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AFIT/GM/ENP/97M-07

Abstract

Air Force Global Weather Center's (AFGWC) Relocatable Window Model (RWM) total

cloud forecasts were validated using data for selected days in May, June, and July, 1996.

Forecasts were generated twice daily (00 UTC and 12 UTC) to determine the RWM's ability to

accurately forecast total cloud cover during the late spring and early summer. The RWM

forecasts were post-processed using the Slingo cloud forecast algorithm and compared against

AFGWC's operational real-time nephanalysis (RTNEPH) cloud analysis model. As a minimal-

skill baseline comparison to the RWM's total cloud forecast, the RTNEPH initial analysis hour

was persisted and evaluated against the same RTNEPH analysis as the RWM forecasts.

The results indicate RWM total cloud forecasts did not show improved skill, sharpness,

accuracy or bias when compared against RTNEPH persistence through the 36-hour forecast

period. The results also suggest the Slingo algorithm, as tested, is not appropriate for use in the

RWM as an accurate total cloud forecast method for the late spring and early summer months.

The RWM's total cloud forecast performance during the late spring and early summer over the

North American Window should be improved in the short term by incorporating convective

parameterization within the Slingo algorithm or replacing the Slingo algorithm with an

alternative algorithm designed for more accurate and skillful total cloud forecasts. While the

suggested short-term improvements are incorporated into the RWM, the results of this and other

related studies must be carefully communicated to the operational users of the RWM products to

be useful. In the long term, the RWM should be replaced with a state-of-the-art forecast model

capable of forecasting clouds deterministically, rather than diagnostically.
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VALIDATION OF THE AIR FORCE GLOBAL WEATHER CENTER

RELOCATABLE WINDOW MODEL TOTAL CLOUD FORECAST

L Introduction

1.1 Importance of Accurate Cloud Forecasts

Weather influences nearly every aspect of military operations. Missions such as air

refueling, air-to-air intercept, airlift, airdrop, air-to-ground weapons delivery, and aerial

reconnaissance are important Department of Defense (DoD) interests. It is crucial for military

forecasters to have correct cloud forecast guidance at their disposal to assist the DoD in the

successful completion of those interests. In addition, commanders require timely and accurate

weather forecasts to effectively and efficiently exploit aerospace power. The effective

integration of accurate cloud forecasts into combat operations can significantly influence

decisions regarding weapon selection and targeting options. Accurate total cloud forecast

coverage, horizontal resolution, and refresh rate are some of the extremely important

characteristics of an accurate cloud forecast model which the Air Force Global Weather Center

(AFGWC) uses to support the DoD and other national programs.

1.2 AFGWC Cloud Forecasting

The AFGWC has produced global cloud forecasts using numerical weather models for

approximately 30 years. With the escalating performance of computers, AFGWC has been

attempting to improve its cloud forecasts on smaller (higher-resolution) scales. The AFGWC

produces a cloud forecast visualization using an adapted Relocatable Window Model (RWM)

(Mathur, 1983). This study will determine the RWM's performance in forecasting total clouds.

The AFGWC is considering implementation of operational cloud forecasts based on the RWM



with Slingo algorithm post-processed clouds. The RWM uses a diagnostic approach to forecast

clouds, which is one of two fundamental approaches to cloud forecasting.

1.3 Cloud Forecasting Approaches

This section discusses the two fundamental approaches to cloud forecasting.

1.3.1 Diagnostic Approach

The RWM uses a diagnostic approach to forecast clouds. The diagnostic approach

uses governing equations which do not use time derivatives to forecast cloud water

deterministically. The forecast will produce, at a moment in time, an estimate of cloud cover

based on the distribution of other model variables, such as temperature and relative humidity.

This approach is the least computationally demanding of the two approaches, and neglects many

of the physical and dynamical effects of the atmosphere. However, with the improved

performance of computers, it is becoming feasible to deterministically forecast clouds from first

principles. The alternative approach to forecasting clouds is the deterministic (or prognostic)

approach.

1.3.2 Prognostic Approach

The prognostic approach solves differential equations for conservation of water

substances (i.e., cloud water, rain water, ice, etc.) to deterministically forecast the distribution

of clouds. The prognostic approach neglects fewer necessary parameters than the diagnostic

approach and includes more realistic physical and dynamical mechanisms to more accurately

forecast the true state of the complex atmosphere. In order to realize the full potential of

today's computers, and to more accurately model the true state of the atmosphere, the

prognostic approach should be used. Other agencies have incorporated this approach into

forecasting regional clouds and the results appear encouraging. For example, Hodur (1993)
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discusses the potential of the recently developed Coupled Oceanographic and Atmospheric

Mesoscale Prediction System (COAMPS) which deterministically forecasts clouds down to a

5 km resolution. The atmospheric prediction component of COAMPS features non-hydrostatic

physics, explicit moisture physics and aerosols, and improved data assimilation. The COAMPS

has been designed to provide the high-resolution, relocatable prediction capability required for

effective and efficient support of military operations.

1.4 Benchmark

The ability to accurately forecast total cloud cover is a critical test of a model's cloud

forecast performance. A poor total-cloud forecast indicates individual cloud layers are probably

forecast inaccurately as well. This study focuses on the total cloud cover because it is the most

basic of cloud forecasts. Correctly forecasting total clouds is a prerequisite for successful cloud

forecasts at specific locations and times.

The documentation of the RWM and the adapted Slingo algorithm's performance will serve

as a benchmark for one of today's operational military weather forecast models. The accuracy

of all numerical weather models and their respective algorithms should be validated to

determine their relative operational effectiveness. Once the results are determined, the

algorithm or model should be improved or replaced as appropriate. With the answers to

questions regarding a model's performance, commanders will be more effectively and

efficiently able to make the crucial operational decisions. Communicating the results of a

model's performance to the operational forecaster will allow effective implementation of those

decisions, which will inevitably lead to improved cloud forecasting support to the customer.
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1.5 Thesis Objective

This thesis serves to qualitatively (through subjective analysis) and quantitatively (through

objective analysis) validate the performance of the AFGWC RWM with an adapted Slingo

algorithm-based (1980, 1987) late spring and early summer total cloud forecast.

1.6 Procedure

The real-time nephanalysis (RTNEPH) is used in this study to validate the RWM total cloud

forecast. The RWM is post-processed with the Slingo algorithm, without convective

parameterizations, for selected days in May, June, and July, 1996. The days were selected

based on the availability of RWM forecasts and the associated RTNEPH validation data for an

entire 36-hour period. The RWM cloud forecasts were generated twice daily (00 UTC and

12 UTC) retrospectively for May, June, and July, 1996 to sample the North American late

spring and early summer. A side-by-side comparison of the RWM total cloud forecast against a

forecast based on persistence of RTNEPH is also performed, to provide a minimal skill

baseline. This is accomplished through the RTNEPH initial analysis hour persisted against the

entire 36-hour analysis.

The background and specifics of the RWM, Slingo algorithm, RTNEPH, and previous

studies are described in the second chapter. Chapter three contains the methodology of the

validation and discusses the scope and fundamental processes of the study. Chapter three also

describes the grid transformations and the statistics calculated for the RWM forecast validation.

Chapter four includes the results of the study, with a discussion of the statistical results for a

representative 36-hour forecast example and summary statistics of all cases with all forecast

times. The final chapter includes the conclusions and recommendations.



This concludes the introduction necessary for the remainder of the thesis. The next chapter

discusses the background of the forecast model, forecast algorithm, and analysis model which

were used to perform the validation.



IL Background

2.1 RWM

This chapter begins by discussing the general characteristics of the RWM, the Slingo

algorithm, and the RTNEPH analysis model. The chapter concludes with a discussion of related

studies.

2.1.1 RWM Background

During the late 1970's, Air Weather Service (AWS) and AFGWC recognized a need

for a weather model capable of producing a regional-scale meteorological forecast anywhere in

the world (Pace, 1989). During the early 1980's, a committee reviewed the regional-forecast

models under development and concluded the best candidate was a Quasi-Lagrangian Model

(QLM) developed at the National Meteorological Center (NMC). The QLM was based on an

earlier model known as the Quasi-Lagrangian Nested Grid Model (QNGM) (Mathur, 1983). The

QLM's main function at NMC was to track hurricanes in a non-operational environment

(Neel et al., 1993). Mathur's QLM was imported by AFGWC and adapted to meet military

needs (Wonsick, 1996 personal communication). The AFGWC's implementation of the QLM is

known now as the RWM.

The RWM receives its source data (00 UTC and 12 UTC) and generates 36-hour forecasts

twice per day for three fixed and four contingency windows. The three fixed window grids cover

North America, Asia, and Europe, while the four remaining windows can be relocated anywhere

around the world. Future references to RWM refer only to the geographical North American

fixed window. The North American Window was chosen for validation due to the availability of

a higher observation density associated with the RTNEPH. This higher density of observations

and availability of data should result in a more accurate analysis for validation.
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The specific grid comers for the North American window are: 44.2°N, 144.4°W; 64.7°N,

44.6°W; 13.3°N, 108.8°W; 19.6°N, 69.4°W, as shown in Figure 1. The RWM data is stored on

a polar-stereographic grid composed of 61 x 61 (3,721) grid points, with a horizontal resolution

of 50 nautical miles (NM), true at 60' N. Each gridpoint represents the centroid of the spatial

grid. Therefore, the areal coverage of the RWM-based forecast products is approximately

3000 NM x 3000 NM (Figure 1).

///

Figure 1: The geographical domains of the study. The RWM domain is
depicted by the innermost box. The outermost box includes the 9
RTNEPH boxes 35-37, 43-45, 51-53 described and shown in
Figures 4 and 5.

The implementation of the RWM used for this study incorporated 3-hourly lateral boundary

conditions from the 2.50 x 2.50 AFGWC Global Spectral Model (GSM), and a rigid top boundary

condition with damping. The GSM (Appendix A) specified the large-scale features entering or
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leaving the RWM domain. The GSM did not use RTNEPH analysis information to derive its

initial moisture analysis. The High Resolution Analysis System (HIRAS), as described in

Appendix B, provided the initial conditions for the GSM and the initial boundary conditions for

the RWM. For more detailed information, the reader is referred to Stobie, 1986 and

Neel et al., 1993. On 8 January 1997, the Navy Operational Global Atmospheric Prediction

System (NOGAPS) replaced the GSM as initial fields and boundary conditions for the RWM

(Cantrell 1997, personal communication).

