
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1997

An Object Oriented Simulation of the C-17 Wingtip Vortices in the An Object Oriented Simulation of the C-17 Wingtip Vortices in the

Airdrop Environment Airdrop Environment

Hans J. Petry

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons, and the Other Operations Research, Systems

Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Petry, Hans J., "An Object Oriented Simulation of the C-17 Wingtip Vortices in the Airdrop Environment"
(1997). Theses and Dissertations. 5959.
https://scholar.afit.edu/etd/5959

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5959?utm_source=scholar.afit.edu%2Fetd%2F5959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

L

AN OBJECT ORIENTED SIMULATION
OF THE C-17 WINGTEP VORTICES
IN THE AIRDROP ENVIRONMENT

THESIS

Hans J. Petty, Major, USAF

. AFJT/GOA/ENS/97M-13

DEPARTMENT OF THE AIR FORCE

Approved for public »fca^
Dtrtrtbnilon Unifanltad

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GO A/ENS/97M-13

AN OBJECT ORIENTED SIMULATION
OF THE C-17 WINGTIP VORTICES
IN THE AIRDROP ENVIRONMENT

THESIS

Hans J. Petry, Major, USAF

. AFTT/GOA/ENS/97M-13

Approved for public release; distribution unlimited

THESIS APPROVAL

Student: Hans J. Petry, Major, USAF Class: GOA-97M

Title: An Object-Oriented Simulation of the C-17 Wingtip Vortices in the Airdrop
Environment

Defense Date: 4 March 1997

Committee:

Advisor

Reader

Name/Title/Department

T. Glenn Bailey, Lt Col, USAF
Assistant Professor
Department of Operational Sciences

Phillip S. Beran,
Associate Professor
Department of Aeronautics and Astronautics

DTIC QUALITY INSPECTED 2

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense

or the U. S. Government

AFIT/GOA/ENS/97M-13

AN OBJECT ORIENTED SIMULATION

OF THE C-17 WINGTIP VORTICES

IN THE AIRDROP ENVIRONMENT

THESIS

Presented to the Faculty of the Graduate School of Engineering

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Hans J. Petry, B.S., M.S.B.A.

Major, USAF

March 1997

Approved for public release; distribution unlimited

Acknowledgments

I am deeply indebted to my advisor, Lt Col Glenn Bailey, for presenting such an

interesting and worthwhile topic and keeping his enthusiasm throughout the whole effort.

Even listening to my classmates grunt and groan about the simulation course didn't keep

me from choosing this topic. His help in team selection, model verification, and input

and output analysis were invaluable in the completion of the project

I would also like to thank William Blake of the Wright Laboratories, without the

use of his model and his help in understanding the FORTRAN implementation, this

project would not have gone nearly as far as it has. My reader, Dr. Phil Beran also helped

decipher the aerodynamics behind the model and eased the transition from the

FORTRAN model to my MODSIM interpretation.

Another key player in the model completion is my partner, Capt. Joey Belano.

His help in creating the output files and vortex polling method enabled the model to be

much easier to use.

Finally, I would like to thank my wife, Karla, and children; Emily; Gwendolyn;

and Matthew. Your understanding of why daddy can't come out and play today helped

immensely in giving me the time to complete this project and motivation to get it done

quickly to move on to more enjoyable undertakings.

Hans J. Petry

11

Table of Contents

Page

Acknowledgments ü

Table of Contents ili

List of Figures vi

List of Tables vii

List of Equations ix

Abstract x

AN OBJECT ORIENTED SIMULATION OF THE C-17 WINGTEP VORTICES IN THE AIRDROP

ENVIRONMENT 1

I. INTRODUCTION 1

BACKGROUND l
PROBLEM STATEMENT 2
EXPECTED CONTRIBUTION 3

H. RELATED WORK 4

PREVIOUS VORTEX MODELS 4
1988 MILITARY AIRLIFT COMMAND PROJECT 6
HOT FILM ANEMOMETER MEASUREMENTS« 7
BLAKE'S MODEL 8
LIDAR MEASUREMENT OF THE VORTEX CORE 13
PROPOSED METHODOLOGY 13

HI. METHODOLOGY 15

FORMAL FORMULATION 15
SOLUTION TECHNIQUES 16
IMPLEMENTATION : 18

Input 20
CONTROL OBJECT 22
C-17 OBJECT 25
VORTEX OBJECT 26
Output 31

VERIFICATION AND VALIDATION 33

VI. Results 39

ANALYSIS 39

V. Conclusions 57

SUMMARY OF RESULTS 57
MODEL IMPROVEMENTS 58
CONTRIBUTION 62

Appendices 64

Appendix A 65

PETRY'S MODSIM CODE 65
DEFINITION AIRPLANE MODULE 66
IMPLEMENTATION AIRPLANE MODULE 67
DEFINITION VORTEX CONTROL MODULE 70
IMPLEMENTATION VORTEX CONTROL MODULE 72
DEFINITION VORTEX MODULE 78
IMPLEMENTATION VORTEX MODULE 80

Appendix B . 90

SHARED MODSIM CODE 90
MAIN VORTEX MODULE 91
DEFINITION GLOBAL MODULE 93
IMPLEMENTATION GLOBAL MODULE 95
DEFINITION INPUT MODULE 97
IMPLEMENTATION INPUT MODULE 98

Appendix C 102

BELANO'S MODSIM CODE 102
DEFINITION CALC MODULE 103
IMPLEMENTATION CALC MODULE 104
DEFINITION LEFT JUMPER MODULE 105
IMPLEMENTATION LEFT JUMPER MODULE 109
DEFINITION RIGHT JUMPER MODULE 125
IMPLEMENTATION RIGHT JUMPER MODULE 129

Appendix D 145

BLAKE'S FORTRAN CODE 145

Appendix E 160

ALTERNATE RESULTS : 160
ANALYSIS 161

Bibliography 175

IV

Vita.. .177

List of Figures

Figure 1. Blake's Formulae for Vortex Position Prediction 11

Figure 2. Air and Ground Coordinate Systems 12

Figure 3. Sample Input Screen 20

Figure 4. First Vortex Point Formulae for rightVortex Object 28

Figure 5 . Subsequent Vortex Points and Velocity Formulae for rightVortex Object 29

Figure 6 . First Order Linear Regression with Confidence Interval and Residuals 43

Figure 7 . Second Order Regression with Confidence Interval and Residuals 45

Figure 8. Full Third Order Residuals 47

Figure 9. Full Third Order Regression Line with Confidence Interval 47

Figure 10. Reduced Third Order Curve with Confidence Interval and Residuals 50

Figure 11. Logistic Regression Prediction Curve 52

Figure 12 . Third Order and Logistic Prediction Curves 56

Figure 13 . First Order Linear Regression with Confidence Interval and Residuals 164

Figure 14 . Second Order Regression with Confidence Interval and Residuals 166

Figure 15. Full Third Order Residuals 167

Figure 16. Full Third Order Regression Line with Confidence Interval 168

Figure 17. Reduced Third Order Curve with Confidence Interval and Residuals 170

Figure 18. Logistic Regression Prediction Curve 172

Figure 19 . Third Order and Logistic Prediction Curves 174

List of Tables

Table 1. Vortex Characteristics from 1988 Test of C-130, C-141, and C-5 Aircraft 8

Table 2. Table of Blake's Notation 11

Table 3. Field Meaning of Output Files 31

Table 4. Sample Output from Jumper File 32

Table 5. Sample Output from Encounter File 32

Table 6. Screening Test for Encounter Rate of Edwards Flight Test Data 34

Table 7. Edwards Validation Test Input. (Jun 96) 36

Table 8. Actual and Input Data for Bragg Test (16Aug 96) 37

Table 9. Distances and Random Seeds used for analysis 39

Table 10. Input Data for Simulation Runs with 50 Replications at Each Point 40

Table 11. Results of Simulation Runs, Blocked by Seed 41

Table 12. First Order Linear Regression Results, Coded Spacing vs Encounter Rate.... 42

Table 13. Second Order Linear Regression Results, Coded Spacing vs. Encounter Rate.44

Table 14. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate.. 46

Table 15. Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate.49

Table 16. Logistic Regression Results, Encounter Rate vs. Coded Spacing 51

Table 17. Predicted Encounter Rate for Third Order and Logistic Models 55

Table 18. Comparison of Regression Models 57

Table 19. Distances and Random Seeds used for analysis 161

Table 20. Input Data for Simulation Runs with 50 Replications at Each Point 162

Table 21. Results of Simulation Runs, Blocked by Seed 163

Table 22. First Order Linear Regression Results, Coded Spacing vs Encounter Rate.. 163

Table 23. Second Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 165

Table 24. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 167

Table 25. Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate. 169

Table 26. Logistic Regression Results, Encounter Rate vs. Coded Spacing 171

Table 27. Predicted Encounter Rate for Third Order and Logistic Models 173

Vlll

List of Equations

Equation 1. Basic Vortex Circulation Formula 9

Equation 2. Vertical Velocity Formula 9

Equation 3 . General Logistic Response Function 49

AFIT/GOA/ENS/97M-13

Abstract

This thesis effort focuses on the development of an object-oriented simulation of

C-17 personnel airdrop operations and provides a tool for risk assessment of jumper and

wingtip vortex interaction. During operational flight testing of the C-17 some jumpers

encountered a wingtip vortex from a preceding airplane jeopardizing safety. After

stopping live testing, the Air Force and Army realized they had no tool for analyzing the

risk of a vortex encounter. Using the initial modeling efforts of the Wright Laboratory,

this model expands those efforts to include random aircraft, wind and jumper movement

within the simulation using MODSIM HI as its language.

Once the model was built, verified, and calibrated, it helped perform a preliminary

analysis of jumper risk with varying element spacing and no crosswind. The results of

the simulation provided 15 data points with which linear and logistic regression provided

an estimation of the marginal rate of change of jumper/vortex encounter rate.

Results showed that the reduced third order linear regression model most closely

approximated the data points but that the logistic regression model should fit this type of

simulation better. The logistic model failed the lack of fit test but that may be correctable

by using the model to collect more data points at smaller intervals.

Using the third order model shows that the encounter rate levels off around 24,000

feet spacing between element leaders at 12%, and stays as high as 11% at 32,000 feet

before dropping to 0.4% at 34,000 feet. Further research and model improvements may

bring the encounter rate down at the more distant spacing but that is left for post thesis

analysis efforts.

AN OBJECT ORIENTED SIMULATION OF THE C-17 WINGTIP

VORTICES IN THE AIRDROP ENVIRONMENT

I. INTRODUCTION

Background

One of the major factors used in the recent decision to buy 120 new C-17 aircraft

was it's advertised capability for personnel airdrop. Analysis by Air Mobility Command

showed that in order to meet the Army's requirements for Strategic Brigade Airdrop

operations the Ar Force would need 120 C-17's (White, 1996). During operational

evaluation and testing of the C-17 for it's strategic brigade airdrop role, it was discovered

that there was a problem with vortex and parachute interaction. The preceding planes in

the formation generate a much stronger wingtip vortex than the current primary airdrop

aircraft, the C-141. The stronger vortex causes parachutes to collapse, oscillate, and

descend at faster than safe speeds. Flight testing at Edwards AFB shows statistically that

jumpers interact with the vortices at almost twice the rate when jumping from C-141 's

versus C-17's ("Summary ...", 1996). Furthermore, this statistic is misleading in that it

measures interaction only, and not the severity of interaction. One serious incident of

interaction actually collapsed the parachute of a jumper and then interfered with the

deployment of the reserve chute. (Only luck kept the jumper from serious injury as the

main parachute reinflated shortly before impact with the ground.) After this incident, the

Army and Air Force agreed to stop live testing and flight test with mannequins to assess

the risk associated with jumping from the C-17 in a large formation. Realizing that flight

testing all possible conditions would be cost prohibitive, they decided to look for a tool to

predict the interaction before actually flight testing. This problem has not been answered

and flight testing continues simultaneously with the development of this tool.

The purpose of this thesis is to develop an object oriented simulation of the C-17

wingtip vortices in the airdrop configuration. When used in conjunction with the

paratroop objects being developed by Belano (1997), this simulation model will provide

the C-17 System Program Office (SPO), and other Air Force and Army agencies, with the

capability of assessing paratrooper performance during C-17 formation airdrops. Some

specific uses of the model will be to test different formation geometries and their affects

on airdrop operations, and jumper risk assessment given current formation and weather

conditions. Specifically, the analyst will be able to do a risk assessment of jumper

interaction with the vortices after exit from the airplane

Problem Statement

The C-17 test and evaluation community need a tool to better predict the behavior

of the wingtip vortices over the drop zone. The current mode they are using, developed

by Blake ("Prediction ...", 1996), is a FORTRAN-based, deterministic model. Flight

tests have proven that this model is inadequate in predicting the dynamic behavior of the

vortices (although it is the best currently available). This thesis proposes to develop an

object-oriented simulation tool to model the wingtip vortices of the C-17. This

simulation will be written in MODSIM El and incorporate objects representing the

wingtip vortex trailing off of each wing. These objects will behave in a similar manner,

but allow some random variation to attempt to better predict where the vortices will be as

the jumpers descend to the ground. This variation will allow movement of the vortices

outside of the straight deterministic equations in trying to account for some of the

unknown forces acting on these vortices. Outputs from this simulation include the

number of jumpers contacting a critical area of the vortex, which vortex they hit, and the

altitude of encounter.

Blake's static prediction model will be converted and expanded to a MODSIM HI

object that represents dynamic movement of the vortex due to outside influences. The

data collected from lidar measurement of the C-17 vortex strength and position was

compared with the predicted strength and position using aerodynamic equations. This

data then helped define the equations of the position and size of the vortex (Blake, 1996).

The simulation will be a discrete-time simulation that constantly updates the position of

the airplanes, vortices, and jumpers. Using the property of inheritance, the initial C-17

objects will move in formation and calculate their positions as the flight progresses.

Furthermore, when over the dropzone, the paratroop objects will inherit the position data

of the C-17 as they exit the aircraft.

Expected Contribution

This model should immediately help the airdrop test and evaluation community

make better predictions about the behavior of C-17 vortices over the dropzone. This will

allow the analyst to vary formation geometry to minimize the risk of jumper vortex

interaction. If this formation is not acceptable for mission accomplishment due to tactical

constraints, the user can then assess the risk to jumpers in a formation that is more

tactically sound.

n. RELATED WORK

Previous Vortex Models

Hazards associated with wingtip vortices are not a new phenomenon. With the

advent of larger aircraft, vortices have become stronger and stronger. The Federal

Aviation Administration (FAA) has long recognized these hazards and mandated four

mile separation between heavy aircraft and subsequent light aircraft on approach to

landing. Recently, they have increased this separation between heavy aircraft (over

300,000 lbs. gross weight); mandated Boeing 757 and 767 aircraft and trailing small

aircraft separation to 6 miles; and, redefined what constitutes a small aircraft (up to

41,000 lbs.) (Wald, 1996).

The hazards over dropzones have also been recognized. A 1988 study

commissioned by the Military Airlift Command (MAC) concludes that the wingtip

vortices of C-130, C-141, and C-5 aircraft significantly hindered personnel airdrop

operations at altitudes below 600 feet above ground level (AGL) (Johnson, SEP and DEC

1988). These studies recommend that airdrop operations be conducted above that altitude

to maintain safety of the jumpers during descent. Personnel drops from C-5 aircraft were

deemed infeasible and have not been developed further (Johnson, DEC 1988).

MAC Project 15-105-86 (Johnson, SEP 1988) includes a computer model for

vortex jumper interaction. A verbal description of the model in Appendix C of the MAC

Project report describes a model similar to what is proposed in this paper, although this

model is in a DOS-based, non-object-oriented, BASIC format. The characteristics of the

vortices were measured by hot film anemometers at the National Oceanic and

Atmospheric Administration (NOAA) test facility at Idaho Falls, Idaho. This type of

testing, while the best available at the time for measurement of vortices, is somewhat

flawed by the proximity of the tower to the ground. More recent advances in the

measurement of vortices (Hannon, 1995, Thomson, 1995) were used by Blake in the

development of his current model (Blake, 1996).

Blake's model is the most recent work in this area (Blake, 1996). His model

initially included interaction between vortices through time integration. It did not include

interaction with the ground since the predicted descent rate put the vortex at 200 feet

AGL at a point when its predicted strength no longer effects the jumpers. In the fall of

1996, Blake modified his model to no longer take into consideration the interaction

between vortices of separate aircraft because the spread of the formation was so great that

one vortex pair had little impact on the other airplanes' vortices (Blake, Personal

Interview, 1996). At this time he also included ground effect in the model, enabling the

vortices of a pair to separate quicker when approaching the ground while slowing their

descent rate. The vortices now asymptotically approach the ground but never hit. The

data used to measure the characteristics of the C-17 vortices was obtained by lidar

measuring equipment at Edwards AFB, CA. A laser radar measuring the turbulence

inside the vortex core, this method of measurement eliminates some of the problems with

the hot film anemometer and ground effect (Hannon, 1995). It represents the vortex in

free air better than the hot film anemometer. The lidar data forms the basis for Blake's

model, which in turn is the basis for representing the vortices in our simulation.

1988 Military Airlift Command Project

In 1988 the Military Airlift Command, which has since become Air Mobility

Command, commissioned a study of airdrop operations at very low altitude (Johnson,

SEP and DEC, 1988). Supposedly the first ever to study the effects of aircraft vortices on

parachute systems, its purpose was to gather information and measure what the effects of

the vortices on airdrop operations from 300 to 600 feet above ground level (AGL).

(Normal airdrop operations were conducted at 800 to 1000 feet AGL.) The test was

conducted in three phases, with the first being the collection of vortex measurement

information. The second phase determined what effect the vortex has on a parachute,

while the last developed a computer model to predict the effects at low altitude. The first

phase will be covered in more detail in the next section of this paper on hot film

anemmometer measurement.

The second phase consisted of mounting self contained smoke generators on the

lead aircraft, and flying the trailing plane over the vortices while releasing dummies to

see what the effect of vortex encounter is. Encounters that occurred on the outer edge of

the vortex the showed a descent rate slowed by 60%, while those that penetrated between

the vortices saw increased descent rates up to 140%. Encounters that occurred before

parachute stabilization had no effect on the parachute system. Those that occurred after

parachute stabilization affected the parachutes in various ways, with the most severe

effect being a chute collapse for 1 to 3 seconds. Other effects were partial deflation of the

canopy, oscillation of the load, increased or decreased descent rate, collisions,

entanglement, and dragging of the load on the surface. Another conclusion was that the

effects of an encounter with a vortex were not dependent on the aircraft type in the study

(C-130 and C-141). An expanded study including the C-5 arrived at a similar conclusion.

The last phase developed a computer model to predict the encounter rate of

different aircraft, loads, altitudes, and formation geometries. One finding from this model

was that interactions between the vortices and canopies ranged from 0% to 93%. It also

concluded that the possibility of more than one vortex affecting any one parachute's

descent was very small; however, this may result from the model coding and is suspect,

especially if the vortex life is longer than the 90 seconds predicted for the C-130 or C-

141.

This test had five major objectives encompassed in the three phases. The first

objective was to determine the vital characteristics of the vortices such as size, strength

and duration. The second was to determine the maximum change in descent rates of

different parachutes after vortex encounter. The third objective was to assess the hazards

associated with vortex encounter. The fourth objective was to determine a vertical safety

correction to use in the very low environment. The fifth and last objective was to

determine minimum and maximum in-trail distances for formations during airdrop

operations in a very low environment. While this test looked at the dynamics of the very

low airdrop environment, the results can apply to the work in Chapter HI.

Hot Film Anemometer Measurements

After searching for ways to measure the size and strength of the vortex, the testers

in the MAC Project contacted the Federal Aviation Administration about using a system

in Idaho to measure vortices (Clawson, 1988). Previously used for tests on heavy

transport category aircraft and B-52 vortex measurement, this hot film anemometer is a

wire filament heated to 250°C. The measurement of the amount of electricity needed to

maintain that temperature is used to calculate the wind speed at that point. The tower in

Idaho stands 200 feet above the ground and is filled with filaments every 3 feet on the top

100 feet of the tower and every 6 feet on the bottom half. Additionally, there are 26 extra

filaments mounted on 13 towers 11 feet tall to try to measure any vortices that descend to

the ground. C-130, C-141, and C-5 aircraft were used for the fly-bys to characterize the

vortices for each airplane (Table 1).

Table 1. Vortex Characteristics from 1988 Test of C-130, C-141, and C-5 Aircraft

Aircraft Maximum Minimum Maximum Minimum Maximum Minimum
Type Core Velocity Core Velocity Age Age Descent Rate Descent Rate

(fps) (fps) (seconds) (seconds) (fps) (fps)
C-130 153 12 97 6 7.0 0.8
C-141 162 8 176 6 13.5 0.4
C-5/A 268 11 109 6 9.9 0.9

The testers warn that this data may not represent the true vortex characteristics of

these airplanes because of varying weather conditions. They expect that some C-5

vortices could live longer, although a strong wind on all of the days of C-5 testing and

calm winds on the days of C-141 testing prevented a more definitive answer. In general

the observed characteristics were expected with the C-5, C-141 and C-130, in decreasing

order of severity.

Blake's Model

The latest model to address the problem of paratroop and vortex interactions is

one by Blake (Blake, 1996). He models the vortices as.a record of six data points taken at

evenly spaced intervals behind the vortex generating aircraft using Eulers explicit time

integration. The six data points are the x, y , and z coordinate, the strength, the radius,

8

Equation 1. Basic Vortex Circulation Formula

AW

npvji

Equation 2. Vertical Velocity Formula

and the age of the vortex. Blake used an interval (step size) of 200 feet, but suggested I

use 100 feet for more accuracy. With this information he iteratively calculates the six

values for each subsequent point. (The FORTRAN code for Blake's model is in

Appendix 4). Each vortex is varying models used to calculate its movement as a single

ship vortex field, or to account for the interactions between all of the vortices generated

by a large formation. Subsequent testing has led Blake to conclude that given at least

3000 feet spacing between aircraft within an element, the single ship model is more

useful in predicting vortex position (Blake, Personal Interview, 22 JAN 1997). This

model has been invaluable in establishing an acceptable formation element geometry, but

does not account for any variation in crosswind strength or aircraft position. This

inability to account for the uncertainty of the vortex position at greater distances makes it

difficult to predict and find an acceptable spacing between elements of the formation.

Blake used the elliptical load of a fully rolled up vortex to calculate the vortex

strength and vertical velocity (Equations 1 and 2). The main formulae used in Blake's

model calculate the motion of the vortex based on the information at the previous interval

(Figure 1, Table 2). The main calculations involve the horizontal and vertical velocities;

the next y and z positions (using Eulers explicit time integration); vortex circulation

10

Figure 1. Blake's Formulae for Vortex Position Prediction.

vage = xv I vf

gam = wt(i) I {rho * vf * bp)* g mod

gamd = gam if vage < 60

gamd = gam * (60 / vage) if vage > 60

vd = -l*gamd(i)/(2*pi)*4*hag**2/(bp*(bp**2+4*hag**2))

yd = ±l*gamd(i)/(2*pi)*bp**2/(2*hag*(bp**2 + 4*hag**2))

y0(i) = y0(i) + vs* delt + yd* delt

z0(i) = z0(i) + vd*delt

radius = gamd I {2* pi* threshold)

Where table 2 shows notational definitions

Table 2. Table of Blake's Notation.

Symbol Meaning
vage Vortex age (time since aircraft passed)
xv Aircraft's formation position relative to lead. (In-trail)
vf Velocity of Aircraft (ft/sec)
gam Gamma, vortex circulation strength
wt(i) Aircraft Weight

rho Air density
gmod Modification to Vortex strength from lidar data (0.8)
gamd decayed vortex strength
vd Vortex vertical velocity
hag Height above ground
bp Span of fully rolled vortex. (pi/4*beff)
beff Effective wing span
yd Horizontal velocity. Positive for left vortex, negative for right vortex
y0(i) y Position at this instance. (Lateral distance from center of first aircraft)

vs Velocity of crosswind
delt Time since last point
z0(0 z Position at this instance. (Altitude)

radius Vortex radius to reach the threshold velocity
threshold Threshold swirl velocity (Blake used 30 ft/sec)

strength; vortex decay; vortex age; and, radius for threshold swirl velocity. The x position

is evenly spaced at 200 feet intervals. The coordinate system Blake uses is fixed to the

first aircraft, we adopt the same convention and use a fixed ground coordinate system as

11

well (Figure 2). By fixing the ground system we are able to collect the landing position

of the jumpers on the ground since the airplane coordinate system is in constant motion.

Figure 2. Air and Ground Coordinate Systems

ZsA

Air Coordinates
(Moving)

Ground
Coordinates
(Fixed)

After presenting the preliminary progress on the model to the U.S. Army

Operational Test and Evaluation Command, Babarsky pointed out some errors in Blake's

modeling of vortex separation (Babarsky, 1997). The most notable error is that Blake

uses a constant span (bp) to calculate the induced velocity of the vortices of a given pair

on each other instead of the actual separation between the center of each vortex. Blake

12

agrees that this is a correct assessment of his model and has since changed his code to

reflect this correction (Blake, Personal Interview, 22 JAN 97). This model also

incorporates this change by adding two fields to the vortex representation to track the

actual separation of the vortices.

Lidar Measurement of the Vortex Core

Pulsed solid state coherent lidar equipment has measured aircraft wake vortices

since a joint 1992 FAA and National Aeronautics and Space Administration (NASA)

project (Hannon, 1995). Lidar measurement of wingtip vortices uses a ground based

pulsed laser to measure the velocity of small particles (aerosols) in the air. Lidar is also

used for windshear detection; optical air data sensing; clear air turbulence and gust front

detection; and, wind profiling. The shift in frequency of the pulsed lidar can be

manipulated through statistical analysis to arrive at a maximum likelihood estimator of

vortex position, size, strength, and velocity. It is estimated that the position data is

accurate on the order of 3 meters in height and range. Blake incorporates the lidar flight

test data of the C-17 vortex as one option for vortex generation in his model. Since no

detailed statistical analysis has been performed on this data, it remains one area available

of improvement.

Proposed Methodology

The first step in model development is translating Blake's model into an object-

oriented simulation using MODSIM m. Once running and verified by benchmark

checking against the original results, modifications to the behavior of the vortices can

begin. The two ways to add variation into the simulation of the vortex position are by

13

varying the winds and varying the formation position of trailing aircraft. Therefore, the

model accepts up to three different crosswind velocities, all based on a normal probability

distribution with a user input standard deviation and altitude for change. It also accepts

an integer value for the tolerance within which a trailing aircraft must remain from

planned formation position. These changes refine Blakes's model while allowing for

more analysis to find an acceptable formation spacing.

14

m. METHODOLOGY

Formal Formulation

During operational testing and evaluation of the capability of the C-17 in the

airdrop mission, vortex encounters with the jumpers were discovered. This problem was

addressed by varying the formation spacing both within and between elements through

vortex prediction modeling and flight testing, with the goal to minimize jumper and

vortex encounters. Specifically, within an element there can be no encounters, while

between elements the encounter rate must be kept to a minimum.

Current modeling limitations do not allow for any way to assess the risk of

encounter without extensive flight testing. Although many factors go into the encounter

rate of jumpers with vortices, they can be placed into three distinct groups: airplane

parameters, weather conditions, and formation parameters. The airplane parameters
t

include such things as airspeed, weight, and wing characteristics, while weather

conditions include headwind, crosswind, temperature, and pressure altitude. The final

factor is the formation itself, and is composed of the in-trail and lateral spacing between

aircraft within an element, and the spacing between element leaders. Of these factors,

only the airplane and formation parameters are controllable.

The airplane parameters are limited by aircraft performance and are variable

within a certain range. The normal airspeed for personnel airdrop operations is 130 to

135 knots indicated airspeed (KIAS). The actual speed that the airplane can safely fly is a

factor of weight, altitude, and configuration, but for most conditions 130 knots

approaches the lower limit for safe airdrop operations. Conversely, if the airplane speed

15

is increased to more than 135 knots, then it is the jumpers themselves that become the

limiting factor due to opening shock and parachute integrity. Furthermore, while the

aircraft weight limits are bound by the limits of the airplane itself, the drop zone imposes

even more restrictions. Very rarely would the plane ever be over the drop zone at

maximum weight due to the distance of the drop zone from the point of departure.

Similarly, it would be difficult for the planes to fly close to minimum weight due to fuel

requirements for the return flight.

The most controllable parameter is the formation itself, although this is subject to

some restrictions. The width of the formation is limited by the width of the drop zone

itself. If the formation becomes too wide, then we limit the places we can use airborne

assault to areas of that width or larger. This impacts where airborne operations can be

conducted and takes away some flexibility in choosing a location for the assault. Even if

the drop zone itself is wide enough to handle a wide formation, the dispersion of combat

troops once they hit the ground affects the combat capabilities of the paratroopers.

Limitations on the length of the formation are driven by the time requirements of the

Army for the closure of the airdrop portion of the Strategic Brigade Airdrop mission. The

challenge, then, is to find a formation that minimizes the risk to the jumper from vortex

encounters while not exceeding the width, time, and aircraft limits.

Solution Techniques

One solution technique that is readily apparent is flight testing. However,

experience with flight testing shows this method to be very time consuming and

expensive. Any failure necessitates starting over from the beginning with very little idea

16

of what will happen with each subsequent test. Also, there is little or no control over the

weather conditions with this approach. Consequently, this approach was quickly

abandoned by the test and evaluation community as not feasible.

Blake's model was the first modeling step in the airdrop problem solution. The

model predicts where a vortex will be with a given set of weather and airplane conditions.

The formation parameters are then superimposed on this information to give an analytical

approach to predicting whether or not a vortex encounter is likely. The limitation to this

approach is that there was no varying of wind conditions with time or altitude. Also, the

position of the planes within the formation remain constant.

Because of the limitations of a static prediction model, this problem lends itself

very well to a simulation that incorporates random behavior of the variable elements.

With multiple runs one can test different formation parameters with controlled weather

conditions and aircraft parameters to arrive at a valid prediction interval of jumper vortex

encounter rate. Simulation gives the added benefit of variable behavior of the winds,

airplane position within the formation, and jumper trajectory during the descent, thus

examining a whole range of operating conditions with little or no user intervention in data

collection. These characteristics will then give a broader perspective to the analysis of

the risk faced by the jumpers as they make their descent to the ground.

A simulation also gives the added benefit of possible uses outside of the scope of

the present problem. Once validated, a simulation could be used to predict the encounter

rate of a specific planned mission with the prevailing weather and location conditions

17

expected during that mission. This could aid battle planners in accurately assessing how

many jumpers would be available for combat duties when they hit the ground.

