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Abstract

A hybrid method of moments (MM) based numerical model for the electromagnetic scattering

from large finite by infinite planar slot arrays is developed. The method incorporates the novel

concept of a physical basis function (PBF) to dramatically reduce the number of required unknowns.

The model can represent a finite number of slot columns with slots oriented along the infinite axis,

surrounded by an arbitrary number of coplanar dielectric slabs. Each slot column can be loaded with a

complex impedance, allowing one to tailor the edge currents to provide a desired echo width pattern.

The surface equivalence theorem is used to convert the original slotted ground plane geometry

to an equivalent unbroken ground plane with magnetic surface currents. An integral equation based

on these magnetic scattering currents is solved via the MM. The magnetic currents are approximated

by a set of basis functions composed of periodic basis functions representing the edge slot columns

and a single PBF representing the interior slot columns. In particular, the PBF captures the behavior

of the central portion of the array where the perturbations from the edges have become negligible.

Based on Floquet's theorem, the PBF is able to represent an arbitrarily large number of slot columns

with just one unknown. The array scanning method (ASM) provides the contributions from the

individual edge columns. Finally, a newly developed one-sided Poisson sum formulation provides

an efficient means to account for the stratified dielectric media via a spectral domain conversion.

The hybrid method is validated using both MM reference codes and measured data. The results

clearly demonstrate the method's accuracy as well as its ability to handle array problems too large for

traditional MM solutions.

xvi



Electromagnetic Scattering from Semi-Infinite Planar Arrays

I. Introduction

Most of the fundamental ideas of science are essentially simple, and may, as a rule, be
expressed in a language comprehensible to everyone.

- Albert Einstein

Periodic screens have long been of interest to the scientific and engineering communities. Com-

monly called frequency surfaces (FSS) for their frequency filtering properties, they find application

over a large range of the electromagnetic spectrum. They hold particular interest to the Air Force as

antenna radomes and dichroic antenna feed systems.

FSS typically consist of regular arrays of either conducting patch elements deposited on a

dielectric substrate or apertures in a conducting surface. Figure 1 depicts an example FSS geometry.

Arrays of this type exhibit total reflection (patches) or transmission (apertures) near the resonance

of the individual elements. In studying the electromagnetic scattering from these structures, most

authors use an integral equation formulation which connects the currents induced on the periodic

elements to the fields scattered from the FSS. To keep the problem tractable, they approximate the

actual curved finite array with a flat infinite array and use Floquet analysis to reduce the infinite

domain problem to one involving a representative cell. The Method of Moments (MM) is then used

to convert the integral equation into a system of linear equations suitable for numerical solution.

Traditionally the actual implementation of the MM in infinite array analysis has taken two

different tracks. The first, pioneered by Munk and others at The Ohio State University [26, 28],

approximates the induced currents as filamentary currents. The authors use a plane wave expansion

method to derive very efficient expressions for the radiated fields. The Periodic Moment Method

(PMM) code written by Henderson [19] is an excellent example of the use of this technique.

The second implementation, developed by Mittra and others at the University of Illinois [23],

favors more complex basis functions to better model the actual element currents. In this case the

1



Reference Cell

Figure 1. Typical FSS Geometry

authors transform the integral equation to the spectral domain where they use a conjugate gradient

technique to solve the system. Although generally more accurate for a given number of basis

functions, codes based on this approach tend to be less efficient.

Regardless of the solution method, all of the infinite array techniques fail to account for the

edge diffraction or curvature effects present in real world arrays. A knowledge of these effects is

critical to advanced radome and antenna design. Consequently, recent research efforts have focused

on finite array analysis methods.

Due to their finite nature, Floquet theory does not strictly apply to these arrays. The current

on each of the array elements must be treated as an independent quantity. Most of the research in

this area falls into one of two categories; studying the effects of termination using relatively small

finite-by-infinite or finite-by-finite arrays or finding efficient ways to compute element currents in an

effort to handle large array sizes. In both cases, the general approach begins with the development

of an integral equation involving unknown element currents. Some authors choose to represent the

2



integral equation kernel in the spatial domain where others prefer the spectral domain. Next, one

approximates the currents using sub-domain or entire domain basis functions. With an appropriately

defined inner product, one can convert the integral equation to a matrix equation which can then be

solved using either Gaussian elimination or iterative techniques.

Examples of this general approach include Kastner and Mittra's [20] paper based on the spectral

iteration and conjugate gradient iteration techniques applied to finite-by-finite planar patch arrays,

Grounds and Webb's [14] attack of the finite-by-infinite problem using a spectral domain Green's

function formulation, and Skinner, Munk, and Barr's [34, 2] work based on the array scanning

method (ASM) applied to the finite-by-infinite problem in a layered dielectric media. All of these

approaches are able to explicitly model the edge termination effects characteristic of finite arrays.

Unfortunately, their strength is also the source of their weakness. Since the current on each array

element in the finite dimension is an unknown quantity, these methods are limited to relatively small

arrays by available computer resources. Many authors have proposed various schemes to alleviate

this fundamental problem [4, 6, 7, 15, 22, 36, 37], but the literature is devoid of calculated results for

finite arrays larger than tens or hundreds of elements.

The limitations of these finite and infinite array methods suggest a hybrid approach for the large

array problem. Surprisingly, only a small number of papers on such techniques have been published.

Researchers at the University of Illinois [8] have investigated truncated and curved strip arrays via a

technique which approximates the induced current on each element as if it were a member of an infinite

array. The authors then replace the edge element currents by those calculated for a much smaller

array. Unfortunately, this method gives poor results for incidence angles near grazing where the

coupling between the edge elements and those interior to the array becomes significant. In addition,

the authors make no attempt to model the dielectric coatings common in radome applications.

Felsen and Carin have recently investigated finite wire arrays using a Floquet current approx-

imation on two semi-infinite1 sub-arrays [10, 12]. They combined the two sub-arrays such that

'The term "semi-infinite," in the context of this dissertation, will always refer to an array with only one edge analogous
to a half-plane. (i.e. Along the semi-infinite axis, the elements go on "forever" in one direction, but terminate at some
point in the opposite direction.) This definition contrasts with one commonly used in the literature to refer to an array
which has a finite number of elements in one direction and an infinite number of elements in the orthogonal direction.

3



the composite currents are that of the desired finite wire array. Several assumptions constrain their

analysis. Namely, they assume all propagation is ray optical. Also they ignore any deviation in the

edge element currents as well as multiple scattering between array elements. As a result, their for-

mulation gives poor results near the grazing incident angles common for forward aspect illumination

of radomes.

Finally, in his 1973 paper, Wasylkiwskyj [40] examines the mutual coupling effects in semi-

infinite antenna arrays. His analysis is based on a Wiener-Hopf solution technique for an infinite order

difference equation modeling the antenna element port currents. Wasylkiwskyj's transform approach

provides an alternate solution methodology which, to the author's knowledge, has not been applied

to large finite arrays.

The need to account for array truncation in large arrays especially at grazing incident angles

along with the short-comings of existing hybrid finite-infinite analysis techniques motivates this

present research. Specifically, by more accurately modeling the currents induced on a semi-infinite

array, the scattering from an arbitrarily large finite array can be synthesized in a manner analogous to

that used by Felsen and Carin. The resulting formulation should provide more accurate radar cross

section (RCS) predictions, especially in the areas where existing hybrid techniques fail.

1.1 Problem Statement

Improved FSS analysis methods are required for the design of advanced antenna radomes

used in modem aircraft. Existing techniques based on infinite array models cannot account for

the perturbations caused by edge effects at radome-to-aircraft boundaries nor the radome curvature

characteristic of conformal designs. Finite array analysis methods, while able to handle these

phenomena, are restricted to relatively small array sizes by modem day computer memory limitations,

especially if dielectric layers are involved. The infinite/finite hybrid techniques proposed to date may

not sufficiently represent the true coupling between the edge elements and the central portion of a

large array. The objectives of this research are first, to develop and test a new hybrid PMM/MM

approach which addresses this coupling issue to more accurately predict the performance of large

4



finite planar arrays and second, to use this approach to analyze the isolated "diffraction" of a single

FSS termination.

1.2 Solution Approach

This dissertation presents a new approach to combining infinite array and small finite array

analysis based on the concept of a "physical basis function" (PBF). Although couched in different

terms, the PBF concept was originally proposed by Morita [24] and later Tew and Tsai [38] in an

effort to apply the MM to infinite planar structures. Burnside, Yu, and Marhefka [5] then applied it

to the wedge diffraction problem, combining the geometrical theory of diffraction (GTD) with the

MM. To the author's knowledge, however, the present work represents the first application of the

PBF concept to periodic structures.

The core of the PBF concept involves a fairly straight-forward application of a priori knowledge

of the induced current behavior to the MM. Consider the currents impressed on a large planar array

by a plane wave illumination (large implying many wavelengths). Starting from an edge and moving

toward the center of the array, there will be some point where the current amplitudes become

approximately constant over a large central section of the finite array. Over this portion one can use

the PMM to determine the representative admittance or impedance of these elements. This PBF can

then be used along with the edge element basis functions to create a coupling matrix which relates

the unknown current expansion coefficients to known coefficients dependent on the incident field.

The coupling matrix now explicitly incorporates the influence of the "infinite" portion of a large

finite array into the small finite array analysis in a manner analogous to how the interconnection

matrix of diakoptic theory [13] combines the impedances of individual structural elements into a

composite structure matrix. This technique represents a departure from traditional hybrid methods

which calculate the currents induced on the two portions of the array separately and then combine their

effects in the far-field through a radiation integral analogous to the physical optics approximation.

The remainder of this section lays out the general hybrid PMM/MM approach using a wire array in

free-space as an example geometry.
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Consider the semi-infinite array of thin wires shown in Figure 2a. Note that the wires in the

array are infinitely long and form an array which continues forever to the right. Using the surface

equivalence theorem, one defines a new geometry where impressed currents radiate into free-space.

Specifically, one replaces the perfect electric conductor (PEC) with a Huygens' surface and defines

impressed surface currents of the form

J fx(1)

where J, and M, are the impressed electric and magnetic surface currents, ft is the outward normal

of the Huygens' surface, and HI and E are the magnetic and electric fields at the Huygens' surface

in the original problem. With a thin wire approximation, the electric surface currents are modeled by

z directed filamentary currents at the center of the wires. There are no impressed magnetic currents

since the total tangential electric field is identically zero on the PEC surface in the original problem.

The resulting equivalent problem is depicted in Figure 2b.

The equivalent problem contains an infinite number of unknown currents making a numerical

solution via a traditional MM approach impossible. In order to make the problem tractable, one

assumes the current amplitudes vary significantly only over the first B elements. The remaining

elements have approximately equal amplitude currents which differ by a Floquet phasing factor

dependent on the incident plane wave direction. This assumption reduces the problem to that of

finding (B + 1) unknowns as shown in Figure 3.

One next forms an integral equation relating the unknown currents to the known incident field.

As is common in these formulations, the total tangential electric field boundary condition is used to
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Figure 3. Equivalent Geometry

obtain an integral equation of the form

fix + 1: F(-j =) 0
b=0

B

b=0 PES

where fi is the outward normal of the Huygens' surface, V- is the incident electric field on the

wire surfaces (S), and -E a(-ffb) is the scattered electric field due to the b 1h current element. Note

that in general, one can directly express the fields due to a current via the radiation integral and the

appropriate dyadic Green's function [39]

r (3)
S

I I I I I8



where F(1, R) is the dyadic Green's function, -Jb(R') is the bth element current density, and R'

and R denote the source and observation locations respectively.

One now solves Equation (2) via the MM by first expanding the unknown currents with

appropriate known basis functions, VCb(PY). In this case, B impulse basis functions and one PBF are

required. These take the form
7fb() J b(') (4)

where

4'bP)- b o

(b b= 1,2,...B

and

q = (6)

Note that Pq=0 locates the "edge" of the PBF and 9 denotes the incident plane wave propagation

direction. Inserting Equation (4) in Equation (2), one obtains the expression

B

ft X -fix 1 E(Jb6b(P')) +(-, JO, J1,...JB) (7)
b=O

where E is the error function associated with the current approximation.

Following Harrington's MM formulation [18], the next step in the numerical solution involves

defining an inner product and forcing a chosen set of (B + 1) testing functions, Ot (j5), to be orthogonal

to the error function. For the wire geometry, the filamentary current nature suggests a Dirac delta

testing function. In order to avoid the Green's function singularity, one places the test location a

wire radius away from the basis function for the self-coupling terms. One also defines the testing

function associated with the PBF to be nonzero only over a chosen reference wire element to keep

the coupling matrix elements bounded. Dotting these testing functions into Equation (7) and taking
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the inner product results in the expression

S S B (8)

- : A~ fb [ftX S(R 0))] #Ot(05) d
b=0 S

where t = 0, 1,... B and E 8 (Rb (T)) is the field at j5 radiated by the bth basis function. Equation (8)

now defines a (B + 1) x (B + 1) matrix equation which can be expressed in matrix form as

Voi= Zoo Zb i o (9)

vt Zto Ztb J

where the 0 subscript denotes the basis and testing modes associated with the PBF. Clearly the

"influence" of the neighboring infinite array on the edge elements is contained in the cross-coupling

terms, Zob and Zto. Note the terms with the t and b subscripts actually represent sub-arrays and sub-

matrices associated with the edge elements. One can calculate the entries in the matrix Equation (9)

for the wire array from Equation (3) by using the appropriate dyadic Green's function.

Vo = e -j 'p o (10)

Vt = e- j s 'pA (11)
oo= 7 H2(3f0 f[eafsP (12)

q=0

Zob =(13)

zoo = - ' HO2 (') IP - Pq1) e-j 8A 'q (14)

q=O
Zb = -±OH(2)(OjPO - -b (15)
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One can also invoke the reciprocity theorem [17] to exploit symmetries in the edge element sub-matrix

thereby reducing the matrix fill time. Standard matrix equation techniques can then be employed to

solve the system, obtaining the desired current coefficients.

The final step in the hybrid PMMIMM procedure involves using the calculated current ex-

pansion coefficients to determine the scattered fields via a radiation integral. Specifically, one finds

the field from a large finite array by solving the semi-infinite array problem twice, once for each

edge. One then synthesizes the currents on the finite array by shifting the edge element currents

appropriately and assigning the "central" elements the PBF current amplitude with an appropriate

linear phase. The radar echo width is then calculated from the scattered fields.

1.3 Dissertation Summary

The remaining chapters take the general procedure just outlined and apply it to two geometries;

a two-dimensional wire array and a three-dimensional slot array, both in a stratified dielectric media.

Chapter II begins by deriving the coupling matrix entries for the wire array. It presents both spatial

and spectral domain forms for the radiation from the PBF and edge element basis functions as well as

addresses the complexities introduced by adding a dielectric slab to the geometry. Next, the chapter

formulates the excitation vector entries, again taking into account the slab boundaries. Finally, the

chapter concludes with a discussion of how the solution vector entries can be used to calculate a

far-field radiation pattern for a large finite array. Chapter III gives the corresponding analysis for

the slot array. Chapter IV examines the validity of the PBF formulation through reference code

and measurement comparisons. In general, the array's induced currents are compared, since radar

echo width (REW) calculations tend to smooth out errors in the solution vector. For the measurement

comparisons, however, the author was forced to use RCS calculations as only measured RCS data was

available. Finally, Chapter V re-caps the dissertation, summarizing the salient results and suggesting

areas for future research.
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II. Two-Dimensional Semi-Infinite Wire Array

A journey of a thousand miles begins with a single step.

- A Chinese Proverb

As a proof-of-concept, this chapter develops the hybrid PMM/MM solution given by Equa-

tion (9) for the simple two-dimensional wire geometry depicted in Figure 4. The resulting expressions

form the basis for the wire computer code validated in Chapter IV. Equation (9) naturally breaks

down into three parts. This chapter follows this organization by first examining the coupling matrix,

followed by the excitation vector, and finally the solution vector. Where appropriate, each of these

sections is divided into subsections covering the homogeneous and stratified media cases respectively.

2.1 Coupling Matrix

The free-space analysis used to illustrate the PBF concept in Chapter I forms the common

starting point for both the dielectric coated wire and slot arrays. In the wire case, the array is in a

IY

Region 1 Region 2 Region 3

Figure 4. Semi-Infinite Wire Array Geometry
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homogeneous media with region two's constitutive parameters (see Figure 4). Since the filamentary

currents are - directed, one can write Equation (8) as the scalar equation

[JoY H q2)(e-0-ft - -p -t. jeqj -o

+ JbH2)(/Pt ) S (16)

b=1

where Pit (test function location) is confined to the Huygens surface of the tth wire, i5q (PBF element

location) is confined to the center of the qth wire, Pb (basis function location) is confined to the center

of the bth wire, and all quantities related to the constitutive parameters are those of region two. Note

how the shifting property of the Dirac delta function reduces the surface integrals to point evaluations.

Equation (16) forces equality between the fields radiated by the equivalent currents and the incident

field at these points on the Huygens surface.

Equation (16) is known as a "spatial domain" expression. In order to account for the dielectric

slab, one could derive a non-free-space Green's function satisfying the appropriate field boundary

conditions at the slab boundaries. The author chose an alternative approach based on a "spectral

domain" representation of Equation (16). In the spectral domain, one deals with plane wave field

expansions. Thus, planar boundaries can be introduced with relative ease via Fresnel coefficients [17].

In addition, the spectral domain summations are, in general, more convergent than their spatial domain

counterparts, leading to more efficient computer codes. The means for transforming to the spectral

domain vary for the different parts of Equation (16). Specifically, one can partition the right hand

side into two parts representing the fields radiated by the PBF and the fields radiated by the individual

edge elements. The following subsections develop the spectral domain representation of these fields

which are related to the coupling matrix entries through the unknown current coefficients, Jb.

2.1.1 Physical Basis Function.

2.1.1.1 Physical Basis Function Radiating to Test Function in a Homogeneous Media.

Figure 5 depicts the PBF in a homogeneous media with constitutive parameters E2 and 1u2. One can
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Figure 5. PBF Radiating to Test Function Location in Homogeneous Media

express the fields radiated by the PBF in the spatial domain as a collection of cylindrical waves.

