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AFIT/GOA/ENS/97M-13 

Abstract 

This thesis effort focuses on the development of an object-oriented simulation of 

C-17 personnel airdrop operations and provides a tool for risk assessment of jumper and 

wingtip vortex interaction. During operational flight testing of the C-17 some jumpers 

encountered a wingtip vortex from a preceding airplane jeopardizing safety. After 

stopping live testing, the Air Force and Army realized they had no tool for analyzing the 

risk of a vortex encounter. Using the initial modeling efforts of the Wright Laboratory, 

this model expands those efforts to include random aircraft, wind and jumper movement 

within the simulation using MODSIM HI as its language. 

Once the model was built, verified, and calibrated, it helped perform a preliminary 

analysis of jumper risk with varying element spacing and no crosswind. The results of 

the simulation provided 15 data points with which linear and logistic regression provided 

an estimation of the marginal rate of change of jumper/vortex encounter rate. 

Results showed that the reduced third order linear regression model most closely 

approximated the data points but that the logistic regression model should fit this type of 

simulation better. The logistic model failed the lack of fit test but that may be correctable 

by using the model to collect more data points at smaller intervals. 

Using the third order model shows that the encounter rate levels off around 24,000 

feet spacing between element leaders at 12%, and stays as high as 11% at 32,000 feet 

before dropping to 0.4% at 34,000 feet. Further research and model improvements may 

bring the encounter rate down at the more distant spacing but that is left for post thesis 

analysis efforts. 



AN OBJECT ORIENTED SIMULATION OF THE C-17 WINGTIP 

VORTICES IN THE AIRDROP ENVIRONMENT 

I. INTRODUCTION 

Background 

One of the major factors used in the recent decision to buy 120 new C-17 aircraft 

was it's advertised capability for personnel airdrop. Analysis by Air Mobility Command 

showed that in order to meet the Army's requirements for Strategic Brigade Airdrop 

operations the Ar Force would need 120 C-17's (White, 1996). During operational 

evaluation and testing of the C-17 for it's strategic brigade airdrop role, it was discovered 

that there was a problem with vortex and parachute interaction. The preceding planes in 

the formation generate a much stronger wingtip vortex than the current primary airdrop 

aircraft, the C-141. The stronger vortex causes parachutes to collapse, oscillate, and 

descend at faster than safe speeds. Flight testing at Edwards AFB shows statistically that 

jumpers interact with the vortices at almost twice the rate when jumping from C-141 's 

versus C-17's ("Summary ...", 1996). Furthermore, this statistic is misleading in that it 

measures interaction only, and not the severity of interaction. One serious incident of 

interaction actually collapsed the parachute of a jumper and then interfered with the 

deployment of the reserve chute. (Only luck kept the jumper from serious injury as the 

main parachute reinflated shortly before impact with the ground.) After this incident, the 

Army and Air Force agreed to stop live testing and flight test with mannequins to assess 

the risk associated with jumping from the C-17 in a large formation. Realizing that flight 



testing all possible conditions would be cost prohibitive, they decided to look for a tool to 

predict the interaction before actually flight testing. This problem has not been answered 

and flight testing continues simultaneously with the development of this tool. 

The purpose of this thesis is to develop an object oriented simulation of the C-17 

wingtip vortices in the airdrop configuration. When used in conjunction with the 

paratroop objects being developed by Belano (1997), this simulation model will provide 

the C-17 System Program Office (SPO), and other Air Force and Army agencies, with the 

capability of assessing paratrooper performance during C-17 formation airdrops. Some 

specific uses of the model will be to test different formation geometries and their affects 

on airdrop operations, and jumper risk assessment given current formation and weather 

conditions. Specifically, the analyst will be able to do a risk assessment of jumper 

interaction with the vortices after exit from the airplane 

Problem Statement 

The C-17 test and evaluation community need a tool to better predict the behavior 

of the wingtip vortices over the drop zone. The current mode they are using, developed 

by Blake ("Prediction ...", 1996), is a FORTRAN-based, deterministic model. Flight 

tests have proven that this model is inadequate in predicting the dynamic behavior of the 

vortices (although it is the best currently available). This thesis proposes to develop an 

object-oriented simulation tool to model the wingtip vortices of the C-17. This 

simulation will be written in MODSIM El and incorporate objects representing the 

wingtip vortex trailing off of each wing. These objects will behave in a similar manner, 

but allow some random variation to attempt to better predict where the vortices will be as 



the jumpers descend to the ground. This variation will allow movement of the vortices 

outside of the straight deterministic equations in trying to account for some of the 

unknown forces acting on these vortices. Outputs from this simulation include the 

number of jumpers contacting a critical area of the vortex, which vortex they hit, and the 

altitude of encounter. 

Blake's static prediction model will be converted and expanded to a MODSIM HI 

object that represents dynamic movement of the vortex due to outside influences. The 

data collected from lidar measurement of the C-17 vortex strength and position was 

compared with the predicted strength and position using aerodynamic equations. This 

data then helped define the equations of the position and size of the vortex (Blake, 1996). 

The simulation will be a discrete-time simulation that constantly updates the position of 

the airplanes, vortices, and jumpers. Using the property of inheritance, the initial C-17 

objects will move in formation and calculate their positions as the flight progresses. 

Furthermore, when over the dropzone, the paratroop objects will inherit the position data 

of the C-17 as they exit the aircraft. 

Expected Contribution 

This model should immediately help the airdrop test and evaluation community 

make better predictions about the behavior of C-17 vortices over the dropzone. This will 

allow the analyst to vary formation geometry to minimize the risk of jumper vortex 

interaction. If this formation is not acceptable for mission accomplishment due to tactical 

constraints, the user can then assess the risk to jumpers in a formation that is more 

tactically sound. 



n. RELATED WORK 

Previous Vortex Models 

Hazards associated with wingtip vortices are not a new phenomenon. With the 

advent of larger aircraft, vortices have become stronger and stronger. The Federal 

Aviation Administration (FAA) has long recognized these hazards and mandated four 

mile separation between heavy aircraft and subsequent light aircraft on approach to 

landing. Recently, they have increased this separation between heavy aircraft (over 

300,000 lbs. gross weight); mandated Boeing 757 and 767 aircraft and trailing small 

aircraft separation to 6 miles; and, redefined what constitutes a small aircraft (up to 

41,000 lbs.) (Wald, 1996). 

The hazards over dropzones have also been recognized. A 1988 study 

commissioned by the Military Airlift Command (MAC) concludes that the wingtip 

vortices of C-130, C-141, and C-5 aircraft significantly hindered personnel airdrop 

operations at altitudes below 600 feet above ground level (AGL) (Johnson, SEP and DEC 

1988). These studies recommend that airdrop operations be conducted above that altitude 

to maintain safety of the jumpers during descent. Personnel drops from C-5 aircraft were 

deemed infeasible and have not been developed further (Johnson, DEC 1988). 

MAC Project 15-105-86 (Johnson, SEP 1988) includes a computer model for 

vortex jumper interaction. A verbal description of the model in Appendix C of the MAC 

Project report describes a model similar to what is proposed in this paper, although this 

model is in a DOS-based, non-object-oriented, BASIC format. The characteristics of the 

vortices  were measured by hot  film  anemometers  at  the National  Oceanic  and 



Atmospheric Administration (NOAA) test facility at Idaho Falls, Idaho. This type of 

testing, while the best available at the time for measurement of vortices, is somewhat 

flawed by the proximity of the tower to the ground. More recent advances in the 

measurement of vortices (Hannon, 1995, Thomson, 1995) were used by Blake in the 

development of his current model (Blake, 1996). 

Blake's model is the most recent work in this area (Blake, 1996). His model 

initially included interaction between vortices through time integration. It did not include 

interaction with the ground since the predicted descent rate put the vortex at 200 feet 

AGL at a point when its predicted strength no longer effects the jumpers. In the fall of 

1996, Blake modified his model to no longer take into consideration the interaction 

between vortices of separate aircraft because the spread of the formation was so great that 

one vortex pair had little impact on the other airplanes' vortices (Blake, Personal 

Interview, 1996). At this time he also included ground effect in the model, enabling the 

vortices of a pair to separate quicker when approaching the ground while slowing their 

descent rate. The vortices now asymptotically approach the ground but never hit. The 

data used to measure the characteristics of the C-17 vortices was obtained by lidar 

measuring equipment at Edwards AFB, CA. A laser radar measuring the turbulence 

inside the vortex core, this method of measurement eliminates some of the problems with 

the hot film anemometer and ground effect (Hannon, 1995). It represents the vortex in 

free air better than the hot film anemometer. The lidar data forms the basis for Blake's 

model, which in turn is the basis for representing the vortices in our simulation. 



1988 Military Airlift Command Project 

In 1988 the Military Airlift Command, which has since become Air Mobility 

Command, commissioned a study of airdrop operations at very low altitude (Johnson, 

SEP and DEC, 1988). Supposedly the first ever to study the effects of aircraft vortices on 

parachute systems, its purpose was to gather information and measure what the effects of 

the vortices on airdrop operations from 300 to 600 feet above ground level (AGL). 

(Normal airdrop operations were conducted at 800 to 1000 feet AGL.) The test was 

conducted in three phases, with the first being the collection of vortex measurement 

information. The second phase determined what effect the vortex has on a parachute, 

while the last developed a computer model to predict the effects at low altitude. The first 

phase will be covered in more detail in the next section of this paper on hot film 

anemmometer measurement. 

The second phase consisted of mounting self contained smoke generators on the 

lead aircraft, and flying the trailing plane over the vortices while releasing dummies to 

see what the effect of vortex encounter is. Encounters that occurred on the outer edge of 

the vortex the showed a descent rate slowed by 60%, while those that penetrated between 

the vortices saw increased descent rates up to 140%. Encounters that occurred before 

parachute stabilization had no effect on the parachute system. Those that occurred after 

parachute stabilization affected the parachutes in various ways, with the most severe 

effect being a chute collapse for 1 to 3 seconds. Other effects were partial deflation of the 

canopy, oscillation of the load, increased or decreased descent rate, collisions, 

entanglement, and dragging of the load on the surface. Another conclusion was that the 



effects of an encounter with a vortex were not dependent on the aircraft type in the study 

(C-130 and C-141). An expanded study including the C-5 arrived at a similar conclusion. 

The last phase developed a computer model to predict the encounter rate of 

different aircraft, loads, altitudes, and formation geometries. One finding from this model 

was that interactions between the vortices and canopies ranged from 0% to 93%. It also 

concluded that the possibility of more than one vortex affecting any one parachute's 

descent was very small; however, this may result from the model coding and is suspect, 

especially if the vortex life is longer than the 90 seconds predicted for the C-130 or C- 

141. 

This test had five major objectives encompassed in the three phases. The first 

objective was to determine the vital characteristics of the vortices such as size, strength 

and duration. The second was to determine the maximum change in descent rates of 

different parachutes after vortex encounter. The third objective was to assess the hazards 

associated with vortex encounter. The fourth objective was to determine a vertical safety 

correction to use in the very low environment. The fifth and last objective was to 

determine minimum and maximum in-trail distances for formations during airdrop 

operations in a very low environment. While this test looked at the dynamics of the very 

low airdrop environment, the results can apply to the work in Chapter HI. 

Hot Film Anemometer Measurements 

After searching for ways to measure the size and strength of the vortex, the testers 

in the MAC Project contacted the Federal Aviation Administration about using a system 

in Idaho to measure vortices (Clawson, 1988). Previously used for tests on heavy 



transport category aircraft and B-52 vortex measurement, this hot film anemometer is a 

wire filament heated to 250°C. The measurement of the amount of electricity needed to 

maintain that temperature is used to calculate the wind speed at that point. The tower in 

Idaho stands 200 feet above the ground and is filled with filaments every 3 feet on the top 

100 feet of the tower and every 6 feet on the bottom half. Additionally, there are 26 extra 

filaments mounted on 13 towers 11 feet tall to try to measure any vortices that descend to 

the ground. C-130, C-141, and C-5 aircraft were used for the fly-bys to characterize the 

vortices for each airplane (Table 1). 

Table 1. Vortex Characteristics from 1988 Test of C-130, C-141, and C-5 Aircraft 

Aircraft Maximum Minimum Maximum Minimum Maximum Minimum 
Type Core Velocity Core Velocity Age Age Descent Rate Descent Rate 

(fps) (fps) (seconds) (seconds) (fps) (fps) 
C-130 153 12 97 6 7.0 0.8 
C-141 162 8 176 6 13.5 0.4 
C-5/A 268 11 109 6 9.9 0.9 

The testers warn that this data may not represent the true vortex characteristics of 

these airplanes because of varying weather conditions. They expect that some C-5 

vortices could live longer, although a strong wind on all of the days of C-5 testing and 

calm winds on the days of C-141 testing prevented a more definitive answer. In general 

the observed characteristics were expected with the C-5, C-141 and C-130, in decreasing 

order of severity. 

Blake's Model 

The latest model to address the problem of paratroop and vortex interactions is 

one by Blake (Blake, 1996). He models the vortices as.a record of six data points taken at 

evenly spaced intervals behind the vortex generating aircraft using Eulers explicit time 

integration.  The six data points are the x, y , and z coordinate, the strength, the radius, 

8 



Equation 1. Basic Vortex Circulation Formula 

AW 

npvji 

Equation 2. Vertical Velocity Formula 

and the age of the vortex. Blake used an interval (step size) of 200 feet, but suggested I 

use 100 feet for more accuracy. With this information he iteratively calculates the six 

values for each subsequent point. (The FORTRAN code for Blake's model is in 

Appendix 4). Each vortex is varying models used to calculate its movement as a single 

ship vortex field, or to account for the interactions between all of the vortices generated 

by a large formation. Subsequent testing has led Blake to conclude that given at least 

3000 feet spacing between aircraft within an element, the single ship model is more 

useful in predicting vortex position (Blake, Personal Interview, 22 JAN 1997). This 

model has been invaluable in establishing an acceptable formation element geometry, but 

does not account for any variation in crosswind strength or aircraft position. This 

inability to account for the uncertainty of the vortex position at greater distances makes it 

difficult to predict and find an acceptable spacing between elements of the formation. 

Blake used the elliptical load of a fully rolled up vortex to calculate the vortex 

strength and vertical velocity (Equations 1 and 2). The main formulae used in Blake's 

model calculate the motion of the vortex based on the information at the previous interval 



(Figure 1, Table 2). The main calculations involve the horizontal and vertical velocities; 

the next y and z positions (using Eulers explicit time integration); vortex circulation 

10 



Figure 1. Blake's Formulae for Vortex Position Prediction. 

vage = xv I vf 

gam = wt(i) I {rho * vf * bp)* g mod 

gamd = gam if vage < 60 

gamd = gam * (60 / vage) if vage > 60 

vd = -l*gamd(i)/(2*pi)*4*hag**2/(bp*(bp**2+4*hag**2)) 

yd = ±l*gamd(i)/(2*pi)*bp**2/(2*hag*(bp**2 + 4*hag**2)) 

y0(i) = y0(i) + vs* delt + yd* delt 

z0(i) = z0(i) + vd*delt 

radius = gamd I {2* pi* threshold) 

Where table 2 shows notational definitions 

Table 2. Table of Blake's Notation. 

Symbol Meaning 
vage Vortex age (time since aircraft passed) 
xv Aircraft's formation position relative to lead. (In-trail) 
vf Velocity of Aircraft (ft/sec) 
gam Gamma, vortex circulation strength 
wt(i) Aircraft Weight 

rho Air density 
gmod Modification to Vortex strength from lidar data (0.8) 
gamd decayed vortex strength 
vd Vortex vertical velocity 
hag Height above ground 
bp Span of fully rolled vortex. (pi/4*beff) 
beff Effective wing span 
yd Horizontal velocity. Positive for left vortex, negative for right vortex 
y0(i) y Position at this instance. (Lateral distance from center of first aircraft) 

vs Velocity of crosswind 
delt Time since last point 
z0(0 z Position at this instance. (Altitude) 

radius Vortex radius to reach the threshold velocity 
threshold Threshold swirl velocity (Blake used 30 ft/sec)  

strength; vortex decay; vortex age; and, radius for threshold swirl velocity. The x position 

is evenly spaced at 200 feet intervals. The coordinate system Blake uses is fixed to the 

first aircraft, we adopt the same convention and use a fixed ground coordinate system as 

11 



well (Figure 2). By fixing the ground system we are able to collect the landing position 

of the jumpers on the ground since the airplane coordinate system is in constant motion. 

Figure 2. Air and Ground Coordinate Systems 

ZsA 

Air Coordinates 
(Moving) 

Ground 
Coordinates 
(Fixed) 

After presenting the preliminary progress on the model to the U.S. Army 

Operational Test and Evaluation Command, Babarsky pointed out some errors in Blake's 

modeling of vortex separation (Babarsky, 1997). The most notable error is that Blake 

uses a constant span (bp) to calculate the induced velocity of the vortices of a given pair 

on each other instead of the actual separation between the center of each vortex.  Blake 

12 



agrees that this is a correct assessment of his model and has since changed his code to 

reflect this correction (Blake, Personal Interview, 22 JAN 97).    This model also 

incorporates this change by adding two fields to the vortex representation to track the 

actual separation of the vortices. 

Lidar Measurement of the Vortex Core 

Pulsed solid state coherent lidar equipment has measured aircraft wake vortices 

since a joint 1992 FAA and National Aeronautics and Space Administration (NASA) 

project (Hannon, 1995). Lidar measurement of wingtip vortices uses a ground based 

pulsed laser to measure the velocity of small particles (aerosols) in the air. Lidar is also 

used for windshear detection; optical air data sensing; clear air turbulence and gust front 

detection; and, wind profiling. The shift in frequency of the pulsed lidar can be 

manipulated through statistical analysis to arrive at a maximum likelihood estimator of 

vortex position, size, strength, and velocity. It is estimated that the position data is 

accurate on the order of 3 meters in height and range. Blake incorporates the lidar flight 

test data of the C-17 vortex as one option for vortex generation in his model. Since no 

detailed statistical analysis has been performed on this data, it remains one area available 

of improvement. 

Proposed Methodology 

The first step in model development is translating Blake's model into an object- 

oriented simulation using MODSIM m. Once running and verified by benchmark 

checking against the original results, modifications to the behavior of the vortices can 

begin.  The two ways to add variation into the simulation of the vortex position are by 

13 



varying the winds and varying the formation position of trailing aircraft. Therefore, the 

model accepts up to three different crosswind velocities, all based on a normal probability 

distribution with a user input standard deviation and altitude for change. It also accepts 

an integer value for the tolerance within which a trailing aircraft must remain from 

planned formation position. These changes refine Blakes's model while allowing for 

more analysis to find an acceptable formation spacing. 
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m. METHODOLOGY 

Formal Formulation 

During operational testing and evaluation of the capability of the C-17 in the 

airdrop mission, vortex encounters with the jumpers were discovered. This problem was 

addressed by varying the formation spacing both within and between elements through 

vortex prediction modeling and flight testing, with the goal to minimize jumper and 

vortex encounters. Specifically, within an element there can be no encounters, while 

between elements the encounter rate must be kept to a minimum. 

Current modeling limitations do not allow for any way to assess the risk of 

encounter without extensive flight testing. Although many factors go into the encounter 

rate of jumpers with vortices, they can be placed into three distinct groups: airplane 

parameters, weather conditions, and formation parameters.    The airplane parameters 
t 

include such things as airspeed, weight, and wing characteristics, while weather 

conditions include headwind, crosswind, temperature, and pressure altitude. The final 

factor is the formation itself, and is composed of the in-trail and lateral spacing between 

aircraft within an element, and the spacing between element leaders. Of these factors, 

only the airplane and formation parameters are controllable. 

The airplane parameters are limited by aircraft performance and are variable 

within a certain range. The normal airspeed for personnel airdrop operations is 130 to 

135 knots indicated airspeed (KIAS). The actual speed that the airplane can safely fly is a 

factor of weight, altitude, and configuration, but for most conditions 130 knots 

approaches the lower limit for safe airdrop operations. Conversely, if the airplane speed 
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is increased to more than 135 knots, then it is the jumpers themselves that become the 

limiting factor due to opening shock and parachute integrity. Furthermore, while the 

aircraft weight limits are bound by the limits of the airplane itself, the drop zone imposes 

even more restrictions. Very rarely would the plane ever be over the drop zone at 

maximum weight due to the distance of the drop zone from the point of departure. 

Similarly, it would be difficult for the planes to fly close to minimum weight due to fuel 

requirements for the return flight. 

The most controllable parameter is the formation itself, although this is subject to 

some restrictions. The width of the formation is limited by the width of the drop zone 

itself. If the formation becomes too wide, then we limit the places we can use airborne 

assault to areas of that width or larger. This impacts where airborne operations can be 

conducted and takes away some flexibility in choosing a location for the assault. Even if 

the drop zone itself is wide enough to handle a wide formation, the dispersion of combat 

troops once they hit the ground affects the combat capabilities of the paratroopers. 

Limitations on the length of the formation are driven by the time requirements of the 

Army for the closure of the airdrop portion of the Strategic Brigade Airdrop mission. The 

challenge, then, is to find a formation that minimizes the risk to the jumper from vortex 

encounters while not exceeding the width, time, and aircraft limits. 

Solution Techniques 

One solution technique that is readily apparent is flight testing. However, 

experience with flight testing shows this method to be very time consuming and 

expensive. Any failure necessitates starting over from the beginning with very little idea 
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of what will happen with each subsequent test. Also, there is little or no control over the 

weather conditions with this approach. Consequently, this approach was quickly 

abandoned by the test and evaluation community as not feasible. 

Blake's model was the first modeling step in the airdrop problem solution. The 

model predicts where a vortex will be with a given set of weather and airplane conditions. 

The formation parameters are then superimposed on this information to give an analytical 

approach to predicting whether or not a vortex encounter is likely. The limitation to this 

approach is that there was no varying of wind conditions with time or altitude. Also, the 

position of the planes within the formation remain constant. 

Because of the limitations of a static prediction model, this problem lends itself 

very well to a simulation that incorporates random behavior of the variable elements. 

With multiple runs one can test different formation parameters with controlled weather 

conditions and aircraft parameters to arrive at a valid prediction interval of jumper vortex 

encounter rate. Simulation gives the added benefit of variable behavior of the winds, 

airplane position within the formation, and jumper trajectory during the descent, thus 

examining a whole range of operating conditions with little or no user intervention in data 

collection. These characteristics will then give a broader perspective to the analysis of 

the risk faced by the jumpers as they make their descent to the ground. 

A simulation also gives the added benefit of possible uses outside of the scope of 

the present problem. Once validated, a simulation could be used to predict the encounter 

rate of a specific planned mission with the prevailing weather and location conditions 
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expected during that mission. This could aid battle planners in accurately assessing how 

many jumpers would be available for combat duties when they hit the ground. 

Object-oriented simulation itself allows a building block approach. Once the 

objects are modeled and verified, they can be added into the simulation in as large a 

number as necessary for the analysis. (The model is capable of running as many as 120 

C-17's with 102 jumpers per aircraft.) Another benefit of using a simulation language is 

it takes care of the 'bookkeeping' of all the data. For instance, a vortex of length 41,000 

feet with six data points at each 100 foot increment: each aircraft having two vortices, and 

the position updated every Vi second, the amount of data processed is quite large. Thus, 

each airplane requires 4,920 data storage points, updated each Vz second, with over 7,380 

calculations for vortex definition alone. By adding the position updates of the airplanes 

and jumpers, and the search of all preceding vortices, one begins to see the complexity of 

this simulation. 

Implementation 

This section of the paper describes the airdrop model. The simulation includes 

four basic objects: a control object; C17 object; vortex object; and, a paratroop object. 

This thesis develops the first three; for more information on the paratroop object see 

Belano (1997). Although there was close collaboration with Belano, the following 

describes those portions of the program directly related to the first three objects. 

The simulation uses MODSM m as its language of implementation. The 

MODSIM IE compiler uses C++ as the base language and compiles the modules into a 

C++ file, which in turn is linked to the main modules to form an executable file.  Once 
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compiled, the executable file prompts a few questions before starting the simulation. 

Output is displayed both on screen and saved to individual files, with input file names for 

post-simulation analysis.   The inputs necessary to start the simulation can be inserted 

manually or with a data file.   Once all questions are answered, the simulation starts by 

creating the control object, which in turn creates the C-17 objects and their associated left 

and right vortex objects.   The control object keeps track of the formation position and 

other information about the C-17 object. The C-17 object passes its position and aircraft 

information to the vortex objects, who then update their position taking into account the 

current wind information. Once all these objects are created and in place, the formation 

begins to fly towards the drop zone. The lead aircraft is initially positioned 300 feet short 

of the drop zone so shortly after one second it enters above the drop zone and flies to its 

computed air release point.   Once over this point, the control object tells the C-17 to 

create the jumpers and let them jump. The jumper objects exit the airplane while asking 

the C-17 for initial position data, and start calculating their descent towards the ground 

updating their position and outputting their exit information to the screen and file. On the 

way down they check their position every Vi second against the position of every vortex 

generated from every plane in front of the plane they jumped from. If they are inside the 

vortex, they output their number, airplane, which vortex from which airplane, altitude, 

distance to the center of the vortex, and the simulation time. Jumpers continue jumping 

and the planes continue flying until all aircraft in the formation have crossed the drop 

zone and all of the jumpers have landed. As the jumpers land they output their landing 

information to the screen and scatter file.    Once all the jumpers objects land, the 
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Simulation disposes of all objects, then starts over until it completes the number of 

repetitions required. All repetitions occur without any required input and without 

resetting the random numbers used within the simulation. 

Input 

The model currently runs either the flight test scenario at Edwards AFB or a 

custom formation in an interactive mode through a series of questions. The program goes 

through a series of questions so the operator can input the desired parameters (Figure 3). 

The first question is the number of airplanes in the formation followed by the number of 

Figure 3. Sample Input Screen. 

Which Scenario do you want to run? 
Enter 1 For Edwards Test 
Enter 2 For Custom Formation 

2 
How many airplanes for this run? 
6 
How many airplanes per element? 
3 
How many jumpers exiting each side of the aircraft? 
6 
All element positions are relative to element lead. 
What is the in trail distance for plane 2 ? 
Spacing must be input as a real number with decimal point 
3000 

airplanes within each element (by assumption, all elements have the same spacing 

between aircraft). The program then asks for the in-trail and cross-track spacing for each 

aircraft in the element. Once the'user enters the element spacing, the program asks for the 

desired spacing between element leaders. This is followed by the weight of all aircraft, 
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Figure 3 (cont.). Sample Input Screen. 

What is the weight of all aircraft? 
385000 
What is the airdrop altitude? (ft AGL) (Real number with decimal) 
900 
What is the airspeed of the formation in knots? 
135 
What is the Cross Wind Component? (knots) 
Input up to three different winds with altitude where wind changes 
and standard deviation of the normal distribution for wind variation 
(All eight values must be entered. If constant wind, then zeros can be 
entered for the last seven values.) 
i.e. 5 .5 500 10 1 200 0 .25 would indicate 5 knots with a normal 
distribution and a standard deviation of .5 at drop altitude till 500 
feet AGL, then 10 knots with a standard deviation of 1 until 200 feet AGL, 
then calm to the ground with a standard deviation of .25 
0.1000000 
What is the Head Wind Component? (knots) 
0 
What is the air density factor (rho)? 
0.002309 
ENTER OUTPUT FILENAME (WITH NO SUFFUX EXTENSION) FOR JUMPER INFORMATION 
DATA: 
Seed332J 
ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR ENCOUNTER DATA : 
Seed332E 
ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR SCATTER   DATA : 
Seed332S 
ENTER AN INTEGER (BETWEEN 1 AND 10) FOR THE RANDOM SEED INPUT FOR JUMPERS 
3 
PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS: 

1 - WRITE INDIVIDUAL PARATROOP TRAJECTORY INFORMATION TO SEPARATE FILES 
0 - DO NOT WRITE TRAJECTORY INFORMATION 

0 

the airdrop altitude above ground, the formation speed, the cross wind and head wind 

components, and the air density factor. 

The crosswind input allows for three different winds to be in the program 

changing with altitude, with eight inputs required for the crosswind. The first number is 

the magnitude of the crosswind component in knots at drop altitude. Next is the standard 

deviation used for the normal distribution the wind uses to update every Vi second. The 

third number is the altitude at which the wind changes.  The next three numbers repeat 
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the same questions for winds between the drop altitude winds and the ground winds, 

while the last two are the magnitude of the crosswind component and standard deviation 

for the ground winds. This information is then passed into the objects. All input coding 

is in the input module and was coded jointly with Belano. 

CONTROL OBJECT 

The control object, named TotalVortexObj, is the first object created and contains 

information about each of the other objects. The object itself is a large multidimensional 

database, since the main part is an array with a self defined record type that contains 

records with various field names. Some of the fields of the record are numeric while 

others are objects. The fields within the control object keep track of the position of the 

C170bj, LeftVortexObj, and RightVortexObj objects during the simulation. 

When the program creates the control object, it creates the C170bj based on the 

input number of airplanes. Each C-17 object then creates two vortex objects; one for the 

left wing and one for the right wing. In affect, a field within the array contains an object, 

which itself contains two other objects that are also arrays. 

Each airplane in the formation has a record associated with it in the control object. 

The fields of this record include the 3-axis air position; 3-axis ground position; aircraft 

speed; aircraft weight; the aircraft itself; the length of the vortex calculation; and, a true- 

or-false field indicating if the plane has a full load of jumpers. The number of jumpers is 

an input, and by assumption each aircraft object has the same weight, number of jumpers, 

and speed. If analysis requires different parameters between aircraft, the program can be 

modified to accommodate these requirements. 
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The methods associated with the control object are Objlnit, Positioninformation, 

Fly, and greenLight. The Objlnit method calls the Positioninformation method and both 

are described at the same time. Since all arrays in MODSIM initialize with values of 

zero, the initialization method takes the input data and loads all of the information into 

the array before the simulation begins. Each aircraft is placed into its proper formation 

position with spacing behind the lead aircraft, and either left, right, or directly in trail 

based on the information provided during input. If the user enters a value for the in-trail 

or lateral tolerance box the aircraft position is moved to a position within that box using a 

uniform random number draw on both the in-trail tolerance and lateral tolerance. For 

example, if the box were 500 feet in-trail and 200 feet lateral, then each airplane draws a 

different random number from -500 feet to 500 feet and -200 feet to 200 feet. These 

numbers are then added to the planned position of the aircraft to put the plane in a 

random position within the tolerance box. All airplanes fly at the same airdrop altitude. 

The last step of this method asks the C-17 to update the vortex position based on its 

position in the formation. (This information is not available at the creation of the vortex; 

hence, they are not in the proper position.) After initialization each aircraft in the 

formation knows its air and ground position, and the position of the trailing vortices. The 

lead aircraft's position is 300 feet short of the computed air release point and aligned 

perfectly with the drop zone axis. All other aircraft are positioned relative to the lead 

aircraft according to the spacing input by the user. 