Object-oriented simulation itself allows a building block approach. Once the

objects are modeled and verified, they can be added into the simulation in as large a

number as necessary for the analysis. (The model is capable of running as many as 120

C-17's with 102 jumpers per aircraft.) Another benefit of using a simulation language is

it takes care of the 'bookkeeping' of all the data. For instance, a vortex of length 41,000

feet with six data points at each 100 foot increment: each aircraft having two vortices, and

the position updated every Vi second, the amount of data processed is quite large. Thus,

each airplane requires 4,920 data storage points, updated each Vz second, with over 7,380

calculations for vortex definition alone. By adding the position updates of the airplanes

and jumpers, and the search of all preceding vortices, one begins to see the complexity of

this simulation.

Implementation

This section of the paper describes the airdrop model. The simulation includes

four basic objects: a control object; C17 object; vortex object; and, a paratroop object.

This thesis develops the first three; for more information on the paratroop object see

Belano (1997). Although there was close collaboration with Belano, the following

describes those portions of the program directly related to the first three objects.

The simulation uses MODSM m as its language of implementation. The

MODSIM IE compiler uses C++ as the base language and compiles the modules into a

C++ file, which in turn is linked to the main modules to form an executable file. Once

18

compiled, the executable file prompts a few questions before starting the simulation.

Output is displayed both on screen and saved to individual files, with input file names for

post-simulation analysis. The inputs necessary to start the simulation can be inserted

manually or with a data file. Once all questions are answered, the simulation starts by

creating the control object, which in turn creates the C-17 objects and their associated left

and right vortex objects. The control object keeps track of the formation position and

other information about the C-17 object. The C-17 object passes its position and aircraft

information to the vortex objects, who then update their position taking into account the

current wind information. Once all these objects are created and in place, the formation

begins to fly towards the drop zone. The lead aircraft is initially positioned 300 feet short

of the drop zone so shortly after one second it enters above the drop zone and flies to its

computed air release point. Once over this point, the control object tells the C-17 to

create the jumpers and let them jump. The jumper objects exit the airplane while asking

the C-17 for initial position data, and start calculating their descent towards the ground

updating their position and outputting their exit information to the screen and file. On the

way down they check their position every Vi second against the position of every vortex

generated from every plane in front of the plane they jumped from. If they are inside the

vortex, they output their number, airplane, which vortex from which airplane, altitude,

distance to the center of the vortex, and the simulation time. Jumpers continue jumping

and the planes continue flying until all aircraft in the formation have crossed the drop

zone and all of the jumpers have landed. As the jumpers land they output their landing

information to the screen and scatter file. Once all the jumpers objects land, the

19

Simulation disposes of all objects, then starts over until it completes the number of

repetitions required. All repetitions occur without any required input and without

resetting the random numbers used within the simulation.

Input

The model currently runs either the flight test scenario at Edwards AFB or a

custom formation in an interactive mode through a series of questions. The program goes

through a series of questions so the operator can input the desired parameters (Figure 3).

The first question is the number of airplanes in the formation followed by the number of

Figure 3. Sample Input Screen.

Which Scenario do you want to run?
Enter 1 For Edwards Test
Enter 2 For Custom Formation

2
How many airplanes for this run?
6
How many airplanes per element?
3
How many jumpers exiting each side of the aircraft?
6
All element positions are relative to element lead.
What is the in trail distance for plane 2 ?
Spacing must be input as a real number with decimal point
3000

airplanes within each element (by assumption, all elements have the same spacing

between aircraft). The program then asks for the in-trail and cross-track spacing for each

aircraft in the element. Once the'user enters the element spacing, the program asks for the

desired spacing between element leaders. This is followed by the weight of all aircraft,

20

Figure 3 (cont.). Sample Input Screen.

What is the weight of all aircraft?
385000
What is the airdrop altitude? (ft AGL) (Real number with decimal)
900
What is the airspeed of the formation in knots?
135
What is the Cross Wind Component? (knots)
Input up to three different winds with altitude where wind changes
and standard deviation of the normal distribution for wind variation
(All eight values must be entered. If constant wind, then zeros can be
entered for the last seven values.)
i.e. 5 .5 500 10 1 200 0 .25 would indicate 5 knots with a normal
distribution and a standard deviation of .5 at drop altitude till 500
feet AGL, then 10 knots with a standard deviation of 1 until 200 feet AGL,
then calm to the ground with a standard deviation of .25
0.1000000
What is the Head Wind Component? (knots)
0
What is the air density factor (rho)?
0.002309
ENTER OUTPUT FILENAME (WITH NO SUFFUX EXTENSION) FOR JUMPER INFORMATION
DATA:
Seed332J
ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR ENCOUNTER DATA :
Seed332E
ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR SCATTER DATA :
Seed332S
ENTER AN INTEGER (BETWEEN 1 AND 10) FOR THE RANDOM SEED INPUT FOR JUMPERS
3
PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS:

1 - WRITE INDIVIDUAL PARATROOP TRAJECTORY INFORMATION TO SEPARATE FILES
0 - DO NOT WRITE TRAJECTORY INFORMATION

0

the airdrop altitude above ground, the formation speed, the cross wind and head wind

components, and the air density factor.

The crosswind input allows for three different winds to be in the program

changing with altitude, with eight inputs required for the crosswind. The first number is

the magnitude of the crosswind component in knots at drop altitude. Next is the standard

deviation used for the normal distribution the wind uses to update every Vi second. The

third number is the altitude at which the wind changes. The next three numbers repeat

21

the same questions for winds between the drop altitude winds and the ground winds,

while the last two are the magnitude of the crosswind component and standard deviation

for the ground winds. This information is then passed into the objects. All input coding

is in the input module and was coded jointly with Belano.

CONTROL OBJECT

The control object, named TotalVortexObj, is the first object created and contains

information about each of the other objects. The object itself is a large multidimensional

database, since the main part is an array with a self defined record type that contains

records with various field names. Some of the fields of the record are numeric while

others are objects. The fields within the control object keep track of the position of the

C170bj, LeftVortexObj, and RightVortexObj objects during the simulation.

When the program creates the control object, it creates the C170bj based on the

input number of airplanes. Each C-17 object then creates two vortex objects; one for the

left wing and one for the right wing. In affect, a field within the array contains an object,

which itself contains two other objects that are also arrays.

Each airplane in the formation has a record associated with it in the control object.

The fields of this record include the 3-axis air position; 3-axis ground position; aircraft

speed; aircraft weight; the aircraft itself; the length of the vortex calculation; and, a true-

or-false field indicating if the plane has a full load of jumpers. The number of jumpers is

an input, and by assumption each aircraft object has the same weight, number of jumpers,

and speed. If analysis requires different parameters between aircraft, the program can be

modified to accommodate these requirements.

22

The methods associated with the control object are Objlnit, Positioninformation,

Fly, and greenLight. The Objlnit method calls the Positioninformation method and both

are described at the same time. Since all arrays in MODSIM initialize with values of

zero, the initialization method takes the input data and loads all of the information into

the array before the simulation begins. Each aircraft is placed into its proper formation

position with spacing behind the lead aircraft, and either left, right, or directly in trail

based on the information provided during input. If the user enters a value for the in-trail

or lateral tolerance box the aircraft position is moved to a position within that box using a

uniform random number draw on both the in-trail tolerance and lateral tolerance. For

example, if the box were 500 feet in-trail and 200 feet lateral, then each airplane draws a

different random number from -500 feet to 500 feet and -200 feet to 200 feet. These

numbers are then added to the planned position of the aircraft to put the plane in a

random position within the tolerance box. All airplanes fly at the same airdrop altitude.

The last step of this method asks the C-17 to update the vortex position based on its

position in the formation. (This information is not available at the creation of the vortex;

hence, they are not in the proper position.) After initialization each aircraft in the

formation knows its air and ground position, and the position of the trailing vortices. The

lead aircraft's position is 300 feet short of the computed air release point and aligned

perfectly with the drop zone axis. All other aircraft are positioned relative to the lead

aircraft according to the spacing input by the user.

The Fly method actually moves the formation by changing the position of each

C170bj each Vi second, then asking the C-170bj to update its vortex position. All

23

aircraft position information is contained within the Control Object and passed to the

aircraft when necessary. The Fly method assumes that the lead aircraft remains on the

desired track along the dropzone and only updates the x ground position for lead. The

following aircraft movement is more complicated because they are allowed to move fore

and aft and laterally in relationship to the lead aircraft. Getting the aircraft to move

within the box required the addition of six extra fields within the control object (the next

and plan position for each axis of the air coordinate system). The plan position holds the

information input by the user on formation spacing. If the aircraft stayed in perfect

formation position it would always be in the plan position. The next position holds the

position that the airplane is flying towards. Once it reaches the next position the airplane

check its position against the plan position. If its position does not equal the plan

position the plan becomes the next position, while if it does equal the plan position, the

program draws a new random position within the box using a uniform draw about the

plan position and assigns that value to next. Once the formation starts flying, planes

move back and forth into and out of plan position until the simulation stops. This

movement occurs one foot per time increment simultaneously on the x and y axis.

Provisions for movement in the z axis are in the program but not implemented. If the

plane arrives at the xsplan position before reaching the ysplan position it stays in position

on the x axis until it reaches position on both axes.

The greenLight method asks the C170bj to turn on the green light when the

aircraft hits the computed air release point. This is defined as the x coordinate of the

24

airplane changing from negative to positive and the plane containing a full load. The C-

17 Object contains the actual green light method.

C-17 OBJECT

The 0170b] itself is relatively simple when compared to the control object and

the vortex object. The main purpose of this object is to generate a vortex characteristic of

the wing represented in the object. It contains information about the C-17 wing that is

necessary for the vortex calculations; i.e. wing area, aspect ratio, and wing span. The

control object passes in aircraft weight, speed, and air density as necessary. (This object

could easily be modified to represent the C-141, C-5, or C130 aircraft.) Its methods

include Objlnit, VortexPosition, FlyPosition, and greenLight.

The Objlnit method creates both the left and the right vortex. Since the C-17 does

not know its position information upon creation, the vortices do not know the right

positions or possess the right length on initialization. For this reason, the control object

calls the VortexPosition method during initialization. When the necessary information is

in place, the control object tells the C-17 where it is, while the C-17 tells the vortices

where to start.

This same process occurs within the FlyPosition method when the airplane moves

from its original position since the vortex must move as well. However, once the aircraft

passes a point in space, the vortex it creates is independent of subsequent aircraft

movement and does not follow the aircraft movement.. For this reason the vortex update

methods are different for the VortexPosition and the FlightPosition updates. These

differences are explained in the vortex Update and BackwardUpdate methods

25

The last method in the C170bj is the greenLight method that creates the jumpers.

To cut down on the required number of calculations, the jumpers are not created until

they exit the aircraft. The greenLight method triggers the creation of the jumper objects.

At Vz second intervals jumpers exit the aircraft, while at the same time requesting the

position, speed, and altitude of their aircraft. The exit side of the airplane is recorded

when creating the jumpers, thus allowing the model to know which jumper encounters

which vortex. This method was developed and coded by Belano(1997).

VORTEX OBJECT

Since a real vortex is a continuous turbulent area generated by a passing aircraft, it

is very difficult to implement as an object; therefore, we converted this continuous vortex

into discrete points behind the aircraft. Choosing a step size of 100 feet (on the

recommendation of the Wright Laboratory) each vortex becomes an array of its

characteristics spaced at 100 foot intervals. Each record initially contained an x, y, and z

coordinate, with the vortex strength measured by lidar, age, and radius but was expanded

to include an no wind y position and the aircraft y position at the time of vortex creation.

These additions were added to correct the error pointed out by Babarsky. We define x as

the distance behind the aircraft plus the aircraft's distance behind the lead aircraft, y the

lateral distance from the center of the aircraft plus the aircraft's lateral distance from the

lead aircraft, and z the altitude above the ground.

The vortex strength uses the theoretical vortex strength as calculated from the

Wright Labs, and modified by a factor of 0.8 (Blake, 1996). This factor accounts for the

difference between the theoretical vortex strength and the vortex strength as measured by

26

lidar. Different aircraft have a different modification factor and this factor must be an

aircraft attribute for the vortex to calculate correctly with different aircraft objects. The

vortex age is purely a function of aircraft speed. To calculate the radius, we set a

threshold swirl velocity and use the strength to find the distance from the actual point

where the swirl velocity exceeds that threshold (the threshold is currently set at 20 ft/sec

and is modifiable depending on the type of analysis desired). The strength remains

constant for some time after the aircraft passes and then begins to decay; the current delay

is 60 seconds based on the lidar data. Provisions are in the code for calculating

interactions between vortices using horizontal and vertical velocity components of the

vortices, but is not implemented due to the spacing between aircraft and the small

likelihood that two vortices would actually significantly influence another vortex pair.

This likelihood is small for two reasons. The first is that the influence of one vortex on

another is inversely related to the distance between those vortices and the second is that

one vortex will have its pair influencing the same vortex in the opposite direction at a

similar distance and somewhat canceling the effect of its pair has on the motion..

The methods for the vortex objects, LeftVortexObj and RightVortexObj, are

Objlnit and Update, BackwardUpdate, and writeData. The Objlnit of the vortex again

occurs upon its creation. Since not all information is available at creation, the control

object tells the C170bj to Update as the last step of its Objlnit method, which in turn tells

the vortices to Update. This Update calculates the position of each vortex until a point

42,000 feet behind the generating aircraft. (Non-implemented provisions in the code

allow the vortex calculation to be extended until 20,000 feet behind the last aircraft in the

27

formation. This distance allows time for all jumpers to exit the aircraft and descend to

the ground before the vortex calculations end.) The vortex calculations increment the x

coordinate by a step size of 100 ft for each record. The program calculates the first point,

then uses vortex strength to calculate a vertical and horizontal speed (Figure 4). The right

and left vortex objects differ only in yCord and NDyCord. The difference is the sign of

bp/2.0 is negative for the left vortex.

Figure 4. First Vortex Point Formulae for rightVortex Object

gam := weight/(rho*vf*bp)*gmod;
CompletePosition[l].xCord := 100.0+xs; {100 ft behind aircraft}
CompletePosition[l].yCord := ys+bp/2.0; {Off right wing of aircraft}
CompletePosition[l].zCord := altitude; {Aircraft altitude}
CompletePosition[l].Vage := delx/vf;
CompletePosition[l].Gamd :=gam; {Use gam from above}
CompletePosition[l].radius := CompletePosition[l].Gamd/(2.0*pi*20.0); {Threshold set at

20 ft/sec}
CompletePosition[1 J.NDyCord := ys + bp/2.0; {Keep no drift spacing}
CompletePosition[l].Airy :=ys; {Aircraft position when vortex point

created}

Where
gam = vortex strength
weight = aircraft weight
rho = air density
vf = aircraft velocity (ft/sec)
bp = span of rolled up vortex
CompletePosition[l].xCord = position behind lead aircraft
xs = aircraft air position behind lead aircraft
CompletePosition[l].yCord = position left (positive) or right (negative) of lead aircraft
ys = aircraft air position left or right of lead
CompletePosition[l].zCord = altitude
delx = step size
CompletePosition[l].Vage = age of the vortex
CompIetePosition[l].Gamd = decayed vortex strength
CompletePosition[l].radius = radius of vortex with swirl velocity greater than threshold
CompletePosition[l].NDyCord = no drift position left or right of lead position
CompletePosition[l].Airy = Aircraft position when vortex point created

28

Crosswind speed is updated every Vi second using a normal distribution and the

input standard deviation. The v and z coordinates are then updated based on the position

of the previous point and the calculated velocities (Figure 5).

Figure 5. Subsequent Vortex Points and Velocity Formulae for rightVortex Object.

CompletePosition[i].xCord := xs + (FLOAT(i)*delx);
sD := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy);
CompletePositionfi] Airy := ys;
vd:=(-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i-l].zCord*CompletePosition[i-

l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))));
yd:=((CompletePosition[i-l].Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i-

l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)));
CompIetePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;
CompletePosition[i].^yCord:=CompletePositionfi-l].NDyCord+yd*delt;
IF CompletePositionfi].zCord <= ShearAltl;

IF CompletePosition[i].zCord <= ShearAlt2;
CompletePositionfi].yCord := CompletePositionfi-1] .yCord+vs3*delt+yd*delt;

ELSE
CompletePositionfi].yCord :=CompletePosition[i-l].yCord+vs2*delt+yd*delt;

END IF;
ELSE

CompletePositionfi].yCord := CompletePositionfi-1].yCord+vs 1 *delt+yd*delt;
END IF;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;
CompletePositionfi].Gamd := gam;
ELSE
CompletePosition[i].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0);

Where (all previous variables in Figure 4 the same)
FLOAT(i) = real number conversion of step number
sD = distance of vortex from center of airplane (updated bp)
vd = vertical velocity
yd = horizontal velocity
delt = time change from previous point (function of speed)
ShearAltl = highest altitude for wind shear
ShearAlt2 = lowest altitude for wind shear
vs3 = ground winds up to ShearAlt2
vs2 = winds between ShearAlt2 and ShearAltl"
vsl = winds from ShearAltl to drop altitude

29

This iterative process continues until reaching the last step and the vortex extends

either 42,000 feet (or past the end of the formation).

The BackwardUpdate is slightly different from the Update. The same formulae

used for the calculations are applied with a new first point; and, then from the last point

up to the second point since the aircraft can actually move laterally and vertically after it

passes the point of generation (if the update were to happen from the airplane to the end

the entire vortex would move with the aircraft). The only factor that affects the vortex

over time is the crosswind (up and down drafts also affect the vortex but are not modeled)

and not changes in the aircraft flight path; therefore, once the aircraft generates a point its

path is set except for changes in the wind. However, there must be a continuous path

from each point to the aircraft. For this reason, during a BackwardUpdate, the first point

behind the aircraft is generated exactly the same as before, assuming that any change in

aircraft position in each Vi second interval is small. Then, instead of sequentially

updating from point number two to the end the program, it starts at the end and updates

the last point with the information of the point prior to it. When point number 2 (200 feet

behind the aircraft) updates, it uses the information from the newly created point 1 to

update, thus using the information from the previous time step without saving it.

The last method, writeData, was used for verification and validation of the vortex

object and remains in the code (but is not active). It includes a method to print the

database representing the vortex at any point in time, and its output to the screen contains

each vortex representation sequentially.

30

Output

There are many possible types of output available within this program. Not all of

the output statements are active at this time, but remain in the program with comment

statements. As mentioned previously, the entire vortex representation is a possible output

for verification and validation of the vortex position and characteristics. The air and

ground position of each aircraft can be output at each time step, or at certain intervals.

Most of the remaining output options come from Belano's objects. If necessary for

verification, more output can be specified at any point in the code.

Since there was such close collaboration between Belano and myself, I feel it

necessary to describe the output of two files in more detail; the jumper file and the

encounter file. Although coded by Belano and contained within the paratroop objects, we

both decided what types of output would be useful for further analysis when the output

files were coded. The program creates the jumper and encounter files with the names

provided by the user. The first file contains all of the information about the jumper, while

the second contains information about all encounters. Since the program loops through a

certain number of repetitions, the repetition number is the first entry for each line of

output. Table 3 shows the meaning of the lines of output, while Tables 4 and 5 show the

output from the jumper and encounter files.

Table 3. Field Meaning of Output Files.

1 2 3 4 5 6 7 8 9
Jumper Repetition

Number
Plane

Number
Exit
Time

Jumper
Number

Weight X Ground
Coordinate

Y Ground
Coordinate

Altitude

Encounter Repetition
Number

Jumper
Number

Jumper
Plane

Vortex
Type

Vortex
Plane

Jumper
Altitude

Distance Step
Number

Sim
Time

31

Table 4. Sample Output from Jumper File.

1 2 13.000000 1R 253.743686
1 2 13.000000 1L 242.434541
1 2 13.500001 2R 256.747860
1 2 13.500001 2L 219.935088

14.441750 743.25 900.00
14.441750 724.75 900.00
127.574125 742.25 900.00
127.574125 723.75 900.00

Table 5. Sample Output from Encounter File.

1 1R 4 RV 1 435.493262 19.170270 218. 98.492000

1 1R 4 RV 1 426.637141 15.126430 219. 98.992000

1 1R 4 RV 1 417.780554 13.779084 220. 99.492000

1 6R 4 RV 1 446.278066 19.297184 215. 99.492005

1 1R 4 RV 1 408.923719 16.021869 221. 99.992000

1 3L 4 RV 1 431.680199 21.835205 219. 99.992002

Table 4 shows the information for the first four jumpers to exit during this

simulation. The first field shows that this is the first repetition while the second shows

airplane number two. The first plane does not drop jumpers since we know they won't

encounter a vortex if there are no planes preceding it. If the program is used differently to

test the distance between the equipment and personnel portions of the airdrop, then this

needs to be changed. The next fields show the simulation time at jumper exit from the

aircraft; jumper number; jumper weight; x; v; and, z coordinates. The R and L indicate

the side of the airplane the jumper exited from. The different v coordinates show that the

jumpers are 18.5 feet apart when they exit the aircraft.

Table 5 shows the information output for an encounter. Recalling that an

encounter occurs when a jumper falls with the radius of a vortex, where that radius is

defined as the distance from the center to where the swirl velocity is 20 ft/sec. The first

fields in this output are identification of the jumper and vortex; it is from repetition

number one and shows an encounter of 3 jumpers from airplane 4 with the right vortex

from airplane 1. The multiple entries for jumper 1R, show this object first entered the

32

right vortex of plane number 1 at an altitude of 435 feet and a distance from the center of

19 feet. At the next Vi second update, jumper number 1R is still in the vortex but is at a

lower altitude and closer to the center. This continues at each half second interval ~ as

long as the jumper is within the radius of a vortex, it will generate a line of output.

The step value shows how far behind the generating aircraft the jumper

encounters the vortex. Since the step size is 100 feet per step, a step of 218 on the first

line indicates that jumper 1R hit the right vortex from plane number 1 at a distance of

21,800 feet. Note that simply counting the lines of output in the encounter file won't give

an accurate count of the actual encounters; e.g., the sample shows six lines of output but

only three encounters; 1R, 6R, and 3L.

Verification And Validation

Verification and validation should be accomplished in every phase of model

development. The Wright Labs model used as a basis for the vortex representation was

also used as a benchmark for validation of the vortex. A test run for a single ship and

three ship formation provided the same vortex arrays as the Wright Labs model. With no

movement of the airplane except along the axis of the drop zone, the vortex of this model

matched the vortex calculated by the Wright Labs model. There are also numerous points

within the code where key variables were checked for proper operation of the code. The

formation position of each aircraft in both the ground and air coordinate systems were

checked with a three ship formation at each time step. With a formation velocity of 135

knots (228 ft/sec), the aircraft moves about 114 feet every step, and maintains proper

position. The correct number of jumpers were created and exited the aircraft when the

33

ground coordinate of that aircraft was first greater than zero, and all jumpers had the same

position upon creation as the airplane at the same time step.

One area that created a problem was the second jumper from the second airplane

was inheriting the same position as the third jumper. This occurred because the jumpers

were added to the pending list before the aircraft position update. Although both events

occur at the same simulation time they need to be accomplished in sequential order. We

solved this problem by making the exit time between jumpers 0.500001 seconds instead

of .5 seconds, thus as long as the limit remains 102 jumpers per C-17, this extra time

should have a negligent impact on simulation performance.

Two major areas of validation completed on the model were based on flight test

data from Edwards AFB ("Summary ...", 1996) and Fort Bragg ("Right ...", 1996)

supplied by the C-17 SPO. The Edwards flight test was conducted with two airplanes

flying directly in trail with 15,000 feet spacing while the Bragg test involved six aircraft

in formation using the approved element geometry.

The Edwards flight test involving two aircraft directly in trail was flown to

establish an upper bound on the risk of encounter. All flights were directed into the wind

to minimize any crosswind affects. With 15,000 feet spacing between the two aircraft

and the second following as close to directly in trail as possible, 12 mannequins were

released from plane number two and scored visually to count the number of visible vortex

Table 6. Screening Test for Encounter Rate of Edwards Flight Test Data.

Lateral Box Standard Deviation ' Rate Lateral Box Standard Deviation Rate
50
35
40

41.7%
0%
25%

30
40

.5

.5
0%

33.3%

34

encounters. This distance was chosen because it was the distance where the predicted

vortex strength of the C-17 equals the vortex strength of the C-141 at 6,000 feet. The C-

141 also flew this same test at 6,000 feet separation to establish an upper bound on its

encounter rate.

We use the data collected from the Edwards test as a benchmark of our model

performance. Flight testing showed an encounter rate of 16.25%±8.71 (95% Confidence

Level) for the Edwards test. To calibrate our model we tried to get an encounter rate

close to the actual by varying the standard deviation of the wind distribution and the

formation tolerance position. Starting with one repetition screening experiments to see the

effects of changing the tolerance box, the wind was varied to obtain an encounter rate

similar to the test data (Table 6).

35

A standard deviation of .1 knot with a tolerance box of ±50 feet in-trail and ±40

feet laterally gives the desired results. These parameters were then entered into the

program for fifty repetitions (Table 7) using random number seed 3 to see if the same

percentage would result. The difference in aircraft altitude is due to the unavailability of

Table 7. Edwards Validation Test Input. (Jun 96)
Actual Simulation

Type of formation Custom 2 (Custom)
Number of Planes 2 2
Planes Per Element I tHpMtPI
Jumpers Per Side 6 IRMNSffl
Element Leader Spacing 15,000 15,000
In-Trail Tolerance 9 50
Lateral Tolerance ? 40
Aircraft Weight 7 385000
Drop Altitude 1100 900
Airspeed 135 135
Crosswind at Altitude 0 H^l^^
Standard Deviation (1) 7 IpMMit
Shear Altitude (i) ? ^^P^S
Crosswind (Middle) 7 IIHJMH
Standard Deviation (2) 7 ■HMW
Shear Altitude (2) 7 ■HBHUHJ
Crosswind (Ground) 7 MBWPI
Standard Deviation (3) 7 IIINHI
Headwind 7 ■RHpHI
Air Density 0.00197 0.002000
Jumper Output File EdwardJ
Encounter Output File EdwardE
Scatter Output File • EdwardS
Random Seed IBBPP^
Individual Trajectories 0 JHHPNK

the actual report until after simulation data was collected. A large variance in the

encounter rate occurs, with some repetitions giving an encounter rate of 58% while others

produce 0%. Results were promising because the model provided an estimated encounter

rate of 13.5±5% (95%), which includes the rate for flight test results. A statistical test for

36

equal means showed that there was no statistical difference between the two rates to the

95% confidence level.

The next area of validation was to simulate a series of flights from the flight

Table 8. Actual and Input Data for Bragg Test (16Aug 96)

Input Data Actual Ten 50
(Average of Repetitions Kppvtitiujis

MnTBtrnS-'ifl^! '. fX2r-:

Type of formation 2 (Custom) 1 2 (Custom) 2 (Custom)
Number of Planes 6 6 6
Planes Per Element 3 3 3
Jumpers Per Side 6 (2nd

Element
Only)

6 6

1

#2 In-Trail Spacing 3000 3000 3000
#2 Lateral Spacing 600 600 600
#3 In-Trail Spacing 6000 6000 6000
#3 Lateral Spacing -900 -900 -900
Element Leader Spacing 27,000 27,000 27,000
In-Trail Tolerance 500 500 500
Lateral Tolerance 200 200 200
Aircraft Weight •: • 382,396 383000 383000
Drop Altitude ■ 900 900 900
Airspee4.cy-:^j<-^. •.. --.• 134.33 , : 134 ■... 134
Crosswindat Altitude' ••"" -3.1068 -3.1068 -3.1068
Standard Deviation (1) % ? ■MB .5
Shearj^titude(l) ,. .-..." 9 ...600 600
Crosswind (Middle)"-v ''• 7 -2.505 -2.505
Standard Deviation.'(2) 7 HHMR .5
Shear Altitude (2) > 7 300 300
Crosswind (Ground)'- • -2.369 -2369 -2.369
Standard Deviation (3) • 7 HHNH .5
Headwind |£'^iV.-.. .• ■ 3.4835 .3.4835- 3.4835
Air DensitjSüh " • ■■*.'■■'•••■■ • 0.002309 0.002309 0.002309
Tumpiär Output File/ ; 4 ADG16J AUG16J#
Encounter Output File AUG16E AUG16E#
Scatter Output File ; AUG16S AUG16S#
Random Seeds 3 5,9
[ndiyidüal Trajectories | HHHHH 0

testing at Fort Bragg. Flight tests on 16 August comprised of a 6 ship test with 12

jumpers each from airplanes 4, 5, and 6 were selected for this purpose. This test used the

standard element spacing of 3,000 feet in-trail and 600 feet right for plane number two,

37

and 6,000 feet in-trail and 900 feet left for plane number three. Spacing between element

leaders was 27,000 feet. The tolerance box was ±500 feet in-trail and ±200 feet laterally.

Since two passes were conducted on this day, the average of the data for the two passes is

taken as the input for the program (Table 8). Using 10 runs initially yields results that

while close to the actual rate gives an interval judged too wide. In order to reduce this

interval two additional runs were run using different random number seeds for 50

repetitions each, thus yielding a total sample size of 110 runs. When comparing the

results of the simulation to the flight test they initially looked very good. Statistical tests

for equal population means show that when the data is grouped by three airplanes,

airplane 4 and 6, airplane 4 alone, and airplane five alone that the means are all

statictically equal. There is a problem when airplane 6 is taken alone. Since the

simulation showed no encounters for jumpers from airplane six its mean and variance is

zero. When comparing it to the three encounters experienced by flight testing it fails the

equal means test. I am encouraged by the fact that the rate for airplane 4 was statistically

equal. Due to the large variance I think that to be absolutely sure of the accuracy of our

simulation response we need a very large sample. This problem does not mean that the

model is invalid but I do feel that it warrants further validation. One possible problem is

the interpretation of wind within the model. The wind shift could have occured higher or

lower than the 600 and 300 feet that I input. This data is not readily available to test

where the wind shifts really occurred and what effects they will have on encounter rate.

38

VI. Results

ANALYSIS

My analysis focuses on varying the spacing between element leaders from 9,000

feet in trail to 40,000 feet, and measuring the encounter rate as the response. With the

current element geometry, 9000 feet is the closest the second element should ever be to

the preceding element (3000 ft between aircraft). It would be preferable for the

experimental design to start at 8000 feet, but operational limits preclude using that

distance. The current flight testing uses a spacing of 40,000 feet as the element spacing.

With the lidar data showing the longest recorded vortex having a life of 3 minutes, this

distance should result in zero encounters. (Interestingly, this spacing translates roughly

into the 6 mile separation prescribed by the FAA for small aircraft trailing large aircraft.)

Five design points and three random seeds give the necessary data to derive a formula for

predicting an encounter rate (Table 9). This was later expanded to include three runs at

34,000 feet while eliminating the data collected at 40,000 feet. It was felt that the runs at

40,000 feet established an artificial zero because it was not possible for any jumpers to

encounter a vortex at this distance, while at 34,000 feet it is still theoretically possible to

hit a vortex.