For this study, the RWM used HIRAS for its initial conditions and the GSM for its boundary

conditions as input into the Relocatable Window Analysis Model (RWAM) for its first-guess

analysis fields. The RWM continues to use the RWAM for initialization as of this writing. The

RWAM uses an interpolation of the HIRAS global analysis from mandatory pressure levels to

the RWM horizontal and vertical grid structure. The RWAM provided temperature, winds,

moisture, and pressure as input for the RWM. The GSM forecast database provided boundary

layer data, winds, pressure, and temperature (Neel et al., 1993) at a coarse spatial resolution.

The RWM also incorporated real-time soil moisture, snow depth, and ground temperature

analysis provided by AFGWC's analysis models. The input sea-surface temperatures were

provided by the U. S. Navy's sea-surface temperature analysis.

The RWM forecast has two cycles (00 UTC and 12 UTC) and produces forecasts on sigma

levels (Appendix C) for horizontal wind components, vertical velocity, potential temperature,

specific humidity, and other weather parameters at up to 36 predefined atmospheric levels for

forecasts out to 36 hours. The sigma-level forecast variables are then post-processed to generate

forecasts on mandatory pressure levels (Appendix D) of vertical velocity, cloud amounts at low,

middle, and high levels, total cloud amounts, wind speed and direction, temperature, moisture,

and pressure.
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The RWM uses a basic boundary-layer physics package which transfers sensible and latent

heat over the ocean when the sea surface temperature is greater than the air temperature.

Terrain-dependent drag coefficients model the surface friction (Neel et al., 1993).

Forecast products from the RWM are available to world-wide DoD installations via the Air

Force Weather Information Network (AFWIN), the Air Force Dial-In Subsystem (AFDIS), and

the Automated Weather Distribution System (AWDS). For a more detailed discussion of the

RWM, the reader is referred to Mathur (1983).

2.1.2 RWM Limitations

It is well known that the moisture fields of forecast models, without the true initial

moisture conditions, undergo an adjustment during the forecast from the initial state. The RWM

moisture problem was complicated by the fact that the RWM did not use its own forecasts as

first-guess fields in the analysis. Instead, the RWM relied on an interpolated analysis, or

zero-hour forecast, from the GSM. As will be shown later, the RWM tried to develop a three-

dimensional moisture field during the forecast period which is consistent with its own physical

parameterization of moisture. Since the RWM used the HIRAS as its initial conditions, its

starting moisture will be that of the HIRAS and not of the RTNEPH. The RWM does not

account for the land surface processes and solar or terrestrial radiative processes

(Neel et al., 1993). Without radiation, no diurnal cycle is forecasted. The RWM also is limited

in its physics. The RWM parameterizes only basic physical processes such as air-sea exchange

of sensible and latent heat.

Documentation of the RWM has been very limited. In addition, previous studies validating

the RWM's performance are not well documented. This study will validate the RWM total cloud

forecast performance, using the Slingo cloud algorithm (Appendix E), against the RTNEPH, and



will serve as a benchmark for the performance of the RWM cloud forecast scheme as

implemented by AFGWC.

2.2 Slingo Cloud Forecast Algorithm

This section discusses the Slingo algorithm's background and limitations.

2.2.1 Slingo Background

The Slingo (1980) algorithm was implemented in May 1985, within the European

Centre for Medium-Range Weather Forecasts (ECMWF) medium range forecast model. The

algorithm uses a diagnostic approach to reproduce the main features of a cloud field by relating

the large-scale meteorological features associated with a cloud distribution to model variables

(Slingo, 1980). The RWM cloud forecast model validated in this study is an AFGWC

implementation of the Slingo (1980, 1987) algorithm. The Slingo algorithm produces a

diagnosis of cloud cover and liquid water content from the Slingo's large-scale parameters for

low-, middle-, high-, and total-cloud cover, at each RWM grid point. The total cloud cover is

empirically derived by summing the individual cloud layers without exceeding 100%.

The Slingo algorithm is based on a diagnostic approach in which the forecast cloudiness is

empirically related to the large-scale model variables. Empirical functions were developed to

represent the probability of clouds occurring under specific atmospheric conditions (i.e., static

stability (S), relative humidity (RH), and vertical velocity (03)). The respective equations

(Equations 1-8) are described on the following pages. The Slingo output includes percent cloud

occurrence, from clear (0%) to cloudy (100%) in 1% increments. The Slingo algorithm allows

four different cloud types (Figure 2). The clouds represented in Figure 2 are convective

(cumulus (Cu), cumulonimbus (Cb)), high (cirrus (Ci)), middle (altostratus (As), altocumulus

(Ac)), and low (stratus (St), stratocumulus (Sc)). This study only validates the total cloud

forecasts. The Slingo algorithm breaks the forecasted clouds up into four levels (including
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convection) of clouds. The low-level clouds range from 8 mb above the surface to 800 mb. The

restriction of 8 mb above the surface is designed to eliminate the formation and dissipation of

fog. The middle cloud ranges from 800 mb to 450 mb, and the high cloud from 450 mb to

250 mb.

Mb
100

200

30 -i High

400

Cb
500

600 Cs& Ac Middle

700

800

900 St & Sc Low

.1000 - Surface

Figure 2: Vertical cloud distribution of the Slingo algorithm. (After Slingo, 1987)

The AFGWC restricts the Slingo cloud forecasts to between 980 mb and 215 mb. From this

point on, total cloud cover forecasts for a gridpoint will be assumed to represent the fractional

cloud cover within the grid volume represented by the grid point as viewed from above.
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The Slingo algorithm uses a quadratic cloud-relative humidity (RH) relationship (Equations

1, 2, and 5) for stratiform clouds in the free atmosphere (above the boundary layer). For a more

detailed explanation of the Slingo algorithm, the reader is referred to Slingo (1980, 1987), and

Appendix E, which describes the Slingo algorithm as implemented by AFGWC in the RWM.

Fractional coverage of frontal and extratropical cirrus (high-level clouds) is determined from

a function of RH and given by the equation:

CH = [Max{O.0, (RH-o.8)]2 (1)

where CH represents the fractional coverage of high-level clouds.

Fractional coverage of middle-level clouds, which are assumed to be formed primarily from

extratropical systems and tropical disturbances, are parameterized by:

CM = [Max{O.0, (RHc - 0.8)1] 2  (2)
0.2

where

RHc = RH(1.0 - Cc) ,(3)

and CM represents the fractional coverage of middle-level clouds.

The term Cc, in Equation 3, refers to the convective cloud cover. The AFGWC has set the value

of Cc to zero, thus, the RWM implementation of Slingo does not include convective clouds.

With this simplification, Equation 3 becomes:

RH c = RH (4)

Low-level clouds are often the most difficult to predict due to the many physical and

dynamical effects which influence them. Some of the physical effects include the complexity

and dependency on the thermal and moisture structure of the boundary layer, cloud-top

entrainment, turbulent fluxes of heat, moisture and momentum, radiative cooling, and diabatic
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heating. Slingo (1987) categorizes low clouds into two classes: those associated with

extratropical fronts and tropical disturbances, and those that occur in relatively quiescent

conditions related directly to the boundary layer. The low-level clouds associated with

extratropical fronts and tropical disturbances are parameterized by:

= [ax{.0,(RHc - 0.8) (5
0.2)C, = [Max{O0.0,(R0.2  .11 (5)

where CL represents the fractional coverage of low-level clouds associated with extratropical

fronts and tropical disturbances.

However, if there is subsidence, i.e. vertical velocity (co) > 0:

CL = CL (-10.0a0) if o > -0.1 Pa sl  (6a)

CL = CL otherwise (6b)

In Equation 6b, CL represents the fractional coverage of low-level clouds. The quadratic

function (Equation 5) of RH is modified for low-level clouds in the case of weak upward or

downward vertical motion (allowing no low-level clouds in areas of subsidence).

The co in Equation (6a) is intended to delineate frontal clouds in the extratropics, and suppress

the excessive cloudiness which otherwise would occur in the subtropics (Slingo, 1987).

The fractional coverage of the low-level clouds which occur in relatively quiescent conditions

related directly to the boundary layer, and low-level inversions in temperature and humidity, is

given by:

AO AO
CL =-6.67 -- 0.667 , (7)

Ap AP

A0
where -O is the lapse rate (K mbl ) below 750 mb.

AP
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Where low-level inversions exist, boundary layer clouds are modeled as a function of the

strength of the low-level inversion. An additional dependence on relative humidity at the base of

the inversion (RHBASE) is used to prevent clouds from forming under dry inversions:

CL =0 if RHBAsE < 0.6

C C'1 1.0- (0.8 - RHBAsE )}CL ( - 0.2 for 0.6 < RHBAsE < 0.8 (8)

CL = CL otherwise.

The Slingo algorithm forecasts layers of clouds which have bases and tops constrained to

sigma-layers (Appendix C) for the four cloud types shown in Figure 2. The convective cloud

may fill any number of layers from 850 mb to 250 mb. The cumulus convection is parameterized

by the Kuo-scheme; however, for re-emphasis, the parameterization of cumulus convection is

omitted by AFGWC in the current implementation of the Slingo algorithm.

Accurately inferring cloud layers from a three-dimensional moisture field is critically

important to the operational forecaster and the individual levels at which clouds are forecasted

are important to Air Force operations. The Slingo cloud geometry used for calculating total

cloudiness is a maximum overlap method with cloudiness between 0 (for clear) and 1 (for

overcast) shown in Figure 3. For example, for fractional cloud coverage for low, middle, and

high clouds of 10, 20 and 30% respectively, the maximum overlap would yield a total overlap of

60% total cloud coverage. For a detailed discussion of the Slingo algorithm, refer to

Appendix E.
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Total Cloud Cover Total Cloud Cover

Ground Ground

Figure 3: Two examples of the maximum overlap method with respect to the ground. Both
sketches show low, middle, and high clouds, and have the same total cloud cover using the
maximum overlap method. With this in mind, maximum overlap should "overforecast" total
clouds.

