling, and

eigenvalue-eigenvector minimization to the generalized least squares (GLS) approach

and concluded GLS is more appropriate for minimization unless additional con-

straints must be accommodated.

In Chapter V we carefully analyzed the one and two mode real exponential

problem. We developed unique algorithms as alternatives to iterative generalized

least squares (IGLS) and exercised IGLS at alternative initial conditions. We found

the IGLS algorithm to be consistently effective and relatively invariant to starting
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position. We endorsed the IGLS algorithm as the most versatile tool for super-

imposed real exponential parameter estimation. However, when the problem was

restricted to the estimation of a single real exponential, we found our application of

the golden section search to be superior. This fact was facilitated by our observation

that the exact ML cost function, for the single real exponential problem, is unimodal

in A-accept under very low SNR scenarios.

7.3 Immediate Additional Work

Programming the differenced iterative generalized least squares algorithm is

straight forward. Nevertheless, the algorithm needs to be packaged into a user

friendly program for wide spread DLTS applications.

Also, the single mode analysis for estimating the A of a real exponential in

Chapter V should extend to other single mode single parameter exponential prob-

lems such as the frequency of a pure sinusoid. The potential of directly minimizing

the exact ML cost function for a pure sinusoid with such techniques as a golden

section search needs to be investigated. Accurate, efficient single sinusoid frequency

estimation is a high interest subject (34, 66).

Finally, the two mode analysis for estimating the An of two real exponen-

tials in Chapter V should extend to other two mode single parameter exponential

problems such as two superimposed sinusoids at a known frequency with different

unknown phases. This problem arises in communication theory and might by effec-

tively resolved by constraining IGLS for phase only estimation. As always, further

investigation is desired.
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Appendix A. Properties of Special Matrices

A.1 Vandermonde Matrix V

The M x N matrix V, defined

(277) V= [T(Al) ;(A 2 ) .. (AN)]

where

(278) i (A)=[i 1~ A . A.M-1

and M > N, has Vandermonde structure. When each An is distinct, each column

of V is linearly independent. One way to prove this is to consider an M x M

Vandermonde matrix Vm with M distinct An. The determinant of V.. is

M(279) IVm= H AmIm

m 1 ,m 2 =1
ml >m2

For the determinant of Vm to equal zero, Am, must equal Am 2 . Since we know

each Am is distinct the determinant of Vm is not equal to zero. Therefore Vm is

nonsingular and each column is linearly independent (25:29). Because any subset of

linear independent vectors is also linear independent the matrix V formed from any

N columns of Vm has full column rank.
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A.2 Toeplitz Data Matrix Y and Y

The (M - N) x (N + 1) data matrix Y, defined

(280) =. PN]

where

(281) P= [y[N-n] y[N+ - n] ... y[M - 1 - n] ]

and M > N, has Toeplitz structure. Because Y is comprised of stochastic elements,

its properties have statistical connotations. First consider the underlying determin-

istic elements, s[m], under the same construct of Y so that

(282) SN]

where

(283) n= s[N - n] s[N + 1 - n] ... s[M - l - n]

It was noted by Tufts and Kumaresan (72:977) that the rank of S is N. This is

justified by the relationship

(284) = VE.

Every column of S is a linear combination of the first M - N elements of the N

linearly independent columns of V. Therefore, the rank of S is the rank of V which
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is N. From the linear prediction equation, we also know,

(285) A = 6

where 6 is a vector of the linear prediction coefficients bo... bN. Therefore, since b0

can be normalized to 1 without altering the relationship,

(286) g0 + Sb=

where

(287) S=[1 .2 9N]

and

... IT

(288) =[bi b2  bN].

Because b is a solution to go + Sb = 0, the rank of S must equal the rank of S which

is N (21:140). With dimension (M - N) x N, S has full column rank. Therefore,

each column of S is linearly independent.