Table 9. Distances and Random Seeds used for analysis

ELEMENT SPACING 9,000 16,000 24,000 | 32,000 | 34,000 I 40,000 II
Random Seeds (All Distances) 3 6 7 II

Each design point and random seed combination consists of 50 repetitions, with 6

aircraft having 12 jumpers per aircraft. Blocking on the random seed provides three point

39

estimates at each design point to derive a regression line predicting an encounter rate.

Since preliminary results indicated a large variation on the encounter rate, it was

necessary to use a large number of repetitions to get an accurate estimate of the response.

Using the current flight-tested element geometry as a basis, with three aircraft per

element and 3000 feet in-trail spacing between aircraft, the second aircraft is 3,000 feet

behind and 600 feet to the right of the lead, while the third is 6,000 feet behind and 900

feet to the left. This positioning is used for wind conditions up to 3 degrees of drift.

Table 10. Input Data for Simulation Runs with 50 Replications at Each Point.

Input Data
Type of formation

Number of Planes
Planes Per Element
Jumpers Per Side
#2 In-Trail Spacing
#2 Lateral Spacing
#3 In- Trail Spacing
"? Lateral Spacing
Element Leader Spacing
In-Trail Tolerance
Lateral Tolerance
Aircraft Weight
Drop Altitude
Airspeed
Crosswind at Altitude
Standard Deviation (1)
Shear Altitude (I)
Crosswind (Middle)
Standard Deviation (2)
Shear Altitude (2) '.
Crosswind (Ground)
Standard Deviation (3)
Headwind
Air Density
Jumper Output File
(# = 3,6,7) .
Encounter Output File
(# = 3,6,7). -.•■'.'
Scatter Output File
(# = 3,6,7)r.; ••>/'.'
Random Seeds
Individual Trajectories

9000 Ft 16000 Ft 24000 Ft 32000 Ft 34000 Ft 40000 Ft
2

(Custom)
6
3
6

3000
600
6000
-900
9000
500
200

385000
900
135
0
.1
0
0
0
0
0
0
0

0.002309
Seed#9J

Seed#9E

Seed#9S

3,6,7
0

2 (Custom) 2 (Custom)

^tf^^l 6
MpPlll 3
tPljIp 6

3000 3000
600 600

6000 6000
-900 -900

16000 24000
500 500
200 200

385000 385000
900 900
135

MHMI
«■HM
■HHI
IBflHI
lHp|hji
IMMMkf

0.002309
Seed#16J

Seed#16E

Seed#16S

3,6,7
0

135
0
.1
0
0
0
0
0
0
0

0.002309
Seed#24J

Seed#24E

Seed#24S

3,6,7
0

2 (Custom)

Iplillli
VHHH

3000
600

6000
-900

32000
500
200

385000
900
135

■IMP

■Mpli
(■BBS iiiilpli
0.002309
Seed#32J

2 (Custom) I 2 (Custom)

6
3
6

3000
600
6000
-900
32000
500
200

385000
900
135
0
.0
0
0
0
0
0
0
0

0.002309
Seed#34J

Seed#32E Seed#34E

!Seed#32S

3,6,7
0

Seed#34S

3,6,7
0

6

3000
600

6000
-900

40000
500
200

385000
900
135

BpM|

HuHM

mifilii
0.002309
Seed#40J

Seed#40E

Seed#40S

3,6,7
0

40

With more than 3 degrees of drift the three airplanes fly with the same in-trail spacing,

but aircraft two and three both fly upwind from the lead aircraft. This places number two

600 feet upwind, while number three flies 1500 feet upwind. This geometry was not

tested in the simulation.

The simulation analysis uses a light and variable wind condition with the mean

crosswind being zero, and the wind following a normal distribution with a standard

deviation of 0.1 knot. Jumpers from aircraft two and three are analyzed separately from

the jumpers from aircraft four, five, and six. Since no encounters between jumpers and

vortices from the same element are acceptable, there should be no encounters from

aircraft within the same element. I also expect the encounter rate to decrease as spacing

increases, and am interested in the order of that decrease. Table 10 shows the input data

used for the simulations to obtain the 15 point estimates (Table 11). Subsequent review

Table 11. Results of Simulation Runs, Blocked by Seed.

Seed Distance Coded Mean 95 % Confidence
Number Spacing Interval

3 9,000 -.9375 40.67 % 6.93 %
6 9,000 -.9375 42.94 % 6.97 %
7 9,000 -.9375 36.72 % 6.86 %
3 16,000 -.5 18.33% 4.53 %
6 16,000 -.5 19.56 % 4.63 %
7 16,000 -.5 18.44 % 4.93 %
3 24,000 0 13.72 % 3.33 %
6 24,000 0 10.89 % 3.00%
7 24,000 0 10.83 % 2.98 %
3 32,000 .5 12.06 % 2.57 %
6 32,000 .5 10.56 % 2.68 %
7 . 32,000 .5 8.94 % 2.18 %
3 34,000 .625 0.33% 0.31%
6 34,000 * .625 0.83% 0.49%
7 34,000 .625 0.00% 0.00%
3 40,000 1 0.00% 0.00 %
6 40,000 1 0.00% 0.00%
7 40,000 1 0.00% 0.00%

41

of the analysis, suggests that the data collected at 40,000 feet artificially constrains the

encounter rate to 0% and it should not be used in the regression calculations. The 34,000

feet spacing was added at this time and the regression reaccomplished with the 15 points

including 34,000 feet and excluding 40,000 feet.

Since the encounter file has a one line entry for every Vz second that a jumper is in

the vortex, much of the data is redundant for calculating the encounter rate but necessary

for further analysis. I import each file into Microsoft Access and used the duplicate query

wizard to reduce the data to number of encounters per airplane. (This analysis tool helps

me identify which jumpers encountered a vortex and for how many time steps the

Table 12. First Order Linear Regression Results, Coded Spacing vs. Encounter Rate.
Linear Fit

Encounter Rate = 15.0226 - 20.7943 Coded Spacing
Summary of Fit

RSquare 0.84997
RSquare Adj 0.838429
Root Mean Square Error 5.551883
Mean of Response 16.32222
Observations (or Sum Wgts) 15

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob>F
Model
Error

C Total

1
13
14

2270.1180
400.7043
2670.8223

2270.12 73.6492
30.82

<.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>lt

1
Intercept

Coded Spacing
15.022577
-20.79431

1.441467
2.423041

10.42 <.0001
-8.58 <.0001

encounter occurred). I then link-that data into a Microsoft Excel spreadsheet and add the

appropriate number of planes having zero encounters before finding the point estimates

42

for encounters rates (Table 11). The range of encounters for any airplane varied from

100% to 0% at both 9,000 and 16,000 feet spacing but dropped off at 32,000 feet to a

maximum of 50% and ranging to 0%.

These 15 points (including 34,000, excluding 40,000 feet) provide the data set

necessary to fit a line describing the encounter rate as a function of element spacing. The

first try at regression was a simple first order least squares linear regression. I use the

Figure 6. First Order Linear Regression with Confidence Interval and Residuals

■
40-

- ■ ^v

30-
Encounter
Rate

20- l\

^VWV x

10- >v«

o- \Y\> ■

' 1 1 ' 1 *' ■1
-1.0 -0.5 .0 .5

Coded Spacing

10-

5-

Residuals

0

-5

1.0

-1.0 -0.5 T .0 .5
Coded Spacing

1.0

43

JMP statistical software package and Microsoft Excel to assist the calculation of the

regression parameters (Table 12). Since the actual numbers for the spacing are so large I

coded the variables between -1 and 1 for 8,000 feet and 40,000 feet respectively. (I chose

8,000 feet as the lower end to have equally spaced intervals.)

Figure 6 shows the plot of the line with confidence interval and the residuals.

Although the R Squared and Adjusted R Squared are fairly high (Table 12), the residuals

indicate a clear non-linearity in the data. This indicates that a higher order function is

necessary to better define the relationship between element spacing and encounter rate.

Next I use a second-order model to find a curve that would best fit the data points

(Table 13 and Figure 7). R-Square and Adjusted R-Square both improve, but the

Table 13. Second Order Linear Regression Results, Coded Spacing vs. Encounter
Rate.

Polynomial Fit degree=2

Encounter Rate = 10.3955 - 17.1144 Coded Spacing + 13.7241 Coded SpacingA2

Summary of Fit
RSquare 0.913015
RSquare Adj 0.898518
Root Mean Square Error 4.400014
Mean of Response 16.32222
Observations (or Sum Wgts) 15

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F
Model
Error
C Total

2
12
14

2438.5008
232.3214
2670.8223

1219.25 62.9774
19.36

<.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prot»ltl
Intercept
Coded Spacing
Coded SpacingA2

10.395537
-17.11439
13.724073

1.940792 5.36 0.0002
2.290117 -7.47 <.0001
4.653589 2.95 0.0122

44

residuals still suggest a higher order relationship between Coded spacing and Encounter

rate.

Thus, the next model is a full, third-order model (Table 14 and Figures 8 and 9). Once

again R-Square and Adjusted R-Square improve and the curve seems to fit the data points

almost exactly. This time, however, the residuals appear to be randomly dispersed; the

only noticeable problem being the significance of the first and second order terms. The

Figure 7. Second Order Regression with Confidence Interval and Residuals.

40- ■

-0.5 .0 .5

Coded Spacing

6-

2"

■

■
■

■

■

Residuals ~

-2- ■
■
■ ■ ■ ■

-U 1

-1.0
1

-0.5

1 1 '
.0

I

.5
1

1.0

Coded Spacing

45

Table 14. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate.

Polynomial Fit degree=3
Encounter Rate = 13.6927 - 1.23977 Coded Spacing - 4.53751 Coded SpacingA2 - 35.854 Coded SpacingA3

Summary of Fit
RSquare 0.967746
RSquare Adj 0.95895
Root Mean Square Error 2.798434
Mean of Response 16.32222
Observations (or Sum Wgts) 15

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob>F
Model
Error
C Total

3
11
14

2584.6787
86.1436
2670.8223

861.560 110.0158
7.831

<.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>ltl
Intercept
Coded Spacing
Coded SpacingA2
Coded SpacingA3

13.692721
-1.239774
-4.537511
-35.85395

1.451224 9.44
3.952485 -0.31
5.160021 -0.88
8.298726 -4.32

<.0001
0.7596
0.3980
0.0012

regression model should be accomplished again with a reduced model excluding the first

and second order terms (Coded Spacing and Coded Spacing2).

The results of the reduced third order model initially look very promising (Table

15 and Figure 10). Dropping the insignificant first and second order terms has very little

effect on the total model, and explains over 96% of the variation in the data. Comparing

the four regression models, the reduced third order model is the best. But, its curve

suffers from lack of fit and a discernible pattern in the residuals, with all of the factors

significant. Further experimentation is necessary to determine the true nature of the

curve. I suggest this be done in conjunction with an experiment including the effects of

crosswinds as well.

46

Figure 9. Full Third Order Residuals

4-
■

■

2-
iduals-

■
■

■
I

o-
—

-2-
■

■ ■

-4 I 1 ' 1 ' 1 1
-1.0 -0.5 .0 .5

Coded Spacing
1.0

With any regression model, prediction outside the range of the data can be

dangerous - this caveat is particularly true in this instance. Obviously, any prediction

outside the range of 0% to 100% is invalid since our response is the encounter rate. Since

I used 9,000 and 40,000 feet (later modified to 34,000 feet) when setting up the

experiment, prediction outside of this range should not be necessary. Only a fundamental

Figure 8. Full Third Order Regression Line with Confidence Interval.

40-

30-
Encounter
Rate

20- \\i\

10-
*S***^ ^S. \ ■

o-

-1.

\ ■

I
0 -0.5

i | i | *

.0 .5
' 1

1.0
Coded Spacing

47

change in element spacing, or new data on the life span of a vortex, will change the area

of interest. Therefore, the reduced third order model should be sufficient in representing

the risk function with the given input parameters but only within the 9,000 to 40,000 feet

spacing.

48

Table 15. Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate.

Term
Intercept
Coded SpA3

Response: Encounter Rate
Summary of Fit

RSquare 0.961561
RSquare Adj 0.958605
Root Mean Square Error 2.810184
Mean of Response 16.32222
Observations (or Sum Wgts) 15

Lack of Fit
Source DF Sum of Squares Mean Square F Ratio Prot»F
Lack of Fit
Pure Error
Total Error

3
10
13

71.27592
31.38685
102.66278

23.7586
3.1387

7.5696 0.0062

MaxRSq 0.9882

Parameter Estimates
Estimate Std Error t Ratio Prot»ltl
12.274168
-34.907

0.759516
1.935693

16.16
-18.03

<.0001
<.0001

Since the response is a rate defined by a binary variable (either the jumper

encounters the vortex or not) logistic regression could be a better choice for predicting the

response. Logistic regression limits the response between 0 and 1 using the function

shown in equation 3. Using JMP to assist in the regression calculations yields the results

in Table 16 and Figure 11.

Equation 3. General Logistic Response Function.
Sm^l + expC-ß-AX)]-1

49

Figure 10. Reduced Third Order Curve with Confidence Interval and Residuals.

45"

5-

-5
-1 -0.5

Coded Spacing

4 - ■

3 - ■

2 -
lesiduals ■ 1

1 - m

0 —

.
-1 -

■

-2 -

-3 - -

-4 -
■

"

1 1 1 •
-1 -0.5 0

Coded Spacing

.5 1

50

While the Chi Square test statistic looks acceptable for the model as a

whole, there does seem to be a lack of fit. To accept the null hypothesis that the model

fits the data would require a smaller Chi Square value to raise the probability above the

.05 level. Adding higher order terms (up to fourth-order) into the model to get a better fit

Table 16. Logistic Regression Results, Encounter Rate vs. Coded Spacing
Response: Response

Iteration History
LogLikelihood Step Delta-Criterion Obj-Criterion
-12014.31529 Initial 1.52249241 1.4963e304
-10606.75979 Newton 0.28578082
-10475.98057 Newton 0.0370223
-10474.53191 Newton 0.00077349
-10474.53126 Newton 0.00000037

Iter
1
2
3
4
5

0.1327035
0.01248371

0.0001383
0.00000006

Converged by Gradient
Whole-Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference
Full
Reduced

1539.784
10474.531
12014.315

1 3079.568 0.0000

RSquare(U) 0.1282
Observations (or Sum Wgts) 27000

Lack of Fit
Source DF -LogLikelihood ChiSquare Prob>ChiSq
Lack of Fit
Pure Error
Total Error

3
26995
26998

314.673
10159.859
10474.531

629.3451 <.0001

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>ChiSq
Intercept
Coded Spacing

-2.0531783
-1.6609887

0.0224769 8344.1
0.0330304 2528.8

0.0000
0.0000

did not produce a better fit.

Even though the logistic regression model is not problem free, it may provide

some useful information. Since there are only five design points in the model, the

degrees of freedom for the Chi Square test for lack of fit require that the test statistic be

51

Figure 11. Logistic Regression Prediction Curve.

1 -

0.75 "

Encounter
\ ■

Rate

0.5-

\ ■
■

«■
1

0.25 -
■ \

o-

■

-
■ M""^

0

I I I I I I I I
-3. 5 -2.5 -1.5 -1.0

Coded Spacing

.0 .5 1.0

very small. To test to the 95% level with three degrees of freedom requires the test

statistic to be below 7.81. Running the model at more points would increase the degrees

of freedom, thus raising the critical value. This may allow future analysis to fit a better

curve using logistic regression. Next, I compare the reduced third order and logistic

regression models for their use as prediction models.

The main uses of the models are to determine the point where the encounter rate

begins to rise sharply and to quantify the risk to the jumpers at a given element spacing.

Either of the two models can be used for this purpose. By visual inspection the reduced

third order model rises sharply from almost 0% at 34,000 to 10% at 28,000. It then stays

fairly flat, rising slowly until 20,000 feet, then rising sharply to a high of 40% at 9,000

feet.

52

The logistic regression curve doesn't have the flat spot in the center like the third

order model. It rises slowly from 2% at 40,000 feet to 10% at 24,000 feet, then increases

up to 40% and 9,000 feet. Table 17 shows a comparison of predicted responses using the

two models at various element intervals, while Figure 12 is a plot of Table 17. Note the

larger interval on the third order encounter rate compared to the logistic prediction. The

logistic regression curves actually cross and all three are equal at 24,000 feet.

Another interesting find was the discovery and correction of a bug during data

collection at 32,000 feet element spacing. At this spacing some of the jumpers were

encountering the vortex at the very end of its simulated life. It would be in the vortex at

one time step and the next it would be within 100 feet of the end. Belano (1997)

describes the search algorithm in more detail, but the way it was implemented compared

the jumper x position with the vortex x position, and when they were within 100 feet the v

and z position were checked. If all three axes were within 100 feet then the method asked

for the next vortex point and drew a line between the two points to take the normal

distance. If that distance was less then the largest value of the radius at the two points

then an encounter occurred. When the jumper was within 100 feet of the end of the

vortex, the program crashed when the array asked for a value of the vortex that was out of

bounds. This problem was easily corrected, but did shed some insight into the distance at

which the jumpers were encountering vortices. Since this was a no wind scenario, the

distance between airplanes was essentially the element spacing. At 32,000 feet,

encounters were occurring at the end of the vortex life span. Lidar data showed some

vortices dissipated sooner than others, which is not modeled due to the data collection

53

occurring simultaneously with model creation. If this data were incorporated in the next

version of the model, I feel the encounter rate between 24,000 to 32,000 feet would

decrease in the simulation. The model predicts the worse case scenario in this spacing

range, since every vortex lasts as long as the longest recorded vortex. Analysis of the

lidar data for some distribution of vortex life, and implementation of that distribution

within the model, should improve the predictive capabilities in the 24,000 to 40,000 feet

range. This may make the logistic regression curve fit better and solve some of the lack

of fit problems.

54

Table 17. Predicted Encounter Rate for Third Order and Logistic Models

Third Order Encounter Rate Logistic Encounter Rate

Spacing Coded Spacing Point Lower Upper Point Lower Upper

16000 -0.5 16.64 15.52 17.76 22.75 23.41 22.27
16800 -0.45 15.46 14.20 16.71 21.32 21.89 20.91
17600 -0.4 14.51 13.14 15.88 19.96 20.44 19.61
18400 -0.35 13.77 12.31 15.23 18.67 19.07 18.38
19200 -0.3 13.22 11.69 14.74 17.44 17.76 17.20

20000 -0.25 12.82 11.24 14.40 16.27 16.53 16.09
20800 -0.2 12.55 10.95 14.16 15.17 15.37 15.03
21600 -0.15 12.39 10.77 14.02 14.14 14.27 14.04
22400 -0.1 12.31 10.67 13.95 13.16 13.24 13.10
23200 -0.05 12.28 10.64 13.92 12.24 12.28 12.21
24000 0 12.27 10.63 13.92 11.37 11.37 11.37
24800 0.05 12.27 10.63 13.91 10.56 10.53 10.59
25600 0.1 12.24 10.59 13.88 9.80 9.74 9.85
26400 0.15 12.16 10.50 13.81 9.09 9.00 9.16
27200 0.2 11.99 10.32 13.67 8.43 8.32 8.51
28000 0.25 11.73 10.02 13.43 7.81 7.68 7.91
28800 0.3 11.33 9.58 13.09 7.23 7.08 7.34
29600 0.35 10.78 8.96 12.60 6.69 6.53 6.82

30400 0.4 10.04 8.13 11.95 6.19 6.02 6.32
31200 0.45 9.09 7.07 11.12 5.73 5.55 5.86
32000 0.5 7.91 5.75 10.07 5.30 5.11 5.44
32800 0.55 6.47 4.13 8.80 4.90 4.71 5.04
33600 0.6 4.73 2.19 7.28 4.52 4.33 4.67
34400 0.65 2.69 -.10 5.48 4.18 3.99 4.32
35200 0.7 0.30 -2.77 3.38 3.86 3.67 4.00
36000 0.75 -2.45 -5.86 0.95 3.56 3.37 3.70
36800 0.8 -5.60 -9.38 -1.82 3.29 3.10 3.43
37600 0.85 -9.16 -13.37 . -4.95 3.03 2.85 3.17
38400 0.9 -13.17 -17.86 -8.48 2.80 2.62 2.93
39200 0.95 -17.65 -22.88 -12.43 2.58 2.41 2.71
40000 1 -22.63 -28.46. -16.81 2.38 2.21 2.51

55

Figure 12. Third Order and Logistic Prediction Curves.

25

Third Order and Logistic Prediction Curves

Encounter Rate

-3rd Order Point

-Logistic Point

161100

-10--

20000

-15

-20--

-25

24000

Element Spacing

40! >00

56

V. Conclusions

Summary of Results

Of the regression models analyzed, the reduced third order seems the best model

even with the problems noted (Table 18). However this model suffers from the fact that

the data is better suited to a logistic regression since the response is of the form of a rate

between 0% and 100%. Logistic regression limits the response function between these

values. However the fit with the logistic regression does not seem to be as good as with

Table 18. Comparison of Regression Models.

Model Effects R Square Adjusted R Square Reason for
Rejection

First Order Coded Spacing .8500 .8384 Residuals

Second Order" Coded Spacing
Coded SpacingA2

.9130 .8985 Residuals

Full Third Order Coded Spacing
Coded SpacingA2
Coded SpacingA3

.9677 .9659 First Order Effect
Second Order Effect

Insignificant
Reduced Third Coded SpacingA2 .9616 .9586 Lack of Fit

Order Coded SpacingA3
Logistic Regression Coded Spacing .1282 Lack of Fit

least squares regression. Comparing both methods shows that the logistic model may

under estimate encounter rate at some intervals and over estimate in others. We have no

empirical data for validation of which regression model is the most correct. Both models

have strengths and weaknesses associated with them. The third order model has a large

prediction interval associated with any prediction of the encounter rate at any spacing

while the logistic model tends to both over and under estimate the rate in certain spacing

intervals.

I recommend that both models be presented as possible representations of the

encounter rate in this type of an experiment. Only continued collection of flight test data

57

will give the information necessary to choose which model better represents reality.

Although any model will have flaws, either of these models can be used. The important

factor in choosing which model to use is how much risk are we willing to take with live

jumpers. One possibility for better prediction would be another experiment collecting

more data points at the same, intervals with different random number seeds. This would

increase the degrees of freedom and may drive down the lack of fit statistic into an

acceptable range. Without further experimentation, I cannot confidently recommend

either model; but, if I had to choose I would take the reduced third order model.

Model Improvements

While this model appears useful, it is by no means perfect; there are a few areas

where the model can be improved upon with further research. Two major areas are the

wind behavior and formation positioning within the tolerance box. It could also be easily

expanded to include other aircraft and equipment drops. Further analysis of vortex

characteristics could also improve our representation of a vortex, as well as a test of the

assumption that aircraft spacing makes the influence by any vortex pair upon another

insignificant compared to its own induced motion.

Since the decision to vary the winds was not implemented at the last minute, there

was not a lot of time for research into the type of distribution that the winds follow. The

model uses the normal distribution with a user input standard deviation. Coffin (1997)

suggests some sources for further research into modeling changing winds, but also

concludes that for the purposes öf this model the normal distribution is sufficient. (Other

possible distribution types include gamma, weibull, and Log-normal.) I feel this could be

58

an area of model improvement if one could test the sensitivity of the encounter rate to the

type of wind distribution used. I suspect the wind has a significant impact on vortex

position, but do not know how a different representation of the winds will affect the

overall model performance.

Another area of improvement is in the fly method and how the aircraft fly in

relation to the lead ship. I know from personal experience that an airdrop run-in can be

quite busy, and my experience is with a six man crew of the C-141 not the three man

crew of the C-17. If there were some way to collect data on actual formation position of

the aircraft, the fly method of always moving from in position to a random point out and

back again could be improved upon. I realize that the method induces a lot of movement

that is probably not evident during actual flight conditions. Once over the dropzone,

baring unsafe flight conditions, the primary concern is maintaining a stable jump

platform, not correcting formation position. After the jumpers are clear, the pilot would

again worry about his position within the formation. This is all personal pilot technique,

but with the proper data one could analyze the time spent in position, the magnitude of

error before pilot recognition, the rate of correction after recognition, and the time spent

out of position. Intuitively, jumper encounter rate seems to be highly sensitive to relative

position of the vortex and airplane. This was also evident in the model. If the fly method

induces more aircraft movement than is actually there, the response could have a built in

bias.

Another area of research is the expansion of the model to include different

airplanes and equipment drops. The C-170bj is easily modifiable to take on the

59

characteristics of another airplane. One could copy the definition and implementation of

the C-170bj, change the wing characteristics and the control object, and easily have C-

141, C-130, and C-5 objects in the model. One definite change would be in the strength

decay equations. The strength now stays constant for 60 seconds before starting to decay.

The other airplanes have a different characteristic value before the strength begins to

decay. If this value were made an attribute of the airplane, it could be passed into the

vortex object upon update; thus the vortex objects would have the same code but generate

different vortices for each aircraft type. If the rate at which they decay is different for

each aircraft type, then the code could be modified with different decay formulae within

the vortex implementation by using a case statement that chooses the correct formula

within the module.

The creation of a heavy equipment object is also very simple compared to our

initial effort. Belano's paratroop objects could be modified to include the characteristics

of a heavy equipment pallet instead of a person, and have different parachute

characteristics. This equipment object could be used to assess the risk to jumpers with

different spacing between the heavy equipment and personnel segments of the strategic

brigade airdrop. If the C-5 were used for the equipment portion of the drop, their vortices

are stronger than the C-17's and could have an even greater impact on jumper safety.

The last area for further research I will address is that of vortex life. The model

assumes that every vortex will last for as long as the longest recorded vortex in the lidar

data. Obviously, this is not the' case because most of the recorded vortices did not last

that long. The lidar data was collected and analyzed as this project was on going, and

60

was not completely available for input analysis. I feel that the data could be analyzed to

find a distribution of life spans and somehow implemented within the code. By ignoring

the fact that some vortices decay beyond recognition in a shorter distance than others, the

model may be overestimating the encounter rate at the longer intervals. (This range is

probably in the 24,000 to 40,000 feet range.)

We also found and corrected a bug in the program during simulation runs at

32,000 that led to an interesting discovery. Some jumpers were encountering vortices

near the very end of the vortex life at this spacing. They would encounter the vortex

during one time interval and then be within 100 feet of the end at the next. The bug was

that our algorithm asked for the next point to draw a line between to take the normal

distance for comparison to the radius. When the point was where the jumper was within

100 feet of the last point, it asked for a point that was not in the vortex array causing the

program to crash. We fixed the problem, but this shed some insight into the distance at

which the jumpers would encounter a vortex. If the change to the vortex representation

of shortening its life or length based on empirical data were implemented I feel the

predicted encounter rate at 32,000 feet would decrease dramatically.

Finally, I feel a test of the assumption that the vortex pairs are far enough apart

that they do not have a significant impact on another pair when compared to the motion

induced by the opposite vortex within each pair is required. Some sort of diagnostic

should be added into the code to record the distance between any vortices throughout the

simulation. It is possible within this simulation that the vortices are sufficiently close to

one another to influence the movement of another vortex pair and we would not even

61

know it. Since the influence of any vortex is inversely proportional to the distance

between the vortices, a simple check of the actual distance between any vortex pairs

should be sufficient. Visualization of the simulation could also aid in this function.

Contribution

The biggest contribution of this model is as a tool for engineering analysis. This

model should be a significant addition to the tools currently being used to analyze airdrop

operations. Even without the listed improvements, we now have a way to measure the

effects of changes within a formation on jumper-vortex interaction. It provides a solid

basis for follow-on research and may be the beginning of a useful combat model. If the

results of this model could be incorporated into a higher level campaign model, then we

would have some way of assessing the risks associated with a planned airborne assault,

and could reduce the number of affected troops by some percentage in planning this

assault.

Another contribution is the preliminary analysis provided by this model. Due to

time and computer constraints the analysis doesn't provide us with a clear picture of the

relationship between element spacing and encounter rate. Further experimentation should

help in defining this relationship. (I suspect the final model will either be a third order or

a logistic regression model.) Further testing should focus on expanding the current

experiment to include the full range of crosswinds from -3 to 3 degrees drift; increase the

number of element spacing points; and, the number of repetitions at each point. Since

each data point of 50 repetitions took 9 hours to complete this will require a significant

amount of computer time to complete. A simple design of experiments using the

62

extremes of the two factors will not be sufficient because there are some critical angles

between the elements where the crosswinds will dramatically increase the encounter rates.

Blake's model (or simple geometry) can help find these angles, but the simulation should

test around these critical points to see what effect approaching these angles has on the

encounter rate. My suspicion is that the rate will be fairly flat throughout the surface until

these critical angles are approached; then, the rate will increase sharply with the

maximum being very close to what I discovered in this analysis.

63

Appendices

64

Appendix A

Petrv's MODSIM Code

65

Implementation Airplane Module

IMPLEMENTATION MODULE AirplaneMod;

FROM MathMod IMPORT pi;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM globalMod IMPORT rho, CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2,

weight, seed4, windseedl, windseed2, windseed3, StandDevl,
StandDev2, StandDev3, vsl, vs2, vs3;

FROM VortexControlMod IMPORT TotalVortexObj, VortexControl;
FROM inputMod IMPORT stickSize;

OBJECT C170bj;

ASK METHOD Objlnit;

{Initalize the C-17 Object and update the winds}
{To create other types of airplanes the time before vortex decay starts needs to be moved into the airplane
objects}
{It is currently set to 60 seconds in to vortex object for the C-17}

BEGIN

beff:= 165.0;
ar := 7.16;
s := 3800.0;
bp := pi*beff/4.0;
gmod := 0.8;
vsl := CrossWindl ;

vs2 := CrossWind2;
vs3 := CrossWind3 ;

NEW (RightVortex) ;
NEW (LeftVortex) ;

END {ASK} METHOD {Objlnit};

{This method updates the vortex after the control object passes in the aircraft position using a steady wind}

ASK METHOD VortexPosition (IN xs, ys, altitude, vfk, vf, xg, yg, weight: REAL ;
IN NumberOfSteps : INTEGER);

BEGIN
cl := 2.0*weight/(rho*vf*vf*s);

vsl := CrossWindl;
vs2 := Cross Wind2;
vs3 := Cross Wind3;

ASK RightVortex TO Update(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2,
vs3, NumberOfSteps);

ASK LeftVortex TO Update(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2,
vs3, NumberOfSteps);

67

END METHOD {VortexPosition};

{This method updates the vortex position while the airplane flys with a variable wind}

ASK METHOD FlyPosition(IN xs, ys, altitude, vfk, vf, xg, yg, weight: REAL ;
INNumberOfSteps : INTEGER);

BEGIN
cl := 2.0*weight/(rho*vf*vf*s);

IF StandDevl > 0.0;

vsl := windseedl.Normal (CrossWindl, StandDevl);
ELSE

vsl := CrossWindl;
END IF;

IF StandDev2 > 0.0;

vs2 := windseed2.Normal (CrossWind2, StandDev2);
ELSE

vs2 := Cross Wind2;
END IF;

IF StandDev3 > 0.0;

vs3 := windseed3.Normal (CrossWind3, StandDev3);
ELSE

vs3 := CrossWind3;
END IF;

ASK RightVortex TO BackwardUpdate(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod,
vsl, vs2, vs3, NumberOfSteps);

ASK LeftVortex TO BackwardUpdate(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod,
vsl, vs2, vs3, NumberOfSteps);

END METHOD {VortexPosition};

TELL METHOD greenLight (IN myPlane : INTEGER);

VAR

stick: INTEGER;

BEGIN

stick := 1;

{SCHEDULE FIRST JUMPERS TO EXIT AT 0 SECONDS GREEN LIGHT}

NEW (rightJumper);
ASK rightJumper TO initialize (stick, myPlane);
TELL rightJumper TO jump;

NEW (leftJumper);

68

ASK leftJumper TO initialize (stick, myPlane);
TELL leftJumper TO jump;

WHILE stick < stickSize
stick := stick + 1;
WAIT DURATION 0.500001;

NEW (rightJumper);
ASK rightJumper TO initialize (stick, myPlane);
TELL rightJumper TO jump;

NEW (leftJumper);
ASK leftJumper TO initialize (stick, myPlane);
TELL leftJumper TO jump;

END WAIT {DURATION};

END WHILE;

END {TELL} METHOD {greenLight};

END OBJECT {C170bj};

END {IMPLEMENTATION} MODULE {AirplaneMod}.

