#### Air Force Institute of Technology

## **AFIT Scholar**

Theses and Dissertations

Student Graduate Works

9-1997

# **Aerial Port Location Study**

Levenchi L. Dingle

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Aviation Commons, Geography Commons, and the Operations and Supply Chain Management Commons

#### **Recommended Citation**

Dingle, Levenchi L., "Aerial Port Location Study" (1997). *Theses and Dissertations*. 6043. https://scholar.afit.edu/etd/6043

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.



# AERIAL PORT LOCATION STUDY THESIS

Levenchi L. Dingle, Captain, USAF

AFIT/GTM/LAL/97S-2

DISTRIBUTION STATEMENT A

Approved for the provided of the provided to the pro

# DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DITO QUALITY INSPECTED 5

AERIAL PORT LOCATION STUDY

THESIS

Levenchi L. Dingle, Captain, USAF AFIT/GTM/LAL/97S-2

Approved for Public Release; Distribution Unlimited

DTIC QUALITY INSPECTED 8

19980608 032

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

#### AERIAL PORT LOCATION STUDY

#### THESIS

Presented to the Faculty of the Graduate School of Logistics

and Acquisition Management of the

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

Levenchi L. Dingle, BS

Captain, USAF

September 1997

#### Acknowledgments

I am greatly indebted to my thesis advisor and reader, Dr. Cunningham and Dr. Srivastava for their guidance during this thesis process. This product could not have been completed without their sound advice. I would also like to thank others who had a hand in the completion of this project. They include Mr. Howard Steffey, HQ AMC/DORS, who provided the bulk of data needed and Major Scott whose expert knowledge of database management systems lead to the rapid consolidation of useful information from the provided raw data. Additionally the experience and knowledge of Majors Hill and Murdock in the Operations Research department, was sorely needed in the formulation and execution of the linear programming model. To my family, I am forever grateful for the time allowed away from them throughout this all consuming process. My two sons Jacob and Jonah must have at times wondered if they even had a father. Finally, and most apologetically, I would like to thank my wife Renee for putting up with the "all niters" and the many other endearing aspects of life at AFIT. Thanks, I love you.

Levenchi L. Dingle

## Table of Contents

|       |                             |                                |                                                |          |           |                    |                                       |       |       |                |     |     |     |     |     |     | E     | ?aq   | jе                   |
|-------|-----------------------------|--------------------------------|------------------------------------------------|----------|-----------|--------------------|---------------------------------------|-------|-------|----------------|-----|-----|-----|-----|-----|-----|-------|-------|----------------------|
| Ackn  | owle                        | dgmer                          | nts                                            |          |           | • • • •            |                                       | • • • |       | • •            |     |     |     |     |     |     |       | • :   | ii                   |
| List  | of :                        | Figui                          | ces                                            |          |           | • • • •            |                                       |       |       | ••             | ••, |     |     |     |     |     |       |       | . v                  |
| List  | of :                        | Table                          | es                                             |          |           |                    |                                       |       |       |                |     |     |     |     |     |     |       |       | vi                   |
| Abst: | ract                        |                                |                                                |          |           | • • • •            |                                       |       |       |                |     |     |     |     |     |     |       | v.    | ii                   |
| I. :  | Intro                       | oduct                          | cion                                           |          |           | • • • •            |                                       |       |       |                |     |     |     |     |     |     |       |       | . 1                  |
|       | Rese                        | earch<br>earch                 | c Proble<br>n Scope<br>n Quest:<br>and Ove     | <br>ions | • • • • • | • • • •            | · · · ·                               | • • • |       | • • •          | • • | • • | • • |     | • • |     | • • • | •     | . 4<br>. 5           |
| II.   | Lite                        | eratı                          | ıre Rev                                        | iew .    |           |                    | · • • •                               |       |       |                |     |     |     |     |     |     |       |       | . 7                  |
|       | Mode                        | el 2:                          | Autor                                          | icomm    | odity     | y Di               | str                                   | ibu   | tic   | n              | Sy  | st  | em  |     |     |     |       | • -   | 15                   |
| III.  | Metl                        | nodol                          | Logy                                           |          |           |                    |                                       |       |       |                |     |     |     |     |     |     |       | • •   | 18                   |
|       | Card<br>Dist                | go Da<br>tance<br>t Dat        | ormulat: ata e Data ca                         |          |           | • • • •<br>• • • • | · • • •                               |       |       | • • •<br>• • • | ••• | ••  | ••• | ••• | • • |     | • • • |       | 23<br>26<br>27       |
| IV.   | Resi                        | ılts                           |                                                |          |           |                    |                                       |       |       |                |     |     |     |     |     |     |       | 2     | 29                   |
|       | Dist<br>Cost<br>Port<br>Old | tance<br>t Dat<br>t Cap<br>vs. | ata Ana<br>e Data<br>ca<br>pacities<br>New Pos | s        | ructi     |                    | · · · · · · · · · · · · · · · · · · · |       | • • • | • • •          |     | • • | • • | • • | • • | • • |       |       | 31<br>36<br>39<br>41 |
| V.    | Cond                        | clusi                          | ion                                            |          | • • • •   | • • • •            | . <b></b>                             |       |       | · • •          |     |     |     |     |     |     | • •   | 4     | 45                   |
| Appeı | ndix                        | A:                             | Top Co                                         | nsign    | or DO     | DDAA               | ACs                                   |       |       | · • •          |     |     |     |     |     |     | • •   | 4     | 48                   |
| Appe  | ndix                        | В:                             | Aerial                                         | Port     | s of      | Deb                | oark                                  | ati   | on    |                |     |     |     | • • |     |     | • •   | , • • | 51                   |
| Appe  | ndix                        | C:                             | Origin                                         | -APOD    | Dema      | and                | Mat                                   | rix   |       |                |     |     |     |     |     |     |       | , .!  | 54                   |

|              | Pa                                      | ge |
|--------------|-----------------------------------------|----|
| Appendix D:  | Macro to Produce CPLEX Readable         |    |
|              | Linear Program                          | 55 |
| Bibliography | ••••••••••••••••••••••••••••••••••••••• | 64 |
| Vita         |                                         | 67 |

# List of Figures

| Figure |           |        |         |        |        |    |  |  |  |  |
|--------|-----------|--------|---------|--------|--------|----|--|--|--|--|
| 1.     | Shipments | within | Channel | Weight | Breaks | 38 |  |  |  |  |

# List of Tables

| Tab. | le                                           | age |
|------|----------------------------------------------|-----|
| 1.   | Top Cities of Origin                         | .33 |
| 2.   | Top Aerial Ports of Debarkation              | .34 |
| 3.   | Origin to APOE Distance                      | .35 |
| 4.   | APOE to APOD Distance                        | .36 |
| 5.   | Ton-mile Costs for Inland Freight Traffic    | .37 |
| 6.   | AMC Channel Weight Breaks and Costs          | .37 |
| 7.   | Aerial Port Operating Costs (FY96)           | .39 |
| 8.   | Aerial Port Throughput Capacities            | .40 |
| 9.   | Old vs. New APOE Structure - Cost Comparison | .43 |

#### Abstract

This study performed an investigation on determining the appropriate number and locations of continental United States aerial ports. To accomplish this a linear programming formulation was adapted with the optimizing function based on trading off the cost of shipping cargo against port operating costs. Cargo would travel from CONUS origin, through aerial port of embarkation (APOE), to aerial port of debarkation (APOD) at minimum cost to the DOD. The need for the study was precipitated by continued reductions in the military budget, consolidation of defense depots, and the reduction in the number of personnel stationed overseas.

Cargo movement data was extracted from the

Transportation Reporting and Inquiry System database for

fiscal year 1996. This information was then used as

deterministic demand at the APODs from particular

origination cities. The demand had to be exactly met in the

formulation. Applying the linear program resulted in the

recommendation to operate only three aerial ports. They are

Travis AFB, CA, Dover AFB, DE, and McGuire AFB, NJ saving

over 11 million dollars a year.

#### AERIAL PORT LOCATION STUDY

#### I. Introduction

At a time when the United States Armed Forces is reducing its numbers in response to a changing world situation and budgeting constraints, there is a need to readdress the structure of the worldwide cargo distribution system. The military is now emphasizing continental United States (CONUS) based forces with the ability to redeploy on short notice. Of course, with fewer personnel in forward areas, the total supply requirement will decrease. This reduction will precipitate a restructuring of the transportation system.

A major portion of this system consists of aerial ports of embarkation located throughout the United States. When the aerial port distribution network was originally designed, aircraft were of limited range and capability as compared to today's standards. It made sense in the post World War II environment to locate most of the aerial port facilities along the east and west coasts. But today with long-range transport capability of United States Air Force (USAF) and commercial aircraft, a new look at the basing structure is warranted.

In 1989 a study along the lines of this thesis was conducted. It was called the "Optimal Airlift Distribution Study Proposal" (OADS) completed by Greg Holevar, currently at headquarters Air Force Material Command in the transportation directorate. The OADS study had some interesting results. At that time, the current locations considered were the eight major aerial ports plus two inland bases. They were Charleston AFB, Charleston, SC; Dover AFB, Dover, DE; McChord AFB, Tacoma, WA; Norfolk NAS, Norfolk, VA; Norton AFB, San Bernadino, CA; Tinker AFB, Oklahoma City, OK; Travis AFB, Fairfield, CA; McGuire AFB, Wrightstown, NJ; Kelly AFB, San Antonio, TX; and Hill AFB, Ogden, UT. After consideration of cargo origin, destination, and aerial port effectiveness in handling the calendar year (CY) 1988 cargo, the study recommended a few changes. The optimal locations of ports were determined to be Charleston, Dover, Norfolk, Tinker, and Travis. It was recommended that McGuire and McChord downsize for a wartime role and that Norton close its doors (1).

#### Specific Problem

Since 1989, at the completion of the OADS and its implementation beginning in 1990, there have continued to be drastic reductions in personnel and base infrastructure. These are the results of continued tightening of the Department of Defense (DOD) budget and Base Realignment and Closure Commission (BRAC) impacts. Bases overseas and in the CONUS are still being shut down or realigned to include the depots and air logistics centers (ALCs), from which most of the cargo originates that enters into the Defense Transportation System (DTS). As a result of BRAC 95, several depots are slated for closure by the year 2001. current list of Defense Distribution Depots or Facilities contain 24 sites. Those depots scheduled to close in 1997 include Letterkenny, PA, Ogden, UT, Columbus, OH, and Memphis, TN. The depot at McClellan AFB, CA, and the San Antonio ALC (SA-ALC) at Kelly AFB, TX, are scheduled for closure in 2001 (2). As the independent service depots continue to merge into the Defense Logistics Agency (DLA), the number of cargo origination points will constrict even further necessitating another look at port location.

Today's environment is a reflection of a similar situation in 1989 and 1990. As taken from Annex Alfa to MAC (Military Airlift Command) Programming Plan 90-16, this quote sums up the situation:

Current and future [DOD] budget constraints require a closer look at the current way of doing business. The existing and future constraints on Second Destination Transportation funding...[and] MAC's task of meeting the time standards set by the Uniform Material Movements and Issue Priority System (UMMIPS) is becoming an increasing difficult and expensive challenge. (3)

According to Mr. Steffey (4), at HQ AMC Cargo
Management, approximately 50 percent of the cargo handled by
AMC is currently not meeting the Uniform Material Movement
and Issue Priority System (UMMIPS) requirements. As a
result of this and other tumultuous changes occurring within
the DOD, Air Force Materiel Command (AFMC) and Air Mobility
Command (AMC) determined that it was again time to address
the DTS structure and more specifically the basing strategy
of the CONUS aerial port system. The results may be the
more efficient and effective handling of the millions of
shipments that cross AMC's path annually.

#### Research Scope

This thesis will analyze the cargo data provided by the Transportation Reporting and Inquiry System (TRAIS) (5) to determine the origin and aerial port of debarkation of the majority of the cargo that transit the DTS system for overseas delivery via AMC's aerial ports. The purpose of this effort will be to locate a best set of CONUS aerial port facilities. The set of alternatives include six major

aerial ports in existence today along with three interior possibilities.

Using this synthesis of TRAIS information, a linear programming algorithm will be developed to enumerate and locate a possible set of aerial port facilities to handle the Second Destination cargo requirement.

Model formulation will be based on a transshipment facility location problem which locates intermediate service facilities to minimize some objective cost function, or in this case, the total cost of shipping cargo through the aerial port system en route to the final destination considering operating costs of the aerial ports.

#### Research Questions

There are two questions which this thesis will answer.

- 1. Based on a modified distribution system location problem, what are the optimal locations and how many aerial port facilities are needed?
- 2. How does the new structure compare, on the basis of cost, with the current APOE structure?
  Chapter III will discuss the methodology used to answer the above questions.

#### Summary and Overview

This chapter has given a brief introduction and background to the subject of aerial port facility location. It has also addressed the specific problem, research scope,

and the questions that will be answered as a result of this effort. Chapter II will review the literature expounding on location problems in general on down to the focused task at hand. The methodology will be the thrust of Chapter III, which will yield the results in Chapter IV and conclusions in Chapter V.

#### II. Literature Review

Facility location problems have been the subject of research for quite some time. Advances in computing power in the last 10 to 15 years have caused a resurgence in the genre. For excellent discussions of the basic facility location problems and models, three sources come to mind. The first is a textbook on discrete location theory by Mirchandani and Francis (6) and the second is a text on facility layout and location analysis by Francis, McGinnis, and White (7). Another good treatment of the subject was authored by Love, Morris, and Wesolowsky (8).

Mirchandani and Francis narrow their focus to discrete location decisions as opposed to continuous location decisions:

The major reasons are that in most cases decision-makers consider a discrete representation to be a more realistic and a more accurate portrayal of the problem at hand, and that continuous formulations appear to be relatively difficult to solve. (6)

They present formulations of and solution methods for the basic models and their variations. These would include the p-median, the p-center, the uncapacitated facility location, and the quadratic assignment problems (6).

Francis et al. discuss both planar single and planar multifacility location problems. They also describe

transportation network setups, to include the tree, median, center, covering, and warehouse location problems (7).

Facility location models' main purpose is to quantitatively evaluate the alternatives of siting facilities, be they warehouses, plants, etc., to minimize the cost or some other objective. Models are mathematical optimization techniques that can be used to determine whether or not a facility should be opened or closed, and where they should be placed (9).

The numerous assumptions made that simplify any particular application, ultimately determine the solution generated by the model. One assumption in many location models is that the demand to be satisfied by particular facilities are fixed and known (9). Estimates of capacities and costs are also used. The costs may be divided into transportation, fixed, or operating, with the assumption of linearity for the transportation portion. Therefore, the accuracy and quality of results are heavily dependent on the realism associated with these assumptions.

Another point to be made about facility location models is that although primarily quantitatively based, qualitative factors can be input and evaluated in some formulations (10). Qualitative factors could include such things as does a site have favorable tax laws, a large labor pool, or access to recreational activities? Researchers speaking on the added flexibility of location-allocation models, expound

on the fact that these models have the ability to represent wide ranging environments in mathematical terms (9).

For those interested in a brief history of the classic Euclidean minisum distance facility location problem or more succinctly known as the Weber problem, Wesolowsky's "The Weber Problem: History and Perspectives," is a good starting point (11). He breaks down problem development chronologically and credits those who contributed to its present form and understanding. From Fermat (1601-1665), Torricelli (1608-1647), and Cavalieri (1598-1647) to the many others from the seventeenth through twentieth centuries, Wesolowsky gives a substantial overview of the spatial median (Weber) problem history. He then discusses the generalization of the Weber problem to the locationallocation model, where points to be located are facilities and fixed points in the formulation become supply and demand points. Transportation costs were included as functions of distance and mention was made of spherical distances as opposed to Euclidean distances (11). Continuing with the theme of location-allocation models, Ghosh and Harche (9) also review their progress over time.

Ghosh and Harche begin from the introduction of location-allocation models in the 1960s and follow their evolution to the 1990s. They cite the most important characteristic as "the ability of these models to determine the optimal location of several facilities simultaneously."

In many distribution systems some of the located facilities are used as transshipment points which collect goods from dispersed suppliers and then ship to demand points. The same objective is apparent for placing these transshipment centers as is the case for most location problems, that being the minimization of cost (9). Before continuing with transshipment centers, a brief overview of some location analysis that has been applied in military decision-making will be discussed.

Despite the tremendous amount of literature on facility location models, there has been very little work done on the placement of military consolidation points within the continental United States. The "Optimal Airlift Distribution Study (1)," discussed in Chapter I, was the first attempt at locating CONUS aerial ports. The remaining studies found in the literature search that concentrated on military location applications were not specifically directed at the aerial port location problem. The majority was found in the stack of theses at the Air Force Institute of Technology (AFIT). Garcia developed and applied a coverage type location-allocation problem to the locating of Air Force repair facilities and the associated limited reparable equipment stocking those facilities (12). Merrill tackled a single facility location and routing problem in order to site and minimize the en route distance of flight inspection missions. He modified and applied the classic

"multiple traveling salesman" model and solved using the Simplex solution method (13).