EPBF(pt) - WAJO S -pq(2SP

q=O

4 E .H (3(qd - xt) 2 +y2 e-isqd (17)

q=O

Taking a hint from Munk's work [26, 28], one would like to use the Poisson sum formula to convert

Equation (17) to the spectral domain. Unfortunately, the one-sided summation prevents a direct

application of the Poisson sum formula. Appendix A presents a one-sided version of the regular

Poisson sum formula [29] applicable to summations such as in Equation (17). Equipped with this

formula, one can convert Equation (17) to a collection of plane waves. Specifically, one uses the

transform pair [3]

g(t) - erV//3_ t2  G(w)= h (/3v(w - x)2 + Y) (18)
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with the following variable substitutions in Equation (185)

WO = d (19)

t = (20)

to arrive at the spectral domain expression

w 00j j eik2-s±)+ytVp 2 2]
EPBF(Pt) 4d e - WT- ±

j i r+ V/ 2 -(s± + ) 2drk=-00W - L

-- - r2 ± _±) d-
7r f' V 0 Y -_ ( 0 + O r + T

= _74 ejop)-fi, j fej'3r.p e 2 (rxp
+4E- dr (21)

d - puO Pr 0 -j'r - P )

where the plane wave propagation vectors are

'= +x ) +- 1- +

= Px+ypy (22)

f = -rx+ - (23)

Note that both py and iry are defined to be either positive real or negative imaginary in order to satisfy

the radiation boundary condition. (i.e. The fields must be bounded at infinity.) This also restricts Yt

to the upper half-plane.

Equation (21) gives the spectral domain representation of the fields radiated by the PBF in a

homogeneous media. As promised, this form is more convergent than the spatial domain form owing

to the exponential damping in the higher order spectral terms. Specifically, when s, + k > 1 and

Jar, > 1 the plane waves become evanescent, decaying rapidly for test locations out of the array

plane. It is also interesting to note the one-sided Poisson sum generates both discrete and continuous
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spectra. The discrete spectrum incorporates the periodic nature of the array whereas the continuous

spectrum accounts for the diffraction effects caused by the array termination. In fact, the similarity

of the continuous spectral integral to the diffraction integral encountered in the half-plane scattering

problem provides clues to its efficient evaluation.

The first of these clues allows one to remove the weak singularity, -, from the integrand.
Ty

Felsen and Marcuvitz [11] suggest the variable substitution

T,; = sin(V) (24)

= cos(v) (25)

d'r' = cos(U)dT. (26)

leading to the angular spectral integral

Ik = (Silsin(u) - P ) dv (27)

C

The integration contour, C, lies in the regions of the complex v plane where Im{cos(v)} < 0 as

indicated by the shaded areas in Figure 6. The deviation of C from the real axis represents a slight

loss in the wave number /. Note the pole at v, = sin-(px) is not shown in the figure. One can

further simplify Equation (27) by defining a new cylindrical coordinate system displaced from the

origin by one half the inter-element spacing (Figure 7).

With the definitions

Pt = xt + + y2 (28)

't = tan- (29)
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Figure 6. Angular Spectral Integral Contour

and the cosine addition formula, the angular spectral integral becomes

Ik= ](Ji1 d (30)
C

One is now faced with the task of evaluating Equation (30). Even though it is a principle value

integral, the non-integrable singularity at v. makes straight-forward numerical integration difficult.

Again taking a clue from its similarity to a diffraction integral, one might consider evaluating

Equation (30) asymptotically. In fact, for many of the off-diagonal coupling matrix terms, /3/5t

can be considered a large parameter. Appendix C presents such an asymptotic evaluation, clearly

demonstrating the tremendous computational advantage over numerical evaluation schemes.

Where asymptotic evaluation is not possible, one must evaluate Equation (30) numerically.

The author found the following singularity extraction technique works quite well. One first breaks

the integration contour into three regions, the vertical path [-(! + icc), - ), the real axis (-!, f),
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Figure 7. Alternate Cylindrical Coordinate System

and the vertical path (, + + joo]. Along the vertical paths, one redefines Vold T- (1 + jVIe.)

where 0 < v2 , < oo, transforming them to the real axis. Thus, the angular spectrum transformation

for these paths becomes

= Fsin (2 + jV) = Fcosh(.) (31)

Equation (30) now can be written

Ik =3#P -J ~ V+t dv±+ - ,)tcsV dv +j ej-! i~j-t dv
I [f J (cosh(v) + p)d (sin(v) - p() cosh(v) - p )

11 + 12 +13 (32)

where the principle value occurs in only one integral for a particular value of p .

One next forces the numerator of the appropriate singular integral to go to zero exactly at the

singular point, effectively removing the singularity. The extracted singular integral is then in a form
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suitable for an analytic solution. Thus, Equation (32) becomes

[k (-je/3'5i si(jV+ ) - N 1,) ____+_N1,___

[I (cosh(v) + Px) dv (cosh(v) + px:)

- 2

(ej~~tcos(-ekt) -N2, ) dv + N2, f dv

+ j (sn~v) (sin(v) - p,:)

- jj11sin(jv- t) - N3 )0li(

0 0

where

Ni0  = jjP5 sin(jv0 +4t) (34)

N20  = e-jo)5 cos(v-b- ) (35)

N 30  je j3 5 sin(ijo,-Pt) ( 6

Abramowitz and Stegun [1] provide analytic solutions for the extracted integrals

f(cosh(v) + p ) { p 1+./ T:F v -I (7
_1 

1+p- -i

(sin(v) - PX _2 tan-1 tan- ___

00 dv 2 (a - iP 38
[tani~v -r yx -1)1
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where one chooses either the upper or lower line for p2 < 1 or p2 > 1, respectively. Thus, the

spectral domain expression for the fields radiated in a homogeneous media can be written

Ezd+F(t) {e+ --TrJ Ik  (40)

where 'k is evaluated either asymptotically or numerically.

Equations (17) and (40) provide alternative representations for the field radiated by the PBF.

These expressions, with the J0 constant removed, define the mutual coupling between the basis and

testing functions. Since filling the coupling matrix constitutes a significant portion of the overall

computation time, one would like to use the most efficient form. The next few paragraphs examine

both the spatial and spectral domain expressions for the free-space semi-infinite wire array Green's

function calculated from Equations (17) and (40) by multiplying with the constant - Figure 5's

geometry, with parameters d. = 0.)1A, 9 = - cos(30 ° ) + sin(300)], and (E2 , P2) = (Ctzo),

serves as a typical test case. The test location, Pt, is scanned along a path parallel to the & axis at an

"elevation" of yt = 0.1/,o.

Figure 8 contains the Green's function's real and imaginary components and magnitude as the

test point sweeps past the array edge. As one would expect, the magnitude of the Green's function

decays monotonically to the left, away from the array edge. Conversely, as the test point moves to

the right over the array, the magnitude settles down to the same value one obtains from a fully infinite

array. Note that the data in this figure can come from either the spatial or spectral domain expressions.

The question is which one is more efficient.

Figure 9 shows the number of terms required by each expression to converge to the criteria

Sum - TruthTruth < 0.0001 (41)Truth

The "Truth" represents the value obtained from either expression pushed to the point where the next

term does not alter the previous partial sum by more than machine accuracy. In addition, the author

used the "circle-average" summation acceleration technique described in Appendix B to reduce the
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Figure 8. Semi-Infinite Wire Array Green's Function

number of terms required by the spatial domain expression. The spectral domain summation did

not require acceleration. Clearly, the spectral domain is the domain of choice if one is interested in

reducing the number of summation terms.

The final figure in this section numerically confirms the proper evaluation of the continuous

spectral integral in Equation (40). From Equations (174) and (185) in Appendix A, it is clear that, as

the test point moves to the right over the semi-infinite array, the continuous spectrum should settle

down to a value equal to the discrete spectrum which, in turn, is exactly half the value obtained for

a fully infinite array. Figure 10 plots the discrete and continuous spectra in the complex plane as the

test point moves on the scan path from 1.0A, to the left of the array edge to 1.0Ao to the right of the

array edge. The points designated by the "+" show the discrete and continuous spectra have nearly

the same magnitude and phase over the array. As the test point moves past the array edge ("x") to a

location left of the array ("o"), notice how the magnitudes again become similar, but now are strongly
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"out of phase." The resulting cancelation reduces the field magnitude as the test point moves away

from the array.

To re-cap, this section first developed and then examined the spatial and spectral domain

expressions for the mutual coupling terms associated with the PBF in a homogeneous media. The

results clearly demonstrate that, for most cases where the test location is out of the plane of the array,

the spectral domain expression is preferred. The next section addresses the geometry containing a

dielectric slab. There the other advantage of the spectral domain form will be apparent, namely, the

ease with which one can introduce planar boundaries.

2.1.1.2 Physical Basis Function Radiating to Test Function in a Stratified Media. As

mentioned earlier, the homogeneous media analysis forms the foundation for introducing a layered

structure. Consider adding a dielectric slab to Figure 5. In addition to the direct coupling between the
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PBF and the test function at Pt, one must now account for the plane waves reflected back and forth

between the two boundaries (Figure 11). Fortunately, these boundaries are infinite parallel planes.

One can use the concept of effective Fresnel coefficients [17] to calculate the plane waves' magnitude

and phase as they reflect off the boundaries. In essence, the problem comes down to determining the

composite effect of a plane wave radiated by the PBF rattling between the slab boundaries and then

terminating at the test location.

In his work on periodic surfaces in stratified dielectric media, Munk [26, 28] developed a set

of effective reflection and transmission coefficients useful for propagating a plane wave through an

arbitrary number of parallel dielectric slabs. His coefficients use a polarization decomposition based

on the plane of incidence shown in Figure 12. According to Munk's convention, 7 lies in the plane of

incidence and is measured from the negative axis, whereas a lies in the xz plane and is measured

from the & axis. The author adopts Munk's convention for this research. The interested reader is
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Figure 11. PBF Radiating to Test Function Location in Stratified Media

referred to the cited reports for details concerning the coefficients' development. Since the incident

plane wave propagation vector is confined to the xy plane, the 2 polarized fields are perpendicularly

polarized and require the following reflection and transmission coefficients'

"T1,1+1 2 7(1+i)Qy(I) (42)

17(/+1) Qq() + 17(t) Qy(1+1)

1 (t+1)OLY(I) - 7() y(l) (43)
77(1+1)Lt?() + 7()Qy(/+l)

where 9 (t) is the plane wave propagation vector's component in the 1th slab and 77(t) is the

slab's impedance. Note these coefficients apply to half-space boundaries only. For the multi-layer

geometries discussed in Chapter III, one must use the effective Fresnel coefficients defined by Munk.

1These are valid for waves propagating in a direction with a positive 9 component. One can calculate the reflection
coefficient for waves with a negative 9 component from the relationship, rt+,t = -rt,+,.
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Figure 12. Plane Wave Polarization Decomposition

Now, to determine the composite plane wave at 7, one groups the bouncing plane waves into

the four infinite summations shown in Figure 13. These summations are defined in terms of the plane

wave's departure and arrival directions. For example, summation one consists of the plane waves

leaving the PBF reference location, (x0 , YO), with a positive P component and arriving at the test

location, (Xt, y), with a positive P component. Summation two consists of the plane waves with a

negative P departure and positive P arrival. Summation three consists of plane waves with a positive

departure and a negative P arrival. Finally, summation four consists of the plane waves with a

negative departure and a negative P arrival. Mathematically, these summations can be expressed

-- e [1 + r 2 3, 2 -e3P22
(Y2f1),n2 + 3FN 1e3I 3 24(Y2-Y1)eY2 (44)

direct [F 2 1e -22 (y) Y ) 2 l±23 Y2 Y20 ... ] (45)

" irect [F23 e -P2 2 (Y -
Yt)

O
y2 + 23 F2 ie +...]22(2Y2-IYt)ey2 ± . . (46)

-- dr2F 2 l2 222
(YbY2±'/2 )) --2 2FjF3 22(yb-yt+ 2

(y2-Y1))Qy2 __.. .] (47)
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Figure 13. Decomposition of the Plane Waves Internally Reflected in the Dielectric Slab

where E d rect is the plane wave propagating directly to the test location without any bounces. In

Edirectparticular, Et is a spectral component from either the discrete or continuous spectra of the

homogeneous media Equation (21). The author found it numerically expedient to subtract out the

direct term from Equation (44) and express it in the spatial domain. The remaining summations are in

the form of geometric series which can be expressed in closed form. Combining these summations,

one arrives at a multiplier to the homogeneous media field expression which accounts for the presence

of the stratified media. Munk calls this multiplier a "T-factor."[26, 28]
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One can now express the field radiated by the PBF in the dielectric slab as

(-B ) 427 0H2 09'P

EZJF~t 4 1:~7~ [ 0 H 2 (/32 1j - PqDe-~28 P
Iq=0

1- 00 e j3 2P2 T(py 2)

M k=00 Py2

j 0ej2r'P, e-A2#-(-x--2)]
Sf 'r - P2) T(ry) dir (48)

7- 00 P2

where the T-factor 2 is

T(p,~ 2) - r 23 e-i 2
P2(Y

2 - t)ey2 (1 - r1 2 ei2 021 y2) - Fi 2 e32 2'Qy2 (1 + r 2 3 e- 2 2Y2y2 (49)
1 + 1 2 r 23 e-j 2fl2('Y2-l)gy2

Since Equation (48) is based on the homogeneous expression, the spectral integral has the same singu-
larities as before. One can use the same regularization procedures to remove the weak L singularity

and the singularities associated with the k dependent grating lobes. Unlike the homogeneous media

case however, one must deal with the singularities introduced by the T-factor. These singularities

occur when the dielectric slab has a greater permittivity3 than the surrounding material, causing the

spectral terms to excite surface waves in the dielectric slab. Quantitatively, this occurs when the

denominator in Equation (49) goes to zero. Lets examine this situation in more detail.

Using Equation (23) in Equation (49), one can write the condition for a surface wave singularity

as

1 + F 1 2 F 23 e - j 2)2(Y2 -Y) _ = 0 (50)

2The expression, as written, used the fact the PBF is located at yo = 0.
3Assuming non-magnetic materials.
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where from Equation (43)

r12= - (51)

VTI- -+- -2 + -v/  r.2-

r-23 = (52)2Z + v/  2

and T. 2 sweeps through the range -cc < 7,2 < cc. Recalling that Equation (48) is based on a

closed form representation of the infinite series, one might be concerned with its validity over the

entire 7,2 range. Fortunately, as Skinner [33] indicated in his dissertation, one can add a slight loss

to the propagation direction and thus extend the equation's valid range to the entire integration

range. This approach also jives with the physical reality that no material is perfectly lossless. For

1r,21 < min ( V- ', /-, the corresponding plane wave forms such an acute angle with the slab

normal that some of the wave escapes the surface (i.e. IrI < 1) and no singularity exists. On the other

hand, when 1r21 > 1, the 9 propagation becomes purely evanescent and the reflection coefficients

can be written

1712 T2 -(53)

VT' 2 - T 2 -

X2 __ e2

r 23 = ,2 (54)
VT -1 + V; 2 -f

x E2

where E2 > El, C3 . Thus,

r2r 2 3 ei2 P2(Y2-Y1) V 2 < 1 (55)

and again no singularity exists. Therefore, the surface wave singularities are confined to the range,

min ( -a)< JTx 2 j < 1 and can be found by solving Equation (50) forrT2.

Since Equation (50) is a transcendental equation, one must use an iterative technique such as

Newton-Raphson to locate the singularities. Figures 14, 15, and 16 contain plots of the T-factor in
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Figure 14. T-factor Singularity in a E2 = 2co, 0.2A,0 Thick Slab with a 0.1 Loss

the neighborhood of one of these singularities. The geometry in these plots consists of a 0.2,o thick

slab in free-space with a relative permittivity 62 = 2c, and a directed loss of 0.1, 0.01, and 0.001

respectively. As Skinner [331 found in his work, the area under the real and imagiary curves

approaches a limiting value as the loss goes to zero. Based on this observation, the author chose to

handle the T-factor singularities by adding a slight P directed loss to the denominator and integrating

the continuous spectrum finely in the neighborhood of the former singularity.

Equation (56) gives the final form for the field radiated by the PBE. The author implemented

this expression in the two-dimensional wire code validated in Chapter IV.

PBF(pt) = _P2772J° H (2 )  -  -  j P28 2 'P,

q=O

+ 1 1 jP0- T(Py2) + je (56)
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Figure 15. T-factor Singularity in a E2 =2c0, 0.2A, Thick Slab with a 0.01 Loss

where

[7 (-jei'320" sin(P/+ It)T(- cosh(v)) - Ni1) dv
±T cshv ,2 dv + N1,J(cosh(v) + ,2)

2 (eiP fit cos(v OiT(sil(v)) - N2,) 2 _______

+(sin(v) - P:2) Tv+N (sin(V) -P,;2)
2 2

(0jefP~ ft sin(iv-t)T(cosh(v)) - N3,, dv 1
+ f ((cosh(v) - Px2) dv+±N3,]'(cs(v) - P,;2) (57)

0 0
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Figure 16. T-factor Singularity in a 62 = 2c, 0.2Ao Thick Slab with a 0.001 Loss

and

N10  = -je 25 8in(jvo+Ot)T(_ cosh(o)) (58)

N20  = e-ij2)PcOs(v°-¢t)T(sin(vo)) (59)

N3o = je j2/5tsin(jv°-o-)T(cosh(vo)) (60)

As before, the extracted integrals are computed using Equations (37), (38), and (39)4 . Figure 17

plots the PBF magnitude using Equation (56) for four different slab permittivities over an & directed

scan similar to that of Figure 8. In this case, d. = 0.3A, s3 = -[& cos(30 °) + sin(30°)], and

4A note of caution concerning the singularity extraction procedure for the grating lobe singularities; The numerator
must be a fairly well-behaved function in the vicinity of the singularity. Thus, in order to use the extraction procedure,

one must ensure the T-factor singularity is sufficiently far away from the grating lobe singularity. The author found that,
in practice, this condition is not unduly restrictive.
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Figure 17. PBF Radiation in the Presence of a Dielectric Slab of Various Relative Permittivities

yt = 0.05A0 . The dielectric slab boundaries are at yi = -0.1A., and Y2 = 0.1k, with the external

regions one and three defined to be free-space. Finally, a 0.01 T-factor loss tangent ensures the field

values are converged. As one might expect, the e, = 1 case decays monotonically to the left of the

array edge. Surface waves become apparent as one increases the relative permittivity. Also, the field

curves change smoothly as the relative permittivity increases, giving confidence in the numerical

implementation.