The Fly method actually moves the formation by changing the position of each 

C170bj each Vi   second, then asking the C-170bj to update its vortex position.   All 
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aircraft position information is contained within the Control Object and passed to the 

aircraft when necessary. The Fly method assumes that the lead aircraft remains on the 

desired track along the dropzone and only updates the x ground position for lead. The 

following aircraft movement is more complicated because they are allowed to move fore 

and aft and laterally in relationship to the lead aircraft. Getting the aircraft to move 

within the box required the addition of six extra fields within the control object (the next 

and plan position for each axis of the air coordinate system). The plan position holds the 

information input by the user on formation spacing. If the aircraft stayed in perfect 

formation position it would always be in the plan position. The next position holds the 

position that the airplane is flying towards. Once it reaches the next position the airplane 

check its position against the plan position. If its position does not equal the plan 

position the plan becomes the next position, while if it does equal the plan position, the 

program draws a new random position within the box using a uniform draw about the 

plan position and assigns that value to next. Once the formation starts flying, planes 

move back and forth into and out of plan position until the simulation stops. This 

movement occurs one foot per time increment simultaneously on the x and y axis. 

Provisions for movement in the z axis are in the program but not implemented. If the 

plane arrives at the xsplan position before reaching the ysplan position it stays in position 

on the x axis until it reaches position on both axes. 

The greenLight method asks the C170bj to turn on the green light when the 

aircraft hits the computed air release point.   This is defined as the x coordinate of the 
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airplane changing from negative to positive and the plane containing a full load. The C- 

17 Object contains the actual green light method. 

C-17 OBJECT 

The 0170b] itself is relatively simple when compared to the control object and 

the vortex object. The main purpose of this object is to generate a vortex characteristic of 

the wing represented in the object. It contains information about the C-17 wing that is 

necessary for the vortex calculations; i.e. wing area, aspect ratio, and wing span. The 

control object passes in aircraft weight, speed, and air density as necessary. (This object 

could easily be modified to represent the C-141, C-5, or C130 aircraft.) Its methods 

include Objlnit, VortexPosition, FlyPosition, and greenLight. 

The Objlnit method creates both the left and the right vortex. Since the C-17 does 

not know its position information upon creation, the vortices do not know the right 

positions or possess the right length on initialization. For this reason, the control object 

calls the VortexPosition method during initialization. When the necessary information is 

in place, the control object tells the C-17 where it is, while the C-17 tells the vortices 

where to start. 

This same process occurs within the FlyPosition method when the airplane moves 

from its original position since the vortex must move as well. However, once the aircraft 

passes a point in space, the vortex it creates is independent of subsequent aircraft 

movement and does not follow the aircraft movement.. For this reason the vortex update 

methods are different for the VortexPosition and the FlightPosition updates. These 

differences are explained in the vortex Update and BackwardUpdate methods 
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The last method in the C170bj is the greenLight method that creates the jumpers. 

To cut down on the required number of calculations, the jumpers are not created until 

they exit the aircraft. The greenLight method triggers the creation of the jumper objects. 

At Vz second intervals jumpers exit the aircraft, while at the same time requesting the 

position, speed, and altitude of their aircraft. The exit side of the airplane is recorded 

when creating the jumpers, thus allowing the model to know which jumper encounters 

which vortex. This method was developed and coded by Belano( 1997). 

VORTEX OBJECT 

Since a real vortex is a continuous turbulent area generated by a passing aircraft, it 

is very difficult to implement as an object; therefore, we converted this continuous vortex 

into discrete points behind the aircraft. Choosing a step size of 100 feet (on the 

recommendation of the Wright Laboratory) each vortex becomes an array of its 

characteristics spaced at 100 foot intervals. Each record initially contained an x, y, and z 

coordinate, with the vortex strength measured by lidar, age, and radius but was expanded 

to include an no wind y position and the aircraft y position at the time of vortex creation. 

These additions were added to correct the error pointed out by Babarsky. We define x as 

the distance behind the aircraft plus the aircraft's distance behind the lead aircraft, y the 

lateral distance from the center of the aircraft plus the aircraft's lateral distance from the 

lead aircraft, and z the altitude above the ground. 

The vortex strength uses the theoretical vortex strength as calculated from the 

Wright Labs, and modified by a factor of 0.8 (Blake, 1996). This factor accounts for the 

difference between the theoretical vortex strength and the vortex strength as measured by 
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lidar. Different aircraft have a different modification factor and this factor must be an 

aircraft attribute for the vortex to calculate correctly with different aircraft objects. The 

vortex age is purely a function of aircraft speed. To calculate the radius, we set a 

threshold swirl velocity and use the strength to find the distance from the actual point 

where the swirl velocity exceeds that threshold (the threshold is currently set at 20 ft/sec 

and is modifiable depending on the type of analysis desired). The strength remains 

constant for some time after the aircraft passes and then begins to decay; the current delay 

is 60 seconds based on the lidar data. Provisions are in the code for calculating 

interactions between vortices using horizontal and vertical velocity components of the 

vortices, but is not implemented due to the spacing between aircraft and the small 

likelihood that two vortices would actually significantly influence another vortex pair. 

This likelihood is small for two reasons. The first is that the influence of one vortex on 

another is inversely related to the distance between those vortices and the second is that 

one vortex will have its pair influencing the same vortex in the opposite direction at a 

similar distance and somewhat canceling the effect of its pair has on the motion.. 

The methods for the vortex objects, LeftVortexObj and RightVortexObj, are 

Objlnit and Update, BackwardUpdate, and writeData. The Objlnit of the vortex again 

occurs upon its creation. Since not all information is available at creation, the control 

object tells the C170bj to Update as the last step of its Objlnit method, which in turn tells 

the vortices to Update. This Update calculates the position of each vortex until a point 

42,000 feet behind the generating aircraft. (Non-implemented provisions in the code 

allow the vortex calculation to be extended until 20,000 feet behind the last aircraft in the 

27 



formation. This distance allows time for all jumpers to exit the aircraft and descend to 

the ground before the vortex calculations end.) The vortex calculations increment the x 

coordinate by a step size of 100 ft for each record. The program calculates the first point, 

then uses vortex strength to calculate a vertical and horizontal speed (Figure 4). The right 

and left vortex objects differ only in yCord and NDyCord. The difference is the sign of 

bp/2.0 is negative for the left vortex. 

Figure 4. First Vortex Point Formulae for rightVortex Object 

gam   := weight/(rho*vf*bp)*gmod; 
CompletePosition[l].xCord   := 100.0+xs; {100 ft behind aircraft} 
CompletePosition[l].yCord  := ys+bp/2.0; {Off right wing of aircraft} 
CompletePosition[l].zCord   := altitude; {Aircraft altitude} 
CompletePosition[l].Vage   := delx/vf; 
CompletePosition[l].Gamd   :=gam; {Use gam from above} 
CompletePosition[l].radius := CompletePosition[l].Gamd/(2.0*pi*20.0); {Threshold set at 

20 ft/sec} 
CompletePosition[ 1 J.NDyCord := ys + bp/2.0; {Keep no drift spacing} 
CompletePosition[l].Airy   :=ys; {Aircraft position when vortex point 

created} 

Where 
gam = vortex strength 
weight = aircraft weight 
rho = air density 
vf = aircraft velocity (ft/sec) 
bp = span of rolled up vortex 
CompletePosition[l].xCord = position behind lead aircraft 
xs = aircraft air position behind lead aircraft 
CompletePosition[l].yCord = position left (positive) or right (negative) of lead aircraft 
ys = aircraft air position left or right of lead 
CompletePosition[l].zCord = altitude 
delx = step size 
CompletePosition[l].Vage = age of the vortex 
CompIetePosition[l].Gamd = decayed vortex strength 
CompletePosition[l].radius = radius of vortex with swirl velocity greater than threshold 
CompletePosition[l].NDyCord = no drift position left or right of lead position 
CompletePosition[l].Airy = Aircraft position when vortex point created 
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Crosswind speed is updated every Vi second using a normal distribution and the 

input standard deviation. The v and z coordinates are then updated based on the position 

of the previous point and the calculated velocities (Figure 5). 

Figure 5. Subsequent Vortex Points and Velocity Formulae for rightVortex Object. 

CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 
sD   := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy); 
CompletePositionfi] Airy  := ys; 
vd:=(-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i-l].zCord*CompletePosition[i- 

l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)))); 
yd:=((CompletePosition[i-l].Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i- 

l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))); 
CompIetePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 
CompletePosition[i].^yCord:=CompletePositionfi-l].NDyCord+yd*delt; 
IF CompletePositionfi].zCord <= ShearAltl; 

IF CompletePosition[i].zCord <= ShearAlt2; 
CompletePositionfi].yCord := CompletePositionfi-1 ] .yCord+vs3*delt+yd*delt; 

ELSE 
CompletePositionfi].yCord :=CompletePosition[i-l].yCord+vs2*delt+yd*delt; 

END IF; 
ELSE 

CompletePositionfi].yCord := CompletePositionfi-1 ].yCord+vs 1 *delt+yd*delt; 
END IF; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 
CompletePositionfi].Gamd := gam; 
ELSE 
CompletePosition[i].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0); 

Where (all previous variables in Figure 4 the same) 
FLOAT(i) = real number conversion of step number 
sD = distance of vortex from center of airplane (updated bp) 
vd = vertical velocity 
yd = horizontal velocity 
delt = time change from previous point (function of speed) 
ShearAltl = highest altitude for wind shear 
ShearAlt2 = lowest altitude for wind shear 
vs3 = ground winds up to ShearAlt2 
vs2 = winds between ShearAlt2 and ShearAltl" 
vsl = winds from ShearAltl to drop altitude 
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This iterative process continues until reaching the last step and the vortex extends 

either 42,000 feet (or past the end of the formation). 

The BackwardUpdate is slightly different from the Update. The same formulae 

used for the calculations are applied with a new first point; and, then from the last point 

up to the second point since the aircraft can actually move laterally and vertically after it 

passes the point of generation (if the update were to happen from the airplane to the end 

the entire vortex would move with the aircraft). The only factor that affects the vortex 

over time is the crosswind (up and down drafts also affect the vortex but are not modeled) 

and not changes in the aircraft flight path; therefore, once the aircraft generates a point its 

path is set except for changes in the wind. However, there must be a continuous path 

from each point to the aircraft. For this reason, during a BackwardUpdate, the first point 

behind the aircraft is generated exactly the same as before, assuming that any change in 

aircraft position in each Vi second interval is small. Then, instead of sequentially 

updating from point number two to the end the program, it starts at the end and updates 

the last point with the information of the point prior to it. When point number 2 (200 feet 

behind the aircraft) updates, it uses the information from the newly created point 1 to 

update, thus using the information from the previous time step without saving it. 

The last method, writeData, was used for verification and validation of the vortex 

object and remains in the code (but is not active). It includes a method to print the 

database representing the vortex at any point in time, and its output to the screen contains 

each vortex representation sequentially. 
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Output 

There are many possible types of output available within this program. Not all of 

the output statements are active at this time, but remain in the program with comment 

statements. As mentioned previously, the entire vortex representation is a possible output 

for verification and validation of the vortex position and characteristics. The air and 

ground position of each aircraft can be output at each time step, or at certain intervals. 

Most of the remaining output options come from Belano's objects. If necessary for 

verification, more output can be specified at any point in the code. 

Since there was such close collaboration between Belano and myself, I feel it 

necessary to describe the output of two files in more detail; the jumper file and the 

encounter file. Although coded by Belano and contained within the paratroop objects, we 

both decided what types of output would be useful for further analysis when the output 

files were coded. The program creates the jumper and encounter files with the names 

provided by the user. The first file contains all of the information about the jumper, while 

the second contains information about all encounters. Since the program loops through a 

certain number of repetitions, the repetition number is the first entry for each line of 

output. Table 3 shows the meaning of the lines of output, while Tables 4 and 5 show the 

output from the jumper and encounter files. 

Table 3. Field Meaning of Output Files. 

1 2 3 4 5 6 7 8 9 
Jumper Repetition 

Number 
Plane 

Number 
Exit 
Time 

Jumper 
Number 

Weight X Ground 
Coordinate 

Y Ground 
Coordinate 

Altitude 

Encounter Repetition 
Number 

Jumper 
Number 

Jumper 
Plane 

Vortex 
Type 

Vortex 
Plane 

Jumper 
Altitude 

Distance Step 
Number 

Sim 
Time 
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Table 4. Sample Output from Jumper File. 

1 2 13.000000 1R 253.743686 
1 2 13.000000 1L 242.434541 
1 2 13.500001 2R 256.747860 
1 2 13.500001 2L 219.935088 

14.441750 743.25 900.00 
14.441750 724.75 900.00 
127.574125 742.25 900.00 
127.574125 723.75 900.00 

Table 5. Sample Output from Encounter File. 

1  1R 4 RV 1 435.493262 19.170270 218. 98.492000 

1  1R 4 RV 1 426.637141 15.126430 219. 98.992000 

1  1R 4 RV 1 417.780554 13.779084 220. 99.492000 

1  6R 4 RV 1 446.278066 19.297184 215. 99.492005 

1  1R 4 RV 1 408.923719 16.021869 221. 99.992000 

1  3L 4 RV 1 431.680199 21.835205 219. 99.992002 

Table 4 shows the information for the first four jumpers to exit during this 

simulation. The first field shows that this is the first repetition while the second shows 

airplane number two. The first plane does not drop jumpers since we know they won't 

encounter a vortex if there are no planes preceding it. If the program is used differently to 

test the distance between the equipment and personnel portions of the airdrop, then this 

needs to be changed. The next fields show the simulation time at jumper exit from the 

aircraft; jumper number; jumper weight; x; v; and, z coordinates. The R and L indicate 

the side of the airplane the jumper exited from. The different v coordinates show that the 

jumpers are 18.5 feet apart when they exit the aircraft. 

Table 5 shows the information output for an encounter. Recalling that an 

encounter occurs when a jumper falls with the radius of a vortex, where that radius is 

defined as the distance from the center to where the swirl velocity is 20 ft/sec. The first 

fields in this output are identification of the jumper and vortex; it is from repetition 

number one and shows an encounter of 3 jumpers from airplane 4 with the right vortex 

from airplane 1.  The multiple entries for jumper 1R, show this object first entered the 
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right vortex of plane number 1 at an altitude of 435 feet and a distance from the center of 

19 feet. At the next Vi second update, jumper number 1R is still in the vortex but is at a 

lower altitude and closer to the center. This continues at each half second interval ~ as 

long as the jumper is within the radius of a vortex, it will generate a line of output. 

The step value shows how far behind the generating aircraft the jumper 

encounters the vortex. Since the step size is 100 feet per step, a step of 218 on the first 

line indicates that jumper 1R hit the right vortex from plane number 1 at a distance of 

21,800 feet. Note that simply counting the lines of output in the encounter file won't give 

an accurate count of the actual encounters; e.g., the sample shows six lines of output but 

only three encounters; 1R, 6R, and 3L. 

Verification And Validation 

Verification and validation should be accomplished in every phase of model 

development. The Wright Labs model used as a basis for the vortex representation was 

also used as a benchmark for validation of the vortex. A test run for a single ship and 

three ship formation provided the same vortex arrays as the Wright Labs model. With no 

movement of the airplane except along the axis of the drop zone, the vortex of this model 

matched the vortex calculated by the Wright Labs model. There are also numerous points 

within the code where key variables were checked for proper operation of the code. The 

formation position of each aircraft in both the ground and air coordinate systems were 

checked with a three ship formation at each time step. With a formation velocity of 135 

knots (228 ft/sec), the aircraft moves about 114 feet every step, and maintains proper 

position.  The correct number of jumpers were created and exited the aircraft when the 
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ground coordinate of that aircraft was first greater than zero, and all jumpers had the same 

position upon creation as the airplane at the same time step. 

One area that created a problem was the second jumper from the second airplane 

was inheriting the same position as the third jumper. This occurred because the jumpers 

were added to the pending list before the aircraft position update. Although both events 

occur at the same simulation time they need to be accomplished in sequential order. We 

solved this problem by making the exit time between jumpers 0.500001 seconds instead 

of .5 seconds, thus as long as the limit remains 102 jumpers per C-17, this extra time 

should have a negligent impact on simulation performance. 

Two major areas of validation completed on the model were based on flight test 

data from Edwards AFB ("Summary ...", 1996) and Fort Bragg ("Right ...", 1996) 

supplied by the C-17 SPO. The Edwards flight test was conducted with two airplanes 

flying directly in trail with 15,000 feet spacing while the Bragg test involved six aircraft 

in formation using the approved element geometry. 

The Edwards flight test involving two aircraft directly in trail was flown to 

establish an upper bound on the risk of encounter. All flights were directed into the wind 

to minimize any crosswind affects. With 15,000 feet spacing between the two aircraft 

and the second following as close to directly in trail as possible, 12 mannequins were 

released from plane number two and scored visually to count the number of visible vortex 

Table 6.   Screening Test for Encounter Rate of Edwards Flight Test Data. 

Lateral Box      Standard Deviation '   Rate Lateral Box      Standard Deviation Rate 
50 
35 
40 

41.7% 
0% 
25% 

30 
40 

.5 

.5 
0% 

33.3% 
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encounters. This distance was chosen because it was the distance where the predicted 

vortex strength of the C-17 equals the vortex strength of the C-141 at 6,000 feet. The C- 

141 also flew this same test at 6,000 feet separation to establish an upper bound on its 

encounter rate. 

We use the data collected from the Edwards test as a benchmark of our model 

performance. Flight testing showed an encounter rate of 16.25%±8.71 (95% Confidence 

Level) for the Edwards test. To calibrate our model we tried to get an encounter rate 

close to the actual by varying the standard deviation of the wind distribution and the 

formation tolerance position. Starting with one repetition screening experiments to see the 

effects of changing the tolerance box, the wind was varied to obtain an encounter rate 

similar to the test data (Table 6). 
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A standard deviation of .1 knot with a tolerance box of ±50 feet in-trail and ±40 

feet laterally gives the desired results. These parameters were then entered into the 

program for fifty repetitions (Table 7) using random number seed 3 to see if the same 

percentage would result. The difference in aircraft altitude is due to the unavailability of 

Table 7. Edwards Validation Test Input. (Jun 96) 
Actual Simulation 

Type of formation Custom 2 (Custom) 
Number of Planes 2 2 
Planes Per Element I tHpMtPI 
Jumpers Per Side 6 IRMNSffl 
Element Leader Spacing 15,000 15,000 
In-Trail Tolerance 9 50 
Lateral Tolerance ? 40 
Aircraft Weight 7 385000 
Drop Altitude 1100 900 
Airspeed 135 135 
Crosswind at Altitude 0 H^l^^ 
Standard Deviation (1) 7 IpMMit 
Shear Altitude (i) ? ^^P^S 
Crosswind (Middle) 7 IIHJMH 
Standard Deviation (2) 7 ■HMW 
Shear Altitude (2) 7 ■HBHUHJ 
Crosswind (Ground) 7 MBWPI 
Standard Deviation (3) 7 IIINHI 
Headwind 7 ■RHpHI 
Air Density 0.00197 0.002000 
Jumper Output File EdwardJ 
Encounter Output File EdwardE 
Scatter Output File • EdwardS 
Random Seed IBBPP^ 
Individual Trajectories 0 JHHPNK 

the actual report until after simulation data was collected. A large variance in the 

encounter rate occurs, with some repetitions giving an encounter rate of 58% while others 

produce 0%. Results were promising because the model provided an estimated encounter 

rate of 13.5±5% (95%), which includes the rate for flight test results. A statistical test for 
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equal means showed that there was no statistical difference between the two rates to the 

95% confidence level. 

The next area of validation was to simulate a series of flights from the flight 

Table 8.  Actual and Input Data for Bragg Test (16Aug 96) 

Input Data Actual Ten 50 
(Average of Repetitions Kppvtitiujis 

MnTBtrnS-'ifl^! '. fX2r-: 

Type of formation 2 (Custom) 1 2 (Custom) 2 (Custom) 
Number of Planes 6 6 6 
Planes Per Element 3 3 3 
Jumpers Per Side 6 (2nd 

Element 
Only) 

6 6 

1 

#2 In-Trail Spacing 3000 3000 3000 
#2 Lateral Spacing 600 600 600 
#3 In-Trail Spacing 6000 6000 6000 
#3 Lateral Spacing -900 -900 -900 
Element Leader Spacing 27,000 27,000 27,000 
In-Trail Tolerance 500 500 500 
Lateral Tolerance 200 200 200 
Aircraft Weight    •:     • 382,396 383000 383000 
Drop Altitude ■ 900 900 900 
Airspee4.cy-:^j<-^. •.. --.• 134.33 ,   : 134 ■... 134 
Crosswindat Altitude' ••"" -3.1068 -3.1068 -3.1068 
Standard Deviation (1) % ? ■MB .5 
Shearj^titude(l) ,.   .-..." 9 ...600 600 
Crosswind (Middle)"-v ''• 7 -2.505 -2.505 
Standard Deviation.'(2) 7 HHMR .5 
Shear Altitude (2) > 7 300 300 
Crosswind (Ground)'- • -2.369 -2369 -2.369 
Standard Deviation (3) • 7 HHNH .5 
Headwind |£'^iV.-.. .• ■ 3.4835 .3.4835- 3.4835 
Air DensitjSüh " • ■■*.'■■'•••■■ • 0.002309 0.002309 0.002309 
Tumpiär Output File/    ; 4 ADG16J AUG16J# 
Encounter Output File AUG16E AUG16E# 
Scatter Output File       ; AUG16S AUG16S# 
Random Seeds 3 5,9 
[ndiyidüal Trajectories      | HHHHH 0 

testing at Fort Bragg. Flight tests on 16 August comprised of a 6 ship test with 12 

jumpers each from airplanes 4, 5, and 6 were selected for this purpose. This test used the 

standard element spacing of 3,000 feet in-trail and 600 feet right for plane number two, 
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and 6,000 feet in-trail and 900 feet left for plane number three. Spacing between element 

leaders was 27,000 feet. The tolerance box was ±500 feet in-trail and ±200 feet laterally. 

Since two passes were conducted on this day, the average of the data for the two passes is 

taken as the input for the program (Table 8). Using 10 runs initially yields results that 

while close to the actual rate gives an interval judged too wide. In order to reduce this 

interval two additional runs were run using different random number seeds for 50 

repetitions each, thus yielding a total sample size of 110 runs. When comparing the 

results of the simulation to the flight test they initially looked very good. Statistical tests 

for equal population means show that when the data is grouped by three airplanes, 

airplane 4 and 6, airplane 4 alone, and airplane five alone that the means are all 

statictically equal. There is a problem when airplane 6 is taken alone. Since the 

simulation showed no encounters for jumpers from airplane six its mean and variance is 

zero. When comparing it to the three encounters experienced by flight testing it fails the 

equal means test. I am encouraged by the fact that the rate for airplane 4 was statistically 

equal. Due to the large variance I think that to be absolutely sure of the accuracy of our 

simulation response we need a very large sample. This problem does not mean that the 

model is invalid but I do feel that it warrants further validation. One possible problem is 

the interpretation of wind within the model. The wind shift could have occured higher or 

lower than the 600 and 300 feet that I input. This data is not readily available to test 

where the wind shifts really occurred and what effects they will have on encounter rate. 
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VI. Results 

ANALYSIS 

My analysis focuses on varying the spacing between element leaders from 9,000 

feet in trail to 40,000 feet, and measuring the encounter rate as the response.  With the 

current element geometry, 9000 feet is the closest the second element should ever be to 

the preceding element (3000 ft between aircraft).    It would be preferable for the 

experimental design to start at 8000 feet, but operational limits preclude using that 

distance. The current flight testing uses a spacing of 40,000 feet as the element spacing. 

With the lidar data showing the longest recorded vortex having a life of 3 minutes, this 

distance should result in zero encounters.  (Interestingly, this spacing translates roughly 

into the 6 mile separation prescribed by the FAA for small aircraft trailing large aircraft.) 

Five design points and three random seeds give the necessary data to derive a formula for 

predicting an encounter rate (Table 9). This was later expanded to include three runs at 

34,000 feet while eliminating the data collected at 40,000 feet. It was felt that the runs at 

40,000 feet established an artificial zero because it was not possible for any jumpers to 

encounter a vortex at this distance, while at 34,000 feet it is still theoretically possible to 

hit a vortex. 

Table 9. Distances and Random Seeds used for analysis 

ELEMENT SPACING 9,000 16,000 24,000  |  32,000  |  34,000  I  40,000 II 
Random Seeds (All Distances) 3 6 7       II 

Each design point and random seed combination consists of 50 repetitions, with 6 

aircraft having 12 jumpers per aircraft. Blocking on the random seed provides three point 
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estimates at each design point to derive a regression line predicting an encounter rate. 

Since preliminary results indicated a large variation on the encounter rate, it was 

necessary to use a large number of repetitions to get an accurate estimate of the response. 

Using the current flight-tested element geometry as a basis, with three aircraft per 

element and 3000 feet in-trail spacing between aircraft, the second aircraft is 3,000 feet 

behind and 600 feet to the right of the lead, while the third is 6,000 feet behind and 900 

feet to the left.   This positioning is used for wind conditions up to 3 degrees of drift. 

Table 10.  Input Data for Simulation Runs with 50 Replications at Each Point. 

Input Data 
Type of formation 

Number of Planes 
Planes Per Element 
Jumpers Per Side 
#2 In-Trail Spacing 
#2 Lateral Spacing 
#3 In- Trail Spacing 
"? Lateral Spacing 
Element Leader Spacing 
In-Trail Tolerance 
Lateral Tolerance 
Aircraft Weight 
Drop Altitude 
Airspeed 
Crosswind at Altitude 
Standard Deviation (1) 
Shear Altitude (I) 
Crosswind (Middle) 
Standard Deviation (2) 
Shear Altitude (2) '. 
Crosswind (Ground) 
Standard Deviation (3) 
Headwind 
Air Density 
Jumper Output File 
(# = 3,6,7)   . 
Encounter Output File 
(# = 3,6,7).   -.•■'.' 
Scatter Output File 
(# = 3,6,7)r.; ••>/'.' 
Random Seeds 
Individual Trajectories 

9000 Ft   16000 Ft   24000 Ft   32000 Ft   34000 Ft   40000 Ft 
2 

(Custom) 
6 
3 
6 

3000 
600 
6000 
-900 
9000 
500 
200 

385000 
900 
135 
0 
.1 
0 
0 
0 
0 
0 
0 
0 

0.002309 
Seed#9J 

Seed#9E 

Seed#9S 

3,6,7 
0 

2 (Custom) 2 (Custom) 

^tf^^l 6 
MpPlll 3 
tPljIp 6 

3000 3000 
600 600 

6000 6000 
-900 -900 

16000 24000 
500 500 
200 200 

385000 385000 
900 900 
135 

MHMI 
«■HM 
■HHI 
IBflHI 
lHp|hji 
IMMMkf 

0.002309 
Seed#16J 

Seed#16E 

Seed#16S 

3,6,7 
0 

135 
0 
.1 
0 
0 
0 
0 
0 
0 
0 

0.002309 
Seed#24J 

Seed#24E 

Seed#24S 

3,6,7 
0 

2 (Custom) 

Iplillli 
VHHH 

3000 
600 

6000 
-900 

32000 
500 
200 

385000 
900 
135 

■IMP 

■Mpli 
(■BBS iiiilpli 
0.002309 
Seed#32J 

2 (Custom) I 2 (Custom) 

6 
3 
6 

3000 
600 
6000 
-900 
32000 
500 
200 

385000 
900 
135 
0 
.0 
0 
0 
0 
0 
0 
0 
0 

0.002309 
Seed#34J 

Seed#32E      Seed#34E 

!Seed#32S 

3,6,7 
0 

Seed#34S 

3,6,7 
0 

6 

3000 
600 

6000 
-900 

40000 
500 
200 

385000 
900 
135 

BpM| 

HuHM 

mifilii 
0.002309 
Seed#40J 

Seed#40E 

Seed#40S 

3,6,7 
0 
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With more than 3 degrees of drift the three airplanes fly with the same in-trail spacing, 

but aircraft two and three both fly upwind from the lead aircraft. This places number two 

600 feet upwind, while number three flies 1500 feet upwind. This geometry was not 

tested in the simulation. 

The simulation analysis uses a light and variable wind condition with the mean 

crosswind being zero, and the wind following a normal distribution with a standard 

deviation of 0.1 knot. Jumpers from aircraft two and three are analyzed separately from 

the jumpers from aircraft four, five, and six. Since no encounters between jumpers and 

vortices from the same element are acceptable, there should be no encounters from 

aircraft within the same element. I also expect the encounter rate to decrease as spacing 

increases, and am interested in the order of that decrease. Table 10 shows the input data 

used for the simulations to obtain the 15 point estimates (Table 11). Subsequent review 

Table 11.   Results of Simulation Runs, Blocked by Seed. 

Seed Distance Coded Mean 95 % Confidence 
Number Spacing Interval 

3 9,000 -.9375 40.67 % 6.93 % 
6 9,000 -.9375 42.94 % 6.97 % 
7 9,000 -.9375 36.72 % 6.86 % 
3 16,000 -.5 18.33% 4.53 % 
6 16,000 -.5 19.56 % 4.63 % 
7 16,000 -.5 18.44 % 4.93 % 
3 24,000 0 13.72 % 3.33 % 
6 24,000 0 10.89 % 3.00% 
7 24,000 0 10.83 % 2.98 % 
3 32,000 .5 12.06 % 2.57 % 
6 32,000 .5 10.56 % 2.68 % 
7   . 32,000 .5 8.94 % 2.18 % 
3 34,000 .625 0.33% 0.31% 
6 34,000 *    .625 0.83% 0.49% 
7 34,000 .625 0.00% 0.00% 
3 40,000 1 0.00% 0.00 % 
6 40,000 1 0.00% 0.00% 
7 40,000 1 0.00% 0.00% 
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of the analysis, suggests that the data collected at 40,000 feet artificially constrains the 

encounter rate to 0% and it should not be used in the regression calculations. The 34,000 

feet spacing was added at this time and the regression reaccomplished with the 15 points 

including 34,000 feet and excluding 40,000 feet. 

Since the encounter file has a one line entry for every Vz second that a jumper is in 

the vortex, much of the data is redundant for calculating the encounter rate but necessary 

for further analysis. I import each file into Microsoft Access and used the duplicate query 

wizard to reduce the data to number of encounters per airplane. (This analysis tool helps 

me identify which jumpers encountered a vortex and for how many time steps the 

Table 12.  First Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 
Linear Fit 

Encounter Rate = 15.0226 - 20.7943 Coded Spacing 
Summary of Fit 

RSquare 0.84997 
RSquare Adj 0.838429 
Root Mean Square Error 5.551883 
Mean of Response 16.32222 
Observations (or Sum Wgts) 15 

Analysis of Variance 
Source DF Sum of Squares Mean Square         F Ratio Prob>F 
Model 
Error 

C Total 

1 
13 
14 

2270.1180 
400.7043 
2670.8223 

2270.12            73.6492 
30.82 

<.0001 

Parameter Estimates 
Term Estimate Std Error t Ratio       Prob>lt 

1 
Intercept 

Coded Spacing 
15.022577 
-20.79431 

1.441467 
2.423041 

10.42        <.0001 
-8.58        <.0001 

encounter occurred). I then link-that data into a Microsoft Excel spreadsheet and add the 

appropriate number of planes having zero encounters before finding the point estimates 
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for encounters rates (Table 11). The range of encounters for any airplane varied from 

100% to 0% at both 9,000 and 16,000 feet spacing but dropped off at 32,000 feet to a 

maximum of 50% and ranging to 0%. 