More in line with the aerial port location task at hand, a thesis was done on the location and routing of the Defense Courier Service (DCS) Aerial Network. The DCS is an organization whose purpose is to handle and transport sensitive material for the Department of Defense. Again the traveling salesman formulation was used but the starting point was Laporte's algorithm input as an integer linear program and a combined heuristic technique, minimum spanning forest/Clarke-Wright, was applied to obtain a solution (14).

The remaining portion of this chapter will briefly describe two formulations of the multiple transshipment center location problem. These models could be applicable to the AMC aerial port network and solved within a given set of constraints.

#### Model 1: Automobile Manufacturer

In 1992 a study was conducted on behalf of an American automobile manufacturer to locate an appropriate number of transshipment centers. These centers would serve as consolidation points for small Just-in-time shipments from hundreds of suppliers. The material could then be transported to assembly plants in a more cost-effective manner. Bhaskaran's approach to this particular problem was taken as a continuous space model as opposed to a network

model (15). Network models have a specified set of alternate locations to choose the best from, whereas continuous models can locate facilities from an almost infinite solution space.

Bhaskaran's objective was to minimize the total flow-weighted transportation distance of material shipped to the plants. The formulation of this large problem is shown below:

#### Objective function:

Minimize Z = 
$$w\sum_{k}\sum_{i}F_{k}d_{ki}\delta_{ki} + \sum_{j}\sum_{i}F_{ji}D_{ij}$$
 (2.1)

Subject to:

$$\begin{array}{lll} \delta_{ki} &= 1 \text{ if } d_{ki} <= d_{kl} \text{ for all } l \neq I, \text{ and} \\ & i <= l \text{ for all } l \text{ such that} \\ & d_{ki} = d_{kl}, \\ & 0 \text{ otherwise,} \end{array} \tag{2.2}$$

$$\sum_{i} \delta_{ki} = 1, \qquad (2.3)$$

$$F_k = \sum_{j} f_{kj}, \qquad (2.4)$$

$$F_{ji} = \sum_{k} f_{kj} \delta_{ki}$$
 (2.5)

Where,

 $\alpha_{i}$ ,  $\beta_{I}$  = location of center I

 $f_{ki}$  = flow from supplier k to customer j

 $D_{ij}$  = distance between center i and customer j

w = inbound weight factor

 $F_k$  = flow from supplier k

 $F_{ii}$  = flow to customer j through center I (15).

In this formulation, w, was used to weight inbound shipments more heavily than outbound shipments. Bhaskaran thought this appropriate due to the "[circuity] of inbound routes and the loading inefficiency of inbound material (relative to outbound material) (15)."

To solve this problem, Bhaskaran used a multiple facility heuristic solution procedure. First, for a given number of centers, he determined the best locations. That is to say that one-center, two-center, and up to twenty-center problems were solved. Of course as the number of centers was increased, savings in total ton-miles were seen, but at a decreasing rate. Also, centers selected from early runs remained good candidates in subsequent runs with a greater number of facilities being placed. In order to choose an appropriate final number of transshipment centers, he introduced a minimum-size requirement and reshuffled the remaining workload as the smallest centers were eliminated. Using this approximate solution method, Bhaskaran determined the best location of facilities and the final count was a total of eight centers (15).

His approach, as previously mentioned, is one method to solve a continuous space model. In the case of aerial port location and this thesis, a finite set of possible APOEs is given and the best locations will be chosen from them.

Therefore Bhaskaran's transshipment center location formulation and solution does not apply to this discrete problem.

#### Model 2: Multicommodity Distribution System

In 1974 a paper was published concerning the modeling of a very complex multiple facility location problem. This research was not earth shattering but was a different approach as compared to previously applied formulation techniques. The techniques developed by Geoffrion and Graves, were applied and gave very favorable results to large scale real world problems (16).

Their multicommodity distribution system is setup to handle a large number of commodity types produced at several plants. The goal was to satisfy known customer demand within dispersed zones by routing the shipment of various commodities through distribution centers. One stipulation is that a particular customer zone be assigned to one distribution center. By consolidating material at a single facility, economies of scale can be realized for the center to customer portion of the shipment (16).

The problem is formulated as a mixed integer linear program and is illustrated below:

Objective function:

Minimize<sub>x</sub> => 0; y, z = 0,1 
$$\sum_{ijkl} c_{ijkl} x_{ijkl}$$
  
+  $\sum_{k} [f_k z_k + v_k \sum_{il} D_{il} y_{kl}]$  (2.6)

Subject to:

$$\sum_{kl} x_{ijkl} \le S_{ij}$$
 for all ij (2.7)

$$\sum_{j} x_{ijkl} = D_{il}y_{kl}$$
 for all ikl (2.8)

$$\sum_{k} y_{k1} = 1$$
 for all 1 (2.9)

 $\underline{V}_k z_k \iff \sum_{i1} D_{i1} y_{k1} \iff V_k z_k$  for all k (2.10)

Linear configuration constraints on y and/or z.

#### Where,

- i = commodity
- j = plant
- k = distribution center (DC) sites
- 1 = customer demand zones
- $S_{ij}$  = supply (production capacity) for commodity i at plant j
- $D_{i1}$  = demand for commodity i in customer zone 1
- $\underline{V}_k$ ,  $V_k$  = minimum, maximum throughput for a DC site
- $f_k$  = fixed cost of DC at site k
- $v_k$  = variable unit cost of throughput for DC
- x<sub>ijk1</sub> = amount of commodity shipped from plant through DC to customer zone l
- $y_{kl}$  = 1 if DC k serves l, otherwise 0
- $z_k$  = 1 if DC is acquired at k, otherwise 0 (16).

The significance of the "ijkl" subscript variables according to the authors is twofold. First, in some applications it is necessary to keep track of where the original shipment ended up, whereas in previous models the use of the triple subscript lacked this flexibility. Other models used separate variables for plant to center and center to customer shipments "linked by a flow conservation constraint." The second reason is that the variables make the incorporation of direct plant to customer shipments an

easy matter if the customer does not also receive material from a distribution center(16).

The overall objective was to meet the given demands of the customer at the least total distribution cost while satisfying all of the constraints. A discrete set of possible locations for the distribution centers was given and the final solution is a subset of these, with particular sizes of facilities solved for and customer zones assigned to them exclusively.

#### Summary

A basic literature review was conducted and reported within this chapter. A large number of location problems exist in the literature and many address multiple transshipment facility location. But relatively few are applied to military specific examples. This is not a major problem because existing models can and should be modified to fit any number of real life situations.

Of the models investigated in this literature search, the Geoffrion and Graves formulation, except for the multicommodity count, looks like the best formulation for this aerial port analysis. The next chapter will address the modifications necessary to make it applicable to the aerial port location study and the data required as input for the new formulation.

#### III. Methodology

This chapter describes the methodology used in the completion of this aerial port location analysis. The aerial portion of the Defense Transportation System, consists of aerial ports of embarkation, aerial ports of debarkation, and final consumption locations outside the continental US. Feeding cargo to the APOEs, are the distribution depots and other supply points within the CONUS. In this study, the focus is on that portion of the system composed of the origination cities, APOE transshipment bases, and APOD arrival points. In effect the area under study can be represented as a distribution network and therefore be modeled using one of the techniques explained in the literature review of Chapter II.

One can see that due to the difficulty and exorbitant expense of establishing or moving an APOE, there would only exist a select few locations suitable for the purpose. Good candidates for basing an aerial port would of course include the facilities already established by the DOD along the coastal United States. Those locations are Charleston AFB, SC, Dover AFB, DE, McChord AFB, WA, McGuire AFB, NJ, Norfolk NAS, VA, and Travis AFB, CA. Three additional inland sites were chosen to include in the formulation as alternatives to the current structure. Those additional sites are also established Air Force bases and two contain Defense

Distribution Depots (cargo origination points). The depot bases are Hill AFB, UT, and Tinker AFB, OK. Two of the sites also contain limited aerial port facilities, Tinker AFB, OK and Wright-Patterson AFB, OH. These additional three inland sites taken with the six established APOEs, make up the total solution set considered in this thesis.

Cargo shipment data was taken from the FY96

Transportation Reporting and Inquiry System database and analyzed to incorporate into the model. The summary data was inputted to represent the demand at APODs.

Cost and distance data came from a number of different sources. They will be discussed separately in subsequent sections of this chapter.

#### Model Formulation

The basic structure of the aerial port distribution system is closely related to the network distribution system modeled by Geoffrion and Graves. Their model was introduced in Chapter II. This multicommodity distribution system is described as having several different commodities produced at dispersed locations. The commodities are shipped via distribution centers to satisfy known demands within different customer zones. Also in the Geoffrion and Graves model, the stipulation is made that one customer location is assigned to one distribution center. This would allow for

consolidation of material and therefore favor the realization of economies of scale (16).

In this multicommodity model, possible locations of distribution centers are given. Operating costs for each site are given and transportation costs are assumed to vary linearly with distance shipped. The overall thrust of the problem was to determine the number and location of the distribution centers. This would be based on the least-cost combination of establishing facilities and shipping cargo from supply point, to center, to customer in order to meet the given demand (16).

Some changes to the model per se need to be made in order to apply to the military APOE location problem. First of all, the multicommodity aspect can be likened to a particular city or base of origin. Cargo from one origination point is supplied to various APODs based on previously shipped quantities of material. These previous known amounts are considered a type of "commodity" supplied by a specific origin and are demands. Second, only the most significant origination and destination points were included in the analysis. This reduced the complexity of the problem and still allowed a reasonable representation of the complete system. The mixed-integer linear programming formulation of the aerial port distribution system can be written as follows:

Objective function:

Minimize 
$$Z = \sum_{jk} (c_{jk} * d_{jk} + v_j) * x_{jk} + \sum_{kl} c_{kl} * d_{kl} * x_{kl} + \sum_{k} f_k * z_k$$
 (3.1)

Subject to:

$$\sum_{k} x_{jk} <= S_{j}$$
 for all j (3.2)

$$\sum_{j} x_{jk} = \sum_{l} x_{kl} \qquad \text{for all } k \qquad (3.3)$$

$$\sum_{k} x_{k1} = D_1 \qquad \text{for all 1} \qquad (3.4)$$

$$\sum_{k} y_{k1} = 1 \qquad \text{for all 1} \qquad (3.5)$$

$$\sum_{j} x_{jk} \ll z_k * M_k \qquad \text{for all } k \tag{3.6}$$

all variables are nonnegative

#### Where,

j = cargo origin/supply point,

k = aerial port of embarkation (transshipment),

1 = aerial port of debarkation (demand point),

 $c_{jk}$  = weighted average cost per ton-mile of shipping from any origin j to any APOE k,

ckl = weighted average cost per ton-mile of shipping
 from any APOE k to any APOD l,

 $d_{jk}$  = statute mile distance from origin j to APOE k,

 $d_{kl}$  = nautical mile distance from APOE k to APOD 1,

 $v_j$  = APOE throughput cost per ton of cargo,

 $x_{jk}$  = flow in tons per month of cargo shipped from origin j to APOE k,

 $x_{kl}$  = flow in tons per month of cargo shipped from APOE k to APOD l

 $f_k$  = monthly operating cost for APOE k

 $z_k$  = a 0 - 1 variable; 1 if APOE is established at k, and 0 otherwise.

- $y_{kl}$  = a 0 1 variable; 1 if APOE k serves APOD 1, and 0 otherwise,
- $S_j$  = origin supply limitation,
- $D_1$  = demand at APOD 1, and
- $M_k$  = maximum OCONUS throughput of APOE k in tons per month.

The data requirements for the above formulation was inputted into a Microsoft Excel (21) spreadsheet and via a macro, output in a format for the CPLEX (22) linear programming package to solve. The formulation was then read into CPLEX.

#### Cargo Data

The analysis and breakdown of cargo demand data began with the FY96 TRAIS database. The shipments contained within this database are uniquely identified by a seventeen digit transportation control number (TCN). The TCN is a an alpha-numeric code used by the DOD in accordance with the Military Standards and Movement Procedures (MILSTAMP) to identify individual shipments within the DTS. The portion of the TRAIS database used for this study was updated on 27 February 1997 and stored on computer disk by AMC (4 and 5).

To facilitate extraction of useful information from TRAIS, it was necessary to obtain two other types of identification data. They were Department of Defense Activity Address Codes (DODAACs) and Air Terminal Identification Codes (ATICs). The DODAAC "is a six position alpha numeric code that identifies a unit, activity, or organization that has the authority to requisition and/or receive material from DOD." (23). The DODAAC is further separated into types of address codes (TACs): TAC 1, identifies a unit's mailing address; TAC 2, is a freight address; and TAC 3, is a billing address, which in many cases is at a location hundreds of miles away from the cargo delivery site. This separation initially caused problems accurately identifying cities of origin. The problem was resolved with the help of the organization responsible for maintaining the DODAAC database, the Defense Activity

Address System Center (DAASC) located at Wright-Patterson AFB, OH (21). ATIC codes were provided by AMC (5). An ATIC is the three-letter code identifying a unique airfield in the world.

The FY96 TRAIS is a very large database and for this analysis began with almost two million entries. Microsoft Access (22) database management system was used in conjunction with Microsoft Excel to manage the data. One quarter of cargo data was extracted from the original table, as this would be used to represent cargo movement for the year. Duplicate TCNs were then removed. The next step was to limit data to only the cargo that transited the six major APOEs of Charleston, Dover, McChord, McGuire, Norfolk, and Travis.

Linking the resultant table containing outbound cargo data with both the DODAAC information and ATIC table, queries were run to find the biggest shippers and ports of debarkation in the DTS served by the current APOEs. A consignor list by DODAAC was generated and the top origins were chosen to represent approximately 85 percent of the weight shipped through the six major APOEs. Consignors within the same or near cities were consolidated, as this should not significantly effect the final locations of the APOEs and it also served to reduce the complexity of the task. The number of destinations was also limited to the top APODs that represented approximately 85 percent of the

weight delivered outside the CONUS via the six major APOEs.

A couple of possible APOD sites were eliminated from the analysis based on blank identification locations within the TRAIS.

Matching consignor DODAACs with APODs and consolidating cities of origin, cargo movement information between these sites was generated and represented approximately 75 percent of the weight shipped through the APOEs. This new data was adjusted to equal 100 percent of the weight transiting the CONUS APOEs outbound. The new figures were then used as demand at particular APODs from specific origins, and that demand must be met in the linear program.

#### Distance Data

Distance between cargo origin points and APOEs were taken from the military regulation, <u>Transportation and Travel Official Table of Distances</u> (23). The tabled figures in this publication are based on driving distance and are statute miles.

Distances from CONUS APOEs to OCONUS APODs were for the most part obtained from a Borland Dbase IV database used at AMC (24). The database was converted from the Dbase IV to Microsoft Access format and appropriate distances in nautical miles were extracted. In some cases where no APOE-APOD match was shown, it was necessary to use the great circle equation to calculate distances. The formula listed below is from an Air Force air navigation manual:

$$D = 60\cos^{-1} \left[ \sin(lat_1)\sin(lat_2) + \cos(lat_1)\cos(lat_2)\cos(long_2 - long_1) \right]$$
(3.8)

The lat and long represent the latitude and longitude, respectively, and degrees must be converted to radians in order to use this formula. The distance, D, is in nautical miles (nm) (25).

#### Cost Data

For CONUS truck transportation costs, an average tonmile rate was obtained using the Military Traffic Management
Command's (MTMC) Draft "Traffic Management Progress Report"

(TMPR) for FY95 (26). FY95 data was used because it is from
the most current report available. Also, as per notes on
the TMPR, seven months of data was unrecoverable and was not
used in MTMC's calculation of costs.

The percentage of shipments in the truckload (TL) (10,000 pounds and over) and less-than-truckload (LTL) (less than 10,000 pounds) categories were determined. These percentages were used along with the average ton-mile rate per weight-break to calculate a weighted average cost per ton-mile.

For air cargo transportation costs, Defense Business
Operations Fund - Transportation (DBOF-T) airlift rates were
taken from the "US Government Department of Defense (DOD)
Rate Tariffs" appendix of the DBOF-T rate guide (27). The
rates are broken down into five weight-breaks and are listed
as dollars per pound-mile. These rates were converted into
dollars per ton-mile and then a weighted rate per ton-mile
was calculated. The breakdown of the percentage of
shipments in each weight-break category was performed by
AMC's Cargo Movement Branch using the FY96 TRAIS database
(28).

Aerial port operating costs were obtained from AMC's, Financial Management and Budget Directorate (HQ AMC/FMBT). The costs include FY96 operating costs on file for the six major ports and "approximately \$1.2 million related to maintenance and repair at these aerial ports. There are no military costs [personnel] included in these numbers"(29). Because this thesis was to examine alternative basing locations for the CONUS APOEs, the operating costs for the three inland port sites are not known. Therefore random numbers between the highest and lowest operating costs of the known APOEs were generated and used for the three additional inland port sites.

# Summary

The demand data with the restricted set of locations, along with the distance and cost information just discussed, will be applied to the modified distribution center location model. This model most closely matches the current setup of the aerial port system and should provide some insight into the problem. The results from the application of the aforementioned methodology will be discussed in Chapter IV.

#### IV. Results

This chapter will present the findings as discovered by the application of the methods discussed in Chapter III.