69

Definition Vortex Control Module

DEFINITION MODULE VortexControlMod;

FROM globalMod IMPORT NumberofPlanes, PlanesPerEIement, ElementGeometry,
FormationGeometry, ElementSpacing, NumberOfElements,
altitude, vfk, ElementGeometryType, weight;

FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM AirplaneMod IMPORT C170bj;

TYPE

{Record for Vortex Control Object}

VortexControlType = RECORD
PlaneNumber : INTEGER; {Aircraft position in formation}

{Actual X Air Coordinate relative to lead airplane}
{Actual Y Air Coordinate relative to lead airplane}
{Actual Z Air Coordinate (Altitude (AGL))}
{Planned X position relative to lead aircraft}
{Planned Y position relative to lead aircraft}
{Planned Z position relative to lead aircraft (not

{Next X Position, from uniform draw if in position or

{Next Y Position, from uniform draw if in position or

{Next Altitude (not used)}
{Airplane's X Ground Coordinate}
{Airplane's Y Ground Coordinate}
{Velocity of aircraft (ft/sec)}
{Velocity of aircraft (knots)}
{Weight of aircraft}

{C-17 Object and all it methods and records}
NumberOfSteps : INTEGER; {How many steps to calculate the vortex}

fullLoad : BOOLEAN; {Initialized to true before the CARP then false}
END RECORD;

xs REAL;
ys REAL;
altitude : REAL;
xsplan : REAL;
ysplan : REAL;
altitudeplan : REAL;

used)}
xsnext : REAL;

planned position if out of position}
ysnext : REAL;

planned position if out of position}
altitudenext : REAL;
XS REAL;
yg REAL;
vf : REAL;
vfk : REAL;
weight : REAL;
C17 : C170bj;

VortexControl = ARRAY INTEGER OF VortexControlType;

TotalVortexObj = OBJECT;

Information : VortexControl;
i,j : INTEGER;
ElementPosition : INTEGER;
VortexLength : INTEGER;

ASK METHOD Objlnit;
ASK METHOD Positioninformation;
TELL METHOD Fly;

70

TELL METHOD greenLight;

END OBJECT {TotalVortexObject};

VAR

Airdrop : TotalVortexObj;
trailshift : INTEGER;
lateralshift: INTEGER;

END {DEFINITION} MODULE {VortexControlMod}.

71

Implementation Vortex Control Module

IMPLEMENTATION MODULE VortexControlMod;

FROM globalMod IMPORT NumberofPlanes, PlanesPerElement, ElementGeometry,
FormationGeometry, NumberOfElements, ElementSpacing,
altitude, vfk, ElementGeometryType, weight, RunLength, streamE, trailseed, lateralseed,

HeadWind,
lateralBox, trailBox;

FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM AirplaneMod IMPORT C170bj;
FROM SimMod IMPORT SimTime;
FROM UtilMod IMPORT DateTime;

OBJECT TotalVortexObj;

{Initialization of Vortex Control Array}

ASK METHOD Objlnit;

BEGIN

{Assume that first airplane is origin of air coordinate system with a positive altitude}

NEW (Information, 1..NumberofPlanes);
NEW (Information[l]);
Information[l].PlaneNumber := 1;
Information[l].xs :=0.0;
Information[l].ys :=0.0;
Information[l].altitude := altitude;
Information[l].xsplan := 0.0;
Information[l].ysplan := 0.0;
Information[l].altitudeplan := altitude;
Information[l].xsnext := 0.0;
Information[l].ysnext :=0.0;
Information[l].altitudenext := altitude;
Information[l].xg :=-300.0; .
Information[l].yg := 0.0;
Information[l].vfk := vfk;
Information[l].vf := vfk* 1.69085;
Information[l].weight := weight;
Informationf 1] .fullLoad := TRUE;
NEW (Information[l].C17);

{Load formation position information from input files}

FOR i := 2 TO NumberofPlanes;

{Calculate if all elements are full, if not then add an element for remaining airplanes}

72

ElementPosition := i MOD PlanesPerElement;

EF ElementPosition = 0;
ElementPosition := PlanesPerElement;

ENDEF;

EF ElementPosition = 1;

NEW (Information^]);
Information[i].PlaneNumber := i;
Information[i].altitude := altitude;
Information[i].altitudeplan := altitude;
Information[i].altitudenext := altitude;
Information[i].vfk := vfk;
Information[i].vf := vfk* 1.69085;
Information[i].weight := weight;
Information[i].xsplan :=Information[i-PlanesPerElement].xs+ElementSpacing;
Information[i].ysplan := Information[i-PlanesPerElement].ys;
Information[i].xs :=Information[i-PlanesPerElement].xs+ElementSpacing;
Information[i].ys := Information[i-PlanesPerElement].ys;

Information[i].xsnext := Information[i-
PlanesPerElementJ.xs+ElementSpacing;

Information[i].ysnext := Information[i-PlanesPerElement].ys;
Information[i].xg :=Information[i-PlanesPerElement].xg-ElementSpacing;
Information[i].yg := Information[i-PlanesPerElement].yg;

Information[i].fullLoad := TRUE;
NEW (Information[i].C17);

ELSE

NEW (Information[i]);
Information[i].PlaneNumber :=i;
Information[i].altitude := altitude;
Information[i].altitudeplan := altitude;
Information[i].altitudenext := altitude;
Information[i].vfk := vfk;
Information[i].vf := vfk* 1.69085;
Information[i].weight := weight;
Information[i].xsplan := Informationfi-

ElementPosition+l].xs+ElementGeometry[ElementPosition].Intrail;
Information[i].ysplan := Informationfi-

ElementPosition+1] .ys+ElementGeometry [ElementPosition] .CrossTrack;
Information[i].xs := Information[i-

ElementPosition+1] .xs+ElementGeometry [ElementPosition] .Intrail;
Information[i].ys := Information[i-

ElementPosition+1] .ys+ElementGeometry [ElementPosition] .CrossTrack;
Information[i].xsnext - := Informationfi-

ElementPosition+1] .xs+ElementGeometry [ElementPosition] .Intrail;
Information[i].ysnext := Information[i-

ElementPosition+l].ys+ElementGeometry[ElementPosition].CrossTrack;

73

Information[i].xg := Information[i-ElementPosition+l].xg-
EIementGeometry[ElementPosition].Intrail;

Information[i].yg := Information[i-
ElementPosition+l].yg+ElementGeometry[ElementPosition].CrossTrack;

Information[i].fullLoad := TRUE;
NEW (Information[i].C17);

END IF;
END FOR;

{Calculate Vortex position until 20,000 feet behind last airplane in formation}

VortexLength := TRUNC(Information[NumberofPlanes].xs)+20000;

{Calculate end condition for the flight}

RunLength :=FLOAT(VortexLength)/Information[l].vf;

{Calculate the number of steps behind each airplane for vortex calculations}
{With 420 selected the vortex is terminated at 42,000 ft behind the generating aircraft.
This is from LID AR data on the life of the vortex. The commented statement will let the
vortex live until 20,000 ft behind the last aircraft in the formation. This gives enough
time for all 102 jumpers to exit and descend to the ground}

FOR i := 1 TO NumberofPlanes;
Information[i].NumberOfSteps := 420 {(VortexLength-TRUNC(Information[i].xs)) DIV

100};
ASK SELF TO Positioninformation;

END FOR;

END METHOD {Objlnit};

ASK METHOD Positioninformation;

BEGIN

{Pass aircraft information into the C17 Object to pass onto the vortices}
{Position the aircraft in the tolerance box at some random point}

IFiol;
lateralshift := lateralseed.Uniformlnt (-lateralBox, lateralBox);
trailshift := trailseed.Uniformlnt (-trailBox, trailBox);

Information[i].xs := Information[i].xs + FLOAT(trailshift);
Information[i].xg := Information[i].xg + FLOAT(trailshift);

Information[i].ys := Information[i].ys + FLOAT(lateralshift);
Information[i].yg := Information[i].yg + FLOAT(lateralshift);

END IF;

{Update the vortex position based on airplane position}

74

ASK Information[i].C17 TO VortexPosition(Information[i].xs, Information[i].ys,
Information^] .altitude,

Information[i].vfk, Information[i].vf, Information[i].xg,
Information[i].yg,

Information[i].weight, Information[i].NumberOfSteps);

END METHOD {Postioninformation};

{Begin movement of the formation, continues every 1/2 second}

TELL METHOD Fly;

BEGIN
WHILE SimTime < RunLength;

WAIT DURATION 0.5;
{
OUTPUT("Flying:", SimTime);

ASK streamE TO WriteString ("Hying:", REALTOSTR (SimTime)," ", DateTime);
}
{Update ground and air positions while flying}
{If the aircraft is away from its planned position then it flys back to that position}
{After it reaches position it then draws a new position to fly to. When it gets out}
{of position again it flys back to the planned position}

FOR i := 1 TO NumberofPlanes;
EFi=l;

Information[i].xg := Information[i].vf*.5+Information[i].xg-
.5*HeadWind;

ELSE
IF Information[i].xs = Information[i].xsplan;

IF Information[i].ys = Information[i].ysplan;
Information[i].ysnext :=

Information[i].ysplan+FLOAT(lateralseed.UniformInt(-lateralBox, lateralBox));
Information[i].xsnext :=

Information[i].xsplan+FLOAT(trailseed.UniformInt (-trailBox, trailBox));
END IF;

END IF;

IF Information[i].xs = Information[i].xsnext;
IF Information[i].ys = Information^] .ysnext;

Information[i].ysnext :=
Information[i].ysplan;

Information[i].xsplan;
Information[i].xsnext

END IF;
END IF;

IF Information[i].xs o Information[i].xsnext;
IF Information[i].xs < Information[i].xsnext
Information[i].xs := Information[i].xs + 1.0;

75

Information[i].xg :=
Informationfi]. vf* .5+Information[i] .xg-.5 *HeadWind+1.0;

ELSE
Information[i].xs := Information[i].xs - 1.0;
Informationfi].xg :=

Information[i].vf*.5+Information[i].xg-.5*HeadWind-1.0;
END IF;

ELSE
Information[i].xg :=

Information[i].vf*.5+Information[i].xg-.5*HeadWind;
ENDEF;

IF Information[i].ys o Information[i].ysnext;
IF Informationfi].ys < Informationfi].ysnext;
Informationfi].ys := Information[i].ys + 1.0;
Information[i].yg := Informationfi].yg + 1.0;

ELSE
Informationfi].ys := Information[i].ys -1.0;
Information[i].yg := Informationfi].ys -1.0;

END IF;
END IF;

END IF;
{
OUTPUT(i," ".SimTime, " ",Information[i].xsnext," ",Information[i].xs, " ",Informationfi].ysnext,"
",Information[i].ys)
}

ASK Information[i].C17 TO FlyPosition(Information[i].xs,
Informationfi].ys, Information[i].altitude,

Informationfi].vfk, Informationfi].vf, Informationfi].xg,
Informationfi] .yg, Informationfi] .weight,
Informationfi] .NumberOfSteps);

{
OUTPUT(Information[i].PlaneNumber," ".SimTime, " ",Information[i].xs," ",Informationfi].xg,"
",Information[i].yg);
}

END FOR;
TELL SELF greenLight;

END WAIT;
END WHILE;

END METHOD {Fly};

{*****METHOD NEEDED FOR AIRDROP*****}

TELL METHOD greenLight;

BEGIN

FOR i := 2 TO NumberofPlanes;
IF Informationfi].xg >= 0.0

IF Informationfi].fullLoad

76

OUTPUT("Plane ", i," GREEN LIGHT");
}

Information[i].fiillLoad := FALSE;
TELL Information[i].C17 greenLight (Information[i].PlaneNumber);

END IF;
END IF;

END FOR;

END {TELL} METHOD {greenLight};

END OBJECT {TotalVortexObj};

END {IMPLEMENTATION} MODULE {VortexControlMod}.

77

Definition Vortex Module

DEFINITION MODULE VortexMod;

FROM MathMod IMPORT pi;
FROM globalMod IMPORT rho, CrossWind, Headwind;

TYPE

{Record Definition for Vortex Position Type }

VortexPositionType = RECORD
xCord : REAL; {X Air Coordinate for Vortex Position}
yCord : REAL; {Y Air Coordinate for Vortex Position}
zCord : REAL; {Z Air Coordinate (Altitude) for Vortex Position}
Gamd : REAL; {Decayed Vortex Strength}
Vage :REAL; {Vortex Age}
v : REAL; {not used}
w :REAL; {not used}
radius :REAL; {Radius from center with threshold swirl velocity}
NDyCord : REAL; {No drift Y Air Coordinate for calculating

actual vortex separation}
Airy : REAL; {Y Coordinate of the Airplane when vortex was

generated}
END RECORD;

CompleteType = ARRAY INTEGER OF VortexPositionType;

RightVortexObj = OBJECT;

CompletePosition : CompleteType; {Vortex Position Array}
beff : REAL; {Effective Wing Span}
ar : REAL; {Aspect Ratio}
s : REAL; {Wing Area}
bp, vsl, vs2, vs3, ys : REAL;{Vortex span, wind speeds, Y Air Coordinate}
weight, vf, vfk, cl, altitude, gmod, gam: REAL;
{Weight, velocity (ft/sec), velocity (knots), coefficient of lift, altitude, Gamma

modification factor from lidar, Gamma (Vortex Strength)}
delx, delt, xs, vd, yd : REAL; {Change in x, change in time, X Air

Coordinate, Vertical velocity, Horizontal velocity}
i : INTEGER;

ASK METHOD Objlnit;
ASK METHOD writeData(IN NumberOfSteps : INTEGER);
ASK METHOD Update(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, gmod, vsl,

vs2, vs3 : REAL; IN NumberOfSteps :_ INTEGER);
ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys,

gmod, vsl, vs2, vs3 : REAL; IN NumberOfSteps : INTEGER);

78

END OBJECT {RightVortexObj};

LeftVortexObj = OBJECT;

CompletePosition: CompleteType; {Vortex Position Array}
beff : REAL; {Effective Wing Span}
ar : REAL; {Aspect Ratio}
s : REAL; {Wing Area}
bp, vs, ys: REAL; {Vortex span, wind speed, Y Air

Coordinate}
weight, vf, vfk, cl, altitude, gmod, gam : REAL;
{Weight, velocity (ft/sec), velocity (knots), coefficient of lift, altitude, Gamma

modification factor from lidar, Gamma (Vortex Strength)}
delx, delt, xs, vd, yd : REAL; {Change in x, change in time, X Air

Coordinate, Vertical velocity, Horizontal velocity}
i : INTEGER;

ASK METHOD Objlnit;
ASK METHOD writeData(IN NumberOfSteps : INTEGER);
ASK METHOD Update(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, gmod, vsl,

vs2, vs3 : REAL; IN NumberOfSteps : INTEGER);
ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys,

gmod, vsl, vs2, vs3: REAL; IN NumberOfSteps : INTEGER);

END OBJECT {LeftVortexObj};

VAR
sD : REAL;

END {DEFINITION} MODULE {VortexMod}.

79

Implementation Vortex Module

IMPLEMENTATION MODULE VortexMod;

FROM MathMod IMPORT pi;
FROM globalMod IMPORT rho, CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2,
HeadWind, windseedl, windseed2, windseed3;

OBJECT RightVortexObj;

ASK METHOD Objlnit;

BEGIN
delx := 100.0;
delt := delx/vf;

{OLD CODE FROM FIRST TRY}

{NEW (CompletePosition, 1..800);
NEW (CompletePosition[l]);

CompletePosition[l].xCord := 100.0+xs;
CompletePosition[l].yCord := ys+bp/2.0;
CompletePosition[l].zCord := altitude;
CompletePosition[l].Vage := delx/vf;
CompletePosition[l].Gamd :=gam;
CompIetePositionfl].radius :=CompletePosition[l].Gamd/(2.0*pi*20.0);
CompletePosition[l].v := 0.0;
CompIetePositionfl].w := 0.0;

FOR i := 2 TO 800;
NEW (CompletePosition[i]);

CompletePosition[i].xCord := xs + (FLOAT(i)*delx);

vd := -1.0*CompletePosition[i-l].Gamd/(2.0*pi)*4.0*CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord));

yd := CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));

CompletePositionfi] .yCord := ys+CompletePosition[i-1] .yCord+vs 1 *delt+yd*delt;
CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;

CompletePosition[i].Gamd :=gam;
ELSE

CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePositionfi].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0);

80

CompletePosition[i].v := 0.0;
CompletePosition[i].w := 0.0;

END FOR;}

END METHOD {Objlnit};

ASK METHOD Update(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, vs3 :
REAL; IN NumberOfSteps : INTEGER);

BEGIN
delx := 100.0;
delt := delx/vf;
rho := rho;
gam := weight/(rho*vf*bp)*gmod;

{Verification Output}
{OUTPUT(vsl,"", vs2,"", vs3);}

{Create the array}

NEW (CompletePosition, L.NumberOfSteps);
NEW (CompletePosition[l]);

{Calculate the first point}

CompletePosition[l].xCord := 100.0+xs; {100 ft behind aircraft}
CompletePosition[l}.yCord := ys+bp/2.0; {Off right wing of aircraft}
CompletePosition[l].zCord := altitude; {Aircraft altitude}
CompletePosition[l].Vage := delx/vf;
CompletePosition[l].Gamd := gam; {Use gam from above}
CompletePosition[l].radius := CompletePosition[l].Gamd/(2.0*pi*20.0); {Threshold set at

20 ft/sec}
CompletePosition[l].v :=0.0; {Not Used}
CompletePosition[l].w :=0.0; {Not Used}
CompletePosition[l].NDyCord := ys + bp/2.0; {Keep no drift spacing}
CompletePosition[l].Airy :=ys; {Aircraft position when vortex point

created}

FOR i := 2 TO NumberOfSteps;

NEW (CompletePositionfi]);

{Calculate the remaining points}

CompletePositionfi].xCord := xs + (FLOAT(i)*delx);

{This is the actual separation between the vortices from Babarsky's FAX}

sD := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy);
CompletePositionfi] Airy :=ys;

{Vertical and Horizontal Velocity Calculations}

81

vd := (-1.0*CompletePosition[i-1].Gamd)/(4.0*pi)*((CompletePosition[i-
1] .zCord*CompletePosition[i-1].zCord)/(sD*((sD*sD)+(CompletePosition[i-1] .zCord*CompletePosition[i-
l].zCord))));

yd := ((CompletePosition[i-1] .Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i-
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)));

{This code will go back to the original calculation

vd := -1.0*CompletePosition[i-1] .Gamd/(2.0*pi)*4.0*CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord));

yd := CompletePosition[i-1] .Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));

}

CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;

{Update the separation between vortices}

CompletePositionfi].NDyCord := CompletePositionfi-1].NDyCord+yd*delt;

{Use the correct wind value based on vortex altitude}
IF CompletePositionfi] .zCord <= ShearAltl;

IF CompletePosition[i].zCord <= ShearAlt2;
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs3*delt+yd*delt;

ELSE
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs2*delt+yd*delt;

END IF;
ELSE

CompletePositionfi].yCord := CompletePositionfi-1].yCord+vs 1 *delt+yd*delt;
END IF;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;
CompletePositionfi].Gamd := gam;
ELSE
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0);
CompletePosition[i].v := 0.0;
CompletePositionfi]. w := 0.0;

END FOR;

END METHOD {Update};

{This method updates the vortex position when the aircraft fly}

ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl,
vs2, vs3 : REAL; IN NumberOfSteps : INTEGER);

BEGIN
delx := 100.0;
delt := delx/vf;

82

rho := rho;
gam := weight/(rho*vf*bp)*gmod;

{OUTPUT(vsl,"", vs2, " ", vs3);}

{Update the first point}

CompletePosition[l].xCord := 100.0+xs;
CompletePosition[l].yCord := ys+bp/2.0;
CompletePosition[l].zCord := altitude;
CompletePosition[l].Vage := delx/vf;
CompletePosition[1].Gamd := gam;
CompletePosition[l].radius :=CompletePosition[l].Gamd/(2.0*pi*20.0);
CompletePosition[l].v := 0.0;
CompletePosition[l].w := 0.0;
CompletePosition[l].NDyCord :=ys +bp/2.0;
CompletePosition[l].Airy :=ys;

{Update the remaining points from the end of the vortex to the front}

FOR i := NumberOfSteps DOWNTO 2;

CompletePosition[i].xCord := xs + (FLOAT(i)*delx);

sD := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy);
CompletePositionfi]. Airy := CompletePosition[i-l].Airy;

vd := (-1.0*CompletePosition[i-l].Gamd/(4.0*pi))*((CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord)/(sD*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord))));

yd := (CompletePositionfi-1] .Gamd/(4.0*pi))*((sD*sD)/(CompletePosition[i-
l].zCord*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))));

{This Code will go back to the original vortex Calculation
vd := -1.0*CompletePosition[i-1].Gamd/(2.0*pi)*4.0*CompletePosition[i-

l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord));

yd := CompletePosition[i-l].Gama7(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));

}

CompletePosition[i].NDyCord:=CompletePosition[i-l].NDyCord+yd*delt;

IF CompletePositionfi] .zCord<= ShearAltl;
IF CompletePosition[i].zCord <= ShearAlt2;

CompletePositionfi].yCord := CompletePositionfi-1].yCord+vs3*delt+yd*delt;
{Verification OUTPUT}
{OUTPUT ("THREE");}

83

ELSE
CompletePosition[i].yCord := CompletePosition[i-l].yCord+vs2*delt+yd*delt;

{OUTPUT ("TWO");}
END IF;

ELSE
CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vsl*delt+yd*delt;

{OUTPUT ("ONE");}

END IF;
CompIetePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;
CompletePosition[i].Gamd := gam;
ELSE
CompletePosition[i].Gamd :=gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0);
CompletePosition[i].v := 0.0;
CompletePosition[i].w := 0.0;

{Vortex Verification OUTPUT}
{OUTPUT (i,CompletePosition[i].xCord,CompletePosition[i].yCord,CompletePosition[i].zCord);}

END FOR;

END METHOD {BackwardUpdate};

ASK METHOD writeData(IN NumberOfSteps : INTEGER);
BEGIN;

OUTPUT;
OUTPUT ("Step xCord yCord zCord Gamd Vage Radius ");

OUTPUT;
FOR i :=1 TO NumberOfSteps;
OUTPUT (i," ", CompletePosition[i].xCord, " ", CompletePosition[i].yCord, "

",CompletePosition[i].zCord," ",CompletePosition[i].Vage," ",CompletePosition[i].Gamd,
",CompletePosition[i].radius,"", CompletePosition[i].NDyCord,"", CompletePosition[i].Airy);

END FOR;

END METHOD {writeData};

END OBJECT {RightVortexObj};

OBJECT LeftVortexObj;

ASK METHOD Objlnit;

BEGIN

84

{gmod := 0.8;
gam := weight/(rho*vf*bp)*gmod;}
delx := 100.0;
delt := delx/vf;

{OLD CODE FROM FIRST TRY}

{NEW (CompletePosition, 1..800);
NEW (CompletePosition[l]);

CompletePosition[l].xCord := 100.0+xs;
CompletePosition[l].yCord := ys-bp/2.0;
CompletePosition[l].zCord := altitude;
CompletePosition[l].Vage := delx/vf;
CompletePosition[l].Gamd :=gam;
CompletePositionfi].radius :=CompletePosition[l].Gamd/(2.0*pi*20.0);
CompletePosition[l].v := 0.0;
CompletePosition[l].w := 0.0;

FOR i := 2 TO 800;
NEW (CompletePositionfi]);

CompletePosition[i].xCord := xs + (FLOAT(i)*delx);

vd := -1.0*CompletePosition[i-1] .Gamd/(2.0*pi)*4.0*CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-
U.zCord));

yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));

CompletePosition[i].yCord :=ys+CompletePosition[i-l].yCord+vsl*delt+yd*delt;
CompletePositionfi].zCord :=CompletePosition[i-l].zCord+vd*delt;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePositionfi] .Vage <= 60.0;
CompletePosition[i].Gamd := gam;
ELSE
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0);
CompletePosition[i].v :=0.0;
CompletePosition[i].w := 0.0;

END FOR;}

END METHOD {Objlnit};

ASK METHOD Update(IN baff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, vs3
REAL; IN NumberOfSteps : INTEGER);

BEGIN

delx := 100.0;

85

delt := delx/vf;
gam := weight/(rho*vf*bp)*gmod;

{OUTPUT(vsl,"", vs2,"", vs3);
OUTPUT("UPDATE");}

NEW (CompletePosition, L.NumberOfSteps);
NEW (CompletePosition[l]);

CompletePosition[l].xCord := 100.0+xs;
CompletePosition[l].yCord := ys-bp/2.0;
CompletePosition[l].zCord := altitude;
CompletePosition[l].Vage := delx/vf;
CompletePosition[l].Gamd := gam;
CompletePosition[l].radius:=CompletePosition[l].Gamd/(2.0*pi*20.0);
CompletePosition[l].v := 0.0;
CompletePosition[l].w := 0.0;
CompletePosition[l].NDyCord := ys-bp/2.0;
CompletePosition[l].Airy :=ys;

FOR i := 2 TO NumberOfSteps;
{OUTPUT(i);}

NEW (CompletePosition[i]);

CompletePosition[i].xCord := xs + (FLOAT(i)*delx);
sD := ABS(CompletePosition[i-1] .NDyCord-CompletePositionfi-1].Airy);
CompletePosition[i].Airy :=ys;

vd := (-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord))));

yd := -1.0*((CompletePosition[i-1] .Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i-
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)));

CompletePosition[i].NDyCord:=CompletePosition[i-l].NDyCord+yd*delt;

{typos somewhere Line 302
vd := (-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i-

l].zCord*CompletePosition[i-l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord))));

yd := -((CompletePosition[i-l].Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i-
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)));
}
{These are the old formulas using effective wing span

vd := -1.0*CompletePosition[i-l].Gamd/(2.0*pi)*4.0*CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord));

86

yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));
}

CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;
IF CompletePosition[i].zCord <= ShearAltl;

IF CompletePosition[i].zCord <= ShearAlt2;
CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vs3*delt+yd*delt;

ELSE
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs2*delt+yd*delt;

END IF;
ELSE

CompletePosition[i].yCord := CompletePositionfi-1].yCord+vs 1 *delt+yd*delt;
END IF;

CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;
CompletePositionfi] .Gamd :=gam;
ELSE
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePositionfi].radius := CompletePositionfi] .Gamd/(2.0*pi*20.0);
CompletePosition[i].v := 0.0;
CompletePositionfi]. w := 0.0;

END FOR;

END METHOD {Update};

ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl,
vs2, vs3 : REAL; IN NumberOfSteps : INTEGER);

BEGIN

delx := 100.0;
delt := delx/vf;
gam := weight/(rho*vf*bp)*gmod;

{OUTPUT(vsl,"", vs2,"", vs3);
OUTPUT("BACKWARDM);
OUTPUT(ShearAltl, ShearAlt2);}

CompletePosition[l].xCord := 100.0+xs;
CompletePosition[l].yCord := ys-bp/2.0;
CompletePositionfi].zCord := altitude;
CompletePosition[l].Vage := delx/vf;
CompletePositionfl].Gamd :=gam;
CompletePosition[l].radius:=CompletePosition[l].Gamd/(2.0*pi*20.0);
CompletePosition[l].v := 0.0;
CompletePosition[l].w :=0.0;
CompletePosition[l].NDyCord := ys-bp/2.0;
CompletePosition[l].Airy := ys;

FOR i := NumberOfSteps DOWNTO 2;

87

{OUTPUT (i);}
CompletePosition[i].xCord := xs + (FLOAT(i)*delx);
sD :=ABS(CompletePositionti-l].NDyCord-CompletePosition[i-l].Airy);
CompletePosition[i].Airy := CompletePosition[i-l].Airy;

vd := (-1.0*CompletePosition[i-1].Gamd/(4.0*pi))*((CompletePosition[i-
l].zCord*CompletePosition[i-l].zCord)/(sD*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-
l].zCord))));

yd := -1.0*(CompletePosition[i-l].Gamd/(4.0*pi))*((sD*sD)/(CompletePosition[i-
l].zCord*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))));

CompletePosition[i].NDyCord :=CompletePosition[i-l].NDyCord+yd*delt;

{These are the old formulas using effective wing span
vd := -1.0*CompletePositionfi-1] .Gamd/(2.0*pi)*4.0*CompletePosition[i-

1] .zCord*CompletePosition[i-1] .zCord/(bp*(bp*bp+4.0*CompletePosition[i-1] .zCord*CompletePosition[i-
l].zCord));

yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i-
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord));
}

IF CompletePosition[i] .zCord <= ShearAlt 1;
IF CompletePosition[i].zCord <= ShearAlt2;

CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vs3*delt+yd*delt;
ELSE

CompletePosition[i].yCord := CompletePositionfi-l].yCord+vs2*delt+yd*delt;
END IF;

ELSE
CompletePosition[i].yCord := CompletePositionfi-l].yCord+vsl*delt+yd*delt;

END IF;
CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt;
CompletePosition[i].Vage := delx*FLOAT(i)/vf;
IF CompletePosition[i].Vage <= 60.0;
CompletePositionfi] .Gamd :=gam;
ELSE
CompletePosition[i].Gamd := gam*(60.0/CompletePosition[i].Vage);
END IF;
CompletePosition[i].radius:= CompletePositionfi] .Gamd/(2.0*pi*20.0);
CompletePosition[i].v :=0.0;
CompletePositionfi] .w :=0.0;

END FOR;

END METHOD {BackwardUpdate};

ASK METHOD writeData(INNumberOfSteps : INTEGER);
BEGIN;

OUTPUT;
OUTPUT ("Step xCord yCord zCord Vage Gamma Radius NoDrifty Ystart");

88

OUTPUT;
FOR i :=1 TO NumberOfSteps;
OUTPUT (i,"

^CompIeteP0■^ " "• CompletePosition[i].yCord, -

END METHOD {writeData};

END OBJECT {LeftVortexObj};

END {IMPLEMENTATION} MODULE {VortexMod}.