These 15 points (including 34,000, excluding 40,000 feet) provide the data set 

necessary to fit a line describing the encounter rate as a function of element spacing. The 

first try at regression was a simple first order least squares linear regression.   I use the 

Figure 6. First Order Linear Regression with Confidence Interval and Residuals 
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JMP statistical software package and Microsoft Excel to assist the calculation of the 

regression parameters (Table 12). Since the actual numbers for the spacing are so large I 

coded the variables between -1 and 1 for 8,000 feet and 40,000 feet respectively. (I chose 

8,000 feet as the lower end to have equally spaced intervals.) 

Figure 6 shows the plot of the line with confidence interval and the residuals. 

Although the R Squared and Adjusted R Squared are fairly high (Table 12), the residuals 

indicate a clear non-linearity in the data. This indicates that a higher order function is 

necessary to better define the relationship between element spacing and encounter rate. 

Next I use a second-order model to find a curve that would best fit the data points 

(Table 13 and Figure 7).    R-Square and Adjusted R-Square both improve, but the 

Table 13. Second Order Linear Regression Results, Coded Spacing vs. Encounter 
Rate. 

Polynomial Fit degree=2 

Encounter Rate = 10.3955 - 17.1144 Coded Spacing + 13.7241 Coded SpacingA2 

Summary of Fit 
RSquare 0.913015 
RSquare Adj 0.898518 
Root Mean Square Error 4.400014 
Mean of Response 16.32222 
Observations (or Sum Wgts) 15 

Analysis of Variance 

Source DF Sum of Squares Mean Square         F Ratio Prob>F 
Model 
Error 
C Total 

2 
12 
14 

2438.5008 
232.3214 
2670.8223 

1219.25                 62.9774 
19.36 

<.0001 

Parameter Estimates 
Term Estimate Std Error        t Ratio         Prot»ltl 
Intercept 
Coded Spacing 
Coded SpacingA2 

10.395537 
-17.11439 
13.724073 

1.940792        5.36            0.0002 
2.290117        -7.47           <.0001 
4.653589        2.95             0.0122 
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residuals still suggest a higher order relationship between Coded spacing and Encounter 

rate. 

Thus, the next model is a full, third-order model (Table 14 and Figures 8 and 9).  Once 

again R-Square and Adjusted R-Square improve and the curve seems to fit the data points 

almost exactly. This time, however, the residuals appear to be randomly dispersed; the 

only noticeable problem being the significance of the first and second order terms. The 

Figure 7. Second Order Regression with Confidence Interval and Residuals. 
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Table 14. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 

Polynomial Fit degree=3 
Encounter Rate = 13.6927 - 1.23977 Coded Spacing - 4.53751 Coded SpacingA2 - 35.854 Coded SpacingA3 

Summary of Fit 
RSquare 0.967746 
RSquare Adj 0.95895 
Root Mean Square Error 2.798434 
Mean of Response 16.32222 
Observations (or Sum Wgts) 15 

Analysis of Variance 
Source DF Sum of Squares Mean Square         F Ratio Prob>F 
Model 
Error 
C Total 

3 
11 
14 

2584.6787 
86.1436 
2670.8223 

861.560                 110.0158 
7.831 

<.0001 

Parameter Estimates 
Term Estimate Std Error          t Ratio Prob>ltl 
Intercept 
Coded Spacing 
Coded SpacingA2 
Coded SpacingA3 

13.692721 
-1.239774 
-4.537511 
-35.85395 

1.451224         9.44 
3.952485          -0.31 
5.160021          -0.88 
8.298726          -4.32 

<.0001 
0.7596 
0.3980 
0.0012 

regression model should be accomplished again with a reduced model excluding the first 

and second order terms (Coded Spacing and Coded Spacing2). 

The results of the reduced third order model initially look very promising (Table 

15 and Figure 10). Dropping the insignificant first and second order terms has very little 

effect on the total model, and explains over 96% of the variation in the data. Comparing 

the four regression models, the reduced third order model is the best. But, its curve 

suffers from lack of fit and a discernible pattern in the residuals, with all of the factors 

significant. Further experimentation is necessary to determine the true nature of the 

curve. I suggest this be done in conjunction with an experiment including the effects of 

crosswinds as well. 
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Figure 9. Full Third Order Residuals 
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With any regression model, prediction outside the range of the data can be 

dangerous - this caveat is particularly true in this instance. Obviously, any prediction 

outside the range of 0% to 100% is invalid since our response is the encounter rate. Since 

I used 9,000 and 40,000 feet (later modified to 34,000 feet) when setting up the 

experiment, prediction outside of this range should not be necessary. Only a fundamental 

Figure 8. Full Third Order Regression Line with Confidence Interval. 

40- 

30- 
Encounter 
Rate 

20- \\i\ 

10- 
*S***^                                ^S.    \ ■ 

o- 

-1. 

\     ■ 

I 
0            -0.5 

i         |        i         |     * 

.0              .5 
'       1 

1.0 
Coded Spacing 

47 



change in element spacing, or new data on the life span of a vortex, will change the area 

of interest. Therefore, the reduced third order model should be sufficient in representing 

the risk function with the given input parameters but only within the 9,000 to 40,000 feet 

spacing. 
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Table 15.  Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate. 

Term 
Intercept 
Coded SpA3 

Response: Encounter Rate 
Summary of Fit 

RSquare 0.961561 
RSquare Adj 0.958605 
Root Mean Square Error 2.810184 
Mean of Response 16.32222 
Observations (or Sum Wgts) 15 

Lack of Fit 
Source DF Sum of Squares Mean Square F Ratio Prot»F 
Lack of Fit 
Pure Error 
Total Error 

3 
10 
13 

71.27592 
31.38685 
102.66278 

23.7586 
3.1387 

7.5696 0.0062 

MaxRSq 0.9882 

Parameter Estimates 
Estimate Std Error t Ratio Prot»ltl 
12.274168 
-34.907 

0.759516 
1.935693 

16.16 
-18.03 

<.0001 
<.0001 

Since the response is a rate defined by a binary variable (either the jumper 

encounters the vortex or not) logistic regression could be a better choice for predicting the 

response. Logistic regression limits the response between 0 and 1 using the function 

shown in equation 3. Using JMP to assist in the regression calculations yields the results 

in Table 16 and Figure 11. 

Equation 3. General Logistic Response Function. 
Sm^l + expC-ß-AX)]-1 
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Figure 10. Reduced Third Order Curve with Confidence Interval and Residuals. 
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While the Chi Square test statistic looks acceptable for the model as a 

whole, there does seem to be a lack of fit. To accept the null hypothesis that the model 

fits the data would require a smaller Chi Square value to raise the probability above the 

.05 level. Adding higher order terms (up to fourth-order) into the model to get a better fit 

Table 16.  Logistic Regression Results, Encounter Rate vs. Coded Spacing 
Response: Response 

Iteration History 
LogLikelihood    Step Delta-Criterion      Obj-Criterion 
-12014.31529 Initial 1.52249241 1.4963e304 
-10606.75979 Newton 0.28578082 
-10475.98057 Newton 0.0370223 
-10474.53191 Newton 0.00077349 
-10474.53126 Newton 0.00000037 

Iter 
1 
2 
3 
4 
5 

0.1327035 
0.01248371 

0.0001383 
0.00000006 

Converged by Gradient 
Whole-Model Test 

Model -LogLikelihood DF ChiSquare         Prob>ChiSq 
Difference 
Full 
Reduced 

1539.784 
10474.531 
12014.315 

1 3079.568          0.0000 

RSquare(U) 0.1282 
Observations (or Sum Wgts) 27000 

Lack of Fit 
Source DF -LogLikelihood ChiSquare Prob>ChiSq 
Lack of Fit 
Pure Error 
Total Error 

3 
26995 
26998 

314.673 
10159.859 
10474.531 

629.3451 <.0001 

Parameter Estimates 
Term Estimate Std Error             ChiSquare Prob>ChiSq 
Intercept 
Coded Spacing 

-2.0531783 
-1.6609887 

0.0224769           8344.1 
0.0330304           2528.8 

0.0000 
0.0000 

did not produce a better fit. 

Even though the logistic regression model is not problem free, it may provide 

some useful information. Since there are only five design points in the model, the 

degrees of freedom for the Chi Square test for lack of fit require that the test statistic be 
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Figure 11. Logistic Regression Prediction Curve. 
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very small. To test to the 95% level with three degrees of freedom requires the test 

statistic to be below 7.81. Running the model at more points would increase the degrees 

of freedom, thus raising the critical value. This may allow future analysis to fit a better 

curve using logistic regression. Next, I compare the reduced third order and logistic 

regression models for their use as prediction models. 

The main uses of the models are to determine the point where the encounter rate 

begins to rise sharply and to quantify the risk to the jumpers at a given element spacing. 

Either of the two models can be used for this purpose. By visual inspection the reduced 

third order model rises sharply from almost 0% at 34,000 to 10% at 28,000. It then stays 

fairly flat, rising slowly until 20,000 feet, then rising sharply to a high of 40% at 9,000 

feet. 
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The logistic regression curve doesn't have the flat spot in the center like the third 

order model. It rises slowly from 2% at 40,000 feet to 10% at 24,000 feet, then increases 

up to 40% and 9,000 feet. Table 17 shows a comparison of predicted responses using the 

two models at various element intervals, while Figure 12 is a plot of Table 17. Note the 

larger interval on the third order encounter rate compared to the logistic prediction. The 

logistic regression curves actually cross and all three are equal at 24,000 feet. 

Another interesting find was the discovery and correction of a bug during data 

collection at 32,000 feet element spacing. At this spacing some of the jumpers were 

encountering the vortex at the very end of its simulated life. It would be in the vortex at 

one time step and the next it would be within 100 feet of the end. Belano (1997) 

describes the search algorithm in more detail, but the way it was implemented compared 

the jumper x position with the vortex x position, and when they were within 100 feet the v 

and z position were checked. If all three axes were within 100 feet then the method asked 

for the next vortex point and drew a line between the two points to take the normal 

distance. If that distance was less then the largest value of the radius at the two points 

then an encounter occurred. When the jumper was within 100 feet of the end of the 

vortex, the program crashed when the array asked for a value of the vortex that was out of 

bounds. This problem was easily corrected, but did shed some insight into the distance at 

which the jumpers were encountering vortices. Since this was a no wind scenario, the 

distance between airplanes was essentially the element spacing. At 32,000 feet, 

encounters were occurring at the end of the vortex life span. Lidar data showed some 

vortices dissipated sooner than others, which is not modeled due to the data collection 
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occurring simultaneously with model creation. If this data were incorporated in the next 

version of the model, I feel the encounter rate between 24,000 to 32,000 feet would 

decrease in the simulation. The model predicts the worse case scenario in this spacing 

range, since every vortex lasts as long as the longest recorded vortex. Analysis of the 

lidar data for some distribution of vortex life, and implementation of that distribution 

within the model, should improve the predictive capabilities in the 24,000 to 40,000 feet 

range. This may make the logistic regression curve fit better and solve some of the lack 

of fit problems. 
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Table 17.  Predicted Encounter Rate for Third Order and Logistic Models 

Third Order Encounter Rate Logistic Encounter Rate 

Spacing Coded Spacing Point Lower Upper Point Lower Upper 

16000 -0.5 16.64 15.52 17.76 22.75 23.41 22.27 
16800 -0.45 15.46 14.20 16.71 21.32 21.89 20.91 
17600 -0.4 14.51 13.14 15.88 19.96 20.44 19.61 
18400 -0.35 13.77 12.31 15.23 18.67 19.07 18.38 
19200 -0.3 13.22 11.69 14.74 17.44 17.76 17.20 

20000 -0.25 12.82 11.24 14.40 16.27 16.53 16.09 
20800 -0.2 12.55 10.95 14.16 15.17 15.37 15.03 
21600 -0.15 12.39 10.77 14.02 14.14 14.27 14.04 
22400 -0.1 12.31 10.67 13.95 13.16 13.24 13.10 
23200 -0.05 12.28 10.64 13.92 12.24 12.28 12.21 
24000 0 12.27 10.63 13.92 11.37 11.37 11.37 
24800 0.05 12.27 10.63 13.91 10.56 10.53 10.59 
25600 0.1 12.24 10.59 13.88 9.80 9.74 9.85 
26400 0.15 12.16 10.50 13.81 9.09 9.00 9.16 
27200 0.2 11.99 10.32 13.67 8.43 8.32 8.51 
28000 0.25 11.73 10.02 13.43 7.81 7.68 7.91 
28800 0.3 11.33 9.58 13.09 7.23 7.08 7.34 
29600 0.35 10.78 8.96 12.60 6.69 6.53 6.82 

30400 0.4 10.04 8.13 11.95 6.19 6.02 6.32 
31200 0.45 9.09 7.07 11.12 5.73 5.55 5.86 
32000 0.5 7.91 5.75 10.07 5.30 5.11 5.44 
32800 0.55 6.47 4.13 8.80 4.90 4.71 5.04 
33600 0.6 4.73 2.19 7.28 4.52 4.33 4.67 
34400 0.65 2.69 -.10 5.48 4.18 3.99 4.32 
35200 0.7 0.30 -2.77 3.38 3.86 3.67 4.00 
36000 0.75 -2.45 -5.86 0.95 3.56 3.37 3.70 
36800 0.8 -5.60 -9.38 -1.82 3.29 3.10 3.43 
37600 0.85 -9.16 -13.37 . -4.95 3.03 2.85 3.17 
38400 0.9 -13.17 -17.86 -8.48 2.80 2.62 2.93 
39200 0.95 -17.65 -22.88 -12.43 2.58 2.41 2.71 
40000 1 -22.63 -28.46. -16.81 2.38 2.21 2.51 
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Figure 12.  Third Order and Logistic Prediction Curves. 
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V. Conclusions 

Summary of Results 

Of the regression models analyzed, the reduced third order seems the best model 

even with the problems noted (Table 18). However this model suffers from the fact that 

the data is better suited to a logistic regression since the response is of the form of a rate 

between 0% and 100%. Logistic regression limits the response function between these 

values. However the fit with the logistic regression does not seem to be as good as with 

Table 18. Comparison of Regression Models. 

Model Effects R Square Adjusted R Square Reason for 
Rejection 

First Order Coded Spacing .8500 .8384 Residuals 

Second Order" Coded Spacing 
Coded SpacingA2 

.9130 .8985 Residuals 

Full Third Order Coded Spacing 
Coded SpacingA2 
Coded SpacingA3 

.9677 .9659 First Order Effect 
Second Order Effect 

Insignificant 
Reduced Third Coded SpacingA2 .9616 .9586 Lack of Fit 

Order Coded SpacingA3 
Logistic Regression Coded Spacing .1282 Lack of Fit 

least squares regression. Comparing both methods shows that the logistic model may 

under estimate encounter rate at some intervals and over estimate in others. We have no 

empirical data for validation of which regression model is the most correct. Both models 

have strengths and weaknesses associated with them. The third order model has a large 

prediction interval associated with any prediction of the encounter rate at any spacing 

while the logistic model tends to both over and under estimate the rate in certain spacing 

intervals. 

I recommend that both models be presented as possible representations of the 

encounter rate in this type of an experiment. Only continued collection of flight test data 
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will give the information necessary to choose which model better represents reality. 

Although any model will have flaws, either of these models can be used. The important 

factor in choosing which model to use is how much risk are we willing to take with live 

jumpers. One possibility for better prediction would be another experiment collecting 

more data points at the same, intervals with different random number seeds. This would 

increase the degrees of freedom and may drive down the lack of fit statistic into an 

acceptable range. Without further experimentation, I cannot confidently recommend 

either model; but, if I had to choose I would take the reduced third order model. 

Model Improvements 

While this model appears useful, it is by no means perfect; there are a few areas 

where the model can be improved upon with further research. Two major areas are the 

wind behavior and formation positioning within the tolerance box. It could also be easily 

expanded to include other aircraft and equipment drops. Further analysis of vortex 

characteristics could also improve our representation of a vortex, as well as a test of the 

assumption that aircraft spacing makes the influence by any vortex pair upon another 

insignificant compared to its own induced motion. 

Since the decision to vary the winds was not implemented at the last minute, there 

was not a lot of time for research into the type of distribution that the winds follow. The 

model uses the normal distribution with a user input standard deviation. Coffin (1997) 

suggests some sources for further research into modeling changing winds, but also 

concludes that for the purposes öf this model the normal distribution is sufficient. (Other 

possible distribution types include gamma, weibull, and Log-normal.) I feel this could be 
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an area of model improvement if one could test the sensitivity of the encounter rate to the 

type of wind distribution used. I suspect the wind has a significant impact on vortex 

position, but do not know how a different representation of the winds will affect the 

overall model performance. 

Another area of improvement is in the fly method and how the aircraft fly in 

relation to the lead ship. I know from personal experience that an airdrop run-in can be 

quite busy, and my experience is with a six man crew of the C-141 not the three man 

crew of the C-17. If there were some way to collect data on actual formation position of 

the aircraft, the fly method of always moving from in position to a random point out and 

back again could be improved upon. I realize that the method induces a lot of movement 

that is probably not evident during actual flight conditions. Once over the dropzone, 

baring unsafe flight conditions, the primary concern is maintaining a stable jump 

platform, not correcting formation position. After the jumpers are clear, the pilot would 

again worry about his position within the formation. This is all personal pilot technique, 

but with the proper data one could analyze the time spent in position, the magnitude of 

error before pilot recognition, the rate of correction after recognition, and the time spent 

out of position. Intuitively, jumper encounter rate seems to be highly sensitive to relative 

position of the vortex and airplane. This was also evident in the model. If the fly method 

induces more aircraft movement than is actually there, the response could have a built in 

bias. 

Another area of research is the expansion of the model to include different 

airplanes and equipment drops.    The C-170bj is easily modifiable to take on the 
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characteristics of another airplane. One could copy the definition and implementation of 

the C-170bj, change the wing characteristics and the control object, and easily have C- 

141, C-130, and C-5 objects in the model. One definite change would be in the strength 

decay equations. The strength now stays constant for 60 seconds before starting to decay. 

The other airplanes have a different characteristic value before the strength begins to 

decay. If this value were made an attribute of the airplane, it could be passed into the 

vortex object upon update; thus the vortex objects would have the same code but generate 

different vortices for each aircraft type. If the rate at which they decay is different for 

each aircraft type, then the code could be modified with different decay formulae within 

the vortex implementation by using a case statement that chooses the correct formula 

within the module. 

The creation of a heavy equipment object is also very simple compared to our 

initial effort. Belano's paratroop objects could be modified to include the characteristics 

of a heavy equipment pallet instead of a person, and have different parachute 

characteristics. This equipment object could be used to assess the risk to jumpers with 

different spacing between the heavy equipment and personnel segments of the strategic 

brigade airdrop. If the C-5 were used for the equipment portion of the drop, their vortices 

are stronger than the C-17's and could have an even greater impact on jumper safety. 

The last area for further research I will address is that of vortex life. The model 

assumes that every vortex will last for as long as the longest recorded vortex in the lidar 

data. Obviously, this is not the' case because most of the recorded vortices did not last 

that long.  The lidar data was collected and analyzed as this project was on going, and 
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was not completely available for input analysis. I feel that the data could be analyzed to 

find a distribution of life spans and somehow implemented within the code. By ignoring 

the fact that some vortices decay beyond recognition in a shorter distance than others, the 

model may be overestimating the encounter rate at the longer intervals. (This range is 

probably in the 24,000 to 40,000 feet range.) 

We also found and corrected a bug in the program during simulation runs at 

32,000 that led to an interesting discovery. Some jumpers were encountering vortices 

near the very end of the vortex life at this spacing. They would encounter the vortex 

during one time interval and then be within 100 feet of the end at the next. The bug was 

that our algorithm asked for the next point to draw a line between to take the normal 

distance for comparison to the radius. When the point was where the jumper was within 

100 feet of the last point, it asked for a point that was not in the vortex array causing the 

program to crash. We fixed the problem, but this shed some insight into the distance at 

which the jumpers would encounter a vortex. If the change to the vortex representation 

of shortening its life or length based on empirical data were implemented I feel the 

predicted encounter rate at 32,000 feet would decrease dramatically. 

Finally, I feel a test of the assumption that the vortex pairs are far enough apart 

that they do not have a significant impact on another pair when compared to the motion 

induced by the opposite vortex within each pair is required. Some sort of diagnostic 

should be added into the code to record the distance between any vortices throughout the 

simulation. It is possible within this simulation that the vortices are sufficiently close to 

one another to influence the movement of another vortex pair and we would not even 
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know it.   Since the influence of any vortex is inversely proportional to the distance 

between the vortices, a simple check of the actual distance between any vortex pairs 

should be sufficient. Visualization of the simulation could also aid in this function. 

Contribution 

The biggest contribution of this model is as a tool for engineering analysis. This 

model should be a significant addition to the tools currently being used to analyze airdrop 

operations. Even without the listed improvements, we now have a way to measure the 

effects of changes within a formation on jumper-vortex interaction. It provides a solid 

basis for follow-on research and may be the beginning of a useful combat model. If the 

results of this model could be incorporated into a higher level campaign model, then we 

would have some way of assessing the risks associated with a planned airborne assault, 

and could reduce the number of affected troops by some percentage in planning this 

assault. 

Another contribution is the preliminary analysis provided by this model. Due to 

time and computer constraints the analysis doesn't provide us with a clear picture of the 

relationship between element spacing and encounter rate. Further experimentation should 

help in defining this relationship. (I suspect the final model will either be a third order or 

a logistic regression model.) Further testing should focus on expanding the current 

experiment to include the full range of crosswinds from -3 to 3 degrees drift; increase the 

number of element spacing points; and, the number of repetitions at each point. Since 

each data point of 50 repetitions took 9 hours to complete this will require a significant 

amount of computer time to complete.    A simple design of experiments using the 
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extremes of the two factors will not be sufficient because there are some critical angles 

between the elements where the crosswinds will dramatically increase the encounter rates. 

Blake's model (or simple geometry) can help find these angles, but the simulation should 

test around these critical points to see what effect approaching these angles has on the 

encounter rate. My suspicion is that the rate will be fairly flat throughout the surface until 

these critical angles are approached; then, the rate will increase sharply with the 

maximum being very close to what I discovered in this analysis. 
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Appendix A 

Petrv's MODSIM Code 
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Implementation Airplane Module 

IMPLEMENTATION MODULE AirplaneMod; 

FROM MathMod IMPORT pi; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM globalMod       IMPORT rho, CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2, 

weight, seed4, windseedl, windseed2, windseed3, StandDevl, 
StandDev2, StandDev3, vsl, vs2, vs3; 

FROM VortexControlMod IMPORT TotalVortexObj, VortexControl; 
FROM inputMod        IMPORT stickSize; 

OBJECT C170bj; 

ASK METHOD Objlnit; 

{Initalize the C-17 Object and update the winds} 
{To create other types of airplanes the time before vortex decay starts needs to be moved into the airplane 
objects} 
{It is currently set to 60 seconds in to vortex object for the C-17} 

BEGIN 

beff:=   165.0; 
ar  :=  7.16; 
s    := 3800.0; 
bp  := pi*beff/4.0; 
gmod := 0.8; 
vsl := CrossWindl ; 

vs2 := CrossWind2; 
vs3 := CrossWind3 ; 

NEW (RightVortex) ; 
NEW (LeftVortex)   ; 

END {ASK} METHOD {Objlnit}; 

{This method updates the vortex after the control object passes in the aircraft position using a steady wind} 

ASK METHOD VortexPosition (IN xs, ys, altitude, vfk, vf, xg, yg, weight: REAL    ; 
IN NumberOfSteps : INTEGER); 

BEGIN 
cl      := 2.0*weight/(rho*vf*vf*s); 

vsl      := CrossWindl; 
vs2     := Cross Wind2; 
vs3     := Cross Wind3; 

ASK RightVortex TO Update(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, 
vs3, NumberOfSteps); 

ASK LeftVortex TO Update(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, 
vs3, NumberOfSteps); 
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END METHOD {VortexPosition}; 

{This method updates the vortex position while the airplane flys with a variable wind} 

ASK METHOD FlyPosition(IN xs, ys, altitude, vfk, vf, xg, yg, weight: REAL    ; 
INNumberOfSteps : INTEGER); 

BEGIN 
cl := 2.0*weight/(rho*vf*vf*s); 

IF StandDevl > 0.0; 

vsl     := windseedl.Normal (CrossWindl, StandDevl); 
ELSE 

vsl      := CrossWindl; 
END IF; 

IF StandDev2 > 0.0; 

vs2     := windseed2.Normal (CrossWind2, StandDev2); 
ELSE 

vs2     := Cross Wind2; 
END IF; 

IF StandDev3 > 0.0; 

vs3     := windseed3.Normal (CrossWind3, StandDev3); 
ELSE 

vs3     := CrossWind3; 
END IF; 

ASK RightVortex TO BackwardUpdate(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, 
vsl, vs2, vs3, NumberOfSteps); 

ASK LeftVortex TO BackwardUpdate(beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, 
vsl, vs2, vs3, NumberOfSteps); 

END METHOD {VortexPosition}; 

TELL METHOD greenLight (IN myPlane : INTEGER); 

VAR 

stick: INTEGER; 

BEGIN 

stick := 1; 

{SCHEDULE FIRST JUMPERS TO EXIT AT 0 SECONDS GREEN LIGHT} 

NEW (rightJumper); 
ASK rightJumper TO initialize (stick, myPlane); 
TELL rightJumper TO jump; 

NEW (leftJumper); 

68 



ASK leftJumper TO initialize (stick, myPlane); 
TELL leftJumper TO jump; 

WHILE stick < stickSize 
stick := stick + 1; 
WAIT DURATION 0.500001; 

NEW (rightJumper); 
ASK rightJumper TO initialize (stick, myPlane); 
TELL rightJumper TO jump; 

NEW (leftJumper); 
ASK leftJumper TO initialize (stick, myPlane); 
TELL leftJumper TO jump; 

END WAIT {DURATION}; 

END WHILE; 

END {TELL} METHOD {greenLight}; 

END OBJECT {C170bj}; 

END {IMPLEMENTATION} MODULE {AirplaneMod}. 
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Definition Vortex Control Module 

DEFINITION MODULE VortexControlMod; 

FROM globalMod  IMPORT NumberofPlanes, PlanesPerEIement, ElementGeometry, 
FormationGeometry, ElementSpacing, NumberOfElements, 
altitude, vfk, ElementGeometryType, weight; 

FROM VortexMod  IMPORT RightVortexObj, LeftVortexObj; 
FROM AirplaneMod IMPORT C170bj; 

TYPE 

{Record for Vortex Control Object} 

VortexControlType = RECORD 
PlaneNumber  : INTEGER; {Aircraft position in formation} 

{Actual X Air Coordinate relative to lead airplane} 
{Actual Y Air Coordinate relative to lead airplane} 
{Actual Z Air Coordinate (Altitude (AGL))} 
{Planned X position relative to lead aircraft} 
{Planned Y position relative to lead aircraft} 
{Planned Z position relative to lead aircraft (not 

{Next X Position, from uniform draw if in position or 

{Next Y Position, from uniform draw if in position or 

{Next Altitude (not used)} 
{Airplane's X Ground Coordinate} 
{Airplane's Y Ground Coordinate} 
{Velocity of aircraft (ft/sec)} 
{Velocity of aircraft (knots)} 
{Weight of aircraft} 

{C-17 Object and all it methods and records} 
NumberOfSteps : INTEGER; {How many steps to calculate the vortex} 

fullLoad     : BOOLEAN;  {Initialized to true before the CARP then false} 
END RECORD; 

xs REAL; 
ys REAL; 
altitude : REAL; 
xsplan : REAL; 
ysplan : REAL; 
altitudeplan : REAL; 

used)} 
xsnext : REAL; 

planned position if out of position} 
ysnext : REAL; 

planned position if out of position} 
altitudenext : REAL; 
XS REAL; 
yg REAL; 
vf          : REAL; 
vfk : REAL; 
weight : REAL; 
C17 : C170bj; 

VortexControl  = ARRAY INTEGER OF VortexControlType; 

TotalVortexObj = OBJECT; 

Information     : VortexControl; 
i,j : INTEGER; 
ElementPosition : INTEGER; 
VortexLength    : INTEGER; 

ASK METHOD Objlnit; 
ASK METHOD Positioninformation; 
TELL METHOD Fly; 
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TELL METHOD greenLight; 

END OBJECT {TotalVortexObject}; 

VAR 

Airdrop     : TotalVortexObj; 
trailshift  : INTEGER; 
lateralshift: INTEGER; 

END {DEFINITION} MODULE {VortexControlMod}. 
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Implementation Vortex Control Module 

IMPLEMENTATION MODULE VortexControlMod; 

FROM globalMod IMPORT NumberofPlanes, PlanesPerElement, ElementGeometry, 
FormationGeometry, NumberOfElements, ElementSpacing, 
altitude, vfk, ElementGeometryType, weight, RunLength, streamE, trailseed, lateralseed, 

HeadWind, 
lateralBox, trailBox; 

FROM VortexMod IMPORT RightVortexObj, LeftVortexObj; 
FROM AirplaneMod IMPORT C170bj; 
FROM SimMod IMPORT SimTime; 
FROM UtilMod IMPORT DateTime; 

OBJECT TotalVortexObj; 

{Initialization of Vortex Control Array} 

ASK METHOD Objlnit; 

BEGIN 

{Assume that first airplane is origin of air coordinate system with a positive altitude} 

NEW (Information, 1..NumberofPlanes); 
NEW (Information[l]); 
Information[l].PlaneNumber := 1; 
Information[l].xs :=0.0; 
Information[l].ys :=0.0; 
Information[l].altitude    := altitude; 
Information[l].xsplan      := 0.0; 
Information[l].ysplan      := 0.0; 
Information[l].altitudeplan := altitude; 
Information[l].xsnext      := 0.0; 
Information[l].ysnext      :=0.0; 
Information[l].altitudenext := altitude; 
Information[l].xg :=-300.0; . 
Information[l].yg := 0.0; 
Information[l].vfk        := vfk; 
Information[l].vf := vfk* 1.69085; 
Information[l].weight := weight; 
Informationf 1] .fullLoad := TRUE; 
NEW (Information[l].C17); 

{Load formation position information from input files} 

FOR i := 2 TO NumberofPlanes; 

{Calculate if all elements are full, if not then add an element for remaining airplanes} 
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ElementPosition    := i MOD PlanesPerElement; 

EF ElementPosition = 0; 
ElementPosition := PlanesPerElement; 

ENDEF; 

EF ElementPosition = 1; 