Due to data availability and limited computational resources, this study's scope has been

restricted to late spring and early summer. Since the convective parameterization is set to zero,

condensational heating will now only occur in saturated flow with a scale resolvable by the

model, which has a relatively coarse horizontal resolution of 50 NM for the RWM. Diagnostic

cloud schemes are attractive for forecasting large scale cloudiness features due to their

simplicity. However, they lack a sound physical basis for forecasting and, thus, have several

limitations.

2.2.2 Slingo Limitations

In addition to the discussion in Section 1.3.1, Tiedtke (1995) discusses several

limitations of diagnostic cloud schemes such as the Slingo algorithm. First, diagnostic cloud

schemes contain no realistic representation of cloud formation due to cumulus convection. This

representation is especially true in this study since the convective parameterization is set to zero.
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In addition, the model does not incorporate realistic treatment of cloud related processes. When

treating clouds diagnostically, the subgrid cloud processes, cloud microphysics, and optical cloud

properties are not taken into account (Tiedtke, 1995). Second, by manually or automatically

retuning the model variables (i.e., critical RH, co, and S), diagnostic relationships can

significantly affect the output parameter (cloud vs no-cloud decision) for the cloud forecast. For

example, if the critical-RH value for cloud forecasts is set to 80%, a diurnal tendency may

indicate that the critical-RH value should be linearly adjusted up to 90% throughout the day.

Finally, incomplete hydrological cycles, such as storage and reevaporation of liquid cloud water,

are not considered. The reader is referred to Tiedtke (1995) for a more in-depth discussion of

diagnostic cloud schemes.

2.3 RTNEPH

This section describes the background, limitations, and strengths of the RTNEPH, which is

used as ground truth in this study.

2.3.1 RTNEPH Background

The RTNEPH replaced the 3-Dimensional Nephanalysis (3DNEPH) at AFGWC on

1 August 1983. The RTNEPH was developed for the initialization of trajectory based cloud

forecast models run at AFGWC (Crum, 1987) and was designed to maximize the probability of

cloud detection (Hamill et al., 1992). In this study, the RTNEPH is assumed to most closely

resemble the true state of the total cloud cover. A Phillips Laboratory (PL) 30-month study also

used RTNEPH total cloud output as validation against a modified Slingo algorithm

(Nehrkom et al., 1994).

Most of the data analyzed by the RTNEPH comes from the Defense Meteorological Satellite

Program (DMSP), conventional cloud observations, National Oceanic and Atmospheric
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Administration (NOAA) polar-orbiting satellites, surface analyses, radiosondes, and aircraft.

Surface observations are updated hourly with each observation encompassing a radius of 20 NM

to 50 NM (Neel et al., 1993). A manual quality control (referred to as a bogus) is also employed

during each analysis cycle.

To perform the bogus, an analyst looks for problem areas in the analysis. Once a problem is

identified, the problem is corrected, discarded, or additional meteorological information is added

to the analysis data and the corrected product is returned to the system for further analysis

(Stobie, 1986). The bogus process uses all available satellite imagery (DMSP, NOAA, and

Geostationary Operational Environmental Satellite (GOES)), conventional data, and the analyst's

own experience.

Input of the available satellite data is essential to producing an RTNEPH analysis for a given

grid point. The AFGWC also collects all available conventional data from the Automated

Weather Network (AWN) and incorporates the data into the RTNEPH. The next step of the

RTNEPH is the merging of the satellite and conventional analysis. If recent satellite data or

conventional data are not available, the RTNEPH will persist the cloud analysis data from the

previous RTNEPH analysis.

The RTNEPH dataset consists of total cloud amount and up to 4 distinct layers of clouds,

where each grid point contains cloud coverage, geopotential height of the layered cloud bases

and tops, time of observation, and diagnostic information (Campana, 1995). The RTNEPH data

is then archived in a 1 to 30 million polar-stereographic projection database storing total and

layered cloud amounts, cloud bases and tops, and cloud types with a horizontal resolution of

approximately 48 km (47.625 km resolution true at 60'N). The RTNEPH is broken up into 64

(eighth-mesh) nephanalysis boxes per hemisphere (Figure 4). Each RTNEPH box has 4,096 grid
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points with a 25.715 NM1 resolution, true at 60'N, and 36,864 total grid points, all vertically

located on up to 4 floating levels. The distance between RTNEPH gridpoints is defined relative

to the AFGWC whole-mesh grid, where the whole-mesh gridpoints are 381 km apart at 60'N

(Zamiska and Giese, 1995). Thus, an eighth-mesh grid has resolution of 1/8th of 381 km, or

47.625 km between gridpoints at 60'N. The polar-stereographic projection is centered at the

poles relative to the Earth's surface. Because of the Earth's curvature, resolution increases

toward the poles and decreases toward the equator. The four comer RTNEPH boxes of each

hemisphere are not used, thus, each hemisphere contains 60 boxes of data. With 4,096 grid

points in each box, there are 245,760 grid points per hemisphere. Each of the 64 boxes contains

an array of 64 x 64 analysis points. The particular region which will be used in this study

consists of a 3 x 3 array of 9 boxes, specifically, boxes 35-37, 43-45, and 51-53. These nine

boxes (Figure 5) constitute the 36,864 total grid points in a region larger than that of the RWM

(refer back to Figure 1).

The RTNEPH domain is an eighth-mesh grid, projected onto a polar-stereographic projection,

regularly spaced in longitude, but irregularly spaced in latitude. The RTNEPH has a horizontal

resolution between grid points of 25 NM (roughly 48 kin), true at 60'N latitude. For the area of

interest (Figure 5), RTNEPH's (0,0) coordinate was located at the top left of each RTNEPH box,

with index values increasing to the east and south. The RWM, on the other hand, consisted of a

nominal 50 NM horizontal resolution between grid points, with the (0,0) coordinate located at

the bottom left of the grid, increasing to the east and north. Using PV-WAVE®, a product of

Visual Numerics, Inc.®, the RWM arrays were inverted to match the array layout of the

RTNEPH.

1 Where 25.715 NM = 47.625 km, based on the international nautical mile (1 nautical mile = 1852 meters)
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The RTNEPH's performance was designed to maximize the probability of detecting clouds,

with less emphasis on cloud height, thickness, and determination of cloud type. If multipleN

sources of data are available to the RTNEPH, the RTNEPH will use the cloudiest one, provided

other timeliness and proximity criteria are met. Clouds are identified as high clouds when their

tops are greater than 6,500 m, middle clouds when their tops are greater than 3,000 m but less

than or equal to 6,500 m, and low clouds when their tops are less than or equal to 3,000 m.

1 2
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superimposed on a polar-stereographic projection.
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Figure 5: A zoomed view of the 3 x 3 domain of interest used for
this study.

The three vertical levels range from the surface to nearly 22,000 m above mean sea level, with a

vertical resolution of 30 m between levels below 6,000 m, and 300 m between each level at or

above 6,000 m. Once the levels are determined, the cloud-typing processor attempts to

distinguish between cumuliform and stratiform clouds. The processor accomplishes this by

examining the infrared (IR)-grayshade and visible (VIS) variance. The greater the variance, the

more cumuliform the cloud. For example, a cloud type of cumulonimbus is determined when the

cloud-top height is greater than 5,486 m (18,000 ft) with a mean IR brightness temperature less

than 228 K (Hamill et al., 1992).

The RTNEPH is a global cloud analysis model (Hamill et al., 1992) and has several distinct

advantages and improvements over its predecessor (3DNEPH). With the RTNEPH's four
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floating cloud layers, each RTNEPH grid point containing cloud cover, geopotential height of the

layered cloud bases and tops, diagnostic information, and time of observation, can give greater

vertical resolution than the 3DNEPH which provided only 15 fixed layers. If there are more than

four cloud layers in the RTNEPH, extra layers will be merged with the closest cloud base.

A maximum of eight layers may be merged to fit into the four floating layers. More than eight

layers will result in the lowest layer not being counted.

2.3.2 RTNEPH Limitations

The RTNEPH analyses have known problems in data sparse regions where the

RTNEPH analysis contains a large percentage of interpolated, or spread data. Spread data is

used in areas with few reporting stations which yields large blocks of identical data. These

blocks have sharp boundaries that often contrast sharply with adjacent RTNEPH points, based on

satellite data or surface observations (USAFETAC/UH-86/001 Rev). Even in North America

where the observation network is relatively dense, many RTNEPH reports may include spread

data. However, in data sparse regions of the earth, spread data may be used almost exclusively.

The use of spread data leads to a more inaccurate and unrepresentative analysis, especially in

data sparse regions. The RTNEPH grid points which surround an isolated regularly reporting

station contain spread data (Hamill et al., 1992).

Another RTNEPH limitation is its lack of frequent updates of satellite data, especially in

tropical regions not revisited as often by the current DMSP or NOAA polar-orbiting satellite

(Figure 6).

Another limitation of the RTNEPH is its vulnerability to misidentify clouds and cloud

amount. When there is no VIS data available, the RTNEPH has a tendency to miss warm, low

stratus clouds as well as to underestimate high, thin cirrus clouds, or falsely place cirrus at lower-

than-appropriate elevations. Also, the RTNEPH has problems with the satellite's over- or under-
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interpretation of clouds along coastlines due to problems in choosing a representative

background temperature to represent the gridpoint during the satellite analysis (Campana, 1995).

The RTNEPH requires a high-quality, VIS-derived and IR-derived surface temperature

analysis to determine the background temperature needed for cloud identification. The IR-

derived analysis is only from a single channel, and the RTNEPH has been known to mislocate

fields through geolocation errors (Neel et aL, 1993). The RTNEPH decision algorithm is such

that the colder IR data or brighter VIS data, the more likely it is to be cloudy. This is another

limitation of the RTNEPH's performance and is especially true since the RTNEPH relies mostly

on its IR-derived nephanalysis. An example of this occurs when low stratus clouds develop at

night, associated with low-level inversions, or develop over snow and ice or other very cold

background scenes. Another limitation of the RTNEPH is small-scale clouds are under-

interpreted due to the satellite resolution and the RTNEPH's inability to model cloud thicknesses

for latitude or seasonal variation.