89

Appendix B

Shared MODSM Code

90

Main Vortex Module

MAIN MODULE vortex;

FROM inputMod IMPORT readData, disposeStreams;
FROM globalMod IMPORT i, NumberofPlanes, nu, knotconv, initializeData, repeat;
FROM AirplaneMod IMPORT C 170bj;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM MathMod IMPORT pi;
FROM VortexControlMod IMPORT Airdrop;
FROM SimMod IMPORT ResetSimTime, StartSimulation;
FROM UtilMod IMPORT DateTime;

VAR

BEGIN
{ OUTPUT ("Start time: ".DateTime);}

{ Start the input questions and set up the random seeds }

readData;
initializeData;

FOR repeat := 1 TO 50;

ResetSimTime(O.O);

{ Create the Vortex Control Object named Airdrop }

NEW (Airdrop);

{ The following loops output the vortex information }

{
OUTPUT;
OUTPUTC Airplane 1 Data");
OUTPUT;
FOR i := 1 TO NumberofPlanes;

OUTPUT;
OUTPUT(Airdrop.Information[i].PlaneNumber," ", Airdrop.Information[i].xs,"

Airdrop.Information[i].ys, " ", Airdrop.Information[i].altitude, " ", Airdrop.Information[i].xg, "
Airdrop.Information[i].yg);

END FOR;
FOR i:= 1 TO NumberofPlanes; -

OUTPUT("Airplane ", i," Data");
ASK Airdrop.Information[i].C17.RightVortex TO

writeData(Airdrop.Information[i].NumberOfSteps);
ASK Airdrop.Information[i].C17.LeftVortex TO writeData(Airdrop.Information[i].NumberOfSteps);

91

END FOR;
}

{ Schedule the first event to initiate the simulation }

TELL Airdrop TO Fly;

StartSimulation;

{ More vortex information. This will write the position of the vortex at the end of the simulation }

{
FOR i:= 1 TO NumberofPlanes;

OUTPUTCAirplane ", i," Data");
ASK Airdrop.Information[i].C17.RightVortex TO

writeData(Airdrop.Information[i].NumberOfSteps);
ASK Airdrop.Information[i].C17.LeftVortex TO writeData(Airdrop.Information[i].NumberOfSteps);

END FOR;
}

DISPOSE (Airdrop);

{ OUTPUT("End time: ", DateTime);}

END FOR;

disposeStreams;

END {MAIN} MODULE {Vortex}.

92

Definition Global Module

DEFINITION MODULE globalMod;

FROM RandMod IMPORT RandomObj;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM righUumperMod IMPORT rightJumperObj;
FROM leftJumperMod IMPORT leftJumperObj;

CONST

re = 20855531.5;
nu = 0.0001654;
knotconv = 1.69085; {Converts knots to ft/sec}

TYPE

eType = ARRAY INTEGER OF INTEGER;
delType = ARRAY INTEGER, INTEGER OF REAL;
matrixType = ARRAY INTEGER, INTEGER OF REAL;
vectorType = ARRAY INTEGER OF REAL;

encounterType = RECORD
airplane: INTEGER;
side : STRING;
position : INTEGER;

END RECORD {encounterType};

{Set up Element Position Type for building of elements}

ElementPositionType = RECORD
ElementPosNum: INTEGER;
Intrail : REAL;
CrossTrack : REAL;

END RECORD;

{Collection of Element Position Types for Formation Definition}

ElementGeometryType = ARRAY INTEGER OF ElementPositionType;

FormationPositionType = RECORD;
PositonNumber : INTEGER;
Intrail : REAL;
CrossTrack : REAL;

END RECORD;

FormationGeometryType = ARRAY INTEGER OF FormationPositionType;

VAR

93

NumberofPlanes : INTEGER;
PlanesPerElement : INTEGER;
NumberOfElements : INTEGER;
i,j, repeat : INTEGER;

{Number of Planes in Formation}
{Number of Planes per Element}

{Number of Elements in Formation}
{Loop control variables}

ElementSpacing : REAL;
ElementGeometry : ElementGeometryType;
FormationGeometry: FormationGeometryType;

CrossWindl
CrossWind2
CrossWind3
Shear Altl
ShearAl t2
StandDevl

wind velocity}
StandDev2

wind velocity}
StandDev3

wind velocity}
trailBox
lateralBox
altitudeBox
Headwind
rho
altitude
vfk
weight
RunLength
vsl
vs2
vs3

rightJumper
leftJumper
e :
del
seedl
seed2
seed3
seed4
windseedl
windseed2
windseed3
trailseed
lateralseed
timeseed

: REAL; {Mean Crosswind at drop altitude to ShearAltl}
:REAL; {Mean Crosswind from ShearAltl to ShearAlt2}
: REAL; {Mean Crosswind from ShearAlt2 to ground}

: REAL; {Altitude where wind first shifts}
: REAL; {Altitude where wind shifts second time}
:REAL; {Standard deviation for Crosswind 1 normal distribution for

: REAL; {Standard deviation for Crosswind2 normal distribution for

: REAL; {Standard deviation for Crosswind3 normal distribution for

: INTEGER; {Size of tolerance for in-trail spacing}
: INTEGER; {Size of tolerance for lateral spacing}
: INTEGER; {Size of tolerance for altitude deviation (not used)}

: REAL; {Headwind at drop altitude}
REAL; {Air density}
: REAL; {Altitude}
REAL; {Aircraft velocity (knots)}
:REAL; {Aircraft weight}

: REAL; {Length of simulation run}
REAL; {Crosswindl speed (ft/sec) after random draw}
REAL; {Crosswind2 speed (ft/sec) after random draw}
REAL; {Crosswind3 speed (ft/sec) after random draw}

: rightJumperObj;
: leftJumperObj;

eType;
: delType;

: RandomObj;
: RandomObj;
: RandomObj;
: RandomObj;

: RandoniObj;
: RandomObj;
: RandomObj;

: RandomObj;
: RandomObj;
: RandomObj;

{Seed for Crosswindl normal distribution}
{Seed for Crosswind2 normal distribution}
{Seed for Crosswind3 normal distribution}
{Seed for in-trail uniform distribution}
{Seed for lateral uniform distribution}
{Seed for time in position (not used)}

PROCEDURE initializeData;

END {DEFINITION} MODULE {globalMod}.

94

Implementation Global Module

IMPLEMENTATION MODULE globalMod;

FROM RandMod IMPORT FetchSeed;
FROM inputMod IMPORT jumperseed;

PROCEDURE initializeData;

BEGIN

{Create random streams and get seed numbers}

NEW(e, 1..5);
NEW (del, 1..3, 1..3);
NEW (seedl);
NEW (seed2);
NEW (seed3);
NEW (seed4);
NEW (windseedl);
NEW (windseed2);
NEW (windseed3);
NEW (trailseed);
NEW (lateralseed);
NEW (timeseed);
ASK seedl TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK seed2 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK seed3 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK seed4 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK windseedl TO SetSeed (FetchSeed (jumperseed.UniformInt (1,10)))
ASK windseed2 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)))
ASK windseed3 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)))
ASK trailseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK lateralseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));
ASK timeseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10)));

e[l]
e[2]
e[3]
e[4]
e[5]

= 1
= 2
= 3
= 1
= 2

FOR i := 1 TO 3
FORj:=lT0 3

IF i =j
del[i,j] := 1.0;

ELSE
del[i,j] := 0.0;

END IF;

95

END FOR;
END FOR;

END PROCEDURE {initializeData};

END {IMPLEMENTATION} MODULE {globalMod}.

96

Definition Input Module

DEFINITION MODULE inputMod;

FROM IOMod IMPORT StreamObj, FileUseType(Output);
FROM RandMod IMPORT RandomObj;

VAR
i : INTEGER;
Scenario : INTEGER;

dummy : INTEGER;
stickSize .-INTEGER;
printTrajectory: BOOLEAN;

streaml : StreamObj; {TO WRITE JUMPER INFORMATION TO AN OUTPUT FILE}
informationfile: STRING;
streamE : StreamObj; {TO WRITE ENCOUNTER DATA TO AN OUTPUT FILE}
encounterfile : STRING;
streams : StreamObj; {TO WRITE SCATTER DATA TO AN OUTPUT FILE}
scatterfile : STRING;

extension : STRING;

jumperseed : RandomObj;

{TROUBLE SHOOTING INPUT}

dtdrift : REAL;
{

}

{Get input data }

PROCEDURE readData;

PROCEDURE disposeStreams;

END {DEFINITION} MODULE {inputMod}.

97

Implementation Input Module

IMPLEMENTATION MODULE inputMod;

FROM globalMod IMPORT NumberofPlanes, PlanesPerElement, NumberOfElements,
ElementGeometry, Elementspacing, FormationGeometry,
altitude, vfk, CrossWindl, CrossWind2, CrossWind3,

ShearAltl, ShearAlt2, Headwind, rho, weight, knotconv,
trailBox, lateralBox, StandDevl, StandDev2, StandDev3;

FROM RandMod IMPORT FetchSeed;
FROM globalMod IMPORT loop;

PROCEDURE readData;
BEGIN

OUTPUT("Which Scenario do you want to run?");
OUTPUT(" Enter 1 For Edwards Test");
OUTPUT(" Enter 2 For Custom Formation");
INPUT(Scenario);

CASE Scenario

WHEN1:
NumberofPlanes := 2;
PlanesPerElement := 2;

NEW (ElementGeometry, 1..PlanesPerElement);
NEW (ElementGeometry[l]);
ElementGeometry[l].ElementPosNum := 1;
ElementGeometry[l].Intrail :=0.0;
ElementGeometry[l].CrossTrack := 0.0;
NEW (ElementGeometry[2]);
ElementGeometry[2].Intrail := 15000.0;
ElementGeometry[2].CrossTrack := 0.0;
stickSize := 6;
weight := 385000.0;
altitude := 1000.0;
vfk := 135.0;
CrossWindl := 0.0;
Headwind := 0.0;
rho := 0.002000;

WHEN 2:

OUTPUT("How many airplanes for this run?");
INPUT(NumberofPlanes);
OUTPUT("How many airplanes per element?");
INPUT(PlanesPerElement)v
OUTPUT("How many jumpers exiting each side of the aircraft?");
INPUT(stickSize);

NEW (ElementGeometry, 1..PlanesPerElement);

98

variation");

be");

NEW (ElementGeometryfl]);
ElementGeometry[l].ElementPosNum := 1;
ElementGeometry[l].Intrail := 0.0;
ElementGeometry[l].CrossTrack := 0.0;

IF PlanesPerElement > 1;
FOR i := 2 TO PlanesPerElement;

NEW (ElementGeometry[i]);
ElementGeometry[i].ElementPosNum := i;
OUTPUT("All element positions are relative to element lead.");
OUTPUT("What is the in trail distance for plane ", i," ?");
OUTPUT(" Spacing must be input as a real number with decimal point");
INPUT(ElementGeometry[i].Intrail);
OUTPUT("What is the lateral spacing for plane ", i," ?");
OUTPUT("Positive to the Right, Negative to the left.");
INPUT(ElementGeometry[i].CrossTrack);

END FOR;
END IF;

IF (NumberofPlanes MOD PlanesPerElement) = 0;
NumberOfElements := (NumberofPlanes DIV PlanesPerElement);

ELSE
NumberOfElements := (NumberofPlanes DrV PlanesPerElement)+l;

END IF;

IF NumberOfElements > 1;
OUTPUT("What is the spacing between element leaders?");
INPUT(ElementSpacing);

ELSE
END IF;

OUTPUT("What tolerance are the trailing aircraft following?");
OUTPUT("Enter the tolerance for fore and aft spacing (Must be an integer)");
INPUT (trailBox);
OUTPUT("Enter the tolerance for lateral spacing (Must be an integer)");
INPUT (lateralBox);

OUTPUT("What is the weight of all aircraft?");

INPUT(weight);
OUTPUT("What is the airdrop altitude? (ft AGL) (Real number with decimal)");
INPUT(altitude);
OUTPUT("What is the airspeed of the formation in knots?");
INPUT(vfk);
OUTPUT("What is the Cross Wind Component? (knots)");

OUTPUT("Input up to three different winds with altitude where wind changes");
OUTPUT("and standard deviation of the normal distribution for wind

OUTPUT("(All eight values must be entered. If constant wind, then zeros can

OUTPUT("entered for the last seven values.)");
OUTPUT("i.e. 5 .5 500 10 1 200 0.25 would indicate 5 knots with a normal");
OUTPUT("distribution and a standard deviation of .5 at drop altitude till 500");

99

OUTPUT("feet AGL, then 10 knots with a standard deviation of 1 until 200 feet
AGL,");

OUTPUT(" then calm to the ground with a standard deviation of .25");
INPUT(CrossWindl, StandDevl, ShearAltl, CrossWind2, StandDev2, ShearAlt2, CrossWind3,

StandDev3);
Cross Wind 1 := CrossWind 1 *knotconv; {Convert knots to ft/s}
CrossWind2 := CrossWind2*knotconv; {Convert knots to ft/s}
CrossWind3 := CrossWind3 *knotconv; {Convert knots to ft/s}.
StandDevl := StandDevl*knotconv;
StandDev2 := StandDev2*knotconv;
StandDev3 := StandDev3*knotconv;

OUTPUT("What is the Head Wind Component? (knots)");
INPUT(HeadWind);

Headwind := HeadWind*knotconv; {Convert knots to ft/s}
OUTPUT("What is the air density factor (rho)?");
INPUT(rho);

END CASE;

OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFUX EXTENSION) FOR JUMPER
INFORMATION DATA:");

INPUT (informationfile);
OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR ENCOUNTER

DATA:");
INPUT (encounterfile);
OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR SCATTER

DATA:");
INPUT (scatterfile);
OUTPUT ("ENTER AN INTEGER (BETWEEN 1 AND 10) FOR THE RANDOM SEED INPUT

FOR JUMPERS");
INPUT (dummy);

NEW (jumperseed);
ASK jumperseed TO SetSeed (FetchSeed (dummy));

NEW (streaml);
NEW (streamE);
NEW (streams);

informationfile := informationfile + ".txt'-';
encounterfile := encounterfile + ".txt";
scatterfile := scatterfile + ".mat";

ASK streaml TO Open (informationfile, Output);
ASK streamE TO Open (encounterfile, Output);
ASK streams TO Open (scatterfile, Output);

OUTPUT ("PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS:");
OUTPUT (" 1 - WRITE INDIVIDUAL PARATROOP TRAJECTORY INFORMATION TO

SEPARATE FILES");
OUTPUT (" 0 - DO NOT WRITE TRAJECTORY INFORMATION");
INPUT (dummy);

100

IF dummy = 1
OUTPUT ("ENTER UP TO FOUR (4) CHARACTERS TO DESIGNATE JUMPERS :");
INPUT (extension);
printTrajectory := TRUE;

ELSE
printTrajectory := FALSE;

END IF;

{TROUBLE SHOOTING INPUTS}

OUTPUT ("ENTER DRIFT UPDATE DT:");
INPUT (dtdrift);

END PROCEDURE {readData};

PROCEDURE disposeStreams;
BEGIN

DISPOSE(streamE);
DISPOSE(streamS);

END PROCEDURE {disposeStreams};

END {IMPLEMENTATION} MODULE {inputMod}.

101

Appendix C

Belang's MODSIM Code

102

Definition Calc Module

DEFINITION MODULE calcMod;

PROCEDURE gravCalc (IN a: REAL): REAL;
PROCEDURE densityCalc (IN h, rhoz : REAL; OUT rho, sound : REAL);

END {DEFINITION} MODULE {calcMod}.

103

Implementation Calc Module

IMPLEMENTATION MODULE calcMod;

FROM MathMod IMPORT POWER, SIN, COS, SQRT, EXP;
FROM globalMod IMPORT re;

PROCEDURE gravCalc (IN a: REAL): REAL;
BEGIN

RETURN 32.1741*POWER(re/(a+re), 2.0);
END PROCEDURE {gravCalc};

PROCEDURE densityCalc (IN h, rhoz : REAL; OUT rho, sound : REAL);
VAR

t:REAL;

BEGIN
rho := rhoz * EXP(-1.0*h/23111.0 + 0.294 * SIN(h/28860.0) + 0.213 * SIN(h/86580.0));

IF h > 0.0
t := 518.688 - (3.56616E-03)*h;
sound := 49.02118 * SQRT(t);
IF h> 36152.0

sound := 968.08;
IF h > 82345.0

t := 254.988 + (1.64592E-03)*h;
sound := 49.02118 * SQRT(t);
IF h> 155348.0

sound := 1105.0;
IF h> 262448.0

sound := 846.9;
IF h> 299516.0

t := -349.812 + 2.19456E-03*h
END IF;

END IF;
END IF;

END IF;
END IF;

ELSE
sound := 1116.44;

END IF;

END PROCEDURE {densityCalc};

END {IMPLEMENTATION} MODULE {calcMod}.

104

Definition Left Jumper Module

DEFINITION MODULE lefÜumperMod;

FROM IOMod IMPORT StreamObj, FileUSeType(Output);
FROM globalMod IMPORT eType, matrixType, vectorType, encounterType;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM VortexControlMod IMPORT VortexControl;

TYPE

leftJumperObj = OBJECT

il,
i2,
iend,
ipts,
ip.
jl.
J2,
k,
loop,
mpts,
myNumber,
myPIane,
bigloop: INTEGER;

alt,
alpha,
alphad,
beta,
bxy,
ca,
cao,
caa2,
calpha,
cbar,
cbeta,
cby2,
cds,
clo,
clp,
cm,
cma,
cma2,
cmo,
cmq,
cn,
cna,
cna2,

105

cnb,
cnb2,
cnq,
cnr,
coswt,
coswtm,
cp,
cphi,
csl,
csn,
ct,
cy.
cyb,
cyb2,
cyr,
dens,
deptime,
dt,
dtpr,
dtpoll,
dtdrift,
fpc,
g.
gammad,
gees,
gmax,
h,
hmin,
mach,
mass,
myTime,
myDrift,
myDriftDirection,
pb,
phi,
psi,
q.
qb.
qdyn,
qs,
qsd,
rad,
rb,
rho,
rhoz,
sac,
sas,
sarea,
salpha,
sbc,
sbeta,
sbs,
sinwt,

106

sound,
sp,
sphi,
st,
t,
theta,
tpr,
tpoll,
tdrift,
ubl,
ub2,
ub3,
uel,
ue2,
ue3,
uxy,

vp.
vpl3,
vpe,
vpo,
w,
w2,
weight,
xbod,
xcg,
Xdrift,
xlast,
Ydrift : REAL;

slength : REAL; {length of suspension lines}
angle : REAL; {the angle (in radians) which defines the "cone" of the suspension lines}
dcglength : REAL; {distance from end of suspension lines to paratrooper e.g.}
cweight : REAL; {weight of canopy}
sweight : REAL; {weight of suspension lines}

radius REAL;
addedmass: REAL;
distcm :REAL;
sysmass .•REAL;
paymom :REAL;
distcan :REAL;
distline : REAL;
distpay :REAL;

addDrift : BOOLEAN;

peds,
Pt,
pedf,
pm : vectorType; {1X2}

xe,
xs,

107

xg,
ue,
wb,
vwind,
temp,
ft,
m,
mb,
fe,
uedot,
wbdot,
hb :vectorType; {1X3}

in,

jn.
b,
bn,
bdot: matrixType; {3X3}

lastRightLocation,
lastLeftLocation : eType; {Dynamic Array}

outfile: STRING;

stream: StreamObj;

encounter: encounterType;

ASK METHOD Objlnit;
TELL METHOD jump;
ASK METHOD initialize (IN stick : INTEGER;

IN myPlane: INTEGER);
ASK METHOD pollVortices (IN vortexPlane : INTEGER);
ASK METHOD changeDrift;
ASK METHOD findDrift;

END OBJECT {leftJumperObj};

END {DEFINITION} MODULE {leftJumperMod}.

108

Implementation Left Jumper Module

IMPLEMENTATION MODULE leftJumperMod;

FROM MathMod IMPORT EXP, SIN, COS, POWER, SQRT, ATAN2, TAN, pi;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM globalMod IMPORT re, e, del, i, j, NumberofPlanes, seedl, seed2, seed3, repeat;
FROM inputMod IMPORT streaml, streamE, streams, extension, printTrajectory;
FROM globalMod .IMPORT CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2,
Headwind, vsl, vs2, vs3;
FROM calcMod IMPORT gravCalc, densityCalc;
FROM SimMod IMPORT SimTime;
FROM VortexControlMod IMPORT VortexControl, Airdrop;

{TROUBLE SHOOTING INPUT}
{
FROM inputMod IMPORT dtdrift;
}
OBJECT lefUumperObj;

ASK METHOD Objlnit;

BEGIN
NEW(pcdf, 1..2);
NEW(pm , 1..2);

NEW(fb , 1..3);
NEW(fe ,1..3);
NEW(hb ,1..3);
NEW(mb , 1..3);
NEW(temp,1..3);
NEW(ue , 1..3);
NEW(uedot, 1..3);
NEW(vwind, 1..3);
NEW(wb , 1..3);
NEW(wbdot, 1..3);
NEW(xe ,1..3);
NEW(xs , 1..3);
NEW(xg ,1..3);

NEW(pcds, 1..4);
NEW(pt , 1..4);

NEW(in , 1..3, 1..3);
NEW(jn , 1..3, 1..3);
NEW(b , 1..3, 1..3);
NEW(bn , 1..3, 1..3);
NEW(bdot, 1..3,1..3);

{ system inertial properties }

109

down }

{ parachute-payload system weight (lbs) = weight of jumper/gear under T-10C}

weight := seed3.Normal (247.0, 25.0);

mass := weight/32.17;
xcg := 0.5; { forebody e.g. (ft) in the horizontal}
xbod := 6.0; { forebody length (ft) in the vertical }

FOR i := 1 TO 3
FORj:=lT0 3

jn[ij]:=0.0;
in[i,j] := 0.0;

END {j} FOR;
END {i} FOR;

initial conditions }

FOR i := 1 TO 3
xe[i] := 0.0; { (ft) 1: down range, 2: off range, 3: altitude loss }
ue[i] := 0.0; { (fps) 1: horizontal velocity, 2: lateral velocity, 3: ejection velocity positive

wb[i] := 0.0; { ??? }
vwind[i] := 0.0; { (fps) 1: head (+) or tail (-) wind, 2: crosswind, 3: ???? }

END FOR;

alt := 0.0; { altitude (ft) }
hmin := 0.0; { ground level (ft) }
ue[l] :=0.0; { horizontal velocity (fps) }
ue[3] := 0.0; { ejection velocity, positive down }
theta := 0.0; { pitch angle (deg) nose up positive }
vwindfl] := 0.0; { head (+) or tail (-) wind (fps) }
vwind[2] := 0.0; { crosswind (fps) }
dens := 0.0; { density (0 for standard aims) in slug/ftA3 }
rhoz := 0.002378; { ???? }

IF dens o 0.0
rhoz := dens * EXP (alt/23111.0 - 0.295 * SIN(alt/28860.0) - 0.213 * SIN(alt/86580.0))

END IF;

{ program constants }

dtpr :=0.1; { print interval (sec) }
dtpoll := 0.5; { poll vortex positions every 0.5 seconds }
dtdrift := 5.0; { change drift angle +/- 45.0 from current drift angle every 5 seconds }

{ forebody aerodynamic coefficients }

cbar := 6.0; { reference length (ft) }
sarea := POWER(0.5,2.0)*pi; { reference area (ftA2) }
cna := 0.0; { normal force cn-alpha (/rad) }
cyb := 0.0; { side force cy-beta (/rad) }
caa2 := 0.0; { axial force ca-alphaA2 (/radA2) }

110

clo := 0.0; { roll torque coefficient (dimensionless) }
clp := 0.0; { roll damping coefficient (/rad) }
cma := -2.0; { pitch moment cm-alpha (/rad) }
cmq := -200.0; { pitch damping (/rad) }
cnb := 0.0; { yaw moment cn-beta (/rad) }
cnr := 0.0; { yaw damping (/rad) }

{ forebody drag versus mach number table }

mpts := 2;
pm[l] := 0.00; { mach number }
pm[2] :=2.00;
pcdf[l] := 0.73+0.06*(360.0 - weight)/180.0; { drag coefficient
pcdf[2] := 0.73+0.06*(360.0 - weight)/180.0;

{ parachute drag-area versus time table }

deptime := 0.25; { deployment time }
ipts := 2;

IF deptime > 0.0
ipts := ipts + 2; { ipts = 4 }
pt[l] :=0.0;
pt[2] := deptime;
pt[3] := 0.00 + deptime;
pt[4] := 2.80 + deptime;
pcds[l]:=0.0;
pcds[2] := 0.0;
pcds[3] := 0.20;
pcds[4] := 690.0;

END IF;

{ convert EULER ANGLES to direction cosines }

psi := 0.0;
phi := 0.0;
rad := pi/180.0;
st := SIN (theta*rad);
ct := COS (theta*rad);
sp := SIN (psi*rad);
cp := COS (psi*rad);
sphi := SIN (phi*rad);
cphi := COS (phi*rad);
xe[3] :=-1.0* alt;
b[l,l] := cp * ct;
b[l,2] := sp * ct;
b[l,3] := -1.0 * st;
b[2,l] := -1.0 * sp * cphi + cp * st * sphi;
b[2,2] := cp * cphi + sp * st *.sphi;
b[2,3] := ct * sphi;
b[3,l] := sp * sphi + cp * st * cphi;
b[3,2] := -1.0 * cp * sphi + sp * st * cphi;
b[3,3] := ct * cphi;

111

END {ASK} METHOD {Objlnit};

TELL METHOD jump;

BEGIN

WHILE bigloop = 0

WAIT DURATION dt;

IF(-1.0*xe[3])>hmin

g := gravCalc(h);
density Calc (h, rhoz, rho, sound);

IF cds = 690.0
dt := 0.01; { ONCE CANOPY INFLATES, DECREASE TIME STEP SIZE TO

0.01 }
ELSE

dt := 0.001; { OTHERWISE, START WITH A SMALLER STEP SIZE OF 0.001 -

--}
END IF;

radius := SQRT(cds/pi);
addedmass := rho*(4.0/3.0)*pi*POWER(radius,3.0);
distcm := (32.17*addedmass*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength)

+ cweight*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength)
+ sweight*(0.5*slength*COS(angIe)+dcglength)) /

(32.17*addedmass+weight+sweight+cweight);
sysmass := (weight+cweight+sweight)/32.17 + addedmass;
paymom := (1.0/12.0)*mass*(3.0*POWER((0.5*xcg),2.0) + POWER(xbod,2.0));
distcan := slength*COS(angle) + (4.0/3.0)*(radius/pi) - distcm;
distline := distcm - 0.5*slength*COS(angle);
distpay := distcm;

infl.l]
(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0)

+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59;
in[2,2] :=

(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0)
+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59;

in[3,3] := ((2.0/5.0)*(cweight/32.17)*POWER(radius,2.0) +
(2.0/3.0)*(rho*(4.0/3.0)*pi*POWER(radius,3.0)

* POWER(radius,2.0)) + (0.5*mass))/14.59;

FOR i := 1 TO 3
jn[i,i] := 1.0/in [i,i];

END FOR;

IF (-1.0*xe[3]) <= ShearAltl
IF (-1.0*xe[3]) <= ShearAlt2

vwind[2] := vs3;

112

ELSE
vwind[2] := vs2;

END IF;
ELSE

vwind[2] := vsl;
END IF;

pb :=wb[l];
qb :=wb[2];
rb :=wb[3];
uel := ue[l] - vwind[l];
ue2 := ue[2] - vwind[2];
ue3 := ue[3] - vwind[3];
vp := SQRT(POWER(uel,2.0) + POWER(ue2,2.0) + POWER(ue3,2.0));
vpo := vp;
mach := vp/sound;
ubl
ub2
ub3

= b[l,l]*uel + b[l,2]*ue2 + b[l,3]*ue3;
= b[2,l]*uel + b[2,2]*ue2 + b[2,3]*ue3;
= b[3,l]*uel + b[3,2]*ue2 + b[3,3]*ue3;

vpl3 := SQRT(POWER(ubl,2.0) + POWER(ub3,2.0));

{ USE SIN(ALPHA) for ALPHA and COS(BETA) for BETA }

IFvpo<1.0E-06
vpo := 1.0E-06;

END IF;

sbeta := ub2 / vpo;
cbeta:= vpl3 /vpo;
beta := sbeta;

IFvpl3<1.0E-06
vpl3 := 1.0E-06;

END IF;

salpha := ub3 / vpl3;
calpha := ubl / vpl3;
alpha := salpha;

{ AERODYNAMIC and BODY FORCES AND MOMENTS }

{ ISOLATED BODY AERODYNAMICS }

 BEGIN AERO ROUTINE ■
sac := salpha * calpha;
sas := salpha * ABS (salpha);
sbc := sbeta * cbeta;
sbs := sbeta * ABS(sbeta);
rad := cbar / (2.0*vpo); ,
cna2 := 0.0;
cnq :=0.0;
cyb2 := 0.0;
cyr :=0.0;

113

cmo :=0.0;
cma2 := 0.0;
cnb2 := 0.0;

{ FOREBODY AERO-LIFT DRAG COEFFIECffiNT }

i :=0;
loop := 0;
WHILE loop = 0 { WILL LOOP WHEN mach > pm[ip] UNTIL i = mpts }

i :=i + 1;
ip:=i+ 1;
IF i = mpts

cao := pcdf[2]; { when i = ipts }
loop := 1;

ELSE
IF mach <= pm[ip]

cao := pcdf[i]+(pcdf[ip]-pcdf[i])*(mach-pm[i])/(pm[ip]-pm[i]);
loop := 1;