NEW (Information^]); 
Information[i].PlaneNumber := i; 
Information[i].altitude    := altitude; 
Information[i].altitudeplan := altitude; 
Information[i].altitudenext := altitude; 
Information[i].vfk        := vfk; 
Information[i].vf := vfk* 1.69085; 
Information[i].weight      := weight; 
Information[i].xsplan      :=Information[i-PlanesPerElement].xs+ElementSpacing; 
Information[i].ysplan      := Information[i-PlanesPerElement].ys; 
Information[i].xs :=Information[i-PlanesPerElement].xs+ElementSpacing; 
Information[i].ys := Information[i-PlanesPerElement].ys; 

Information[i].xsnext :=     Information[i- 
PlanesPerElementJ.xs+ElementSpacing; 

Information[i].ysnext      := Information[i-PlanesPerElement].ys; 
Information[i].xg :=Information[i-PlanesPerElement].xg-ElementSpacing; 
Information[i].yg := Information[i-PlanesPerElement].yg; 

Information[i].fullLoad    := TRUE; 
NEW (Information[i].C17); 

ELSE 

NEW (Information[i]); 
Information[i].PlaneNumber :=i; 
Information[i].altitude    := altitude; 
Information[i].altitudeplan := altitude; 
Information[i].altitudenext := altitude; 
Information[i].vfk        := vfk; 
Information[i].vf := vfk* 1.69085; 
Information[i].weight      := weight; 
Information[i].xsplan := Informationfi- 

ElementPosition+l].xs+ElementGeometry[ElementPosition].Intrail; 
Information[i].ysplan := Informationfi- 

ElementPosition+1 ] .ys+ElementGeometry [ElementPosition] .CrossTrack; 
Information[i].xs :=       Information[i- 

ElementPosition+1 ] .xs+ElementGeometry [ElementPosition] .Intrail; 
Information[i].ys :=       Information[i- 

ElementPosition+1 ] .ys+ElementGeometry [ElementPosition] .CrossTrack; 
Information[i].xsnext - := Informationfi- 

ElementPosition+1 ] .xs+ElementGeometry [ElementPosition] .Intrail; 
Information[i].ysnext := Information[i- 

ElementPosition+l].ys+ElementGeometry[ElementPosition].CrossTrack; 
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Information[i].xg :=    Information[i-ElementPosition+l].xg- 
EIementGeometry[ElementPosition].Intrail; 

Information[i].yg :=       Information[i- 
ElementPosition+l].yg+ElementGeometry[ElementPosition].CrossTrack; 

Information[i].fullLoad    := TRUE; 
NEW (Information[i].C17); 

END IF; 
END FOR; 

{Calculate Vortex position until 20,000 feet behind last airplane in formation} 

VortexLength := TRUNC(Information[NumberofPlanes].xs)+20000; 

{Calculate end condition for the flight} 

RunLength    :=FLOAT(VortexLength)/Information[l].vf; 

{Calculate the number of steps behind each airplane for vortex calculations} 
{With 420 selected the vortex is terminated at 42,000 ft behind the generating aircraft. 
This is from LID AR data on the life of the vortex. The commented statement will let the 
vortex live until 20,000 ft behind the last aircraft in the formation. This gives enough 
time for all 102 jumpers to exit and descend to the ground} 

FOR i := 1 TO NumberofPlanes; 
Information[i].NumberOfSteps    := 420    {(VortexLength-TRUNC(Information[i].xs)) DIV 

100}; 
ASK SELF TO Positioninformation; 

END FOR; 

END METHOD {Objlnit}; 

ASK METHOD Positioninformation; 

BEGIN 

{Pass aircraft information into the C17 Object to pass onto the vortices} 
{Position the aircraft in the tolerance box at some random point} 

IFiol; 
lateralshift := lateralseed.Uniformlnt (-lateralBox, lateralBox); 
trailshift   := trailseed.Uniformlnt (-trailBox, trailBox); 

Information[i].xs := Information[i].xs + FLOAT(trailshift); 
Information[i].xg := Information[i].xg + FLOAT(trailshift); 

Information[i].ys := Information[i].ys + FLOAT(lateralshift); 
Information[i].yg := Information[i].yg + FLOAT(lateralshift); 

END IF; 

{Update the vortex position based on airplane position} 
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ASK       Information[i].C17       TO       VortexPosition(Information[i].xs,       Information[i].ys, 
Information^] .altitude, 

Information[i].vfk, Information[i].vf, Information[i].xg, 
Information[i].yg, 

Information[i].weight, Information[i].NumberOfSteps); 

END METHOD {Postioninformation}; 

{Begin movement of the formation, continues every 1/2 second} 

TELL METHOD Fly; 

BEGIN 
WHILE SimTime < RunLength; 

WAIT DURATION 0.5; 
{ 
OUTPUT("Flying:", SimTime); 

ASK streamE TO WriteString ("Hying:", REALTOSTR (SimTime)," ", DateTime); 
} 
{Update ground and air positions while flying} 
{If the aircraft is away from its planned position then it flys back to that position} 
{After it reaches position it then draws a new position to fly to. When it gets out} 
{of position again it flys back to the planned position} 

FOR i := 1 TO NumberofPlanes; 
EFi=l; 

Information[i].xg   :=   Information[i].vf*.5+Information[i].xg- 
.5*HeadWind; 

ELSE 
IF Information[i].xs = Information[i].xsplan; 

IF Information[i].ys = Information[i].ysplan; 
Information[i].ysnext := 

Information[i].ysplan+FLOAT(lateralseed.UniformInt(-lateralBox, lateralBox)); 
Information[i].xsnext := 

Information[i].xsplan+FLOAT(trailseed.UniformInt (-trailBox, trailBox)); 
END IF; 

END IF; 

IF Information[i].xs = Information[i].xsnext; 
IF Information[i].ys = Information^] .ysnext; 

Information[i].ysnext := 
Information[i].ysplan; 

Information[i].xsplan; 
Information[i].xsnext 

END IF; 
END IF; 

IF Information[i].xs o Information[i].xsnext; 
IF Information[i].xs < Information[i].xsnext 
Information[i].xs := Information[i].xs + 1.0; 
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Information[i].xg := 
Informationfi]. vf* .5+Information[i] .xg-.5 *HeadWind+1.0; 

ELSE 
Information[i].xs := Information[i].xs - 1.0; 
Informationfi].xg := 

Information[i].vf*.5+Information[i].xg-.5*HeadWind-1.0; 
END IF; 

ELSE 
Information[i].xg := 

Information[i].vf*.5+Information[i].xg-.5*HeadWind; 
ENDEF; 

IF Information[i].ys o Information[i].ysnext; 
IF Informationfi].ys < Informationfi].ysnext; 
Informationfi].ys := Information[i].ys + 1.0; 
Information[i].yg := Informationfi].yg + 1.0; 

ELSE 
Informationfi].ys := Information[i].ys -1.0; 
Information[i].yg := Informationfi].ys -1.0; 

END IF; 
END IF; 

END IF; 
{ 
OUTPUT(i,"   ".SimTime,   "   ",Information[i].xsnext,"   ",Information[i].xs,   "   ",Informationfi].ysnext," 
",Information[i].ys) 
} 

ASK  Information[i].C17  TO  FlyPosition(Information[i].xs, 
Informationfi].ys, Information[i].altitude, 

Informationfi].vfk, Informationfi].vf, Informationfi].xg, 
Informationfi] .yg, Informationfi] .weight, 
Informationfi] .NumberOfSteps); 

{ 
OUTPUT(Information[i].PlaneNumber,"      ".SimTime, "      ",Information[i].xs,"      ",Informationfi].xg," 
",Information[i].yg); 
} 

END FOR; 
TELL SELF greenLight; 

END WAIT; 
END WHILE; 

END METHOD {Fly}; 

{*****METHOD NEEDED FOR AIRDROP*****} 

TELL METHOD greenLight; 

BEGIN 

FOR i := 2 TO NumberofPlanes; 
IF Informationfi].xg >= 0.0 

IF Informationfi].fullLoad 
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OUTPUT("Plane ", i," GREEN LIGHT"); 
} 

Information[i].fiillLoad := FALSE; 
TELL Information[i].C17 greenLight (Information[i].PlaneNumber); 

END IF; 
END IF; 

END FOR; 

END {TELL} METHOD {greenLight}; 

END OBJECT {TotalVortexObj}; 

END {IMPLEMENTATION} MODULE {VortexControlMod}. 
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Definition Vortex Module 

DEFINITION MODULE VortexMod; 

FROM MathMod IMPORT pi; 
FROM globalMod IMPORT rho, CrossWind, Headwind; 

TYPE 

{Record Definition for Vortex Position Type } 

VortexPositionType = RECORD 
xCord  : REAL; {X Air Coordinate for Vortex Position} 
yCord   : REAL; {Y Air Coordinate for Vortex Position} 
zCord  : REAL; {Z Air Coordinate (Altitude) for Vortex Position} 
Gamd   : REAL; {Decayed Vortex Strength} 
Vage   :REAL; {Vortex Age} 
v      : REAL; {not used} 
w      :REAL; {not used} 
radius :REAL; {Radius from center with threshold swirl velocity} 
NDyCord : REAL; {No drift Y Air Coordinate for calculating 

actual vortex separation} 
Airy   : REAL; {Y Coordinate of the Airplane when vortex was 

generated} 
END RECORD; 

CompleteType = ARRAY INTEGER OF VortexPositionType; 

RightVortexObj = OBJECT; 

CompletePosition : CompleteType; {Vortex Position Array} 
beff      : REAL; {Effective Wing Span} 
ar        : REAL; {Aspect Ratio} 
s : REAL; {Wing Area} 
bp, vsl, vs2, vs3, ys : REAL;{Vortex span, wind speeds, Y Air Coordinate} 
weight, vf, vfk, cl, altitude, gmod, gam: REAL; 
{Weight, velocity (ft/sec), velocity (knots), coefficient of lift, altitude, Gamma 

modification factor from lidar, Gamma (Vortex Strength)} 
delx, delt, xs, vd, yd : REAL; {Change in x, change in time, X Air 

Coordinate, Vertical velocity, Horizontal velocity} 
i : INTEGER; 

ASK METHOD Objlnit; 
ASK METHOD writeData(IN NumberOfSteps : INTEGER); 
ASK METHOD Update(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, gmod, vsl, 

vs2, vs3 : REAL; IN NumberOfSteps :_ INTEGER); 
ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, 

gmod, vsl, vs2, vs3 : REAL; IN NumberOfSteps : INTEGER); 
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END OBJECT {RightVortexObj}; 

LeftVortexObj = OBJECT; 

CompletePosition: CompleteType; {Vortex Position Array} 
beff      : REAL; {Effective Wing Span} 
ar        : REAL; {Aspect Ratio} 
s : REAL; {Wing Area} 
bp, vs, ys: REAL; {Vortex    span,    wind    speed,    Y    Air 

Coordinate} 
weight, vf, vfk, cl, altitude, gmod, gam : REAL; 
{Weight, velocity (ft/sec), velocity (knots), coefficient of lift, altitude, Gamma 

modification factor from lidar, Gamma (Vortex Strength)} 
delx, delt, xs, vd, yd : REAL; {Change in x, change in time, X Air 

Coordinate, Vertical velocity, Horizontal velocity} 
i : INTEGER; 

ASK METHOD Objlnit; 
ASK METHOD writeData(IN NumberOfSteps : INTEGER); 
ASK METHOD Update(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, gmod, vsl, 

vs2, vs3 : REAL; IN NumberOfSteps : INTEGER); 
ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk,vf, cl, altitude, xs, ys, 

gmod, vsl, vs2, vs3: REAL; IN NumberOfSteps : INTEGER); 

END OBJECT {LeftVortexObj}; 

VAR 
sD : REAL; 

END {DEFINITION} MODULE {VortexMod}. 
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Implementation Vortex Module 

IMPLEMENTATION MODULE VortexMod; 

FROM MathMod IMPORT pi; 
FROM   globalMod  IMPORT  rho,   CrossWindl,   CrossWind2,   CrossWind3,   ShearAltl,   ShearAlt2, 
HeadWind, windseedl, windseed2, windseed3; 

OBJECT RightVortexObj; 

ASK METHOD Objlnit; 

BEGIN 
delx  := 100.0; 
delt  := delx/vf; 

{OLD CODE FROM FIRST TRY} 

{NEW (CompletePosition, 1..800); 
NEW (CompletePosition[l]); 

CompletePosition[l].xCord := 100.0+xs; 
CompletePosition[l].yCord := ys+bp/2.0; 
CompletePosition[l].zCord := altitude; 
CompletePosition[l].Vage := delx/vf; 
CompletePosition[l].Gamd :=gam; 
CompIetePositionfl].radius :=CompletePosition[l].Gamd/(2.0*pi*20.0); 
CompletePosition[l].v    := 0.0; 
CompIetePositionfl ].w    := 0.0; 

FOR i := 2 TO 800; 
NEW (CompletePosition[i]); 

CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 

vd := -1.0*CompletePosition[i-l].Gamd/(2.0*pi)*4.0*CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)); 

yd := CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 

CompletePositionfi] .yCord := ys+CompletePosition[i-1] .yCord+vs 1 *delt+yd*delt; 
CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 

CompletePosition[i].Gamd :=gam; 
ELSE 

CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePositionfi].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0); 
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CompletePosition[i].v    := 0.0; 
CompletePosition[i].w    := 0.0; 

END FOR;} 

END METHOD {Objlnit}; 

ASK METHOD Update(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, vs3 : 
REAL; IN NumberOfSteps : INTEGER); 

BEGIN 
delx   := 100.0; 
delt  := delx/vf; 
rho   := rho; 
gam   := weight/(rho*vf*bp)*gmod; 

{Verification Output} 
{OUTPUT(vsl,"", vs2,"", vs3);} 

{Create the array} 

NEW (CompletePosition, L.NumberOfSteps); 
NEW (CompletePosition[l]); 

{Calculate the first point} 

CompletePosition[l].xCord  := 100.0+xs; {100 ft behind aircraft} 
CompletePosition[l}.yCord   := ys+bp/2.0; {Off right wing of aircraft} 
CompletePosition[l].zCord   := altitude; {Aircraft altitude} 
CompletePosition[l].Vage   := delx/vf; 
CompletePosition[l].Gamd    := gam; {Use gam from above} 
CompletePosition[l].radius := CompletePosition[l].Gamd/(2.0*pi*20.0); {Threshold set at 

20 ft/sec} 
CompletePosition[l].v      :=0.0; {Not Used} 
CompletePosition[l].w      :=0.0; {Not Used} 
CompletePosition[l].NDyCord := ys + bp/2.0; {Keep no drift spacing} 
CompletePosition[l].Airy    :=ys; {Aircraft    position    when    vortex    point 

created} 

FOR i := 2 TO NumberOfSteps; 

NEW (CompletePositionfi]); 

{Calculate the remaining points} 

CompletePositionfi].xCord := xs + (FLOAT(i)*delx); 

{This is the actual separation between the vortices from Babarsky's FAX} 

sD   := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy); 
CompletePositionfi] Airy  :=ys; 

{Vertical and Horizontal Velocity Calculations} 
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vd := (-1.0*CompletePosition[i-1 ].Gamd)/(4.0*pi)*((CompletePosition[i- 
1 ] .zCord*CompletePosition[i-1 ].zCord)/(sD*((sD*sD)+(CompletePosition[i-1 ] .zCord*CompletePosition[i- 
l].zCord)))); 

yd := ((CompletePosition[i-1 ] .Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i- 
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))); 

{This code will go back to the original calculation 

vd := -1.0*CompletePosition[i-1] .Gamd/(2.0*pi)*4.0*CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)); 

yd := CompletePosition[i-1 ] .Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 

} 

CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 

{Update the separation between vortices} 

CompletePositionfi].NDyCord := CompletePositionfi-1 ].NDyCord+yd*delt; 

{Use the correct wind value based on vortex altitude} 
IF CompletePositionfi] .zCord <= ShearAltl; 

IF CompletePosition[i].zCord <= ShearAlt2; 
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs3*delt+yd*delt; 

ELSE 
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs2*delt+yd*delt; 

END IF; 
ELSE 

CompletePositionfi].yCord := CompletePositionfi-1 ].yCord+vs 1 *delt+yd*delt; 
END IF; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 
CompletePositionfi].Gamd := gam; 
ELSE 
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0); 
CompletePosition[i].v    := 0.0; 
CompletePositionfi]. w    := 0.0; 

END FOR; 

END METHOD {Update}; 

{This method updates the vortex position when the aircraft fly} 

ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, 
vs2, vs3 : REAL; IN NumberOfSteps : INTEGER); 

BEGIN 
delx   := 100.0; 
delt  := delx/vf; 
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rho   := rho; 
gam   := weight/(rho*vf*bp)*gmod; 

{OUTPUT(vsl,"", vs2, " ", vs3);} 

{Update the first point} 

CompletePosition[l].xCord   := 100.0+xs; 
CompletePosition[l].yCord   := ys+bp/2.0; 
CompletePosition[l].zCord   := altitude; 
CompletePosition[l].Vage    := delx/vf; 
CompletePosition[ 1 ].Gamd    := gam; 
CompletePosition[l].radius   :=CompletePosition[l].Gamd/(2.0*pi*20.0); 
CompletePosition[l].v       := 0.0; 
CompletePosition[l].w       := 0.0; 
CompletePosition[l].NDyCord :=ys +bp/2.0; 
CompletePosition[l].Airy    :=ys; 

{Update the remaining points from the end of the vortex to the front} 

FOR i := NumberOfSteps DOWNTO 2; 

CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 

sD := ABS(CompletePosition[i-l].NDyCord-CompletePosition[i-l].Airy); 
CompletePositionfi]. Airy  := CompletePosition[i-l].Airy; 

vd := (-1.0*CompletePosition[i-l].Gamd/(4.0*pi))*((CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord)/(sD*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)))); 

yd := (CompletePositionfi-1 ] .Gamd/(4.0*pi))*((sD*sD)/(CompletePosition[i- 
l].zCord*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)))); 

{This Code will go back to the original vortex Calculation 
vd := -1.0*CompletePosition[i-1 ].Gamd/(2.0*pi)*4.0*CompletePosition[i- 

l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)); 

yd := CompletePosition[i-l].Gama7(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 

} 

CompletePosition[i].NDyCord:=CompletePosition[i-l].NDyCord+yd*delt; 

IF CompletePositionfi] .zCord<= ShearAltl; 
IF CompletePosition[i].zCord <= ShearAlt2; 

CompletePositionfi].yCord := CompletePositionfi-1 ].yCord+vs3*delt+yd*delt; 
{Verification OUTPUT} 
{OUTPUT ("THREE");} 
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ELSE 
CompletePosition[i].yCord := CompletePosition[i-l].yCord+vs2*delt+yd*delt; 

{OUTPUT ("TWO");} 
END IF; 

ELSE 
CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vsl*delt+yd*delt; 

{OUTPUT ("ONE");} 

END IF; 
CompIetePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 
CompletePosition[i].Gamd := gam; 
ELSE 
CompletePosition[i].Gamd :=gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0); 
CompletePosition[i].v    := 0.0; 
CompletePosition[i].w    := 0.0; 

{Vortex Verification OUTPUT} 
{OUTPUT (i,CompletePosition[i].xCord,CompletePosition[i].yCord,CompletePosition[i].zCord);} 

END FOR; 

END METHOD {BackwardUpdate}; 

ASK METHOD writeData(IN NumberOfSteps : INTEGER); 
BEGIN; 

OUTPUT; 
OUTPUT ("Step xCord  yCord zCord Gamd Vage Radius   "); 

OUTPUT; 
FOR i :=1 TO NumberOfSteps; 
OUTPUT   (i,"   ",   CompletePosition[i].xCord,   "   ",   CompletePosition[i].yCord,   " 

",CompletePosition[i].zCord," ",CompletePosition[i].Vage," ",CompletePosition[i].Gamd, 
",CompletePosition[i].radius,"", CompletePosition[i].NDyCord,"", CompletePosition[i].Airy); 

END FOR; 

END METHOD {writeData}; 

END OBJECT {RightVortexObj}; 

OBJECT LeftVortexObj; 

ASK METHOD Objlnit; 

BEGIN 
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{gmod  := 0.8; 
gam   := weight/(rho*vf*bp)*gmod;} 
delx  := 100.0; 
delt  := delx/vf; 

{OLD CODE FROM FIRST TRY} 

{NEW (CompletePosition, 1..800); 
NEW (CompletePosition[l]); 

CompletePosition[l].xCord := 100.0+xs; 
CompletePosition[l].yCord := ys-bp/2.0; 
CompletePosition[l].zCord := altitude; 
CompletePosition[l].Vage := delx/vf; 
CompletePosition[l].Gamd :=gam; 
CompletePositionfi].radius :=CompletePosition[l].Gamd/(2.0*pi*20.0); 
CompletePosition[l].v    := 0.0; 
CompletePosition[l].w    := 0.0; 

FOR i := 2 TO 800; 
NEW (CompletePositionfi]); 

CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 

vd := -1.0*CompletePosition[i-1 ] .Gamd/(2.0*pi)*4.0*CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i- 
U.zCord)); 

yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 

CompletePosition[i].yCord :=ys+CompletePosition[i-l].yCord+vsl*delt+yd*delt; 
CompletePositionfi].zCord :=CompletePosition[i-l].zCord+vd*delt; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePositionfi] .Vage <= 60.0; 
CompletePosition[i].Gamd := gam; 
ELSE 
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePosition[i].radius :=CompletePosition[i].Gamd/(2.0*pi*20.0); 
CompletePosition[i].v    :=0.0; 
CompletePosition[i].w    := 0.0; 

END FOR;} 

END METHOD {Objlnit}; 

ASK METHOD Update(IN baff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, vs2, vs3 
REAL; IN NumberOfSteps : INTEGER); 

BEGIN 

delx  := 100.0; 
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delt  := delx/vf; 
gam   := weight/(rho*vf*bp)*gmod; 

{OUTPUT(vsl,"", vs2,"", vs3); 
OUTPUT("UPDATE");} 

NEW (CompletePosition, L.NumberOfSteps); 
NEW (CompletePosition[l]); 

CompletePosition[l].xCord := 100.0+xs; 
CompletePosition[l].yCord := ys-bp/2.0; 
CompletePosition[l].zCord := altitude; 
CompletePosition[l].Vage := delx/vf; 
CompletePosition[l].Gamd := gam; 
CompletePosition[l].radius:=CompletePosition[l].Gamd/(2.0*pi*20.0); 
CompletePosition[l].v    := 0.0; 
CompletePosition[l].w    := 0.0; 
CompletePosition[l].NDyCord := ys-bp/2.0; 
CompletePosition[l].Airy   :=ys; 

FOR i := 2 TO NumberOfSteps; 
{OUTPUT(i);} 

NEW (CompletePosition[i]); 

CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 
sD   := ABS(CompletePosition[i-1 ] .NDyCord-CompletePositionfi-1 ].Airy); 
CompletePosition[i].Airy :=ys; 

vd := (-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)))); 

yd := -1.0*((CompletePosition[i-1] .Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i- 
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))); 

CompletePosition[i].NDyCord:=CompletePosition[i-l].NDyCord+yd*delt; 

{typos somewhere Line 302 
vd := (-1.0*CompletePosition[i-l].Gamd)/(4.0*pi)*((CompletePosition[i- 

l].zCord*CompletePosition[i-l].zCord)/(sD*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)))); 

yd := -((CompletePosition[i-l].Gamd)/(4.0*pi))*(sD*sD)/(CompletePosition[i- 
l].zCord*((sD*sD)+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord))); 
} 
{These are the old formulas using effective wing span 

vd := -1.0*CompletePosition[i-l].Gamd/(2.0*pi)*4.0*CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord/(bp*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)); 
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yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 
} 

CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 
IF CompletePosition[i].zCord <= ShearAltl; 

IF CompletePosition[i].zCord <= ShearAlt2; 
CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vs3*delt+yd*delt; 

ELSE 
CompletePosition[i].yCord:=CompletePosition[i-l].yCord+vs2*delt+yd*delt; 

END IF; 
ELSE 

CompletePosition[i].yCord := CompletePositionfi-1 ].yCord+vs 1 *delt+yd*delt; 
END IF; 

CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 
CompletePositionfi] .Gamd :=gam; 
ELSE 
CompletePositionfi].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePositionfi].radius := CompletePositionfi] .Gamd/(2.0*pi*20.0); 
CompletePosition[i].v    := 0.0; 
CompletePositionfi]. w    := 0.0; 

END FOR; 

END METHOD {Update}; 

ASK METHOD BackwardUpdate(IN beff, ar, s, bp, weight, vfk, vf, cl, altitude, xs, ys, gmod, vsl, 
vs2, vs3 : REAL; IN NumberOfSteps : INTEGER); 

BEGIN 

delx   := 100.0; 
delt  := delx/vf; 
gam   := weight/(rho*vf*bp)*gmod; 

{OUTPUT(vsl,"", vs2,"", vs3); 
OUTPUT("BACKWARDM); 
OUTPUT(ShearAltl, ShearAlt2);} 

CompletePosition[l].xCord := 100.0+xs; 
CompletePosition[l].yCord := ys-bp/2.0; 
CompletePositionfi].zCord := altitude; 
CompletePosition[l].Vage := delx/vf; 
CompletePositionfl].Gamd :=gam; 
CompletePosition[l].radius:=CompletePosition[l].Gamd/(2.0*pi*20.0); 
CompletePosition[l].v    := 0.0; 
CompletePosition[l].w    :=0.0; 
CompletePosition[l].NDyCord := ys-bp/2.0; 
CompletePosition[l].Airy   := ys; 

FOR i := NumberOfSteps DOWNTO 2; 
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{OUTPUT (i);} 
CompletePosition[i].xCord := xs + (FLOAT(i)*delx); 
sD :=ABS(CompletePositionti-l].NDyCord-CompletePosition[i-l].Airy); 
CompletePosition[i].Airy := CompletePosition[i-l].Airy; 

vd := (-1.0*CompletePosition[i-1 ].Gamd/(4.0*pi))*((CompletePosition[i- 
l].zCord*CompletePosition[i-l].zCord)/(sD*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i- 
l].zCord)))); 

yd := -1.0*(CompletePosition[i-l].Gamd/(4.0*pi))*((sD*sD)/(CompletePosition[i- 
l].zCord*(sD*sD+(CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)))); 

CompletePosition[i].NDyCord :=CompletePosition[i-l].NDyCord+yd*delt; 

{These are the old formulas using effective wing span 
vd := -1.0*CompletePositionfi-1 ] .Gamd/(2.0*pi)*4.0*CompletePosition[i- 

1 ] .zCord*CompletePosition[i-1] .zCord/(bp*(bp*bp+4.0*CompletePosition[i-1] .zCord*CompletePosition[i- 
l].zCord)); 

yd := -CompletePosition[i-l].Gamd/(2.0*pi)*bp*bp/(2.0*CompletePosition[i- 
l].zCord*(bp*bp+4.0*CompletePosition[i-l].zCord*CompletePosition[i-l].zCord)); 
} 

IF CompletePosition[i] .zCord <= ShearAlt 1; 
IF CompletePosition[i].zCord <= ShearAlt2; 

CompletePosition[i].yCord :=CompletePosition[i-l].yCord+vs3*delt+yd*delt; 
ELSE 

CompletePosition[i].yCord := CompletePositionfi-l].yCord+vs2*delt+yd*delt; 
END IF; 

ELSE 
CompletePosition[i].yCord := CompletePositionfi-l].yCord+vsl*delt+yd*delt; 

END IF; 
CompletePosition[i].zCord :=CompletePosition[i-l].zCord+vd*delt; 
CompletePosition[i].Vage := delx*FLOAT(i)/vf; 
IF CompletePosition[i].Vage <= 60.0; 
CompletePositionfi] .Gamd :=gam; 
ELSE 
CompletePosition[i].Gamd := gam*(60.0/CompletePosition[i].Vage); 
END IF; 
CompletePosition[i].radius:= CompletePositionfi] .Gamd/(2.0*pi*20.0); 
CompletePosition[i].v    :=0.0; 
CompletePositionfi] .w    :=0.0; 

END FOR; 

END METHOD {BackwardUpdate}; 

ASK METHOD writeData(INNumberOfSteps : INTEGER); 
BEGIN; 

OUTPUT; 
OUTPUT ("Step xCord  yCord zCord Vage   Gamma  Radius   NoDrifty Ystart"); 
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OUTPUT; 
FOR i :=1 TO NumberOfSteps; 
OUTPUT   (i," 

^CompIeteP0■^ "   "•   CompletePosition[i].yCord,   - 

END METHOD {writeData}; 

END OBJECT {LeftVortexObj}; 

END {IMPLEMENTATION} MODULE {VortexMod}. 
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Appendix B 

Shared MODSM Code 
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Main Vortex Module 

MAIN MODULE vortex; 

FROM inputMod        IMPORT readData, disposeStreams; 
FROM globalMod       IMPORT i, NumberofPlanes, nu, knotconv, initializeData, repeat; 
FROM AirplaneMod     IMPORT C 170bj; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM MathMod IMPORT pi; 
FROM VortexControlMod IMPORT Airdrop; 
FROM SimMod IMPORT ResetSimTime, StartSimulation; 
FROM UtilMod IMPORT DateTime; 

VAR 

BEGIN 
{    OUTPUT ("Start time: ".DateTime);} 

{ Start the input questions and set up the random seeds } 

readData; 
initializeData; 

FOR repeat := 1 TO 50; 

ResetSimTime(O.O); 

{ Create the Vortex Control Object named Airdrop } 

NEW (Airdrop); 

{ The following loops output the vortex information } 

{ 
OUTPUT; 
OUTPUTC Airplane 1 Data"); 
OUTPUT; 
FOR i := 1 TO NumberofPlanes; 

OUTPUT; 
OUTPUT(Airdrop.Information[i].PlaneNumber," ",   Airdrop.Information[i].xs," 

Airdrop.Information[i].ys, "     ", Airdrop.Information[i].altitude, "     ", Airdrop.Information[i].xg, " 
Airdrop.Information[i].yg); 

END FOR; 
FOR i:= 1 TO NumberofPlanes;    - 

OUTPUT("Airplane ", i," Data"); 
ASK Airdrop.Information[i].C17.RightVortex TO 

writeData(Airdrop.Information[i].NumberOfSteps); 
ASK Airdrop.Information[i].C17.LeftVortex TO writeData(Airdrop.Information[i].NumberOfSteps); 
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END FOR; 
} 

{ Schedule the first event to initiate the simulation } 

TELL Airdrop TO Fly; 

StartSimulation; 

{ More vortex information. This will write the position of the vortex at the end of the simulation } 

{ 
FOR i:= 1 TO NumberofPlanes; 

OUTPUTCAirplane ", i," Data"); 
ASK Airdrop.Information[i].C17.RightVortex TO 

writeData(Airdrop.Information[i].NumberOfSteps); 
ASK Airdrop.Information[i].C17.LeftVortex TO writeData(Airdrop.Information[i].NumberOfSteps); 

END FOR; 
} 

DISPOSE (Airdrop); 

{    OUTPUT("End time: ", DateTime);} 

END FOR; 

disposeStreams; 

END {MAIN} MODULE {Vortex}. 
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Definition Global Module 

DEFINITION MODULE globalMod; 