90N'

EQ

90S.
180 90W 0 90E 180

Figure 6: An example of one day's coverage by one sunsynchronous satellite. Clear areas
represent no coverage, light shading represents 1 satellite pass, and dark shading represents 2 or
more satellite passes in a day. (After Kidder and VonderHaar, 1995).

22



The RTNEPH also has limitations discriminating cloud vs no cloud. The RTNEPH uses an

AFGWC's surface temperature model and water vapor attenuation scheme which also has

limitations. This algorithm has a root-mean-square error (RMSE) of approximately 3-4 K in

estimating the true IR clear-column temperature (Hamill et al., 1992). The accuracy of

RTNEPH's layered cloud amounts is even more suspect, another strong reason for only using

RTNEPH's total cloud cover as verification in this study. Unless a point is supplemented with a

conventional observation, the RTNEPH has no way of detecting low- and middle-level clouds

when there is an obscuring high-level cloud deck, or of assigning an accurate cloud thickness

(Hamill et al., 1992). Despite this critical description of the RTNEPH's limitations, it does have

may strong characteristics.

2.3.3 RTNEPH Strengths

The RTNEPH has many strengths which make it a very good ground truth measure of

the total cloud amount of the atmosphere. The RTNEPH can process a quarter-orbit of satellite

data in approximately five minutes, making the RTNEPH processing fast (Neel et al., 1993).

Besides the advantages of the manual bogus, other strengths are inherent within the RTNEPH, as

discussed in a recent study by Campana (1995). Campana (1995) determined over 80% of the

RTNEPH analysis data points were valid within three hours of the synoptic observation time.

Also, there were rarely-more than two distinct cloud layers (6% of the data had three cloud

layers, while 1% of the data had four cloud layers). Incorporating VIS satellite data enhances the

quality of the RTNEPH's total cloud cover output (Neel et al., 1993), and thus would make the

daytime VIS total cloud analysis even more accurate. Hamill et al., (1992) noted the initial

intent of the RTNEPH was to maximize the probability of cloud detection. Hamill did, however,

identify a tendency for the RTNEPH to over-estimate clear and overcast (cloudy) situations,

while under-estimating partly cloudy situations.
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The RTNEPH's performance was studied by Lowther et al., (1991) and the results indicated

that seasonal variation plays a significant role in the accuracy of the RTNEPH total cloud-cover

analysis. The most accurate analysis was for the summer months. Also, more problems occurred

in the polar latitudes due to the RTNEPH's analysis difficulty in separating ice and snow from

low-level clouds. The overall results concluded the RTNEPH and surface total cloud-cover

reports were in good agreement.

The RTNEPH's relatively high horizontal resolution, bogus, and its inclusion of conventional

as well as satellite-derived observations, make it an invaluable analysis tool, especially in data-

rich areas. The RTNEPH even updates the background brightness field to ensure no

contamination by cloud, snow, or sunglint. For a more detailed discussion of the RTNEPH, the

reader is referred to AFGWC/TN-88/001, AFGWCITN-79/003, and USAFETAC/UH-86/01

(Rev).

2.4 Previous Studies

Phillips Laboratory (PL), accomplished a 30-month study (Nehrkorn et al., 1994) evaluating

numerical weather prediction models and cloud forecasts from the Advanced Physics Global

Spectral Model. Four separate months of 1989 forecasts were evaluated out to four days

(96 hours). Root-mean-square errors (RMSE), mean forecast error, correlation, sharpness, and

sk ill scores of total cloud cover forecasts were evaluated against RTNEPH data. As in the

current study, RTNEPH data was used as the true state of the atmosphere in the PL study. A PL

modification of the Slingo algorithm was also validated, with results indicating Slingo-derived

total cloud forecasts had the largest RMSE of the schemes considered. Persistence forecasts

were also used in the PL study for comparison and proved superior to the Slingo forecasts, even

out to 36 hours. The reader is referred to the PL study (Nehrkorn et al., 1994) for further

discussion of the Slingo algorithm's performance as implemented at PL and the use of
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persistence for validation. The only other study which closely resembles the validation

performed in this paper is the ongoing study of the RWM by AFGWC.

The AFGWC is documenting the strengths and weaknesses of the RWM for the North

American and Asian Windows as of this writing. However, AFGWC has completed preliminary

validation for the RWM windows over Europe, Central Africa, and Southeast Europe and the

Middle East. Only the RWM European Window will be discussed here. The RWM European

Window is similar to the North American Window because of its location in the Northern

Hemisphere, its relatively high density of observation data, and its midlatitudes location. The

results of the RWM European Window study suggest the RWM forecasts compare favorably

with other military models. In addition, the RWM has a positive moisture bias at 700 mb and

above. The RWM forecasts retained moisture and did not "rain out" the moisture. This retention

of moisture would cause the RWM to underforecast rainfall areas and rainfall accumulation, and

overforecast mid- and high-level cloud amount. Relative humidities of more than 75% are

usually common throughout the forecast cycle, especially near deep troughs and lows.

In summary, the AFGWC study indicates the RWM overforecasts mid- and high-level cloud

amounts. One could also infer the model would overforecast low-level clouds based on the

RWM European Window study. More detailed information may be found at the Universal

Resource Locator (URL) for the AFGWC Home Page at http://afwin.offutt.af.mil:443/news.html,

as of 27 February 1997, study dated 5 December 1996.

This concludes the background of the models and algorithms used in this study. The next

chapter discusses the methodology used to perform the validation.
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III. Methodology

3.1 Introduction

This section discusses the steps taken to perform the subjective and objective analysis in this

study.

3.2 Scope

This study validates the RWM 00 UTC and 12 UTC total cloud forecasts (expressed in whole

percentages of total cloud cover between 0% and 100%, in 1% increments) from selected days in

May, June, and July, 1996. The validation days were selected based on the availability of both

the RWM forecasts for the 00 UTC and 12 UTC model forecast runs in 6-hour increments and

the corresponding RTNEPH analyses.

Matching the corresponding forecast and analysis days and hours required careful planning

and programming to ensure the correct days and hours properly matched. For example, the

00 UTC model output of the RWM from any given day had to be matched up to two consecutive

RTNEPH days; however, the corresponding 12 UTC RWM output required three days of

RTNEPH data (Figure 7). If either the RWM or RTNEPH data were not present, or proved

through examination to be corrupt, the data were not used. The RWM 00 UTC forecast required

the 0-, 6-, 12-, and 18-hour analyses of the first day of the RTNEPH (refer to Figure 7). Day two

of the RTNEPH data consisted of the 0-, 6-, and 12-hour analyses, which corresponded to the

24-, 30- and 36-hour forecasts of the RWM. However, the RWM 12 UTC forecast model run

required day one of the RTNEPH's 12- and 18-hour analysis (corresponding to RWM's 0- and

6-hour forecast), day two of the RTNEPH's 0-, 6-, 12-, 18-hour analysis (corresponding to the

12-, 18-, 24-, and 30-hour RWM forecast), and, day three of the RTNEPH's initial (0) hour

(corresponding to the RWM's 36-hour forecast).
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Forecast Hour: 00 06 12 18 24 30 36

RWM OOZ Forecast: I I I I I I

Day: 1 1 1 1 2 2 2

RTNEPH Analysis: I I I I I I I
Analysis Hour: 00 06 12 18 00 06 12

Forecast Hour: 00 06 12 18 24 30 36

RWM 12Z Forecast: I I I I I I I
Day: 1 1 2 2 2 2 3

RTNEPH Analysis: I I I I I I I

Analysis Hour: 12 18 00 06 12 18 00

Figure 7: Correctly matching up continuous analysis for each RWM forecast required
two or three days of data. The top portion of the figure represents the 00 UTC RWM and
the bottom portion of the figure represents the 12 UTC RWM.

3.3 Procedure

This section describes the forecast and analysis products, software, resources, and the

fundamental methods used to validate the RWM total cloud forecasts.

3.3.1 Data

The RWM forecast fields and RTNEPH analysis data were compressed and saved by

AFGWC on 8 mm tapes. If a day, or a series of days, was not properly copied, or had corrupt

data, those days were not used.

3.3.2 Slingo Algorithm

The AFGWC provided the FORTRAN code for their implementation of the Slingo

algorithm (Appendix E). The Slingo algorithm was adapted to the specific configuration of the
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Air Force Institute of Technology's computing environment and FORTRAN compiler. The

algorithm includes the main driver (to forecast clouds from the three-dimensional moisture field

within the RWM) for the Slingo cloud diagnosis method. The main driver includes several

subroutines which are described below.

The first subroutine initializes block data used by the main driver, while the second

subroutine prompts the user for the month, day, and hour of the RWM database. The second

subroutine also allows the user to input critical-RH values to be used for the cloud or no-cloud

decisions for the low, middle, high, and convective cloud types. In the Slingo implementation of

this study, fixed values of the critical parameters were used at AFGWC's request. The next

subroutine opens the database pointer file and reads the pointer file information into an array.

The fourth and fifth subroutines initialize cloud amounts, bases and tops, and retrieve parameters

from the RWM database, respectively. The sixth subroutine extracts a parameter for a given

sigma level and forecast hour from the RWM database. The lapse rate in the lowest five sigma

layers is determined in the next subroutine. If the lapse rate exceeds a specified threshold, a

maximum lapse rate is set and the subroutine returns the maximum lapse rate, its level, and the

RH at the specific level. The eighth subroutine takes the RWM parameters on a regular vertical

(sigma grid) spacing and interpolates to create an expanded sigma data array. The Slingo

subroutine then diagnoses clouds for three layers using the Slingo algorithm (with AFGWC

modifications). Following the Slingo subroutine, the next two subroutines spread the three layers

of clouds to the appropriate layers and calculate the total cloud given the layer cloud amounts,

using the maximum overlap method (refer back to Figure 3). Finally, the last subroutine saves

the results to specified data files for importation into PV-WAVE®. Refer to Appendix F for the

PV-WAVE® code used in this study.
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Before the Slingo cloud output could be performed, RWM forecasts were stored on disk. The

RWM forecast data were stored in one week blocks along with the corresponding RTNEPH data.