The research questions of Chapter I will form the heart of the results. Restated, they are:

- 1. Based on a modified distribution system location problem, what are the optimal locations and how many aerial port facilities are needed?
- 2. How does the new structure compare with the current APOE structure on a cost basis?

# Cargo Data Analysis

As stated in the methodology, the original cargo data provided by AMC was the FY96 TRAIS database containing 1,916,541 line entries, with identifying transportation control numbers and other accompanying information.

Although the TRAIS database was last updated on 27 February 1997, entries can still be deleted or added by AMC until an official close-out date is established. As of August 1997, one had not yet been set (4). The data is therefore not as accurate as it could be, but that should have little if any impact on the results of this analysis.

The breakdown of cargo began with the use of Microsoft Access to limit the large volume of data to a representative set of one quarter of FY96. That quarter was arbitrarily chosen to run from 1 April to 30 June 1996. This reduced

the number of entries to 484,704, or as expected to approximately 25 percent. Next, in order to avoid duplicate information and provide channel summary data, line entries with duplicate TCNs were removed. This again resulted in a substantial reduction in the set under study to 374,791, or about 77 percent of that quarter's information.

One of the stipulations of this aerial port analysis was to move the same tonnage of cargo that transited the six major APOEs for overseas delivery. Therefore the cargo data set was further restricted to those shipments that originated within the CONUS and transited the six major APOEs destined for overseas APODs. Those APOEs again are Charleston AFB, SC, Dover AFB, DE, Norfolk NAS, VA, McChord AFB, WA, McGuire AFB, NJ, and Travis AFB, CA. This left the total number of line entries at 212,197.

Using the relational database capabilities of Microsoft Access, the table containing the 212,197 entries was linked with both the revised DODAAC table and the ATIC table.

Queries were then run to find the biggest shippers and ports of debarkation by weight. The first query resulted in a consignor list of 12,136 entries separated by service, APOE, APOD, and city. The next consolidation of data was accomplished by summing all of the cargo originating from the same consignor. The list was again queried to show the top consignors by DODAAC, and the top 93 are shown in Appendix A. The cargo generated by these origins represent

84.61 percent of the weight shipped out of the CONUS through the six major APOEs. The one-quarter tonnage shipped through these ports was 23,614 for a monthly average of 7,871 tons. Those 93 origins were consolidated based on their proximity to one another and the resulting list was reduced to the 53 shown by city and state in Table 1.

The aerial ports of debarkation are shown in Appendix B, with the top 22 shown here in Table 2. The top 22 APODs represent 88.77 percent of the total cargo weight delivered outside the continental US that transited the six major APOEs.

Cross referencing the top 53 cities of origin with the top 22 APODs using Access, resulted in the extraction of 75.07 percent of the cargo which originated within the CONUS and was shipped overseas via the major APOEs. This cargo information by weight is shown in Appendix C. In order to put a more accurate load into the model of the aerial port system, the 75 percent tonnage figures were increased to equal 100 percent of the cargo originating within the CONUS that was shipped overseas via the major ports. The nodes were not changed but the shipping weights were modified.

#### Distance Data

The statute miles between cities of origin and APOEs, taken from the <u>Transportation and Travel Official Table of Distances</u>, are shown in Table 3. For those locations not

included in the regulation, it was necessary to obtain the distance to a nearby city and manually adjust the mileage.

Nautical miles between APOEs and APODs, as taken from an AMC table of distances, are shown in Table 4.

Table 1. Top Cities of Origin. (1 April - 30 June 1996)

| <u> </u> | CITY OF ORIGIN | STATE             | WEIGHT (lbs.) | SHIPMENTS            |
|----------|----------------|-------------------|---------------|----------------------|
| 1        | Anniston       | AL                | 308,933       | 288                  |
| 2        | Ft Rucker      | AL                | 182,473       | 236                  |
| 3        | Huntsville     | AL                | 93,946        | 78                   |
| 4        | Ft Huachuca    | AZ                | 114,279       | 241                  |
| 6        | Lathrop        | CA                | 2,441,370     | 21,960               |
| 7        | Lemoore NAS    | CA                | 84,201        | 282                  |
| 8        | McClellan AFB  | CA                | 717,128       | 3,859                |
| 9        | Monterrey      | CA                | 141,391       | 117                  |
| 5        | Oakland        | CA                | 565,434       | 1,663                |
| 10       | San Diego      | CA                | 794,713       | 4,952                |
| 11       | Travis AFB     | CA                | 1,793,062     | 2,205                |
| 12       | Peterson AFB   | co                | 102,938       | 242                  |
| 27       | Washington     | DC                | 746,117       | 1,065                |
| 13       | Dover AFB      | DE                | 2,420,973     | 4,718                |
| 14       | Eglin AFB      | FL                | 358,817       | 761                  |
| 15       | Jacksonville   | FL                | 114,313       | 268                  |
| 16       | Orlando        | FL                | 810,778       | 2,450                |
| 17       | Ft Benning     | GA                | 135,608       | 267                  |
| 19       | Ft Stewart     | GA                | 180,196       | 386                  |
| 18       | Palmetto       | GA                | 257,477       | 818                  |
| 20       | Robins AFB     | GA                | 271,670       | 276                  |
| 21       | Chicago        | IL IL             | 158,156       | 99                   |
| 22       | Rock Island    | - liL             | 256,736       | 124                  |
| 23       | Scott AFB      | - <del> </del>  - | 79,037        | 160                  |
| 24       | Crane          | IN                | 260,601       | 175                  |
| 25       | Ft Campbell    | KY                | 130,099       | 328                  |
| 26       | Ft Knox        | KY                | 81,383        | 166                  |
| 28       | Kessler AFB    | MS                | 99,325        | 212                  |
| 29       | Malmstrom      | MT                | 71,730        | 68                   |
| 30       | Camp Lejuene   | NC                | 189,144       | 339                  |
| 31       | Ft Bragg       | NC NC             | 286,984       | 648                  |
| 32       | Offutt AFB     | NE                | 91,313        | 131                  |
| 34       | McGuire AFB    | NJ                | 1,987,133     | 3,662                |
| 35       | Nellis AFB     | NV                | 97,741        | 222                  |
| 33       | New York       | NY                | 183,029       | 93                   |
| 36       | Columbus       | ОН                | 144,464       | 6,499                |
| 37       | Tinker AFB     | OK OK             | 377,168       | 2,078                |
| 38       | New Cumberland | PA                | 12,831,930    | 54,313               |
| 39       | Philadelphia   | PA                | 196,056       | 1,132                |
| 40       | Tobyhanna      | PA                | 469,437       | 1,252                |
| 41       | Charleston     | sc                | 1,244,857     | 1,219                |
| 42       | Shaw AFB       | sc                | 130,678       | 305                  |
| 43       | Memphis        | TN                | 334,053       | 3.814                |
| 44       | Corpus Christi | TX                | 112,748       | 696                  |
| 45       | Fort Worth     | TX                | 592,005       | 964                  |
| 46       | Ft Hood        | TX                | 143,238       | 349                  |
| 47       | San Antonio    | TX                | 607,352       | 2,606                |
| 48       | Texarkana      | TX                | 308,530       | 929                  |
| 49       | Hill AFB       | UT                | 781,398       | 5,940                |
| 51       | Norfolk        | VA                | 3,192,288     | 13,522               |
| 50       | Richmond       | VA                | 1,052,708     | 13,557               |
| 52       | McChord AFB    | WA                | 756,699       | 859                  |
| 53       | Oak Harbor     | WA                | 75,883        | 210                  |
|          |                | TOTAL             | WEIGHT (lbs.) | SHIPMENTS<br>163,803 |
|          |                | IOIAL             | 39,505,720    | 100,000              |

|    | APOD/ATIC | CITY            | COUNTRY        | WEIGHT (lbs.) | SHIPMENTS |
|----|-----------|-----------------|----------------|---------------|-----------|
|    |           |                 |                |               |           |
| 1  | RMS       | RAMSTEIN AB     | GERMANY        | 15,698,706    | 36,528    |
| 2  | OSN       | OSAN AB         | SOUTH, KOREA   | 3,681,797     | 8,986     |
| 3  | HIK       | HONOLULU        | UNITED STATES  | 2,183,901     | 10,408    |
| 4  | ОКО       | TOKYO           | JAPAN          | 2,113,672     | 15,206    |
| 5  | KWI       | KUWAIT CITY     | KUWAIT         | 1,945,244     | 1,269     |
| 6  | HOW       | HOWARD AB       | PANAMA         | 1,567,047     | 5,636     |
| 7  | DHA       | DHAHRAN         | SAUDI ARABIA   | 1,452,686     | 11,102    |
| 8  | DNA       | KADENA AB       | JAPAN          | 1,261,717     | 10,369    |
| 9  | SIZ       | SIGONELLA AB    | ITALY          | 1,180,224     | 15,192    |
| 10 | MHZ       | MILDENHALL AB   | UNITED KINGDOM | 1,060,807     | 9,645     |
| 11 | KEF       | KEFLAVIK        | ICELAND        | 1,033,173     | 3,681     |
| 12 | BAH       | BAHRAIN         | BAHRAIN        | 992,246       | 7,851     |
| 13 | NBW       | GUANTANAMO BAY  | CUBA           | 737,502       |           |
| 14 | NRR       | ROOSEVELT ROADS | PUERTO RICO    | 726,723       |           |
| 15 | UAM       | ANDERSON AFB    | GUAM           | 629,812       | 6,112     |
| 16 | THU       | THULE AB        | GREENLAND      | 579,544       |           |
| 17 | RTA       | ROTA (NAS)      | SPAIN          | 504,899       | 5,657     |
| 18 | EDF       | ANCHORAGE       | UNITED STATES  | 472,560       | 1,992     |
| 19 | RUH       | RIYADH          | SAUDI ARABIA   | 432,963       | 3,728     |
| 20 | KWA       | KWAJALEIN       | US TERRITORY   | 398,640       | 474       |
| 21 |           | PALMEROLA       | HONDURAS       | 389,241       | 415       |
| 22 | ASP       | ALICE SPRINGS   | AUSTRALIA      | 378,266       | 131       |
|    |           |                 |                |               |           |
|    |           |                 |                | <u>WEIGHT</u> | SHIPMENTS |
|    |           |                 | TOTAL          | 39,421,370    | 160,579   |
|    |           |                 |                |               |           |

Those origin-destination pairs not listed in AMC's mileage table were calculated from the great circle equation (3.8) and are shown with an asterisk.

Table 3. Origin to APOE Distance

|    | • · · · · · · · · · · · · · · · · · · · |      |      |       |      | APOE |      |      |      |      |
|----|-----------------------------------------|------|------|-------|------|------|------|------|------|------|
|    | Origin                                  | CHS  | DOV  | HIF   | NGU  | TCM  | WRI  | suu  | TIK  | FFO  |
| 1  | Anniston AL                             | 375  | 813  | 1850  | 662  | 2605 | 879  | 2392 | 750  | 547  |
| 2  | Palmetto GA                             | 304  | 738  | 1923  | 587  | 2678 | 804  | 2488 | 846  | 558  |
| 3  | Benning Ft GA                           | 379  | 840  | 1,957 | 689  | 2712 | 906  | 2492 | 857  | 657  |
| 4  | Bragg Ft NC                             | 206  | 426  | 2162  | 242  | 2854 | 496  | 2814 | 1172 | 552  |
| 5  | Campbell Ft KY                          | 587  | 817  | 1611  | 733  | 2366 | 880  | 2303 | 661  | 346  |
| 6  | Charleston SC                           | 10   | 603  | 2203  | 416  | 2955 | 675  | 2768 | 1126 | 697  |
| 7  | Chicago IL                              | 907  | 779  | 1406  | 877  | 2042 | 778  | 2111 | 795  | 286  |
| 8  | Columbus OH                             | 658  | 505  | 1699  | 583  | 2356 | 504  | 2404 | 937  | 67   |
| 9  | Corpus Christi TX                       | 1292 | 1725 | 1507  | 1590 | 2332 | 1788 | 1876 | 594  | 1334 |
| 10 | Crane IN                                | 644  | 659  | 1476  | 697  | 2221 | 581  | 2183 | 687  | 208  |
| 11 | Dover AFB DE                            | 609  | 10   | 2162  | 198  | 2819 | 111  | 2867 | 1417 | 569  |
| 12 | Eglin AFB FL                            | 506  | 1036 | 1980  | 883  | 2786 | 1102 | 2444 | 877  | 767  |
| 13 | Fort Worth TX                           | 1099 | 1455 | 1253  | 1371 | 2078 | 1518 | 1717 | 210  | 1024 |
| 14 | Harrisburg                              | 621  | 146  | 2028  | 294  | 2685 | 134  | 2733 | 1305 | 236  |
| 15 | Hill AFB UT                             | 2195 | 2162 | 10    | 2227 | 825  | 2161 | 723  | 1152 | 1615 |
| 16 | Hood Ft TX                              | 1169 | 1572 | 1306  | 1448 | 2121 | 1635 | 1748 | 354  | 1141 |
| 17 | Huachuca Ft AZ                          | 1983 | 2334 | 874   | 2250 | 1593 | 2358 | 939  | 930  | 1795 |
| 18 | Huntsville AL                           | 470  | 804  | 1767  | 710  | 2522 | 867  | 2309 | 667  | 447  |
| 19 | Jacksonville FL                         | 262  | 826  | 2221  | 627  | 2976 | 885  | 2734 | 1124 | 867  |
| 20 | Kessler AFB MS                          | 655  | 1116 | 1852  | 965  | 2671 | 1182 | 2316 | 749  | 835  |
| 21 | Knox Ft KY                              | 641  | 733  | 1638  | 669  | 2369 | 736  | 2337 | 791  | 192  |
| 22 | Lejuene Camp NC                         | 234  | 389  | 2288  | 202  | 2976 | 479  | 2936 | 130  | 674  |
| 23 | Lemoore NAS CA                          | 2758 | 2877 | 833   | 2793 | 919  | 2887 | 209  | 1452 | 2324 |
| 24 | Malmstrom MT                            | 2279 | 2151 | 553   | 2249 | 668  | 2150 | 1120 | 1402 | 1658 |
| 25 | McChord AFB WA                          | 2947 | 2819 | 825   | 2917 | 10   | 2818 | 724  | 1968 | 2326 |
| 26 | McClellan AFB CA                        | 2759 | 2815 | 671   | 2880 | 721  | 2814 | 54   | 1641 | 2306 |
| 27 | McGuire AFB NJ                          | 680  | 111  | 2161  | 288  | 2818 | 10   | 2866 | 1438 | 568  |
| 28 | Memphis TN                              | 665  | 964  | 1553  | 880  | 2308 | 1027 | 2095 | 453  | 533  |
| 29 | Nellis AFB NV                           | 2256 | 2510 | 436   | 2471 | 1127 | 2509 | 569  | 1138 | 1964 |
| 30 | New York NY                             | 735  | 166  | 2180  | 346  | 2828 | 69   | 2885 | 1473 | 603  |
| 31 | Norfolk VA                              | 422  | 198  | 2227  | 10   | 2917 | 288  | 2932 | 1333 | 617  |
| 32 | Oakland CA                              | 2752 | 2911 | 767   | 2965 | 768  | 2910 | 47   | 1632 | 2402 |
| 33 | Offutt AFB NE                           | 1288 | 1235 | 930   | 1300 | 1680 | 1234 | 1635 | 447  | 726  |
| 34 | Ord Ft CA                               | 2719 | 3014 | 880   | 2926 | 874  | 3013 | 153  | 1593 | 2465 |
| 35 | Orlando FL                              | 392  | 956  | 2334  | 769  | 3093 | 1027 | 2828 | 1234 | 988  |
| 36 | Peterson AFB CO                         | 1676 | 1762 | 580   | 1729 | 1396 | 1761 | 1269 | 606  | 1198 |
| 37 | Philadelphia PA                         | 650  | 81   | 2133  | 271  | 2790 | 34   | 2838 | 1410 | 540  |
| 38 | Richmond VA                             | 405  | 205  | 2139  | 88   | 2829 | 275  | 2844 | 1256 | 529  |
| 39 | Robins AFB GA                           | 292  | 791  | 2006  | 624  | 2761 | 857  | 2571 | 929  | 641  |
| 40 | Rock Island IL                          | 1038 | 928  | 1240  | 1011 | 1940 | 927  | 1945 | 714  | 435  |
| 41 | Rucker Ft AL                            | 439  | 960  | 1968  | 801  | 2722 | 1026 | 2477 | 875  | 702  |
| 42 | San Antonio TX                          | 1266 | 1693 | 1356  | 1576 | 2181 | 1756 | 1725 | 481  | 1262 |
| 43 | San Diego CA                            | 2410 | 2761 | 775   | 2677 | 1217 | 2785 | 509  | 1357 | 2222 |
| 44 | Scott AFB IL                            | 827  | 923  | 1376  | 880  | 2131 | 922  | 2075 | 529  | 370  |
| 45 | Shaw AFB SC                             | 107  | 558  | 2137  | 371  | 2884 | 629  | 2729 | 1087 | 626  |
| 46 | Stewart Ft GA                           | 154  | 718  | 2148  | 523  | 2902 | 789  | 2712 | 1078 | 739  |
| 47 | Lathrop CA                              | 2708 | 2868 | 724   | 2923 | 762  | 2867 | 52   | 1590 | 2359 |
| 48 | Red River TX                            | 925  | 1259 | 1395  | 1169 | 2222 | 1322 | 1861 | 288  | 828  |
| 49 | Tinker AFB OK                           | 1118 | 1417 | 1152  | 1333 | 1968 | 1438 | 1642 | 10   | 875  |
| 50 | Tobyhanna PA                            | 744  | 184  | 2101  | 371  | 2748 | 126  | 2805 | 1414 | 546  |
| 51 | Travis AFB CA                           | 2760 | 2867 | 723   | 2932 | 724  | 2866 | 10   | 1642 | 2358 |
| 52 | Washington D.C.                         | 512  | 103  | 2072  | 191  | 2728 | 169  | 2776 | 1314 | 478  |
| 53 | Whidbey Island WA                       | 2985 | 2857 | 862   | 2955 | 108  | 2856 | 824  | 2007 | 2364 |

Source: AFR 177-135 Transportation and Travel Official Table of Distances. Distances are in statute miles. CHS-Charleston AFB SC, DOV-Dover AFB DE, HIF-Hill AFB UT, NGU-Norfolk NAS VA, TCM-McChord AFB WA, WRI-McGuire AFB NJ, SUU-Travis AFB CA, TIK-Tinker AFB OK, FFO- Wright-Patterson AFB OH.