The final figure in this section shows the effect of changing the "elevation" of the scan path

above the array. Figure 18 plots the PBF fields for Yt = 0.01A,, 0.025A,, and 0.05A, above the array

in a free-space dielectric slab. One may note the effect of the individual wires on the field as the

observation point approaches the array plane. As expected, the field magnitude increases dramatically

in the neighborhood of each wire. Even so, the field values remain comfortably bounded with yt
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Figure 18. PBF Radiation for Various Scan Path Elevations above the Array Plane

as close as 0.015A,o away, allowing one to use a fairly small wire radius for the coupling matrix,

self-impedance calculations.

This completes the PBF subsection. Equation (56), with J, divided out, gives the impedance

between the PBF and the test functions. The only restriction involves keeping the test location out of

the array plane for the self-impedance terms. The subsection addressed issues concerning the spectral

integral's evaluation along with the difficulties encountered when one introduces a stratified media.

The next subsection completes the coupling matrix section with the development of an expression for

the radiation from an individual edge element in a stratified media.

2.1.2 Edge Element Basis Function.

2.1.2.1 Edge Element Basis Function Radiating to Test Function in a Homogeneous

Media. Returning to Equation (16), one can express the field radiated by a single edge element in
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a homogeneous media as

E.edge(p) WIIJb H(2)(01- t _ D (61)
z4 0 61

One would like to convert Equation (61) to the spectral domain in anticipation of introducing a

stratified media. In order to accomplish this, the author took what may first appear to be a circuitous

route. Using the array scanning method (ASM) reported by Munk and Burrell[27], the author

envisioned a "pseudo-array" around the edge element. The array allows one to introduce the Poisson

sum formula to transform to the spectral domain. The field due to the original edge element can then

be extracted using Fourier methods by identifying the element as the central term in a Fourier series.

Appendix D details this procedure.

2.1.2.2 Edge Element Basis Function Radiating to Test Function in a Stratified Media.

Based on the homogeneous media development, one can introduce a dielectric slab to the geometry

in exactly the same manner as for the PBF. In fact, the T-factor expression developed in Section 2.1.1.2

can be used without modification. As before, one finds it expedient to decompose the edge element

field into direct and bounce path components
_E ededretp ) bounce ('-=)

E dge-(pt) =Edrec±(-t) +± + E ,() (62)

with Edi"t(-ft) kept in the spatial domain and Eboulc (;t) expressed as a spectral summation.

Equation (61) provides the direct component where again all constitutive parameters are those of

region two. One can use the ASM to derive an expression for the bounce component.

One first defines a "pseudo-array" around the edge wire located at Pb

00 ^ASM -EaWa([t ) = -W2/t2Jb E - -2)S - -- 2 "PQ (63)

Pqb 0(0 1 itP qq
q=-oo
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where

Pqb = i (qd: - (b- 1)d,) (64)
ASMASM SASM2
SM = S 1 -- (65)

In order to isolate the surface wave pole excitation to the central term of the spectral sum, one sets

the inter-element spacing to j. = L. Now, from Equation (174) in Appendix A and the frequency2"

shift property of the Fourier transform, one can transform Equation (63) to the spectral domain form

00 _j(62= OASM P--A[ - - ]

E2 rray -7 A e M (66)

2Xk=-oo

where (
XASM= + ( 8  M +  jk 1- AsM ±d) (67)

Using the spectral form in the ASM integrand, one can introduce the T-factor to account for the

dielectric slab. Upon interchanging the order of summation and integration, the final expression for

the bounce term in Equation (62) can be written

EbO"nc( ) SJ -. e-[ " SM(b-l)d]
- 2  ] A[ M T (P ASM) d ASM (68)

where T(p AsM) is given by Equation (49).

The ASM integral in Equation (68) has singularities due to the A term and the T-factor.

One can remove the weak T-17 singularity with the variable transformation

(sASM + 2k) = sin(v) (69)

1 - (s ASM + 2k) 2 = cos(V) (70)

dsASM cos(/,') dv (71)
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where (sXsM + 2k) ^ASM with xd 2- Moving to a shifted cylindrical coordinate system, one

defines

b = (1) d.) + y2 (72)

tan- 1 ((xt - (b- 1)dx)) (73)

The ASM integral then transforms to

sin- 1 (2k+l)

Ik = f e- j ,32 J ' cos(-)T(sin(v)) dl (74)

sin- 1 (2k-i)

where the integration range traces out a segment of the integration contour shown in Figure 6. In

particular, for a given k value, the integration path lies on either of the two vertical paths or the real

axis between -!I and !" One can handle the T-factor singularities as before by adding a slight loss2 2

to the denominator associated with propagation in the direction.

Equation (62), along with Equations (61), (68), and (74), gives the final form for the field

radiated by an edge element. As an example of an edge element calculation, consider the field

magnitude plot in Figure 19. As in the PBF case, the edge element field is sampled over an i directed

scan at Yt = 0.05A, above the element. The element is centered in a 0.2A0 thick slab whose relative

permittivity varies from 1 to 3.25. The figure clearly shows the onslaught of surface waves as the

permittivity rises, just as Figure 17 did for the PBF.

2.1.3 Test Function Location Convention. Sections 2.1.1 and 2.1.2 developed expressions

for the fields radiated by the two basis function types. The values of these fields at the locations defined

by the impulsive testing functions are directly proportional to the coupling between the particular

basis and testing functions through the unknown current coefficient. Consequently, the author used

Equations (56) and (62) to calculate the coupling matrix entries by dividing out the unknown current

coefficients. Equation (9) gives the basis and testing function ordering in the coupling matrix. To

avoid confusion, Figure 20 shows the exact basis and testing function locations for a semi-infinite
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Figure 19. Edge Element Radiation in the Presence of a Dielectric Slab of Various Relative
Permittivities

wire array with three edge elements. In particular, notice how the PBF overlaps the edge element

basis functions. In essence, the edge element current coefficients modify the PBF current coefficient

for the first three elements. The author found the optimal PBF test location lies one inter-element

distance from the inner-most edge element toward the infinite part of the array. Intuitively, this makes

sense, since the inner-most edge element should have the strongest coupling with the infinite portion

of the array.

2.2 Excitation Vector

Turning now to the left hand side of Equation (9), consider the free-space geometry shown in

Figure 5. The source of the incident field lies out at infinity and has an amplitude sufficient to produce

a 1.0 ( ) plane wave at the dielectric slab's left-most boundary. Furthermore, the Dirac delta testing

functions convert the inner-product integrals to simple function evaluations. The excitation vector
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Figure 20. Basis and Testing Function Locations for Semi-Infinite Wire Array

entries are then

E"(-ft) = e- i s A (75)

where Pt is the test function location indicated in Figure 20.

One can introduce a stratified media to the geometry using the T-factor concept once again.

Unlike the coupling matrix case, the plane wave reference location lies just outside the left-most

dielectric boundary. One must first use an effective transmission coefficient to take the plane wave

inside the slab.
,reT12 (76)

2 1 + F12 P2 3e-j/3 2(Y2-1)v2

where the superscript, e, identifies an effective Fresnel coefficient and from Equation (42)

2 x-S 2

2= (77)
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Equation (76) takes into account the reflected plane waves bouncing between the dielectric boundaries

to form a composite field at the left boundary. One obtains the T-factor by simply adding the

appropriate phase to shift the composite plane wave to Pt.

Te.(Sy2) = -e - j 322( y- yj )Sy2 (78)

The final expression for the excitation vector entries in a dielectric slab is then

E (-pt) = (si2 )e2() ( +Sy2Yt) (79)

Note, one can obtain the incident plane wave propagation vector & component by phase matching at

the y = yi boundary.

sx2 = /1s (80)
2

2.3 Solution Vector and Far-Field Radiation

One now has the coupling matrix and excitation vectors filled. The unknown current coefficients

can be calculated from Equation (9) through a variety of linear system techniques. Plugging these

coefficients into Equation (4) gives the approximation of the induced scattering currents. For the

particular basis function scheme shown in Figure 20, one can write

2

Jzp Z (Joe3P2 bds + J(b+l)) 6 (Vl(x - bd.) 2 + y2)
b=O

+JOE eif3bdxs8 6( /(x -bdx)2±+y2) (81)
b=3

This current approximation, plugged into the radiation integral, gives an expression for the fields

scattered by a semi-infinite wire array. One can then the calculate the echo-width from the definition

O'2D = lim 27rp E(p) (82)
P-4 Ei(p)
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where IE'(p)l = 1.0 (E) and E (p) is calculated using the large argument approximation of the

Hankel function.

Since, in practice, all arrays are finite, one would like to use the previous analysis to determine

the fields from a large finite array. Consider the wire array depicted in Figure 21. Using a finite

technique such as Skinner's[33] to calculate the echo-width, one is faced with solving a 1000 by 1000

matrix problem. Alternatively, one could model the large array in two parts where the currents on

the left and right halves are those computed for the two corresponding semi-infinite arrays. With the

left-most wire in Figure 21 at the origin, Equation (81) gives the currents for the left half elements.

One can calculate the right half currents by solving the complement semi-infinite wire array problem

shown in Figure 22, where 9 is reflected across the - axis. The resulting currents must be given

the appropriate phase shift to place them in the proper phase relationship with the left half currents.

Assuming three individual edge elements were necessary for each semi-infinite array, the combined

array problem results in two, four by four matrix problems.
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Several observations are now in order. First, for most large array problems, the system solution

eats up a major portion of the total computation time. As a conservative estimate, the number of

machine operations required to solve the system increases as N 3 with the number of unknowns. Thus,

one can achieve tremendous computational savings using the hybrid PMMIMM method. In addition,

one can increase the finite array size in Figure 21 almost without limit with virtually no computational

penalty. This is a consequence of the fact the edge element perturbations beyond the PBF test location

are insignificant. Second, the hybrid PMMIMM method has a "built-in" check for the number of

required edge elements. Specifically, if the PBF current coefficient calculated in the left edge problem

is significantly different from the PBF current coefficient from the right edge problem, more edge

elements need to be modeled. Since this requires a costly system recalculation, one should start with

a good a-priori estimate for the number of edge elements. Hansen and Gammon[16] provide just

such an estimate based on their Gibbsian model for finite scanned arrays. Their estimate,

6
N = (83)cos 2(0i)
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assumes a symmetric edge element perturbation valid for incident angles away from grazing. Finally,

note that for the truly semi-infinite array, the PBF does not contribute to the far-field pattern, except

perhaps at a finite number of angles associated with grating lobe directions. This observation is

completely analogous to how the Physical Optics (PO) currents do not contribute to the far-field

pattern in a Physical Theory of Diffraction (PTD) solution for the scattering from a half-plane.

This chapter developed the hybrid PMM/MM method outlined in Chapter I. Using a simple

two-dimensional wire geometry as a proof-of-concept, the chapter clearly demonstrated the method's

benefits. The actual validation of a computer code based in this development is presented in Chap-

ter IV. The next chapter turns from the proof-of-concept geometry to a more practical, slotted array

problem.
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III. Three-Dimensional Semi-Infinite Slot Array

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations,describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work.

- John von Neumann

This chapter applies the hybrid PMMIMM approach to the slotted ground plane shown in

Figure 23. The array consists of slot columns which can be shifted or "skewed" in the ; direction.

A multi-layer dielectric media encapsulates the slotted array, providing a good approximation to a

practical radome design.

As in the wire array problem, one first examines the geometry with the goal of reducing the

domain of the unknown currents. Using the equivalence principle, one arrives at the equivalent

geometry shown in Figure 24. Note how the now complete ground plane breaks the problem into

N

'--

Figure 23. Semi-Infinite Slot Array Geometry
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two regions. The advantage of this particular equivalent geometry lies in the fact the only non-zero

currents are magnetic currents restricted to the former slot locations. Equation (84) defines these

currents in terms of the outward surface normals and the total electric field in the original geometry.

M,= EXfl2(84)

Even though Figure 24 shows a thick ground plane, for this analysis the author assumes an infinitely

thin ground plane. As a result, the continuity of the tangential electric field provides a coupling

between the two half-space problems, effectively cutting the number of unknowns in half. Based

on the tangential magnetic field boundary condition, one can write a magnetic field integral equation

relating the unknown scattering currents, MI, to the known incident fields. Specifically,

iiIlpXH ii f 1 x FRlS(M 1 ) + HS(Mi) (85)
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where the generalized incident field, WaZ, accounts for the presence of the ground plane and field

equality holds only at the former slot locations, S. In a manner analogous to the thin wire approx-

imation of Chapter II, one can simplify Equation (85) using a thin slot approximation. The vector

equation becomes a scalar, resulting in the relationship between the i directed fields,

H~- - 5 2~~ (86)H~g = - [H" -H(i.M ) + HS (iMz)] 1RESs(6

Equation (86) can be solved using the PMM/MM procedure with the current approximation,

B
M_(R') - MAX(R) (87)

b=O RES

and the inner product definition,

(9t(i), b(i)) =Jt(R)b(R) dR (88)
S

where qb(R) and Ot(l) are periodic basis and testing functions associated with the slot columns.

Plugging Equation (87) in Equation (86) and performing the inner product, one arrives at the matrix

equation analogous to Equation (8) of Chapter I,

B

]HgR'(R)t(W)dR=- Mb f. " [H(C'bb(i ')) +-H2(-b(R'))]Ot(-R)dR (89)
S b=O S

where t = 0, 1,... B. The remainder of this chapter examines each component of Equation (89),

beginning with the coupling matrix.

3.1 Coupling Matrix

The coupling matrix elements based on magnetic currents represent admittances defined by

Equation (90).

Ytb = J1 [H( b']W))+- H"(ib(-0'))] (-A) d-R (90)

S
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Just as for Chapter II's wire array, the basis functions, b (1'), take on two distinct forms depending

on their location in the array. Those near the array's edges model single slot columns, while those

obeying Floquet phasing model the entire center portion of the array. The next subsection examines

the latter, beginning with the homogeneous media problem and then introducing a stratified dielectric

media.

3.1.1 Physical Basis Function.

3.1.1.1 Physical Basis Function Radiating to Test Function in a Homogeneous Media.

The slot array problem adds another level of complexity to the two-dimensional wire array problem

by introducing a third dimension. Fortunately, the array is fully periodic in this dimension', allowing

one to reduce the problem to that of determining the induced currents on a single reference slot. The

remaining currents in the associated slot column are then related to the reference slot via a Floquet

phase shift. In fact, looking at the slot array as an array of slot columns, one finds a tremendous

similarity between the wires of Chapter II and the slot columns here. This fact allows one to build on

the development of Chapter II in deriving analogous expressions for the slot array.

One begins the analysis with the semi-infinite array of i directed Hertzian dipoles depicted in

Figure 25. One can obtain the radiation from the slot array by integrating the magnetic dipole array

along the slot's long dimension. 2 From Equation (90) it is apparent one needs the ; component of the

magnetic field radiated by the PBF in order to calculate the admittance. The author uses the electric

vector potential to obtain the magnetic field produced by the magnetic currents [17]. Specifically,

one can write the vector potential from the qmth Hertzian dipole as,

-- A 6 M P B F e - j IR - R q m

Fqm(R) = ; - - - dz' (91)47 I R- Rg, I

where q is the column index associated with the & direction, m is the row index associated with

the i direction, and MPBF is the magnetic current value at Rqm. Recalling the PBF obeys Floquet

1For this research, the author defines this to be the i direction.
2This assumes a thin slot analogous to Chapter II's thin wire.
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phasing in the semi-infinite direction, one can express the vector potential from the entire semi-infinite

Hertzian dipole array as,

^E MPBF dz'
47r

0 00 e-j3[q(d ,s.:+Azsz)+md.sz] e-jO-\/(qdx-2-I+y2+(md +qAzz) 2

: I: (qd - X)2 + y2 + (md + qAz - z)2 (92)

Equation (92) represents a completely spatial domain expression. For reasons given in Chap-

ter II, one desires a spectral domain form based on a plane wave expansion. In the 2 direction, one

can use the Poisson sum formula to transform the row summation to the spectral domain. Plugging

the transform pair [3],

ej_ tH (2) ( , _2 ) e-jO/3 p 2 +( - )2

oH(2 0 (93)

j2 0p2 +P -ti4
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in Equation (174) of Appendix A, one obtains,

E E MPBF dz'F (R) z z~ d'j4d
_d -+ 2,jqd,(s.nAz,\

e-i H 2 )(jrp/(qd- x) 2 ± Y2)ei ' Q d ,(8 dz) (94)
n=-oo q=O

where,

TrP = - (S + d.]

V1 - rz (95)

Equation (94) is a mixed spectral/spatial domain form, hereafter referred to as the "spatial"

domain expression. Notice the similarities between the inner summation in Equation (94) and the

spatial domain expression for the wire in Equation (17). Clearly, the slot column radiates cylindrical

waves which propagate or become evanescent depending on the direction component, r,.

To obtain the complete spectral domain expression, one uses the one-sided Poisson sum formula

given in Equation (185) to transform the column summation in Equation (94) to the spectral domain.

With the Fourier transform pair given by Equation (18) and a few algebraic manipulations, one

obtains,

C E MpBF dz'
j43d dz

0 e j(xr.Hy+zr ) j p(_+YT
+

r) e-jl-(x-)

+ - e-3 e (r. -r.) dr, (96)
-o koo 7T,(r. - r.)f

I -00
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where,

nAzA kA
rX = s dd + Tx (97)

= - (98)

T = - (99)

As for the wire array, Equation (96) is a plane wave expansion containing both discrete and continuous

spectra.