Once the Slingo algorithm produced its cloud forecast, the results were evaluated using

PV-WAVE®. The PV-WAVE® program was chosen for two reasons. First, AFGWC had

initiated the development of a prototype program to perform a validation of the fixed RWM

European Window, but the PV-WAVE® program was not yet completed. With the successful

completion of the PV-WAVE® program in this study, AFGWC would then be able to exploit the

completed code for further studies, as appropriate. Secondly, PV-WAVE® is widely used for

analysis of meteorological and environmental data.

The PV-WAVE® program performed the physical breakdown of the RWM and RTNEPH

domains, which included the grid transformation and nearest-neighbor interpolation (described in

Section 3.3.3). Then, PV-WAVE® was programmed to build frequency count arrays for later

statistical analysis, produce animated images for quality control, and output encapsulated

postscript images.
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Figure 8: The untrimmed domain of the 3 x 3 RTNEPH boxes (192 x 192 grid
points) of RTNEPH data for 1 July 1996 at 00 UTC, showing total cloud
(represented from 0% (black) to 100% (white)).

3.3.3 Grid Transformation and Quality Control

The domains of the RTNEPH and the RWM had to be correctly matched and the

RTNEPH data outside of the RWM window (associated with the larger RTNEPH domain

(Figure 8)) had to be discarded. This resulted in a smaller RTNEPH domain consisting of

129 x 129 grid points (Figure 9) which coincided with the size of the RWM window. The RWM

total cloud forecasts consisted of three vertical layers within the horizontal domain of the RWM

(61 x 61 grid points), while the RTNEPH data consisted of four floating layers, all within a much

larger horizontal domain (refer back to Figure 1). To extract RTNEPH data corresponding to the

RWM, RTNEPH data in the area of interest (Figure 5) had to be properly removed from the

intermediate 9-box domain (192 x 192, as seen in Figure 8). The resulting data was then quality

controlled against satellite photos, surface analysis (Appendix G), upper-air charts, and also
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against the RWM forecasts to ensure an appropriate match with date and time. The satellite

comparison was coarse due to the limited availability of archived GOES data. Archived satellite

data (when available) was retrieved for the satellite portion of quality control from the Purdue

Weather Home Page at the URL of http://wxp.atms.purdue.edu/archive.html, as of

27 February 1997. In addition, RWM initial-hour forecasts were qualitatively compared to

satellite imagery and to the corresponding RTNEPH data. This quality control step was also

performed for the RWM total cloud forecasts to ensure the data was read properly. In addition,

every date/time file header within the RWM and RTNEPH was manually checked for accuracy.

Al

Figure 9: The trimmed RTNEPH for same date and time as Figure 8.
Only the corresponding grid points (129 x 129) within the domain of the
RWM are used (refer to Figure 1). Window proportions are different
from Figure 8; now it covers the same region as the RWM domain.

By trimming the extra grid points, only the corresponding RTNEPH points within the domain of

the RWM were used as a comparison against the RTNEPH.
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Next, an interpolation was performed to properly match the RWM and RTNEPH grid points.

The nearest-neighbor interpolation scheme was used, due to the discrete non-continuous nature

of clouds. The higher resolution of the RTNEPH data was interpolated to match the coarser

resolution of the RWM data. The interpolation scheme used in this study associated each RWM

data point with the nearest RTNEPH data point in each RWM grid volume. This method

assumed the RTNEPH data were representative of the entire RWM grid volume at each point.

As a result, the RTNEPH data used for validation is lower resolution than the full RTNEPH grid,

because it is discretized to match the lower resolution RWM data (Figure 10). Using the nearest-

neighbor interpolation scheme avoided the creation of artificial partially cloudy forecast data

points between regions of different cloud cover. This is appropriate because clouds are not

continuous functions of space. The alternative method of interpolating the RWM forecasts to the

RTNEPH analysis, at higher resolution, was determined to be less desirable. This alternative

method would increase the RWM's poorer resolution to match the higher resolution of the

RTNEPH by creating artificial RWM forecast data. For the above reasons, the RTNEPH data

was interpolated to match the coarser resolution of the RWM data.

Additional quality control steps ensured the accuracy of the data analysis process. Images

were animated to ensure the data were synoptically realistic. In this step, the seven (0-, 6-, 12-,

18-, 24-, 30-, 36-hour) successive images were visually checked for physical consistency and

correctness (refer to Figures 12-18). For example, when viewing the images in an animation,

general westerly flow in the mid-latitudes and easterly flow in the low-latitudes can be seen,

along with growth and evolution of synoptically defined cloud patterns. While carefully viewing

each animation using PV-WAVE®, arrays of frequency counts were built. These arrays were

saved as ASCII files and accounted for every value of cloud increment forecasted or observed,
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Figure 10: The RTNEPH data after interpolation with the same data used in Figure 8
and Figure 9. The data is now displayed in the properly arranged 64 x 64 grid points
to match the horizontal resolution of the RWM. RTNEPH data now has the same
resolution as the RWM as described in the text.

from 0% to 100%, in 1% increments. An example of the 101 x 101 array is depicted in Table 1

for viewing purposes only, with the RWM (forecast) data along the left side (rows) of the array

and the RTNEPH (observed) data along the top (columns). Table 1 is binned to 10% increments

only to show the format and general appearance of the data; all statistics in this study were

calculated using the full 101 x 101 array.
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Table 1: An example of the initial RWM forecast array with the initial RTNEPH analysis, after
binning from the original 101 x 101 array, to a 10 x 10 array. The rows are represented by the
RWM values and the columns are represented by the RTNEPH values. Each array is binned
into a 10 x 10 array with each row and column representing 10 data points except the final row
and column which contains eleven values due to the odd size of the original array.

RTNEPH Observed %

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100
R 0-9 1106 99 272 67 63 87 78 239 121 793
W 10-19 17 3 12 2 1 10 1 26 6 84
M 20-29 21 2 13 1 2 2 1 17 2 84

30-39 12 2 11 0 2 4 3 10 4 58
F 40-49 8 1 7 2 3 2 3 12 5 54
C 50-59 7 0 7 0 0 1 2 7 1 34
S 60-69 9 0 2 2 1 3 2 5 1 31
T 70-79 6 0 2 0 1 0 2 4 1 29

80-89 0 0 1 0 0 1 1 6 1 23
% 90-100 4 0 6 0 1 1 1 25 3 52

An additional quality check was performed to ensure every array contained the correct number of

data points (3,721).

Each of these 101 x 101 arrays were saved as frequency counts of the forecasted and observed

occurrence of cloud amounts. In addition to the RWM forecast arrays, a "forecast" of the initial

RTNEPH analysis hour was persisted through the analysis period, and its array was also

calculated for statistical comparison with the forecast (refer to Table 2 for its binned-equivalent

array). The persisted RTNEPH forecast values gave a minimal skill baseline for comparison to

the RWM forecast. The persistence arrays were imaged and animated for quality control and

qualitative analysis (refer to Figures 29-35). After the arrays were built, each array was imported

into Mathcad PLUS 6.0 Professional Edition0 , a product of MathSoft, Inc., and the statistical

calculations were performed to quantify the results.
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Table 2: An example of the initial Persistence "forecast" (rows) against the initial RTNEPH
analysis (columns). A diagonal clearly exist, indicating a perfect correlation between the
forecast and analysis data. Table format is the same as Table 1. This is an example of the
initial (0) hour persistence forecast.

RTNEPH Observed %

P 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100
E
R 0-9 1190 0 0 0 0 0 0 0 0 0
S 10-19 0 107 0 0 0 0 0 0 0 0
I 20-29 0 0 333 0 0 0 0 0 0 0
S 30-39 0 0 0 74 0 0 0 0 0 0
T 40-49 0 0 0 0 74 0 0 0 0 0
E 50-59 0 0 0 0 0 111 0 0 0 0
N 60-69 0 0 0 0 0 0 94 0 0 0
C 70-79 0 0 0 0 0 0 0 351 0 0
E 80-89 0 0 0 0 0 0 0 0 145 0

90-1000 0 0 0 0 0 0 0 0 1242
%

3.3.4 Validation Statistics

Statistics were calculated, using the Mathcad© software mentioned previously, to

quantify Slingo's performance within the RWM. As a reference state, the RWM's performance

was also compared to a persisted RTNEPH initial analysis.

In order to determine the bias of the model, the mean error (ME) was computed using the

following formula:

MA MBJ ARRAYA,B .(A-B)

ME =O -OBO

3721 ' (9)

where A represents the rows and B represents the columns. The terms MA and MB represent the

maximum values of the rows and columns, respectively, and ARRAY represents the 101 x 101

array. The number 3721 represents the number of counts in each 101 x 101 array used for the

calculations.
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A mean error score can reveal problems in a parameterization scheme which creates

consistent errors in one direction. If the trend of the bias is known, a forecaster can account for

that error when forecasting.

Three scalar measures of forecast accuracy were calculated: mean absolute error (MAE),

mean square error (MSE), and root mean square error (RMSE). The three scalar measures of

forecast accuracy were computed using the formulas:

MA MBIY, JARRAYA,B .( A - B)I
MAE- A=OB=0 3721' (10)

MA MB

I EARRAYA,B .(A- B) 2

M SE -- A=OB=O 3721

and

RMSE - r (12)

These are the three best known scalar measures of forecast accuracy (Wilks, 1995) and are used

in other studies including the PL study (Nehrkorn et al., 1994). The scalar measure of RMSE

does not reveal any information about a models bias; however, RMSE does provide an indication

of the typical magnitude of the errors in a forecast. The RMSE does this without the canceling

effects of regional positive and negative errors which would make the mean error misleading.