Table 4. APOE to APOD Distance.

|    | <u>APOD</u> |       |       |       |      | <u>APOE</u> |       |      |       |              |
|----|-------------|-------|-------|-------|------|-------------|-------|------|-------|--------------|
|    |             | CHS   | DOV   | HILL  | NGU  | тсм         | WRI   | SUU  | TIK   | FFO          |
| 1  | ASP         | 8947  | *9063 | *7413 | 9070 | 6977        | *9078 | 7585 | *8083 | *8672        |
| 2  | BAH         | 6340  | 6391  | 6659  | 6291 | 6396        | 5948  | 8593 | 6695  | *6107        |
| 3  | DHA         | 6268  | 5955  | 6653  | 6092 | 6393        | 5890  | 7395 | 6893  | 6097         |
| 4  | DNA         | 7367  | 6797  | 5581  | 6784 | 5003        | 7495  | 5309 | 6318  | 6466         |
| 5  | EDF         | 3369  | 2958  | 1827  | 3040 | 1266        | 3363  | 1799 | 2506  | 2679         |
| 6  | HIK         | 4173  | 4274  | 2606  | 4265 | 2310        | 4301  | 2115 | 3262  | 3874         |
| 7  | HOW         | 1641  | 1868  | 2582  | 1892 | 3162        | 1880  | 3492 | 2310  | 1864         |
| 8  | KEF         | 2806  | 2371  | 3222  | 2503 | 4402        | 2305  | 4491 | 3421  | 2562         |
| 9  | KWA         | *6236 | 6400  | 4626  | 6298 | 4774        | *6318 | 4241 | 5388  | *5916        |
| 10 | KWI         | 6059  | 6167  | 6451  | 5757 | 6419        | 5573  | 7798 | 7195  | <b>5</b> 885 |
| 11 | MHZ         | 3552  | 3134  | 4203  | 3856 | 5166        | 3069  | 5244 | 4032  | 3402         |
| 12 | NBW         | 820   | 1158  | *2262 | 1021 | *2823       | 1826  | 3383 | 2201  | 1196         |
| 13 | NRR         | 1171  | 1389  | 2738  | 1252 | 3266        | 1672  | 3229 | 3297  | *1605        |
| 14 | OKO         | 7070  | 5978  | 4763  | 6115 | 4184        | 6676  | 4490 | 5499  | 5688         |
| 15 | OSN         | 7149  | 6579  | 5116  | 6191 | 4785        | 7277  | 5091 | 6100  | 5896         |
| 16 | PLA         | 1195  | 1614  | 2074  | 1479 | 2623        | 1680  | 2314 | 1364  | 1533         |
| 17 | RMS         | 3938  | 3449  | 4519  | 3564 | 5494        | 3384  | 4914 | 4355  | 3722         |
| 18 | RTA         | 3556  | 3500  | 4617  | 3288 | 4732        | 3148  | 5614 | 4750  | 3557         |
| 19 | RUH         | 6581  | 5800  | 6693  | 5914 | 6466        | 6099  | 8820 | 7192  | 6066         |
| 20 | SIZ         | 4577  | 4446  | *5250 | 4309 | 6253        | 4194  | 5720 | 5218  | 4388         |
| 21 | THU         | 2702  | 2276  | 2400  | 2389 | 4298        | 2201  | 4387 | 3317  | 2244         |
| 22 | UAM         | 7468  | 8992  | 5451  | 6993 | 5544        | 7596  | 5410 | 6557  | 6605         |

Source: AMC Mileage Table (Borland Dbase IV File converted to Microsoft Access 95).

Distances are in nautical miles. Note: \*From the great circle equation.

For APOE abbreviations see Table 3.

ASP-Alice Springs Australia, DAH-Dhahran Saudi Arabia,

DNA-Kadena AB Japan, EDF-Elmendorf AFB AK, HIK-Hickam AFB HI

HOW-Howard AFB Panama, KEF-Keflavik Iceland, KWA-Kwajalein Marshall Island,

KWI-Kuwait City Kuwait, MHZ-Mildenhall AFB England, NBW-Guantanamo Bay Cuba, NRR
Roosevelt Roads NAS Puerto Rico, OKO-Yokota AFB Japan, OSN-Osan AB Korea, PLA-Soto

Cano Honduras, RMS-Ramstein AB Germany, RTA-Rota NAS Spain, RUH-Riyadh Saudi

Arabia, SIZ-Sigonella Italy, THU-Thule AB Greenland, UAM-Andersen AFB Guam.

#### Cost Data

4000

The inland truck freight transportation costs obtained from MTMC's "Traffic Management Progress Report" are shown in Table 5. The resultant weighted average cost was 0.2799 dollars per ton-mile. This was used as a linear transportation cost function for shipping from city of origin to aerial port of embarkation.

Table 5. Ton-mile Costs for Inland Freight Traffic.

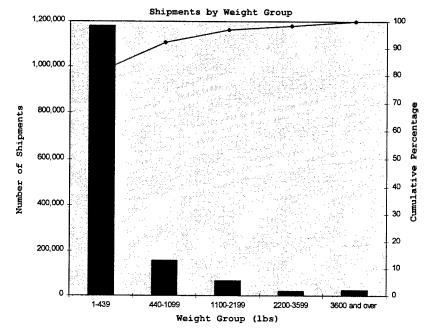
|                          | Shipments (000) | Percent      | Average<br>Cost/Ton-mile | Weighted<br>Average<br>Cost/Ton-mile |
|--------------------------|-----------------|--------------|--------------------------|--------------------------------------|
| TL 10,000 lbs and over   | 86.85           | 19.03        | \$0.0907                 |                                      |
| LTL Less than 10,000 lbs | 369.54          | <u>80.97</u> | \$0.3244                 |                                      |
|                          |                 |              |                          |                                      |
| Total                    | 456.39          | 100.00       |                          | \$0.2799                             |

Source: MTMC's Traffic Manangement Progress Report (Draft) for FY95.

Data from March-September excluded due to reporting deficiencies.

Air transportation costs are also dependent on the weight break category that a shipment falls into. The AMC weight breaks used in this problem were for FY96 and are shown in Table 6. Also shown are the percentage of shipments within each weight break. One can see that the majority of the shipments, approximately 81 percent, are in the smallest category of 1 to 439 pounds. This information

Table 6. AMC Channel Weight Breaks and Costs


|               |         |                | Weighted       |
|---------------|---------|----------------|----------------|
| Shipment Size |         | Rate           | Average        |
| (lbs)         | Percent | Cost/Ton-mile  | Cost/Ton-mile  |
| 1-439         | 81.46   | \$1.0162956000 |                |
| 440-1099      | 10.75   | \$0.9139566000 |                |
| 1100-2199     | 4.54    | \$0.8139292000 |                |
| 2200-3599     | 1.48    | \$0.7103598000 |                |
| 3600 and over | 1.77    | \$0.6254112000 |                |
| TOTAL         | 100     |                | \$0.9846602192 |

Source: US Government - DBOF-T Airlift Rate Guide FY96.

is again shown in Figure 1 and can be used to calculate a weighted average of air transportation cost. The resulting

value of 0.9845 dollars per ton-mile was used in this application.

Figure 1. Shipments within Channel Weight Breaks



Source: HQ/AMC/DONCM; FY96 World-Wide Channel Shipment Profile Study

Aerial port operating costs obtained from HQ AMC/FMBT, are shown in Table 7. Values drawn randomly from the uniform distribution formed by the highest and lowest port operating costs at Travis and McChord were used as operating costs for the three inland bases of Hill, Tinker, and Wright-Patterson.

Table 7. Aerial Port Operating Costs (FY96).

| APOE                    | Operating Cost (000)         |
|-------------------------|------------------------------|
| Charleston AFB SC       | \$6,510.70                   |
| Dover AFB DE            | \$7,833.20                   |
| McChord AFB WA          | \$4,785.70                   |
| McGuire AFB NJ          | \$4,829.10                   |
| Norfolk NAS VA          | \$7 <b>,</b> 679 <b>.</b> 50 |
| Travis AFB CA           | \$9,067.90                   |
| Hill AFB UT             | <b>\$7,</b> 706.60           |
| Tinker AFB OK           | \$4,960.60                   |
| Wright-Patterson AFB OH | \$6,613.70                   |

Source: HQAMC/FMBT. Note: Hill, Tinker, and Wright-Patterson costs randomly generated from uniform distribution.

# Port Capacities

CONUS aerial port throughput capacities shown in Table 8, are all based on the current manpower authorized (except Hill, Tinker, and Wright-Patterson) at those locations. That is to say that if manning was increased during peacetime, the throughput capability would also increase. Also, high manning levels is not a cure all. Other factors such as material handling equipment, ramp space, storage facilities, and fuel, can also and do limit the capacity of aerial ports. The results of this study must be carefully examined and weighed against other pertinent variables before any final decisions are made on the future of the aerial ports of embarkation (30 and 31).

The total throughput capacity figures obtained from AMC are shown in Table 8. They represent the amount of cargo in tons per month that transit these aerial ports both for CONUS delivery and OCONUS delivery. Because this thesis is

concerned with the placement of CONUS APOEs not APODs, the total capacity of these ports had to be adjusted. That adjustment, results shown in Table 8, is a first attempt to capture that portion of a port's capacity that is consumed by the outward movement of cargo.

As with port costs, capacities of the three inland bases were not available but had to be derived. Drawing randomly from a uniform distribution gave the results in Table 8 for Hill, Tinker, and Wright-Patterson.

Table 8. Aerial Port Throughput Capacities

|   | Conus Aerial Port       | % as APOE | Total Throughput Capacity (tons/month) | OCONUS Throughput Capacity (tons/month) |
|---|-------------------------|-----------|----------------------------------------|-----------------------------------------|
| 1 | Charleston AFB SC       | 70.60%    | 5,500                                  | 3,883                                   |
| 2 | Dover AFB DE            | 67.86%    | 9,500                                  | 6,447                                   |
| 3 | Norfolk NAS VA          | 66.78%    | 6,000                                  | 4,007                                   |
| 4 | McChord AFB WA          | 67.81%    | 1,500                                  | 1,017                                   |
| 5 | McGuire AFB NJ          | 81.08%    | 2,000                                  | 1,622                                   |
| 6 | Travis AFB CA           | 58.26%    | 8,500                                  | 4,952                                   |
| 7 | Hill AFB UT             |           |                                        | 4583                                    |
| 8 | Tinker AFB OK           |           |                                        | 4363                                    |
| 9 | Wright-Patterson AFB OH |           |                                        | 3264                                    |

Source: HQ AMC/DOZX and AMC Air Terminal Norfolk NAS.
Hill, Tinker, and Wright-Patterson random from uniform distribution.

#### Old vs. New Port Structure

The detailed data discussed throughout this chapter was inputted into the revised formulation of a distribution problem. The macro written by Maj Ray Hill which creates a CPLEX readable file, is shown in Appendix D (32). The results of the subroutines, those being the objective function and constraints of the linear program fed into the CPLEX Linear Optimizer, can be provided by the author on request. This is also true for the large output file from CPLEX.

The first run of the formulation indicates that three CONUS aerial port facilities should remain open, two on the East coast and one on the West. They are the ports at Dover AFB, DE, McGuire AFB, NJ, and Travis AFB, CA. The total cost calculated for that system was 33.41 million dollars with the APOEs sharing the monthly workload as follows: Dover - 4,212 tons, McGuire - 1,622 tons, and Travis - 2,036 tons. The total cost includes CONUS freight, air freight, and port operating costs. Naturally, Travis was entirely focused on destinations west and Dover and McGuire to the east. Upon examination of the results, one notices that McGuire has hit its capacity limitation. This would lead one to conclude that the LP opened McGuire first because McGuire had the least expensive operating cost. McGuire being quickly overwhelmed with cargo, lead to the opening of Dover. Intuitively one would say that Dover should be the

only east coast port, as it dwarfs the capacity of McGuire, could handle all eastbound cargo, and would surely limit the overall system cost if McGuire were closed.

In order to test the above theory, the LP was again solved, only this time Dover was forced to open first. The answer returned was not what was expected. Dover, Travis, and McGuire all remained open, with no decrease in overall cost. To take it one step further and check the validity of the LP, Dover was again forced open but this time McGuire was forced closed. In that case only Dover and Travis had the active aerial ports, but overall cost increased.

Although a relatively minor adjustment of about 49,000 dollars, the increase was not expected. With 5,834 tons and 2,036 tons transiting Dover and Travis respectively, the system cost increased to 33.46 million dollars.

The decision to restructure the APOE system will and should be based on many factors. For this thesis, the key factor of comparison between the current and new structure is cost. Those are port operating and transportation costs, both CONUS truck freight, and overseas air freight. The current APOE structure was compared with the model output based on the cargo data set used for this thesis. That would include 7,871 tons per month, port operating costs provided by AMC/FMBT, 0.2799 dollars per ton-mile for CONUS freight, and 0.9845 dollars per ton-mile for air freight.

The current DTS structure contains the six coastal aerial port facilities of Charleston, Dover, McChord, McGuire, Norfolk, and Travis. Using the above comparison factors, a rough cost estimate was obtained for today's system. Those costs are listed in Table 9. Also shown is the total cost of the three-port structure. The difference in monthly cost of the two systems is 960 thousand dollars per month for an annual figure of 11.5 million dollars

Table 9. Old vs. New APOE Structure - Cost Comparison

|               | System       |                             |  |  |  |
|---------------|--------------|-----------------------------|--|--|--|
| Cook (North   | Six-Port     | Three-Port                  |  |  |  |
| Cost/Month    |              |                             |  |  |  |
| Total Freight | \$30,979,421 | \$31,600,480<br>\$1,810,850 |  |  |  |
| Operating     | \$3,392,175  | \$1,010,030                 |  |  |  |
| TOTAL         | \$34,371,596 | \$33,411,330                |  |  |  |

# Summary

Applying the methodology from Chapter III led to answers to the basic questions of this research effort. Those were:

- 1. What are the optimal locations and how many aerial port facilities are needed?
- 2. How does the new structure compare with the current APOE structure on the basis of cost?

By analyzing the flow of cargo from CONUS origination sites, to aerial ports of debarkation, the data points input into the model were reduced to a easily manageable number. The final cut represented over 75 percent of the total flow of cargo through the APOEs. Distances, costs, and capacities were obtained from official sources and when necessary derived. This string of data was then input into the modified multicommodity distribution formulation of Geoffrion and Graves, leading to the recommendation to only keep the three APOEs of Travis, Dover, and McGuire open.

The model portrays an approximate one million dollar saving if the new structure replaces the current one. Some of the other factors influencing the location of aerial ports will be briefly mentioned in conclusion.

#### V. Conclusion

With the continued reduction in force size and base structure, the US Armed Forces retreat more and more to the continental United States. Exacerbating the situation is the relentless budget cutting of Congress. As a result, the requirement for the current high level of material support provided to overseas locations is waning. The force restructuring to include the consolidation of distribution depots under one "roof" has forced another look at the aerial port system. More specifically where and how many CONUS aerial port facilities should the future Defense Transportation System have? Once that was determined, how does the cost of the new system compare to that of the old? That was the basic thrust of this thesis and answers to the above questions were obtained by modeling the APOE system as a transshipment problem.

This effort began with a review of the literature available dealing with facility location problems. Through extensive research, the focus was narrowed to one of two possible solution methods, or models. One, by Bhaskaran, was applied to an automobile manufacture's location of transshipment facilities between suppliers and final assembly plants. The multicommodity distribution system formulation of Geoffrion and Graves was the other possible model. It was determined that the multicommodity model

could be modified to best represent the current aerial port system.