Equations (92), (94), and (96) give three alternate forms of the electric vector potential radiated

by the Hertzian dipole array. Using these expressions along with the superposition principle and

image theory, one can obtain the vector potential from a finite length magnetic dipole array in the

presence of a ground plane. The thin slot assumption, applied to ; directed slots, converts the

superposition integral into a line integral in z. If one assumes the basis function has a piecewise

sinusoidal (PWS) shape,
Ckb(z') = sin -( -Iz'D)) (100)

sin (9)

one can express the spectral domain form of the vector potential from either region 1 or region 2 as,

= MPBF dZ' j d {e - j )3( r +yry+z r
,)

j4/d~d in=-oo k=-oo

4+j f e-3 + + )e-J (-) 2L~X O z PZ+br z
-00

±±Jr j3 XTy(v+Z'- eitr) d Jckb(z') ej ('+zb)rz dz'

2

E MpBF dz' -- 00 e-j(x +yr,+zr,)

j43ddz E Er_

-00 J
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where zb is the center of the PWS and pb is the integral evaluation,

pb 2[cos (2T)- COs (--L) ej/OZbrz (102)
/3sin (PL) (1 - r2)

referred to as a "pattern factor." Equiped with the vector potential, one can now determine the

magnetic field from the relationships [17],

A'(i) - -Vx() (103)
E

H(R) - -1VxE (r ) (104)
jwI-

Plugging Equation (101) into Equation (103) gives the spectral domain form of the scattered electric

field,

0-0 0 { e - j )(
x

r
.

+ y
y

+ z r
.

)

2dxd, • 7 E=- =-

n=-oo k =-oo

+ f jg(x+"ry y - )( drx) pb (105)

and Equation (105) into Equation (104) gives the ? component of the scattered magnetic field,

H()y --0 , --,, f r2 e-P( +Vy + )

2dd =-'ok=-0" 1, r

4jre-fl(zr - 'r ) 00e-jf[(x + )'r+y'y] }r - -( -r) dr pb (16

T J. ( -d(06

-00
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where Y is the intrinsic admittance of the homogeneous media. The spatial domain forms are found

by plugging Equation (94) into Equation (103),

ES0R -0 j-do S ~ qdx SX - + r]

=--- q=O

H ( 2 ) / _\

1~2  (ii3rp (qdx -x) Y22) +P q x , 17
(qdx - x)2 + (1

and Equation (107) into Equation (104),

:(-R) - 2dd E (/3rp (qd - x) 2 + y2)pb (108)
n=-oo q=O

Equations (106) and (108) give the ; component of the magnetic field radiated by the PBF in a

homogeneous media. One obtains the coupling matrix terms associated with the PBF by taking the

inner product of either Equation (106) or Equation (108) with a PWS testing function, 0t(R), as

indicated by Equation (90). Before proceeding, however, it is numerically expedient to transform

Equation (106) to the angular spectral domain.

Defining the continuous spectral integral as,

Ik = J0 e(ro I (x (109)

-00

one must consider two cases depending on the value of rp. The first case occurs when r2 < 1, making

rp a strictly positive, real number. One can then divide r, by rp, resulting in,

100e jp[(X +-I)TrX +y 1 ,r i2]

Ink = 1p I ( - r +  ) d-' (110)

where r- = x Equation (110) now has exactly the same form as the spectral integral in Equa-
,p

tion (21). As before, one removes the weak singularity, 1 from the integrand via the variable

51



substitution, -, sin (v). With the displaced coordinate system, (x + .)2 + y2 and

q =tan-1 ((x )), one obtains the angular spectral integral,

= fe 3 TprPCOS (V i' 11I~k = Jc sin (v) - xC)
where the integration contour, C, is shown in Figure 6. Finally, one extracts the singularity, vo

sin - 1 (h), resulting in the expression,

r 0 jr sin v + 00) dv+

1 -je cosh (v) + -d
- __ __ __ __ __ __ __L 07 (cosh (v) + -r

+ e~ -jp CO-( N2 0 dv + N2, 2 d -

(sn+V - dr) f ~ ( sin (v) - -r)

2 2

+ 07j j3irpfsin v -) N3______+N3,_00_ (112)f cosh (v) - -) dj+ ~ ( cosh (v) - r.

0 0

where,

N j)3r, ~sin (j Vo + (113
N io = je (~0±(113)

N20 = e - j#iCO S (v 0 - (114)

N30  = je - (115)
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and,

2 t1a -( -
00

= - (116)

._ 0sin () - 2 in

2

dv 2 ~(__ (117)

The second case occurs when rz > 1. Using the variable substitution, f-p = V/ 2 - 1, the

weak singularity goes away, removing the need to transform to the angular spectrum. The continuous

spectral integral can now be written,

-00O

Extracting the r- = r singularity, one has,

~I~±~) x~y rp 00

O0 e -NO f ___

Ik= j (T - r ) dr ±No (t -x - r,) (119)

-0 O-00

where,

2(120)

v%2 + F '
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Note the singular integrand is an odd function causing the integral to evaluate to zero. Equations (112)

and (119) are the continuous spectral forms the author implemented in the computer codes validated

in Chapter IV.

At this point, one may proceed with the inner product integral to obtain the desired admittance

matrix element. From Equation (90), there are actually two integrations to perform. These "one-

sided" admittances correspond to the two half-spaces created by the ground plane. For symmetric

dielectric stacks, the admittances are identical, requiring one to compute only one side and double the

results. The spatial domain form comes from Equation (108). Assuming a PWS test function defined

to be non-zero over the reference slot centered at R -- It, one can write,

Ytb = -JH (R)Ot(R)dR

St

00 00 
_jqd ___

2d- S S r -qdP sx d
dn=-) q=O

L2

-L

00 00__

2dO r -  s dd2 )H 2) (IOrP (qd: - x + +-y2) pbpt (121)
n-----co q=O

where the basis and testing function pattern factors are,

o t ( -f2 _br2 (122)
/sin ()(0- - r2)

In a similar manner, the spectral domain form comes from Equation (106),

Ytb 00 Tr2ej3(xtrx + ytr)
2:dE E t "

U=-o k=-oo 1

+ f-) dri pbpt (123)
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Figure 26. Geometry for PBF One-sided Admittance Problem

In order to avoid singularities in the self admittance calculations, the basis and testing functions must

not coincide. As before, one places the testing function an "effective wire radius" out of the array
slot width

plane. For thin slots, this is defined to be a s 4

This section developed both the spatial and spectral domain forms for the coupling between

a finite length periodic basis function and a single finite length testing function. The homogeneous

problem again forms the foundation for extending the development to a stratified dielectric media.

The next section uses Equations (121) and (123) to develop the admittances for the slot array encased

in a stratified dielectric media.

3.1.1.2 Physical Basis Function Radiating to Test Function in a Stratified Media.

Figure 26 depicts the one-sided admittance problem involving the PBF radiating to a test location in

the presence of a stratified dielectric media. Similar to the wire array, one can use the T-factor concept

to account for the presence of the dielectric layers. The plane wave nature of the spectral domain

expressions allows one to break the propagation into a direct term and a term accounting for the
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multiple bounces between the dielectric layers. Unlike the wire array, Figure 26 shows a multi-layer

geometry. Consequently, the T-factor expression used here is slightly more complicated.

Recall the author uses Munk's convention to define the effective reflection and transmission

coefficients. Also note the expressions developed heretofore assume the test locations have a positive

component 3. Consequently, the polarized magnetic fields require the following magnetic field

related coefficients,

2r(1)r(ll) (124)
?7(1+l)"y(l) + ?7(I)ry( 1+l)

r,,+, = ?7(j)ry(l+1) - ?7(l+1)ry(l) (125)

?7(I)?'"4l) - 7(1l1)ry(I+1)

1 +-j2jIdl(j) (126)

r,,,l+l + re 1," -e-j2)3tdtr,(t)'  - I+(127)

-1 ± Fl,t+l1+1,1+2 e- 2 1drv(i)

where the e superscript denotes an effective coefficient. Equations (124) and (125) are Fresnel

coefficients which give the transmitted and reflected field ratios at the dielectric interface between

two half-spaces. The effective coefficients give the composite field ratios, accounting for the multiple

reflections and transmissions in the multi-layer structure. The coefficient for a particular layer depends

on those from the next layer in the 9 direction. Therefore, one must start with the outer half-space

layer and iteratively compute the coefficients down to the layer closest to the ground plane. Equiped

with this inner-most effective reflection coefficient, one can repeat the T-factor analysis performed in

Chapter II.

3This restriction does not limit the analysis. To account for region 1, one simply flips the geometry and mirrors the
excitation vector through the i axis.
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In particular, one can break the plane waves into four summations as shown in Figure 13. These

can be written in closed form and combined to give an expression for the field at Rt,

[ (I + rejl~e-j2 ,6ld Y( ) e-~~(rI Y ?y1
Hd 1+ 1 )(128)z )I 1-e+ e j23jdlrU(1 )

S,1+ -1=j xrsin 18 sadrc

where Yri is the outer boundary of the Ith layer, Yb = 0, and F 1 1. Expression (128) has a direct

and bounce component. Note however, the homogeneous expressions developed in the previous

section actually double the direct term through image theory in order to account for the ground plane.

To use Expression (128), one must pull out a factor of two resulting in,

directre,,+l( e -231dlryu + e-j2ol(Yrl-yt)ry(I)1
2 H r[ct(l1) + -2 (129)

where the second term in the square brackets is defined to be the T-factor.

Equiped with the T-factor, one may now rewrite Equation (106),

-bounce (R) 2 dd00 r2 e-jP1(Xr'i + YrIJg + zrlz)
XZn=-oo k=-oor,

+ jr le 7r 2 1. k P11 (130)

The pattern factor here is modified in accordance with Kornbau's [21] work to account for the

possibility of different permittivities on either side of the array ground plane. Kornbau used the

arithmetic average of the permittivities in his calculations. Here, the author found the arithmetic

average of the wave numbers worked equally as well. The redefined pattern factor is then,

2,3avg[ COS (P ) - Cos
P 2 Z(131)

sinl (2 avg - rzl)

where /3avg + The continuous spectral integral can be expressed,27
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Case r 2 < 1:

1 1 -je~ i (jv + ) T(-rpt cosh (v)) - Ni1d+ id/P (cosh (v)±~ /(fcosh (v)± +

±T ,1 /lfclP (OS - T(r,1 sin (v)) - N2,, d 2fd

-(sin (v) - (- I sin (v) -1-

_P _M_ dzI

2 2

+ e j s (j' -) T(rPicosh () N30 dv + N3I dv (132)
(cosh(v) - L-) 0 (cosh M ]

where,

sin (,113sin-(v 4 ,,

Ni = -je ( + T(-r cosh (v,,)) (133)

-j ,,~ o(,' - cs v ,

N2 0 = -jejr ° C S (Vo + ) T(rp, sin (vo)) (134)

N3o = e-Ar' ifics @o- ) T(rpi cosh (v)) (135)

and the analytic solutions for the extracted integrals are given in Equations (116) and (117), or

Case r2 > 1:

-Jt (X "+¢ _ ) 
T x l _ j y V / pI r -  x1  (Tl _

00 e T[(X±))- N.,"'ok "r +.2 d'rxt (136)

-00

where,

N, = e-T(rx) (137)

The previous development gives the fields radiated to the test location minus the direct term.

To arrive at the final expression for the admittance between the PBF and the test function, one simply
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combines the spatial domain expression in Equation (121) for the direct term with Equation (130) for

the bounce term to obtain,

tb - -i Tpl dx l dzd) H-2 ) (irp (qd - Xt) 2 + y2 pbpt

n. n=- q=O

Y 0 00 2 , -jm3( xtr'i + ytryi) 2 j,31
4-d-rj .

+ 2dd z r: e rpl T(rxi) + 3r 1 e 2 Ink P1bPiJ (138)2ddn=-oo k=-oo I~ Ir

where Pt is the test function pattern factor obtained by changing the sign on the exponent in

Equation (131). The author implemented Equation (138) in the slot code validated in Chapter IV. The

T-factor singularities are handled as before by introducing a slight dielectric loss in the propagation

direction and increasing the integrand sampling in the neighborhood of the former singularity.

This completes the development of the coupling matrix terms associated with the physical basis

function. The next section derives expressions for the coupling terms associated with the individual

edge element basis functions. With these, the coupling matrix is complete.

3.1.2 Edge Element Basis Function.

3.1.2.1 Edge Element Basis Function Radiating to Test Function in a Homogeneous

Media. Consider a single periodic basis function entered at Rb. One can obtain the coupling

between this column and a reference test mode located at R1 from Equation (121),

Ytb = 2dZ r H 2 (3rP (Xb -Xt + yt (139)

where pb and Pt are defined by Equation (122). Recall this spatial domain expression results from

the application of image theory to replace the array ground plane with a homogeneous media. Adding

a stratified dielectric media complicates the problem considerably. Once again, the author chose to

take advantage of the plane wave expansion in the ASM to handle the stratified media.
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3.1.2.2 Edge Element Basis Function Radiating to Test Function in a Stratified Media.

The basic ASM approach involves creating a pseudo-array around the edge element in order to

transform to the spectral domain. One can then use the T-factor developed in the PBF section to

account for the stratified media. One obtains the fields from the original edge element via a Fourier

transform. Defining the pseudo-array inner-column spacing, d ASM, such that TASM = ASM + 2k,

one obtains the following expression for the pseudo-array coupling,

y,00 00 2 Pi - b S + Ytr ASM A

=ara dASMd_ S r Ce rASM T(rSM)P bPit (140)
x Z n=-oo k=-o 0yl

where AM rP - (rX ) One can write the coupling from the single edge element in terms

of the ASM integral as,

where the bounce superscript indicates the direct coupling is not included. Next, one finds it

numerically expedient to transform to the angular spectral domain,

,rbounce
tb

00 00 [n- 1 (--) /

where,

= /(xt- xb) 2 ±+y2 (143)

r2 60 t 1 ( Xb) ) (144)

dAj I r~s X160



All that remains is to combine the bounce term in Equation (142) with the direct term in Equation (139)4

to arrive at the coupling expression implemented in the author's code.

Yb = ydirect + Ybbou c e  (145)

Equations (138) and (145) define all the entries in the coupling matrix. In order to expedite the

edge treatment study, the author also incorporated the ability to apply a complex impedance to the

individual slot columns. The next section details the required analysis.

3.1.3 Edge Element Loading. Consider the reference element of a periodic basis function.

A typical slot load consists of a distributed resistance such an "r-card." One would like to convert

the distributed r-card resistance to a lumped admittance which could then be added to the diagonal

elements of the coupling matrix. Figure 27 depicts this concept for the PWS magnetic current mode.

The author used a method suggested by English [9] to perform the conversion. One simply equates

the dissipated power in both representations. From Equation (84), an electric field perpendicular to

the slot's length produces a 2 directed magnetic current. Thus, one can express the power in the

distributed representation as,

P. = JdP

slot

L2 '
=- ~JEX(z)2 Rdz

L 2

L

RrnoI [sin ( -dzz) (146)

2LAR sin ( 2d
-L

4 All quantities associated with the material parameters are taken to be those of the inner-most layer, 1.
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Figure 27. Distributed to Lumped Loading Conversion

where AR is the slot's aspect ratio. The power in the lumped representation is,

RM,2
P R ,2 (147)

Equating the two and solving for RL, one obtains,

R [fL- sin (fL)1 (148)

AR L 2/Lsin 12 J

The reciprocal of Equation (148) gives the lumped admittance which the author adds to the appropriate

self-admittance term in the coupling matrix.

The previous development assumes the mode represents the total edge element current rather

than a perturbation of the PBF current, as in the scheme depicted in Figure 20. It is possible to derive

the total edge element formulation from the perturbation formulation for an unloaded array. One
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Figure 28. Alternate Basis and Testing Function Locations

can then apply the edge element loading to the new coupling matrix. Skinner suggests the following

method to convert between the two unloaded formulations [32].

First, consider the perturbation formulation's matrix equation,

Y1,1 Y 1 ,2 "'" Y1,N Y1,N1 +V 1  A

Y2,1 Y2,N Y2,N+1 V 2  12

(149)

YN,1 "'" YN,N YN,N + 1 VN IN

YN+1,1 ... YN+1,N YV+1,N+1 VN+ IN+I

where the subscripts 1 to N denote edge elements and N + 1 denotes the PBF. The PBF test location

is indicated in Figure 20.

Now, consider sliding the PBF to the right so it's left edge element coincides with the old

PBF test location, as in Figure 28. The edge modes in the new formulation represent the entire edge
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element currents. Keeping the old PBF test location, one can express the new matrix equation as

Y, 1  Y1,2 ... Y,N Yi,N+1 V1  ' 1

Y,1 ".,N Y2,N+1 V2  12

(150)

YN,i "'" YN,N YN,N+1 VN IN

YN+i,i ... YN+I,N YN+1,N+1 J rN+l IN+i

where the tilde indicates a different value than the perturbation formulation.

The key to Skinner's method lies in recognizing the following equivalences between the two

formulations, based on the assumption both yield the same magnetic currents.

V, Vi + VN+i

2  V + VN+1
-- (151)

VN VN + VN+1

VN+i VN+1

Once one has solved the perturbed system, the unknown unperturbed coupling matrix entries can

be found using the new currents from Equation (151) and the known coupling matrix entries from

Equation (149). For example, solving the first row in Equation (150) for the unknown coupling matrix

entry Y1,N+1 yields the equation,

Y1,V [i- rlll -..... Y1,NVN] (152)

where the right hand side values are known. Equiped with the new coupling matrix representing total

currents, one can now apply the shunt admittances to the diagonal entries as described earlier.
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Figure 29. Plane Wave Illumination of Slot Column

3.2 Excitation Vector

The left hand side of Equation (89) defines the excitation vector entries,

J H(R)9O(R) dR (153)

S

where the generalized incident field accounts for the presence of the ground plane. Since a plane

wave illuminates the structure, the author once again uses a T-factor to account for the dielectric

layers shown in Figure 29. One has complete freedom to define the incident plane wave. Since the

validation data is entirely monostatic, the author chose to restrict the incident plane wave propagation

to the xy plane. In particular, the author chose a I(A, -; polarized magnetic field with a phase

reference at W. Assuming a homogeneous media, the magnetic field at the test location, (Xt, 0, zt),

is then,

H (R~) = e - j )3(xtsxo + dtotalSyo) (154)
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Introducing the stratified media, one can find the P propagating field just inside the first slab from

Equation (126),

HA (1 t) (i+ro, 1 r,2 i2d dl ) (155)

One then propagates the fields through the remaining layers to the test location P .