Another method of determining the model's forecast accuracy is by calculating the hit rate, or

percentage forecast correct (PFC). This value is obtained by calculating the number of

occurrences along the main diagonal and dividing by the total frequency count within the

101 x 101 array (3,721 points).
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The PFC is defined as:

MA

ARRlAY,,.

PFC 3721 (13)
3721

Calculating PFC using only 1% binning which counted forecasts as incorrect which were only

off by 1%, is a very stringent test of a model's performance. However, this PFC value can be

used as a benchmark for other, more precise forecast models during future studies. A significant

number of 0% forecasted and 0% observed (referred to as (0,0)) values matched. This matching

of the (0,0) points made the RWM's PFC unrealistically accurate; Table 1 shows a clearly

defined diagonal is not present. The PFC was calculated with and without the (0,0) data point to

quantify this reliance of PFC on the (0,0) point.

To account for the stringent method of determining the PFC, an alternate method was used to

determine the PFC. This alternate method took the same approach (with and without the (0,0)

array point), but used more forecast and observation bins by widening the diagonal to include the

diagonal and five adjacent diagonals either side of the main diagonal, known as the PFC ± 5.

Increasing the number of bins for calculation of accuracy was done to roughly compare the

quantitative value of the PFC ± 5 with the two arrays and their diagonals which were calculated

for each chosen forecast day and hour.

An additional measure of the model's forecast accuracy is its "sharpness." Sharpness

identifies how often forecasts of extremes (clear or cloudy) are made, rather than forecast of the

average. Sharpness was calculated using an adapted version of the USAF Trapnell (1992) 20/20

score. In this study, the 20/20 score quantifies the percentage of forecasts that are within 20% of

either clear (<20% or from 0-19% inclusive) or cloudy (>80% or from 81-100% inclusive). The

20/20 score can be used to identify whether the forecast model gave forecasts with sharpness

comparable to the analysis.
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As another measure of accuracy, a Brier Score was calculated. Perfect forecasts have a Brier

Score equal to zero, and a forecast with no accuracy has a Brier Score of one. The Brier Score is

essentially the mean-square error of the probability forecasts (Wilks, 1995). The Brier Score

averages the squared differences between pairs of forecast probabilities. From the 101 x 101

array, a probability mass function (a vector of probabilities) and a joint probability matrix is built

for the calculation of this statistic.

In order to determine the linear relationship between the forecasted and observed values, the

Pearson Correlation Coefficient (Devore, 1995) was computed. As an additional check for

correlation, and comparison with the Pearson Correlation Coefficient, the Cramer Statistic was

also computed (Wilks, 1995). The Cramer Statistic values range from zero (no correlation) to

one (perfect correlation). However, to achieve a perfect score of one, the values must be on the

diagonal and equally distributed, along the diagonal. A Cramer Statistic of one will only be

achieved when all of the values (forecasted and observed) on the diagonal are the same.

To determine if any dependence existed between the RWM total cloud forecast and the

RTNEPH analysis data, a Chi-square (X 2 v, referred to as X2) test was used, as described in

Appendix H. Results of the X2 test are also briefly shown in Appendix H.

Two additional skill scores were computed for the RWM forecasts. The first skill score

compared RWM MSE against the MSE of persistence, and the second skill score compared the

Brier Score of the RWM against the Brier Score of persistence. The skill score quantifies the

degree of skill of a set of RWM forecasts, expressed with reference to the RTNEPH analysis and

persistence (Wilks, 1995).

This concludes the methodology of the study. The next chapter shows the images, scatter

plots, box and whisker plots, and descriptive statistics in tabular form for a representative

validation day (1 July 1996). The next chapter also shows the RWM and persistence statistics
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for all cases, and RWM and persistence statistics for all cases and all times (cumulative

statistics).
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IV. Results

4.1 RWM Validation for 1 July 1996

This section discusses the validation of the RWM total cloud forecast for 00 UTC on

1 July 1996.

4.1.1 RWM Images

This section presents the forecast images of the RWM total cloud forecast and the

associated RTNEPH analyses (Figures 11-18). The images are in sequential order of the forecast

(initial (0) hour through 36 hours). RWM performance on this day was representative of other

days examined.

RTNEPH Analysis RWM Forecast

RWM Underforecast RWM Overforecast

Figure 11: The top-right box represents the RWM forecast with the pixel values converted to
bytescales. The magnitude of the individual pixel brightness represents percent of cloud
occurrence. A value of zero is represented by a black pixel with brightness of zero, while a value of
100 is represented by a white pixel with brightness of 255. The top-left box represents the
RTNEPH analysis for the corresponding time as the RWM forecast. The bottom-left box represents
the amount and relative location of RWM total cloud underforecast, and the bottom-right box
represents the amount and relative location of RWM total cloud overforecast. For the bottom two
boxes, the brighter and more numerous the pixels, the more incorrect the forecast.
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The images in this section were developed using PV-WAVE® and allow for an easy

qualitative validation of the RWM. Underforecast is defined as the calculated positive difference

in bytescale between the RTNEPH and RWM (RTNEPH minus RWM), and overforecast is

defined as the negative difference in bytescale between the RTNEPH and RWM. The 0-hour

RWM forecast (Figure 12), shows nearly complete absence of overforecast total clouds. The

lack of clouds in the RWM forecast at 0 hours shows the poor quality of the initial RWM

moisture data. The RWM forecast lacks the summertime convection which is often present and

is seen in the RTNEPH analysis.

Figure 12: As Figure 11, for the initial (0) hour RWM forecast. The bottom-right
box shows nearly complete absence of overforecast total clouds. Lack of clouds in
the upper-right box shows the poor quality of initial RWM moisture data. The
initial RWM field lacks convection, which can be seen in the upper-left box of the
RTNEPH analysis.
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Figure 13 shows a significant increase in RWM total cloud forecast from the initial (0) hour

as the RWM moisture begins to increase.

Figure 13: As Figure 11, for the 6-hour RWM forecast. There is a significant
increase in total clouds from the initial hour as the RWM moisture begins to
increase in the forecast model.
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Figure 14 shows a continued increase in the RWM total cloud forecast at 12 hours. The

RWM is predominately underforecasting total clouds. Small organized bands of clouds now

appear overforecasted. The upper-right panel shows the RWM beginning to capture the general

synoptic-scale cloudiness of the RTNEPH (except for the absence of convection).

Figure 14: As Figure 11, for the 12-hour RWM forecast.
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Figure 15 shows the 18-hour forecast of the RWM and the corresponding RTNEPH analysis.

The improved resolution of the RTNEPH is clear in these pictures. The regions of RWM

underforecast nearly match the RTNEPH analysis. The underforecast also shows where much of

the convection is located.

Figure 15: As Figure 11, for the 18-hour RWM forecast. The overforecast areas
continue to increase, while the underforecast areas continue to remain relatively
high.
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Figure 16 shows the 24-hour forecast of the RWM. The underforecast image is, again, nearly

identical to the RTNEPH image. Also, comparable total cloud synoptic patterns can be seen

when comparing the top two images. This was another quality control step implemented during

the study to ensure the data matched correctly.

Figure 16: As Figure 11, for the 24-hour RWM forecast.
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Figure 17 shows the 30-hour forecast of the RWM. Organized areas of the RWM cloudiness

match the RTNEPH analysis. This can also be seen by looking at the underforecast or

overforecast images in the bottom-left and bottom-right boxes.

Figure 17: As Figure 11, for the 30-hour RWM forecast. The same
general synoptic structure can be seen in both RWM and RTNEPH.
Organized areas of the RWM forecast show clearly defined clear and
cloudy areas. Although some areas within the images appear to have no
cloud, a closer look at the data showed there are clouds with low coverage
(very low brightness). For example, a cloud pixel with a 5% coverage
will show up as a faint gray pixel (bytescale of approximately 25), which
is barely visible.
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Figure 18 shows the 36-hour forecast of the RWM. Fairly organized areas of overforecast

clouds (bottom-ight box) are seen. Bands of underforecast or overforecast cloudiness appear

where the phase of the RWM forecast is faster or slower than the RTNEPH.

!W

Figure 18: As Figure 11, for the 36-hour RWM forecast. Regions of
organized underforecast and overforecast total clouds indicate the forecast
is too slow or too fast.
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4.1.2 RWM Total Cloud Forecast Statistics

This section provides statistical results for the RWM 00 UTC total cloud forecast for

1 July 1996. All plots in this section are scatter plots.

Table 3 is a key to interpret the other tables in this chapter. The tables within this section

correspond to scatterplots, and display descriptive statistics for the plotted values.

Table 3: Statistical measures and abbreviations defined for the other tables in this section.
Each table is a quantitative summary of its respective figure.

Name of forecast method, analysis method or statistic used

N Number of forecast and observation periods
MEAN Average (mean) value of respective plot
SD Standard Deviation of respective plot
MINIMUM Minimum value of respective plot
MEDIAN Median value of respective plot
MAXIMUM Maximum value of respective plot
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Figure 19 and Table 4 show the RWM mean error for 1 July 1996.

RWM Total Cloud Mean Error for 1 July 1996 at 00 UTC-12 -------------------------------------------------
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Figure 19: The RWM 00 UTC mean error scatter plot. Mean error value is steadily decreasing
(improving). This indicates a negative bias throughout this forecast with a tendency to improve over
time. Removing the initial (0) hour shows the tendency to slightly improve over time. Notice a big
improvement between the 0- and 6-hour forecasts, with a slower change afterwards. The negative
mean error value indicates the model's tendency to underforecast total clouds through the 36-hour
period. For descriptive statistics, refer to Table 4.

Table 4: Descriptive statistics for Figure 19 for the RWM 00 UTC model forecast for
1 July 1996. The overall mean and median are negative.

RWM Mean Error

N 7
MEAN -25.450
SD 10.338
MINIMUM -45.960
MEDIAN -24.080
MAXIMUM -12.600
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Figure 20 and Table 5 show the RWM RMSE for 1 July 1996.

RWM Total Cloud RMSE for 1 July 1996 at 00 UTC63W -----------------------------------------------------.
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Figure 20: RWM total cloud forecast RMSE for 1 July 1996 at 00 UTC. The trend suggests
slow improvement of the RWM forecast over time; however, the initial (0) hour of the RWM is
so poor the trend of the RMSE values without the initial (0) hour (Figure 21) shows the forecast
RMSE increases with time. For descriptive statistics, refer to Table 5.