The result of this modified formulation was that three CONUS aerial port facilities should remain open, two in the East and one in the West. This port structure allows increased consolidation of cargo for air shipment and significantly reduces the total cost of shipment as defined in this problem. The savings stem from the operating cost reduction with the closure of the three APOEs of Charleston, McChord, and Norfolk.

There are a couple of other benefits in this three port solution than just cost. With the opening of three versus two ports (2 could handle the capacity) there is a greater surge capability built into the system. Of course it would not be as high as a six-port system would but the capability to handle any number of emergencies or contingencies is still there. With the overall cost of the system declining, AMC could move for a reduction in the price of air shipment for its DOD customers.

It must be realized that numerous assumptions and simplistic representations were made in order to reduce the complexity of the aerial port location study. The short list includes the following. The number of nodes, origins and APODs, were limited to only represent 75 percent of the tonnage transiting the six major APOEs. The demands in the model were deterministic and were exactly met, whereas in

reality there is always some variability. The only port costs considered were operating costs. They did not include personnel and numerous other costs. Capacities used were derived based on the percentage of outbound cargo a port handles. This short list plus other limiting factors omitted, such as storage capacity, ramp space, fuel, cargo handling equipment, and other support activities, must be examined carefully before any closure actions are taken. Major areas not addressed in this research also include aircraft inventory and basing strategies and route timing and location. These may have an impact on CONUS port locations, and would definitely need to be addressed in a larger more comprehensive study of the whole distribution system.

Appendix A: Top Consignor DODAACs. (1 April - 30 June 1997)

|    | CONSIGNOR | CITY           | STATE | WEIGHT (lbs.) | SHIPMENTS |
|----|-----------|----------------|-------|---------------|-----------|
|    |           |                |       |               |           |
| 1  | SW3123    | New Cumberland | PA    | 10,898,222    | 3,372     |
| 2  | FB4497    | Dover AFB      | DE    | 2,420,973     | 4,718     |
| 3  | FB4427    | Travis AFB     | CA    | 1,793,062     | 2,205     |
| 4  | FB4484    | McGuire AFB    | NJ    | 1,407,893     | 1,079     |
| 5  | SW3225    | Lathrop        | CA    | 1,224,345     | 2,007     |
| 6  | FB4418    | Charleston     | SC    | 1,058,155     | 910       |
| 7  | SW3100    | Mechanicsburg  | PA    | 1,029,246     | 24,264    |
| 8  | SB3106    | Norfolk        | VA    | 982,940       | 1,221     |
| 9  | SW3124    | New Cumberland | PA    | 904,462       | 26,677    |
| 10 | SW0400    | Richmond       | VA    | 875,600       | 12,092    |
| 11 | S1002A    | Orlando        | FL    | 810,778       | 2,450     |
| 12 | SW3200    | Tracy          | CA    | 611,161       | 11,892    |
| 13 | FB4479    | McChord AFB    | WA    | 577,747       | 246       |
| 14 | SW3400    | Ogden          | UT    | 564,546       | 3,919     |
| 15 | W73BFY    | Arlington      | VA    | 531,131       | 713       |
| 16 | N00189    | Norfolk        | VA    | 487,944       | 2,039     |
| 17 | GN0003    | Burlington     | NJ    | 465,528       | 2,516     |
| 18 | SW3224    | Lathrop        | CA    | 462,378       | 7,255     |
| 19 | SW3213    | Kelly AFB      | TX    | 457,757       | 2,552     |
| 20 | SW3117    | Norfolk        | VA    | 456,967       | 7,143     |
| 21 | FX2072    | McClellan AFB  | CA    | 401,924       | 150       |
| 22 | SW3211    | Tinker AFB     | OK    | 377,168       | 2,078     |
| 23 | SW3218    | San Diego      | CA    | 361,681       | 3,484     |
| 24 | SW3114    | Tobyhanna      | PA    | 355,286       | 1,061     |
| 25 | HX7NNW    | Newport News   | VA    | 354,862       | 722       |
| 26 | SW3500    | Memphis        | TN    | 334,053       | 3,814     |
| 27 | N00188    | Norfolk        | VA    | 323,818       | 789       |
| 28 | SW3212    | McClellan AFB  | CA    | 315,204       | 3,709     |
| 29 | SW3227    | Texarkana      | TX    | 308,530       | 929       |
| 30 | N00244    | San Diego      | CA    | 295,772       | 1,306     |
|    | W36R4X    | Ft Bragg       | NC    | 286,984       | 648       |
| 32 | FX2399    | Robins AFB     | GA    | 271,670       | 276       |
| 33 | HM0093    | Mineral Wells  | TX    | 268,536       | 129       |
| 34 | W53XMD    | Crane          | IN    | 260,601       | 175       |
|    | SCGA08    | Union City     | CA    | 258,410       | 229       |
| 36 | W52H1C    | Rock Island    | IL    | 256,736       | 124       |
| 37 | HXYAAA    | Dallas         | TX    | 247,963       | 341       |
| 38 | SW3210    | Hill AFB       | UT    | 216,852       | 2,021     |
| 39 | FB4800    | Langley AFB    | VA    | 204,656       | 702       |
|    | M31000    | Camp Lejuene   | NC    | 189,144       | 339       |
| 41 | GA0001    | Palmetto       | GA    | 185,098       | 681       |
| 42 | N65580    | Portsmouth     | VA    | 183,114       | 329       |

| 43 | W31R4Z | Ft Rucker        | AL | 182,473 |       |
|----|--------|------------------|----|---------|-------|
| 44 | W33GGZ | Ft Stewart       | GA | 180,196 | 386   |
| 45 | W31G1Z | Anniston         | AL | 160,509 | 129   |
| 46 | FB2823 | Eglin AFB        | FL | 158,219 | 362   |
| 47 | S1403A | Chicago          | IL | 158,156 | 99    |
| 48 | S4404A | San Antonio      | TX | 149,595 | 54    |
| 49 | SW3120 | Anniston         | AL | 148,424 | 159   |
| 50 | SW0700 | Columbus         | ОН | 144,464 | 6,499 |
| 51 | GS0001 | Stockton         | CA | 143,486 | 806   |
| 52 | W45QRE | Ft Hood          | TX | 143,238 | 349   |
| 53 | W62R65 | Monterrey        | CA | 141,391 | 117   |
| 54 | N66001 | San Diego        | CA | 137,260 | 162   |
| 55 | W33APT | Ft Benning       | GA | 135,608 | 267   |
| 56 | FB4803 | Shaw AFB         | SC | 130,678 | 305   |
| 57 | W34GNA | Ft Campbell      | KY | 130,099 | 328   |
| 58 | N57012 | Norfolk          | VA | 125,987 | 526   |
| 59 | SP0200 | Philadelphia     | PA | 117,907 | 1,075 |
| 60 | FB4819 | Tyndall AFB      | FL | 117,374 | 205   |
| 61 | W23A9F | Ft Meade         | MD | 115,670 | 222   |
| 62 | N68836 | Jacksonville     | FL | 114,313 | 268   |
| 63 | W61DEL | Ft Huachuca      | AZ | 114,279 | 241   |
| 64 | W25G1W | Tobyhanna        | PA | 114,151 | 191   |
| 65 | N60478 | Colts Neck       | NJ | 113,712 | 67    |
| 66 | SW3222 | Corpus Christi   | TX | 112,748 | 696   |
| 67 | N00228 | Alameda          | CA | 108,233 | 232   |
| 68 | GN0SDD | New York         | NY | 108,109 | 83    |
| 69 | W68P4L | Ft Lewis         | WA | 107,829 | 227   |
| 70 | SP0400 | Richmond         | VA | 104,958 | 1,298 |
| 71 | FB2500 | Peterson AFB     | CO | 102,938 | 242   |
| 72 | N65236 | North Charleston | SC | 101,766 | 226   |
| 73 | CL0KX3 | Oakland          | CA | 99,517  | 109   |
|    | FB3010 | Kessler AFB      | MS | 99,325  | 212   |
| 75 | S2101A | Towson           | MD | 99,316  | 130   |
| 76 | N44399 | Oakland          | CA | 99,274  | 1,093 |
| 77 | FB4852 | Nellis AFB       | NV | 97,741  | 222   |
| 78 | W31P38 | Huntsville       | AL | 93,946  | 78    |
| 79 | FB4600 | Offutt AFB       | NE | 91,313  | 131   |
|    | N39825 | Goose Creek      | SC | 84,936  | 83    |
|    | N63042 | Lemoore NAS      | CA | 84,201  | 282   |
| 82 | N00204 | Pensacola        | FL | 83,224  | 194   |
| 83 | W22PL1 | Ft Knox          | KY | 81,383  | 166   |
|    | FB4407 | Scott AFB        | IL | 79,037  | 160   |
| 85 | HM0016 | Philadelphia     | PA | 78,149  | 57    |
| 86 | N00620 | Oak Harbor       | WA | 75,883  | 210   |
| 87 | GF0001 | Fort Worth       | TX | 75,506  | 494   |
| 88 | W15QLN | Bayonne          | NJ | 74,920  |       |
| 89 | W33FRS | Ft Gillem        | GA | 72,379  |       |
| 90 | W26HBK | Ft Lee           | VA | 72,150  | 167   |

| 91 | N00109 | Yorktown  | VA   | 72,000               | 51        |
|----|--------|-----------|------|----------------------|-----------|
| 92 | FB4626 | Malmstrom | MT   | 71,730               | 68        |
| 93 | SW3216 | Bremerton | WA   | 71,123               | 386       |
|    |        | TOTAL     |      | WEIGHT (lbs.)        | SHIPMENTS |
|    |        | Top 93    |      | 39,959,720           | 163,803   |
| -  |        | System    | tons | 19,980<br>47,228,046 | 184,200   |
|    |        |           | tons | 23,614               |           |
|    |        | PERCENT   |      | 84.61                | 88.93     |

Appendix B: Aerial Ports of Debarkation (1 April - 30 June 1997)

|    | APOD/ATIC | CITY                 | COUNTRY     | WEIGHT (lbs.) | SHIPMENTS |
|----|-----------|----------------------|-------------|---------------|-----------|
|    |           |                      |             |               |           |
| 1  | RMS       | RAMSTEIN             | GERMANY     | 15,698,706    | 36,528    |
| 2  | OSN       | OSAN                 | KOREA SOU   | 3,681,797     | 8,986     |
| 3  | HIK       | HONOLULU             | UNITED ST   | 2,183,901     | 10,408    |
| 4  | око       | токуо                | JAPAN       | 2,113,672     | 15,206    |
| 5  | KWI       | KUWAIT               | KUWAIT      | 1,945,244     | 1,269     |
| 6  | HOW       | HOWARD               | PANAMA      | 1,567,047     | 5,636     |
| 7  | DHA       | DHAHRAN              | SAUDI ARA   | 1,452,686     | 11,102    |
| 8  | DNA       | KADENA               | JAPAN       | 1,261,717     | 10,369    |
| 9  | SIZ       | SIGONELLA            | ITALY       | 1,180,224     | 15,192    |
| 10 | MHZ       | MILDENHALL           | UNITED KI   | 1,060,807     | 9,645     |
| 11 | KEF       | KEFLAVIK             | ICELAND     | 1,033,173     | 3,681     |
| 12 | BAH       | BAHRAIN              | BAHRAIN     | 992,246       | 7,851     |
| 13 | NBW       | GUANTANAMO           | CUBA        | 737,502       | 1,494     |
| 14 | NRR       | ROOSEVELT ROADS      | PUERTO RICO | 726,723       | 3,509     |
| 15 | UAM       | ANDERSON AFB         | GUAM        | 629,812       | 6,112     |
| 16 | THU       | THULE AIR BASE       | GREENLAND   | 579,544       | 1,194     |
| 17 | RTA       | ROTA (NAS)           | SPAIN       | 504,899       | 5,657     |
| 18 | EDF       | ANCHORAGE            | UNITED ST   | 472,560       | 1,992     |
| 19 | RUH       | RIYADH               | SAUDI ARA   | 432,963       | 3,728     |
| 20 | KWA       | KWAJALEIN            | TRUST TER   | 398,640       | 474       |
| 21 | PLA       | PALMEROLA            | HONDURAS    | 389,241       | 415       |
| 22 | ASP       | ALICE SPRINGS        | AUSTRALIA   | 378,266       | 131       |
| 23 | PAP       | PORT AU PRINCE       | HAITI       | 274,966       | 521       |
| 24 | TZL       | TUZLA                | BOSNIA-HE   | 258,529       | 405       |
| 25 | MSJ       | MISAWA               | JAPAN       | 243,966       | 1,746     |
| 26 | EIL       | FAIRBANKS            | UNITED ST   | 224,657       | 746       |
| 27 | LPB       | LA PAZ               | BOLIVIA     | 215,073       | 440       |
| 28 | LGS       | LAJES                | PORTUGAL    | 191,941       | 659       |
| 29 | ADA       | ADANA                | TURKEY      | 190,497       | 594       |
| 30 | UIO       | QUITO                | ECUADOR     | 184,008       | 91        |
| 31 | NKW       | DIEGO GARCIA (SEE/VO | BR. IND.    | 164,186       | 1,184     |
| 32 | TTH       | THUMRAIT             | OMAN        | 150,224       | 2,567     |
| 33 | SAL       | SAN SALVADOR         | EL SALVAD   | 144,976       | 277       |
| 34 | JON       | JOHNSTON ATOLL       | JOHNSTON    | 142,051       | 236       |
| 35 | FUK       | FUKUOKA              | JAPAN       | 120,975       | 1,141     |
| 36 | TLV       | TEL AVIV             | ISRAEL      | 114,005       | 252       |
| 37 | RCM       | RICHMOND             | AUSTRALIA   | 112,744       | 274       |
| 38 | ADH       | ALDAN                | RUSSIAN F   | 111,705       | 47        |
| 39 | MIQ       | CARACAS (NOT IATA; S | VENEZUELA   | 105,112       | 95        |
| 40 | SGP       | SINGAPORE            | SINGAPORE   | 96,553        | 2,141     |
| 41 | BKK       | BANGKOK              | THAILAND    | 90,748        | 46        |
| 42 | DKR       | DAKAR                | SENEGAL     | 89,438        | 25        |

| 43 | NBO | NAIROBI             | KENYA     | 83,643 | 148      |
|----|-----|---------------------|-----------|--------|----------|
| 44 | KUZ | KUNSAN              | KOREA SOU | 82,960 |          |
| 45 | NAP | NAPLES              | ITALY     | 81,784 |          |
| 46 | FUJ | FUKUE               | JAPAN     | 77,707 |          |
| 47 | IWA | IWAKUNI             | JAPAN     | 75,103 |          |
| 48 | OZP | SEVILLA             | SPAIN     | 71,129 | L        |
| 49 | AVB | AVIANO              | ITALY     | 70,542 | <u> </u> |
| 50 | AWK | WAKE ISLAND         | WAKE ISLA | 63,979 | 1        |
| 51 | UTP | RAYONG              | THAILAND  | 59,378 |          |
| 52 | TZR | TASZAR              | HUNGARY   | 58,894 |          |
| 53 | TIF | TAIF                | SAUDI ARA | 53,483 |          |
| 54 | LIM | LIMA-CALLOA         | PERU      | 51,480 |          |
| 55 | BOG | BOGOTA              | COLUMBIA  | 50,833 | £        |
| 56 | TGU | TEGUCIGALPA         | HONDURAS  | 48,507 | L        |
| 57 | AKT | AKROTIRI            | CYPRUS    | 48,374 | 91       |
| 58 | UMR | WOOMERA             | AUSTRALIA | 46,025 | 82       |
| 59 | KHE | KIMHAE              | KOREA SOU | 42,191 |          |
| 60 | GUA | GUATEMALA CITY      | GUATEMALA | 33,681 |          |
| 61 | RIO | RIO DE JANIERO      | BRAZIL    | 33,500 | <u>1</u> |
| 62 | STX | ST CROIX            | VIRGIN IS | 31,602 |          |
| 63 | OLB | OLBIA               | ITALY     | 29,895 |          |
| 64 | BUE | BUENOS AIRES        | ARGENTINA | 29,824 |          |
| 65 | SCL | SANTIAGO            | CHILE     | 29,079 |          |
| 66 | BSB | BRASILIA            | BRAZIL    | 28,220 | <u> </u> |
| 67 | CAI | CAIRO               | EGYPT     | 28,162 |          |
| 68 | SOC | SOLO                | INDONESIA | 26,427 |          |
| 69 | AMM | AMMAN               | JORDAN    | 26,340 |          |
| 70 | CHC | CHRISTCHURCH        | NEW ZEALA | 25,742 | 406      |
| 71 | CUA | CUBI POINT BATAAN   | PHILIPPIN | 23,500 | 10       |
| 72 | AJR | ARVIDSJAUR          | SWEDEN    | 22,900 | 34       |
| 73 | KPI | KAPIT               | MALAYSIA  | 21,155 | 10       |
| 74 | MGA | MANAGUA             | NICARAGUA | 20,492 | 16       |
| 75 | oco | SAN JOSE OCCIDENTAL | PHILIPPIN | 19,074 | 28       |
| 76 | MVD | MONTEVIDEO          | URUGUAY   | 18,500 | 18       |
| 77 | PSE | PONCE               | PUERTO RI | 18,430 | 8        |
| 78 | FIH | KINSHASA            | ZAIRE     | 18,324 | 11       |
| 79 | NDJ | N'DJAMENA           | CHAD      | 18,068 | 20       |
| 80 | FNA | FREETOWN            | SIERRA LE | 17,200 | 4        |
| 81 | KWJ | KWANGJU             | KOREA SOU | 16,565 | 193      |
| 82 | DJK | JAKARTA             | INDONESIA | 15,918 | 10       |
| 83 | ESB | ANKARA              | TURKEY    | 13,535 | 26       |
| 84 | DIY | DIYARBAKIR          | TURKEY    | 13,143 | 212      |
| 85 | РВМ | PARAMARIBO          | SURINAME  | 11,710 | 10       |
| 86 | SQX | SHAHEED MWAFFAQ AB  | JORDAN    | 11,510 | 90       |
| 87 | TJS | TANJUNG SELOR       | INDONESIA | 10,530 | 2        |
| 88 | BZE | BELIZE              | BELIZE    | 9,880  | 9        |
| 89 | YOD | COLD LAKE           | CANADA    | 9,460  | 3        |
| 90 | IGL | IZMIR               | TURKEY    | 9,066  | 22       |