FROM RandMod       IMPORT RandomObj; 
FROM VortexMod     IMPORT RightVortexObj, LeftVortexObj; 
FROM righUumperMod IMPORT rightJumperObj; 
FROM leftJumperMod IMPORT leftJumperObj; 

CONST 

re = 20855531.5; 
nu = 0.0001654; 
knotconv = 1.69085; {Converts knots to ft/sec} 

TYPE 

eType     = ARRAY INTEGER OF INTEGER; 
delType   = ARRAY INTEGER, INTEGER OF REAL; 
matrixType = ARRAY INTEGER, INTEGER OF REAL; 
vectorType = ARRAY INTEGER OF REAL; 

encounterType = RECORD 
airplane: INTEGER; 
side    : STRING; 
position : INTEGER; 

END RECORD {encounterType}; 

{Set up Element Position Type for building of elements} 

ElementPositionType = RECORD 
ElementPosNum: INTEGER; 
Intrail      : REAL; 
CrossTrack   : REAL; 

END RECORD; 

{Collection of Element Position Types for Formation Definition} 

ElementGeometryType    = ARRAY INTEGER OF ElementPositionType; 

FormationPositionType = RECORD; 
PositonNumber  : INTEGER; 
Intrail        : REAL; 
CrossTrack     : REAL; 

END RECORD; 

FormationGeometryType  = ARRAY INTEGER OF FormationPositionType; 

VAR 
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NumberofPlanes   : INTEGER; 
PlanesPerElement : INTEGER; 
NumberOfElements : INTEGER; 
i,j, repeat     : INTEGER; 

{Number of Planes in Formation} 
{Number of Planes per Element} 

{Number of Elements in Formation} 
{Loop control variables} 

ElementSpacing   : REAL; 
ElementGeometry  : ElementGeometryType; 
FormationGeometry: FormationGeometryType; 

CrossWindl 
CrossWind2 
CrossWind3 
Shear Altl 
ShearAl t2 
StandDevl 

wind velocity} 
StandDev2 

wind velocity} 
StandDev3 

wind velocity} 
trailBox 
lateralBox 
altitudeBox 
Headwind 
rho 
altitude 
vfk 
weight 
RunLength 
vsl 
vs2 
vs3 

rightJumper 
leftJumper 
e : 
del 
seedl 
seed2 
seed3 
seed4 
windseedl 
windseed2 
windseed3 
trailseed 
lateralseed 
timeseed 

: REAL; {Mean Crosswind at drop altitude to ShearAltl} 
:REAL; {Mean Crosswind from ShearAltl to ShearAlt2} 
: REAL; {Mean Crosswind from ShearAlt2 to ground} 

: REAL; {Altitude where wind first shifts} 
: REAL; {Altitude where wind shifts second time} 
:REAL; {Standard deviation for Crosswind 1 normal distribution for 

: REAL; {Standard deviation for Crosswind2 normal distribution for 

: REAL; {Standard deviation for Crosswind3 normal distribution for 

: INTEGER; {Size of tolerance for in-trail spacing} 
: INTEGER; {Size of tolerance for lateral spacing} 
: INTEGER; {Size of tolerance for altitude deviation (not used)} 

: REAL; {Headwind at drop altitude} 
REAL; {Air density} 
: REAL; {Altitude} 
REAL; {Aircraft velocity (knots)} 
:REAL; {Aircraft weight} 

: REAL; {Length of simulation run} 
REAL; {Crosswindl speed (ft/sec) after random draw} 
REAL; {Crosswind2 speed (ft/sec) after random draw} 
REAL; {Crosswind3 speed (ft/sec) after random draw} 

: rightJumperObj; 
: leftJumperObj; 

eType; 
: delType; 

: RandomObj; 
: RandomObj; 
: RandomObj; 
: RandomObj; 

: RandoniObj; 
: RandomObj; 
: RandomObj; 

: RandomObj; 
: RandomObj; 
: RandomObj; 

{Seed for Crosswindl normal distribution} 
{Seed for Crosswind2 normal distribution} 
{Seed for Crosswind3 normal distribution} 
{Seed for in-trail uniform distribution} 
{Seed for lateral uniform distribution} 
{Seed for time in position (not used)} 

PROCEDURE initializeData; 

END {DEFINITION} MODULE {globalMod}. 
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Implementation Global Module 

IMPLEMENTATION MODULE globalMod; 

FROM RandMod IMPORT FetchSeed; 
FROM inputMod IMPORT jumperseed; 

PROCEDURE initializeData; 

BEGIN 

{Create random streams and get seed numbers} 

NEW(e, 1..5); 
NEW (del, 1..3, 1..3); 
NEW (seedl); 
NEW (seed2); 
NEW (seed3); 
NEW (seed4); 
NEW (windseedl); 
NEW (windseed2); 
NEW (windseed3); 
NEW (trailseed); 
NEW (lateralseed); 
NEW (timeseed); 
ASK seedl TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK seed2 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK seed3 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK seed4 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK windseedl TO SetSeed (FetchSeed (jumperseed.UniformInt (1,10))) 
ASK windseed2 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))) 
ASK windseed3 TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))) 
ASK trailseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK lateralseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 
ASK timeseed TO SetSeed (FetchSeed (jumperseed.Uniformlnt (1,10))); 

e[l] 
e[2] 
e[3] 
e[4] 
e[5] 

= 1 
= 2 
= 3 
= 1 
= 2 

FOR i := 1 TO 3 
FORj:=lT0 3 

IF i =j 
del[i,j] := 1.0; 

ELSE 
del[i,j] := 0.0; 

END IF; 
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END FOR; 
END FOR; 

END PROCEDURE {initializeData}; 

END {IMPLEMENTATION} MODULE {globalMod}. 
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Definition Input Module 

DEFINITION MODULE inputMod; 

FROM IOMod  IMPORT StreamObj, FileUseType(Output); 
FROM RandMod IMPORT RandomObj; 

VAR 
i : INTEGER; 
Scenario       : INTEGER; 

dummy : INTEGER; 
stickSize      .-INTEGER; 
printTrajectory: BOOLEAN; 

streaml        : StreamObj; {TO WRITE JUMPER INFORMATION TO AN OUTPUT FILE} 
informationfile: STRING; 
streamE        : StreamObj; {TO WRITE ENCOUNTER DATA TO AN OUTPUT FILE} 
encounterfile   : STRING; 
streams        : StreamObj; {TO WRITE SCATTER  DATA TO AN OUTPUT FILE} 
scatterfile    : STRING; 

extension      : STRING; 

jumperseed     : RandomObj; 

{TROUBLE SHOOTING INPUT} 

dtdrift        : REAL; 
{ 

} 

{Get input data } 

PROCEDURE readData; 

PROCEDURE disposeStreams; 

END {DEFINITION} MODULE {inputMod}. 
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Implementation Input Module 

IMPLEMENTATION MODULE inputMod; 

FROM globalMod IMPORT NumberofPlanes, PlanesPerElement, NumberOfElements, 
ElementGeometry, Elementspacing, FormationGeometry, 
altitude, vfk, CrossWindl, CrossWind2, CrossWind3, 

ShearAltl, ShearAlt2, Headwind, rho, weight, knotconv, 
trailBox, lateralBox, StandDevl, StandDev2, StandDev3; 

FROM RandMod  IMPORT FetchSeed; 
FROM globalMod IMPORT loop; 

PROCEDURE readData; 
BEGIN 

OUTPUT("Which Scenario do you want to run?"); 
OUTPUT("    Enter 1 For Edwards Test"); 
OUTPUT("    Enter 2 For Custom Formation"); 
INPUT(Scenario); 

CASE Scenario 

WHEN1: 
NumberofPlanes := 2; 
PlanesPerElement := 2; 

NEW (ElementGeometry, 1..PlanesPerElement); 
NEW (ElementGeometry[l]); 
ElementGeometry[l].ElementPosNum := 1; 
ElementGeometry[l].Intrail      :=0.0; 
ElementGeometry[l].CrossTrack   := 0.0; 
NEW (ElementGeometry[2]); 
ElementGeometry[2].Intrail := 15000.0; 
ElementGeometry[2].CrossTrack := 0.0; 
stickSize := 6; 
weight := 385000.0; 
altitude := 1000.0; 
vfk := 135.0; 
CrossWindl := 0.0; 
Headwind := 0.0; 
rho := 0.002000; 

WHEN 2: 

OUTPUT("How many airplanes for this run?"); 
INPUT(NumberofPlanes); 
OUTPUT("How many airplanes per element?"); 
INPUT(PlanesPerElement)v 
OUTPUT("How many jumpers exiting each side of the aircraft?"); 
INPUT(stickSize); 

NEW (ElementGeometry, 1..PlanesPerElement); 
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variation"); 

be"); 

NEW (ElementGeometryfl]); 
ElementGeometry[l].ElementPosNum := 1; 
ElementGeometry[l].Intrail      := 0.0; 
ElementGeometry[l].CrossTrack   := 0.0; 

IF PlanesPerElement > 1; 
FOR i := 2 TO PlanesPerElement; 

NEW (ElementGeometry[i]); 
ElementGeometry[i].ElementPosNum := i; 
OUTPUT("All element positions are relative to element lead."); 
OUTPUT("What is the in trail distance for plane ", i," ?"); 
OUTPUT(" Spacing must be input as a real number with decimal point"); 
INPUT(ElementGeometry[i].Intrail); 
OUTPUT("What is the lateral spacing for plane ", i," ?"); 
OUTPUT("Positive to the Right, Negative to the left."); 
INPUT(ElementGeometry[i].CrossTrack); 

END FOR; 
END IF; 

IF (NumberofPlanes MOD PlanesPerElement) = 0; 
NumberOfElements := (NumberofPlanes DIV PlanesPerElement); 

ELSE 
NumberOfElements := (NumberofPlanes DrV PlanesPerElement)+l; 

END IF; 

IF NumberOfElements > 1; 
OUTPUT("What is the spacing between element leaders?"); 
INPUT(ElementSpacing); 

ELSE 
END IF; 

OUTPUT("What tolerance are the trailing aircraft following?"); 
OUTPUT("Enter the tolerance for fore and aft spacing (Must be an integer)"); 
INPUT (trailBox); 
OUTPUT("Enter the tolerance for lateral spacing (Must be an integer)"); 
INPUT (lateralBox); 

OUTPUT("What is the weight of all aircraft?"); 

INPUT(weight); 
OUTPUT("What is the airdrop altitude? (ft AGL) (Real number with decimal)"); 
INPUT(altitude); 
OUTPUT("What is the airspeed of the formation in knots?"); 
INPUT(vfk); 
OUTPUT("What is the Cross Wind Component? (knots)"); 

OUTPUT("Input up to three different winds with altitude where wind changes"); 
OUTPUT("and   standard   deviation   of  the   normal   distribution   for   wind 

OUTPUT("(All eight values must be entered.  If constant wind, then zeros can 

OUTPUT("entered for the last seven values.)"); 
OUTPUT("i.e. 5 .5 500 10 1 200 0.25 would indicate 5 knots with a normal"); 
OUTPUT("distribution and a standard deviation of .5 at drop altitude till 500"); 
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OUTPUT("feet AGL, then 10 knots with a standard deviation of 1 until 200 feet 
AGL,"); 

OUTPUT(" then calm to the ground with a standard deviation of .25"); 
INPUT(CrossWindl, StandDevl, ShearAltl, CrossWind2, StandDev2, ShearAlt2, CrossWind3, 

StandDev3); 
Cross Wind 1 := CrossWind 1 *knotconv;    {Convert knots to ft/s} 
CrossWind2 := CrossWind2*knotconv;    {Convert knots to ft/s} 
CrossWind3 := CrossWind3 *knotconv;    {Convert knots to ft/s}. 
StandDevl := StandDevl*knotconv; 
StandDev2 := StandDev2*knotconv; 
StandDev3 := StandDev3*knotconv; 

OUTPUT("What is the Head Wind Component? (knots)"); 
INPUT(HeadWind); 

Headwind := HeadWind*knotconv; {Convert knots to ft/s} 
OUTPUT("What is the air density factor (rho)?"); 
INPUT(rho); 

END CASE; 

OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFUX EXTENSION) FOR JUMPER 
INFORMATION DATA:"); 

INPUT (informationfile); 
OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR ENCOUNTER 

DATA:"); 
INPUT (encounterfile); 
OUTPUT ("ENTER OUTPUT FILENAME (WITH NO SUFFIX EXTENSION) FOR SCATTER 

DATA:"); 
INPUT (scatterfile); 
OUTPUT ("ENTER AN INTEGER (BETWEEN 1 AND 10) FOR THE RANDOM SEED INPUT 

FOR JUMPERS"); 
INPUT (dummy); 

NEW (jumperseed); 
ASK jumperseed TO SetSeed (FetchSeed (dummy)); 

NEW (streaml); 
NEW (streamE); 
NEW (streams); 

informationfile := informationfile + ".txt'-'; 
encounterfile  := encounterfile  + ".txt"; 
scatterfile    := scatterfile    + ".mat"; 

ASK streaml TO Open (informationfile, Output); 
ASK streamE TO Open (encounterfile, Output); 
ASK streams TO Open (scatterfile,    Output); 

OUTPUT ("PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS:"); 
OUTPUT ("        1 - WRITE INDIVIDUAL PARATROOP TRAJECTORY INFORMATION TO 

SEPARATE FILES"); 
OUTPUT ("    0 - DO NOT WRITE TRAJECTORY INFORMATION"); 
INPUT (dummy); 
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IF dummy = 1 
OUTPUT ("ENTER UP TO FOUR (4) CHARACTERS TO DESIGNATE JUMPERS :"); 
INPUT (extension); 
printTrajectory := TRUE; 

ELSE 
printTrajectory := FALSE; 

END IF; 

{TROUBLE SHOOTING INPUTS} 

OUTPUT ("ENTER DRIFT UPDATE DT:"); 
INPUT (dtdrift); 

END PROCEDURE {readData}; 

PROCEDURE disposeStreams; 
BEGIN 

DISPOSE(streamE); 
DISPOSE(streamS); 

END PROCEDURE {disposeStreams}; 

END {IMPLEMENTATION} MODULE {inputMod}. 
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Appendix C 

Belang's MODSIM Code 
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Definition Calc Module 

DEFINITION MODULE calcMod; 

PROCEDURE gravCalc (IN a: REAL): REAL; 
PROCEDURE densityCalc (IN h, rhoz : REAL; OUT rho, sound : REAL); 

END {DEFINITION} MODULE {calcMod}. 
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Implementation Calc Module 

IMPLEMENTATION MODULE calcMod; 

FROM MathMod IMPORT POWER, SIN, COS, SQRT, EXP; 
FROM globalMod IMPORT re; 

PROCEDURE gravCalc (IN a: REAL): REAL; 
BEGIN 

RETURN 32.1741*POWER(re/(a+re), 2.0); 
END PROCEDURE {gravCalc}; 

PROCEDURE densityCalc (IN h, rhoz : REAL; OUT rho, sound : REAL); 
VAR 

t:REAL; 

BEGIN 
rho := rhoz * EXP(-1.0*h/23111.0 + 0.294 * SIN(h/28860.0) + 0.213 * SIN(h/86580.0)); 

IF h > 0.0 
t := 518.688 - (3.56616E-03)*h; 
sound := 49.02118 * SQRT(t); 
IF h> 36152.0 

sound := 968.08; 
IF h > 82345.0 

t := 254.988 + (1.64592E-03)*h; 
sound := 49.02118 * SQRT(t); 
IF h> 155348.0 

sound := 1105.0; 
IF h> 262448.0 

sound := 846.9; 
IF h> 299516.0 

t := -349.812 + 2.19456E-03*h 
END IF; 

END IF; 
END IF; 

END IF; 
END IF; 

ELSE 
sound := 1116.44; 

END IF; 

END PROCEDURE {densityCalc}; 

END {IMPLEMENTATION} MODULE {calcMod}. 
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Definition Left Jumper Module 

DEFINITION MODULE lefÜumperMod; 

FROM IOMod IMPORT StreamObj, FileUSeType(Output); 
FROM globalMod       IMPORT eType, matrixType, vectorType, encounterType; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM VortexControlMod IMPORT VortexControl; 

TYPE 

leftJumperObj = OBJECT 

il, 
i2, 
iend, 
ipts, 
ip. 
jl. 
J2, 
k, 
loop, 
mpts, 
myNumber, 
myPIane, 
bigloop: INTEGER; 

alt, 
alpha, 
alphad, 
beta, 
bxy, 
ca, 
cao, 
caa2, 
calpha, 
cbar, 
cbeta, 
cby2, 
cds, 
clo, 
clp, 
cm, 
cma, 
cma2, 
cmo, 
cmq, 
cn, 
cna, 
cna2, 
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cnb, 
cnb2, 
cnq, 
cnr, 
coswt, 
coswtm, 
cp, 
cphi, 
csl, 
csn, 
ct, 
cy. 
cyb, 
cyb2, 
cyr, 
dens, 
deptime, 
dt, 
dtpr, 
dtpoll, 
dtdrift, 
fpc, 
g. 
gammad, 
gees, 
gmax, 
h, 
hmin, 
mach, 
mass, 
myTime, 
myDrift, 
myDriftDirection, 
pb, 
phi, 
psi, 
q. 
qb. 
qdyn, 
qs, 
qsd, 
rad, 
rb, 
rho, 
rhoz, 
sac, 
sas, 
sarea, 
salpha, 
sbc, 
sbeta, 
sbs, 
sinwt, 
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sound, 
sp, 
sphi, 
st, 
t, 
theta, 
tpr, 
tpoll, 
tdrift, 
ubl, 
ub2, 
ub3, 
uel, 
ue2, 
ue3, 
uxy, 

vp. 
vpl3, 
vpe, 
vpo, 
w, 
w2, 
weight, 
xbod, 
xcg, 
Xdrift, 
xlast, 
Ydrift   : REAL; 

slength   : REAL; {length of suspension lines} 
angle    : REAL; {the angle (in radians) which defines the "cone" of the suspension lines} 
dcglength : REAL; {distance from end of suspension lines to paratrooper e.g.} 
cweight  : REAL; {weight of canopy} 
sweight  : REAL; {weight of suspension lines} 

radius REAL; 
addedmass: REAL; 
distcm :REAL; 
sysmass .•REAL; 
paymom :REAL; 
distcan :REAL; 
distline : REAL; 
distpay :REAL; 

addDrift : BOOLEAN; 

peds, 
Pt, 
pedf, 
pm   : vectorType; {1X2} 

xe, 
xs, 
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xg, 
ue, 
wb, 
vwind, 
temp, 
ft, 
m, 
mb, 
fe, 
uedot, 
wbdot, 
hb    :vectorType; {1X3} 

in, 

jn. 
b, 
bn, 
bdot: matrixType; {3X3} 

lastRightLocation, 
lastLeftLocation : eType; {Dynamic Array} 

outfile: STRING; 

stream: StreamObj; 

encounter: encounterType; 

ASK METHOD Objlnit; 
TELL METHOD jump; 
ASK METHOD initialize (IN stick  : INTEGER; 

IN myPlane: INTEGER); 
ASK METHOD pollVortices (IN vortexPlane : INTEGER); 
ASK METHOD changeDrift; 
ASK METHOD findDrift; 

END OBJECT {leftJumperObj}; 

END {DEFINITION} MODULE {leftJumperMod}. 

108 



Implementation Left Jumper Module 

IMPLEMENTATION MODULE leftJumperMod; 

FROM MathMod IMPORT EXP, SIN, COS, POWER, SQRT, ATAN2, TAN, pi; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM globalMod       IMPORT re, e, del, i, j, NumberofPlanes, seedl, seed2, seed3, repeat; 
FROM inputMod        IMPORT streaml, streamE, streams, extension, printTrajectory; 
FROM globalMod .IMPORT CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2, 
Headwind, vsl, vs2, vs3; 
FROM calcMod IMPORT gravCalc, densityCalc; 
FROM SimMod IMPORT SimTime; 
FROM VortexControlMod IMPORT VortexControl, Airdrop; 

{TROUBLE SHOOTING INPUT} 
{ 
FROM inputMod IMPORT dtdrift; 
} 
OBJECT lefUumperObj; 

ASK METHOD Objlnit; 

BEGIN 
NEW(pcdf, 1..2); 
NEW(pm , 1..2); 

NEW(fb  , 1..3); 
NEW(fe  ,1..3); 
NEW(hb  ,1..3); 
NEW(mb  , 1..3); 
NEW(temp,1..3); 
NEW(ue   , 1..3); 
NEW(uedot, 1..3); 
NEW(vwind, 1..3); 
NEW(wb  , 1..3); 
NEW(wbdot, 1..3); 
NEW(xe  ,1..3); 
NEW(xs   , 1..3); 
NEW(xg  ,1..3); 

NEW(pcds, 1..4); 
NEW(pt , 1..4); 

NEW(in , 1..3, 1..3); 
NEW(jn , 1..3, 1..3); 
NEW(b , 1..3, 1..3); 
NEW(bn , 1..3, 1..3); 
NEW(bdot, 1..3,1..3); 

{ system inertial properties } 
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down } 

{ parachute-payload system weight (lbs) = weight of jumper/gear under T-10C} 

weight := seed3.Normal (247.0, 25.0); 

mass  := weight/32.17; 
xcg   := 0.5; { forebody e.g. (ft) in the horizontal} 
xbod   := 6.0; { forebody length (ft) in the vertical } 

FOR i := 1 TO 3 
FORj:=lT0 3 

jn[ij]:=0.0; 
in[i,j] := 0.0; 

END {j} FOR; 
END {i} FOR; 

initial conditions } 

FOR i := 1 TO 3 
xe[i]   := 0.0; { (ft) 1: down range, 2: off range, 3: altitude loss } 
ue[i]     := 0.0; { (fps) 1: horizontal velocity, 2: lateral velocity, 3: ejection velocity positive 

wb[i]    := 0.0; { ??? } 
vwind[i] := 0.0; { (fps) 1: head (+) or tail (-) wind, 2: crosswind, 3: ???? } 

END FOR; 

alt      := 0.0;      { altitude (ft) } 
hmin     := 0.0;     { ground level (ft) } 
ue[l]     :=0.0;      { horizontal velocity (fps) } 
ue[3]     := 0.0;      { ejection velocity, positive down } 
theta    := 0.0;      { pitch angle (deg) nose up positive        } 
vwindfl] := 0.0;     { head (+) or tail (-) wind (fps) } 
vwind[2] := 0.0;      { crosswind (fps) } 
dens     := 0.0;      { density (0 for standard aims) in slug/ftA3 } 
rhoz     := 0.002378; { ???? } 

IF dens o 0.0 
rhoz := dens * EXP (alt/23111.0 - 0.295 * SIN(alt/28860.0) - 0.213 * SIN(alt/86580.0)) 

END IF; 

{ program constants } 

dtpr   :=0.1;    { print interval (sec) } 
dtpoll := 0.5;    { poll vortex positions every 0.5 seconds } 
dtdrift := 5.0;   { change drift angle +/- 45.0 from current drift angle every 5 seconds } 

{ forebody aerodynamic coefficients } 

cbar := 6.0; { reference length (ft) } 
sarea := POWER(0.5,2.0)*pi; { reference area (ftA2) } 
cna  := 0.0; { normal force cn-alpha (/rad) } 
cyb  := 0.0; { side force cy-beta (/rad) } 
caa2 := 0.0; { axial force ca-alphaA2 (/radA2)        } 
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clo   := 0.0; { roll torque coefficient (dimensionless) } 
clp   := 0.0; { roll damping coefficient (/rad)        } 
cma  := -2.0; { pitch moment cm-alpha (/rad)           } 
cmq   := -200.0; { pitch damping (/rad)                  } 
cnb  := 0.0; { yaw moment cn-beta (/rad)             } 
cnr  := 0.0; { yaw damping (/rad)                   } 

{ forebody drag versus mach number table } 

mpts    := 2; 
pm[l]   := 0.00; { mach number } 
pm[2]   :=2.00; 
pcdf[l] := 0.73+0.06*(360.0 - weight)/180.0; { drag coefficient 
pcdf[2] := 0.73+0.06*(360.0 - weight)/180.0; 

{ parachute drag-area versus time table } 

deptime := 0.25; { deployment time } 
ipts    := 2; 

IF deptime > 0.0 
ipts := ipts + 2; { ipts = 4 } 
pt[l]   :=0.0; 
pt[2]   := deptime; 
pt[3]   := 0.00 + deptime; 
pt[4]   := 2.80 + deptime; 
pcds[l]:=0.0; 
pcds[2] := 0.0; 
pcds[3] := 0.20; 
pcds[4] := 690.0; 

END IF; 

{ convert EULER ANGLES to direction cosines } 

psi    := 0.0; 
phi    := 0.0; 
rad   := pi/180.0; 
st    := SIN (theta*rad); 
ct    := COS (theta*rad); 
sp    := SIN (psi*rad); 
cp    := COS (psi*rad); 
sphi   := SIN (phi*rad); 
cphi  := COS (phi*rad); 
xe[3] :=-1.0* alt; 
b[l,l] := cp * ct; 
b[l,2] := sp * ct; 
b[l,3] := -1.0 * st; 
b[2,l] := -1.0 * sp * cphi + cp * st * sphi; 
b[2,2] := cp * cphi + sp * st *.sphi; 
b[2,3] := ct * sphi; 
b[3,l] := sp * sphi + cp * st * cphi; 
b[3,2] := -1.0 * cp * sphi + sp * st * cphi; 
b[3,3] := ct * cphi; 
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END {ASK} METHOD {Objlnit}; 

TELL METHOD jump; 

BEGIN 

WHILE bigloop = 0 

WAIT DURATION dt; 

IF(-1.0*xe[3])>hmin 

g := gravCalc(h); 
density Calc (h, rhoz, rho, sound); 

IF cds = 690.0 
dt := 0.01;       {  ONCE CANOPY INFLATES, DECREASE TIME STEP SIZE TO 

0.01 } 
ELSE 

dt := 0.001;    { OTHERWISE, START WITH A SMALLER STEP SIZE OF 0.001    - 

--} 
END IF; 

radius   := SQRT(cds/pi); 
addedmass := rho*(4.0/3.0)*pi*POWER(radius,3.0); 
distcm   := (32.17*addedmass*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength) 

+ cweight*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength) 
+ sweight*(0.5*slength*COS(angIe)+dcglength)) / 

(32.17*addedmass+weight+sweight+cweight); 
sysmass   := (weight+cweight+sweight)/32.17 + addedmass; 
paymom   := (1.0/12.0)*mass*(3.0*POWER((0.5*xcg),2.0) + POWER(xbod,2.0)); 
distcan   := slength*COS(angle) + (4.0/3.0)*(radius/pi) - distcm; 
distline := distcm - 0.5*slength*COS(angle); 
distpay   := distcm; 

infl.l] 
(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0) 

+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59; 
in[2,2] := 

(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0) 
+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59; 

in[3,3] := ((2.0/5.0)*(cweight/32.17)*POWER(radius,2.0) + 
(2.0/3.0)*(rho*(4.0/3.0)*pi*POWER(radius,3.0) 

* POWER(radius,2.0)) + (0.5*mass))/14.59; 

FOR i := 1 TO 3 
jn[i,i] := 1.0/in [i,i]; 

END FOR; 

IF (-1.0*xe[3]) <= ShearAltl 
IF (-1.0*xe[3]) <= ShearAlt2 

vwind[2] := vs3; 
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ELSE 
vwind[2] := vs2; 

END IF; 
ELSE 

vwind[2] := vsl; 
END IF; 

pb   :=wb[l]; 
qb   :=wb[2]; 
rb   :=wb[3]; 
uel := ue[l] - vwind[l]; 
ue2 := ue[2] - vwind[2]; 
ue3 := ue[3] - vwind[3]; 
vp   := SQRT(POWER(uel,2.0) + POWER(ue2,2.0) + POWER(ue3,2.0)); 
vpo := vp; 
mach := vp/sound; 
ubl 
ub2 
ub3 

= b[l,l]*uel + b[l,2]*ue2 + b[l,3]*ue3; 
= b[2,l]*uel + b[2,2]*ue2 + b[2,3]*ue3; 
= b[3,l]*uel + b[3,2]*ue2 + b[3,3]*ue3; 

vpl3 := SQRT(POWER(ubl,2.0) + POWER(ub3,2.0)); 

{ USE SIN(ALPHA) for ALPHA and COS(BETA) for BETA } 

IFvpo<1.0E-06 
vpo := 1.0E-06; 

END IF; 

sbeta := ub2 / vpo; 
cbeta:= vpl3 /vpo; 
beta := sbeta; 

IFvpl3<1.0E-06 
vpl3 := 1.0E-06; 

END IF; 

salpha := ub3 / vpl3; 
calpha := ubl / vpl3; 
alpha := salpha; 

{ AERODYNAMIC and BODY FORCES AND MOMENTS } 

{ ISOLATED BODY AERODYNAMICS } 

 BEGIN AERO ROUTINE ■ 
sac := salpha * calpha; 
sas := salpha * ABS (salpha); 
sbc := sbeta * cbeta; 
sbs := sbeta * ABS(sbeta); 
rad := cbar / (2.0*vpo);   , 
cna2 := 0.0; 
cnq :=0.0; 
cyb2 := 0.0; 
cyr :=0.0; 
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cmo :=0.0; 
cma2 := 0.0; 
cnb2 := 0.0; 

{ FOREBODY AERO-LIFT DRAG COEFFIECffiNT } 

i    :=0; 
loop := 0; 
WHILE loop = 0 { WILL LOOP WHEN mach > pm[ip] UNTIL i = mpts } 

i :=i + 1; 
ip:=i+ 1; 
IF i = mpts 

cao := pcdf[2]; { when i = ipts } 
loop := 1; 

ELSE 
IF mach <= pm[ip] 

cao := pcdf[i]+(pcdf[ip]-pcdf[i])*(mach-pm[i])/(pm[ip]-pm[i]); 
loop := 1; 

END IF; 
END IF; 
END WHILE; 

en := cna * sac + cna2 * sas + enq * qb * rad; 
cy := cyb + sbc + cyb2 * sbs + cyr * rb * rad; 
ca := cao + caa2 * (1.0 - POWER(calpha,2.0) * POWER(cbeta,2.0)); 
csl := clo + clp * pb * rad; 
cm := cmo + cma * sac + cma2 * sas + cmq * qb * rad; 
csn := cnb * sbc + cnb2 * sbs + enr * rb * rad; 

{ PARACHUTE DRAG-AREA } 

eds :=0.0; 
i   := 0; 
loop := 0; 

WHILE loop = 0 
IFt<pt[l] 

loop := 1; 
ELSE 

i :=i + 1; 
ip:=i+ 1; 
IF i = ipts 

eds := pcds[ipts]; 
loop := 1; 

ELSE 
IF t <= pt [ip] 

eds := pcds[i] + (pcds[ip]-pcds[i]) * (t-pt[i]) / (pt[ip]-pt[i]); 
loop := 1; 

END IF; 
END IF; 