Table 5: Descriptive statistics for Figure 20
for RWM 00 UTC 1 July 1996 forecast.

RWM RMSE

N 7
MEAN 54.567
SD 4.8431
MINIMUM 49.230
MEDIAN 52.170
MAXIMUM 62.700
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Figure 21 shows the RWM RMSE for 1 July 1996 without the initial (0) hour.

RWM Total Cloud RMSE for 1 July 1996 at 00 UTC without the initial (1) hour
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Figure 21: RWM total cloud forecast RMSE without the initial (0) hour. Without the initial
hour, the scatter plot clearly shows a decrease in forecast performance through time. Refer to

Table 5 for descriptive statistics.
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Figure 22 and Table 6 show the RWM 0-19 score for 1 July 1996.

RWM Total Cloud 0-19 score for 1 July 1996 at 00 UTC
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Figure 22: RWM total cloud forecast 0-19 score. Black dots depict RWM 0-19% clear
forecast decreasing over time and asterisks depict RTNEPH. The 30-hour RWM forecast
appears to be the closest to the true state of the RTNEPH 0-19 score. This plot, along with the
values in Table 6 below, clearly shows the RWM overforecasts the clear (0-19) condition
through 36 hours. Refer to Table 6 for descriptive statistics.

Table 6: Descriptive statistics for Figure 22. The statistics show the significant
overforecast of clear conditions by the RWM.

0-19 score (clear)

RWM RTNEPH

N 7 7
MEAN 70.857 39.286
SD 7.3582 6.3170
MINIMUM 64.000 31.000
MEDIAN 71.000 41.000
MAXIMUM 86.000 47.000
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Figure 23 and Table 7 show the RWM 81-100 score for 1 July 1996.

RWM Total Cloud 81-100 score for 1 July 1996 at 00 UTC
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Figure 23: RWM 8 1-100 score (cloudy). Black dots show RWM 8 1-100% total cloud forecast,
and asterisks show RTNEPH 8 1-100% total cloud analysis. As with Figure 22, the 30-hour
forecast is the closest forecast to the true state. This plot indicates the RWMv significantly
underforecasts cloudy conditions with respect to the RTNEPH and shows moisture spin-up
through 36 hours relatively steady after the 6-hour forecast. The RTNEPH analysis shows
relatively little change. Refer to Table 7 for descriptive statistics.

Table 7: Descriptive statistics for Figure 23. This table shows the RWM underforecast
cloudy conditions with a mean and median less than half of the RTNEPH.

8 1 -100 score (cloudy)

RWM RTNEPH
N 7 7
MEAN 17.000 37.857
SD 6.1373 4.0999
MINIMUM 4.0000 32.000
MEDIAN 18.000 37.000
,MAXIMUM 23.000 43.000
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Figure 24 and Table 8 show the RWM PFC with and without point (0,0) for 1 July 1996.

RWM Total Cloud PFC for 1 July 1996 at 00 UTC
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Figure 24: RWM PFC with and without point (0,0). Black dots represent the RWM total
cloud forecast with point (0,0), while the asterisks represent the RWM total cloud forecast
without point (0,0). The percentage forecast correct without the (0,0) point is very poor. For
descriptive statistics, refer to Table 8.

Table 8: Descriptive statistics for Figure 24. Without the (0,0) point, the
forecasts are very poor.

RWM PFC with and without point (0,0)

With (0,0) Without (0,0)

N 7 7
MEAN 30.376 5.4257
SD 5.4449 1.9822
MIINIMIM 22.410 1.5600
MEDIAN 30.420 6.2100
,MAXIMUM 37.030 7.3 100
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Figure 25 and Table 9 show the RWM PFC ±5 with and without point (0,0) for 1 July 1996.

RWM Total Cloud PFC +/- 5 for 1 July 1996 at 00 UTC
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Figure 25: As Figure 24, except for PFC ± 5 with and without point (0,0). Without the
point (0,0), the PFC is still poor, with a mean of less than 10% correct. For descriptive
statistics, refer to Table 9.

Table 9: Descriptive statistics for Figure 25. Without the (0,0) point, the

forecast would still have low PFC scores.

RWM PFC ± 5 with and without point (0,0)

With (0,0) Without (0,0)

N 7 7
MEAN 34.380 9.4286
SD 5.6757 2.2179
MINIMUM 25.910 5.0500
MEDIAN 34.480 10.350
MAXIMUM 40.550 11.340
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Figure 26 and Table 10 show the Pearson Correlation Coefficient of the RWM against

RTNEPH for 1 July 1996.

RWM vs RTNEPH Pearson Correlation Coefficient for 1 July 1996 at 00 UTC
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Figure 26: The RWM vs RTNEPH Pearson correlation coefficient for 1 July 1996 at 00 UTC.
For descriptive statistics, refer to Table 10. Almost no correlation exists between the RWM
and the RTNEPH.

Table 10: Descriptive statistics for Figure 26.

RWM vs RTNEPH Pearson Correlation Coefficient

N 7
MEAN 0.0214
SD 0.0478
MINIMUM -0.0400
MEDIAN 0.0000
MAXIMUM 0.1000
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Figure 27 and Table 11 show the skill scores of the RWM MSE with respect to persistence

MSE and the RWM Brier Score with respect to persistence Brier Score for 1 July 1996.

RWM Total Cloud Skill Scores for 1 July 1996 at 00 UTC
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Figure 27: Skill scores of the RWM MSE with respect to persistence MSE and the skill score of
RWM Brier Score with respect to persistence Brier Score. Black dots show RWM skill compared
to persistence. The skill score is mostly negative, with no significant change through time. The
asterisks show the RWM skill score with respect to Brier Score. RWM forecast skill is negative,
indicating overall poor skill scores but skill improving over time. For descriptive statistics, refer to
Table 11.

Table 11: Descriptive statistics for Figure 27. The initial (0) hour is not shown.

RWM Skill Score with respect to:

Persistence Brier

N 6 6
MEAN -0.0283 -0.6600
SD 0.1298 0.1464
MINIMUM -0.2700 -0.8300
MEDIAN -0.0200 -0.6850
MAXIMUM 0.0900 -0.4700
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4.2 Persistence Validation for 1 July 1996.

4.2.1 Persistence Images

This section presents the images of the RTNEPH persistence 00 UTC "forecast"

for 1 July 1996. The images are in sequential order of their "forecast."

RTNEPH Analysis Persisted RTNTEPH
"forecast"

Persistence Underforecast Persistence Overforecast

Figure 28: As Figure 11, except top-right box represents the persisted initial (0)
hour RTNEPH forecast.
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The images in this section were developed using PV-WAVE® and allow for an easy

qualitative assessment of the persistence forecast. Figure 29 shows the complete absence of

underforecast and overforecast total clouds at the initial (0) hour.

Figure 29: As Figure 28, for the initial (0) hour of persistence "forecast."
Underforecast and overforecast, bottom left and bottom right, are empty
because the "forecast" is perfect.
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Figure 30 shows a rapid change from the initial (0) hour. The bottom two images show nearly

evenly distributed forecast errors with no large regions of either under or overforecast total

clouds. This suggests there are not large, organized areas of persisted data.

Figure 30: As Figure 28, this figure represents the 6-hour persistence
"forecast." The qualitative underforecast and overforecast of persistence
images. The two bottom images in this figure show nearly equal amount of
error with the error fairly evenly distributed. There are no large regions of
persisted data in the RTNEPH analysis; if there were, there would be large
black areas.
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Figure 31 depicts fairly even distribution of areas underforecast and overforecast total clouds

for the 12-hour period.

Figure 31: As Figure 28. This figure represents the 12-hour persistence
"forecast."
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Figure 32 shows no large organized areas of persisted data for the 18-hour period.

ri

Figure 32: As Figure 28, for the 18-hour persistence "forecast."
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Figure 33 depicts the 24-hour persistence.

Figure 33: As Figure 28, for the 24-hour persistence "forecast."

63



Figure 34 shows the 30-hour persistence.

Figure 34: As Figure 28, for the 30-hour persistence "forecast."
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Figure 35 shows the 36-hour persistence forecast.

Figure 35: As Figure 28, for the 36-hour persistence "forecast."
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4.2.2 Persistence Statistics

This section provides the statistical calculations and plots for the persistence 00 UTC

"forecasts" for 1 July 1996. All plots in this section are scatter plots and the results are

representative of results for persistence forecast of the other cases studied.

Persistence Total Cloud Mean Error for 1 July 1996 at 00 UTC
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Figure 36: Persistence mean error is perfect at the initial hour, by definition. With the exception of
the 24-hour "forecast," persistence mean error decreases throughout the forecast period, indicating the
"forecast" is becoming poorer. For descriptive statistics, refer to Table 12.

Table 12: Descriptive statistics for Figure 36.

Persistence Mean Error

N 7
MEAN -6.9271

SD 4.8298
MINIMUM -13.480
MEDIAN -8.6700
MAXIMU 0.0000
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Figure 37 shows the persistence RMSE for 1 July 1996.

Persistence Total Cloud RMSE for 1 July 1996 at 00 UTC
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Figure 37: The initial (0) hour has a RMSE of zero, by definition. The RMSE increases
rapidly over time, then remains relatively steady. Based on these results, persistence
accuracy decreases over time. Without the initial (0) hour (Figure 38, next page),
persistence forecasts show a gradual decrease in accuracy over time. For descriptive
statistics, refer to Table 13.

Table 13: Descriptive statistics for Figure 37 and Figure 38.

Persistence RMSE

N 7

MEAN 44.547
SD 20.024
MINIMUM 0.0000
MEDIAN 51.010
,MAXIMUM 57.240
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Figure 38 shows the persistence RMSE for 1 July 1996 without the initial (0) hour.