H!,(A) H 7rx -_ l',e-j2/3 d~rye (156)

To get the total field at R , one sums the composite right-going field,

Hi!(Kt) [ _'1 T _le -j2fl'derye (157)

and the composite left-going field,

11Te 6ei20ed~ryj IeH-lA) (158)

to arrive at,
H (-R,) i2-2T_ ,3 d'rye -- , H(-R,) Te.(S..) (159)

where pe-,/ = 1. To account for the inner product with the testing function, one uses the same

pattern factor as before, arriving at,

J Hi(-R)Ot(R) dR- =e)i0xQ1 Tex(Sxo) Pit1  (160)

S

3.3 Solution Vector and Far-Field Radiation

With the coupling matrix and excitation vectors filled, one can solve the system to obtain

the unknown expansion coefficients. One simply plugs these coefficients back into the current

approximation to obtain the desired scattering currents. For the code validated in Chapter IV, the

author defined the edge element currents as perturbations of the PBF current. Thus, the scattering
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current amplitudes, Mb, discussed below are actually a sum of the PBF and the particular edge

element.

First, consider the homogeneous media case involving a periodic basis function centered at

(Xb, 0, Zb). The associated scattered magnetic field5 can be written,

H = 0 2 ) e3l,z H( 2)(/S rPlpb)Plb (161)H'(-R) - I e- rIpp) 11

where Pb = V(Xb -X + y 2. Restricting the plane of incidence to the xy plane, one is interested

in the scattered field a large distance away from the array. For monostatic scattering, only the n = 0

term contributes to the far-field. One can use the large argument form of the Hankel function,

H (2)(0lrPlpb) lJ2 jv ejf ,,,pb (162)

r/rpPb

to obtain a far-field approximation of the scattered magnetic field,

-WEIMb d, / _j e-jo(P + xb sin (77,o,))pb (163)

where p = x2 + y2 and 77obs is measured from the negative axis in the plane of incidence. Note,

Equation (163) contains the approximations Pb - p and Pb ' P + Xb sin (7ob,) for the amplitude

and phase, respectively. One then sums the field contributions from each periodic basis function 6 to

obtain the total scattered field,

B

H.,ff( R) 2d, 0jr Z Mbe-l(Pxbsi(7ob))Pb (164)

One only needs the i component since all the reference data is co-polarized.
6 For the central portion of a large array, one simply adds the appropriate phase shift to the PBF coefficient and applies

the result to the corresponding slot column.
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In order to account for the stratified media, the author employed the ASM, using the T-factor

defined by Equation (159). One can then write the scattered field from a single periodic basis function,

H'(R) =

-Mb 2 [/ _ 0 [(X - Xb)rt-M + y ] A1 65Mb 2l L ASM T(rASM) asyM
E7EIdzX rX dxtkj (165)

Once again keeping only the central term and restricting the plane of incidence to the xy plane, one

obtains,

_MbPlb  e-/[( X1 xbst +vY1

Hf'f(R) oA M J k - sSM ± TeMASM
S f(R SM T X1 dSM X1~ (166)

In order to remove the weak singularity, one finds it desirable to transform to the angular spectral

domain.

H:,ff() A b e -j31b C - T,-( sin (v)) dv (167)

2

where,

Pb = (x-xb) 2 + y2 (168)

k = tan-1  X(169)

The integrand in Equation (167) is highly oscillatory for large Pb values, making numerical

integration virtually impossible. Fortunately, the integral lends itself to a stationary phase evaluation.

In particular, one can identify !315b as the large parameter and v, = 4 as the stationary phase point.

With the resulting asymptotic integral evaluation, one can express the scattered field as,

--) -Mb V T, ( sin (vo)) e -,3(17o6
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Summing over the modes and applying the same approximations to ,b as in the homogeneous case,

one arrives at,

HejP f-j()xb sin (7obs)Te, sin(rlbs))Pb (171)
H_,fMf (R) -- Mb e b (11

where sin (7,) is approximated by " sin (rob,).

In order to compare with the measured data, the author uses the echo width definition,

O'2D lim 27rp H(R)2 (172)

and Equation (171) to arrive at the expression,

2D =A- sn (robs) Tex(Lsin(77obs)) pb (173)
2d2

0"29d- z Mb e -iflxb sin~
qlzb=1

The author implemented Equation (173) in the computer code validated in Chapter IV. In particular,

the author used the left and right semi-infinite array approach described in Chapter II to model the

large finite slot arrays in the next chapter.

This chapter applied the hybrid PMM/MM method to a slotted ground plane embedded in

a general stratified dielectric media. By modeling the individual slot columns with periodic basis

functions, the author was able to build on the wire array analysis. The next chapter examines the

computer codes based on this development in order to validate the method.
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IV Validation

The triumphant vindication of bold theories - are these not the pride and justification of
our life's work?

- Sherlock Holmes (Sir Arthur Conan Doyle)

The previous two chapters applied the hybrid PMM/MM technique to a two-dimensional wire

array and a three-dimensional slot array. This chapter validates the hybrid technique using a two

pronged approach based on both reference code and measurement comparisons. The reference codes

allow one to directly examine the currents induced on the array elements. As mentioned earlier, this

approach provides a more rigorous test of the technique's accuracy by avoiding the radiation integral's

smoothing effect. Measurement comparisons are included despite the complications associated with

simulating an infinite ground plane because, in many respects, "the proof is in the pudding." The

author felt the best way to demonstrate the hybrid PMM/MM technique's usefulness is to test its

ability to model "real world" radomes. As a consequence of the validation approach, the chapter

breaks into two parts corresponding to the reference code and measurement comparisons. Within

each part, the subject wire and slot array geometries are examined with an eye to not only build

confidence in the technique, but also to highlight the situations where it is most useful. This chapter

concludes with a motivating illustration of the hybrid technique's potential for handling large arrays.

4.1 Reference Code Comparison

One has a distinct advantage when using a reference code to validate a new technique. Unlike

measurements, one has tremendous flexibility in choosing representative array geometries to truly

"wring out" the technique. For the hybrid PMM/MM technique, the author attempted to find array

geometries large enough to ensure the central element currents obey Floquet theory, yet small enough

to allow the MM based reference codes to solve the problems in a reasonable time.

In addition to choosing appropriate problem geometries, one must be careful in choosing

and using the reference codes. The reference code provides the "truth" baseline against which one

measures the new technique. Obviously, one must have a certain amount of faith in the reference
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Figure 30. 600 Element Wire Array in Homogeneous Media Illuminated by Plane Wave at an
Arbitrary Incident Angle

code's accuracy. The author made every attempt to use independently validated reference codes. In

the following material, cases where the reference code results may be questionable are clearly noted.

4.1.1 Wire Array in a Homogeneous Media. The two-dimensional wire array serves as the

prototype geometry throughout this research. Figure 30 depicts the specific scattering scenario the

author chose to validate the hybrid PMM/MM technique. This particular array geometry represents

a typical example of many tests the author performed in developing the hybrid technique.

The next series of figures compares the induced scattering current magnitude and phase for each

element in the 600 element array. The reference values are generated by a standard 600 unknown MM

analysis based on the two-dimensional free-space Green's function. For clarity, the figures leave out

the central portion of the array. Enough elements are included however, to show where the currents

are behaving according to Floquet theory.
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Figures 31 and 32 show the induced currents on the left edge. Although not shown, the right

array edge is a mirror copy of the left edge. The reference values are denoted by Xs and the hybrid

PMM/MM values are denoted by Os. The array is illuminated by a plane wave incident normal to

the array plane. The hybrid technique used 20 edge elements for both left and right hand problems.

These figures clearly demonstrate the validity of the hybrid technique.

Figures 33 through 36 show equally as valid results for the array illuminated 5' off normal.

In this scattering problem, the author used 30 edge elements for the leading edge (left edge) and

20 elements for the trailing edge (right edge). Note the linear phasing from element-to-element

indicating the onset of the Floquet region.

Figures 37 through 40 show the array illuminated 450 off normal. Clearly, the leading edge

perturbations are more pronounced. The author again used 30 edge elements for the left edge hybrid

PMM/MM problem and 20 edge elements for the right. Note the larger element-to-element phase

rotation caused by the off normal illumination. Once again, the hybrid technique captures the correct

induced current behavior. In particular, note the smooth transition from the inner-most edge element

to the PBF elements. The PBF coupling mitigates the edge effects normally present in a finite array

made up of the edge elements, providing a distinct improvement over the hybrid approach proposed

by Cwik and Mittra [8].

Figures 41 through 44 show the currents induced by a near grazing illumination of 85' off

normal. The author used 100 edge elements for the leading edge and 3 edge elements for the trailing

edge in this problem. Increasing the number of trailing edge elements does little to improve the

solution accuracy. The author traced the problem to the direct coupling term in the PBF. Specifically,

convergence inaccuracies in the spatial domain summation acceleration appear to be the culprit. For

this extreme case, the author's implementation of the hybrid PMM/MM technique begins to have

difficulty for the trailing edge element behavior. This trend also appears in other plots for angles very

near grazing. As discussed in the conclusion, a different acceleration algorithm should eliminate this

difficulty.
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Incident Angle MM Code MM Code PMM/MM Code PMM/MM Code
_ (Unknowns) J (cpu secs) J (Unknowns, Left/Right Problem) (cpu secs)

00 600 35.6 20/20 0.5
50 600 35.2 30/20 0.6

450 600 35.2 30/20 1.2
850 600 35.5 100/3 2.4

Table 1. Wire Array in Homogeneous Media Reference MM Code versus Hybrid PMM/MM Code
Time Comparison

To conclude this subsection on the wire array in a homogeneous media, Table 1 highlights one

of the hybrid PMM/MM technique's benefits. The author measured the execution times required for

the MM and hybrid PMM/MM computer codes to calculate each of the scattering problems on a Sun

Microsystems Sparc20 Workstation. Although not strictly an "apples-to-apples" comparison due to

the brute force integration algorithms the author used in the hybrid code, the CPU times give a rough

estimate of the computational savings possible. This information, coupled with the fact the MM

computational burden scales with system size as N 3 where the hybrid PMM/MM approach scales as

N o clearly demonstrates the PBF approach's value in large problems'. Note that unlike the MM, the

hybrid technique does require recalculation of one row in the coupling matrix for each monostatic

angle. Thus, in generating monostatic patterns, the hybrid method scales as N 1 and may not provide

as dramatic results, depending on the problem size. Of course, the larger the problem, the better

the hybrid technique's performance relative to the MM. Also, no coupling matrix recalculation is

required for bistatic patterns.

1This is true as long as the perturbations of the array's edge elements are adequately modeled by the number of edge
elements used in the hybrid PMM/MM analysis.
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Figure 31. Induced Current Magnitude on Left 50 Elements of Wire Array with Normal Illumination
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Figure 32. Induced Current Phase on Left 50 Elements of Wire Array with Normal Illumination
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Figure 33. Induced Current Magnitude on Left 50 Elements of Wire Array with 50 off Normal
Illumination
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Figure 34. Induced Current Phase on Left 50 Elements of Wire Array with 5' off Normal

Illumination
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Figure 35. Induced Current Magnitude on Right 50 Elements of Wire Array with 50 off Normal
Illumination
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Figure 36. Induced Current Phase on Right 50 Elements of Wire Array with 50 off Normal
Illumination
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Figure 37. Induced Current Magnitude on Left 50 Elements of Wire Array with 450 off Normal
Illumination
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Figure 39. Induced Current Magnitude on Right 50 Elements of Wire Array with 450 off Normal
Illumination
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Figure 40. Induced Current Phase on Right 50 Elements of Wire Array with 45' off Normal

Illumination
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Figure 41. Induced Current Magnitude on Left 150 Elements of Wire Array with 850 off Normal
Illumination

180

150-

120 6

90 6

60 -

0

-30 ® 66

-60 6
-90

-1206
-150 5

--80

50 100 150
Element Number

Figure 42. Induced Current Phase on Left 150 Elements of Wire Array with 85' off Normal
Illumination
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Figure 43. Induced Current Magnitude on Right 50 Elements of Wire Array with 850 off Normal
Illumination

180 I

150 -

120-

90-

60-

0-G 00
00

~-30-

-60-

-901-
-120-

-180C -L -550 555 560 565 570 575 580 585 590 595 600
Element Number

Figure 44. Induced Current Phase on Right 50 Elements of Wire Array with 85' off Normal
Illumination
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Figure 45. 600 Element Wire Array in a Dielectric Slab Illuminated by Plane Wave at an Arbitrary
Incident Angle

4.1.2 Wire Array in a Stratified Media. This subsection turns to the problem of a wire

array embedded in the dielectric slab shown in Figure 45. The author chose a MM code based on the

ASM to provide the reference solutions. Again, the wire array contains 600 elements of which only

the left and right edges are displayed.

Figures 46 and 47 show the wire array's left edge subject to normal incident illumination. As

in the homogeneous case, the induced currents are symmetric about the middle of the array. The

author used only 20 edge elements as before. Here the slab has strengthened the coupling between

the elements, necessitating the inclusion of more edge elements to completely capture the edge

perturbations. Note however, the elements that were modeled are very accurate.

Figures 48 through 51 show the results for the array illuminated 50 off normal. Here the author

used 50 and 30 edge elements respectively in the hybrid PMM/MM analysis. Once again, the hybrid

technique accurately models the induced currents.
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Incident Angle MM Code MM Code PMM/MM Code PMM/MM Code
(Unknowns) (cpu secs) ] (Unknowns, Left/Right Problem) (cpu secs)

00 600 353.8 20/20 95.7
50 600 357.3 50/30 170.0

450 600 353.6 100/20 334.3

850 600 356.8 200/20 1980.7

Table 2. Wire Array in Slab Reference MM Code versus Hybrid PMM/MM Code Time Comparison

Figures 52 through 55 show the induced currents for a plane wave incident 450 off normal.

Examining the figures reveal 100 and 20 edge elements were sufficient to accurately model the leading

and trailing edges in this scattering problem.

Finally, Figures 56 through 59 show the currents induced by a grazing illumination of 850 off

normal. In this case, the author used 200 and 20 edge elements for the two semi-infinite subproblems.

Notice the code calculates the trailing edge elements accurately. The dielectric slab decreases the

angle of incidence in the slab, thus avoiding the numerical problems encountered in the homogeneous

media geometry.

As for the homogeneous case, Table 2 contains the CPU times for the reference MM and

hybrid PMM/MM based codes to compute each scattering scenario. Unlike the homogeneous case,

these values represent a true "apples-to-apples" comparison since the reference code used the core

of the hybrid code with the PBF "turned off." While these computation times are not as dramatic

as the homogeneous case, the fact remains as the problem size increases, the MM based system

sizes quickly become prohibitively large, where as the hybrid PMM/MM based system size remains

constant. Note, the large hybrid technique computation time for an 850 incident angle is a result of

numerical difficulties in computing the continuous spectral integral and not truly indicative of the

technique's performance. Asymptotic evaluation would probably reduce this time.
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Figure 46. Induced Current Magnitude on Left 50 Elements of Wire Array in Slab with Normal
Illumination
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Figure 47. Induced Current Phase on Left 50 Elements of Wire Array in Slab with Normal
Illumination
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Figure 48. Induced Current Magnitude on Left 70 Elements of Wire Array in Slab with 50 off
Normal Illumination

180

150-

120

060

30

.0
W 0-

-30

-60

-90

-120

-150

-180
10 20 30 40 50 60 70

Element Number

Figure 49. Induced Current Phase on Left 70 Elements of Wire Array in Slab with 5' off Normal
Illumination
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Figure 50. Induced Current Magnitude on Right 50 Elements of Wire Array in Slab with 5' off
Normal Illumination
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Figure 51. Induced Current Phase on Right 50 Elements of Wire Array in Slab with 50 off Normal
Illumination
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Figure 54. Induced Current Magnitude on Right 50 Elements of Wire Array in Slab with 450 off
Normal Illumination
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Figure 55. Induced Current Phase on Right 50 Elements of Wire Array in Slab with 450 off Normal
Illumination
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Figure 58. Induced Current Magnitude on Right 50 Elements of Wire Array in Slab with 85' off
Normal Illumination
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Figure 59. Induced Current Phase on Right 50 Elements of Wire Array in Slab with 850 off Normal
Illumination
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4.1.3 Slot Array in a Homogeneous Media. Having examined the two-dimensional wire

array, the chapter now focuses on several slot array geometries. Slotted ground planes are a common

form of radome. Thus, the following plots demonstrate the hybrid PMMIMM technique's applicability

to practical radome design problems.

As for the wire arrays, the author validated the hybrid code against an ASM based MM code.

In this case, two independent reference codes, one written by the author and one by Skinner [33],

provide additional confidence in the solution accuracy. The reference code solutions represent the

"truth" standard one uses to judge the hybrid code's validity. One desires both agreement between

the reference codes and agreement with the hybrid code. In terms of testing the validity of the this

research, the latter comparison is by far the more important. Thus, one must examine the following

figures with two separate questions in mind. One, do the two reference codes agree reasonably well?

Two, does the hybrid code accurately represent the reference code solution?

Figure 23, at the beginning of Chapter III, depicts the general features of the slot arrays

examined in the following sections. This particular section begins by examining a 100 column slot

array in a homogeneous media. The elements are ; oriented slots 0.881 cm long and 0.038 cm wide.

They form slot columns with inner-element spacing 1.27 cm in the ; direction and 1.1 cm in the &

direction. The columns create a non-skewed grid. A 15 GHz plane wave illuminates the array at 50,
450, and 850 off normal. Element number one always belongs to the leading edge of the array. In all

cases, the author uses a single PWS mode per slot.