| 04       | ADQ | KODIAK               | UNITED ST | 6,427         | 41        |
|----------|-----|----------------------|-----------|---------------|-----------|
| 91<br>92 | YHM | HAMILTON             | CANADA    | 6,320         | 2         |
|          | L   |                      | NIGER     | 5,856         | 5         |
| 93       | NIM | NIAMEY<br>ISTRES     | FRANCE    | 5,204         | 4         |
| 94       | QIE |                      | JAMAICA   |               | . 2       |
| 95       | KIN | KINGSTON             |           | 4,245         | 9         |
| 96       | SGZ | SONGKHLA             | THAILAND  | 3,126         | 8         |
| 97       | SYA | SHEMYA               | UNITED ST | 2,940         |           |
| 98       | GEO | GEORGETOWN           | GUYANA    | 2,780         | 6         |
| 99       | FRF | FRANKFURT            | GERMANY   | 2,763         | 9         |
| 100      | GPA | PATRAS               | GREECE    | 2,382         | 5         |
|          | SRI | SAMARINDA            | INDONESIA | 2,099         | 51        |
|          | SKJ | SITKINAK ISLAND      | UNITED ST | 2,000         | .1        |
| 103      | YQX | GANDER               | CANADA    | 1,584         | 2         |
| 104      | NAS | NEW PROVIDENCE ISLAN | BAHAMA IS | 1,100         | 1         |
| 105      | BRI | BARI                 | ITALY     | 1,019         | 5         |
| 106      | SJJ | SARAJEVO             | BOSNIA-HE | 900           | 1         |
| 107      | BRW | BARROW               | UNITED ST | 633           | 2         |
| 108      | XMR | MARMANDE             | FRANCE    | 600           | 3         |
| 109      | BDS | BRINDISI             | ITALY     | 485           | 13        |
| 110      | KUL | KUALA LUMPUR INTL    | MALAYSIA  | 391           | 1         |
|          | YES | ISTANBUL             | TURKEY    | 352           | 3         |
| 112      | рон | DOHA                 | QATAR     | 208           | 3         |
|          | ZAG | ZAGREB               | CROATIA   | 161           | 12        |
|          | KER | KERMAN               | IRAN      | 151           | 4         |
|          | MDY | MIDWAY ISLAND        | MIDWAY IS | 86            | 2         |
| ·        | PPG | PAGO PAGO            | AMERICAN  | 75            | 6         |
|          | IFR | ISTRES               | FRANCE    | 67            | 8         |
|          | ASM | ASMARA               | ERITREA   | 45            | 1         |
|          | ANC | ANCHORAGE            | UNITED ST | 26            | 1         |
|          | SDQ | SANTO DOMINGO        | DOMINICAN | 23            | 2         |
| 121      | TRS | TRIESTE              | ITALY     | 17            | 3         |
|          | KPO | POHANG               | KOREA SOU | 16            | 1         |
|          | QUI | CHUQUICAMATA         | CHILE     | 7             | 2         |
|          | BTI | BARTER ISLAND        | UNITED ST | 6             | 1         |
|          | HRG | HURGHADA             | EGYPT     | 5             | <u> </u>  |
|          | PMI | PALMA DE MALLORCA    | SPAIN     | 3             | 2         |
|          | SBE | MUSCAT               | OMAN      | 1             | 1         |
| 127      | ODE | MUSCAT               | OWAN      | '             |           |
|          |     |                      |           |               |           |
|          |     | TOTAL                |           | WEIGHT (lbs.) | SHIPMENTS |
|          |     | ]                    |           |               | •         |
|          |     | top 22               |           | 39,421,370    | 160,579   |
|          |     |                      | tons      | 19,711        |           |
|          |     | systen               | า         | 44,409,271    | 183,215   |
|          |     | 7                    | tons      | 22,205        |           |
|          |     | PERCENT              | Γ         | 88.77         | 87.65     |
|          |     |                      |           |               |           |

(Weight in Pounds from 1 April - 30 June 1996) Appendix C: Origin-APOD Demand Matrix.

Aerial Port of Debarkation

Origin

|            | TOTAL         | 500,022         | 173 164           | 213,534         | 150,621      | 109,437             | 96,393     | 2.155.296      | 314,532         | 544,219          | 124,994          | 236,132        | 128,624           | 139,356       | 111,811            | 76,533          | 179,024          | 174,253         | 724,499          | 92,018             | 200,043           | 2 071 793     | 76,759            | 61,952   | 241,301           | 645,522 | 1,003,997     | 089,183         | 49,570<br>88 705            | 12 187 457           | 178,779        | 2,818,131     | 53,873        | 514,858          | 766,997       | 195,515        | 98,801             | 183,428        | 931,909          | 176,918           | 574 008           | 684.694         | 73,416          | 120,358        | 281,013      | 318,570                             | 461,163            | 33,338,090            | 33,338,090 |
|------------|---------------|-----------------|-------------------|-----------------|--------------|---------------------|------------|----------------|-----------------|------------------|------------------|----------------|-------------------|---------------|--------------------|-----------------|------------------|-----------------|------------------|--------------------|-------------------|---------------|-------------------|----------|-------------------|---------|---------------|-----------------|-----------------------------|----------------------|----------------|---------------|---------------|------------------|---------------|----------------|--------------------|----------------|------------------|-------------------|-------------------|-----------------|-----------------|----------------|--------------|-------------------------------------|--------------------|-----------------------|------------|
| 77         | NAM           | 0.637           | 1.019             | 478             |              | 8,194               | 7 485      | 6              | 1,224           | 146              |                  | 923            | 382               |               | 168                | 1,363           |                  | 192             | 17,539           | 1 440              | 1,0               | 197 304       | 1,216             | 1,448    | 4,344             | 3,940   | 3,100         | 2,003           | 390                         | 4R 321               |                | 28,730        | 3,250         | /99'9            | T             | 966            | 30                 | 1,997          | 16,006           |                   | 5 853             | 28.911          | 911             | 405            | 1,020        | 1,868                               | 1,762              | NAM<br>NAM            | 430,970    |
| 7          | 2             | 3               | T                 |                 |              | 1,934               | T          | T              | 370             | 189,234          |                  |                |                   |               |                    |                 |                  |                 | 903              | 1                  | 3.473             | 24 097        |                   | 40,210   | 4                 | 3,971   | 20,109        | 97.             | 841                         | 18 815               |                | 66,430        |               | 1                | Ī             | 458            | 92,250             |                | 4.984            |                   | 188               | 9               | 1,312           | 1,530          | 1,464        | 1,128                               | Z0                 |                       | 4/4/033    |
| 23         | Siz           | R OR7           | 40.728            | 12,775          |              | 9,835               | 2,669      | 2,976          | 8,482           | 869              | 1,030            | 1,076          | 1,310             | 521           | 2,922              | 1,523           | 1                |                 | 15,504           | 23 700             | 2 402             | 29 307        | 99                |          | 2,726             | 1,865   | 20,327        | 10,031          | 3 108                       | 113 235              |                | 357,257       | 3,214         | 3,999            | 9.114         | 1,157          |                    | 1,935          | 23,036           | Ī                 | 1 037             | 60,854          | 2,458           | 726            | 2,127        | 345                                 | 367                | SIZ S                 | 701'070    |
| 19         | RUH           | 9629            |                   | 25              | 2,847        | 7,024               | T          | 624            | 793             | 2,569            |                  | 7,313          | 5,530             | 2,359         |                    | 828             | g                |                 | 14,339           | l                  | 188               | 2.785         |                   | 240      | 9,357             | 7,391   | 32,981        | 12,300          | 342                         | 35 676               | 12,485         | 108,377       |               | 17 8.20          |               | 1,134          |                    | 82             | 30,323           | ſ                 | 1514              | 1               | 22              | 2,842          | П            | 30,979                              | 11/                | RUH                   | 302,043    |
| 18         | KIA<br>2      | 11 625          | 32 996            | 3,551           | \$           | 7,730               | 8 680      | 29,930         | 9,710           | 294              |                  | 747            | 245               |               | 250                | 330             |                  | 2               | 2,143            | 7.284              | 1 672             | 6.858         | 479               | 840      | 830               | 1,223   | 20,643        | 2,140           | 1                           | 39.758               |                | 106,993       | 2,059         | cna'c            | 8,709         | 1,090          |                    | 3,845          | 10,332           | 850               | 140               | 24,919          | 386             |                | 804          | 2,739                               | 282                | RTA                   | 304,430    |
| 17         | 120 742       | 146.510         | 1,396             | 30,493          | 135,625      | 25,627              | 2,890      | 1.843.176      | 36,977          | 10,636           | 48,738           | 20,919         | 19,409            | 30,382        | 28,050             | 3,975           | 40,980           | 16,79           | 92,876           | 0,540              | 5 723             | 96,101        |                   | 476      | 19,470            | 63,876  | 501,666       | 100,233         | 48 176                      | 8.410.153            | 151,440        | 174,119       |               | 30.513           | 689,705       | 119,844        | 1,024              | 42,513         | 310,800          | 70 70B            | 211965            | 12,110          | 17,898          | 33,298         | 119,679      | 58,396                              | 70,013             | RMS                   | 200,040,4  |
| 9 3        | 5             | 2.076           |                   | 65              | $  \cdot  $  | 18                  | -          | 578            | 1,058           | 13,422           | 540              | 3,601          | 685               | 2,217         |                    |                 | 3,027            | 2               | - 326            | 3                  | ļ                 | 592           | L                 |          | 1,960             | 2,500   | 2             | 1               | 2 554                       | L                    | Ц              | 23,690        | +             | $\frac{1}{1}$    | $\frac{1}{1}$ | 59             | +                  | 1              | 2 2              | +                 | -                 | 100             | -               | 8              | 535          | 117                                 | 12                 | PLA<br>33866          |            |
| 15         | 03            | 1 229           | 99                | 4,237           | 7            | 4,489               |            | 2,218          | 58,836          | L                | Ш                | L              |                   | 79,210        | 0,494              | 51,158          | 39,085           | 91,730          | 380,108          | 270.1              | 869.6             | 249.834       |                   | 1,695    | 38,204            | 9,081   | 1,243         | 2,200           | 19 097                      | L                    | 1              | Ц             | e             | 14 213           | -             | 8,583          | 614                | 121,22         | 2007.00          | 3,700             | 8.532             | 6,618           | 13,739          | 3,818          | 1,633        | 1,894                               | 212,595            |                       |            |
|            | 126           | 18              | 930               | ,886            | 202          |                     |            | L              | 21,842          | L                |                  | 9,751          |                   | ,             | 1,172              |                 | 1                | 007             |                  | 5 905              |                   |               |                   | 2,738    |                   |         | 11 067        |                 |                             |                      |                |               | 20,954        |                  | 10,704        |                | 193                |                | 1 475            |                   | 20.825            |                 |                 |                | Ц            | Ц                                   |                    | ] `                   |            |
| 4          | 97<br>070     | 33              |                   |                 |              |                     |            |                | L               | L                |                  |                |                   |               |                    |                 | ž :              |                 | $\perp$          | l                  |                   |               |                   |          |                   |         | ľ             |                 |                             | 14                   |                | Ì             | ١             |                  | 9             | Ш              |                    |                |                  |                   | L                 | Ľ               | L               |                | Ш            |                                     |                    | 1-,-                  |            |
| t ;        |               | 05 4.5          | Ļ                 | 44 36,521       |              | 150 3,31            | 40 26.47   |                |                 | 9,8              | 9,756            | Ц              |                   | 4,853         |                    | 305 8,248       | 6                | 4,5             | 1                | 32 5.131           | L                 |               |                   |          |                   | ľ       | 312<br>8,04   | 2 537           | <sup>2</sup> / <sub>2</sub> | 36 186,540           | Ц              | 132,952       | 上             | L                |               | 1,286          |                    | 4              | 1                |                   | 5 2.651           | 8,17            |                 |                | 1 2,086      | 1                                   | 8 21,035<br>60 563 | NRR<br>578 638        |            |
| 12         | 158.8         | 94 9.20         | 27,95             |                 |              | 1                   | 1          | 3,510          | L               | 706              | 74               |                | 247 670           | 2             | 20                 |                 | 0 0              | ١               | 2 5              | L                  | 389               | Ļ             | L                 |          |                   |         |               |                 | 2 2                         | 31,906               | Ш              | 59 232,211    | 7000          |                  | L             | 17 793         | 9                  | _              | - 1              | 2 2               | 92                | 94              | 3               | 6              | 80           | 8                                   |                    | NBW                   |            |
| = !        | MILZ.         | 9 6.3           | 4                 | 11,5            |              | 3,735               | _          | 247,183        | 3               |                  | 871              |                | 5                 | 2,437         |                    | ľ               | 230              | 1               | 1                |                    | 2.172             | Ĺ             |                   | 320      | 4                 | 42,796  |               | 1               | 5.703                       | L                    | Ц              | 1 28,259      | 1             | 843              | 46            | 3,847          | χ<br>,             | 1              | 37,170           | 51 093            | L                 | L               | Li              | 5 149          |              |                                     |                    | MHZ<br>855.64         |            |
| £ 5        | 8.50          | 100             |                   |                 |              | 32)                 |            |                |                 | 10,695           |                  |                |                   |               |                    |                 | ١                | 100             |                  |                    |                   | 3,186         |                   |          | Î                 | 381     | 3,40          | 2               |                             | 1,523,192            | 5,908          | 73,57         |               |                  | 924           | 2,704          | ľ                  | 12 006         | 60,61            |                   | 1.400             |                 |                 | 315            | 4,700        | - 100                               | 91 29              | KWI<br>1 850 748      |            |
| 6          | L             |                 |                   | 1,060           | -            | 8/                  |            |                |                 | 25               |                  |                |                   |               |                    |                 |                  | 707             | 840              |                    |                   | 20,036        |                   |          | ł                 | 3       | 190           | I۳              |                             | 2,909                | $\  \ $        | 233           | 223 470       | 1                |               |                | 195                | 1 666          | 200,1            |                   |                   |                 |                 |                |              |                                     | 107                | 21%                   |            |
| ه <u>ا</u> | 100           | 24              | 1                 |                 | -            | 433                 | ľ          | ľ              | Ĩ               |                  |                  |                | 7,995             |               | /84                |                 |                  | 74.             |                  | ľ                  | 1,639             |               | ш                 |          | - 1               | - 1     | -             | L               | 243                         | 10,917               | L              | _             | 902           | 256              |               | 142            |                    | 1850           |                  |                   | 613               | Ш               | Ц               | 1,888          |              | 1                                   | 1 003              | 718                   |            |
| 7          | 111           | 21,964          | 4,273             | 33,346          |              | 10.015              | 908'69     | 1,981          | 30,402          | 13,923           | 696'9            | 19,492         | 7,486             | 8,140         | 3,474              | 2000            | 2,37.0           | 2,010           | 2.032            | 1,560              | 1,629             | 10,825        | 85                | 545      | 2,719             | 12,303  | 14 183        | 9.618           | 1,259                       | 570,393              |                | 89,525        | 500           |                  |               | 1,283          | 960                | 45,405         | 20,50            | 55                | 2,889             | 6,690           | 2,014           | 1,784          | 1,208        | 39,659                              | 10,000             | HOW<br>1 125 477      |            |
| ωÀ         | 2,924         | 34,573          |                   | 50,049          | - 1          | 8,630               |            | 929            | 20,033          | 2,967            | 11,757           | 7,020          | 6,359             | 787           | 1                  | 0,0,0           | 0 834            | 17 140          | 393              | 11,748             | 6,607             | 577,884       | 5,290             | 972      | 75,244            | 114     | 29 997        |                 | 215                         | 138,145              |                | 70,608        | 55.042        | 4,931            |               | 5,472          | 7,000              | 74.010         |                  | 1                 | 17,391            | 205,901         | 8,440           | 422            | 7,284        | 4,621                               | 115,594            | HIK<br>1 696 049      |            |
| 5 25       | 776           | 2,515           |                   | 856             | 100          | 381                 | l          | 135            | 4,222           |                  |                  | 5,037          | 1,170             |               | //-                | 770             | 684              | 10037           | 7 392            | 614                |                   | 80,919        |                   | <u>8</u> | 30,889            | 700'0   | 1.031         | 1.145           | 1,020                       | 21,613               |                | 2,052         | 3 064         | 650              | H             | 230            | †                  | 0 183          | ,                | 330               | 55,307            | 1,756           | 1,010           | 1,288          | -            | 11,605                              | 102.913            | 1                     |            |
| <b>→</b> § | 50            | 44,014          | 29,780            | 4,070           | 927          | 2,194               | 5,944      | 5,342          | 45,590          | 1,231            | 345              | 10,679         |                   | 1,252         | 240                |                 | 634              | L               |                  | 2,640              | 4,979             | 209,568       | 421               | 928      | 30,742            | /oc'/   | 3.018         | 1.490           | 1                           | L                    | 11             | 24,174        | 42 234        | 5,514            | 900           | 1,872          | 3,229              | 18 680         |                  | 430               | L                 | Ш               | 2,791           | 1,435          | 2,363        | 13,649                              | -                  | J                     |            |
| e 5        | 060           | 9,746           | -                 | 967             | 5,084        | 164                 |            | 286            | 32,691          | 19,232           | 481              | 7,129          | 1                 | 3,846         | 2,918              | +               | 345              | 70.07           | 118              |                    | 6                 | 46,333        |                   | _        | 200               | 131 021 | 42.433        | -               | 1                           |                      |                | 109,335       | $\dagger$     | 36               |               | 40,790         | -                  | 1              | Ł                | -                 | 148,860           |                 | 1,390           | 060'99         | 15,036       | -                                   | ı                  | DHA<br>1,284,051      |            |
| 2 2 2      | 0             | 67,958          |                   | 4,054           | - 20,7       | 3,874               | 565        | 6,697          | 1,370           | 069              | -                | -              | 3,273             | +             | +                  | +               | 814              | 4 501           | 274              | 24,498             | 41,556            | 6,442         | 86                |          | 213               | 100 877 | 1             | 2.633           | 225                         | L                    | П              | 285,559       | 3,413         |                  | H             | 1,964          | -                  | 21 500         |                  | 5                 | 7,014             |                 |                 |                |              | 61                                  |                    | BAH D                 |            |
| 1          | $\vdash$      | 15,342 6        |                   |                 | +            | +                   | -          |                |                 |                  | -                | +              | -                 | +             | +                  | +               | +                | 1               | +                | 2                  | _                 |               | Н                 | 1        | 240 454           | ┸       | 2             | ~               | -                           | ٤,                   | ш              | 269 28        | +             | 1                | H             | +              | +                  |                | 1                | +                 |                   | 13              |                 | 1              | +            | +                                   | +                  | ASP BA<br>364.076 743 |            |
| <          | Ĺ             |                 | ل<br>د            |                 |              | Ţ                   |            | Ш              | Ц               |                  |                  |                |                   | 1             |                    |                 | 1                |                 |                  |                    |                   |               |                   |          |                   |         | 1             | L               |                             | Ē                    | Ц              | _             |               |                  | Ц             |                | 1                  |                | L                |                   |                   | Ц               | ╛               | _              | 1            |                                     | 1                  | <b>ĕ</b>  \$          |            |
| ı          | 1 Anniston AL | 2 Washington DC | 3 Camp Lejuene NC | 4 Charleston SC | 5 Chicago IL | 7 Corpus Christi TX | 8 Crane IN | 9 Dover AFB DE | 10 Eglin AFB FL | 11 Fort Worth TX | 12 Ft Benning GA | 13 Ft Bragg NC | 14 Ft Campbell KY | 15 Ft Hood IX | 10 FT FURGOLICA AZ | 18 Ft Rinder Al | 19 Ft Stewart GA | 20 Hill AFB LIT | 21 Huntsville AL | 22 Jacksonville FL | 23 Kessler AFB MS | 24 Lathrop CA | 25 Lemoare NAS CA |          | 2 MCChiles AFB VA |         | 30 Memphis TN | 31 Monterrey CA | 32 Neffis AFB NV            | 33 New Cumberland PA | 34 New York NY | 35 Norfolk VA | 37 Oakland CA | 38 Offutt AFB NE | 39 Orlando FL | 40 Palmetto GA | 41 Peterson AFB CO | 43 Richmond VA | 44 Robins AFB GA | 45 Rock Island IL | 46 San Antonio TX | 47 San Diego CA | 48 Scott AFB IL | 49 Shaw AFB SC | 50 Texarkana | 51 Tinker AFB OK<br>52 Tohuhanna DA | 53 Travis AFB CA   | TOTAL                 | !          |