END IF;
END IF;
END WHILE;

en := cna * sac + cna2 * sas + enq * qb * rad;
cy := cyb + sbc + cyb2 * sbs + cyr * rb * rad;
ca := cao + caa2 * (1.0 - POWER(calpha,2.0) * POWER(cbeta,2.0));
csl := clo + clp * pb * rad;
cm := cmo + cma * sac + cma2 * sas + cmq * qb * rad;
csn := cnb * sbc + cnb2 * sbs + enr * rb * rad;

{ PARACHUTE DRAG-AREA }

eds :=0.0;
i := 0;
loop := 0;

WHILE loop = 0
IFt<pt[l]

loop := 1;
ELSE

i :=i + 1;
ip:=i+ 1;
IF i = ipts

eds := pcds[ipts];
loop := 1;

ELSE
IF t <= pt [ip]

eds := pcds[i] + (pcds[ip]-pcds[i]) * (t-pt[i]) / (pt[ip]-pt[i]);
loop := 1;

END IF;
END IF;

END IF;
END WHILE;

114

• END AERO ROUTINE •

q := 0.5 * rho * vp;
fpc :=-1.0 *q *cds;
qs := 0.5 * rho * POWER (vp, 2.0) * sarea;
qsd := qs * cbar;
fb[l] := -1.0 * qs * ca + mass * g * b[l,3] + fpc * ubl;
fb[2] := qs * cy + mass * g * b[2,3] + fpc * ub2;
fb[3] := -1.0 * qs * en + mass * g * b[3,3] + fpc * ub3;
mb[l]
mb[2]
mb[3]

= qsd * csl;
;= qsd * cm + fpc * ub3 * (xbod - xcg);
:= qsd * csn - fpc * ub2 * (xbod - xcg);

gees := -1.0 * fb[l] / (mass * g);

IF ABS (gees) > ABS (gmax)
gmax := gees;

END IF;

IF printTrajectory
IF t >= tpr { THEN PRINT DATA }

tpr := tpr + dtpr;
h:=-1.0*xe[3];
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0));
qdyn := 0.5 * rho * POWER (vp,2.0);
bxy := SQRT (POWER (b[l,l], 2.0) + POWER (b[l,2],2.0));
theta := 57.295 * ATAN2 ((-1.0 * b[l,3]), bxy);
alphad := 57.295 * ATAN2 (salpha, calpha);
uxy := SQRT (POWER (ue[l],2.0) + POWER (ue[2],2.0));
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy);

OUTPUT ({myNumber, "L ", }SimTime," ", h," ", xe[l], " ", xe[2], " ", vpe, " ", vp,
", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", eds);

ASK stream TO WriteString (INTTOSTR(myNumber) + "L ");
ASK stream TO WriteString (REALTOSTR(SimTime) + "");
ASK stream TO WriteString (REALTOSTR(h) + "");
ASK stream TO WriteString (REALTOSTR(xe[l]) + "");
ASK stream TO WriteString (REALTOSTR(xe[2]) +"");
ASK stream TO WriteString (REALTOSTR(vpe) +"");
ASK stream TO WriteString (REALTOSTR(vp) + "");
ASK stream TO WriteString (REALTOSTR(mach) + "");
ASK stream TO WriteString (REALTOSTR(qdyn) + "");
ASK stream TO WriteString (REALTOSTR(gees) +"");
ASK stream TO WriteString (REALTOSTR(gammad) + "");
ASK stream TO WriteString (REALTOSTR(theta) + "");
ASK stream TO WriteString (REALTOSTR(alphad) + "");
ASK stream TO WriteString (REALTOSTR(cds));
ASK stream TO WriteLn;

END IF;
END IF;

{ EULER ROTATION FUNCTION FOR DIRECTION COSINE PROPOAGATION }

115

w2 := POWER(wb[l],2.0) + POWER(wb[2],2.0) + POWER(wb[3],2.0);
w := SQRT (w2);
coswt :=COS(w*dt);
sinwt :=SESf(w*dt);
coswtm := 1.0 - coswt;

IFw2<1.0E-12
w2 := 1.0E-12;
w := 1.0E-06;

END IF;

{ ANGULAR MOMENTUM CROSS PRODUCT TERMS }

FOR k := 1 TO 3
hb [k] := in[k,l] * wb[l] + in[k,2] * wb[2] + in[k,3] * wb[3];

END FOR;

FOR i := 1 TO 3
il:=e[i+l];
i2 := e[i+2];
temp[i] := wb[il] * hb[i2] - wb[i2] * hb[il];

END FOR;

{ FORCE RESOLUTION TO EULER SYSTEM }
{ TRANSLATIONS ACCELERATION AND DIRECTION COSINE ROTATION

FOR i := 1 TO 3
fe[i] := fb[l] * b[l,i] + fl>[2] * b[2,i] + fb[3] * b[3,i];
uedotfi] := fe[i] / mass;

FORj:=lT0 3
bn[ij]:=b[i,j];
jl:=e[j+l];
j2 := e[j+2];
bdotfij] := del[i,j]*coswt + wb[i]*wb[j]*coswtni/w2 + (wb[jl]*del[i,j2]

wb(J2]*del[ijl])* sinwt/w;
END FOR;

{ ANGULAR ACCELERATION IN BODY AXES }

wbdot[i] := jn[i,l]*(mb[l]-temp[l]) + jn[i,2]*(mb[2]-temp[2]) + jn[i,3]*(mb[3]-temp[3]);

END FOR;

{ INTEGRALS }

t := t + dt;
{ t := SimTime - myTime;} ■

xlast := xe[l];

FOR i := 1 TO 3

116

xe[i] := xe[i] + dt*(ue[i]+0.5*dt*uedot[i]);
ue[i] := ue[i] + dt*uedot[i];
wb[i] := wb[i] + dt*wbdot[i];
F0Rj:=lT0 3

b[i,j] := bdot[i,l]*bn[l,j] + bdot[i,2]*bn[2,j] + bdot[i,3]*bn[3 j];
END FOR;

END FOR;

{ INDUCE THE RANDOM BEHAVIOR OF THE T-10C TO TAKE INTO ACCOUNT
DRIFT }

{ DRIFT WILL ONLY BE INDUCED IF ALL OF THE FOLLOWING ARE MET

--}
{ 1) NO WIND }
{ 2) PARACHUTE IS FULLY INFLATED }

IF MAXOF (vwindfl], vwind[2]) > 0.0
addDrift := FALSE;

ELSE
addDrift := TRUE;

END IF

IF addDrift
IF t >= tdrift

tdrift := t + dtdrift;
ASK SELF TO changeDrift;

END IF;
END IF;

IF addDrift
IF t >= 6.5

xe[l]:=xe[l] + Xdrift*dt;
xe[2] := xe[2] + Ydrift*dt;

END IF;
END IF;

IFt<4.1
{ IFt>1.4}
{ xe[2] := xe[2] + ((xe[l]-xlast)*TAN(20.0*pi/180.0));}

xe[2] := xe[2] + 9.25/4100.0;
{ END IF;}

END IF;

{ UPDATING MOVING AND GROUND COORDINATE SYSTEMS -— }

xs[l] := Airdrop.Information[l].xg - xe[l];
xs[2] := xe[2];
xs[3] := xe[3];
xg[l] := Airdrop.Information[l].xg - xs[l];
xg[2]:=xe[2];
xg[3] := xe[3];

{
OUTPUT ("Lead Aircraft xg : ", Airdrop.Information[l].xg, " jumper ", myNumber, "L xs : ", xs[l]," xg :
", xg[l]);

117

{POLL ALL VORTICES FOR MISSED DISTANCE}

IF t >= tpoll
IF cds >= pcds[4]

tpoll := tpoll + dtpoll;
FORi:=lTOmyPlane-l;

ASK SELF TO pollVortices (i);
END FOR;

END IF;
END IF;

ELSE { when -xe[3] <= hmin, THEN PRINT DATA FOR LAST TIME }

h :=-1.0*xe[3];
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0));
qdyn := 0.5 * rho * POWER (vp,2.0);
bxy := SQRT (POWER (b[l,l],2.0) + POWER (b[l,2],2.0));
theta := 57.295 * ATAN2 ((-1.0 * b[l,3]). bxy);
alphad := 57.295 * ATAN2 (salpha, calpha);
uxy := SQRT (POWER(ue[l],2.0) + POWER(ue[2],2.0));
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy);

OUTPUT (myNumber, "L ", myPlane,"", SimTime," ", h,"", xe[l]," ", xe[2]," ", vpe,
vp,"", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds);

ASK streams TO WriteString (INTTOSTR(repeat) + "");
ASK streams TO WriteString (INTTOSTR(myNumber) + "L ");
ASK streams TO WriteString (INTTOSTR(myPlane) + "");
ASK streams TO WriteString (REALTOSTR(SimTime) + "");
ASK streams TO WriteString (REALTOSTR(h) + "");
ASK streams TO WriteString (REALTOSTR(xe[l]) + "");
ASK streams TO WriteString (REALTOSTR(xe[2]) + "");
ASK streams TO WriteString (REALTOSTR(vpe) + "");
ASK streams TO WriteString (REALTOSTR(vp) + "");
ASK streams TO WriteString (REALTOSTR(mach) + "");
ASK streams TO WriteString (REALTOSTR(qdyn) + "");
ASK streams TO WriteString (REALTOSTR(gees) + "");
ASK streams TO WriteString (REALTOSTR(gammad) + "");
ASK streams TO WriteString (REALTOSTR(theta) +"");
ASK streams TO WriteString (REALTOSTR(alphad) + "");
ASK streams TO WriteString (REALTOSTR(cds));
ASK streams TO WriteLn;

IF printTrajectory
ASK stream TO WriteString (INTTOSTR(myNumber) + "L");
ASK stream TO WriteString (REALTOSTR(SimTime) + "");
ASK stream TO WriteString (REALTOSTR(h) + "");
ASK stream TO WriteString (REALTOSTR(xe[l]) + "");
ASK stream TO WriteString (REALTOSTR(xe[2]) + "");
ASK stream TO WriteString (REALTOSTR(vpe) + "");
ASK stream TO WriteString (REALTOSTR(vp) + "");

118

ASK stream TO WriteString (REALTOSTR(mach) + "");
ASK stream TO WriteString (REALTOSTR(qdyn) + "");
ASK stream TO WriteString (REALTOSTR(gees) +"");
ASK stream TO WriteString (REALTOSTR(gammad) + " ");
ASK stream TO WriteString (REALTOSTR(theta) +"");
ASK stream TO WriteString (REALTOSTR(alphad) +"");
ASK stream TO WriteString (REALTOSTR(cds));
ASK stream TO WriteLn;

END IF;

bigloop := 1;

ENDBF{hmin};

END WATT;

END WHILE;

IF printTrajectory
ASK stream TO Close;
DISPOSE (stream);

END IF;

DISPOSE (SELF);

END {ASK} METHOD {jump};

ASK METHOD initialize (IN stick : INTEGER;
IN Counter: INTEGER);

BEGIN

myPlane := Counter;
myNumber := stick;
gees := 0.0;
cds := 0.0;
myTime := SimTime;
t = SimTime-myTime;
gmax := 0.0;
tpr := t;
tpoll :=t;
tdrift := t + dtdrift;
alt :=-1.0*xe[3];
h := alt;
bigloop :=0;
myDrift := seedl.UniformReal (0.0,4.0);

myDrift := seed 1.Normal (2.0,0.5);}
myDriftDirection := seed2.UniformReal (0.0, 360.0);
myDriftDirection := seed2,Normal (0.0, 2.8125);}

xe[l] := Airdrop.Information[myPlane].xg;
xlast :=xe[l];
xe[2] := Airdrop.Information[my Plane] .yg - 9.25;
alt := Airdrop.Informationfmy Plane] .altitude;

119

xe[3] :=-1.0* alt;
ue[l] := Airdrop.Information[myPlane].vf;
vwind[l] := Headwind;

NEW (lastRightLocation, 1..my Plane-1);
NEW (lastLeftLocation, l..myPlane-l);

FOR i := 1 TO my Plane-1
lastRightLocationfi] := 1;
lastLeftLocation[i] := 1;

END FOR;

ASKSELFTOfindDrift;

IF printTrajectory
NEW (stream);
outfile := "LJ" + INTTOSTR(myPlane) + INTTOSTR(myNumber) + extension + ".mat";
ASK stream TO Open (outfile, Output);

END IF;

{
OUTPUT ();
OUTPUT ("My airplane :", myPlane);
OUTPUT ("Exit time :", SimTime);
OUTPUT ("My number :", stick, "L");
OUTPUT ("My weight :", weight);
OUTPUT ("Xs :",xe[l]);
OUTPUT ("Ys :", xe[2]);
OUTPUT ("altitude :", alt);
}
ASK streaml TO WriteString (INTTOSTR(repeat) + "");
ASK streaml TO WriteString (INTTOSTR(myPlane) + "");
ASK streaml TO WriteString (REALTOSTR(SimTime) + "");
ASK streaml TO WriteString (INTTOSTR(stick) + "L ");
ASK streaml TO WriteString (REALTOSTR(weight) + "");
ASK streaml TO WriteString (REALTOSTR(xe[l]) + "");
ASK streaml TO WriteString (REALTOSTR(xe[2]) + "");
ASK streaml TO WriteString (REALTOSTR(alt) + "");
ASK streaml TO WriteLn;

END METHOD {initialize};

ASK METHOD pollVortices (IN vortexPlane : INTEGER);

VAR

x, xcordl, xcord2, vvx, vjx : REAL;
y, ycordl, ycord2, vvy, vjy : REAL;
z, zcordl, zcord2, vvz, vjz : REAL;
vjdistance, vvdistance, distance : REAL;
projection : REAL;
i, location : INTEGER;
check : BOOLEAN;
startRightSearch : INTEGER;

120

startLeftSearch : INTEGER;

BEGIN

check := FALSE;
location := 0;

startRightSearch := lastRightLocationfvortexPlane];

{
OUTPUT ("Current search is of plane ", currentRightVortex);
OUTPUT ("Start searching from position ", startRightSearch);
}

{POLL RIGHT VORTEX}

FOR i := startRightSearch TO Airdrop.Information[vortexPlane].NumberOfSteps
IF location = 0

IF (ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].xCord-
xs[l])) <= 50.0

lastRightLocationfvortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].zCord+xs[3]))<=50.0
lastRightLocationfvortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].yCord-xs[2]))<=50.0
check := TRUE;
location := i;
IF location = Airdrop.Information[vortexPlane].NumberOfSteps

check := FALSE;
END IF;
lastRightLocationfvortexPlane] := i;

ELSE
location := i;

END IF;
ELSE

location := i; '
END IF;

END IF;
ELSE

EXIT;
END IF;

END FOR;

IF check
xcordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].xCord;
ycordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].yCord;
zcordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].zCord;
xcord2 :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].xCord;
ycord2 :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].yCord;

121

zcord2
Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].zCord;

vvx := xcord2-xcordl;
vvy := ycord2-ycordl;
vvz := zcord2-zcordl;

vjx :=xs[l]-xcordl;
vjy :=xs[2]-ycordl;
vjz := -1.0*xs[3]-zcordl;

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0));
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0));
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance;
distance := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0));
IF distance <;

MAXOF(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].radius,
Airdrop.InformationfvortexPlane] .C17.RightVortex.CompletePosition[location+1] .radius)

OUTPUT (myNumber, "L ", myPlane, " RV ", vortexPlane, " ", -1.0*xe[3], " ", distance,
", location,"", SimTime);

ASK streamE TO WriteString (ENTTOSTR(repeat) + "");
ASK streamE TO WriteString (INTTOSTR(myNumber) + "L ");
ASK streamE TO WriteString (INTTOSTR(myPlane) + " RV ");
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + "");
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + "");
ASK streamE TO WriteString (REALTOSTR(distance) + "");
ASK streamE TO WriteString (REALTOSTR(location) + "");
ASK streamE TO WriteString (REALTOSTR(SimTime));
ASK streamE TO WriteLn;

ELSE
{

OUTPUT (myNumber, "L no encounter with right vortex of C-17 number", vortexPlane, '
at distance", distance);
}

END IF;
ELSE

{
OUTPUT (myNumber, "L no encounter with right vortex of C-17 number", vortexPlane);

}
END IF;

check := FALSE;
location := 0;

startLeftSearch := lastLeftLocation[vortexPlane];
{
OUTPUT ("Current search is of plane ", currentLeftVortex);
OUTPUT ("Start searching from position ", startLeftSearch);
}

{POLL LEFT VORTEX}

122

FOR i := startLeftSearch TO Airdrop.Information[vortexPlane].NumberOfSteps
IF location = 0

IF (ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].xCord-
xs[l])) <= 50.0

lastLeftLocationfvortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].zCord+xs[3]))<=50.0
lastRightLocationfvortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].yCord-xs[2]))<=50.0
check := TRUE;
location := i;
IF location = Airdrop.Information[vortexPlane] .NumberOfSteps

check := FALSE;
END IF;
lastRightLocation[vortexPlane] := i;

ELSE
location := i;

END IF;
ELSE

location := i;
END IF;

END IF;
ELSE

EXIT;
END IF;

END FOR;

IF check
xcordl :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].xCord;
ycordl :=

Airdrop.Information[vortexPlane] .C17.LeftVortex.CompletePosition[location] .yCord;
zcordl :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].zCord;
xcord2 :=

Airdrop.InformationfvortexPlane] .C17.LeftVortex.CompletePosition[location+1] .xCord;
ycord2 :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].yCord;
zcord2 :=

Airdrop.Information[vortexPlane].C17.LeftVortex.ConipletePosition[location+l].zCord;

vvx := xcord2-xcordl;
vvy := ycord2-ycordl;
vvz := zcord2-zcordl;

vjx :=xs[l]-xcordl;
vjy := xs[2]-ycordl;
vjz := -1.0*xs[3]-zcordl;

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0));
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0));

123

projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance;
distance := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0));
IF distance <=

MAXOF(Airdrop.Infonnation[vortexPlane].C17.LeftVortex.CompletePosition[location].radius,
Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].radius)

OUTPUT (myNumber, "L", myPlane," LV", vortexPlane,"", -1.0*xe[3],"", distance,"",
location," ", SimTime);

ASK streamE TO WriteString (INTTOSTR(repeat) + "");
ASK streamE TO WriteString (INTTOSTR(myNumber) + "L ");
ASK streamE TO WriteString (INTTOSTR(myPlane) + " LV ");
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + "");
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + "");
ASK streamE TO WriteString (REALTOSTR(distance) + "");
ASK streamE TO WriteString (REALTOSTR(location) + "");
ASK streamE TO WriteString (REALTOSTR(SimTime));
ASK streamE TO WriteLn;

ELSE
{

OUTPUT (myNumber, "L no encounter with left vortex of C-17 number", vortexPlane," at
distance", distance);
}

END IF;
ELSE

OUTPUT (myNumber, "L no encounter with left vortex of C-17 number", vortexPlane);

}
END IF;

END METHOD {pollVortices};

ASK METHOD changeDrift;
BEGIN

myDrift := seedl .UniformReal (0.0,4.0);
{ myDrift := seedl.Normal (2.0, 0.5);}

myDriftDirection := seed2.Normal (myDriftDirection, 2.8125);
ASKSELFTOfindDrift;

END {ASK} METHOD {changeDrift}',

ASK METHOD findDrift;
BEGIN

Xdrift := myDrift * COS (myDriftDirection*pi/180.0);
Ydrift := myDrift * SIN (myDriftDirection*pi/180.0);

END {ASK} METHOD {findDrift};

END OBJECT {leftJumperObj};

END {IMPLEMENTATION} MODULE {leftJumperMod}.

124

Definition Right Jumper Module

DEFINITION MODULE rightJumperMod;

FROM IOMod IMPORT StreamObj, FileUSeType(Output);
FROM globalMod IMPORT eType, matrixType, vectorType, encounterType;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM VortexControlMod IMPORT VortexControl;

TYPE

righUumperObj = OBJECT

il,
i2,
iend,
ipts,
ip.
jl.
J2,
k,
loop,
mpts,
myNumber,
myPlane,
bigloop: INTEGER;

alt,
alpha,
alphad,
beta,
bxy,
ca,
cao,
caa2,
calpha,
cbar,
cbeta,
cby2,
cds,
clo,
clp,
cm,
cma,
cma2,
cmo,
cmq,
en,
cna,
cna2,

125

cnb,
cnb2,
cnq,
cnr,
coswt,
coswtm,

cp.
cphi,
csl,
csn,
ct,

cy,
cyb,
cyb2,
cyr,
dens,
deptime,
dt,
dtpr,
dtpoll,
dtdrift,
fpc,
g.
gammad,
gees,
gmax,
h,
hmin,
mach,
mass,
myTime,
myDrift,
myDriftDirection,
pb,
phi,
psi,

q.
qb,
qdyn,
qs,
qsd,
rad,
rb,
rho,
rhoz,
sac,
sas,
sarea,
salpha,
sbc,
sbeta,
sbs,
sinwt,

126

sound,
sp,
sphi,
st,
t,
theta,
tpr,
tpoll,
tdrift,
ubl,
ub2,
ub3,
uel,
ue2,
ue3,
uxy,
vp,
vpl3,
vpe,
vpo,
w,
w2,
weight,
xbod,
xcg,
Xdrift,
xlast,
Ydrift : REAL;

slength : REAL; {length of suspension lines}
angle : REAL; {the angle (in radians) which defines the "cone" of the suspension lines}
dcglength : REAL; {distance from end of suspension lines to paratrooper e.g.}
cweight : REAL; {weight of canopy}
sweight : REAL; {weight of suspension lines}

radius REAL;
addedmass : REAL;
distcm :REAL;
sysmass :REAL;
paymom .-REAL;
distcan REAL;
distline : REAL;
distpay :REAL;

addDrift : BOOLEAN;

peds,
Pt,
pedf,
pm : vectorType; {1X2}

xe,
xs,

127

xg,
ue,
wb,
vwind,
temp,
fb,
m,
mb,
fe,
uedot,
wbdot,
hb :vectorType; {1X3}

in,

jn.
b,
bn,
bdot: matrixType; {3X3}

lastRightLocation,
lastLeftLocation : eType; {Dynamic Array}

outfile: STRING;

stream: StreamObj;

encounter : encounterType;

ASK METHOD Objlnit;
TELL METHOD jump;
ASK METHOD initialize (IN stick : INTEGER;

IN myPlane: INTEGER);
ASK METHOD pollVortices (IN vortexPlane : INTEGER);
ASK METHOD changeDrift;
ASK METHOD findDrift;

END OBJECT {rightJumperObj};

END {DEFINITION} MODULE {righUumperMod}.

128

Implementation Right Jumper Module

IMPLEMENTATION MODULE rightJumperMod;

FROM MathMod IMPORT EXP, SIN, COS, POWER, SQRT, ATAN2, TAN, pi;
FROM VortexMod IMPORT RightVortexObj, LeftVortexObj;
FROM globalMod IMPORT re, e, del, i, j, NumberofPlanes, seedl, seed2, seed3, repeat;
FROM inputMod IMPORT streaml, streamE, streams, extension, printTrajectory;
FROM globalMod IMPORT CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2,
HeadWind, vsl, vs2, vs3;
FROM calcMod IMPORT gravCalc, densityCalc;
FROM SimMod IMPORT SimTime;
FROM VortexControlMod IMPORT VortexControl, Airdrop;

{TROUBLE SHOOTING INPUT}
{
FROM inputMod IMPORT dtdrift;
}
OBJECT righUumperObj;

ASK METHOD Objlnit;

BEGIN
NEW(pcdf, 1..2);
NEW(pm , 1..2);

NEW(fb , 1..3);
NEW(fe , 1..3);
NEW(hb , 1..3);
NEW(mb , 1..3);
NEW(temp, 1..3);
NEW(ue ,1..3);
NEW(uedot, 1..3);
NEW(vwind, 1..3);
NEW(wb , 1..3);
NEW(wbdot, 1..3);
NEW(xe , 1..3);
NEW(xs , 1..3);
NEW(xg ,1..3);

NEW(pcds, 1..4);
NEW(pt , 1..4);

NEW(in , 1..3, 1..3);
NEW(jn , 1..3, 1..3);
NEW(b , 1..3, 1..3);
NEW(bn , 1..3, 1..3);
NEW(bdot, 1..3, 1..3);

{ system inertial properties }

129

down }

{ parachute-payload system weight (lbs) = wight of jumper/gear + weight of T- IOC }
weight := seed3.Normal (250.0,25.0);

mass := weight/32.17;
xcg := 0.5; { forebody e.g. (ft) in the horizontal}
xbod := 6.0; { forebody length (ft) in the vertical}

FOR i := 1 TO 3
FORj:=lT0 3

jn[i j] := 0.0;
in[i,j] := 0.0;

END {j} FOR;
END {i} FOR;

{ initial conditions }

FOR i := 1 TO 3
xe[i] := 0.0; { (ft) 1: down range, 2: off range, 3: altitude loss }
ue[i] := 0.0; { (fps) 1: horizontal velocity, 2: lateral velocity, 3: ejection velocity positive

wb[i] := 0.0; { ??? }
vwind[i] := 0.0; { (fps) 1: head (+) or tail (-) wind, 2: crosswind, 3: ???? }

END FOR;

alt := 0.0; { altitude (ft) }
hmin := 0.0; {ground level (ft) }
ue[l] := 0.0; { horizontal velocity (fps) }
ue[3] := 0.0; { ejection velocity, positive down }
theta := 0.0; { pitch angle (deg) nose up positive }
vwindfl] := 0.0; { head (+) or tail (-) wind (fps) }
vwind[2] := 0.0; { crosswind (fps) }
dens := 0.0; { density (0 for standard atms) in slug/ftA3 }
rhoz := 0.002378; { ???? }

IF dens o 0.0
rhoz := dens * EXP (alt/23111.0 - 0.295 * SIN(alt/28860.0) - 0.213 * SIN(alt/86580.0))

END IF;

{ program constants }

dtpr :=0.1; { print interval (sec) }
dtpoll := 0.5; { poll vortex positions every 0.5 seconds }
dtdrift := 5.0; { change drift angle +/- 45.0 from current drift angle every 10 seconds }

{ forebody aerodynamic coefficients }

cbar := 6.0; { reference length (ft) }
sarea := POWER(0.5,2.0)*pi;,{ reference area (ftA2) }
cna := 0.0; { normal force cn-alpha (/rad) }
cyb := 0.0; { side force cy-beta (/rad) }
caa2 := 0.0; { axial force ca-alphaA2 (/radA2) }
clo := 0.0; { roll torque coefficient (dimensionless) }

130

clp := 0.0; { roll damping coefficient (/rad) }
cma := -2.0; { pitch moment cm-alpha (/rad) }
cmq := -200.0; { pitch damping (/rad) }
cnb := 0.0; { yaw moment cn-beta (/rad) }
cnr := 0.0; { yaw damping (/rad) }

{ forebody drag versus mach number table }

mpts := 2;
pm[l] := 0.00; { mach number }
pm[2] :=2.00;
pcdffl] := 0.73+0.06*(360.0 - weight)/180.0; { drag coefficient}
pcdf[2] := 0.73+0.06*(360.0 - weight)/180.0;

{ parachute drag-area versus time table }

deptime := 0.25; { deployment time }
ipts := 2;

IF deptime > 0.0
ipts := ipts + 2; { ipts = 4 }
pt[l]
pt[2]
pt[3]
pt[4]
pcdsfl]
pcds[2]
pcds[3]
pcds[4]

END IF;

:= 0.0;
:= deptime;
:= 0.00 + deptime;
:= 2.80 + deptime;

:= 0.0;
:= 0.0;
:= 0.20;
:= 690.0;

{ convert EULER ANGLES to direction cosines }

psi := 0.0;
phi := 0.0;
rad := pi/180.0;
st := SIN (theta*rad);
ct := COS (theta*rad);
sp := SIN (psi*rad);
cp := COS (psi*rad);
sphi := SIN (phi*rad);
cphi := COS (phi*rad);
xe[3] :=-1.0* alt;
b[l,l] :=cp*ct;
b[l,2] := sp * ct;
b[l,3] := -1.0 * st;
b[2,l] := -1.0 * sp * cphi + cp * st * sphi;
b[2,2] := cp * cphi + sp * st * sphi;
b[2,3] := ct * sphi;
b[3,l] := sp * sphi + cp * st * cphi;
b[3,2] := -1.0 * cp * sphi + sp * st * cphi;
b[3,3] := ct * cphi;

131

END {ASK} METHOD {Objlnit};

TELL METHOD jump;

BEGIN

WHILE bigloop = 0

WAIT DURATION dt;

IF(-1.0*xe[3])>hmin

g := gravCalc(h);
densityCalc (h, rhoz, rho, sound);

0.01

IF cds = 690.0
dt := 0.01; { ONCE CANOPY INFLATES, DECREASE TIME STEP SIZE TO

ELSE
dt := 0.001; { OTHERWISE, START WITH A SMALLER STEP SIZE

END IF;

radius := SQRT(cds/pi);
addedmass := rho*(4.0/3.0)*pi*POWER(radius,3.0);
distcm := (32.17*addedmass*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength)

+ cweight*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength)
+ sweight*(0.5*slength*COS(angle)+dcglength)) /

(32.17*addedmass+weight+sweight+cweight);
sysmass := (weight+cweight+sweight)/32.17 + addedmass;
paymom := (1.0/12.0)*mass*(3.0*POWER((0.5*xcg),2.0) + POWER(xbod,2.0));
distcan := slength*COS(angle) + (4.0/3.0)*(radius/pi) - distcm;
distline := distcm - 0.5*slength*COS(angle);
distpay := distcm;

in[l,l] :=
(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0)

+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59;
in[2,2] :=

(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0)
+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59;

in[3,3] := ((2.0/5.0)*(cweight/32.17)*POWER(radius,2.0) +
(2.0/3.0)*(rho*(4.0/3.0)*pi*POWER(radius,3.0)

* POWER(radius,2.0)) + (0.5*mass))/14.59;

FOR i := 1 TO 3
jn[i,i] := 1.0/in [i,i];

END FOR;

IF (-1.0*xe[3]) <= ShearAltl
IF (-1.0*xe[3]) <= ShearAlt2

vwind[2] := vs3;
ELSE

132

vwind[2] := vs2;
END IF;

ELSE
vwind[2] :=vsl;

END IF;

pb :=wb[l];
qb :=wb[2];
rb :=wb[3];
uel := ue[l] - vwindfl];
ue2 := ue[2] - vwind[2];
ue3 := ue[3] - vwind[3];
vp := SQRT(POWER(uel,2.0) + POWER(ue2,2.0) + POWER(ue3,2.0));
vpo := vp;
mach := vp/sound;
ubl
ub2
ub3

= b[l,l]*uel + b[l,2]*ue2 + b[l,3]*ue3
= b[2,l]*uel + b[2,2]*ue2 + b[2,3]*ue3
= b[3,l]*uel + b[3,2]*ue2 + b[3,3]*ue3

vpl3 := SQRT(POWER(ubl,2.0) + POWER(ub3,2.0));