Figures 60 and 61 show the magnitude and phase of the currents induced on the column

reference elements. The reference values are denoted by Xs and *s, and the hybrid PMM/MM values

are denoted by Os. The array is illuminated by a plane wave incident 5' off normal. The hybrid

technique used 20 edge elements for both left and right hand problems. First, note the two reference

codes agree reasonably well. The current perturbations near the edges are virtually identical in the

two solutions. The main difference is a slight offset between the curves. This offset can be attributed

to the different numerical approaches the two authors used. In fact, the good agreement is a testament

to the validity of the underlying ASM approach. Second, compare the hybrid solution to the reference

solutions. The agreement is excellent. Since the author's reference solution is generated by the hybrid
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code with the PBF turned off, it provides a more accurate standard against which to judge the hybrid

solution.

Figures 62 and 63 show the currents induced on the same array illuminated by a plane wave

incident 45' off normal. Here, the hybrid technique used 25 edge elements for both left and right

hand problems. In this case, the two reference codes provide virtually identical results. The hybrid

solution accurately captures the edge element behavior for those elements modeled. However, a few

more edge elements would give a slightly more accurate PBF value for the array's central portion.

Finally, Figures 64 and 65 show the currents induced on the same array illuminated by a plane

wave incident 85' off normal. The hybrid technique used 30 edge elements for both left and right hand

problems. The hybrid solution is a good approximation to the reference codes' solutions. However,

as for the wire array, the author's code has difficulties capturing the trailing edge behavior at extreme

grazing angles. Fortunately, in the homogeneous media where the problem occurs, these currents

always have a much smaller magnitude than the leading edge currents, mitigating their influence in

the far-field. Figure 66 demonstrates this fact with a monostatic radar echo area (REA) plot over the

angle range from 0' to 88'. Although not implemented in the author's codes, it is apparent from the

figure one could save computation time with little sacrifice in accuracy by only computing the leading

edge semi-infinite problem at near grazing incident angles.
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Figure 60. Induced Current Magnitude on 100 Element Slot Array with 5' off Normal Illumination
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Figure 61. Induced Current Phase on 100 Element Slot Array with 50 off Normal Illumination
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Figure 62. Induced Current Magnitude on 100 Element Slot Array with 450 off Normal Illumination
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Figure 63. Induced Current Phase on 100 Element Slot Array with 450 off Normal Illumination
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Figure 64. Induced Current Magnitude on 100 Element Slot Array with 850 off Normal Illumination
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Figure 65. Induced Current Phase on 100 Element Slot Array with 850 off Normal Illumination
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4.1.4 Slot Array in a Stratified Media. This section adds a symmetric dielectric sandwich

around the the array examined in the previous section. The top and bottom layers are 0.55875 cm

thick and have relative permittivities of 2.0. Once again, the differences between the reference codes

can be attributed to the authors' numerical implementations. Specifically, the authors use different

approaches to handling the surface wave singularities introduced by the dielectric layers. For the

single layer case, Skinner uses an analytic extraction technique to remove the T-factor singularities.

This contrasts with the lossy dielectric approach described earlier. It is difficult to ascertain which

solution is closer to the truth, but again, the main issue is how well the hybrid technique captures the

MM solution. On this matter, the following figures speak for themselves.

Figures 67 and 68 show the current magnitude and phase induced on the column reference

elements for a 5' off normal incident angle. The hybrid technique used 20 edge elements for both left

and right hand problems. As for the homogeneous case, the hybrid PMM/MM accurately captures

the induced currents, as differences in Figure 67 have been magnified by an expanded scale.

Figures 69 and 70 show the current magnitude and phase induced on the column reference

elements for a 450 off normal incident angle. The hybrid technique used 20 edge elements for both

left and right hand problems. Notice how the dielectric sandwich has modified the trailing edge

current behavior. Once again, the hybrid technique compares well with the reference solution.

Figures 71 and 72 show the current magnitude and phase induced on the column reference

elements for a 850 off normal incident angle. The hybrid technique used 20 edge elements for both

left and right hand problems. Clearly, the leading edge requires more edge elements. Note how

the PBF magnitudes for the two half problems differ. This provides a good indication more edge

elements are necessary to improve the solution accuracy. In addition, one may note the trailing edge

difficulties associated with the homogeneous array are virtually eliminated by the dielectric cladding,

as seen earlier with the wire array. This can be attributed to refraction as the plane wave is bent

toward normal upon entering the dielectric slab.
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Figure 67. Induced Current Magnitude on 100 Element Slot Array in Stratified Media with 50 off
Normal Illumination
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Figure 68. Induced Current Phase on 100 Element Slot Array in Stratified Media with 50 off Normal
Illumination
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Figure 70. Induced Current Phase on 100 Element Slot Array in Stratified Media with 45' off
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Figure 71. Induced Current Magnitude on 100 Element Slot Array in Stratified Media with 850 off
Normal Illumination
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Figure 72. Induced Current Phase on 100 Element Slot Array in Stratified Media with 85' off
Normal Illumination

99



4.1.5 Slot Array with Loaded Edge Elements. The ability to modify the edge element

currents via loading is an important tool to the radome designer. This section presents the results of

applying r-card to the first and last nine columns of the homogeneous media slot array described in

section 4.1.3. Specifically, the outer three edge element modes are loaded with 231 r-card, the next

three have 6955- r-card, and the final three have 13910- r-card.

Figures 73 through 78 show the effect of this treatment on the array, once again illuminated at
50, 450, and 850 off normal. Note the two reference solutions and the hybrid solution all agree fairly

well, except for the aforementioned difficulty with the trailing edge. The slight discrepancies in the

loaded element currents are a result of Skinner approximating the slot current mode as a constant to

calculate the lumped load. This contrasts with the author's method described in section 4.1.5. Since

Skinner uses a different approach to determine the proper lumped load to apply to the admittance

matrix, it is encouraging to see the same end result. This example demonstrates the code's usefulness

in designing array edge treatments.

Section 4.1 validated the hybrid PMM/MM technique by comparing the author's numerical

implementation to other reference codes based on the MM. Since the reference data is calculated

data, the actual induced array currents can be compared, providing the most rigorous test of the

hybrid technique's accuracy. The results clearly demonstrate the technique's validity and usefulness

in predicting large finite array performance. To add another layer of confidence, the author also

measured several radomes and compared the measured echo area with that calculated by the hybrid

PMM/MM code. These results are presented in the next section.
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Figure 73. Induced Current Magnitude on 100 Element Loaded Slot Array with 50 off Normal
Illumination
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Figure 74. Induced Current Phase on 100 Element Loaded Slot Array with 50 off Normal
Illumination
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Figure 75. Induced Current Magnitude on 100 Element Loaded Slot Array with 45' off Normal
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Figure 76. Induced Current Phase on 100 Element Loaded Slot Array with 45' off Normal
Illumination
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Figure 78. Induced Current Phase on 100 Element Loaded Slot Array with 850 off Normal
Illumination
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4.2 Measurement Comparison

Recall the geometries of concern consist of finite planar arrays made from slot columns

infinite in one dimension. In addition, the slot arrays exist on infinite ground planes. These facts

pose a somewhat difficult measurement problem, since infinite structures are hard to fit in a finite

measurement facility. The challenge, then, is to approximate these structures with the finite resources

available. The author attempted to design finite radomes that were large enough in the i direction to

approximate infinite columns. Fortunately, the thin slot pattern factors dramatically reduce the edge

effects in the _ direction, allowing a relatively short column to adequately approximate an infinite

column.

The Mission Research Corporation of Dayton, Ohio manufactured the two different radomes

the author used during the measurement validation phase. The radomes were measured at the Wright

Laboratory Multi-Spectral Measurement Facility, Wright-Patterson AFB, Ohio. Wright Laboratory

also provided the test fixture used during the measurements.

The radomes consist of skewed grids of _ oriented slots 0.881 cm long and 0.038 cm wide.

The slots form columns with inner-element spacing 1.27 cm in the i direction and 1.1 cm in the &

direction. Each radome has 42 slot columns, creating a window approximately 45 cm wide (&) by

51 cm tall (i). The grids have a 450 skew angle. The first radome is simply a thin metal screen. The

second radome is backed by a 0.15875 cm thick glass-epoxy layer with a relative permittivity of 4.5.

The author measured each radome with and without a similar r-card edge treatment to that described

in the previous section. In this case, resistivities of 500, 750g, and 1500 were used for a total of

four radome configurations.

Figure 79 shows Wright Laboratory's test fixture. The test fixture attempts to simulate an

infinite ground plane by mitigating any backscatter due to various mechanisms such as tip scatter and

creeping waves. Its size also aids in gating out any interactions between the radome and test body.

Figures 82 and 83 show a radome mounted in the test body and the cavity beneath the radome,

respectively. Since the radomes are transmissive within the band of interest (see Figures 80 and

81), the cavity creates a contamination source by re-radiating energy coupled into the cavity back
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Figure 79. Radome Measurement Test Fixture

toward the radar. To mitigate this problem, the author filled the cavity with RAM to absorb most of

the radiation transmitted into the cavity. As can be seen in the following plots, this technique was

generally quite effective.

The final photograph shows a typical r-card treatment. The r-card consists of a thin polymer

loaded with resistive material such as carbon. As shown in Figure 84, one attaches the film to the

radome with spray adhesive. One then uses a putty knife to smooth out any bubbles trapped by the

film. The author found the r-card material easy to work with and very consistent from measurement

to measurement.
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Figure 82. Radome Mounted in Test Fixture

Figure 83. Test Fixture Cavity Treatment
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Figure 84. R-Card Application
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Radome Configuration I Frequency Scans (GHz) Patterns
Metal 2 to 18 (0.1) -90 ° to -30 ° (0.20)

Metal with r-card 2 to 18 (0.1) -900 to -300 (0.20)
Backed Metal 2 to 18 (0.1) -90' to -300 (0.20)

Backed Metal with r-card 2 to 18 (0.1) -900 to -30' (0.20)

Table 3. Radome Measurement Matrix

The Multi-Spectral Measurement Facility is able to take a tremendous amount of data in a very

short time. Table 3 contains the test matrix for the four radome configurations. Frequency versus

angle plots provide a convenient way to view a large amount of data. Figures 85 through 88 show

the radar echo area (REA) for the four radome configurations. Note that 00 elevation corresponds to

a grazing angle of incidence. The author chose to focus on the three frequencies, 13 GHz, 15 GHz,

and 17 GHz, to validate the hybrid PMM/MM technique. The remainder of this section examines

each of the four radomes at these frequencies.

109



Run, Name C5324.TAR
QA5015\ratdata\c5324,tar Mon 11-27-95 Cal Date 11/21/95

18.0 5 Cal CTime 13:49

BRE a5324fh000.1
10EXT exactf-aeot

16.0010 Smoothing ON
RecID Collins

Target ID FSS # li(Ree Sp
5 Scan, Start 0.00

14.0-Scan Stop 60.00
Scanlncr :0.20

0 Start Freq 2.00
Stop Fren 19,00
ElevAnle 0.00

-15

.20

4.3.30

zoo -Magnitude (d~om)
o 5 10 15 20 25 30 35 40 45 50 55 60

Elevation (deal

Figure 85. Frequency versus Angle Plot for Radome Configuration Number 1
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Figure 86. Frequency versus Angle Plot for Radome Configuration Number 2
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Figure 87. Frequency versus Angle Plot for Radome Configuration Number 3
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Figure 89. REA pattern at 13 GHz for Metal Radome in Stratified Media

4.2.1 Dielectric Backed Metal Radome. Figures 89 through 91 depict monostatic REA

patterns at 13 GHz, 15 GHz, and 17 GHz respectively. Each plot contains measured data, reference

code data calculated using the MM, and hybrid PMM/MM data based on 10 edge columns on either

side of the array. Several features are worth noting in this figure series. First of all, the two reference

codes agree quite well in all the figures. While not perfect, they also do a good job capturing the

behavior of measured data, improving with increasing frequency. Second, the hybrid PMM/MM data

agrees with the reference data fairly well over some regions but misses the mark in others. As an

example, notice how the hybrid code misses the lobe at - 50' in Figure 90 completely. To understand

what is happening here, one must examine the induced scattering currents. The following current

plots highlight one of the code's useful features. Namely, the ability to access the scattering currents.

This ability gives the radome designer insight into what is producing a particular REA pattern or

perhaps the effectiveness of a particular edge treatment.

Figures 92 and 93 present the induced current magnitudes calculated by the author's MM and

hybrid PMM/MM codes at 15 GHz. In the MM solution, notice how the dielectric layer creates a
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Figure 90. REA pattern at 15 GHz for Metal Radome in Stratified Media

strong coupling between the slot columns. This is evidenced by the absence of a central Floquet region,

even at angles far away from grazing. The hybrid technique would be hard pressed to accurately

model the central currents for a radome this narrow. Even more noticeable is the missing ridge at

around -50' in the hybrid solution. The author traced the problem to the continuous spectral integral

evaluations for the PBF. In this case, the dielectric layer produces T-factor poles which lie either near

grating lobe poles or near the branch points in the complex integration plane. The assumptions the

author used to analytically extract the grating lobe pole may be violated, necessitating an alternative

approach to dealing with the singularity.
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Figure 92. Induced Currents on Metal Radome in Stratified Media at 15 GHz
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Figure 93. Hybrid PMM/MM Approximation to Induced Currents on Metal Radome in Stratified
Media at 15 GHz
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4.2.2 Dielectric Backed Metal Radome with R-Card Edge Treatment. Figures 94 through

96 depict the r-card treated dielectric backed metal radome's monostatic REA patterns at 13 GHz,

15 GHz, and 17 GHz respectively. As mentioned earlier, the hybrid PMM/MM code ran into numerical

difficulties. Unfortunately, Skinner's reference MM code also had problems. Figure 94 contains the

only usable data, which may be suspect. At the higher frequencies, Skinner's code returned NaNs

(Not a Number), indicating numerical instability. Despite the lack of computed reference data, the

author's MM code agrees quite well with the measured data. One may note how the edge treatments

have widened the lobing structure, while reducing the side lobes. This behavior can be accounted for

by examining the currents in Figures 97 and 98. The r-card has partially shorted out the outer edge

currents, effectively reducing the width of the radome.
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Figure 94. REA pattern at 13 GHz for R-Card Treated Metal Radome in Stratified Media
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Figure 95. REA pattern at 15 GHz for R-Card Treated Metal Radome in Stratified Media
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Figure 96. REA pattern at 17 GHz for R-Card Treated Metal Radome in Stratified Media
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Figure 97. Induced Currents on R-Card Treated Metal Radome in Stratified Media at 15 GHz
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Figure 98. Hybrid PMM/MM Approximation to Induced Currents on R-Card Treated Metal Radome
in Stratified Media at 15 GHz
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4.2.3 Metal Radome in Homogeneous Media. Figures 99 through 101 contain monostatic

REA patterns for the metal radome. The frequencies of interest are again 13 GHz, 15 GHz, and

17 GHz. Each plot contains measured data, reference code data, and hybrid PMM/MM data based

on 16 edge columns on either side of the array. In examining the measured data, there appears to

be a greater discrepancy with the predicted results than observed with the dielectric backed radome.

Unfortunately, the measured data for the metal radome is somewhat suspect. There are several

possible explanations. First, the metal foil's flimsiness may have contributed. In order to take

background measurements for background subtraction, the author lightly adhered aluminum foil

to the metal radome surface. Removing the foil without disturbing the metal radome proved nearly

impossible. As a result, the background subtraction introduced phase errors which may have corrupted

the measurements. Second, the test fixture may have been tilted slightly away from perpendicular to

the radar's line-of-sight. The effect would be a reduction in peak height. Third and most probable,

the cavity return may have corrupted the measurement. Since the metal radome is more transmissive

in the frequency band of interest, the RAM inside the cavity wasn't able to completely absorb the

coupled radiation causing, the gross lobing structure in Figure 99 and the grating lobe peak height

discrepancies in Figures 100 and 101.

Turning now to the predicted results, note once again, the reference codes produce virtually

identical solutions. One may also note the excellent agreement with the hybrid PMM/MM predictions.

The only areas of deviation are near grazing. Based on Figures 102 through 107, it is clear the problem

at grazing is caused once again by numerical problems at the trailing edge. Also, as the incident

angle sweeps off normal, the Floquet portion at the center of the array shrinks to the point where the

PBF is no longer useful. This effect is evidenced in the REA pattern by the hybrid solution departing

from the MM solution as the incident angle approaches grazing. Before leaving these figures, it is

interesting to note the current's behavior as the grating lobe enters the visible region near 13 GHz and

moves toward normal with increasing frequency. The currents on one side of the grading lobe have

a dramatically different behavior than those on the other side.
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Figure 99. REA pattern at 13 GHz for Metal Radome in Homogeneous Media
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Figure 100. REA pattern at 15 GHz for Metal Radome in Homogeneous Media
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Figure 102. Induced Currents on Metal Radome in Homogeneous Media at 13 GHz

6,

0

00 0 -30

2 0 3 0 > , , , , , 8 7 - 6 0

40 -90

50 Monostatic Angle (Degrees)
Column Number

Figure 103. Hybrid PMM/MM Approximation to Induced Currents on Metal Radome in Homoge-
neous Media at 13 GHz
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Figure 104. Induced Currents on Metal Radome in Homogeneous Media at 15 GHz
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Figure 105. Hybrid PMM/MM Approximation to Induced Currents on Metal Radome in Homoge-

neous Media at 15 GHz
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Figure 106. Induced Currents on Metal Radome in Homogeneous Media at 17 GHz
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Figure 107. Hybrid PMM/MM Approximation to Induced Currents on Metal Radome in Homoge-
neous Media at 17 GHz
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4.2.4 Metal Radome in Homogeneous Media with R-Card Edge Treatment. Figures 108

through 110 depict the r-card treated metal radome's monostatic REA patterns at 13 GHz, 15 GHz,

and 17 GHz respectively. Each plot contains measured data, reference code data calculated using the

MM, and hybrid PMMIMM data based on 16 edge columns on either side of the array. Once again,

the calculated data does a good job predicting the radome's general performance. The measured data

may have errors due to measurement difficulties as evidenced by the grating lobe peak discrepancies.