In our research,

(289) g + ?o
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where the stochastic 'iD has mean vector zero. When we consider the (M - N) x N

data matrix

(290) = 1 92 "" VN]

we know the underlying signal matrix has rank N. We do not expect the addition of

stochastic elements to the underlying signal matrix in Y to cause linear dependence

in the columns of Y. Therefore, k is assumed to have full column rank, N. In

stochastic theory, every column of Y is considered to be linearly independent as

well (56:275). Therefore, Y is assumed to have full column rank, N + 1, even though

its underlying signal matrix rank is N. This theory extends to all noisy data matrices

with any number of columns. We can assume all noisy data matrices have full column

rank.

176



Appendix B. Complex Gradients

B.1 Derivation

Let b and 0 be complex N x 1 vectors and let A be a Hermitian N x N matrix.

Recall the gradient definitions

(291) DL 1 (L .DL)

and

(292) DO* 2 k(DL n i

where L is a scalar function and 0 = O + jO (Or and O are real vectors).

Notice that under the gradient definitions,

DL OLoo, a (or + j(oa
1 1(DL .DL

2 aoD, a(-9i))

1 M +(D L

2 a\or±JDoj

(293) (L)

Therefore, A is the complex conjugate of 9L

Next, consider the gradient 9L when the vector complex variable, 0, is reduced
86

to a scalar complex variable, 0, so that

aL=1 (DL aL)
(294) L I .DO 2 O -3oi
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With this definition,

00 1 0(0, + ji) .0(0T + joi)

00 2'O o , -J a0

210r, aor 10i 0,. 9O

= 1(1+0-0+1)

(295) = 1

and

0_* 1 ((r j-() .(0-jOn) 
00 21 00,. -J Oi

1 (09,. .00, .00,. 0'i

= 2(1-0-0-1)

(296) - 0.

Now, we can consider the gradient of bH with respect to a vector complex

variable 0. Let

L =bH
N

(297) - Zb*O9.
x=1
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Utilizing the definition of !L-, defined in Equation 294, for each scalar complex vari-

able 0., in 0, we know

X(z=, b:O) N N ooo. = E b;0o
x=i

00

(298) =bn.

Therefore,

(299) 0

Similarly, let

L =Hb
N

(300) - ZO*bx.
X=1

From the previous methodology, we know

a ( N_ O*bx) N

aon - = ax• 100

OOn

(301) =0.

Therefore,

(302) oo
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Finally, let

L = HA#
N N

(303) = Z O a,9yO.
y=l x=l

Again with the established methodology, we know

NN / 0

a axn=la)
N N 0 (90 Y

(304) 1 ax *.

Therefore,

a (OH A) =A T O* = (AO)*
(305)-

Consequently, from the complex conjugate relationship

(306) DL _(aL)*
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we know

,o (bHj)_

a (jHAU)_
(307) -j AO.
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Appendix C. Theory of the Cramer-Rao Bound

C.1 Property One

Recall from the first property of the theory of the CRB that if a PDF, f(9; j),

satisfies the "regularity" condition, then the error covariance matrix, C, of any un-

biased estimator, g(p), must satisfy the condition that C - F(O)- ' is positive semi-

definite. The matrix, F(6), is the Fisher information matrix and is defined as the

covariance matrix of the gradient of the log-likelihood function

(308) F(j) = E a IOn f (9;O) a In f (9;j) ) H
I.

For the difference of matrices, C - F(j)', to be positive semi-definite, each element

of the diagonal of C must be greater than or equal to each element of the diagonal

of F() - '. This implies

(309) Cn = E {(g(I n - n)( 9 )g} > F(6)nn.

We now prove that, with the "regularity" condition satisfied and the existence

of an unbiased estimator assumed, the difference of matrices, C - F(j)', must be

positive semi-definite. The proof follows the delivery of Scharf (61:221-229).