# Appendix D: Macro to Produce CPLEX Readable Linear Program

```
The following set of subroutines creates a CPLEX readable file
containing the transshipment problem examined in the 1997
thesis of Capt L Dingle.
Macro programmed by: Maj R Hill, AFIT/ENS
Cautionary notes:
    This macro is not intended to be a general purpose formulation
tool. As such there are certain aspects of the code that look for
specific data in specific locations in the Main worksheet.
Furthermore, input error checking is kept to a minimum.
            Declare global / public variables
Public OriginNames (1 To 60) As String
Public APOENames (1 To 15) As String
Public APODNames (1 To 25) As String
Public Supply(1 To 60) As Double
Public Demand(1 To 25) As Double
Public APOECapacity(1 To 15) As Double
Public APOEFixedCosts(1 To 25) As Double
Public APOEThruPutCosts(1 To 25) As Double
Sub OutputCPLEX()
Sheets ("Main") . Select
Open desired output file in which to place the data
sPath = Cells(8, 15)
sFile = Cells(10, 15)
xTarget = sPath & "\" & sFile & ".dat"
yTarget = sPath & "\" & sFile & ".idx"
Open xTarget For Output As #10
wIndex = Cells(12, 15)
If wIndex = "yes" Then
    IndexFlag = True
End If
Next read the Origin, APOE, and APOD data into the public
storage arrays. Keeping the data in memory speeds up the
processing as opposed to accessing the cells directly from the
spreadsheet.
NumOfOrigins = Cells(3, 1)
NumOfAPOEs = Cells(16, 11)
NumOfAPODs = Cells(3, 6)
Read in the origin data, names and supply information
This data starts in row four of the sheet "Main"
```

```
For i = 1 To NumOfOrigins
         Supply(i) = Cells(i + 3, 3)
        OriginNames(i) = Cells(i + 3, 2)
    Next i
    TotalSupply = Cells(3, 3)
    Read in the APOD data, names and demand information
    For i = 1 To NumOfAPODs
        Demand(i) = Cells(i + 3, 9)
        APODNames(i) = Cells(i + 3, 8)
    TotalDemand = Cells(3, 9)
        The BigM value is used to spoof the throughput constraints on
    each of the APOEs. Currently there is no constraint on throughput.
    However, we wish to have that capability built into the formulation.
    BigM = Application.Max(TotalSupply, TotalDemand)
    Read in the APOE data, names, Capacities, Operating Costs
    For i = 1 To NumOfAPOEs
        APOENames(i) = Cells(i + 16, 11) & " -- " & Cells(i + 16, 13)
        APOEFixedCosts(i) = Cells(i + 16, 15)
        APOEThruPutCosts(i) = Cells(i + 16, 16)
             If Cells(i + 16, 14) = 0 Then
                 APOECapacity(i) = BigM
                 APOECapacity(i) = Cells(i + 16, 14)
             End If
    Next i
        Next read in the shipping cost data
    CostFromOrigin = Cells(2, 15)
    CostFromAPOE = Cells(4, 15)
        The following code generates an index of the Origin, APOE, and
    APOD names according to the name used within the CPLEX formulation.
    The index file name matches the formulation name with the exception
    of using the .idx suffix versus the .dat suffix.
    If IndexFlag Then
        Open yTarget For Output As #9
        Print #9, "Variables in this model are of the following form:"
Print #9, " O#A# -- Flow from Origin node # to APOE node
                         O#A# -- Flow from Origin node # to APOE node
#"
                         A#D# -- Flow from APOE node # to APOD node #"
        Print #9, "
        Print #9, "where the node numbers are defined in the following
manner:"
        Print #9, "First is the list of Origin nodes in the model:"
        For i = 1 To NumOfOrigins
Print #9, "Origin node ", i, " coded as ", "O" &
LTrim(Str(i)), " is ", OriginNames(i)
        Next i
            Print #9, "Next is the list of APOE nodes in the model:"
        For i = 1 To NumOfAPOEs
```

```
Print #9, "APOE node ", i, " coded as ", "A" &
LTrim(Str(i)), " is ", APOENames(i)
        Next i
            Print #9, "Finally is the list of APOD nodes in the model:"
        For i = 1 To NumOfAPODs
            Print #9, "APOD node ", i, " coded as ", "D" &
LTrim(Str(i)), " is ", APODNames(i)
        Next i
            Print #9, "Variable Z(J) is 0 if APOE J closed, 1 if APOE J
is open"
            Print #9, "Variable YA#D# is 1 if this APOE uniquely serves
D# "
            Print #9, "
            Print #9, "Each of the constraints in the formulation is
labeled."
            Print #9, "The following is the coding used for the labels:"
            Print #9, "
                                 --- Objective function of the problem"
                         Obj:
            Print #9, "
                                 --- Supply constraints"
                          S#:
            Print #9, "
                         D#:
                                 --- Demand constraints"
            Print #9, "
                        FC#:
                                 --- Net flow, or flow capacity
constraint"
            Print #9, " UJ#:
                                 --- Unique APOE to APOD junction
constraint"
            Print #9, "
                        PC#:
                                 --- Aerial port capacity constraint"
            Print #9, "
                                 --- Link capacity to APOD constraints"
                        LC#:
            Print #9, " SC#:
                                 --- Special demand constraints"
            Print #9, "End of List...."
        Close #9
    End If
        The following section of the macro formats and outputs the
objective
    function for the problem.
        There are three pieces of the objective function.
   represents the cost of shipping material from the Origin to the
   The second piece represents the cost of shipping material from the
                 The final piece represents the fixed operating costs
   to the APOD.
for
   opening up an APOE.
Print #10, "Minimize"
    TermsPerLine = 5
    Sheets ("OriginDistances"). Select
    xRow = 4 + NumOfOrigins
    yCol = 2 + NumOfAPOEs
        Create the first piece of the objective function...the Origin to
APOE
   shipment costs. The code includes test for zero objective function
values,
   which are skipped over.
    Set xRange = ActiveSheet.Range(Cells(5, 3), Cells(xRow, yCol))
    WorkTerm = "Obj: "
```

```
NumInIt = 0
    For Each C In xRange
        xRow = C.Row
        yCol = C.Column
        zCost = CostFromOrigin * C.Value + APOEThruPutCosts(Cells(3,
yCol))
        If zCost <> 0 Then
            WorkTerm = WorkTerm & LTrim(Str(zCost)) & " "
            WorkTerm = WorkTerm & "O" & LTrim(Str(Cells(xRow, 1)))
            WorkTerm = WorkTerm & "A" & LTrim(Str(Cells(3, yCol))) & " +
11
            NumInIt = NumInIt + 1
        End If
        If NumInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            NumInIt = 0
        End If
    Next C
        Create the second piece of the objective function...the APOE to
APOD
    shipment costs.
        Notice I do not want to reset the WorkTerm or NumInIt since I am
still
    building the same objective function value.
        The code includes test for zero objective function values,
    which are skipped over.
    Sheets ("APODDistances"). Select
    xRow = 4 + NumOfAPODs
    yCol = 2 + NumOfAPOEs
    Set xRange = ActiveSheet.Range(Cells(5, 3), Cells(xRow, yCol))
    For Each C In xRange
        xRow = C.Row
        yCol = C.Column
        zCost = CostFromAPOE * C.Value
        If zCost <> 0 Then
            WorkTerm = WorkTerm & LTrim(Str(zCost)) & " "
            WorkTerm = WorkTerm & "A" & LTrim(Str(Cells(2, yCol)))
            WorkTerm = WorkTerm & "D" & LTrim(Str(Cells(xRow, 1))) & " +
**
            NumInIt = NumInIt + 1
        End If
        If NumInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            NumInIt = 0
        End If
   Next C
        Create the last piece of the objective function...the APOE fixed
    operating costs given that the APOE has been opened. The decision
    the APOE is captured in the Z# variable within the formulation.
        Notice I still do not want to reset the WorkTerm or NumInIt
since I
   building the same objective function value.
```

```
For j = 1 To NumOfAPOEs - 1
        WorkTerm = WorkTerm & LTrim(Str(APOEFixedCosts(j))) & " Z" &
LTrim(Str(j)) & " + "
        NumInIt = NumInIt + 1
        If NumInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            NumInIt = 0
        End If
    Next j
    WorkTerm = WorkTerm & LTrim(Str(APOEFixedCosts(NumOfAPOEs)))
    WorkTerm = WorkTerm & " Z" & LTrim(Str(j))
    Print #10, WorkTerm
        Now ready to start formating and printing out the constraints
        All but the Special Demand constraints are generated based on
the data
    stored in the public arrays previously filled from the "MAIN"
worksheet.
    TermsPerLine = 8
    Print #10, "Subject to"
        The next section of code will generate the Supply constraints
    Currently the code assumes that each origin will have non-zero
    Thus there is no checking for zero values.
'Print #10, "Following are the Supply constraints:"
ConstraintNumber = 1
For i = 1 To NumOfOrigins
    WorkTerm = "S" & LTrim(Str(ConstraintNumber)) & ": "
    ConstraintNumber = ConstraintNumber + 1
    For j = 1 To NumOfAPOEs - 1
        WorkTerm = WorkTerm & "O" & LTrim(Str(i)) & "A" & LTrim(Str(j))
۳ + ۳ ک
    Next j
    WorkTerm = WorkTerm & "O" & LTrim(Str(i)) & "A" &
LTrim(Str(NumOfAPOEs)) & " <= "
    WorkTerm = WorkTerm & Str(Supply(i))
    Print #10, WorkTerm
Next i
        The next section of code will generate the Demand constraints
   As with the supply constraints, the current code that follows
assumes
    that each APOD will have a non-zero demand.
'Print #10, "Following are the Demand constraints:"
ConstraintNumber = 1
For i = 1 To NumOfAPODs
    WorkTerm = "D" & LTrim(Str(ConstraintNumber)) & ": "
    ConstraintNumber = ConstraintNumber + 1
    For j = 1 To NumOfAPOEs - 1
        WorkTerm = WorkTerm & "A" & LTrim(Str(j)) & "D" & LTrim(Str(i))
& " + "
    Next j
    WorkTerm = WorkTerm & "A" & LTrim(Str(NumOfAPOEs)) & "D" &
LTrim(Str(i)) & " = "
    WorkTerm = WorkTerm & Str(Demand(i))
```

```
Print #10, WorkTerm
Next i
        The next section of code will generate the Flow Conservation
constraints.
    Essentially a flow conservation constraint ensures that all goods
that flow
    into an APOE in fact flow out...In-flow = Out-flow.
'Print #10, "Following are the Flow Conservation constraints:"
ConstraintNumber = 1
For j = 1 To NumOfAPOEs
    TermsInIt = 0
    WorkTerm = "FC" & LTrim(Str(ConstraintNumber)) & ": "
    ConstraintNumber = ConstraintNumber + 1
    For i = 1 To NumOfOrigins - 1
        WorkTerm = WorkTerm & "O" & LTrim(Str(i))
        WorkTerm = WorkTerm & "A" & LTrim(Str(j)) & " + "
        TermsInIt = TermsInIt + 1
        If TermsInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            TermsInIt = 0
        End If
    Next i
    WorkTerm = WorkTerm & "O" & LTrim(Str(NumOfOrigins))
    WorkTerm = WorkTerm & "A" & LTrim(Str(j)) & " - "
    TermsInIt = TermsInIt + 1
    For k = 1 To NumOfAPODs - 1
        If TermsInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            TermsInIt = 0
        End If
        WorkTerm = WorkTerm & "A" & LTrim(Str(j))
        WorkTerm = WorkTerm & "D" & LTrim(Str(\bar{k})) & " - "
        TermsInIt = TermsInIt + 1
    WorkTerm = WorkTerm & "A" & LTrim(Str(j))
    WorkTerm = WorkTerm & "D" & LTrim(Str(NumOfAPODs)) & " = 0.0"
    Print #10, WorkTerm
Next j
        The next section of code will generate the constraints ensuring
    that each APOE uniquely serves an APOD.
'Print #10, "Following are the APOE-APOD uniqueness constraints:"
ConstraintNumber = 1
For k = 1 To NumOfAPODs
    WorkTerm = "UJ" & LTrim(Str(ConstraintNumber)) & ": "
    ConstraintNumber = ConstraintNumber + 1
    For j = 1 To NumOfAPOEs - 1
        WorkTerm = WorkTerm & "YA" & LTrim(Str(j)) & "D" & LTrim(Str(k))
    Next i
    WorkTerm = WorkTerm & "YA" & LTrim(Str(NumOfAPOEs)) & "D" &
LTrim(Str(k)) & " = 1"
    Print #10, WorkTerm
Next k
```

```
The next section of code will generate the Aerial port capacity
    constraints. Currently, there is no requirement to enter capacities
    on any of the APOEs. When no capacity is specified, this macro uses
    the BigM value (method) for ensuring sufficient capacity for each
APOE.
        BigM is taken here as the maximum of Total Supply or Total
Demand.
'Print #10, "Following are the Aerial Port capacity constraints:"
ConstraintNumber = 1
For j = 1 To NumOfAPOEs
    WorkTerm = "PC" & LTrim(Str(ConstraintNumber)) & ": "
    ConstraintNumber = ConstraintNumber + 1
    TermsInIt = 0
    For i = 1 To NumOfOrigins - 1
        WorkTerm = WorkTerm & "O" & LTrim(Str(i)) & "A" & LTrim(Str(j))
& " + "
        TermsInIt = TermsInIt + 1
        If TermsInIt >= TermsPerLine Then
            Print #10, WorkTerm
            WorkTerm = ""
            TermsInIt = 0
        End If
   Next i
   WorkTerm = WorkTerm & "O" & LTrim(Str(NumOfOrigins)) & "A" &
LTrim(Str())
    WorkTerm = WorkTerm & " - " & LTrim(Str(APOECapacity(j))) & " Z" &
LTrim(Str(j))
   WorkTerm = WorkTerm & " <= 0.0 "
   Print #10, WorkTerm
Next j
        The following section generates APOE to APOD link capacity
constraints.
    These constraints kick in when a given APOE to APOD link is
initialized to
    uniquely serve each of the APOD.
        There is one constraint for each of the APOE - APOD
combinations.
        Here again, there is no specification of link capacities within
the
   provided data. For this coding, the logic is to ensure that no link
    ships more than the capacity of the APO\bar{\text{E}} from which it originates.
   the BigM value is again used in lieu of true capacity constraint
value.
'Print #10, "Following are the Link capacity, APOE to APOD constraints:"
ConstraintNumber = 1
For j = 1 To NumOfAPOEs
    For k = 1 To NumOfAPODs
        WorkTerm = "LC" & LTrim(Str(ConstraintNumber)) & ": "
        ConstraintNumber = ConstraintNumber + 1
        WorkTerm = WorkTerm & "A" & LTrim(Str(j)) & "D" & LTrim(Str(k))
        WorkTerm = WorkTerm & " - " & LTrim(Str(APOECapacity(j))) & " "
        WorkTerm = WorkTerm & "YA" & LTrim(Str(j)) & "D" & LTrim(Str(k))
        WorkTerm = WorkTerm & " <= 0.0"
```

```
Print #10, WorkTerm
    Next k
Next j
ŧ
,
         The following section generates the special consideration supply
to
    demand constraints based on the data within the Special Demand
matrix
    contained in the SpecialDemand sheet.
         Define the special demand matrix as an object and then examine
    each cell in the defined range.
     Print #10, "Following are the Special Demand constraints:"
    Sheets ("Special Demand"). Select
    xRow = 6 + NumOfOrigins
    yCol = 3 + NumOfAPODs
    Set xRange = ActiveSheet.Range(Cells(7, 4), Cells(xRow, yCol))
         Next consider each cell in the defined range
    ConstraintNumber = 1
    For Each C In xRange
         If C.Value > 0 Then
             xRow = C.Row
             yCol = C.Column
             For j = 1 To NumOfAPOEs
                 WorkTerm = "SC" & LTrim(Str(ConstraintNumber)) & ": "
                 ConstraintNumber = ConstraintNumber + 1
                 WorkTerm = WorkTerm & "O" & LTrim(Str(Cells(xRow, 1)))
WorkTerm = WorkTerm & "A" & LTrim(Str(j)) & " - "
                 WorkTerm = WorkTerm & LTrim(Str(C.Value))
                 WorkTerm = WorkTerm & " YA" & LTrim(Str(j))
WorkTerm = WorkTerm & "D" & LTrim(Str(Cells(4, yCol)))
                 WorkTerm = WorkTerm & " >= 0.0"
                 Print #10, WorkTerm
             Next j
        End If
    Next C
        All the standard constraints are now placed into the file.
        The following section adds the non-negativity constraints and
    the binary constraints to the problem.
        The default bounds are 0 \le x \le infinity. These default bounds
    apply to each of the O#A# and A#D# variables in the problem.
        In this initial formulation, the YA#D# variables are allowed to
be
    real variables bounded above by 1. In actuality, these will likely
have
    to be recoded as Integer variables.
    Print #10, "Bounds"
    For j = 1 To NumOfAPOEs
        For k = 1 To NumOfAPODs
            WorkTerm = "YA" & LTrim(Str(j)) & "D" & LTrim(Str(k))
            WorkTerm = WorkTerm & " <= 1"
```

```
Print #10, WorkTerm
        Next k
    Next j
        Integer section follows. By default, integer variables are
assumed
    binary and provided the bounds of 0 \le y \le 1. This assumption is
used.
    Print #10, "Integers"
WorkTerm = ""
    For j = 1 To NumOfAPOEs
        WorkTerm = WorkTerm & "Z" & LTrim(Str(j)) & " "
    Next j
    Print #10, WorkTerm
        Finally END the file
Print #10, "End"
    Close the file and return to the "MAIN" worksheet
    Close #10
    Sheets("Main").Select
    Beep
    Beep
    End Sub
    Sub Oops()
   Close
   End Sub
    Sub auto open()
    Sheets("Module1"). Visible = False
   End Sub
    Sub Reshow()
    Sheets("Module1").Visible = True
    End Sub
```