END IF; 
END WHILE; 
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• END AERO ROUTINE • 

q    := 0.5 * rho * vp; 
fpc   :=-1.0 *q *cds; 
qs    := 0.5 * rho * POWER (vp, 2.0) * sarea; 
qsd   := qs * cbar; 
fb[l] := -1.0 * qs * ca + mass * g * b[l,3] + fpc * ubl; 
fb[2] := qs * cy + mass * g * b[2,3] + fpc * ub2; 
fb[3] := -1.0 * qs * en + mass * g * b[3,3] + fpc * ub3; 
mb[l] 
mb[2] 
mb[3] 

= qsd * csl; 
;= qsd * cm + fpc * ub3 * (xbod - xcg); 
:= qsd * csn - fpc * ub2 * (xbod - xcg); 

gees := -1.0 * fb[l] / (mass * g); 

IF ABS (gees) > ABS (gmax) 
gmax := gees; 

END IF; 

IF printTrajectory 
IF t >= tpr { THEN PRINT DATA } 

tpr := tpr + dtpr; 
h:=-1.0*xe[3]; 
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0)); 
qdyn := 0.5 * rho * POWER (vp,2.0); 
bxy := SQRT (POWER (b[l,l], 2.0) + POWER (b[l,2],2.0)); 
theta := 57.295 * ATAN2 ((-1.0 * b[l,3]), bxy); 
alphad := 57.295 * ATAN2 (salpha, calpha); 
uxy := SQRT (POWER (ue[l],2.0) + POWER (ue[2],2.0)); 
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy); 

OUTPUT ({myNumber, "L ", }SimTime," ", h," ", xe[l], " ", xe[2], " ", vpe, " ", vp, 
", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", eds); 

ASK stream TO WriteString (INTTOSTR(myNumber) + "L "); 
ASK stream TO WriteString (REALTOSTR(SimTime) + ""); 
ASK stream TO WriteString (REALTOSTR(h) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[l]) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[2]) +""); 
ASK stream TO WriteString (REALTOSTR(vpe) +""); 
ASK stream TO WriteString (REALTOSTR(vp) + ""); 
ASK stream TO WriteString (REALTOSTR(mach) + ""); 
ASK stream TO WriteString (REALTOSTR(qdyn) + ""); 
ASK stream TO WriteString (REALTOSTR(gees) +""); 
ASK stream TO WriteString (REALTOSTR(gammad) + ""); 
ASK stream TO WriteString (REALTOSTR(theta) + ""); 
ASK stream TO WriteString (REALTOSTR(alphad) + ""); 
ASK stream TO WriteString (REALTOSTR(cds)); 
ASK stream TO WriteLn; 

END IF; 
END IF; 

{ EULER ROTATION FUNCTION FOR DIRECTION COSINE PROPOAGATION } 
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w2     := POWER(wb[l],2.0) + POWER(wb[2],2.0) + POWER(wb[3],2.0); 
w     := SQRT (w2); 
coswt :=COS(w*dt); 
sinwt :=SESf(w*dt); 
coswtm := 1.0 - coswt; 

IFw2<1.0E-12 
w2 := 1.0E-12; 
w := 1.0E-06; 

END IF; 

{ ANGULAR MOMENTUM CROSS PRODUCT TERMS } 

FOR k := 1 TO 3 
hb [k] := in[k,l] * wb[l] + in[k,2] * wb[2] + in[k,3] * wb[3]; 

END FOR; 

FOR i := 1 TO 3 
il:=e[i+l]; 
i2 := e[i+2]; 
temp[i] := wb[il] * hb[i2] - wb[i2] * hb[il]; 

END FOR; 

{ FORCE RESOLUTION TO EULER SYSTEM  } 
{ TRANSLATIONS ACCELERATION AND DIRECTION COSINE ROTATION 

FOR i := 1 TO 3 
fe[i] := fb[l] * b[l,i] + fl>[2] * b[2,i] + fb[3] * b[3,i]; 
uedotfi] := fe[i] / mass; 

FORj:=lT0 3 
bn[ij]:=b[i,j]; 
jl:=e[j+l]; 
j2 := e[j+2]; 
bdotfij]    :=   del[i,j]*coswt   +   wb[i]*wb[j]*coswtni/w2   +   (   wb[jl]*del[i,j2] 

wb(J2]*del[ijl] )* sinwt/w; 
END FOR; 

{ ANGULAR ACCELERATION IN BODY AXES } 

wbdot[i] := jn[i,l]*(mb[l]-temp[l]) + jn[i,2]*(mb[2]-temp[2]) + jn[i,3]*(mb[3]-temp[3]); 

END FOR; 

{ INTEGRALS } 

t := t + dt; 
{ t := SimTime - myTime;} ■ 

xlast := xe[l]; 

FOR i := 1 TO 3 
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xe[i] := xe[i] + dt*(ue[i]+0.5*dt*uedot[i]); 
ue[i] := ue[i] + dt*uedot[i]; 
wb[i] := wb[i] + dt*wbdot[i]; 
F0Rj:=lT0 3 

b[i,j] := bdot[i,l]*bn[l,j] + bdot[i,2]*bn[2,j] + bdot[i,3]*bn[3 j]; 
END FOR; 

END FOR; 

{ INDUCE THE RANDOM BEHAVIOR OF THE T-10C TO TAKE INTO ACCOUNT 
DRIFT } 

{ DRIFT WILL ONLY BE INDUCED IF ALL OF THE FOLLOWING ARE MET 

--} 
{ 1) NO WIND  } 
{ 2) PARACHUTE IS FULLY INFLATED  } 

IF MAXOF (vwindfl], vwind[2]) > 0.0 
addDrift := FALSE; 

ELSE 
addDrift := TRUE; 

END IF 

IF addDrift 
IF t >= tdrift 

tdrift := t + dtdrift; 
ASK SELF TO changeDrift; 

END IF; 
END IF; 

IF addDrift 
IF t >= 6.5 

xe[l]:=xe[l] + Xdrift*dt; 
xe[2] := xe[2] + Ydrift*dt; 

END IF; 
END IF; 

IFt<4.1 
{ IFt>1.4} 
{ xe[2] := xe[2] + ((xe[l]-xlast)*TAN(20.0*pi/180.0));} 

xe[2] := xe[2] + 9.25/4100.0; 
{ END IF;} 

END IF; 

{ UPDATING MOVING AND GROUND COORDINATE SYSTEMS -— } 

xs[l] := Airdrop.Information[l].xg - xe[l]; 
xs[2] := xe[2]; 
xs[3] := xe[3]; 
xg[l] := Airdrop.Information[l].xg - xs[l]; 
xg[2]:=xe[2]; 
xg[3] := xe[3]; 

{ 
OUTPUT ("Lead Aircraft xg : ", Airdrop.Information[l].xg, " jumper ", myNumber, "L xs : ", xs[l]," xg : 
", xg[l]); 
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{POLL ALL VORTICES FOR MISSED DISTANCE} 

IF t >= tpoll 
IF cds >= pcds[4] 

tpoll := tpoll + dtpoll; 
FORi:=lTOmyPlane-l; 

ASK SELF TO pollVortices (i); 
END FOR; 

END IF; 
END IF; 

ELSE { when -xe[3] <= hmin, THEN PRINT DATA FOR LAST TIME } 

h      :=-1.0*xe[3]; 
vpe    := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0)); 
qdyn   := 0.5 * rho * POWER (vp,2.0); 
bxy     := SQRT (POWER (b[l,l],2.0) + POWER (b[l,2],2.0)); 
theta  := 57.295 * ATAN2 ((-1.0 * b[l,3]). bxy); 
alphad := 57.295 * ATAN2 (salpha, calpha ); 
uxy    := SQRT (POWER(ue[l],2.0) + POWER(ue[2],2.0)); 
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy); 

OUTPUT (myNumber, "L ", myPlane,"", SimTime," ", h,"", xe[l]," ", xe[2]," ", vpe, 
vp,"", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds); 

ASK streams TO WriteString (INTTOSTR(repeat) + ""); 
ASK streams TO WriteString (INTTOSTR(myNumber) + "L "); 
ASK streams TO WriteString (INTTOSTR(myPlane) + ""); 
ASK streams TO WriteString (REALTOSTR(SimTime) + ""); 
ASK streams TO WriteString (REALTOSTR(h) + ""); 
ASK streams TO WriteString (REALTOSTR(xe[l]) + ""); 
ASK streams TO WriteString (REALTOSTR(xe[2]) + ""); 
ASK streams TO WriteString (REALTOSTR(vpe) + ""); 
ASK streams TO WriteString (REALTOSTR(vp) + ""); 
ASK streams TO WriteString (REALTOSTR(mach) + ""); 
ASK streams TO WriteString (REALTOSTR(qdyn) + ""); 
ASK streams TO WriteString (REALTOSTR(gees) + ""); 
ASK streams TO WriteString (REALTOSTR(gammad) + ""); 
ASK streams TO WriteString (REALTOSTR(theta) +""); 
ASK streams TO WriteString (REALTOSTR(alphad) + ""); 
ASK streams TO WriteString (REALTOSTR(cds)); 
ASK streams TO WriteLn; 

IF printTrajectory 
ASK stream TO WriteString (INTTOSTR(myNumber) + "L"); 
ASK stream TO WriteString (REALTOSTR(SimTime) + ""); 
ASK stream TO WriteString (REALTOSTR(h) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[l]) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[2]) + ""); 
ASK stream TO WriteString (REALTOSTR(vpe) + ""); 
ASK stream TO WriteString (REALTOSTR(vp) + ""); 
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ASK stream TO WriteString (REALTOSTR(mach) + ""); 
ASK stream TO WriteString (REALTOSTR(qdyn) + ""); 
ASK stream TO WriteString (REALTOSTR(gees) +""); 
ASK stream TO WriteString (REALTOSTR(gammad) + " "); 
ASK stream TO WriteString (REALTOSTR(theta) +""); 
ASK stream TO WriteString (REALTOSTR(alphad) +""); 
ASK stream TO WriteString (REALTOSTR(cds)); 
ASK stream TO WriteLn; 

END IF; 

bigloop := 1; 

ENDBF{hmin}; 

END WATT; 

END WHILE; 

IF printTrajectory 
ASK stream TO Close; 
DISPOSE (stream); 

END IF; 

DISPOSE (SELF); 

END {ASK} METHOD {jump}; 

ASK METHOD initialize (IN stick  : INTEGER; 
IN Counter: INTEGER); 

BEGIN 

myPlane := Counter; 
myNumber := stick; 
gees := 0.0; 
cds := 0.0; 
myTime := SimTime; 
t = SimTime-myTime; 
gmax := 0.0; 
tpr := t; 
tpoll :=t; 
tdrift := t + dtdrift; 
alt :=-1.0*xe[3]; 
h := alt; 
bigloop :=0; 
myDrift := seedl.UniformReal (0.0,4.0); 

myDrift := seed 1.Normal (2.0,0.5);} 
myDriftDirection  := seed2.UniformReal (0.0, 360.0); 
myDriftDirection   := seed2,Normal (0.0, 2.8125);} 

xe[l] := Airdrop.Information[myPlane].xg; 
xlast :=xe[l]; 
xe[2] := Airdrop.Information[my Plane] .yg - 9.25; 
alt := Airdrop.Informationfmy Plane] .altitude; 

119 



xe[3] :=-1.0* alt; 
ue[l] := Airdrop.Information[myPlane].vf; 
vwind[l] := Headwind; 

NEW (lastRightLocation, 1..my Plane-1); 
NEW (lastLeftLocation, l..myPlane-l); 

FOR i := 1 TO my Plane-1 
lastRightLocationfi] := 1; 
lastLeftLocation[i] := 1; 

END FOR; 

ASKSELFTOfindDrift; 

IF printTrajectory 
NEW (stream); 
outfile := "LJ" + INTTOSTR(myPlane) + INTTOSTR(myNumber) + extension + ".mat"; 
ASK stream TO Open (outfile, Output); 

END IF; 

{ 
OUTPUT (); 
OUTPUT ("My airplane    :", myPlane); 
OUTPUT ("Exit time      :", SimTime); 
OUTPUT ("My number      :", stick, "L"); 
OUTPUT ("My weight      :", weight); 
OUTPUT ("Xs :",xe[l]); 
OUTPUT ("Ys :", xe[2]); 
OUTPUT ("altitude       :", alt); 
} 
ASK streaml TO WriteString (INTTOSTR(repeat) + ""); 
ASK streaml TO WriteString (INTTOSTR(myPlane) + ""); 
ASK streaml TO WriteString (REALTOSTR(SimTime) + ""); 
ASK streaml TO WriteString (INTTOSTR(stick) + "L "); 
ASK streaml TO WriteString (REALTOSTR(weight) + ""); 
ASK streaml TO WriteString (REALTOSTR(xe[l]) + ""); 
ASK streaml TO WriteString (REALTOSTR(xe[2]) + ""); 
ASK streaml TO WriteString (REALTOSTR(alt) + ""); 
ASK streaml TO WriteLn; 

END METHOD {initialize}; 

ASK METHOD pollVortices (IN vortexPlane : INTEGER); 

VAR 

x, xcordl, xcord2, vvx, vjx     : REAL; 
y, ycordl, ycord2, vvy, vjy     : REAL; 
z, zcordl, zcord2, vvz, vjz     : REAL; 
vjdistance, vvdistance, distance : REAL; 
projection : REAL; 
i, location : INTEGER; 
check : BOOLEAN; 
startRightSearch : INTEGER; 
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startLeftSearch : INTEGER; 

BEGIN 

check := FALSE; 
location := 0; 

startRightSearch := lastRightLocationfvortexPlane]; 

{ 
OUTPUT ("Current search is of plane   ", currentRightVortex); 
OUTPUT ("Start searching from position ", startRightSearch); 
} 

{POLL RIGHT VORTEX} 

FOR i := startRightSearch TO Airdrop.Information[vortexPlane].NumberOfSteps 
IF location = 0 

IF    (ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].xCord- 
xs[l])) <= 50.0 

lastRightLocationfvortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].zCord+xs[3]))<=50.0 
lastRightLocationfvortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].yCord-xs[2]))<=50.0 
check       := TRUE; 
location    := i; 
IF location = Airdrop.Information[vortexPlane].NumberOfSteps 

check   := FALSE; 
END IF; 
lastRightLocationfvortexPlane] := i; 

ELSE 
location := i; 

END IF; 
ELSE 

location := i; ' 
END IF; 

END IF; 
ELSE 

EXIT; 
END IF; 

END FOR; 

IF check 
xcordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].xCord; 
ycordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].yCord; 
zcordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].zCord; 
xcord2 := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].xCord; 
ycord2 := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].yCord; 
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zcord2 
Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].zCord; 

vvx := xcord2-xcordl; 
vvy := ycord2-ycordl; 
vvz := zcord2-zcordl; 

vjx :=xs[l]-xcordl; 
vjy :=xs[2]-ycordl; 
vjz := -1.0*xs[3]-zcordl; 

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0)); 
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0)); 
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance; 
distance  := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0)); 
IF distance <; 

MAXOF(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].radius, 
Airdrop.InformationfvortexPlane] .C17.RightVortex.CompletePosition[location+1 ] .radius) 

OUTPUT (myNumber, "L ", myPlane, " RV ", vortexPlane, " ", -1.0*xe[3], " ", distance, 
", location,"", SimTime); 

ASK streamE TO WriteString (ENTTOSTR(repeat) + ""); 
ASK streamE TO WriteString (INTTOSTR(myNumber) + "L "); 
ASK streamE TO WriteString (INTTOSTR(myPlane) + " RV "); 
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + ""); 
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + ""); 
ASK streamE TO WriteString (REALTOSTR(distance) + ""); 
ASK streamE TO WriteString (REALTOSTR(location) + ""); 
ASK streamE TO WriteString (REALTOSTR(SimTime)); 
ASK streamE TO WriteLn; 

ELSE 
{ 

OUTPUT (myNumber, "L no encounter with right vortex of C-17 number", vortexPlane, ' 
at distance", distance); 
} 

END IF; 
ELSE 

{ 
OUTPUT (myNumber, "L no encounter with right vortex of C-17 number", vortexPlane); 

} 
END IF; 

check := FALSE; 
location := 0; 

startLeftSearch := lastLeftLocation[vortexPlane]; 
{ 
OUTPUT ("Current search is of plane   ", currentLeftVortex); 
OUTPUT ("Start searching from position ", startLeftSearch); 
} 

{POLL LEFT VORTEX} 
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FOR i := startLeftSearch TO Airdrop.Information[vortexPlane].NumberOfSteps 
IF location = 0 

IF      (ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].xCord- 
xs[l])) <= 50.0 

lastLeftLocationfvortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].zCord+xs[3]))<=50.0 
lastRightLocationfvortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].yCord-xs[2]))<=50.0 
check       := TRUE; 
location    := i; 
IF location = Airdrop.Information[vortexPlane] .NumberOfSteps 

check   := FALSE; 
END IF; 
lastRightLocation[vortexPlane] := i; 

ELSE 
location := i; 

END IF; 
ELSE 

location := i; 
END IF; 

END IF; 
ELSE 

EXIT; 
END IF; 

END FOR; 

IF check 
xcordl := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].xCord; 
ycordl := 

Airdrop.Information[ vortexPlane] .C17.LeftVortex.CompletePosition[location] .yCord; 
zcordl := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].zCord; 
xcord2 := 

Airdrop.InformationfvortexPlane] .C17.LeftVortex.CompletePosition[location+1 ] .xCord; 
ycord2 := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].yCord; 
zcord2 := 

Airdrop.Information[vortexPlane].C17.LeftVortex.ConipletePosition[location+l].zCord; 

vvx := xcord2-xcordl; 
vvy := ycord2-ycordl; 
vvz := zcord2-zcordl; 

vjx :=xs[l]-xcordl; 
vjy := xs[2]-ycordl; 
vjz := -1.0*xs[3]-zcordl; 

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0)); 
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0)); 
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projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance; 
distance   := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0)); 
IF distance <= 

MAXOF(Airdrop.Infonnation[vortexPlane].C17.LeftVortex.CompletePosition[location].radius, 
Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].radius) 

OUTPUT (myNumber, "L", myPlane," LV", vortexPlane,"", -1.0*xe[3],"", distance,"", 
location," ", SimTime); 

ASK streamE TO WriteString (INTTOSTR(repeat) + ""); 
ASK streamE TO WriteString (INTTOSTR(myNumber) + "L "); 
ASK streamE TO WriteString (INTTOSTR(myPlane) + " LV "); 
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + ""); 
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + ""); 
ASK streamE TO WriteString (REALTOSTR(distance) + ""); 
ASK streamE TO WriteString (REALTOSTR(location) + ""); 
ASK streamE TO WriteString (REALTOSTR(SimTime)); 
ASK streamE TO WriteLn; 

ELSE 
{ 

OUTPUT (myNumber, "L no encounter with left vortex of C-17 number", vortexPlane," at 
distance", distance); 
} 

END IF; 
ELSE 

OUTPUT (myNumber, "L no encounter with left vortex of C-17 number", vortexPlane); 

} 
END IF; 

END METHOD {pollVortices}; 

ASK METHOD changeDrift; 
BEGIN 

myDrift := seedl .UniformReal (0.0,4.0); 
{ myDrift := seedl.Normal (2.0, 0.5);} 

myDriftDirection := seed2.Normal (myDriftDirection, 2.8125); 
ASKSELFTOfindDrift; 

END {ASK} METHOD {changeDrift}', 

ASK METHOD findDrift; 
BEGIN 

Xdrift := myDrift * COS (myDriftDirection*pi/180.0); 
Ydrift := myDrift * SIN (myDriftDirection*pi/180.0); 

END {ASK} METHOD {findDrift}; 

END OBJECT {leftJumperObj}; 

END {IMPLEMENTATION} MODULE {leftJumperMod}. 
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Definition Right Jumper Module 

DEFINITION MODULE rightJumperMod; 

FROM IOMod IMPORT StreamObj, FileUSeType(Output); 
FROM globalMod       IMPORT eType, matrixType, vectorType, encounterType; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM VortexControlMod IMPORT VortexControl; 

TYPE 

righUumperObj = OBJECT 

il, 
i2, 
iend, 
ipts, 
ip. 
jl. 
J2, 
k, 
loop, 
mpts, 
myNumber, 
myPlane, 
bigloop: INTEGER; 

alt, 
alpha, 
alphad, 
beta, 
bxy, 
ca, 
cao, 
caa2, 
calpha, 
cbar, 
cbeta, 
cby2, 
cds, 
clo, 
clp, 
cm, 
cma, 
cma2, 
cmo, 
cmq, 
en, 
cna, 
cna2, 
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cnb, 
cnb2, 
cnq, 
cnr, 
coswt, 
coswtm, 

cp. 
cphi, 
csl, 
csn, 
ct, 

cy, 
cyb, 
cyb2, 
cyr, 
dens, 
deptime, 
dt, 
dtpr, 
dtpoll, 
dtdrift, 
fpc, 
g. 
gammad, 
gees, 
gmax, 
h, 
hmin, 
mach, 
mass, 
myTime, 
myDrift, 
myDriftDirection, 
pb, 
phi, 
psi, 

q. 
qb, 
qdyn, 
qs, 
qsd, 
rad, 
rb, 
rho, 
rhoz, 
sac, 
sas, 
sarea, 
salpha, 
sbc, 
sbeta, 
sbs, 
sinwt, 
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sound, 
sp, 
sphi, 
st, 
t, 
theta, 
tpr, 
tpoll, 
tdrift, 
ubl, 
ub2, 
ub3, 
uel, 
ue2, 
ue3, 
uxy, 
vp, 
vpl3, 
vpe, 
vpo, 
w, 
w2, 
weight, 
xbod, 
xcg, 
Xdrift, 
xlast, 
Ydrift    : REAL; 

slength   : REAL; {length of suspension lines} 
angle    : REAL; {the angle (in radians) which defines the "cone" of the suspension lines} 
dcglength : REAL; {distance from end of suspension lines to paratrooper e.g.} 
cweight  : REAL; {weight of canopy} 
sweight  : REAL; {weight of suspension lines} 

radius REAL; 
addedmass : REAL; 
distcm :REAL; 
sysmass :REAL; 
paymom .-REAL; 
distcan REAL; 
distline : REAL; 
distpay :REAL; 

addDrift : BOOLEAN; 

peds, 
Pt, 
pedf, 
pm   : vectorType; {1X2} 

xe, 
xs, 
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xg, 
ue, 
wb, 
vwind, 
temp, 
fb, 
m, 
mb, 
fe, 
uedot, 
wbdot, 
hb     :vectorType; {1X3} 

in, 

jn. 
b, 
bn, 
bdot: matrixType; {3X3} 

lastRightLocation, 
lastLeftLocation : eType; {Dynamic Array} 

outfile: STRING; 

stream: StreamObj; 

encounter  : encounterType; 

ASK METHOD Objlnit; 
TELL METHOD jump; 
ASK METHOD initialize (IN stick   : INTEGER; 

IN myPlane: INTEGER); 
ASK METHOD pollVortices (IN vortexPlane : INTEGER); 
ASK METHOD changeDrift; 
ASK METHOD findDrift; 

END OBJECT {rightJumperObj}; 

END {DEFINITION} MODULE {righUumperMod}. 
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Implementation Right Jumper Module 

IMPLEMENTATION MODULE rightJumperMod; 

FROM MathMod IMPORT EXP, SIN, COS, POWER, SQRT, ATAN2, TAN, pi; 
FROM VortexMod       IMPORT RightVortexObj, LeftVortexObj; 
FROM globalMod       IMPORT re, e, del, i, j, NumberofPlanes, seedl, seed2, seed3, repeat; 
FROM inputMod        IMPORT streaml, streamE, streams, extension, printTrajectory; 
FROM globalMod IMPORT CrossWindl, CrossWind2, CrossWind3, ShearAltl, ShearAlt2, 
HeadWind, vsl, vs2, vs3; 
FROM calcMod IMPORT gravCalc, densityCalc; 
FROM SimMod IMPORT SimTime; 
FROM VortexControlMod IMPORT VortexControl, Airdrop; 

{TROUBLE SHOOTING INPUT} 
{ 
FROM inputMod IMPORT dtdrift; 
} 
OBJECT righUumperObj; 

ASK METHOD Objlnit; 

BEGIN 
NEW(pcdf, 1..2); 
NEW(pm , 1..2); 

NEW(fb  , 1..3); 
NEW(fe  , 1..3); 
NEW(hb  , 1..3); 
NEW(mb   , 1..3); 
NEW(temp, 1..3); 
NEW(ue  ,1..3); 
NEW(uedot, 1..3); 
NEW(vwind, 1..3); 
NEW(wb  , 1..3); 
NEW(wbdot, 1..3); 
NEW(xe  , 1..3); 
NEW(xs   , 1..3); 
NEW(xg  ,1..3); 

NEW(pcds, 1..4); 
NEW(pt , 1..4); 

NEW(in , 1..3, 1..3); 
NEW(jn , 1..3, 1..3); 
NEW(b , 1..3, 1..3); 
NEW(bn , 1..3, 1..3); 
NEW(bdot, 1..3, 1..3); 

{ system inertial properties } 
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down } 

{ parachute-payload system weight (lbs) = wight of jumper/gear + weight of T- IOC } 
weight := seed3.Normal (250.0,25.0); 

mass  := weight/32.17; 
xcg   := 0.5; { forebody e.g. (ft) in the horizontal} 
xbod   := 6.0; { forebody length (ft) in the vertical} 

FOR i := 1 TO 3 
FORj:=lT0 3 

jn[i j] := 0.0; 
in[i,j] := 0.0; 

END {j} FOR; 
END {i} FOR; 

{ initial conditions } 

FOR i := 1 TO 3 
xe[i]    := 0.0; { (ft) 1: down range, 2: off range, 3: altitude loss } 
ue[i]     := 0.0; { (fps) 1: horizontal velocity, 2: lateral velocity, 3: ejection velocity positive 

wb[i]   := 0.0; { ??? } 
vwind[i] := 0.0; { (fps) 1: head (+) or tail (-) wind, 2: crosswind, 3: ???? } 

END FOR; 

alt      := 0.0;      { altitude (ft) } 
hmin     := 0.0;      {ground level (ft) } 
ue[l]     := 0.0;      { horizontal velocity (fps) } 
ue[3]     := 0.0;      { ejection velocity, positive down } 
theta    := 0.0;      { pitch angle (deg) nose up positive        } 
vwindfl] := 0.0;      { head (+) or tail (-) wind (fps) } 
vwind[2] := 0.0;      { crosswind (fps) } 
dens     := 0.0;      { density (0 for standard atms) in slug/ftA3 } 
rhoz     := 0.002378; { ???? } 

IF dens o 0.0 
rhoz := dens * EXP (alt/23111.0 - 0.295 * SIN(alt/28860.0) - 0.213 * SIN(alt/86580.0)) 

END IF; 

{ program constants } 

dtpr   :=0.1;    { print interval (sec) } 
dtpoll := 0.5;    { poll vortex positions every 0.5 seconds } 
dtdrift := 5.0;    { change drift angle +/- 45.0 from current drift angle every 10 seconds } 

{ forebody aerodynamic coefficients } 

cbar := 6.0; { reference length (ft) } 
sarea := POWER(0.5,2.0)*pi;,{ reference area (ftA2) } 
cna  := 0.0; { normal force cn-alpha (/rad) } 
cyb   := 0.0; { side force cy-beta (/rad) } 
caa2 := 0.0; { axial force ca-alphaA2 (/radA2)        } 
clo  := 0.0; { roll torque coefficient (dimensionless) } 
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clp   := 0.0; { roll damping coefficient (/rad)        } 
cma  := -2.0; { pitch moment cm-alpha (/rad)           } 
cmq   := -200.0; { pitch damping (/rad)                  } 
cnb  := 0.0; { yaw moment cn-beta (/rad)             } 
cnr  := 0.0; { yaw damping (/rad)                   } 

{ forebody drag versus mach number table } 

mpts    := 2; 
pm[l]   := 0.00; { mach number } 
pm[2]   :=2.00; 
pcdffl] := 0.73+0.06*(360.0 - weight)/180.0; { drag coefficient} 
pcdf[2] := 0.73+0.06*(360.0 - weight)/180.0; 

{ parachute drag-area versus time table } 

deptime := 0.25; { deployment time } 
ipts    := 2; 

IF deptime > 0.0 
ipts := ipts + 2; { ipts = 4 } 
pt[l] 
pt[2] 
pt[3] 
pt[4] 
pcdsfl] 
pcds[2] 
pcds[3] 
pcds[4] 

END IF; 

:= 0.0; 
:= deptime; 
:= 0.00 + deptime; 
:= 2.80 + deptime; 

:= 0.0; 
:= 0.0; 
:= 0.20; 
:= 690.0; 

{ convert EULER ANGLES to direction cosines } 

psi    := 0.0; 
phi    := 0.0; 
rad    := pi/180.0; 
st    := SIN (theta*rad); 
ct    := COS (theta*rad); 
sp    := SIN (psi*rad); 
cp    := COS (psi*rad); 
sphi   := SIN (phi*rad); 
cphi   := COS (phi*rad); 
xe[3] :=-1.0* alt; 
b[l,l] :=cp*ct; 
b[l,2] := sp * ct; 
b[l,3] := -1.0 * st; 
b[2,l] := -1.0 * sp * cphi + cp * st * sphi; 
b[2,2] := cp * cphi + sp * st * sphi; 
b[2,3] := ct * sphi; 
b[3,l] := sp * sphi + cp * st * cphi; 
b[3,2] := -1.0 * cp * sphi + sp * st * cphi; 
b[3,3] := ct * cphi; 
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END {ASK} METHOD {Objlnit}; 

TELL METHOD jump; 

BEGIN 

WHILE bigloop = 0 

WAIT DURATION dt; 

IF(-1.0*xe[3])>hmin 

g := gravCalc(h); 
densityCalc (h, rhoz, rho, sound); 

0.01 

IF cds = 690.0 
dt := 0.01;       {  ONCE CANOPY INFLATES, DECREASE TIME STEP SIZE TO 

ELSE 
dt := 0.001;    { OTHERWISE, START WITH A SMALLER STEP SIZE 

END IF; 

radius    := SQRT(cds/pi); 
addedmass := rho*(4.0/3.0)*pi*POWER(radius,3.0); 
distcm   := (32.17*addedmass*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength) 

+ cweight*(slength*COS(angle)+(4.0/3.0)*(radius/pi)+dcglength) 
+ sweight*(0.5*slength*COS(angle)+dcglength)) / 

(32.17*addedmass+weight+sweight+cweight); 
sysmass  := (weight+cweight+sweight)/32.17 + addedmass; 
paymom   := (1.0/12.0)*mass*(3.0*POWER((0.5*xcg),2.0) + POWER(xbod,2.0)); 
distcan   := slength*COS(angle) + (4.0/3.0)*(radius/pi) - distcm; 
distline := distcm - 0.5*slength*COS(angle); 
distpay   := distcm; 

in[l,l] := 
(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0) 

+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59; 
in[2,2] := 

(addedmass*((2.0/5.0)*POWER(radius,2.0)+POWER(distcan,2.0))+(cweight/32.17)*POWER(distcan,2.0) 
+ (sweight/32.17)*POWER(distline,2.0)+paymom+mass*POWER(distpay,2.0))/14.59; 

in[3,3] := ((2.0/5.0)*(cweight/32.17)*POWER(radius,2.0) + 
(2.0/3.0)*(rho*(4.0/3.0)*pi*POWER(radius,3.0) 