By definition, the area under a PDF must equal 1. Therefore,

00
(310) 1
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and

(311) f ; -

When we assume the "regularity" condition, we assume

(312) - f-(9 ; )dp L- 6

In our case, this is a valid assumption for the modeled PDF. Therefore,

(313) 00 af(9;_o) d9fo 00 a

Through the derivative, we know

(314) c1lnf(9;j) _ 1 af(9;j)
00 f(9; 0) 0

Therefore,

(315) j00 19f(P; = lnf (9; 0)f(;)d oP; = o.

The middle expression in Equation 315 is the definition of the expected value for

the gradient of the log-likelihood function. This implies that the mean vector of the

gradient of the log-likelihood function equals 0 or

(316) E{Oln f (9;O)}
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With the mean vector equal to 0, the covariance matrix of the gradient of the log-

likelihood function is

(317) F(j) = E

The matrix, F(i), is the Fisher information matrix. Because F(j) is con-

structed from a covariance matrix and because each of the y[m] elements in 9 are

stochastically independent, the Fisher information matrix is positive definite (54:190).

Thus F(#)-1 exists. Also, by construction, F(0) is Hermitian.

Continuing the proof, when we assume the existence of an unbiased estimator,

we assume

(318) E{g( )} =9.

Since E{} = ffL if(p; 0)dg = 6, we can say

E jg(p)} - E{ =j 0

(319) Eg(P) =

ff. f2 (g() -j) f (;)d 6

ff f(; ) (g(P)-_O)H d9 6 H.
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With the "regularity" condition and the chain rule, we know

00 (() _Hd =f f(; ) (g(V ) - dg)=

= o _ O(;~ -~ H f900-a (fj) 
dY

00 a j

(3 2j0 ) 
+ f (9-) 

o) "

= 00 oR - / )  o8 d9

-f (9; j) (g(9) - H) d9 - f ' s(9; #) Up
00 00

a Inf 0 ) H f (9; j)dg - I

a EI0nf (9;0)(g (9) )H

(320) - 6H

Therefore,

(321) E{Olnf;) (g() 1.

In words, the cross-covariance of the gradient of the log-likelihood function and the

estimator error vector is equal to the identity matrix.

Let us propose a vector comprised of the estimator error vector stacked over

the gradient of the log-likelihood function represented by

(322) g(9)- 0

L 90 2NxI

where N is the number of parameters to be estimated. With the assumptions and

derivations just presented, we know the mean of such a vector is 0 and the covariance
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matrix is

=~ ~ .E{ [n(0)] (g(q) -) 81a;)H
o

C I
(323) = I F (0)

Because Q, is a covariance matrix, it is at least positive semi-definite (54:190).

Therefore, for any vector fi,

(324) uQiji > 0.

If we define the vector i = W'i, where W is any matrix of acceptable dimensions,

then for any vector V,

(325) )HWHQIWD > 0.

Therefore, WHQ 1W is also positive semi-definite (25:399).

Let

1 0
(326) W ]
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so that

Q2 WHQ 1W

I - O -  C I 1 0

0 1 1 F(O) -F(O) - ' I

(327) = 0 F(j)

and Q2 is positive semi-definite.

To characterize the properties of the C - F(0)- 1 submatrix of Q2, let V be a

2N x 1 vector where the first N elements are arbitrary and the last N elements are

zero. Also, let 0 be an N x 1 vector of just the first N arbitrary elements of 'D, and

let Q2 equal the difference of matrices C - F(0)- 1. With these definitions, we know

(328) 2 = jHQ 2;J > 0.

Since the elements of i are arbitrary, Q2 = C - F(0)- 1 must also be positive semi-

definite. If we go one step further and let only one of the first N elements of 'D and

;v be arbitrary and non-zero, then

(329) H02 = T)HQ 2 D > 0

implies the elements on the diagonal of the difference of matrices, Q2 = C - F(0)- 1

must be greater than or equal to zero. Therefore, the elements on the diagonal of

C must be greater than or equal to the elements on the diagonal of F() - '. Thus

proving the first property of the CRB.
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C.2 Property Two

The second property from the theory of the CRB states that an unbiased

estimator, g(p), may be found that attains the CRB, in that C = F(j)- 1, if and

only if

(330) a1n f(q; ) = F() (g(q)-J)