Finally, these figures show where the hybrid PMM/MM solution best represents the actual array

currents. Not surprisingly, this occurs when the currents have a good central Floquet region.
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Figure 108. REA pattern at 13 GHz for R-Card Treated Metal Radome in Homogeneous Media
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Figure 109. REA pattern at 15 GHz for R-Card Treated Metal Radome in Homogeneous Media
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Figure 110. REA pattern at 17 GHz for R-Card Treated Metal Radome in Homogeneous Media
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Figure 111. Induced Currents on R-Card Treated Metal Radome in Homogeneous Media at 13 GHz
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Figure 112. Hybrid PMM/MM Approximation to Induced Currents on R-Card Treated Metal
Radome in Homogeneous Media at 13 GHz

127



10,

8,

*" 6,

2.0

50 Monostatic Angle (Degrees)

Column Number

Figure 113. Induced Currents on R-Card Treated Metal Radome in Homogeneous Media at 15 GHz
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Figure 114. Hybrid PMM/MM Approximation to Induced Currents on R-Card Treated Metal
Radome in Homogeneous Media at 15 GHz
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Figure 115. Induced Currents on R-Card Treated Metal Radome in Homogeneous Media at 17 GHz
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Figure 116. Hybrid PMM/MM Approximation to Induced Currents on R-Card Treated Metal

Radome in Homogeneous Media at 17 GHz
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4.3 Array Size Scaling

In this final section, the author presents an example array problem demonstrating the effect

of array size on computation time for both MM and hybrid MM/PMM techniques. It addresses the

question of why one would be interested using the hybrid technique if the MM analysis provides

adequate solutions. To provide a fair comparison, the author used the same code with the PBF turned

on and off. This approach eliminated any differences due to the MM's numerical implementation.

The author used the same slotted array parameters as those in the homogeneous media examples

presented earlier. The array is again illuminated by a 15 GHz plane wave, 5' off normal. The only

variable is the number of slot columns comprising each array.

Table 4 presents the comparison between the two techniques for radomes with 100 to 900

slot columns. The codes were run on a Sun Microsystems Sparc20 Workstation. In obtaining the

data for the table, the author assumed twenty edge elements were sufficient to capture all the current

perturbations due to the array edges. Figure 60 clearly demonstrates this assumption is valid. Notice

that while the MM is faster than the hybrid PMM/MM for a 100 column array, the hybrid technique

quickly surpasses the MM for larger arrays. One may also observe that, while the MM matrix fill time

claims the lion's share of the computation time early on, the system solve time quickly becomes the

dominant bottleneck. Based on the table's data, the solve time increases as approximately N2 9 , where

N indicates the system size. This is in contrast to the hybrid PMM/MM technique, whose computation

time scales as approximately N"' . This study clearly demonstrates one of the technique's primary

advantages over conventional approaches. Namely, the hybrid PMM/MM technique is able to side-

step the link between array size and system size by lumping the array's Floquet elements into a

single unknown element. As stated earlier for the wire array, the computational improvement for

calculations involving many monostatic angles may not be as dramatic since the hybrid method

requires recalculation of one row in the coupling matrix for every incident angle.

This chapter represents the culmination of the previous chapters by putting the theory into

practice. The previous data sets clearly demonstrate where the hybrid PMM/MM technique is useful

as well as where it's use is inappropriate. The overall agreement between the reference code and

measured data give a high confidence level in the technique's validity. In general, where ever an
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MM Code MM Code MM Code MM Code
Unknowns Fill (cpu secs) Solve (cpu secs) Total (cpu secs)

100 6.00 0.18 6.27
200 12.07 1.32 13.48
300 18.65 4.30 23.05
400 24.92 9.98 35.02
500 30.50 19.73 50.38
600 36.70 34.05 70.95
700 54.58 54.28 109.12
800 49.58 81.35 131.12
900 56.97 116.02 173.25

PMM/MM Code PMM/MM Code PMM/MM Code PMM/MM Code
Unknowns: Left/Right Fill (cpu secs) Solve (cpu secs) Total (cpu secs)

20/20 4.82/4.78 0.00/0.02 9.67
20/20 4.80/4.78 0.02/0.00 9.68
20/20 4.87/4.85 0.00/0.02 9.85
20/20 4.80/4.80 0.00/0.00 9.72
20/20 4.80/4.77 0.02/0.00 9.73
20/20 4.82/4.80 0.00/0.02 9.77
20/20 4.85/4.85 0.02/0.00 9.92
20/20 4.82/4.87 0.03/0.02 9.93
20/20 4.78/4.80 0.00/0.02 9.82

Table 4. Slot Array in Homogeneous Media Reference MM Code versus Hybrid PMM/MM Code
Time Comparison

array is wide enough to have a well developed Floquet region, the hybrid PMM/MM technique is

computationally superior to the MM formulation.
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V Conclusion

Of making many books there is no end, and much study wearies the body. Now all has
been heard; here is the conclusion of the matter: Fear God and keep His commandments,
for this is the whole duty of man.

- King Solomon

This dissertation develops a hybrid periodic moment method/moment method (PMM/MM)

based solution for the electromagnetic scattering from semi-infinite arrays of wires and slots, possibly

embedded in a stratified dielectric media. These geometries are of interest in developing treatments

to control the edge diffraction from large finite arrays. While a growing body of finite array research

exists, none incorporates the physical basis function (PBF) concept presented here. The dissertation

clearly demonstrates the benefits of the hybrid approach. With the exception of a few instances where

the author's numerical implementation, not the formulation itself, produces inaccurate results, the

hybrid code accurately generates the array's scattering currents in much less time than the reference

moment method (MM) codes.

In the previous pages, the author develops each component of a complete moment method (MM)

solution for both wire and slot arrays. Examining each piece sparately, the author fills the coupling

matrix consisting of individual edge element basis functions and a PBF capturing the Floquet behavior

away from the array's edge. With an eye toward an efficient numerical implementation, both spatial

and spectral domain forms are presented, along with various summation acceleration techniques.

Dielectric boundaries are accounted for via Fresnel reflection and transmission coefficients. The

author then turns to the excitation vector entries, again accounting for the dielectric boundaries in

the spectral domain via Fresnel coefficients. Solving the system, the author discusses the scattering

currents and their relationship to the scattered far-fields and echo widths. Various related ideas are also

discussed including PBF testing and use in the excitation vector, a priori determination of the required

number of edge elements, and edge element loading. Finally, the hybrid PMM/MM formulation is

validated, using both independent reference solutions and actual array measurements. The author

tests an r-card based edge treatment using the hybrid formulation. The resulting scattering currents

and field patterns demonstrate the formulation's usefulness in array design.
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This work represents the first attempt to incorporate a periodic basis function with individual

edge basis functions in an effort to reduce the computational burden associated with large arrays. The

computational savings demonstrated here suggest several areas for future research, taking advantage

of this promising technique. First, the hybrid technique could be applied to more complex arrays. The

author necessarily restricted the array complexity in order to focus on the PBF implementation issues.

The technique's success motivates exploring more general element shapes and orientations in multi-

array structures. The PBF could also be used in orthogonal directions, extending the finite-by-infinite

arrays examined here to finite-by-finite geometries. Second, the numerical difficulties the author

encountered point to explorations of alternative numerical PBF implementations. In particular, one

may want to examine numerical integration algorithms tailored to the continuous spectral integrand's

form. The asymptotic analysis for the homogeneous media case presented in Appendix C could

be developed for stratified media to further increase computational efficiency. Additionally, there

may be different approaches to handling the surface wave and grating lobe singularities. Finally, the

grazing angle problem caused by the epsilon summation acceleration algorithm could be avoided by

implementing an alternative algorithm such as those discussed in Appendix B. The last research area

involves applying the new hybrid technique to the edge treatment design problem. One could easily

take advantage of the technique's speed by incorporating it in an automated optimization scheme.

Regardless of the optimization approach (gradient search, genetic algorithm, etc.), the parameter

space can be searched much quicker due to the faster minimization function calculations. Of course,

a priori knowledge of the required number of edge elements would also help speed the process. One

could incorporate an approximation such as the Gibbsian model discussed at the end of Chapter II.

133



Appendix A. One-Sided Poisson Sum Formula

The coupling matrix entries associated with periodic structures often involve slowly convergent

infinite summations. The Poisson sum formula provides a convenient means to transform these

summations into a more rapidly convergent form. In addition, the resulting plane wave representation

allows the introduction of stratified dielectric layers with relative ease.

The semi-infinite array geometries of interest in this research lead to one-sided summations.

Unfortunately, the original form of the Poisson sum is inappropriate in these cases. To alleviate this

difficulty, a one-sided version of the Poisson sum formula is derived which can be used to transform

these one-sided sums into equivalent, more rapidly convergent plane wave representations.

One begins the derivation by considering the normal two-sided Poisson sum formula given by

Papoulis [29]

00 00

E eiqw °F(qw) = T E f(t ± kT) (174)
q=-oo k=-oo

where f(t) and F(w) denote a function and its Fourier transform defined by

00

f J F(w)ej0tdw (175)
- 00

-00

F (w) I f(t)e-j tdt(16

and T= -. Note the left hand side of Equation (174) contains a function with the linear phase
wo

progression characteristic of a spatial summation, making it an appropriate choice for conversion to

a one-sided summation. This is accomplished by defining a continuous function G(w) such that

F(w) = G(w) . U(w + -- ) (177)
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where U(w) is the Heaviside unit step function

U(w) 1, >0 (178)S0, w<0

The left hand side of Equation (174) can now be written as

E ejqWtG(qw°) (179)

q=0

which can be identified with the spatial summations encountered in this dissertation.

Now lets examine the effect of this substitution on the right hand side of the double-sided Poisson

sum formula. One needs to determine the inverse Fourier transform of the function G(w) U(w +- ).

Designating u(t) and g(t) as the inverse Fourier transforms of U(w) and G(w) respectively, one has

from the convolution property of the Fourier transform [35]

G(w). U(w) +-+ I g(r)u(t - 7-)dT (180)

-00

In addition, the frequency shifting property of the Fourier transform gives [35]

U(w + ) +- u(t)e- j ~t  (181)

Substituting Equation (181) into Equation (180)

G(w) U(w + /-4 J g(T)u(t - r)e-J(t-)dT = f(t) (182)

At this point, one explicitly introduces the inverse Fourier transform of the step function (Recall

the step function is in the frequency domain). The duality property of Fourier transform pairs applied
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to the generalized Fourier transform of the step function results in [35]

u(t) -6(t) 1 1
2 j27rt (183)

One can substitute Equation (183) in Equation (182) to obtain

9~) (t) + ~ j 2(tT
) J g r dT (184)

2 27r J t- T
-00

based on the sifting property of the Dirac delta function. The remaining integral must be interpreted

as a principal value integral to maintain the one-to-one correspondence between the Fourier transform

pair.

With Equation (184), one can express the right hand side in terms of the new function g(t).

Substituting Equation (184) into the original Poisson sum formula leads to the new one-sided Poisson

sum formula

ejqwta(qw°) = T fg(t ± kT) + I g(r)e-j(t± dT (185)

q=E 2 2 t ± kT - Tr
q k=-oo 1-00

which is used throughout this research. Note the choice of plus or minus signs is completely arbitrary

in implementing this formula as long as the choice is applied consistently.

The following example illustrates Equation (185)'s implementation. Consider the function,

(t ) - sin( l) (186)
7rt

and its Fourier transform [35]

G(w) = rect(w) = 1, Iw < 1/2 (187)
(0, w> 1/2
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Inserting these functions into Equation (185), one obtains

0i(0 
_o___________

TZ eojqwotrect(qw0 ) =  1 E { j sin( 1)e8()k)
__ "yk - ) - (188)

where 7k = t 2,rk

w)o

The principal value integral in Equation (188) can be evaluated using residue calculus. Specif-

ically, the integrand is first broken into two parts using Euler's identity for the sine function. One

then allows r to become complex where each integrand part has different regions of convergence.

By carefully applying Cauchy's theory, one can relate the principal value integrals to the sum of the

half residues at r = 0 and - = 7k. The resulting evaluation gives

00

2 sin-Y)
k=-oo

Te r t harect( qW ut) = (189)
q=0 00

k=.- -oo

which can be verified numerically. Note Equation (189) is valid for all values of t and positive values

of Wo as long as wo, 4 -L for integer q. This restriction is a consequence of the "edge" of the rect

function coinciding with one of the sample points in the left hand side of Equation (189).

The right hand side of Equation (189) provides an alternative representation which becomes

attractive for small values of wo. In that case, the left hand side will require many terms where

the corresponding wide separation between successive values of 7k will cause the right hand side

summation to quickly converge. To demonstrate this fact, consider the particular case of wo = 0.003

and t = 4.4429. The left hand side summation in Equation (189) terminates after 166 terms resulting

in a value of (60.299,120.34). Table 5 lists the partial summations of the right hand side (RHS) for

an increasing number of terms. The relative error between these summations and the left hand side

(LHS) is also given. This example clearly illustrates the inverse bandwidth nature between the two

representations as well as the importance of such a transformation.
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K RHS (LHS-RHS)
ILHSk=-K

0 (60.198,120.47) 0.00124
1 (60.365,120.25) 0.00081
2 (60.282,120.36) 0.00021

Table 5. Sequence of Partial Sums for the RHS
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Appendix B. Summation Acceleration Algorithms

When using the Method of Moments (MM) to solve electromagnetic scattering problems,

infinite geometries invariably lead to infinite summations. The semi-infinite arrays of this research

are no exception. In seeking a numerical solution, one is forced to truncate the summations in one

way or another. The obvious choice is to terminate the summation after a given number of terms, but

determining how many terms to include before truncation is not always a straight-forward problem.

As is often the case, the obvious choice is not always the "best" choice. This appendix describes

several algorithms which take advantage of the convergence characteristics of the infinite summation

to accelerate its convergence. It turns out the two types of summations used in this research (spatial

and spectral) have different convergence behaviors which affect the performance of each algorithm.

These algorithms are the c-algorithm, the circle-fit algorithm, and the p-algorithm.

B.1 -Algorithm

The c-algorithm was proposed by Wynn [41] as an efficient alternative to Shank's transforma-

tion [30] for estimating the limit of a sequence of partial sums. Unlike Shank's transformation, which

requires a complete recalculation of the entire sequence for each estimate, Wynn's c-algorithm builds

on the previously calculated estimates. The result is a pyramid of numbers whose peak contains the

best estimate to the infinite sum's limit.

The entries in the pyramid are obtained from the so-called Em (.) function operating on a

sequence of partial sums, S,. The pyramid is formed by implementing the following equations

C0(S.) =S (190)
1ci(S, ) = [E(,+)-E(.](191)

1
Em(S.) =E- 2(S.+i) + [CM-i(S+i) -E (S)] (192)

where c _(S,,+i) = 0. Graphically the process can be represented
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m 0 1 2 3 4
n

o (S E (S) .... 8(S) --; _ 3(S)'

00 1 0. 2 1 3 

2 E ( E () --- E (S

3 E0(S3) . (S) ( (S (

4 E0 (S1 4

Note that odd m values correspond to intermediate results which are necessary for the next estimate,

62,m(S,) = e. (S,,), where e.(.) is the Shank's transformation. Clearly only two additional partial

sum calculations are required to obtain the next estimate. The complete sequence of partial sums

does not have to be recalculated resulting in tremendous computational savings.

As in all asymptotic series evaluations, care must be taken when applying them to a particular

summation. Specifically, the E-algorithm works best for partial sums which tend to oscillate around

their convergence value (e.g., the spatial summations of this research). When applied to monotonically

decreasing series such as those generated by the spectral summations, the c-algorithm's performance

degrades somewhat. Even so, the author found it's acceleration significant enough to use it for both

the spatial and spectral domain summations encountered in this research.

B.2 Circle-Fit Algorithm

The second acceleration algorithm of interest also applies primarily to oscillatory summations.

The circle-fit algorithm is a modification of the spiral average method proposed by Skinner [33]. Both

are based the observation that, for a given test location, the consecutive spatial domain partial sums

form a spiral about the convergence point in the complex plane. This phenomena is due to the fact
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that the distances between each successive array element and the test point asymptotically approach

the inner-element spacing. By estimating the center of the spiral, one obtains an approximation for

the eventual convergence point.

The primary distinction between Skinner's spiral average algorithm and the circle-fit algorithm

lies in the technique used to estimate the center of the spiral. Skinner determines the number of partial

sums required to have a complete phase rotation in the complex plane. He then performs an arithmetic

average of the these partial sums to obtain his estimate. When the inner-element spacing does not

lead to an integer number of phase rotations, Skinner must choose an error parameter and search for

the correct number of partial sums required to obtain a phase rotation within an error percentage of

an integer number of rotations.

In contrast, the circle-fit algorithm does not require an integer number of phase rotations. The

only requirement is that there is some phase rotation over the collection of partial sums. As the name

implies, the algorithm simply attempts to fit a circle to the sequence of partial sums. The center of

the circle provides an estimate to the infinite sum.

As an illustration, consider the two-dimensional Green's function for a semi-infinite wire array

G(x, y) = lim 3 H 2 )(/3 /(qdx - X)2 + y2) (193)
q-400 4 =q=O

For large q values one can use the asymptotic form of the Hankel function to express the summand

as [1]

Sq = H02 )(6V(qdx - X)2 + y2) (194)
H (2)(/ll

2j flldx, q - c

j r/3qld.e q --q o

Note that each summand contributes a component with a constant phase increment and a monotonically

decreasing amplitude. Figure 117 depicts a typical sequence of partial sums.
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Figure 117. Circle-fit Algorithm for Two-dimensional Free-space Periodic Green's Function

The sequence was generated using Equation (193) with the parameters: d. = 0.21A, x = 0.0,

y = 0.01K,. The figure also contains a plot of the "best fit" circle to the last five partial sums. The

center of this circle represents the current estimate of the infinite sum. To obtain a final estimate,

one compares the current estimate with the estimate generated from the next five partial sums. When

the difference between subsequent estimates reaches a specified tolerance, one calls the process

converged. Note in this case the estimates are generated after every fifth partial sum. In general, a

new estimate could be generated using any number of previous partial sums (greater than three) every

time a new partial sum is calculated.