* POWER(radius,2.0)) + (0.5*mass))/14.59; 

FOR i := 1 TO 3 
jn[i,i] := 1.0/in [i,i]; 

END FOR; 

IF (-1.0*xe[3]) <= ShearAltl 
IF (-1.0*xe[3]) <= ShearAlt2 

vwind[2] := vs3; 
ELSE 
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vwind[2] := vs2; 
END IF; 

ELSE 
vwind[2] :=vsl; 

END IF; 

pb   :=wb[l]; 
qb   :=wb[2]; 
rb  :=wb[3]; 
uel := ue[l] - vwindfl]; 
ue2 := ue[2] - vwind[2]; 
ue3 := ue[3] - vwind[3]; 
vp   := SQRT(POWER(uel,2.0) + POWER(ue2,2.0) + POWER(ue3,2.0)); 
vpo := vp; 
mach := vp/sound; 
ubl 
ub2 
ub3 

= b[l,l]*uel + b[l,2]*ue2 + b[l,3]*ue3 
= b[2,l]*uel + b[2,2]*ue2 + b[2,3]*ue3 
= b[3,l]*uel + b[3,2]*ue2 + b[3,3]*ue3 

vpl3 := SQRT(POWER(ubl,2.0) + POWER(ub3,2.0)); 

{ USE SIN(ALPHA) for ALPHA and COS(BETA) for BETA } 

IFvpo<1.0E-06 
vpo := 1.0E-06; 

END IF; 

sbeta := ub2 / vpo; 
cbeta := vpl3/vpo; 
beta := sbeta; 

IFvpl3<1.0E-06 
vpl3 := 1.0E-06; 

END IF; 

salpha:=ub3/vpl3; 
calpha:=ubl /vpl3; 
alpha :=salpha; 

{ AERODYNAMIC and BODY FORCES AND MOMENTS 

{ ISOLATED BODY AERODYNAMICS } 

{ BEGIN AERO ROUTINE • } 

sac := salpha * calpha; 
sas := salpha * ABS (salpha); 
sbc := sbeta * cbeta; 
sbs := sbeta * ABS(sbeta); 
rad := cbar / (2.0*vpo);   r 

cna2 := 0.0; 
cnq :=0.0; 
cyb2 := 0.0; 
cyr :=0.0; 
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cmo :=0.0; 
cma2 := 0.0; 
cnb2 := 0.0; 

{ FOREBODY AERO-LIFT DRAG COEFFICIENT } 

i    :=0; 
loop := 0; 
WHILE loop = 0 {WILL LOOP WHEN mach > pm[ip] UNTIL i = mpts} 

i :=i+ 1; 
ip :=i + 1; 
IF i = mpts 

cao := pcdf[2]; { when i = ipts } 
loop := 1; 

ELSE 
IF mach <= pm[ip] 

cao := pcdfli]+(pcdf[ip]-pcdf[i])*(mach-pm[i])/(pm[ip]-pm[i]); 
loop := 1; 

END IF; 
END IF; 
END WHILE; 

en := cna * sac + cna2 * sas + enq * qb * rad; 
cy := cyb + sbc + cyb2 * sbs + cyr * rb * rad; 
ca := cao + caa2 * (1.0 - POWER(calpha,2.0) * POWER(cbeta,2.0)); 
csl := clo + clp * pb * rad; 
cm := cmo + cma * sac + cma2 * sas + cmq * qb * rad; 
csn := cnb * sbc + cnb2 * sbs + enr * rb * rad; 

{ PARACHUTE DRAG-AREA } 

eds :=0.0; 
i   :=0; 
loop := 0; 

{ THIS LOOP INFLATES THE PARACHUTE } 

WHILE loop = 0 
IFt<pt[l] 

loop := 1; 
ELSE 

i := i + 1; 
ip:=i + l; 
IF i = ipts 

eds :=pcds[ipts]; 
loop := 1; 

ELSE 
IF t <= pt [ip] 

eds := pedsfij + (pcds[ip]-pcds[i]) * (t-pt[i]) / (pt[ip]-pt[i]); 
loop := 1; 

END IF; 
END IF; 

END IF; 
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END WHILE; 

— END AERO ROUTINE } 

q    := 0.5 * rho * vp; 
fpc   := -1.0 * q * cds; 
qs    := 0.5 * rho * POWER (vp, 2.0) * sarea; 
qsd   := qs * cbar; 
fb[l] := -1.0 * qs * ca + mass * g * b[l,3] +fpc * ubl; 
fb[2] := qs * cy + mass * g * b[2,3] + fpc * ub2; 
fb[3] := -1.0 * qs * en + mass * g * b[3,3] + fpc * ub3; 
mb[l] :=qsd * csl; 
mb[2] := qsd * cm + fpc * ub3 * (xbod - xcg); 
mb[3] := qsd * csn - fpc * ub2 * (xbod - xcg); 
gees := -1.0 * fb[l] / (mass * g); 

IF ABS (gees) > ABS (gmax) 
gmax := gees; 

END IF; 

IF printTrajectory 
IF t >= tpr { THEN PRINT DATA } 

tpr := tpr + dtpr; 
h:=-1.0*xe[3]; 
vpe := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0)); 
qdyn := 0.5 * rho * POWER (vp,2.0); 
bxy := SQRT (POWER (b[l,l], 2.0) + POWER (b[l,2],2.0)); 
theta := 57-295 * ATAN2 ((-1.0 * b[l,3]), bxy); 
alphad := 57.295 * ATAN2 (salpha, calpha); 
uxy := SQRT (POWER (ue[l],2.0) + POWER (ue[2],2.0)); 
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy); 

{ 
OUTPUT (myNumber, "R ", SimTime, " ", h," ", xe[l]," ", xe[2], " ", vpe, " ", vp, 

mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds); 
} 

ASK stream TO WriteString (INTTOSTR(myNumber) + "R "); 
ASK stream TO WriteString (REALTOSTR(SimTime) + ""); 
ASK stream TO WriteString (REALTOSTR(h) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[ 1 ]) + ""); 
ASK stream TO WriteString (REALTOSTR(xe[2]) + ""); 
ASK stream TO WriteString (REALTOSTR(vpe) + ""); 
ASK stream TO WriteString (REALTOSTR(vp) + ""); 
ASK stream TO WriteString (REALTOSTR(mach) + ""); 
ASK stream TO WriteString (REALTOSTR(qdyn) + " "); 
ASK stream TO WriteString (REALTOSTR(gees) + ""); 
ASK stream TO WriteString (REALTOSTR(gammad) + ""); 
ASK stream TO WriteString (REALTOSTR(theta) + ""); 
ASK stream TO WriteString (REALTOSTR(alphad) + ""); 
ASK stream TO WriteString (REALTOSTR(cds)); 
ASK stream TO WriteLn; 

END IF; 
END IF; 
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{ EULER ROTATION FUNCTION FOR DIRECTION COSINE PROPOAGATION } 

w2 := POWER(wb[l],2.0) + POWER(wb[2],2.0) + POWER(wb[3],2.0); 
w := SQRT (w2); 
coswt := COS (w*dt); 
sinwt := SIN (w*dt); 
coswtm := 1.0 - coswt; 

IFw2<1.0E-12 
w2 := 1.0E-12; 
w := 1.0E-06; 

END IF; 

{ ANGULAR MOMENTUM CROSS PRODUCT TERMS } 

FOR k := 1 TO 3 
hb [k] := in[k,l] * wb[l] + in[k,2] * wb[2] + in[k,3] * wb[3]; 

END FOR; 

FOR i := 1 TO 3 
il:=e[i+l]; 
i2:=e[i+2]; 
tempfi] := wb[il] * hb[i2] - wb[i2] * hb[il]; 

END FOR; 

{ FORCE RESOLUTION TO EULER SYSTEM } 
{ TRANSLATIONAL ACCELERATION AND DIRECTION COSINE ROTATION } 

FOR i := 1 TO 3 
fe[i] := fb[l] * b[l,i] + fb[2] * b[2,i] + fb[3] * b[3,i]; 
uedotfi] := fe[i] / mass; 

FORj:=lT0 3 
bn[ij]:=b[ij]; 
jl:=e[j+l]; 
j2:=e[j+2]; 
bdotfij]    :=   del[i,j]*coswt   +   wb[i]*wb[j]*coswtni/w2   +   (   wb[jl]*del[i,j2] 

wb[j2] *del[i j 1 ] )* sinwt/w; 
END FOR; 

{ ANGULAR ACCELERATION IN BODY AXES } 

wbdotfi] := jn[i,l]*(mb[l]-temp[l]) + jn[i,2]*(mb[2]-temp[2]) + jn[i,3]*(mb[3]-temp[3]); 

END FOR; 

{ INTEGRALS } 

t := t + dt; 
{ t := SimTime-myTime;} 

xlast := xe[l]; 
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FOR i := 1 TO 3 
xe[i] := xe[i] + dt*(ue[i]+0.5*dt*uedot[i]); 
ue[i] := ue[i] + dt*uedot[i]; 
wb[i] := wb[i] + dt*wbdot[i]; 
FORj:=lT0 3 

b[ij] := bdot[i,l]*bn[lj] + bdot[i,2]*bn[2,j] + bdot[i,3]*bn[3j]; 
END FOR; 

END FOR; 

{ INDUCE A DRIFT DIRECTION AND VELOCITY ON THE PARATROOP     } 
{ DRIFT WILL ONLY BE INDUCED IF ALL OF THE FOLLOWING ARE MET -— } 
{ -— 1) NO WIND -— } 
{ 2) PARACHUTE IS FULLY INFLATED AND AFTER SECOND VERTICLE   } 

IF ABS(MAXOF (vwind[l], vwind[2])) > 0.0 
addDrift := FALSE; 

ELSE 
addDrift := TRUE; 

END IF 

IF addDrift 
IF t >= tdrift 

tdrift := t + dtdrift; 
ASK SELF TO changeDrift; 

END IF; 
END IF; 

IF addDrift 
IF t >= 6.5 

xe[l] := xe[l] + Xdrift*dt; 
xe[2] := xe[2] + Ydrift*dt; 

END IF; 
END IF; 

IFt<4.1 
xe[2] := xe[2] - 9.25/4100.0; 

END IF; 

{ UPDATING MOVING AND GROUND COORDINATE SYSTEMS } 

xs[l] := Airdrop.Information[l].xg - xe[l]; 
xs[2] := xe[2]; 
xs[3] := xe[3]; 
xg[l] := Airdrop.Information[l].xg - xs[l]; 
xg[2]:=xe[2]; 
xg[3]:=xe[3]; 

{ 
OUTPUT ("Lead Aircraft xg : ", Airdrop.Information[l].xg, " jumper ", myNumber, "R xs : ", xs[l]," xg : 
". xg[l]); 
} 

{ POLL ALL VORTICES FOR MISSED DISTANCE } 
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IF t >= tpoll 
IF cds >= pcds[4] 

tpoll := tpoll + dtpoll; 
FOR i := 1 TO myPlane-1; 

ASK SELF TO pollVortices (i); 
END FOR; 

END IF; 
END IF; 

ELSE { when -xe[3] <= hmin, THEN PRINT DATA FOR LAST TIME } 

h      := -1.0 * xe[3]; 
vpe    := SQRT (POWER (uel,2.0) + POWER (ue2,2.0) + POWER (ue3,2.0)); 
qdyn    := 0.5 * rho * POWER (vp,2.0); 
bxy    := SQRT (POWER (b[l,l],2.0) + POWER (b[l,2],2.0)); 
theta  := 57.295 * ATAN2 ((-1.0 * b[l,3]), bxy); 
alphad := 57.295 * ATAN2 ( salpha, calpha); 
uxy    := SQRT (POWER(ue[l],2.0) + POWER(ue[2],2.0)); 
gammad := 57.295 * ATAN2 ((-1.0 * ue[3]), uxy); 

OUTPUT (myNumber, "R ", myPlane," ", SimTime, " ", h, " ", xe[l]," ", xe[2], " ", vpe, 
vp,"", mach,"", qdyn,"", gees,"", gammad,"", theta,"", alphad,"", cds); 

ASK streams TO WriteString (INTTOSTR(repeat)  + ""); 
ASK streams TO WriteString (INTTOSTR(myNumber) + "R "); 
ASK streams TO WriteString (INTTOSTR(myPlane) +""); 
ASK streams TO WriteString (REALTOSTR(SimTime) + ""); 
ASK streams TO WriteString (REALTOSTR(h)      + ""); 
ASK streams TO WriteString (REALTOSTR(xe[l])  + ""); 
ASK streams TO WriteString (REALTOSTR(xe[2])  + ""); 
ASK streams TO WriteString (REALTOSTR(vpe)    + ""); 
ASK streams TO WriteString (REALTOSTR(vp)     + ""); 
ASK streams TO WriteString (REALTOSTR(mach)   + ""); 
ASK streams TO WriteString (REALTOSTR(qdyn)   + ""); 
ASK streams TO WriteString (REALTOSTR(gees)   + ""); 
ASK streams TO WriteString (REALTOSTR(gammad) +""); 
ASK streams TO WriteString (REALTOSTR(theta)  +""); 
ASK streams TO WriteString (REALTOSTR(alphad) + ""); 
ASK streams TO WriteString {REALTOSTR(cds)); 
ASK streams TO WriteLn; 

IF printTrajectory 

ASK stream TO WriteString (INTTOSTR(myNumber) + "R "); 
ASK stream TO WriteString (REALTOSTR(SimTime) + ""); 
ASK stream TO WriteString (REALTOSTR(h)      + ""); 
ASK stream TO WriteString (REALTOSTR(xe[l])  + ""); 
ASK stream TO WriteString (REALTOSTR(xe"[2])  + ""); 
ASK stream TO WriteString (REALTOSTR(vpe)    + ""); 
ASK stream TO WriteString (REALTOSTR(vp)     + ""); 
ASK stream TO WriteString (REALTOSTR(mach)   + ""); 
ASK stream TO WriteString (REALTOSTR(qdyn)   + ""); 
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ASK stream TO WriteString (REALTOSTR(gees)   + ""); 
ASK stream TO WriteString (REALTOSTR(gammad) + ""); 
ASK stream TO WriteString (REALTOSTR(theta)  + ""); 
ASK stream TO WriteString (REALTOSTR(alphad) + ""); 
ASK stream TO WriteString (REALTOSTR(cds)); 
ASK stream TO WriteLn; 

END IF; 

bigloop := 1; 

ENDIF{hmin}; 

END WAIT; 

END WHILE; 

IF printTrajectory 
ASK stream TO Close; 
DISPOSE (stream); 

END IF; 

DISPOSE (SELF); 

END {ASK} METHOD {jump}; 

ASK METHOD initialize (IN stick  : INTEGER; 
IN Counter: INTEGER); 

BEGIN 

myPlane := Counter; 
myNumber := stick; 
gees := 0.0; 
cds := 0.0; 
myTime := SimTime; 
t := SimTime-myTime; 
gmax := 0.0; 
tpr :=t; 
tpoll := t; 
tdrift := t + dtdrift; 
alt :=-1.0*xe[3]; 
h := alt; 
bigloop :=0; 
myDrift := seedl.UniformReal (0.0,4.0); 
myDrift := seedLNormal (2.0, 0.5);} 

myDriftDirection   := seed2.UniformReal (0.0, 360.0); 
myDriftDirection  := seed2.Normal (0.0,2.8125);} 

xe[l] := Airdrop.Information[myPlane].xg; 
xlast :=xe[l]; 
xe[2] := Airdrop.Information[my Plane].yg + 9.25; 
alt := Airdrop.Information[my Plane] .altitude; 
xe[3] :=-1.0* alt; 
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ue[l] := Airdrop.Information[myPlane].vf; 

vwind[l] := HeadWind; {FROM globalMod} 

NEW (lastRightLocation, l..myPlane-l); 
NEW (lastLeftLocation, l..myPlane-l); 

FORi:=lTOmyPlane-l 
lastRightLocationfi] := 1; 
lastLeftLocationfi] := 1; 

END FOR; 

ASKSELFTOfindDrift; 

IF printTrajectory 
NEW (stream); 
outfile := "RJ" + INTTOSTR(myPlane) + INTTOSTR(myNumber) + extension + ".mat"; 
ASK stream TO Open (outfile, Output); 

END IF; 
{ 
OUTPUT 0; 
OUTPUT ("My airplane    :", myPlane); 
OUTPUT ("Exit time      :", SimTime); 
OUTPUT ("My number      :", stick, "R"); 
OUTPUT ("My weight      :", weight); 
OUTPUT ("Xs :",xe[l]); 
OUTPUT ("Ys :", xe[2]); 
OUTPUT ("altitude       :", alt); 
} 
ASK streaml TO WriteString (INTTOSTR(repeat) + ""); 
ASK streaml TO WriteString (INTTOSTR(myPlane) + ""); 
ASK streaml TO WriteString (REALTOSTR(SimTime) + ""); 
ASK streaml TO WriteString (INTTOSTR(stick) + "R "); 
ASK streaml TO WriteString (REALTOSTR(weight) + ""); 
ASK streaml TO WriteString (REALTOSTR(xe[l]) + ""); 
ASK streaml TO WriteString (REALTOSTR(xe[2J) + ""); 
ASK streaml TO WriteString (REALTOSTR(alt) + ""); 
ASK streaml TO WriteLn; 

END METHOD {initialize}; 

ASK METHOD pollVortices (IN vortexPlane : INTEGER); 

VAR 

x, xcordl, xcord2, vvx, vjx     : REAL; 
y, ycordl, ycord2, vvy, vjy     : REAL; 
z, zcordl, zcord2, vvz, vjz     : REAL; 
vjdistance, vvdistance, distance : REAL; 
projection : REAL; 
i, location : INTEGER; 
check : BOOLEAN; 
startRightSearch : INTEGER; 
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startLeftSearch : INTEGER; 

BEGIN 

check := FALSE; 
location := 0; 

startRightSearch := lastRightLocationfvortexPlane]; 

{ POLL RIGHT VORTEX } 

FOR i := startRightSearch TO Airdrop.Information[vortexPlane].NumberOfSteps 
IF location = 0 

IF    (ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].xCord- 
xs[l]))<=50.0 

lastRightLocationfvortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].zCord+xs[3]))<=50.0 
lastRightLocation[vortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[i].yCord-xs[2]))<=50.0 
check       := TRUE; 
location    := i; 
IF location = Airdrop.Information[vortexPlane] .NumberOfSteps 

check  := FALSE; 
END IF; 
lastRightLocationfvortexPlane] := i; 

ELSE 
location := i; 

END IF; 
ELSE 

location := i; 
END IF; 

END IF; 
ELSE 

EXIT; 
END IF; 

END FOR; 

IF check 
xcordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].xCord; 
ycordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].yCord; 
zcordl := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].zCord; 
xcord2 := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].xCord; 
ycord2 , ' := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].yCord; 
zcord2 := 

Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].zCord; 
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vvx := xcord2-xcordl; 
vvy := ycord2-ycordl; 
vvz := zcord2-zcordl; 

vjx :=xs[l]-xcordl; 
vjy := xs[2]-ycordl; 
vjz := -1.0*xs[3]-zcordl; 

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0)); 
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0)); 
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance; 
distance  := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0)); 
IF distance <= 

MAXOF(Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location].radius, 
Airdrop.Information[vortexPlane].C17.RightVortex.CompletePosition[location+l].radius) 

OUTPUT (myNumber, "R ", myPlane," RV ", vortexPlane, " ", -1.0*xe[3]," ", distance," 
", location,"", SimTime); 

ASK streamE TO WriteString (INTTOSTR(repeat) + ""); 
ASK streamE TO WriteString (INTTOSTR(myNumber) + "R;'); 
ASK streamE TO WriteString (INTTOSTR(myPlane) + " RV "); 
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + ""); 
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3]) + ""); 
ASK streamE TO WriteString (REALTOSTR(distance) + ""); 
ASK streamE TO WriteString (REALTOSTR(location) + ""); 
ASK streamE TO WriteString (REALTOSTR(SimTime)); 
ASK streamE TO WriteLn; 

ELSE 
{ 

OUTPUT (myNumber, "R no encounter with right vortex of C-17 number", vortexPlane, " 
at distance", distance); 
} 

END IF; 
ELSE 

OUTPUT (myNumber, "R no encounter with right vortex of C-17 number", vortexPlane); 

END IF; 

check := FALSE; 
location := 0; 

startLeftSearch := lastLeftLocationfvortexPlane]; 

{ POLL LEFT VORTEX } 

FOR i := startLeftSearch TO Airdrop.Information[vortexPlane].NumberOfSteps 
IF location = 0 

IF      (ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].xCord- 
xs[l]))<=50.0 

lastLeftLocation[vortexPlane] := i; 
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IF 
(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].zCord+xst3]))<=50.0 

lastRightLocation[vortexPlane] := i; 
IF 

(ABS(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[i].yCord-xs[2]))<=50.0 
check       := TRUE; 
location    := i; 
IF location = Airdrop.Information[vortexPlane].NumberOfSteps 

check  := FALSE; 
END IF; 
lastRightLocationfvortexPlane] := i; 

ELSE 
location := i; 

END IF; 
ELSE 

location := i; 
END IF; 

END IF; 
ELSE 

EXIT; 
END IF; 

END FOR; 

IF check 
xcordl := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].xCord; 
ycordl := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].yCord; 
zcordl := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].zCord; 
xcord2 := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].xCord; 
ycord2 := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].yCord; 
zcord2 := 

Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].zCord; 

vvx := xcord2-xcordl; 
vvy := ycord2-ycordl; 
vvz := zcord2-zcordl; 

vjx:=xs[l]-xcordl; 
vjy :=xs[2]-ycordl; 
vjz := -1.0*xs[3]-zcordl; 

vjdistance := SQRT(POWER(vjx,2.0)+POWER(vjy,2.0)+POWER(vjz,2.0)); 
vvdistance := SQRT(POWER(vvx,2.0)+POWER(vvy,2.0)+POWER(vvz,2.0)); 
projection := (vjx*vvx + vjy*vvy + vjz*vvz)/vvdistance; 
distance   := SQRT(POWER(vjdistance,2.0)-POWER(projection,2.0)); 
IF distance <= 

MAXOF(Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location].radius, 
Airdrop.Information[vortexPlane].C17.LeftVortex.CompletePosition[location+l].radius) 
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OUTPUT (myNumber, "R ", myPlane, " LV ", vortexPlane, " ", -1.0*xe[3], " ", distance, " 
", location, " ", SimTime); 

ASK streamE TO WriteString (INTTOSTR(repeat) + ""); 
ASK streamE TO WriteString (INTTOSTR(myNumber) + "R "); 
ASK streamE TO WriteString (INTTOSTR(myPlane) + " LV "); 
ASK streamE TO WriteString (INTTOSTR(vortexPlane) + ""); 
ASK streamE TO WriteString (REALTOSTR(-1.0*xe[3J) + ""); 
ASK streamE TO WriteString (REALTOSTR(distance) + ""); 
ASK streamE TO WriteString (REALTOSTR(location) + ""); 
ASK streamE TO WriteString (REALTOSTR(SimTime)); 
ASK streamE TO WriteLn; 

ELSE 
{ 

OUTPUT (myNumber, "R no encounter with left vortex of C-17 number", vortexPlane," at 
distance", distance); 
} 

END IF; 
ELSE 

{ 
OUTPUT (myNumber, "R no encounter with left vortex of C-17 number", vortexPlane); 

} 
END IF; 

END METHOD {pollVortices}; 

ASK METHOD changeDrift; 

BEGIN 

myDrift :=seedl.UniformReal (0.0,4.0); 
{ myDrift := seed 1.Normal (2.0, 0.5);} 

myDriftDirection := seed2.Normal (myDriftDirection, 2.8125); 
ASKSELFTOfindDrift; 

END {ASK} METHOD {changeDrift}; 

ASK METHOD findDrift; 

BEGIN 

Xdrift := myDrift * COS (myDriftDirection*pi/180.0); 
Ydrift := myDrift * SIN (myDriftDirection*pi/180.0); 

END {ASK} METHOD {findDrift}; 

END OBJECT {righUumperObj}; 

END {IMPLEMENTATION} MODULE {rightJumperMod}. 
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Appendix D 

Blake's FORTRAN Code 
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program blake 
c 
c C-17 analysis program for up to 18 ship formation 
c 
c this is a time stepping code that calculates the mutual 
c interference between each vortex at each axial station 
c 
c ref for radius term: affdl-tr-79-3060 (kurylowich) 
c ref for vortex strength term: affdl-tr-79-3060 (kurylowich) 

Sept 95 LIDAR data used for updated vortex model 
LID AR updates only valid for C-17 calculations 
final LIDAR data not received, interim results used 
awaiting C-141, C-5 LIDAR data 

dimension y(36),z(36),rc(36), v(36), w(36),xv(36),xp(l 8),zs( 18) 
dimension y0(36),yl(36),z0(36),zl(36),gam(36),gamd(36),gamc(36) 
dimension zul(36),zll(36),yll(36),yrl(36),wt(18) 
realnu 
pi=acos(-l.) 
open(8,file='time',status='unknown') 
open(9,file='amc',status='unknown') 
open(10,file='pvic',status=,unknown') 

variables 
c 
c 
c 
c ar 
c 
c 
c 

= wing aspect ratio 
C-17: 7.16 
C-5:   7.75 
C-141:7.93 

c beff =wing span 
c C-17: 165 ft (changed from 169.8 during 1996 AIAA AFM work) 
c C-5:  222.7 ft 
c C-141: 159.9 ft 

c bp  = span of fully rolled up vortices (pi/4*beff) 
c cl  = lift coefficient 
c delx = distance between computation planes (currently 200 ft) 
c delt = time increment between compiutatiori planes (delx/vf) 
c gam = initial vortex circulation strength (elliptic load) 
c gamd = circulation strength of decayed vortex 
c gmod = LIDAR based modification to vortex strength 
c gpr = critical value of vortex strength below which no data printed 
c hag = height above ground for ground effect on vortex calculation 
c hzl 18= height of zone 1 for 1801bjumper-l std deviation (127-14=113ft) 
c hzl36= height of zone 1 for 180 lb jumper +1 std deviation (127+14=141ft) 
c ns = current number of ships 

n   = current number of vortices (2*ns) 
nslim= total number of ships 
nt = number of time steps 

400 for time stepping (=80000 ft downstream of lead ship) 
100 for drop path (=20000 ft downstream of last ship) 
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nu  = air viscosity (absolute) 
nump = number of ship for personnel/equipment airdrop 
pp  = vertical position of personnel/equipment out of last ship 
px  = initial axial location of personnel/equipment, xp(nump) 
py = initial lateral position of personnel/equipment 
pz = initial vertical position of personnel/equipment, z(nump) 

c pside= downstream distance before drop path follows crosswind (400 ft) 
c r   = distance from vortex center to point of interest 

re = vortex core radius (includes growth with time) 
rho = air density 
rhof = flag for density value 
s   = wing area 

C-17: 3800 sq ft 
C-5:   6200 sq ft 
C-141:3228sqft 

sepy = lateral separation between aircraft (centerline to centerline) 
tchar= characteristic time, time it takes for vortices to descend a distance 

equal to their initial spacing 
tzl = time jumper is in zone 1 (4.1 sec) 

c uvm = flag for use of LID AR updated vortex model 
c vage = age of a vortex 
c vfk = aircraft forward velocity in knots 
c vf = aircraft forward velocity in ft/sec 
c vmod = vortex induced velocity model: 
c        (1) 6795 or George Kurylowich model 
c        (2) NASA Langley or Burnham model 
c vsk = crosswind velocity in knots 
c vs = crosswind velocity in ft/sec 
c vth = radial velocity due to vortex 
c vpe = descent rate of equipment (28 ft/sec) 
c vpl8 = descent velocity of 360 lb jumper (14 ft/sec) 
c vp36 = descent velocity of 360 lb jumper (21 ft/sec) 
c v   = v-component of induced velocity at j due to all vortices 
c w   = w-component of induced velocity atj due to all vortices 
c vjj = v-component of induced velocity atj due to vortex at jj 
c wjj = w-component of induced velocity atj due to vortex at jj 
c wt = array of aircraft weights 
c xp  = array of x coordinates of ships in formation 
c xs  =x coordinate of current computation plane 
c y   = array of initial y-positions of vortices 
c yO = current y coordinate of vortex position (no interactions) 
c yl   = current y coordinate of vortex position with interactions 
c z   = array of initial z-positions of vortices 
c zO  = current z coordinate of vortex position (no interactions) 
c zl   = current z coordinate of vortex position with interactions 
c zz = dummy entry for output file (-999) 
c 

uvm=0. 
print*,' ' 
print*,'Wright Laboratory wake vortex trajectory program' 
prinf'.'Written by W. Blake, WL/FIGC, (513) 255-6764' 
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print*,'revised 7/96' 
print*,' ' 
print*,'enter 1 for Ft Bragg, 2 for EAFB, 3 for Wallops' 
read(*,*) rhof 
print*,' ' 
print* ,'enter vehicle type' 
read(*,*) veh 
print*,' ' 
print*,'enter (1) for LIDAR updated vortex model' 
read(*,*) uvm 
print*,' ' 
print*,'enter (1) for Kurylowich model, (2) for NASA model' 
read(*,*) vmod 
print*,' ' 
print* ,'(1) echelon,(2) c-r,(3) inc.,(4) slice demo,(5) custom' 
read(*,*) ftype 
print*,' ' 
if(ftype.ne.l) print*,'enter ship 2 lateral offset' 
if(frype.ne.l) read(*,*) sepy 
if(ftype.ne.l) print*,' ' 
if(ftype.eq.5) print*,'enter ship 3 lateral offset' 
if(ftype.eq.5) read(*,*) sepy3 
if(ftype.eq.5) print*,' ' 

c 
if(ftype.eq.3.) nslim=2 
if(ftype.eq.3.) xp(2)=2350. 
if(ftype.eq.3.) nump=2 

c 
if(ftype.eq.4.) nslim=6 
if(ftype.eq.4.) xp(2)=2000. 
if(ftype.eq.4.) xp(3)=6000. 
if(ftype.eq.4.) xp(4)=8000. 
if(ftype.eq.4.) xp(5)=34377. 
if(ftype.eq.4.) xp(6)=36377. 
if(ftype.eq.4.) nump=6 

c 
if(ftype.lL2.5.or.ftype.gL4.5) then 

print*,'enter maximum number of ships' 
read(*,*) nslim 
print*,' ' 
print*,'enter gap for ships 2-nslim in K ft' 
read(*,*) (xp(i),i=2,nslim) 
do 25 i=l,nslim 

xp(i)=xp(i)*1000. 
25    continue 

print*,' ' 
print*,'enter vertical location for ships 1-nslim' 
read(*,*) (zs(i),i=l,nslim) 
print*,' * 
print*,'enter ship number for airdrop' 
read(*,*) nump 

endif 
print*,'enter forward speed, crosswind in knots' 
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read(V) vfk,vsk 
print*,' ' 
print*,'enter (1) for 385K lb analysis' 
read(*,*) wfl 
print*,' ' 
if(wfl.eq.l.)then 

do30i=l,nslim 
wt(i)=385. 