{ USE SIN(ALPHA) for ALPHA and COS(BETA) for BETA }

IFvpo<1.0E-06
vpo := 1.0E-06;

END IF;

sbeta := ub2 / vpo;
cbeta := vpl3/vpo;
beta := sbeta;

IFvpl3<1.0E-06
vpl3 := 1.0E-06;

END IF;

salpha:=ub3/vpl3;
calpha:=ubl /vpl3;
alpha :=salpha;

{ AERODYNAMIC and BODY FORCES AND MOMENTS

{ ISOLATED BODY AERODYNAMICS }

{ BEGIN AERO ROUTINE • }

sac := salpha * calpha;
sas := salpha * ABS (salpha);
sbc := sbeta * cbeta;
sbs := sbeta * ABS(sbeta);
rad := cbar / (2.0*vpo); r

cna2 := 0.0;
cnq :=0.0;
cyb2 := 0.0;
cyr :=0.0;

133

cmo :=0.0;
cma2 := 0.0;
cnb2 := 0.0;

{ FOREBODY AERO-LIFT DRAG COEFFICIENT }

i :=0;
loop := 0;
WHILE loop = 0 {WILL LOOP WHEN mach > pm[ip] UNTIL i = mpts}

i :=i+ 1;
ip :=i + 1;
IF i = mpts

cao := pcdf[2]; { when i = ipts }
loop := 1;

ELSE
IF mach <= pm[ip]

cao := pcdfli]+(pcdf[ip]-pcdf[i])*(mach-pm[i])/(pm[ip]-pm[i]);
loop := 1;

END IF;
END IF;
END WHILE;

en := cna * sac + cna2 * sas + enq * qb * rad;
cy := cyb + sbc + cyb2 * sbs + cyr * rb * rad;
ca := cao + caa2 * (1.0 - POWER(calpha,2.0) * POWER(cbeta,2.0));
csl := clo + clp * pb * rad;
cm := cmo + cma * sac + cma2 * sas + cmq * qb * rad;
csn := cnb * sbc + cnb2 * sbs + enr * rb * rad;

{ PARACHUTE DRAG-AREA }

eds :=0.0;
i :=0;
loop := 0;

{ THIS LOOP INFLATES THE PARACHUTE }

WHILE loop = 0
IFt<pt[l]

loop := 1;
ELSE

i := i + 1;
ip:=i + l;
IF i = ipts

eds :=pcds[ipts];
loop := 1;

ELSE
IF t <= pt [ip]

eds := pedsfij + (pcds[ip]-pcds[i]) * (t-pt[i]) / (pt[ip]-pt[i]);
loop := 1;

END IF;
END IF;

END IF;

134

END WHILE;

— END AERO ROUTINE }

q := 0.5 * rho * vp;
fpc := -1.0 * q * cds;
qs := 0.5 * rho * POWER (vp, 2.0) * sarea;
qsd := qs * cbar;
fb[l] := -1.0 * qs * ca + mass * g * b[l,3] +fpc * ubl;
fb[2] := qs * cy + mass * g * b[2,3] + fpc * ub2;
fb[3] := -1.0 * qs * en + mass * g * b[3,3] + fpc * ub3;
mb[l] :=qsd * csl;
mb[2] := qsd * cm + fpc * ub3 * (xbod - xcg);
mb[3] := qsd * csn - fpc * ub2 * (xbod - xcg);
gees := -1.0 * fb[l] / (mass * g);

IF ABS (gees) > ABS (gmax)
gmax := gees;

END IF;

IF printTrajectory
IF t >= tpr { THEN PRINT DATA }

tpr := tpr + dtpr;
h:=-1.0*xe[3];
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0));
qdyn := 0.5 * rho * POWER (vp,2.0);
bxy := SQRT (POWER (b[l,l], 2.0) + POWER (b[l,2],2.0));
theta := 57-295 * ATAN2 ((-1.0 * b[l,3]), bxy);
alphad := 57.295 * ATAN2 (salpha, calpha);
uxy := SQRT (POWER (ue[l],2.0) + POWER (ue[2],2.0));
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy);

{
OUTPUT (myNumber, "R ", SimTime, " ", h," ", xe[l]," ", xe[2], " ", vpe, " ", vp,

mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds);
}

ASK stream TO WriteString (INTTOSTR(myNumber) + "R ");
ASK stream TO WriteString (REALTOSTR(SimTime) + "");
ASK stream TO WriteString (REALTOSTR(h) + "");
ASK stream TO WriteString (REALTOSTR(xe[1]) + "");
ASK stream TO WriteString (REALTOSTR(xe[2]) + "");
ASK stream TO WriteString (REALTOSTR(vpe) + "");
ASK stream TO WriteString (REALTOSTR(vp) + "");
ASK stream TO WriteString (REALTOSTR(mach) + "");
ASK stream TO WriteString (REALTOSTR(qdyn) + " ");
ASK stream TO WriteString (REALTOSTR(gees) + "");
ASK stream TO WriteString (REALTOSTR(gammad) + "");
ASK stream TO WriteString (REALTOSTR(theta) + "");
ASK stream TO WriteString (REALTOSTR(alphad) + "");
ASK stream TO WriteString (REALTOSTR(cds));
ASK stream TO WriteLn;

END IF;
END IF;

135

{ EULER ROTATION FUNCTION FOR DIRECTION COSINE PROPOAGATION }

w2 := POWER(wb[l],2.0) + POWER(wb[2],2.0) + POWER(wb[3],2.0);
w := SQRT (w2);
coswt := COS (w*dt);
sinwt := SIN (w*dt);
coswtm := 1.0 - coswt;

IFw2<1.0E-12
w2 := 1.0E-12;
w := 1.0E-06;

END IF;

{ ANGULAR MOMENTUM CROSS PRODUCT TERMS }

FOR k := 1 TO 3
hb [k] := in[k,l] * wb[l] + in[k,2] * wb[2] + in[k,3] * wb[3];

END FOR;

FOR i := 1 TO 3
il:=e[i+l];
i2:=e[i+2];
tempfi] := wb[il] * hb[i2] - wb[i2] * hb[il];

END FOR;

{ FORCE RESOLUTION TO EULER SYSTEM }
{ TRANSLATIONAL ACCELERATION AND DIRECTION COSINE ROTATION }

FOR i := 1 TO 3
fe[i] := fb[l] * b[l,i] + fb[2] * b[2,i] + fb[3] * b[3,i];
uedotfi] := fe[i] / mass;

FORj:=lT0 3
bn[ij]:=b[ij];
jl:=e[j+l];
j2:=e[j+2];
bdotfij] := del[i,j]*coswt + wb[i]*wb[j]*coswtni/w2 + (wb[jl]*del[i,j2]

wb[j2] *del[i j 1])* sinwt/w;
END FOR;

{ ANGULAR ACCELERATION IN BODY AXES }

wbdotfi] := jn[i,l]*(mb[l]-temp[l]) + jn[i,2]*(mb[2]-temp[2]) + jn[i,3]*(mb[3]-temp[3]);

END FOR;

{ INTEGRALS }

t := t + dt;
{ t := SimTime-myTime;}

xlast := xe[l];

136

FOR i := 1 TO 3
xe[i] := xe[i] + dt*(ue[i]+0.5*dt*uedot[i]);
ue[i] := ue[i] + dt*uedot[i];
wb[i] := wb[i] + dt*wbdot[i];
FORj:=lT0 3

b[ij] := bdot[i,l]*bn[lj] + bdot[i,2]*bn[2,j] + bdot[i,3]*bn[3j];
END FOR;

END FOR;

{ INDUCE A DRIFT DIRECTION AND VELOCITY ON THE PARATROOP }
{ DRIFT WILL ONLY BE INDUCED IF ALL OF THE FOLLOWING ARE MET -— }
{ -— 1) NO WIND -— }
{ 2) PARACHUTE IS FULLY INFLATED AND AFTER SECOND VERTICLE }

IF ABS(MAXOF (vwind[l], vwind[2])) > 0.0
addDrift := FALSE;

ELSE
addDrift := TRUE;

END IF

IF addDrift
IF t >= tdrift

tdrift := t + dtdrift;
ASK SELF TO changeDrift;

END IF;
END IF;

IF addDrift
IF t >= 6.5

xe[l] := xe[l] + Xdrift*dt;
xe[2] := xe[2] + Ydrift*dt;

END IF;
END IF;

IFt<4.1
xe[2] := xe[2] - 9.25/4100.0;

END IF;

{ UPDATING MOVING AND GROUND COORDINATE SYSTEMS }

xs[l] := Airdrop.Information[l].xg - xe[l];
xs[2] := xe[2];
xs[3] := xe[3];
xg[l] := Airdrop.Information[l].xg - xs[l];
xg[2]:=xe[2];
xg[3]:=xe[3];

{
OUTPUT ("Lead Aircraft xg : ", Airdrop.Information[l].xg, " jumper ", myNumber, "R xs : ", xs[l]," xg :
". xg[l]);
}

{ POLL ALL VORTICES FOR MISSED DISTANCE }

137

IF t >= tpoll
IF cds >= pcds[4]

tpoll := tpoll + dtpoll;
FOR i := 1 TO myPlane-1;

ASK SELF TO pollVortices (i);
END FOR;

END IF;
END IF;

ELSE { when -xe[3] <= hmin, THEN PRINT DATA FOR LAST TIME }

h := -1.0 * xe[3];
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0));
qdyn := 0.5 * rho * POWER (vp,2.0);
bxy := SQRT (POWER (b[l,l],2.0) + POWER (b[l,2],2.0));
theta := 57.295 * ATAN2 ((-1.0 * b[l,3]), bxy);
alphad := 57.295 * ATAN2 (salpha, calpha);
uxy := SQRT (POWER(ue[l],2.0) + POWER(ue[2],2.0));
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy);

OUTPUT (myNumber, "R ", myPlane," ", SimTime, " ", h, " ", xe[l]," ", xe[2], " ", vpe,
vp,"", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds);

ASK streams TO WriteString (INTTOSTR(repeat) + "");
ASK streams TO WriteString (INTTOSTR(myNumber) + "R ");
ASK streams TO WriteString (INTTOSTR(myPlane) +"");
ASK streams TO WriteString (REALTOSTR(SimTime) + "");
ASK streams TO WriteString (REALTOSTR(h) + "");
ASK streams TO WriteString (REALTOSTR(xe[l]) + "");
ASK streams TO WriteString (REALTOSTR(xe[2]) + "");
ASK streams TO WriteString (REALTOSTR(vpe) + "");
ASK streams TO WriteString (REALTOSTR(vp) + "");
ASK streams TO WriteString (REALTOSTR(mach) + "");
ASK streams TO WriteString (REALTOSTR(qdyn) + "");
ASK streams TO WriteString (REALTOSTR(gees) + "");
ASK streams TO WriteString (REALTOSTR(gammad) +"");
ASK streams TO WriteString (REALTOSTR(theta) +"");
ASK streams TO WriteString (REALTOSTR(alphad) + "");
ASK streams TO WriteString {REALTOSTR(cds));
ASK streams TO WriteLn;

IF printTrajectory

ASK stream TO WriteString (INTTOSTR(myNumber) + "R ");
ASK stream TO WriteString (REALTOSTR(SimTime) + "");
ASK stream TO WriteString (REALTOSTR(h) + "");
ASK stream TO WriteString (REALTOSTR(xe[l]) + "");
ASK stream TO WriteString (REALTOSTR(xe"[2]) + "");
ASK stream TO WriteString (REALTOSTR(vpe) + "");
ASK stream TO WriteString (REALTOSTR(vp) + "");
ASK stream TO WriteString (REALTOSTR(mach) + "");
ASK stream TO WriteString (REALTOSTR(qdyn) + "");

138

ASK stream TO WriteString (REALTOSTR(gees) + "");
ASK stream TO WriteString (REALTOSTR(gammad) + "");
ASK stream TO WriteString (REALTOSTR(theta) + "");
ASK stream TO WriteString (REALTOSTR(alphad) + "");
ASK stream TO WriteString (REALTOSTR(cds));
ASK stream TO WriteLn;

END IF;

bigloop := 1;

ENDIF{hmin};

END WAIT;

END WHILE;

IF printTrajectory
ASK stream TO Close;
DISPOSE (stream);

END IF;

DISPOSE (SELF);

END {ASK} METHOD {jump};

ASK METHOD initialize (IN stick : INTEGER;
IN Counter: INTEGER);

BEGIN

myPlane := Counter;
myNumber := stick;
gees := 0.0;
cds := 0.0;
myTime := SimTime;
t := SimTime-myTime;
gmax := 0.0;
tpr :=t;
tpoll := t;
tdrift := t + dtdrift;
alt :=-1.0*xe[3];
h := alt;
bigloop :=0;
myDrift := seedl.UniformReal (0.0,4.0);
myDrift := seedLNormal (2.0, 0.5);}

myDriftDirection := seed2.UniformReal (0.0, 360.0);
myDriftDirection := seed2.Normal (0.0,2.8125);}

xe[l] := Airdrop.Information[myPlane].xg;
xlast :=xe[l];
xe[2] := Airdrop.Information[my Plane].yg + 9.25;
alt := Airdrop.Information[my Plane] .altitude;
xe[3] :=-1.0* alt;

139

ue[l] := Airdrop.Information[myPlane].vf;

vwind[l] := HeadWind; {FROM globalMod}

NEW (lastRightLocation, l..myPlane-l);
NEW (lastLeftLocation, l..myPlane-l);

FORi:=lTOmyPlane-l
lastRightLocationfi] := 1;
lastLeftLocationfi] := 1;

END FOR;

ASKSELFTOfindDrift;

IF printTrajectory
NEW (stream);
outfile := "RJ" + INTTOSTR(myPlane) + INTTOSTR(myNumber) + extension + ".mat";
ASK stream TO Open (outfile, Output);

END IF;
{
OUTPUT 0;
OUTPUT ("My airplane :", myPlane);
OUTPUT ("Exit time :", SimTime);
OUTPUT ("My number :", stick, "R");
OUTPUT ("My weight :", weight);
OUTPUT ("Xs :",xe[l]);
OUTPUT ("Ys :", xe[2]);
OUTPUT ("altitude :", alt);
}
ASK streaml TO WriteString (INTTOSTR(repeat) + "");
ASK streaml TO WriteString (INTTOSTR(myPlane) + "");
ASK streaml TO WriteString (REALTOSTR(SimTime) + "");
ASK streaml TO WriteString (INTTOSTR(stick) + "R ");
ASK streaml TO WriteString (REALTOSTR(weight) + "");
ASK streaml TO WriteString (REALTOSTR(xe[l]) + "");
ASK streaml TO WriteString (REALTOSTR(xe[2J) + "");
ASK streaml TO WriteString (REALTOSTR(alt) + "");
ASK streaml TO WriteLn;

END METHOD {initialize};

ASK METHOD pollVortices (IN vortexPlane : INTEGER);

VAR

x, xcordl, xcord2, vvx, vjx : REAL;
y, ycordl, ycord2, vvy, vjy : REAL;
z, zcordl, zcord2, vvz, vjz : REAL;
vjdistance, vvdistance, distance : REAL;
projection : REAL;
i, location : INTEGER;
check : BOOLEAN;
startRightSearch : INTEGER;

140

startLeftSearch : INTEGER;

BEGIN

check := FALSE;
location := 0;

startRightSearch := lastRightLocationfvortexPlane];

{ POLL RIGHT VORTEX }

FOR i := startRightSearch TO Airdrop.Information[vortexPlane].NumberOfSteps
IF location = 0

IF (ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].xCord-
xs[l]))<=50.0

lastRightLocationfvortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].zCord+xs[3]))<=50.0
lastRightLocation[vortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].yCord-xs[2]))<=50.0
check := TRUE;
location := i;
IF location = Airdrop.Information[vortexPlane] .NumberOfSteps

check := FALSE;
END IF;
lastRightLocationfvortexPlane] := i;

ELSE
location := i;

END IF;
ELSE

location := i;
END IF;

END IF;
ELSE

EXIT;
END IF;

END FOR;

IF check
xcordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].xCord;
ycordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].yCord;
zcordl :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].zCord;
xcord2 :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].xCord;
ycord2 , ' :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].yCord;
zcord2 :=

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].zCord;

141

vvx := xcord2-xcordl;
vvy := ycord2-ycordl;
vvz := zcord2-zcordl;

vjx :=xs[l]-xcordl;
vjy := xs[2]-ycordl;
vjz := -1.0*xs[3]-zcordl;

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0));
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0));
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance;
distance := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0));
IF distance <=

MAXOF(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].radius,
Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].radius)

OUTPUT (myNumber, "R ", myPlane," RV ", vortexPlane, " ", -1.0*xe[3]," ", distance,"
", location,"", SimTime);

ASK streamE TO WriteString (INTTOSTR(repeat) + "");
ASK streamE TO WriteString (INTTOSTR(myNumber) + "R;');
ASK streamE TO WriteString (INTTOSTR(myPlane) + " RV ");
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + "");
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + "");
ASK streamE TO WriteString (REALTOSTR(distance) + "");
ASK streamE TO WriteString (REALTOSTR(location) + "");
ASK streamE TO WriteString (REALTOSTR(SimTime));
ASK streamE TO WriteLn;

ELSE
{

OUTPUT (myNumber, "R no encounter with right vortex of C-17 number", vortexPlane, "
at distance", distance);
}

END IF;
ELSE

OUTPUT (myNumber, "R no encounter with right vortex of C-17 number", vortexPlane);

END IF;

check := FALSE;
location := 0;

startLeftSearch := lastLeftLocationfvortexPlane];

{ POLL LEFT VORTEX }

FOR i := startLeftSearch TO Airdrop.Information[vortexPlane].NumberOfSteps
IF location = 0

IF (ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].xCord-
xs[l]))<=50.0

lastLeftLocation[vortexPlane] := i;

142

IF
(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].zCord+xst3]))<=50.0

lastRightLocation[vortexPlane] := i;
IF

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].yCord-xs[2]))<=50.0
check := TRUE;
location := i;
IF location = Airdrop.Information[vortexPlane].NumberOfSteps

check := FALSE;
END IF;
lastRightLocationfvortexPlane] := i;

ELSE
location := i;

END IF;
ELSE

location := i;
END IF;

END IF;
ELSE

EXIT;
END IF;

END FOR;

IF check
xcordl :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].xCord;
ycordl :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].yCord;
zcordl :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].zCord;
xcord2 :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].xCord;
ycord2 :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].yCord;
zcord2 :=

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].zCord;

vvx := xcord2-xcordl;
vvy := ycord2-ycordl;
vvz := zcord2-zcordl;

vjx:=xs[l]-xcordl;
vjy :=xs[2]-ycordl;
vjz := -1.0*xs[3]-zcordl;

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0));
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0));
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance;
distance := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0));
IF distance <=

MAXOF(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].radius,
Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].radius)

143

OUTPUT (myNumber, "R ", myPlane, " LV ", vortexPlane, " ", -1.0*xe[3], " ", distance, "
", location, " ", SimTime);

ASK streamE TO WriteString (INTTOSTR(repeat) + "");
ASK streamE TO WriteString (INTTOSTR(myNumber) + "R ");
ASK streamE TO WriteString (INTTOSTR(myPlane) + " LV ");
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + "");
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3J) + "");
ASK streamE TO WriteString (REALTOSTR(distance) + "");
ASK streamE TO WriteString (REALTOSTR(location) + "");
ASK streamE TO WriteString (REALTOSTR(SimTime));
ASK streamE TO WriteLn;

ELSE
{

OUTPUT (myNumber, "R no encounter with left vortex of C-17 number", vortexPlane," at
distance", distance);
}

END IF;
ELSE

{
OUTPUT (myNumber, "R no encounter with left vortex of C-17 number", vortexPlane);

}
END IF;

END METHOD {pollVortices};

ASK METHOD changeDrift;

BEGIN

myDrift :=seedl.UniformReal (0.0,4.0);
{ myDrift := seed 1.Normal (2.0, 0.5);}

myDriftDirection := seed2.Normal (myDriftDirection, 2.8125);
ASKSELFTOfindDrift;

END {ASK} METHOD {changeDrift};

ASK METHOD findDrift;

BEGIN

Xdrift := myDrift * COS (myDriftDirection*pi/180.0);
Ydrift := myDrift * SIN (myDriftDirection*pi/180.0);

END {ASK} METHOD {findDrift};

END OBJECT {righUumperObj};

END {IMPLEMENTATION} MODULE {rightJumperMod}.

144

Appendix D

Blake's FORTRAN Code

145 V

program blake
c
c C-17 analysis program for up to 18 ship formation
c
c this is a time stepping code that calculates the mutual
c interference between each vortex at each axial station
c
c ref for radius term: affdl-tr-79-3060 (kurylowich)
c ref for vortex strength term: affdl-tr-79-3060 (kurylowich)

Sept 95 LIDAR data used for updated vortex model
LID AR updates only valid for C-17 calculations
final LIDAR data not received, interim results used
awaiting C-141, C-5 LIDAR data

dimension y(36),z(36),rc(36), v(36), w(36),xv(36),xp(l 8),zs(18)
dimension y0(36),yl(36),z0(36),zl(36),gam(36),gamd(36),gamc(36)
dimension zul(36),zll(36),yll(36),yrl(36),wt(18)
realnu
pi=acos(-l.)
open(8,file='time',status='unknown')
open(9,file='amc',status='unknown')
open(10,file='pvic',status=,unknown')

variables
c
c
c
c ar
c
c
c

= wing aspect ratio
C-17: 7.16
C-5: 7.75
C-141:7.93

c beff =wing span
c C-17: 165 ft (changed from 169.8 during 1996 AIAA AFM work)
c C-5: 222.7 ft
c C-141: 159.9 ft

c bp = span of fully rolled up vortices (pi/4*beff)
c cl = lift coefficient
c delx = distance between computation planes (currently 200 ft)
c delt = time increment between compiutatiori planes (delx/vf)
c gam = initial vortex circulation strength (elliptic load)
c gamd = circulation strength of decayed vortex
c gmod = LIDAR based modification to vortex strength
c gpr = critical value of vortex strength below which no data printed
c hag = height above ground for ground effect on vortex calculation
c hzl 18= height of zone 1 for 1801bjumper-l std deviation (127-14=113ft)
c hzl36= height of zone 1 for 180 lb jumper +1 std deviation (127+14=141ft)
c ns = current number of ships

n = current number of vortices (2*ns)
nslim= total number of ships
nt = number of time steps

400 for time stepping (=80000 ft downstream of lead ship)
100 for drop path (=20000 ft downstream of last ship)

146 V

nu = air viscosity (absolute)
nump = number of ship for personnel/equipment airdrop
pp = vertical position of personnel/equipment out of last ship
px = initial axial location of personnel/equipment, xp(nump)
py = initial lateral position of personnel/equipment
pz = initial vertical position of personnel/equipment, z(nump)

c pside= downstream distance before drop path follows crosswind (400 ft)
c r = distance from vortex center to point of interest

re = vortex core radius (includes growth with time)
rho = air density
rhof = flag for density value
s = wing area

C-17: 3800 sq ft
C-5: 6200 sq ft
C-141:3228sqft

sepy = lateral separation between aircraft (centerline to centerline)
tchar= characteristic time, time it takes for vortices to descend a distance

equal to their initial spacing
tzl = time jumper is in zone 1 (4.1 sec)

c uvm = flag for use of LID AR updated vortex model
c vage = age of a vortex
c vfk = aircraft forward velocity in knots
c vf = aircraft forward velocity in ft/sec
c vmod = vortex induced velocity model:
c (1) 6795 or George Kurylowich model
c (2) NASA Langley or Burnham model
c vsk = crosswind velocity in knots
c vs = crosswind velocity in ft/sec
c vth = radial velocity due to vortex
c vpe = descent rate of equipment (28 ft/sec)
c vpl8 = descent velocity of 360 lb jumper (14 ft/sec)
c vp36 = descent velocity of 360 lb jumper (21 ft/sec)
c v = v-component of induced velocity at j due to all vortices
c w = w-component of induced velocity atj due to all vortices
c vjj = v-component of induced velocity atj due to vortex at jj
c wjj = w-component of induced velocity atj due to vortex at jj
c wt = array of aircraft weights
c xp = array of x coordinates of ships in formation
c xs =x coordinate of current computation plane
c y = array of initial y-positions of vortices
c yO = current y coordinate of vortex position (no interactions)
c yl = current y coordinate of vortex position with interactions
c z = array of initial z-positions of vortices
c zO = current z coordinate of vortex position (no interactions)
c zl = current z coordinate of vortex position with interactions
c zz = dummy entry for output file (-999)
c

uvm=0.
print*,' '
print*,'Wright Laboratory wake vortex trajectory program'
prinf'.'Written by W. Blake, WL/FIGC, (513) 255-6764'

147 V

print*,'revised 7/96'
print*,' '
print*,'enter 1 for Ft Bragg, 2 for EAFB, 3 for Wallops'
read(*,*) rhof
print*,' '
print* ,'enter vehicle type'
read(*,*) veh
print*,' '
print*,'enter (1) for LIDAR updated vortex model'
read(*,*) uvm
print*,' '
print*,'enter (1) for Kurylowich model, (2) for NASA model'
read(*,*) vmod
print*,' '
print* ,'(1) echelon,(2) c-r,(3) inc.,(4) slice demo,(5) custom'
read(*,*) ftype
print*,' '
if(ftype.ne.l) print*,'enter ship 2 lateral offset'
if(frype.ne.l) read(*,*) sepy
if(ftype.ne.l) print*,' '
if(ftype.eq.5) print*,'enter ship 3 lateral offset'
if(ftype.eq.5) read(*,*) sepy3
if(ftype.eq.5) print*,' '

c
if(ftype.eq.3.) nslim=2
if(ftype.eq.3.) xp(2)=2350.
if(ftype.eq.3.) nump=2

c
if(ftype.eq.4.) nslim=6
if(ftype.eq.4.) xp(2)=2000.
if(ftype.eq.4.) xp(3)=6000.
if(ftype.eq.4.) xp(4)=8000.
if(ftype.eq.4.) xp(5)=34377.
if(ftype.eq.4.) xp(6)=36377.
if(ftype.eq.4.) nump=6

c
if(ftype.lL2.5.or.ftype.gL4.5) then

print*,'enter maximum number of ships'
read(*,*) nslim
print*,' '
print*,'enter gap for ships 2-nslim in K ft'
read(*,*) (xp(i),i=2,nslim)
do 25 i=l,nslim

xp(i)=xp(i)*1000.
25 continue

print*,' '
print*,'enter vertical location for ships 1-nslim'
read(*,*) (zs(i),i=l,nslim)
print*,' *
print*,'enter ship number for airdrop'
read(*,*) nump

endif
print*,'enter forward speed, crosswind in knots'

148

read(V) vfk,vsk
print*,' '
print*,'enter (1) for 385K lb analysis'
read(*,*) wfl
print*,' '
if(wfl.eq.l.)then

do30i=l,nslim
wt(i)=385.

30 continue
endif
if(wfl.ne.l.)then

print*,'enter vehicle weights in K lbs'
read(*,*) (wt(i),i=l,nslim)

print*,' '
endif
print*,'enter minimum circulation strength for plot output'
read(*,*) gpr
print*,' '
print*,'computing. please wait.'
print*,' '
do 40 i=l,nslim

wt(0=1000.*wt(i)
40 continue

define initial constants

vf=vfk* 1.69085
vs=-l.*vsk*1.69085
if(veh.eq.5.) then

beff=222.7
ar=7.75
s=6200.

elseif(veh.eq.l41) then
beff= 159.9
ar=7.93
s=3228.

endif
if(veh.ne.l41.and.veh.ne.5) then

beff=165.0
ar=7.16
s=3800.

endif
bp=pi*beff/4.

air density and kinematic viscosity

if(rhof.eq.l.) rho=0.002309
if(rhof.eq.2.) rho=0.002000
if(rhof.eq.3.) rho=0.002378

tf(rhof.eq.l.) nu=£0.0001654
if(rhof.eq.2.) nu=0.0001776
if(rhof.eq.3.) nu=0.0001572

149

cswp2=(cos(25.*pi/180.))**2
do SO i=l,nslim

cl=2.*wt(i)/(rho*vf*vfs)
SO continue

c
c descent velocity of personnel is 20 ft/sec, equipment is 28 ft/sec
c for single ship, undecayed vortex descent velocity
c

vp=0.
c if(vfk.lt.l40.)vp=-20.0
c if(vfk.gt.l40.)vp=-28.Q

vp36=-21.0
vp 18=-14.0
tzl=4.1
hzl36=141.
hzl 18=113.

c if(nslim.eq.l) vp=-wt(l)/(rho*vf*bp*(2.*pi*bp))
c
c calculate initial positions of vortices
c

xp(l)=0.
if(ftype.eq.l.)then

y(l)=-bp/2.
y(2)=bp/2.
y(3)=650.-bp/2.
y(4)=650.+bp/2.
y(5)=15O0.-bp/2.
y(6)=1500.+bp/2.
do 100 i=l,36

y(i+6)=y(i)
100 continue

endif
c

if(ftype.eq.2..or.ftype.eq.3.) then
y(l)=-bp/2.
y(2)=bp/2.
y(3)=sepy-bp/2.
y(4)=sepy+bp/2.
doll0i=l,36

y(i+4)=y(i)
110 continue

if(ftype.eq.3.) zs(l)=800.
if(ftype.eq.3.) zs(2)=900.

endif
c

if(ftype.eq.4.) then
y(l)=-bp/2.
y(2)=bp/2.
y(3)=180.-bp/2.
y(4)=180.+bp/2.
y(5)=-bp/2.
y(6)=bp/2.

150

y(7)=180.-bp/2.
y(8)=180.+bp/2.
y(9)=-bp/2.
y(10)=bp/2.
y(ll)=sepy-bp/2.
y(12)=sepy+bp/2.
zs(l)=1500.
zs(2)=1500.
zs(3)=150O.
zs(4)=1500.
zs(5)=800.
zs(6)=800.

endif
c

if(ftype.eq.5.) then
y(l)=-bp/2.
y(2)=bp/2.
y(3)=sepy-bp/2.
y(4)=sepy+bp/2.
y(5)=sepy3-bp/2.
y(6)=sepy3+bp/2.
do 130 i=l,36

y(i+6>y(i)
130 continue

endif

do 140 i=l,18
z0(2*i-l)=zs(i)
z0(2*i)=zs(i)
zl(2*i-l)=zs(i)
zl(2*i)=zs(i)

140 continue

c initial position of equipment/personnel
c

pzi=zs(nump)
pxi=xp(nump)
pyi=(y(2*nump)+y(2*nump-1))/2.

modified strength from LIDAR data
for deck angle = 3 deg, gmod=0.55* elliptic load value
for deck angle = 4 deg, gmod=0.65* elliptic load value
for deck angle = 6 deg, gmod=0.73* elliptic load value
for deck angle = 8 deg, gmod=0.71 * elliptic load value

c
c
c
c
c
c
c
c current deck angle is 6 deg so deck angle not active variable
c gmod=0.8 based on WL avg (most conservative) of LIDAR 6 deg deck data
c

do 60 i=l,18
gmod=1.0
if(uvm.eq.l.) gmod=0.80
if(veh.eq.l41.) gmod-1.0
gam(2*i-1)=wt(i)/(rho*vf*bp)*gmod

151

gam(2*i)=wt(i)/(iiio*vf*bp)*gmod
60 continue

c
do 150 i=l,36

v(i)=0.
w(i)=0.
y0(i)=y(i)
yi(i)=y(i)
xv(i)=l.
gamd(i)=gam(i)

150 continue
c
c customized formation information
c

if(ftype.eq.3.) then
do 160 i=l,2

z(i)=800.
z0(i)=800.
zl(i)=800.
z(i+2)=900.
z0(i+2)=900.
zl(i+2)=9O0.