We prove the if portion of this statement by assuming

(331) a1n f(9; j) F(j) (g(q) - )00

This implies

(332)

a In f (V;j)) I8n f (g;j)) H - F(j) (g(q) 0(g(q) ) F ()H
E )= , )'I E E1 F(j(()-) (g(q) oH F(j)H}

F(j) F(0)C F(U)H

F() - 1
- C

Recall that a parameter error covariance matrix of the form

is predicated on an unbiased estimator defined by

(334) E {g(q)} = .
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Therefore, if

(335) DlnS( ; ) f ( g) ( -))

then g(P) is the unbiased estimator that attains C = F(j)-'.

For the only if portion of the proof, assume g(g) exists and is unbiased. Recall

that when an estimator is unbiased,

(336) E { Oln f (9;j) (g(g) j)H}

This implies

By Schwartz' inequality for random variables (61:227),

(338) E {i9lnf(9;j) 1lnf(9; j)H} E {(g(j) - )9(g() - 0)H}

which can also be represented as

(339) 1 < F(j)C.

The matrix inequality of Equations 338 and 339 implies that the difference of ma-

trices, F(j)C - I, is positive semi-definite and transforms to an equality if and only
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if

(340) a1n f(q; 0) F(j)(g(q)- )

Thus proving the second property from the theory of the CRB.
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Appendix D. Sequential Quadratic Programming Gradients

D.1 Cost Function Gradient

As developed in Chapter II, the exact maximum likelihood cost function in

terms of the linear prediction coefficients, b, is

(341) L(b) =9H BH (BBH)-iB9

where

bN bN-1 "' bo 0 ... 0

0 bN bN-1 .. bo "(342) B =

0 ... 0 bN bN-1 ... b0 (M-N)XM

Because L is a scalar function, the gradient of L with respect to b takes the form

.9L(b)

(343) Ub) -

i9b

ObN

Let B+ represent the pseudo-inverse BH(BBH) - 1 so that

(344) L(b) = 9 H B+Bg
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and

OL(b) OL(VH B+BP)
ob - a

(345) -HL(B+B)
=

In our application, we programmed the SQP algorithm for the two mode prob-

lem, but because the projection matrix, B+B, is idempotent and Hermitian, we can

use the chain rule to express each partial derivative of the gradient, (B+B) in aab

generalized form. This insight is conveyed by Magnus and Neudecker in (49). Since

(346) B+B = B+BB+B

then

a(B+B) _ (B+BB+B)
ab,, ab,,

= B+B(B+B) O(B+B)B+B
ab,, Ob,,

(347) = B+B(B +B) + (B±BO(BB))H

Also from Equation 346

B = BB+B

(348) OB O(BB+B)
ab Ob,

OB OBB+B + BO(B+B)
Ob obn obn1
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Rearranging Equation 348 we see

BO(B+B) _ ORB OB

Ob,, Ob, Ob B +B

(349) = Ob (I B + B ).

Finally, Equation 349 can be substituted back into Equation 347 so that

(350) O(B+B) = B+a (I -B B +  OB (I- B+B) H

Therefore, calculating the gradient of the log-likelihood function, L(b), is reduced

to determining -12 for each mode and inserting it back into Equations 350 and 345.

With B defined by equation 342, the partial derivative of B with respect to each b,"

is the identity matrix shifted for the specific n.

D.2 Boundary Gradients

The gradients of the boundaries of the feasibility region are also needed for

the SQP algorithm. The boundary gradients for the two mode problem are straight

forward.

D.2.1 Boundary A.

GA(b) = b2

(351) oaA(6) 0 [
b 19 -1
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D.2.2 Boundary B.

GA(b) =-b - b2 -1

(352) OGA(b) -1Ob- [=1]

D.2.3 Boundary C.

1
GA (b) 4 +b

-42
(353) OGA(b) 2 [

b 9 1
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