The method for fitting the circles comes from a paper by Moura and Kitney [25]. In it they

describe how to determine the circle which minimizes the square error between itself and the set of

data points. Simply stated, the problem amounts to finding a center point, (Xo, YO), and a radius, ro,

142



such that the error defined by

N

N[(x, - xj)2 + (y, - - TO (195)

is minimized. This is accomplished by forcing the partial derivatives, E, E-, and to be zero. The

latter constraint gives a relationship between the data set, (xi, yi), the circle's center point, (X,, YO),

and its radius, ro

ro = - E [(x0o- xi)2 + (Y, - yi) 2 ] (196)

From the remaining constraints, Moura and Kitney derive a matrix equation whose solution gives the

circle's center, (Xo, YO).

C = Gil G12 L, (197)
C2 G21 G22 YO

where

IV 4 1 i
Gi = 4 2 - - E

i=1 
/=1

N N N

i=1 j=1 k=l

i=1

N N N N N N

C, =X2 Zx j 2YEZXk+ZYi2X, +±ZX31 1 k=1 2
=1 j=l i=1 k=1 i=1 i=1

N N N N N NE .Ei2+E 5,,+X2
C2 N 2 H~zY ~ E Yk±+ZXlA±Yi :

i=l j=l i=1 k=1 =1 i=1

Significantly, this method is a direct method', a fact crucial in maintaining the circle-fit algorithm's

computational efficiency.

'A direct method implies the circle's defining parameters are calculated from the data points in one step. There is no
iterative process to refine an initial guess.
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Relative Error IRaw Sum (# terms/cpu secs) Circle-fit Algorithm -Algorthm

1.OE-1 10/0.001 5/0.001 2/0.001
1.OE-2 977 / 0.4 15 / 0.004 4 / 0.002
1.OE-3 24834 / 50.7 45 / 0.011 6 / 0.003
1.OE-4 NC 190 / 0.042 6 / 0.003
1.OE-5 NC 880 / 0.167 8 / 0.004
1.OE-6 NC 3865 / 0.766 10 / 0.005
1.OE-7 NC 11380 / 2.375 12/0.005

Table 6. Circle-fit and c Algorithms Applied to Equation (193)

Table 6 clearly demonstrates this efficiency by comparing the convergence characteristics of

the two acceleration algorithms to the unaccelerated sum of Equation (193). The parameters here are

the same as those used to generate Figure 117's plot. In the table the letters "NC" indicate the sum did

not converge. Convergence is determined by calculating the relative error between each algorithm's

estimate and a "truth" value obtained by setting the convergence tolerance to machine accuracy for

either algorithm. The relative error is then defined by

estimate - truth
relative error = -th (198)

truth

Also, the CPU times are those obtained on a Sun SparclO workstation. Based on these results, the

author chose the E-algorithm over the circle-fit algorithm.

B.3 p-Algorithm

The final algorithm considered reportedly performs best on monotonically decreasing sum-

mations. The p-algorithm was proposed by Singh and Singh as a more efficient alternative to the

-algorithm [31]. Originally derived by Wynn [42], the algorithm can be computed by the following
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Relative Error [Raw Sum (# terms/cpu secs) c-Algorithm I p-Algorithm
1.OE-1 5 / 0.003 4/0.003 2/0.003
1.OE-2 60/0.015 14/0.005 2/0.003
1.OE-3 607 / 0.129 132 / 0.056 4/0.003
1.OE-4 6078/ 1.4 136/0.056 4/0.003
1.OE-5 NC 730/0.123 6/0.003
1.OE-6 NC NC 6/ 0.003
1.OE-7 NC NC 8 / 0.003

Table 7. c and p Algorithms Applied to Equation (202)

equations

po(S.) = S. (199)
1

Pi(S-) = P0(S-) (200)

Pm(Sn) = Pm- 2(Sn+i) + m (201)
[Pm-1(S.+1) - PM-i(SJ)

where p-(S+i) = 0. Notice the similarity to the c-algorithm. The difference lies in the numerator

of the last equation. It is claimed this small change gives the p-algorithm a tremendous advantage

over the c-algorithm when operating on a monotonically decreasing summand.

As a demonstration, consider the infinite summation

S = 1 - (202)
k=1

Table 7 contains a comparison of the c-algorithm and p-algorithm along with the unaccelerated sum.

Based on this data, the p-algorithm would be the algorithm of choice. In fact in their paper, Singh

and Singh present relative error plots of this algorithm applied to both spectral and spatial Green's

functions similar to those used in this research which clearly indicate a performance advantage over

the c-algorithm.

Unfortunately, the author was not able to obtain the same performance. Table 8 shows the

algorithm applied to the discrete spectral sum of Equation (203) with parameters: d. = 0.21A,
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Relative Error I Raw Sum (# terms/cpu secs) E-Algorithm [p-Algorithm

1.OE-1 21/0.009 8/0.004 4/0.004
1.OE-2 70/ 0.024 14 / 0.006 16 / 0.005
1.0E-3 130/ 0.042 20 /0.008 136 / 0.075
1.OE-4 196/0.064 32/0.012 170/0.109
1.OE-5 264/ 0.087 52 / 0.018 392 / 0.473
1.OE-6 333 / 0.106 74/0.028 NC
l.OE-7 404/ 0.127 84/ 0.036 NC

Table 8. E and p Algorithms Applied to Equation (203)

x = 0.0, y = 0.001A.

= (203)4/r 2 _(.27rk )2

k=-cc

The p-algorithm actually requires more terms than the raw sum. Based on these results and other

numerical experiments, the author decided the -algorithm provided the most reliable acceleration in

both the spatial and spectral domains. This fact coupled with the algorithm's relative simplicity made

the E-algorithm the method of choice.
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Appendix C. Continuous Spectrum Integral: Uniform Asymptotic Expansion

The application of the Method of Moments (MM) to infinite periodic structures results in

infinite summations. The summation acceleration algorithms of Appendix B provide one approach

for evaluating these summations. Another approach involves transforming the summand to another,

more convergent, form. The one-sided Poisson sum used in this research is an example of this

technique. Unfortunately, the one-sided Poisson sum generates a continuous spectrum integral which

is often difficult to evaluate numerically. In an attempt to mitigate this problem, the author investigated

the following asymptotic integral evaluation. Although not universally applicable, the asymptotic

integral evaluation significantly shortens the computation time required for many of the integrals

encountered in this research.

The continuous spectrum' integral has the general form

Ik = Jf()ellq( ) dv (204)

C

where C is an infinite contour in the complex v plane, q(v) is an analytic function, and f(v) has a

simple pole2 located on C. The parameter Q is positive and, most important, often large. When this

occurs, one can use an asymptotic approximation for 'k and still maintain reasonable accuracy.

At its core, the asymptotic integral evaluation is based on the exponential behavior of the

integrand. Suppose Re{q(v)} in Equation (204) has a local maximum v', known as a saddle point,

somewhere along C. In the neighborhood of vs, Re{q(v,) } > Re{ q(v) }. Since Q is a large positive

value, the magnitude of the exponential function, I e q(v) 1, will be greatest at v, and decay very rapidly

away from v,. As long as f (v) is analytic in the neighborhood of v', one can approximate 'k with

only the integral contribution from the local maximum.

1This form is actually the angular spectrum resulting from the transformation px = sin(v).
2For the non-free-space geometries, f(v) may also contain singularities associated with surface waves trapped in the

stratified media.
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At this point, one usually applies a little finesse in an effort to make the local evaluation as easy

as possible. For example, if f(v) is slowly varying in the neighborhood of v,, it can be approximated

by f (v,) and pulled out of the integral

Ik - (Vs) J eq() d, Q--+00 (205)

One can then perform a Taylor expansion of q(v) about i',. Retaining the first two non-zero 3 terms,

one arrives at the "canonical" form

Ik f(v,)e~q ' ') J e- 2"@'I)l di, Q --* 0o (206)

Since the integrand is exponentially dominant, one can extend the range of integration. Then, with

the appropriate variable substitution, one can express the integral in terms of the gamma function.

Closed form evaluation gives the final asymptotic form

I - fQve l~ 00. q,,(') f(u')e '  (207)

Unfortunately, the integrals encountered in the dissertation rarely display the desired behavior

without some manipulation. For example, one must deform C into what is commonly called the

steepest descent path, CSDP. Along CSDP, the integrand displays the desired sub-dominant behavior

away from the saddle point. Another difficulty occurs when f(i)'s singular point lies in the vicinity

of the saddle point. One must then decompose f(v) into a regular and singular part. The regular part

leads to the gamma function as before. The singular part leads to error function or Fresnel integrals

which are well tabulated. Felsen and Marcuvitz provide an excellent overview of this process in their

chapter on the asymptotic evaluation of integrals [11].

3 Since v, is a maximum, q'(v,) = 0 where the prime indicates differentiation with respect to the argument. Thus the
next non-zero term is q"(V').
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To illustrate the benefits of asymptotic evaluation, consider the integral arising from the two-

dimensional wire array in free-space

Ik = I sin(y) - px dv (208)
C

where

PX = sx + kA (209)

and C is shown in Figure 6. The parameter Oft represents the electrical distance from a point one

half the inner-element spacing to the left of the array edge and qt the angle measured from the array

normal. Thus for many of the terms in the coupling matrix, O3t is a "large" 4 parameter.

To perform an asymptotic evaluation, one must distort the principle value contour to the steepest

descent path, accounting for any pole encirclement along the way. In addition, the principle value

contour must be completed in order to invoke Cauchy residue theory to distort the contour. One can

incorporate both factors in the analysis through the combined residue contribution

Ik ' ICSDP + Iresidue (210)

Figure 118 depicts these contours for a typical saddle point/grating lobe pole configuration.

The grating lobe pole occurs at v, = sin-'(p,) and the saddle point at v, = t. The steepest decent

path is defined by Im{q(v)} = Im{q(v8 )} which intersects the real axis at v, and one of the vertical

legs at vi = :L cosh -1  , depending on the sign of v8.

Felsen and Marcuvitz provide a uniform asymptotic evaluation valid even when the grating

lobe pole and the saddle point come arbitrarily close to each other. Expressed in terms of the

4 0f course, the definition of "large" depends on the accuracy one desires.
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Figure 118. Angular Spectral Integral Steepest Descent Path

complementary error function, the evaluation is

SDP e Ipt sin( t) - p pyv 2[cos(i/, )_ 1]1

± j2 -Z-e-joi[CO( °-40-] Q (T ei 4 pt[cos(zo - qt) - i) } (211)

where

Q(x) = e-t dt12)

py = Vl p2 (213)

Note that py is defined to be either positive real or negative imaginary. Abramowitz and Stegun [1]

give efficient methods for evaluating Q (x) with a complex argument without resorting to numerical
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integration. One can then calculate the remaining half-pole contribution from

'residue =jreOcos(vo-t) (214)
Py

To obtain the correct residue contributions one must choose the proper signs in Equations (211) and

(214). Specifically, the upper signs are chosen if one of the following conditions are satisfied.

1. v > 0 and Re{v} < v,

2. vs > O and Im{v} > vi, or

3. v, < 0, Re{o 0} < v, and Im{fvo0} > -vi

If none are true, then one chooses the lower signs.

As in any approximation, the question of accuracy invariably arises. Figure 119 attempts

to provide an answer to this question by comparing the asymptotic and numerical evaluations of

Equation (208) using the parameters/3 = -, s = -0.866, d = 0.1 Aand k = 0. The figure plots

the relative error magnitude defined by

asymptotic - numericalrelative error = (215)
numerical

as a function of q3t for various values of ,5t. Since the test locations in this dissertation are always

a wire radius out of the array plane, it is clear qt stays close to +90' for most integral evaluations.

Surprisingly, ft can be as small as 0.1 A over a wide qt range while still maintaining a relative error

less than 10%. This, coupled with the computational savings5 shown in Table 9, make the asymptotic

evaluation a very attractive alternative to a numerical solution.

5The CPU times are averages over 91 integral evaluations. The evaluations were performed on a Sun SparclO
workstation using the MATLAB software package.
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Figure 119. Numerical versus Asymptotic Integral Evaluation Error

(A) [Asymptotic (cpu secs) Numerical (cpu secs)
0.1 0.06 9.08
0.5 0.06 9.38
1.0 0.05 9.48

Table 9. Asymptotic and Numerical Integral Evaluation Time Comparison
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Appendix D. Array Scanning Method

Consider the problem of a single radiating element in the presence of a stratified dielectric

medium. One must be able to determine the fields from such an element in order to calculate the

coupling matrices found in this research'. Typically one might use a non-free-space Green's function

to account for the slab boundaries. Unfortunately, this type of Green's function often produces

difficult to evaluate, highly oscillatory integrands. This appendix briefly develops an alternative

method called the Array Scanning Method (ASM). The author uses a two-dimensional wire problem

to illustrate the ASM, thereby avoiding a tremendous amount of mathematical baggage which can

mask the method's simplicity.

Figure 120 depicts a single infinite wire buried in a dielectric slab. One begins by expressing

1The coupling matrix entry is proportional to the field radiated by the basis function at the test location.

-i -i

E,H A

A

wire location (Pb)

test location (p)

Figure 120. Single Wire in a Dielectric Slab
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the field due to the wire in a homogeneous media as

^W/Jb2

Ewire(-5) = P z--- H(l -i) (216)
4

Now imagine creating an array of wires around this wire with inner-element spacing D.

oo 04J r2 -, 1__,

-array(-W'4 wi oH(,1P - pqb,,e -  b
q=-c

00

- , S Eqe-joxqD . (217)

q=-oo

One identifies Equation (217) as a Fourier series where iE 0 = Ewire(7). Using the Fourier method,

one can extract the central coefficient (q = 0) with an appropriately define inner product,

T

1 J -array(.5)e Q8 ds

T

2 q=OD~z

a J array (P) ds (218)

A

where T = __- 2, Since one has total freedom in defining the array, one can choose the

inner-element spacing to confine the integration range to the interval [-1, 1]. This corresponds to

scanning the array phasing through an angle range restricted to real space, hence the name "array

scanning" method.

At this point, one can express the field from the array in the spectral domain via the Poisson

sum formula. It remains only to introduce the T-factor concept[26, 28] to incorporate the dielectric

slab into the problem. The T-factor will not alter the phase relationship between the array elements

and therefore does not alter the scan integration. Thus, one is left with an expression for the field

from a single wire in terms of the field from an infinite array of wires.
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One may wonder what has been gained through this series of manipulations. It appears one

has exchanged a straight-forward integral evaluation for an infinite sum of integral evaluations. The

ASM derives its efficiency from the exponential damping characteristics of the evanescent spectral

terms. Thus only a few, much simpler, integral evaluations are required for convergence. The only

penalty occurs when the T-factor contains surface wave singularities. In this case, the most expedient

remedy involves introducing a slight loss in the dielectric and then integrating finely near the former

singular point.
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Appendix E. Physical Basis Function (PBF) in the Excitation Vector

Throughout this dissertation, the author treats the PBF coefficient as an unknown quantity.

Recall the PBF was introduced as an a priori encapsulation of the "infinite" nature of the central

portion of a large array. One might ask why not go one step further and set the PBF coefficient value

to that determined by a full infinite array analysis. It could then be included in the excitation vector,

reducing the matrix dimension and eliminating the question of how to test the PB This appendix

documents the author's investigation of this idea.

Consider the simple problem of a large wire array in a homogeneous media shown in Figure 121.

Breaking the problem into two semi-infinite arrays, one could formulate the subproblem Moment

Method (MM) matrix equation in the following two ways. Treating J0 as an unknown, one has from

Po' 0

"Finite" Portion "Infinite" Portion "Finite" Portion
(100 Elements) (400 Elements) (100 Elements)

i= 200

d=0.3 k
A

s

Figure 121. 600 Element Wire Array in Homogeneous Media
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Equation (16)

00 B

Jo E O((-pt)- -5,j)e -j0A 'p q + : JbH 2)( pt- -fb (219)
q=O 

b=1

where the right hand side contains the unknown current coefficients. Recall Pt is the test function

location, Pb is the basis function location, and P. is the PBF element location. The second formulation

treats the PBF coefficient, J0, as a known resulting in

cc BW/-Jo 00 H^-(Op T jBHO2(
E(-p) + - E - =-  - -T 5 JbHj'(3 - AbD (220)

q=O b=1

One can determine JO from a full infinite array formed about the PBF test location, P0.

Jo 4E(P°) (221)
W/,t 1 H (2) (0 1 o - j qj)e-j 'j5,

q=-oo

The following four figures compare the currents calculated with these two formulations (denoted

by x's) to those calculated from a 600 unknown MM analysis (denoted by o's). Specifically, the

current amplitudes for the first 110 edge elements are shown. Figures 122 and 123 plot the currents

determined by Equation (219) with 100 unknown edge elements. For clarity, the first ten PBF

elements are also shown. Note how the edge elements near the PBF are clamped to the PBF value.

Now consider Figures 124 and 125 where Equations (220) and (221) are used. In this formulation,

the edge perturbations near the PBF are no longer mitigated.

To understand why this is so, consider the matrix equation representing Equation (219).

ZOO ZObiF O1
Vo J(222)

VO Zto Ztb Jb
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where the 0 subscript indicates the PBE Compare Equation (222) with that of the second formulation.

E t- J0, Zto ] [ Ztb ] [ JI ] (223)

where one calculates J0 from a fully infinite array. Even if J0 = J0 , Equation (223) does not contain

the constraint

V = JoZoo + [Z0b] [Jb] (224)

Thus the second formulation is missing some of the coupling information between the PBF and the

edge elements.

Based on the previous figures, it is apparent this coupling information plays a critical role in

correcting the edge element currents nearest the PBF. As a result of this investigation, the author

determined it is better to treat the PBF coefficient as an unknown despite what may appear to be an

unnecessary increase in the resulting matrix size. One can always compare the PBF coefficient to that

obtained from an infinite analysis "after-the-fact" to check if a sufficient number of edge elements

were included in the calculation.
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Figure 122. Left 110 Elements Based on First Formulation (Leading Edge of Array is Element 1)
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Figure 124. Left 110 Elements Based on Second Formulation (Leading Edge of Array is Element 1)
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