160 continue
endif

c
if(ftype.eq.4.) then

do 170 i=l,8
z(i)=1500.
z0(i)=1500.
zl(i)=1500.
z(i+8)=800.
zO(i+8)=8O0.
zl(i+8)=800.

170 continue
endif

c
c time stepping loop (axial spacing)
c time step size is axial step/velocity
c solution starts 10ft aft of 1st ship
c
c nt=(nslim-l)*20+10+l

nt=800
ns=0
delx=100.
delt=delx/vf
xs=0.

c write(8,*) "ZONE T=" " i=1000'
write(9,399)

399 fonnatCVARIABLES="t","xH,"yO","zO","y 1 "."zl-.-gam",'
c '"zuVzlVylYyr"')
write(9,*)'ZONE T=" "'
tv=0.

c

152

c master loop for time stepping analysis
c printc controls printed output to every 10th time step
c

printc=9.
do 5000 it=l,nt

c
c count number of ships forward of current x-station
c

ns=l
do 200 i=l,nslim

if(xs.ge.xp(i)) ns=i
200 continue

n=2*ns
c
c calculate vortex core radii including decay term for "old" vortices
c

j=0
do 300 i=l,ns

j=j+l
xv(j)=xs-xp(i)
xv(j+l)=xv(j)
rc(j)=36.2*sqrt(nu*xv(j)/vf*cswp2)
rc(j+l)=rc(j)
j=j+l

300 continue
c
c loop on each vortex for induced velocities at current core position
c

do3000j=l,n
yp=yl(j)
zp=zl(j)

c
c calculate induced velocites at vortex j due to vortices jj
c circulation includes effects of vortex decay
c cjj is counter for left/right vortices to ensure correct rotation
c

vjj=0.
wjj=0.
cjj=-l.
do 1000 jj=l,n

cjj=cjj*-l.
dfact=xv(ij)*cl/(beff*ar)
gamd(jj)=gam(ij)
if(dfactgL9.58) gamd(jj)=gam(jj)*9.58/dfact

c
c modified vortex decay model from LID AR data
c
c waiting for final representation from LEDAR data
c 60/t based on peer review results
c -.06 decay based on all runs from 9/11 and most from 9/7 and 9/12
c

if(uvm.eq.l.)then
vage=xv(jj)/vf

153

tchar=2*pi*bp**2/gam(jj)
if(vage.le.60.) gamd(jj)=gain(ij)
if(vage.gt.60.)gamd(jj)=gam(ij)*(607vage)
if(vage.le.2.*tchar) gamd(jj)=gam(jj)
if(vage.gt2.*tchar)gamd(jj)=gam(ij)-0.06*xv(jj)

endif

vortex interaction calculation

ifO.eq.jj) go to 990
if(xv(j).ne.xv(jj).and.xv(ij).lt.500.) go to 990

dely=yp-yl(jj)
delz=zp-zl(ij)
r=sqrt(dely**2+delz**2)
rcrit=bp
if(xv(j).ne.xvQj).and.r.lt.rcrit) r=rcrit

c select vortex model
c

if(vmod.eq.l) then
vth=gamd(ij)*(l -exp(-1.26*(r/rc(jj))**2))/(2*pi*r)
vm=gamd(jj)*(l-exp(-1.26))/(2*pi*rcaj))

else
rcn=rc(ij)
if(ren.lL2) rcn=2.
vth=gamd(ij)*r/(2*pi*(rcn**2+r**2))
vm=gamd(jj)/(4*pi*rcn)

endif
vth=vth*cjj
r=sqrt(dely**2+delz**2)
yjj=yij+vth*delz/r
wjj=wjj-vth*dely/r

990 continue
1000 continue

v(j)=vjj
w(j)=wij

c
c
3000 continue

c
c write output if print control is at tenth time step

printc=printc+l.
if(printc.eq.lO.) then
printc=0.

write vortex positions in x-z plane as function of time
upper and lower vortex boundaries for radial velocity of 30ft/sec

zz=-999.
do4500i=l,n
zul(i)=zl(l)+gamd(l)/(2.*pi*30.0)

154

zll(i)=zl(l)-gamd(l)/(2.*pi*30.0)
yll(i)=yl(2)+gamd(l)/(2.*pi*30.0)
yrl(i)=yl(2)-gamd(l)/(2.*pi*30.0)
ncnt=(i+iy2
xsg=xv(i)+200.*(ncnt-1)

do not write vortex to output file if strength is less than gpr
unit 8 is LID AR data comparison output file
unit 9 is main tecplot output file
unit 10 is pvi test output file, compatible with John Watkins data format

if(gamd(i).gt.gpr) then
write(9,4513) tv,xs,y0(i),z0(i).y l(i).zl(i),gamd(i),

c zul(i),zll(i),yll(i),yrl(i)
4513 fonnat(f5.0,f8.0,9f7.0)

if(cjj.eq.l.) write(8,4888) tv,xs,zs(l)-zO(i)
4888 format(3f9.1)

if(xs.le.25000.) then
wz=1.0
write(10,4514) wz,wz,wz,wz,wz,wz,wz,wz,wz,zs(l)-zO(i),xs

4514 format(9f4.1,2f9.1)
endif

endif
4500 continue

endif
c

xs=xs+delx
tv=tv+delt

c
c shift vortex position for next iteration
c
c here for all vortex-vortex interactions included
c

do400i=l,n
y l(i)=y l(i)+v(i)*delt+vs*delt
zl(i)=zl(i)+w(i)*delt

400 continue
c
c here for single ship vortex interactions only
c
c do500i=l,n
c vd=-l.*gamd(i)/(2.*pi*bp)
c y0(i)=y0(i)+vs*delt
c z0(i)=z0(i)+vd*delt
c 500 continue
c
c ground effects coding for single ship interactions
c replaces above loop
c

djj=l.
do600i=l,n

djj=djj*-l.

155

hag=zO(i)
vd=-l.*gamd(iy(2.*pi)*4*hag**2/(bp*(bp**2+4.*hag**2))
yd^jj*gamd(iy(2.*pi)*bp**2/(2*hag*(bp**2+4.*hag**2))
yO(i)=yO(i)+vs*delt+yd*delt
zO(i)=zO(i)+vd*delt

600 continue
c
5000 continue

c
c end of time stepping loop
c
c write positions of personnel/equipment (360 lb heavy jumper)
c

pz=pzi
py=pyi
px=pxi
write(9,*) "ZONE T=" "i=100'
nt=100.
delx=200.
pside=0.
do5100ifc=l,nt

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz
4550 format(f5.0,f8.0,9f7.0)

delt=delx/vf
c
c ballistic portion
c

itcrit=tzl*vf/200.
if(it.ge.l.andiLlt.itcrit) then

px=px+vf*(it*delt)**2/8.
pz=pz-(hzl36/tzl)*delt
py=py

endif
c
c steady descent portion
c

if(itge.itcrit) then
pz=pz+delt*vp36
py=py+delt*vs
px=px+delx
pside=pside+delx

endif
c
5100 continue

c
c write positions of personnel/equipment (180 lb light jumper)
c

pz=pzi
py=pyi
px=pxi
write(9,*) ZONE T=" " i=100"
nt=100.
delx=200.

156

pside=0.
do 5102 it=l,nt

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz
delt=delx/vf

c
c ballistic portion
c

itcrit=tzl*vf/200.
if(it.ge.l.and.it.lt.itcrit) then

px=px+vf*(it*delt)**2/8.
pz=pz-(hzll8/tzl)*delt
py=py

endif
c
c steady descent portion
c

if(it.ge.itcrit) then
pz=pz+delt*vpl8
py=py+delt*vs
px=px+delx
pside=pside+delx

endif
c
5102 continue

c
c write positions of personnel in thermal from ship 3
c light jumper zone I with 5 ft/sec thereafter
c

vpther=-5.0
pz=zs(3)
py=(y(5)+y(6))/2.
px=xp(3)
write(9,*)'ZONET=" " i=295'
nt=295.
delx=200.
pside=0.
do5104it=l,nt

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz
delt=delx/vf

c
c ballistic portion
c

itcrit=tzl*vf/200.
if(itge.l.and.itlt.itcrit) then

px=px+vf*(it*delt)**2/8.
pz=pz-(hzll8/tzl)*delt
py=py

endif
c
c steady descent portion
c

if(iLge.itcrit) then
pz=pz+delt*vpther

157

py=py+delt*vs
px=px+delx
pside=pside+delx

endif
c
5104 continue

c
c end of calculations
c
c calculate velocity components for velocity contours
c at final solution plane
c "i" is J in tecplot header, ii is I in tecplot header
c
c ys=-1010.
c delyc=10.
c delzc=10.
c do 5200 i=l,200
c ys=ys+delyc
c zs=160.
c do 5400 ii= 1,120
c zs=zs-delzc
c
c calculate induced velocity at coordinate ys,zs
c

vjj=0.
wjj=0.
cjj=-l.
do6000jj=i,n

cjj=cjj*-l.
gamc(ü)=sqrt(gamd(jj)*gamd(ij))
dely=ys-yl(jj)
delz=zs-zl(ij)
r=sqrt(dely**2+delz**2)
dfacfc=xv(jj)*cl/(beff*ar)
vth=gamc(ij)*(l-exp(-1.26*(r/rc(ij))**2))/(2*pi*r)
vth=vth*cjj
vjj=yij+vth*delz/r
wjjsswjj-vth*dely/r

c6000 continue
c
c write velocity components at ys,zs to unit 9
c
c write(10,5500) ys,zs,vij,wjj
c5500 format(2x,4(f9.1,1 x))
c
c5400 continue
c5200 continue
c
9999 continue

close(8,status=!keep')
close(9,status='keep')
close(10,status='keep')
stop

158

end

159

Appendix E

Altemate Results

160

VI. Results

ANALYSIS

My analysis initially focused on varying the spacing between element leaders from

9,000 feet in trail to 40,000 feet, and measuring the encounter rate as the response. This

approach was flawed because it was impossible within the simulation for a jumper to

encounter a vortex at this distance because it was truncated at 42,000 feet. The following

tables and figures show the initial regression results using the 40,000 feet data point.

Table 19. Distances and Random Seeds used for analysis

'32,000 1 40,000 I ELEMENT SPACING
Random Seeds

9,000 16,000 24,000

161

Table 20. Input Data for Simulation Runs with 50 Replications at Each Point.

Input Data 9000 Ft 16000 Ft 24000 Ft 32000 Ft 14IUI0 Ft 40000 Ft
lype.Q-t formation. -,-;; J 2 ;2 (Ci

■ j.^^,,vä:i-V^'j (Custom) te|ri;£
istom)J 2 (Custom) L-2.(Cw stom) | 2 (Custom) 2 (Custom)

dTPÜaü^M 6 piC: «t!^ 6 L*v^ I !-£&:] 6 6 t *f£iem^^ä 3 p« £si|i 3 fös: >Kv 3 3
Junipers' P^.Side^lgigj 6 p$& ̂ #fl 6 fjü"1-'^ >^:9H 6 6

■ #2 InrTr; ulSpadngiA^S 3000 L •;••'. 3(HMfffl 3000 14i: 30)a.-ii 3ooo 3000
#2 XJüUöJTI uSpmsg£0A 600 pfe OOgM 600 pr:r« »"'* 600 600
#3 In- Tt aUSpaang3fp| 6000 pp& WifSJ 6000 E-760 JO ;. 6000 6000

" . ~*f^?- fSparin^Ää -900 fes^s OOS^I -900 P-V--9 K) 'O -900 -900
^der!SpacinrJ 9000 prl6)00 V® 24000 M 32(ÖG <:. 32000 40000

In-Trail' ^Ierance-'Sif-1 500 1-^5)tf:^q 500 te?S< 0 "-:V 500 500
■ i-^t&Ttil 1 olerance^iy 200 hi; 2«)Ö,5sl 200 pW2< 0.&&] 200 200
AirCRllt Veig^g|Ä:| 385000 (.. 38i 4)00 2 385000 s 385 »00^1 385000 385000

^LJrOQlAlt P^^^M 900 pfe MugH 900 fp(10'S 900
900

^^^59 135 IäX Ö 135 p-Sfc i$M 135 135
d>]£ftito<&|i 0 Hlli >v*Sl| o Ip&j :s|£$ 0 0
DeWaööglS -1 pP! ̂ ^g .1 ptf-^j llilll o .1

0
0

fiBEl dlMddJe)iij| 0 pB

* 1 •
"^"Sj 0
'-&*§ o

Deyiäibn:(M 0 Pg^ ̂ •^•3 ° pSTö Trr] o 0
lÄd<^2)^^ 0 pft< r*äl! ° Kf-o jX'-'i ° 0
i<Cfpüwl):S 0 pg^'i(1 -ill ° r#;'r ° if SS'I 0 0
Devlaticgi^p 0 N££< '^S o [jt-'o rM-1 ° 0
'SSBaSfH ° Iv^t i^fr j o pf&'o -•7-i-a o 0

'AirDensi ^^^^^^H 0.002309 f;o3)o; 5309js| 0.002309 ppMJ02 3091] 0.002309 0.002309
j^^fe^B Seed#9J f-jSccd gg&fjl Seed#24J Eg*«« 32J;i Seed#34J Seed#40J

£^^^9 Seed#9E Ep$ffi ||llj Seed* fe«^ 32EJ Seed#34E Seed#40E

t&g|^|H Seed#9S Ifeeäi $®l| Seed#24S |&£ä* 32Sjl Seed#34S Seed#40S

^iHtes 3'6«7 PA« ;j5ä 3,6,7 |§3V6. Jm 3'6'7 3,6,7
iriÄtekawi^a 0 liliä SKS o Kasbo, .;;LTJ o i 0

162

Table 21. Results of Simulation Runs, Blocked by Seed.

Seed
Number

Distance Coded
Spacing

Mean 95 % Confidence
Interval

3
6
7

9,000
9,000
9,000

-.9375
-.9375
-.9375

40.67 %
42.94 %
36.72 %

6.93 %
6.97 %
6.86 %

3
6
7

16,000
16,000
16,000

-.5
-.5
-.5

18.33%
19.56 %
18.44 %

4.53 %
4.63 %
4.93 %

3
6
7

24,000
24,000
24,000

0
0
0

13.72 %
10.89 %
10.83 %

3.33 %
3.00 %
2.98 %

3
6
7

32,000
32,000
32,000

.5

.5

.5

12.06 %
10.56 %
8.94 %

2.57 %
2.68 %
2.18 %

3
6
7

40,000
40,000
40,000

1
1
1

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

Table 22. First Order Linear Regression Results, Coded Spacing vs Encounter Rate.
Linear Fit

Encounter Rate = 16.4691-17.976 Coded Spacing

Summary of Fit

RSquare 0.851314 RSquare Adj 0.839876
Root Mean Square Error 5.565309 Mean of Response 16.24444
Observations (or Sum Wgts) 15

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F
Model 1
Error 13

C Total 14

2305.3666
402.6446
2708.0112

2305.37
30.97

74.4323 <.0001

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl
Intercept

Coded Spacing
16.469143
-17.97596

1.437193 11.46
2.083585 -8.63

<.0001
<.0001

163

Figure 13 . First Order Linear Regression with Confidence Interval and Residuals

50 ~

40 ~

30 ~

Encounter Rate

20 -

10 -

-10

■1.0 -0.5 .0

Coded Spacing

Residuals

io - ■

■

5 -

s "
■

■
■
■ ■

U
■

-5 -
■

 T ■
■

I I ' I
-1.0 -0.5 .0 .5

Coded Spacing

1.0

164

Table 23. Second Order Linear Regression Results, Coded Spacing vs. Encounter Rate.

Polynomial Fit degree=2

Encounter Rate = 12.3485-18.5096 Coded Spacing + 8.67476 Coded Spacing^

Summary of Fit

Source
Model
Error

C Total

2
12
14

Term
Intercept

Coded Spacing
Coded SpacingA2

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.914391
0.900123
4.395358
16.24444

15

Analysis of Variance

"5F Sum of Squares Mean Square F Ratio Prob>F
2476.1811
231.8301
2708.0112

1238.09
19.32

64.0861 <.0O01

Parameter Estimates

Estimate Std Error t Ratio Prob>ltl Lower 95% Upper 95%

12.348524
-18.50958
8.6747616

1.7913
1.655326
2.917356

6.89
-11.18
2.97

<.0O01
<.0O01
0.0116

8.4456118
-22.11623
2.3183787

16.251437
-14.90293
15.031145

165

Figure 14. Second Order Regression with Confidence Interval and Residuals.

5.0

Residuals

0.0

-5.0 -

-7.5

-1.0

T '—T ' T

-0.5 .0 .5

Coded Spacing

-0.5 .0

Coded Spacing

—T

1.0

166

Table 24. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate.
Polynomial Fit degree=3

Encounter Rate = 11.9287-3.51065 Coded Spacing + 10.5664 Coded SpacingA2-18.9661 Coded SpacingA3

Summary of Fit
RSquare 0.988511
RSquare Adj 0.985377
Root Mean Square Error 1.681801
Mean of Response 16.24444
Observations (or Sum Wgts) 15

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F
Model
Error

C Total

3
11
14

2676.8982
31.1130

2708.0112

892.299
2.828

315.4726 <.0001

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl Lower 95% Upper 95%
Intercept 11.928715 0.687216 17.36 <.0001 10.416156 13.441273

Coded Spacing -3.51065 1.889804 -1.86 0.0902 -7.670096 0.6487963
Coded SpacingA2 10.566445 1.138634 9.28 <.0001 8.0603179 13.072572
Coded SpacingA3 -18.96614 2.251444 -8.42 <.0001 -23.92155 -14.01072

Figure 15. Full Third Order Residuals

■

2 - ■ ■

■ ■

0 I
Residuals ~ ■

-2 -

-4 H
■

I 1 1 ' 1 ' 1
-1.0 -0.5 .0

Coded Spacing

.5 1.0

167

Figure 16. Full Third Order Regression Line with Confidence Interval.

50

40 -

30
Encounter
Rate

20

10

0 -

-10 —■—I—■—I—'—r
-1.0 -0.5 .0 .5

Coded Spacing

1.0

168

Table 25. Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate.

Response: Encounter Rate

Encounter Rate = 11.872+10.884 Coded SpacingA2-22.907 Coded SpacingA3

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.984906
0.982391
1.845578
16.24444

15

Anova

DF Sum of Squares Mean Square F Ratio Prob > F

Model
Residual

Total

2
12
14

2667.137062
40.87389177
2708.010954

1333.568531
3.406157647

391.5169728 1.1824E-11

Lack of Fit

Source DF Sum of Squares Mean Square F Ratio Prob>F

Lack of Fit
Pure Error
Total Error

2
10
12

9.838898
31.035002
40.873901

4.91945
3.10350

1.5851 0.2524

Max RSq
0.9885

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl Lower 95% Upper 95%

Intercept
Coded SpacingA2
Coded SpacingA3

11.872412
10.884128
-22.9067

0.753405
1.235344
0.828069

15.76
8.81
-27.66

<.0001
<.0001
<.0001

10.23088
8.1925409
-24.71091

13.513943
13.575716
-21.10249

169

Figure 17. Reduced Third Order Curve with Confidence Interval and Residuals.

t

40 ~

.V
30 _

Encounter . 'Ar,
Rate

20 -

* X* v<^
10 - ♦

*x ♦
* X *

* X * *\ * * \
0 - *

-1

1 I 1 , .

-0.5 0
1

.5 1

Coded Spacing

2.0
*

1 .5

1 .0
* *

0.5 *
R esiduals

0.0

* *

-0.5 • ♦

-1 .0 —

-1 .5 - *

-2.0 -

-2.5
♦

' 1 1 1 ' 1 ■

-1 -0.5 0

Coded Spacing

.5 1

170

Table 26. Logistic Regression Results, Encounter Rate vs. Coded Spacing

Iter
1
2
3
4
5

Response: Response
Iteration History

LogLikelihood Step Delta-Criterion Obj-Criterion
-11979.93205 Initial 1.32121516 1.5006e304
-10465.18195 Newton 0.32017887 0.14474174
-10302.02762 Newton 0.06034548 0.01583709

-10297.5812 Newton 0.00259701 0.00043179
-10297.57338 Newton 0.00000483 0.00000076

Converged by Gradient
Whole-Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference

Full
Reduced

1682.359 1
10297.573
11979.932

3364.717 0.0000

RSquare (U)
Observations (or Sum Wgts)

Lack of Fit

0.1404
27000

Source DF -LogLikelihood ChiSquare Prob>ChiSq
Lack of Fit
Pure Error
Total Error

3
26995
26998

275.216
10022.357
10297.573

550.4321 <.0001

Parameter Estimates
Term Estimate Std Error ChiSquare Prob>Ch Lower 95%

iSq
Upper 95%

Intercept
C.S

-2.0067577
-1.6160245

0.0224443
0.0321849

7994.3
2521.1

0.0000 ?
0.0000 -1.6791123

?
-1.5529498

Source
Coded Spacing

Nparm
1

Effect Test
DF

1
Wald ChiSquare

2521.1051
Prob>ChiSq

0.0000

Source
Coded Spacing

Effect Likelihood-Ratio Tests
Nparm

1
DF

1
L-R ChiSquare

3364.7173
Prob>ChiSq

0.0000

171

Figure 18. Logistic Regression Prediction Curve.

1 ~

0.75 ~
■

Encounter
Rate

0.5 -

■

■
■ ■

1

0.25 ~
■

• o H
■

■
0

1 I 1 I 1 1
1 I 1

-1.0 -0.5 .0

Coded Spacing

.5 1.0

172

Table 27. Predicted Encounter Rate for Third Order and Logistic Models

Third Order Encounter Rate Logistic Encounter Rate

Spacing Coded Spacing Point Lower Upper Point Lower Upper

16000 -0.5 17.46 15.37 19.55 23.17 23.74 22.61

16800 -0.45 16.16 14.14 18.19 21.76 22.25 21.28

17600 -0.4 15.08 13.12 17.04 20.42 20.83 20.01

18400 -0.35 14.19 12.29 16.08 19.14 19.48 18.80

19200 -0.3 13.47 11.64 15.31 17.92 18.20 17.64

20000 -0.25 12.91 11.13 14.69 16.76 16.98 16.54
20800 -0.2 12.49 10.76 14.23 15.66 15.83 15.50
21600 -0.15 12.19 10.50 13.89 14.62 14.74 14.51

22400 -0.1 12.00 10.34 13.67 13.64 13.72 13.57
23200 -0.05 11.90 10.25 13.55 12.72 12.75 12.68

24000 0 11.87 10.23 13.51 11.85 11.85 11.85

24800 0.05 11.90 10.25 13.55 11.03 11.00 11.06

25600 0.1 11.96 10.29 13.63 10.26 10.20 10.32

26400 0.15 12.04 10.33 13.75 9.54 9.46 9.62

27200 0.2 12.12 10.36 13.89 8.87 8.77 8.97

28000 0.25 12.19 10.36 14.03 8.24 8.12 8.36

28800 0.3 12.23 10.30 14.17 7.65 7.51 7.78
29600 0.35 12.22 10.17 14.27 7.09 6.95 7.24

30400 0.4 12.15 9.96 14.34 6.58 6.43 6.74

31200 0.45 11.99 9.64 14.34 6.10 5.94 6.26

32000 0.5 11.73 9.19 14.27 5.65 5.49 5.82

32800 0.55 11.35 8.60 14.11 5.24 5.07 5.41

33600 0.6 10.84 7.84 13.84 4.85 4.68 5.03
34400 0.65 10.18 6.91 13.45 4.49 4.32 4.67

35200 0.7 9.35 5.77 12.93 4.16 3.98 4.34

36000 0.75 8.33 4.41 12.25 3.85 3.68 4.03
36800 0.8 7.11 2.82 11.40 3.56 3.39 3.74
37600 0.85 5.67 0.97 10.36 3.29 3.12 3.47
38400 0.9 3.99 -1.15 9.13 3.04 2.88 3.22
39200 0.95 2.06 -3.56 7.67 2.81 2.65 2.98
40000 1 -0.15 -6.29 5.99 2.60 2.45 2.77

173

Figure 19. Third Order and Logistic Prediction Curves.

25

Third Order and Logistic Prediction Curves —«—3rd Order Point

—■&— 3 rd Order Lower

—K—3rd Order Upper

Logistic Point

Logistic Lower

Logistic Upper

II100

174

Bibliography

Babarsky, Richard, Aerodynamic Engineer, AEA Technology Engineering Software, Inc.
Bethel Park, PA, Facsimile, 16 JAN 97, Personal Interview, 9 JAN 97.

Belano, Jose C, "C-17/Paratroop Risk Assessment Analysis", MS Thesis,
AFJT/GOR/ENS/97M-1. School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB OH, March 1997.

Blake, William, Aerodynamic Engineer, Wright Laboratory, Wright Patterson AFB OH,
Personal Interviews, 3 JUL 1996-22 JAN 97.

Blake, William, "Prediction of Paratroop/Wake Vortex Encounters During Formation
Airdrop", AJAA paper 96-3387, July 96 Atmospheric Flight Mechanics
Conference, San Diego, CA.

Clawson, Kirk L., Randy C. Johnson, G. R. Ackermann, Jerry F. Sagendorf, Neil F.
Hukari, "Measurement of Wingtip Vortex Characteristics From C-130, C-141,
and C-5A/B Aircraft", U.S. Department of Commerce, National Oceanic and
Atmospheric Administration, Environmental Research Laboratory Field Research
Division, Idaho Falls, ID, May 31,1988.

Coffin, Charles, Statistician, Air Force Combat Climatology Center, Scott AFB, IL
"Wind Distributions", Electronic Message, 21 FEB 97.

"Flight Test Data of 16 AUG 96 Six Ship Airdrop Test", C-17 System Program Office,
Wright Patterson AFB, OH, 16 AUG 96.

Hannon, Stephen J., J. Alex Thomson, Sammy W. Henderson, R. Milton Huffaker,;
"Windshear, Turbulence, and Wake Vortex Characterization Using Pulsed Solid
State Coherent Lidar", Proceedings of SPIE - The International Society for
Optical Engineering , Volume 2464, 1995, Society of Photo-Optical
Instrumentation Engineers, pp. 94-102.

Johnson, David J., "Operational Test and Evaluation of the Effects of C-130/C-141B
Wake Vortices on the Drop Zone Environment. Final Report.", USAF Airlift
Center, Military Airlift Command, Pope Air Force Base, NC, September 1988.

Johnson, David J., Jon K. Reynolds, "Operational Test and Evaluation of the Effects of
C-5 Wake Vortices on the Drop Zone Environment. Final Report", USAF Airlift
Center, Military Airlift Command, Pope Air Force Base, NC, December 1988.

175

"Summary Report of Parachute Vortex Interaction Testing with C-141B and C-17
Aircraft (Preliminary)", C-17 System Program Office, Wright Patterson AFB OH,
20 JUN 1996.

Thomson, J. Alex, Stephen M. Hannon,; "Wake Vortex Modeling for Airborne and
Ground-based Measurements Using a Coherent Lidar", Proceedings of SPIE - The
International Society for Optical Engineering , Volume 2464, 1995, Society of
Photo-Optical Instrumentation Engineers, pp. 63-78.

Wald, Matthew L., Commuter Planes Must Now Increase Distance From Jets, New
York Times, 17 Aug 96, Section 1, page 6, Column 1.

White, Major Thomas, Mobility Analyst, Headquarters Air Mobility Command, Scott
AFB IL, Personal interview, 4-6 SEP 1996.

176

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, V A 22202-4302, and to the Off ice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 97

3. REPORT TYPE .AMD,DATES COVERED
Master s Thesis

4. TITLE AND SUBTITLE

AN OBJECT-ORIENTED SIMULATION OF THE C-17 WINGTIP
VORTICES IN THE AIRDROP ENVIRONMENT

6. AUTHOR(S)

Hans J. Petry, Major, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology/ENS
2950 P Street
Wright-Patterson AFB, Ohio 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/97M-13

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ASC/YC (MS) IPT
C-17 System Program Office
Building 558
2590 Loop Road West
Wright-Patterson AFB, OH 45433-7105

10. SPONSORING/MONITORING
AGEKCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis effort focuses on the development of an object-oriented simulation of C-17 personnel
airdrop operations and provides a tool for risk assessment of jumper and wingtip vortex interaction. Using the
initial modeling efforts of the Wright Laboratory, this model expands those efforts to include random aircraft,
wind and jumper movement within the simulation using MODSIM III as its language.

Once the model was built, verified, and calibrated, it helped perform a preliminary analysis of jumper
risk with varying element spacing and no crosswind. The results of the simulation provided 15 data points with
which linear and logistic regression provided an estimation of the marginal rate of change of jumper/vortex
encounter rate.

Using the third order model shows that the encounter rate levels off around 24,000 feet spacing
between element leaders at 12%, and stays as high as 11% at 32,000 feet before dropping to 0.4% at 34,000
feet. Further research and model improvements may bring the encounter rate down at the more distant
spacing but that is left for post thesis analysis efforts.

14. SUBJECT TERMS
Vortex modeling, object-oriented simulation, airdrop simulation,
paratrooper/wake vortex encounter modeling, MODSIM

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
177

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. Z39-18
298-102

GENERAL IKSTRUCT!QMS FOR COMPLETING SF 29S

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Blocks. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87-30 Jun8S).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -
G -
PE -

Contract
Grant
Program
Element

TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Narne(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block?. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Blocks. Sponsoring/Monitoring Agency Name(s)
and AddressCes). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE -
WASA-
K'TiS -

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NHB 2200.2.
Leave blank.

Block 12b. Distribution Code.

DOB
DOE

NASA ■
NTiS ■

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-1S. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

HJ.S.GPO: 1993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	An Object Oriented Simulation of the C-17 Wingtip Vortices in the Airdrop Environment
	Recommended Citation

	/tardir/mig/a328588.tiff