30   continue 
endif 
if(wfl.ne.l.)then 

print*,'enter vehicle weights in K lbs' 
read(*,*) (wt(i),i=l,nslim) 

print*,' ' 
endif 
print*,'enter minimum circulation strength for plot output' 
read(*,*) gpr 
print*,' ' 
print*,'computing. please wait.' 
print*,' ' 
do 40 i=l,nslim 

wt(0=1000.*wt(i) 
40 continue 

define initial constants 

vf=vfk* 1.69085 
vs=-l.*vsk*1.69085 
if(veh.eq.5.) then 

beff=222.7 
ar=7.75 
s=6200. 

elseif(veh.eq.l41) then 
beff= 159.9 
ar=7.93 
s=3228. 

endif 
if(veh.ne.l41.and.veh.ne.5) then 

beff=165.0 
ar=7.16 
s=3800. 

endif 
bp=pi*beff/4. 

air density and kinematic viscosity 

if(rhof.eq.l.) rho=0.002309 
if(rhof.eq.2.) rho=0.002000 
if(rhof.eq.3.) rho=0.002378 

tf(rhof.eq.l.) nu=£0.0001654 
if(rhof.eq.2.) nu=0.0001776 
if(rhof.eq.3.) nu=0.0001572 
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cswp2=(cos(25.*pi/180.))**2 
do SO i=l,nslim 

cl=2.*wt(i)/(rho*vf*vfs) 
SO continue 

c 
c descent velocity of personnel is 20 ft/sec, equipment is 28 ft/sec 
c for single ship, undecayed vortex descent velocity 
c 

vp=0. 
c    if(vfk.lt.l40.)vp=-20.0 
c    if(vfk.gt.l40.)vp=-28.Q 

vp36=-21.0 
vp 18=-14.0 
tzl=4.1 
hzl36=141. 
hzl 18=113. 

c    if(nslim.eq.l) vp=-wt(l)/(rho*vf*bp*(2.*pi*bp)) 
c 
c calculate initial positions of vortices 
c 

xp(l)=0. 
if(ftype.eq.l.)then 

y(l)=-bp/2. 
y(2)=bp/2. 
y(3)=650.-bp/2. 
y(4)=650.+bp/2. 
y(5)=15O0.-bp/2. 
y(6)=1500.+bp/2. 
do 100 i=l,36 

y(i+6)=y(i) 
100   continue 

endif 
c 

if(ftype.eq.2..or.ftype.eq.3.) then 
y(l)=-bp/2. 
y(2)=bp/2. 
y(3)=sepy-bp/2. 
y(4)=sepy+bp/2. 
doll0i=l,36 

y(i+4)=y(i) 
110   continue 

if(ftype.eq.3.) zs(l)=800. 
if(ftype.eq.3.) zs(2)=900. 

endif 
c 

if(ftype.eq.4.) then 
y(l)=-bp/2. 
y(2)=bp/2. 
y(3)=180.-bp/2. 
y(4)=180.+bp/2. 
y(5)=-bp/2. 
y(6)=bp/2. 
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y(7)=180.-bp/2. 
y(8)=180.+bp/2. 
y(9)=-bp/2. 
y(10)=bp/2. 
y(ll)=sepy-bp/2. 
y(12)=sepy+bp/2. 
zs(l)=1500. 
zs(2)=1500. 
zs(3)=150O. 
zs(4)=1500. 
zs(5)=800. 
zs(6)=800. 

endif 
c 

if(ftype.eq.5.) then 
y(l)=-bp/2. 
y(2)=bp/2. 
y(3)=sepy-bp/2. 
y(4)=sepy+bp/2. 
y(5)=sepy3-bp/2. 
y(6)=sepy3+bp/2. 
do 130 i=l,36 

y(i+6>y(i) 
130   continue 

endif 

do 140 i=l,18 
z0(2*i-l)=zs(i) 
z0(2*i)=zs(i) 
zl(2*i-l)=zs(i) 
zl(2*i)=zs(i) 

140 continue 

c initial position of equipment/personnel 
c 

pzi=zs(nump) 
pxi=xp(nump) 
pyi=(y(2*nump)+y(2*nump-1 ))/2. 

modified strength from LIDAR data 
for deck angle = 3 deg, gmod=0.55* elliptic load value 
for deck angle = 4 deg, gmod=0.65* elliptic load value 
for deck angle = 6 deg, gmod=0.73* elliptic load value 
for deck angle = 8 deg, gmod=0.71 * elliptic load value 

c 
c 
c 
c 
c 
c 
c 
c current deck angle is 6 deg so deck angle not active variable 
c gmod=0.8 based on WL avg (most conservative) of LIDAR 6 deg deck data 
c 

do 60 i=l,18 
gmod=1.0 
if(uvm.eq.l.) gmod=0.80 
if(veh.eq.l41.) gmod-1.0 
gam(2*i-1 )=wt(i)/(rho*vf*bp)*gmod 
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gam(2*i)=wt(i)/(iiio*vf*bp)*gmod 
60 continue 

c 
do 150 i=l,36 

v(i)=0. 
w(i)=0. 
y0(i)=y(i) 
yi(i)=y(i) 
xv(i)=l. 
gamd(i)=gam(i) 

150 continue 
c 
c customized formation information 
c 

if(ftype.eq.3.) then 
do 160 i=l,2 

z(i)=800. 
z0(i)=800. 
zl(i)=800. 
z(i+2)=900. 
z0(i+2)=900. 
zl(i+2)=9O0. 

160    continue 
endif 

c 
if(ftype.eq.4.) then 

do 170 i=l,8 
z(i)=1500. 
z0(i)=1500. 
zl(i)=1500. 
z(i+8)=800. 
zO(i+8)=8O0. 
zl(i+8)=800. 

170   continue 
endif 

c 
c time stepping loop (axial spacing) 
c time step size is axial step/velocity 
c solution starts 10ft aft of 1st ship 
c 
c    nt=(nslim-l)*20+10+l 

nt=800 
ns=0 
delx=100. 
delt=delx/vf 
xs=0. 

c    write(8,*) "ZONE T=" " i=1000' 
write(9,399) 

399 fonnatCVARIABLES="t","xH,"yO","zO","y 1 "."zl-.-gam",' 
c       '"zuVzlVylYyr"') 
write(9,*)'ZONE T=" "' 
tv=0. 

c 
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c master loop for time stepping analysis 
c printc controls printed output to every 10th time step 
c 

printc=9. 
do 5000 it=l,nt 

c 
c count number of ships forward of current x-station 
c 

ns=l 
do 200 i=l,nslim 

if(xs.ge.xp(i)) ns=i 
200 continue 

n=2*ns 
c 
c calculate vortex core radii including decay term for "old" vortices 
c 

j=0 
do 300 i=l,ns 

j=j+l 
xv(j)=xs-xp(i) 
xv(j+l)=xv(j) 
rc(j)=36.2*sqrt(nu*xv(j)/vf*cswp2) 
rc(j+l)=rc(j) 
j=j+l 

300 continue 
c 
c loop on each vortex for induced velocities at current core position 
c 

do3000j=l,n 
yp=yl(j) 
zp=zl(j) 

c 
c calculate induced velocites at vortex j due to vortices jj 
c circulation includes effects of vortex decay 
c cjj is counter for left/right vortices to ensure correct rotation 
c 

vjj=0. 
wjj=0. 
cjj=-l. 
do 1000 jj=l,n 

cjj=cjj*-l. 
dfact=xv(ij)*cl/(beff*ar) 
gamd(jj)=gam(ij) 
if(dfactgL9.58) gamd(jj)=gam(jj)*9.58/dfact 

c 
c modified vortex decay model from LID AR data 
c 
c waiting for final representation from LEDAR data 
c 60/t based on peer review results 
c -.06 decay based on all runs from 9/11 and most from 9/7 and 9/12 
c 

if(uvm.eq.l.)then 
vage=xv(jj)/vf 
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tchar=2*pi*bp**2/gam(jj) 
if(vage.le.60.) gamd(jj)=gain(ij) 
if(vage.gt.60.)gamd(jj)=gam(ij)*(607vage) 
if(vage.le.2.*tchar) gamd(jj)=gam(jj) 
if(vage.gt2.*tchar)gamd(jj)=gam(ij)-0.06*xv(jj) 

endif 

vortex interaction calculation 

ifO.eq.jj) go to 990 
if(xv(j).ne.xv(jj).and.xv(ij).lt.500.) go to 990 

dely=yp-yl(jj) 
delz=zp-zl(ij) 
r=sqrt(dely**2+delz**2) 
rcrit=bp 
if(xv(j).ne.xvQj).and.r.lt.rcrit) r=rcrit 

c select vortex model 
c 

if(vmod.eq.l) then 
vth=gamd(ij)*(l -exp(-1.26*(r/rc(jj))**2))/(2*pi*r) 
vm=gamd(jj)*(l-exp(-1.26))/(2*pi*rcaj)) 

else 
rcn=rc(ij) 
if(ren.lL2) rcn=2. 
vth=gamd(ij)*r/(2*pi*(rcn**2+r**2)) 
vm=gamd(jj)/(4*pi*rcn) 

endif 
vth=vth*cjj 
r=sqrt(dely**2+delz**2) 
yjj=yij+vth*delz/r 
wjj=wjj-vth*dely/r 

990 continue 
1000 continue 

v(j)=vjj 
w(j)=wij 

c 
c 
3000 continue 

c 
c write output if print control is at tenth time step 

printc=printc+l. 
if(printc.eq.lO.) then 
printc=0. 

write vortex positions in x-z plane as function of time 
upper and lower vortex boundaries for radial velocity of 30ft/sec 

zz=-999. 
do4500i=l,n 
zul(i)=zl(l)+gamd(l)/(2.*pi*30.0) 
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zll(i)=zl(l)-gamd(l)/(2.*pi*30.0) 
yll(i)=yl(2)+gamd(l)/(2.*pi*30.0) 
yrl(i)=yl(2)-gamd(l)/(2.*pi*30.0) 
ncnt=(i+iy2 
xsg=xv(i)+200.*(ncnt-1) 

do not write vortex to output file if strength is less than gpr 
unit 8 is LID AR data comparison output file 
unit 9 is main tecplot output file 
unit 10 is pvi test output file, compatible with John Watkins data format 

if(gamd(i).gt.gpr) then 
write(9,4513) tv,xs,y0(i),z0(i).y l(i).zl(i),gamd(i), 

c zul(i),zll(i),yll(i),yrl(i) 
4513 fonnat(f5.0,f8.0,9f7.0) 

if(cjj.eq.l.) write(8,4888) tv,xs,zs(l)-zO(i) 
4888      format(3f9.1) 

if(xs.le.25000.) then 
wz=1.0 
write(10,4514) wz,wz,wz,wz,wz,wz,wz,wz,wz,zs(l)-zO(i),xs 

4514 format(9f4.1,2f9.1) 
endif 

endif 
4500   continue 

endif 
c 

xs=xs+delx 
tv=tv+delt 

c 
c shift vortex position for next iteration 
c 
c here for all vortex-vortex interactions included 
c 

do400i=l,n 
y l(i)=y l(i)+v(i)*delt+vs*delt 
zl(i)=zl(i)+w(i)*delt 

400 continue 
c 
c here for single ship vortex interactions only 
c 
c    do500i=l,n 
c      vd=-l.*gamd(i)/(2.*pi*bp) 
c      y0(i)=y0(i)+vs*delt 
c       z0(i)=z0(i)+vd*delt 
c 500 continue 
c 
c ground effects coding for single ship interactions 
c replaces above loop 
c 

djj=l. 
do600i=l,n 

djj=djj*-l. 
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hag=zO(i) 
vd=-l.*gamd(iy(2.*pi)*4*hag**2/(bp*(bp**2+4.*hag**2)) 
yd^jj*gamd(iy(2.*pi)*bp**2/(2*hag*(bp**2+4.*hag**2)) 
yO(i)=yO(i)+vs*delt+yd*delt 
zO(i)=zO(i)+vd*delt 

600 continue 
c 
5000 continue 

c 
c end of time stepping loop 
c 
c write positions of personnel/equipment (360 lb heavy jumper) 
c 

pz=pzi 
py=pyi 
px=pxi 
write(9,*) "ZONE T=" "i=100' 
nt=100. 
delx=200. 
pside=0. 
do5100ifc=l,nt 

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz 
4550   format(f5.0,f8.0,9f7.0) 

delt=delx/vf 
c 
c ballistic portion 
c 

itcrit=tzl*vf/200. 
if(it.ge.l.andiLlt.itcrit) then 

px=px+vf*(it*delt)**2/8. 
pz=pz-(hzl36/tzl)*delt 
py=py 

endif 
c 
c steady descent portion 
c 

if(itge.itcrit) then 
pz=pz+delt*vp36 
py=py+delt*vs 
px=px+delx 
pside=pside+delx 

endif 
c 
5100 continue 

c 
c write positions of personnel/equipment (180 lb light jumper) 
c 

pz=pzi 
py=pyi 
px=pxi 
write(9,*) ZONE T=" " i=100" 
nt=100. 
delx=200. 
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pside=0. 
do 5102 it=l,nt 

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz 
delt=delx/vf 

c 
c ballistic portion 
c 

itcrit=tzl*vf/200. 
if(it.ge.l.and.it.lt.itcrit) then 

px=px+vf*(it*delt)**2/8. 
pz=pz-(hzll8/tzl)*delt 
py=py 

endif 
c 
c steady descent portion 
c 

if(it.ge.itcrit) then 
pz=pz+delt*vpl8 
py=py+delt*vs 
px=px+delx 
pside=pside+delx 

endif 
c 
5102 continue 

c 
c write positions of personnel in thermal from ship 3 
c light jumper zone I with 5 ft/sec thereafter 
c 

vpther=-5.0 
pz=zs(3) 
py=(y(5)+y(6))/2. 
px=xp(3) 
write(9,*)'ZONET=" " i=295' 
nt=295. 
delx=200. 
pside=0. 
do5104it=l,nt 

write(9,4550)zz,px,py,pz,py,pz,zz,zz,zz,zz,zz 
delt=delx/vf 

c 
c ballistic portion 
c 

itcrit=tzl*vf/200. 
if(itge.l.and.itlt.itcrit) then 

px=px+vf*(it*delt)**2/8. 
pz=pz-(hzll8/tzl)*delt 
py=py 

endif 
c 
c steady descent portion 
c 

if(iLge.itcrit) then 
pz=pz+delt*vpther 
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py=py+delt*vs 
px=px+delx 
pside=pside+delx 

endif 
c 
5104 continue 

c 
c end of calculations 
c 
c calculate velocity components for velocity contours 
c at final solution plane 
c "i" is J in tecplot header, ii is I in tecplot header 
c 
c ys=-1010. 
c delyc=10. 
c delzc=10. 
c do 5200 i=l,200 
c ys=ys+delyc 
c zs=160. 
c do 5400 ii= 1,120 
c zs=zs-delzc 
c 
c calculate induced velocity at coordinate ys,zs 
c 

vjj=0. 
wjj=0. 
cjj=-l. 
do6000jj=i,n 

cjj=cjj*-l. 
gamc(ü)=sqrt(gamd(jj)*gamd(ij)) 
dely=ys-yl(jj) 
delz=zs-zl(ij) 
r=sqrt(dely**2+delz**2) 
dfacfc=xv(jj)*cl/(beff*ar) 
vth=gamc(ij)*(l-exp(-1.26*(r/rc(ij))**2))/(2*pi*r) 
vth=vth*cjj 
vjj=yij+vth*delz/r 
wjjsswjj-vth*dely/r 

c6000 continue 
c 
c write velocity components at ys,zs to unit 9 
c 
c    write( 10,5500) ys,zs,vij,wjj 
c5500 format(2x,4(f9.1,1 x)) 
c 
c5400 continue 
c5200 continue 
c 
9999 continue 

close(8,status=!keep') 
close(9,status='keep') 
close( 10,status='keep') 
stop 
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Appendix E 

Altemate Results 
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VI. Results 

ANALYSIS 

My analysis initially focused on varying the spacing between element leaders from 

9,000 feet in trail to 40,000 feet, and measuring the encounter rate as the response. This 

approach was flawed because it was impossible within the simulation for a jumper to 

encounter a vortex at this distance because it was truncated at 42,000 feet. The following 

tables and figures show the initial regression results using the 40,000 feet data point. 

Table 19. Distances and Random Seeds used for analysis 

'32,000  1  40,000  I ELEMENT SPACING 
Random Seeds 

9,000 16,000 24,000 
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Table 20.   Input Data for Simulation Runs with 50 Replications at Each Point. 

Input Data                            9000 Ft         16000 Ft        24000 Ft        32000 Ft        14IUI0 Ft 40000 Ft 
lype.Q-t formation. -,-;; J        2          ;2 (Ci 

■ j.^^,,vä:i-V^'j   (Custom)   te|ri;£ 
istom)J 2 (Custom) L-2.(Cw stom) | 2 (Custom) 2 (Custom) 

dTPÜaü^M       6       piC: «t!^          6          L*v^ I !-£&:]       6 6 t *f£iem^^ä        3        p« £si|i     3     fös: >Kv           3 3 
Junipers' P^.Side^lgigj        6        p$& ̂ #fl         6         fjü"1-'^ >^:9H          6 6 

■ #2 InrTr; ulSpadngiA^S     3000     L •;••'. 3( HMfffl      3000      14i: 30 )a.-ii      3ooo 3000 
#2 XJüUöJTI uSpmsg£0A      600      pfe OOgM     600     pr:r« »"'*        600 600 
#3 In- Tt aUSpaang3fp|      6000      pp& WifSJ      6000      E-760 JO    ;.         6000 6000 

" .  ~*f^?- fSparin^Ää      -900      fes^s OOS^I       -900       P-V--9 K) 'O       -900 -900 
^der!SpacinrJ      9000      prl6 )00 V®     24000     M 32( ÖG  <:.       32000 40000 

In-Trail' ^Ierance-'Sif-1      500      1-^5 )tf:^q      500      te?S< 0 "-:V        500 500 
■ i-^t&Ttil 1 olerance^iy      200      hi; 2« )Ö,5sl       200       pW2< 0.&&]        200 200 
AirCRllt Veig^g|Ä:|    385000    (..   38i 4)00 2     385000      s 385 »00^1     385000 385000 

^LJrOQlAlt P^^^M       900       pfe MugH       900       fp( 10'S   900 
900 

^^^59      135      IäX Ö       135       p-Sfc i$M        135 135 
d>]£ftito<&|i        0         Hlli >v*Sl|       o       Ip&j :s|£$          0 0 
DeWaööglS        -1        pP! ̂ ^g         .1         ptf-^j llilll       o .1 

0 
0 

fiBEl dlMddJe)iij|       0       pB 

*       1             • 
"^"Sj          0 
'-&*§       o 

Deyiäibn:(M       0        Pg^ ̂ •^•3          °          pSTö Trr]       o 0 
lÄd<^2)^^       0        pft< r*äl!    °    Kf-o jX'-'i    ° 0 
i<Cfpüwl):S        0        pg^'i( 1 -ill     °     r#;'r ° if SS'I          0 0 
Devlaticgi^p        0        N££< '^S     o     [ jt-'o rM-1          ° 0 
'SSBaSfH      °      Iv^t i^fr j     o     pf&'o -•7-i-a       o 0 

'AirDensi ^^^^^^H  0.002309   f;o3)o; 5309js|   0.002309   ppMJ02 3091]    0.002309 0.002309 
j^^fe^B   Seed#9J    f-jSccd gg&fjl   Seed#24J   Eg*«« 32J;i   Seed#34J Seed#40J 

£^^^9      Seed#9E   Ep$ffi ||llj  Seed*         fe«^ 32EJ   Seed#34E Seed#40E 

t&g|^|H   Seed#9S    Ifeeäi $®l|  Seed#24S   |&£ä* 32Sjl   Seed#34S Seed#40S 

^iHtes 3'6«7 PA« ;j5ä     3,6,7      |§3V6. Jm   3'6'7 3,6,7 
iriÄtekawi^a        0        liliä SKS      o      Kasbo, .;;LTJ     o     i 0 
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Table 21.  Results of Simulation Runs, Blocked by Seed. 

Seed 
Number 

Distance Coded 
Spacing 

Mean 95 % Confidence 
Interval 

3 
6 
7 

9,000 
9,000 
9,000 

-.9375 
-.9375 
-.9375 

40.67 % 
42.94 % 
36.72 % 

6.93 % 
6.97 % 
6.86 % 

3 
6 
7 

16,000 
16,000 
16,000 

-.5 
-.5 
-.5 

18.33% 
19.56 % 
18.44 % 

4.53 % 
4.63 % 
4.93 % 

3 
6 
7 

24,000 
24,000 
24,000 

0 
0 
0 

13.72 % 
10.89 % 
10.83 % 

3.33 % 
3.00 % 
2.98 % 

3 
6 
7 

32,000 
32,000 
32,000 

.5 

.5 

.5 

12.06 % 
10.56 % 
8.94 % 

2.57 % 
2.68 % 
2.18 % 

3 
6 
7 

40,000 
40,000 
40,000 

1 
1 
1 

0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 

Table 22.  First Order Linear Regression Results, Coded Spacing vs Encounter Rate. 
Linear Fit 

Encounter Rate = 16.4691-17.976 Coded Spacing 

Summary of Fit 

RSquare 0.851314 RSquare Adj 0.839876 
Root Mean Square Error 5.565309 Mean of Response 16.24444 
Observations (or Sum Wgts) 15 

Analysis of Variance 

Source         DF Sum of Squares         Mean Square F Ratio Prob>F 
Model            1 
Error           13 

C Total          14 

2305.3666 
402.6446 
2708.0112 

2305.37 
30.97 

74.4323 <.0001 

Parameter Estimates 

Term Estimate Std Error         t Ratio Prob>ltl 
Intercept 

Coded Spacing 
16.469143 
-17.97596 

1.437193          11.46 
2.083585          -8.63 

<.0001 
<.0001 
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Figure 13 . First Order Linear Regression with Confidence Interval and Residuals 
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Table 23. Second Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 

Polynomial Fit degree=2 

Encounter Rate = 12.3485-18.5096 Coded Spacing + 8.67476 Coded Spacing^ 

Summary of Fit 

Source 
Model 
Error 

C Total 

2 
12 
14 

Term 
Intercept 

Coded Spacing 
Coded SpacingA2 

RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

0.914391 
0.900123 
4.395358 
16.24444 

15 

Analysis of Variance 

"5F Sum of Squares Mean Square F Ratio Prob>F 
2476.1811 
231.8301 
2708.0112 

1238.09 
19.32 

64.0861 <.0O01 

Parameter Estimates 

Estimate Std Error t Ratio Prob>ltl        Lower 95% Upper 95% 

12.348524 
-18.50958 
8.6747616 

1.7913 
1.655326 
2.917356 

6.89 
-11.18 
2.97 

<.0O01 
<.0O01 
0.0116 

8.4456118 
-22.11623 
2.3183787 

16.251437 
-14.90293 
15.031145 
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Figure 14. Second Order Regression with Confidence Interval and Residuals. 
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Table 24. Third Order Linear Regression Results, Coded Spacing vs. Encounter Rate. 
Polynomial Fit degree=3 

Encounter Rate = 11.9287-3.51065 Coded Spacing + 10.5664 Coded SpacingA2-18.9661 Coded SpacingA3 

Summary of Fit 
RSquare 0.988511 
RSquare Adj 0.985377 
Root Mean Square Error 1.681801 
Mean of Response 16.24444 
Observations (or Sum Wgts) 15 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob>F 
Model 
Error 

C Total 

3 
11 
14 

2676.8982 
31.1130 

2708.0112 

892.299 
2.828 

315.4726 <.0001 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>ltl Lower 95% Upper 95% 
Intercept 11.928715 0.687216 17.36 <.0001 10.416156 13.441273 

Coded Spacing -3.51065 1.889804 -1.86 0.0902 -7.670096 0.6487963 
Coded SpacingA2 10.566445 1.138634 9.28 <.0001 8.0603179 13.072572 
Coded SpacingA3 -18.96614 2.251444 -8.42 <.0001 -23.92155 -14.01072 

Figure 15. Full Third Order Residuals 
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Figure 16. Full Third Order Regression Line with Confidence Interval. 
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Table 25.  Reduced Third Order Regression Results, Coded Spacing vs. Encounter Rate. 

Response: Encounter Rate 

Encounter Rate = 11.872+10.884 Coded SpacingA2-22.907 Coded SpacingA3 

Summary of Fit 
RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

0.984906 
0.982391 
1.845578 
16.24444 

15 

Anova 

DF Sum of Squares Mean Square F Ratio Prob > F 

Model 
Residual 

Total 

2 
12 
14 

2667.137062 
40.87389177 
2708.010954 

1333.568531 
3.406157647 

391.5169728 1.1824E-11 

Lack of Fit 

Source DF Sum of Squares Mean Square F Ratio Prob>F 

Lack of Fit 
Pure Error 
Total Error 

2 
10 
12 

9.838898 
31.035002 
40.873901 

4.91945 
3.10350 

1.5851 0.2524 

Max RSq 
0.9885 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>ltl Lower 95% Upper 95% 

Intercept 
Coded SpacingA2 
Coded SpacingA3 

11.872412 
10.884128 
-22.9067 

0.753405 
1.235344 
0.828069 

15.76 
8.81 
-27.66 

<.0001 
<.0001 
<.0001 

10.23088 
8.1925409 
-24.71091 

13.513943 
13.575716 
-21.10249 
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Figure 17. Reduced Third Order Curve with Confidence Interval and Residuals. 

t 

40   ~ 

.V 
30   _ 

Encounter . 'Ar, 
Rate 

20  - 

* X* v<^  
10  - ♦ 

*x ♦ 
*  X * 

*   X * *\ * * \ 
0 - * 

-1 

1       I        1        ,       . 

-0.5                        0 
1 

.5 1 

Coded Spacing 

2.0 
* 

1 .5 

1 .0 
* * 

0.5 * 
R esiduals 

0.0 

* * 

-0.5 • ♦ 

-1 .0 — 

-1 .5 - * 

-2.0 - 

-2.5 
♦ 

'                1 1                  1                  ' 1 ■ 

-1 -0.5 0 

Coded Spacing 

.5 1 

170 



Table 26.  Logistic Regression Results, Encounter Rate vs. Coded Spacing 

Iter 
1 
2 
3 
4 
5 

Response: Response 
Iteration History 

LogLikelihood     Step Delta-Criterion Obj-Criterion 
-11979.93205 Initial 1.32121516 1.5006e304 
-10465.18195 Newton 0.32017887 0.14474174 
-10302.02762 Newton 0.06034548 0.01583709 

-10297.5812 Newton 0.00259701 0.00043179 
-10297.57338 Newton 0.00000483 0.00000076 

Converged by Gradient 
Whole-Model Test 

Model -LogLikelihood         DF ChiSquare Prob>ChiSq 
Difference 

Full 
Reduced 

1682.359                1 
10297.573 
11979.932 

3364.717 0.0000 

RSquare (U) 
Observations (or Sum Wgts) 

Lack of Fit 

0.1404 
27000 

Source DF -LogLikelihood ChiSquare Prob>ChiSq 
Lack of Fit 
Pure Error 
Total Error 

3 
26995 
26998 

275.216 
10022.357 
10297.573 

550.4321 <.0001 

Parameter Estimates 
Term Estimate Std Error ChiSquare Prob>Ch       Lower 95% 

iSq 
Upper 95% 

Intercept 
C.S 

-2.0067577 
-1.6160245 

0.0224443 
0.0321849 

7994.3 
2521.1 

0.0000                 ? 
0.0000         -1.6791123 

? 
-1.5529498 

Source 
Coded Spacing 

Nparm 
1 

Effect Test 
DF 

1 
Wald ChiSquare 

2521.1051 
Prob>ChiSq 

0.0000 

Source 
Coded Spacing 

Effect Likelihood-Ratio Tests 
Nparm 

1 
DF 

1 
L-R ChiSquare 

3364.7173 
Prob>ChiSq 

0.0000 
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Figure 18. Logistic Regression Prediction Curve. 

1 ~ 

0.75    ~ 
■ 

Encounter 
Rate 

0.5   - 

■ 

■ 
■ ■ 

1 

0.25    ~ 
■ 

• o H 
■ 

■ 
0 

1     I     1     I     1 1 
1       I       1 

-1.0 -0.5             .0 

Coded Spacing 

.5 1.0 

172 



Table 27.  Predicted Encounter Rate for Third Order and Logistic Models 

Third Order Encounter Rate Logistic Encounter Rate 

Spacing Coded Spacing Point Lower Upper Point Lower Upper 

16000 -0.5 17.46 15.37 19.55 23.17 23.74 22.61 

16800 -0.45 16.16 14.14 18.19 21.76 22.25 21.28 

17600 -0.4 15.08 13.12 17.04 20.42 20.83 20.01 

18400 -0.35 14.19 12.29 16.08 19.14 19.48 18.80 

19200 -0.3 13.47 11.64 15.31 17.92 18.20 17.64 

20000 -0.25 12.91 11.13 14.69 16.76 16.98 16.54 
20800 -0.2 12.49 10.76 14.23 15.66 15.83 15.50 
21600 -0.15 12.19 10.50 13.89 14.62 14.74 14.51 

22400 -0.1 12.00 10.34 13.67 13.64 13.72 13.57 
23200 -0.05 11.90 10.25 13.55 12.72 12.75 12.68 

24000 0 11.87 10.23 13.51 11.85 11.85 11.85 

24800 0.05 11.90 10.25 13.55 11.03 11.00 11.06 

25600 0.1 11.96 10.29 13.63 10.26 10.20 10.32 

26400 0.15 12.04 10.33 13.75 9.54 9.46 9.62 

27200 0.2 12.12 10.36 13.89 8.87 8.77 8.97 

28000 0.25 12.19 10.36 14.03 8.24 8.12 8.36 

28800 0.3 12.23 10.30 14.17 7.65 7.51 7.78 
29600 0.35 12.22 10.17 14.27 7.09 6.95 7.24 

30400 0.4 12.15 9.96 14.34 6.58 6.43 6.74 

31200 0.45 11.99 9.64 14.34 6.10 5.94 6.26 

32000 0.5 11.73 9.19 14.27 5.65 5.49 5.82 

32800 0.55 11.35 8.60 14.11 5.24 5.07 5.41 

33600 0.6 10.84 7.84 13.84 4.85 4.68 5.03 
34400 0.65 10.18 6.91 13.45 4.49 4.32 4.67 

35200 0.7 9.35 5.77 12.93 4.16 3.98 4.34 

36000 0.75 8.33 4.41 12.25 3.85 3.68 4.03 
36800 0.8 7.11 2.82 11.40 3.56 3.39 3.74 
37600 0.85 5.67 0.97 10.36 3.29 3.12 3.47 
38400 0.9 3.99 -1.15 9.13 3.04 2.88 3.22 
39200 0.95 2.06 -3.56 7.67 2.81 2.65 2.98 
40000 1 -0.15 -6.29 5.99 2.60 2.45 2.77 
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Figure 19.  Third Order and Logistic Prediction Curves. 
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