# Bibliography

- 1. Holevar, Gregory D. "The Optimal Airlift Distribution Study Proposal." Report to HQ MAC, Scott AFB IL. 1989.
- 2. Kleinhenz, Mark. Operations Research, Studies and Analysis Directorate, Defense Logistics Agency, Ft. Belvoir VA. Correspondence. 22 August 1997.
- 3. Department of the Air Force. Optimal Airlift
  Distribution Study Implementation. MAC PROP 90-16.
  Scott AFB IL: HQ MAC, 1 June 1990.
- 4. Steffey, Howard. Cargo Management Branch, Air Mobility Command, Scott AFB IL. Telephone interviews. September 1996-August 1997.
- 5. Department of the Air Force. "Fiscal Year 1996 Transportation Reporting and Inquiry System Database," and "Department of Defense Activity Address Codes," and "Air Terminal Identification Codes." CD-ROM (27 February 1997).
- 6. Mirchandani, Pitu B. and Richard L. Francis. <u>Discrete Location Theory</u>. New York: John Wiley & Sons, 1990.
- 7. Francis, Richard L., Leon F. McGinnis, Jr., and John A. White. <u>Facility Layout and Location: An Analytical</u> Approach. Englewood Cliffs: Prentice-Hall, Inc., 1992.
- 8. Love, R.F., J.G. Morris, and G.O. Wesolowsky. <u>Facilities</u>
  <u>Location: Models and Methods</u>. Amsterdam: North-Holland,
  1988.
- 9. Ghosh, Avijit, and Farid Harche. "Location-Allocation Models in the Private Sector: Progress, Problems, and Prospects." Location Science, 1: 81-106 (May 1993).
- 10. Miller, Tan. "Learning About Facility Location Models." Distribution, 92: 47-50 (May 1993).
- 11. Wesolowsky, George O. "The Weber Problem: History and Perspectives." Location Science, 1: 5-23 (May 1993).

- 12. Garcia, John N. Simultaneous Location of Limited
  Reparable Support Equipment and Repair Facilities in an
  Air Force Environment. MS thesis, AFIT/GIM/LAL/95S-3.
  School of Logistics and Acquisition Management, Air
  Force Institute of Technology (AU), Wright-Patterson AFB
  OH, September 1995 (AD-A300446).
- 13. Merrill, David L. Facility Location and Routing to Minimize the Enroute Distance of Flight Inspection Missions. MS thesis, AFIT/GST/ENS/89M-13. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1989. (AAJ-6204).
- 14. Baker, Steven F. Location and Routing of the Defense Courier Service Aerial Network. MS thesis,

  AFIT/GOR/ENS/91M-1. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1991. (AAI-3093).
- 15. Bhaskaran, Sita. "Identification of Transshipment Center Locations," <u>European Journal of Operations Research</u>, 63: 141-150 (January 1992).
- 16. Geoffrion, A.M. and G.W. Graves. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, 20: 822-844 (January 1974).
- 17. Brown, E., Y. Fathi, and R. Sowell. "Linear Programming Applied to a Facility Location Problem," Applied Engineering in Agriculture, 12: 105-110 (January 1996).
- 18. Microsoft Excel for Windows 95. Version 7.0a, IBM, disk. Computer software. Microsoft, Inc., WA, 1996.
- 19. CPLEX Linear Programming Solver Package.
- 20. Material Management Customer Support Office, Defense Logistics Agency. "Important Information About Department of Defense Activity Address Codes (DODAACs)," Loglines, 3: 3-5 (September, 1997).
- 21. Kelly, William. Defense Activity Address System Center, Defense Logistics Agency, Wright-Patterson AFB OH. Personal Interview. 25 September 1997.

- 22. Microsoft Access for Windows 95. Version 7.0, IBM, disk. Computer software. Microsoft, Inc., WA, 1995.
- 23. Department of the Air Force. Transportation and Travel Official Table of Distances: Continental United States, Alaska, Hawaii, Canada, Canal Zone, Central America, Mexico, and Puerto Rico. AFR 177-135. Washington: HQ USAF, December 1981.
- 24. <u>Borland dBase for Windows</u>. Version 5.0, IBM, disk. Computer software. Borland International, Inc., 1994.
- 25. Department of the Air Force. <u>Air Navigation</u>. AFM 51-40. Washington: HQ USAF, 15 March 1983.
- 26. Military Traffic Management Command. "Traffic Management Progress Report: Fiscal Year 1995," Draft RCS DD-P&L(AR) 1822. HQ MTMC, Falls Church VA, 1997.
- 27. Department of the Air Force. <u>Defense Business Operations</u>
  <u>Fund Transportation (DBOF-T) Airlift Rates</u>. DOD Rate
  <u>Tariffs</u>. Scott AFB: HQ AMC, 1 October 1995.
- 28. Steffey, Howard P. and Darren S. Beyer. "FY96 World-Wide Channel Shipment Profile Study." Unpublished Study. HQ AMC, Scott AFB IL, 6 March 1997.
- 29. Golec, P. Headquarters Air Mobility Command (HQ AMC), Financial Management Directorate, Scott AFB IL. Electronic Mail. 1 October 1997.
- 30. Schaeufele, John G. HQ AMC/DOZX, Air Transportation Plans and Programs. Scott AFB IL. Electronic Mail. 15 October 1997.
- 31. Ritchie, Jesse. Deputy Director Air Terminal, Norfolk Navy. Norfolk NAS VA. Telephone Interview. 15 October 1997.
- 32. Hill, Raymond. Assistant Professor of Operations Research. School of Engineering, Air Force Institute of Technology. Wright-Patterson AFB OH. Personal and Telephone Interviews and Electronic Mail. September 1997-March 1998.

# <u>Vita</u>

Capt Levenchi L. Dingle

Smithsburg High School in Smithsburg, Maryland in 1983 and entered the United States Air Force Academy in Colorado Springs, Colorado. In May 1987 he graduated from the Air Force Academy and received his commission and Bachelor of Science degree.

Upon graduation from Undergraduate Pilot Training in November 1988, he served as a KC-135 pilot in the 920<sup>th</sup> Aerial Refueling Squadron, Wurtsmith AFB, Michigan. In 1992 he became a C-5 pilot in the 22<sup>nd</sup> Airlift Squadron, and then a Transportation Officer in the 60<sup>th</sup> Aerial Port Squadron at Travis AFB, California. He entered the Air Force Institute of Technology at Wright-Patterson AFB, Ohio, in June 1996. Upon completion, he will be assigned to Langley AFB, Virginia at Headquarters, Air Combat Command.

Permanent Address:

# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302,

| suggestions for reducing this burden to Washington H<br>and to the Office of Management and Budget, Paperw | leadquarters Services, Directorate for Inform<br>ork Reduction Project (0704-0188), Washin | nation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, igton, DC 20503 |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave                                                                                  | 3. REPORT TYPE AND DATES COVERED                                                           |                                                                                                                    |
| blank)                                                                                                     | September 1997                                                                             | Master's Thesis                                                                                                    |
| 4. TITLE AND SUBTITLE  AERIAL PORT LOCATI                                                                  | ON STUDY                                                                                   | 5. FUNDING NUMBERS                                                                                                 |
|                                                                                                            |                                                                                            |                                                                                                                    |
| 6. AUTHOR(S)  Captain Levenchi L. Dingle                                                                   | e                                                                                          |                                                                                                                    |
| 7. PERFORMING ORGANIZATION NAI                                                                             | MES(S) AND ADDRESS(S)                                                                      | 8. PERFORMING ORGANIZATION REPORT NUMBER                                                                           |
| Air Force Institute of Tech                                                                                | nology                                                                                     | AFIT/GTM/LAL/97S-2                                                                                                 |
| 2750 P Street                                                                                              |                                                                                            | MII/GINDDIAD/775-2                                                                                                 |
| WPAFB OH 45433-7765                                                                                        |                                                                                            |                                                                                                                    |
| 9. SPONSORING / MONITORING AC                                                                              | SENCY NAME(S) AND ADDRES                                                                   | S(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER                                                             |
| HQ AMC/DORS                                                                                                |                                                                                            |                                                                                                                    |
| Scott AFB IL 62225-5302                                                                                    |                                                                                            |                                                                                                                    |
| 11. SUPPLEMENTARY NOTES                                                                                    |                                                                                            |                                                                                                                    |
|                                                                                                            |                                                                                            |                                                                                                                    |
| 12a. DISTRIBUTION / AVAILABILITY S                                                                         | TATEMENT                                                                                   | 12b. DISTRIBUTION CODE                                                                                             |

#### 13. ABSTRACT (Maximum 200 Words)

Approved for public release; distribution unlimited.

This study performed an investigation on determining the appropriate number and locations of continental United States aerial ports. To accomplish this a linear programming formulation was adapted with the optimizing function based on trading off the cost of shipping cargo against port operating costs. Cargo would travel from CONUS origin, through aerial port of embarkation (APOE), to aerial port of debarkation (APOD) at minimum cost to the DOD. The need for the study was precipitated by continued reductions in the military budget, consolidation of defense depots, and the reduction in the number of personnel stationed overseas.

Cargo movement data was extracted from the Transportation Reporting and Inquiry System database for fiscal year 1996. This information was then used as deterministic demand at the APODs from particular origination cities. The demand had to be exactly met in the formulation. Applying the linear program resulted in the recommendation to operate only three aerial ports. They are Travis AFB, CA, Dover AFB, DE, and McGuire AFB, NJ saving over 11 million dollars a year.

| 14. SUBJECT TERMS           | 15. NUMBER OF PAGES         |                             |                            |  |  |
|-----------------------------|-----------------------------|-----------------------------|----------------------------|--|--|
| Location Analysis, Aeria    | 78                          |                             |                            |  |  |
|                             |                             |                             | 16. PRICE CODE             |  |  |
| 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |  |  |
| OF REPORT                   | OF THIS PAGE                | OF ABSTRACT                 |                            |  |  |
| UNCLASSIFIED                | UNCLASSIFIED                | UNCLASSIFIED                | UL                         |  |  |

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

# AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaire to: AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT-PATTERSON AFB OH 45433-7765. Your response is important. Thank you.

| 1. Did this research contribute to a current research                                                                                                                                          | a. Yes                     | b. No                   |          |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------|--|--|--|--|--|--|
| 2. Do you believe this research topic is significant enough that it would have been researched contracted) by your organization or another agency if AFIT had not researched it?  a. Yes  b. 1 |                            |                         |          |  |  |  |  |  |  |
| 3. Please estimate what this research would have cost in terms of manpower and dollars if it had been accomplished under contract or if it had been done in-house.                             |                            |                         |          |  |  |  |  |  |  |
| Man Years                                                                                                                                                                                      | \$                         |                         |          |  |  |  |  |  |  |
| 4. Whether or not you were able to establish an 3), what is your estimate of its significance?                                                                                                 | equivalent value           | for this research (in C | (uestion |  |  |  |  |  |  |
| a. Highly b. Significant c. S<br>Significant S                                                                                                                                                 | Slightly c<br>ignificant - |                         |          |  |  |  |  |  |  |
| 5. Comments (Please feel free to use a separate with this form):                                                                                                                               | sheet for more d           | etailed answers and in  | clude it |  |  |  |  |  |  |
|                                                                                                                                                                                                |                            |                         |          |  |  |  |  |  |  |
|                                                                                                                                                                                                |                            |                         |          |  |  |  |  |  |  |
|                                                                                                                                                                                                |                            |                         |          |  |  |  |  |  |  |
| Name and Grade                                                                                                                                                                                 | Organization               |                         |          |  |  |  |  |  |  |
| Position or Title                                                                                                                                                                              | Address                    |                         |          |  |  |  |  |  |  |