Persistence Total Cloud RMSE for 1 July 1996 at 00 UTC without the initial (1) hour
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Figure 38: Same as Figure 37, without the initial (0) hour. This scatter plot now clearly shows
a decrease in performance through time. For descriptive statistics, refer back to Table 13.
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Figure 39 shows the persistence 0-19 score for 1 July 1996.

Persistence Total Cloud 0-19 score for 1 July 1996 at 00 UTC
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Figure 39: Persistence 0-19 score asterisks indicate persistence 0-19% cloud forecast remains
the same over time against the RTNEPH (black dots). The best (perfect) score occurs at the
initial (0) hour where they are both the same. The near match of the 24-hour forecast is an
indication of the diurnal tendency in the persistence forecast. The RTNEPH 0-19 score is not
constant, which indicates the lack of persistence in RTNEPH. For descriptive statistics, refer to
Table 14.

Table 14: Descriptive statistics for Figure 39.

0-19 score (clear)

RTNEPH Persistence

N 7 7
MEAN 39.286 31.000
SD 6.3170 0.0000
MINIMUM 31.000 31.000
MEDIAN 41.000 31.000
MAXIMUM 47.000 31.000
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Figure 40 shows the persistence 81-100 score for 1 July 1996.

Persistence 81-100 score for 1 July 1996 at 00 UTC
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Figure 40: As Figure 39, except this figure shows the 81-100 score for persistence. The
persistence 81-100 values, represented by asterisks, remain steady over time against the
RTNEPH analysis. As in Figure 39, the 24-hour persistence for the 81-100% occurrence for
total cloud is also similar. For descriptive statistics, refer to Table 15.

Table 15: Descriptive statistics for Figure 40.

81-100 score (cloudy)

RTNEPH Persistence

N 7 7
MEAN 37.857 43.000
SD 4.0999 0.0000
MINIMUM 32.000 43.000
MEDIAN 37.000 43.000
MAXIMUM 43.000 43.000
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Figure 41 shows the persistence PFC with and without point (0,0) for 1 July 1996.

Persistence PFC for 1 July 1996 at 00 UTC with and without point (0,0)
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Figure 41: Black dots represent the persistence PFC with point (0,0), and the asterisks
represent the persistence PFC without point (0,0). Without the initial (0) hour, the remaining
points change little with time. For descriptive statistics, refer to Table 16.

Table 16: Descriptive statistics for Figure 41 and Figure 42. Even without the (0,0) point,
persistence performs relatively well.

Persistence PFC

With (0.0) Without (0,0)

N 7 7
MEAN 37.290 23.456
SD 27.855 22.815
MINUIUM 23.860 11.800
MEDIAN 26.180 15.610
MAXIMUM 100.00 75.000
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Figure 42 shows the persistence PFC with and without point (0,0) for 1 July 1996.

Persistence PFC for 1 July 1996 at 00 UTC without the initial hour
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Figure 42: As Figure 41, except this figure shows persistence without the initial (0) hour. The
persistence accuracy decreases through the forecast period. The persistence "forecast"
performs consistently better than the RWM. For descriptive statistics, refer back to Table 16.
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Figure 43 shows the persistence PFC ± 5 for 1 July 1996.

Persistence PFC +/- 5 for 1 July 1996 at 00 UTC
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Figure 43: As Figure 41, except persistence PFC ± 5 with point (0,0) is represented by black
dots, the persistence PFC ± 5 without point (0,0) is represented by asterisks. Without the
initial (0) hour, the remaining points are similar. For descriptive statistics, refer to Table 17.

Table 17: Descriptive statistics for Figure 43 and Figure 44.

PFC ± 5 with and without point (0,0)

Persistence with (0,0) Persistence without (0,0)

N 7 7
MEAN 42.313 28.480
SD 25.691 20.635
MINIMUM 29.430 17.740
MEDIAN 32.790 21.100
MAXIMUM 100.00 75.000
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Figure 44 shows the persistence PFC ± 5 with and without point (0,0) for 1 July 1996.

Persistence PFC +1- 5 for 1 July 1996 at 00 UTC with and without point (0,0)
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Figure 44: As Figure 43, except this figure shows persistence PFC ± 5 without the initial (0)

hour. Persistence performs much better than the RWM. The performance does decrease
through time, as would be expected. For descriptive statistics, refer back to Table 17.
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Figure 45 shows the persistence Pearson Correlation Coefficient for 1 July 1996.

Persistence Pearson Correlation against RTNEPH for 1 July 1996 at 00 UTC
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Figure 45: The Pearson Correlation Coefficient for persistence against RTNEPH. The mean
correlation is just larger than zero except for the initial (0) hour. The persistence forecasts and
RTNEPH analyses are poorly correlated. Relatively low correlation at 6 hours suggests many
of the RTNEPH grid points are refreshed within 6 hours over the North American Window.
For descriptive statistics, refer to Table 18.

Table 18: Descriptive statistics for Figure 45.

Persistence vs RTNEPH Pearson Correlation Coefficient

N 7
MEAN 0.1814
SD 0.3693
MINIMUM -0.0500
MEDIAN 0.0300
MAXIMUM 1.0000
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4.3 RWM and Persistence Statistics for All Cases

This section presents cumulative statistics of each forecast hour and displays the results with

box and whisker plots. Each forecast hour is represented by a box and two whiskers. The box

encloses the middle half of the data, with the median represented by the horizontal line near the

middle of each box. The vertical lines at the top and the bottom of the box are called whiskers,

and they indicate the range of "typical" data values. Whiskers always end at the value of an

actual data point and are not longer than 1V2 times the size of the box. Extreme values are

displayed as "*" for possible outliers, and "o" for probable outliers. Possible outliers are values

that are outside the box boundaries by more than 1 / times the size of the box. Probable outliers

are values that are outside the box boundaries by more than 3 times the size of the box.

RWM Mean Error for all cases through time
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Figure 46: This plot shows a negative bias (underforecast of total clouds) through the entire forecast
period. The RWM does show significant improvement over the first 6 hours with gradual
improvement until the 36-hour forecast. A mean error of zero indicates a perfect forecast with respect
to the RTNEPH. For descriptive statistics, refer to Table 19, next page.
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Persistence Mean Error for all cases throuah time
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Figure 47: Persistence has a small negative bias tendency through time. However, the 24-hour
persisted RTNEPH has a median bias of near zero. This can be expected with diurnal
convective cloud changes during the late spring and early summer. For descriptive statistics,
refer to Table 19.

Table 19: Descriptive statistics for Figures 46 and 47.

Mean Error

RWM Persistence

N 147 147
MEAN -23.178 -3.3913
SD 10.876 5.9070
MINIMUM -51.200 -16.440
MEDIAN -21.210 -2.4900
,MAXIMUM -4.1000 14.810
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RWM RMSE for all cases through time
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Figure 48: The RWM RMSE indicates the initial (0) hour is very inaccurate. The RWM total
cloud forecast RMSE value decreases (improves) significantly at the 6-hour forecast, and
oscillates slightly through the forecast period. An RMSE median value of more than 50 for all
periods for the RWM indicates a very inaccurate forecast. For descriptive statistics, refer to
Table 20, next page.
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Persistence RMSE for all cases throuh time
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Figure 49: The persistence initial (0) hour is perfect, by definition. Persistence accuracy then
rapidly decreases at the 6-hour forecast, slowly worsens through time, with a slight
improvement at 24 hours. For descriptive statistics, refer to Table 20.

Table 20: Descriptive statistics for Figures 48 and 49.

RMSE

RWM Persistence

N 147 147
MEAN 55.016 48.184
SD 3.7305 12.097
MINIMUM 48.140 0.0000
MEDIAN 54.350 50.760
MAXIMUM 66.650 58.750
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RWM Pearson Correlation against RTNEPH for all cases through time
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Figure 50: This figure shows the RWM total cloud forecast and the RTNEPH total cloud
analysis is poorly correlated at all forecast times. For descriptive statistics, refer to Table 21,
next page.
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Persistence Pearson Correlation against RTNEPH for all cases through time
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Figure 51: Persistence against RTNEPH shows perfect correlation at the 0 hour. The
correlation then drops to near zero. The remaining persistence hours show a slightly higher
correlation than the RWM (Figure 50). The low correlation at 6 hours suggests the RTNEPH
is not highly persistent in the North American Window and does not bias the persistence
measures of accuracy. For descriptive statistics, refer to Table 21.

Table 21: Descriptive statistics for Figures 50 and 51. This statistic is the RWM

against the RTNEPH and persistence against the RTNEPH.

Pearson Correlation Coefficient against RTNEPH

RWM Persistence

N 147 147
MEAN 0.0191 0.1088
SD 0.0425 0.2250
MINIMUM -0.0800 -0.0600
MEDIAN 0.0200 0.0400
MAXIMUM 0.1400 1.0000
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Figure 52: RWM Cramer Statistic indicates no linear relation between the RWM and
RTNEPH. For descriptive statistics, refer to Table 22.
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Persistence Cramer Statistic for all cases through time0.9 -
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Figure 53: The Cramer Statistic for persistence begins as nearly perfect, then rapidly drops off
at 6 hours. The Cramer Statistic then remains relatively steady through the remainder of the
forecast period. For descriptive statistics, refer to Table 22.

Table 22: Descriptive statistics for Figures 52 and 53.

Cramer Statistic

RWM Persistence

N 147 147
MEAN 0.1209 0.1857
SD 0.0197 0.1596
MINIMUM 0.0600 0.1300
MEDIAN 0.1200 0.1500
MAXIMUM 0.1800 0.8700
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4.4 RWM and Persistence Statistics for All Cases and All Times

This section presents the RWM and persistence statistical analysis composited from the

individual statistics for each case and each forecast.

RWM and Persistence Mean Error for all cases and all times
20 ---------------------------------------------------------

M 0 ------------------------------------------------------
E
A
N

E- 20 ---------------------- ----------------------------

R
R
0 -40
R

-60 -------------------------------------------------------

RWM Persistence

Figure 54: RWM and persistence mean error. This plot clearly shows the RWM has a
negative bias. Refer to Table 23 for descriptive statistics.

Table 23: Descriptive statistics for Figure 54. The RWM clearly underforecasts total clouds
with respect to the RTNEPH analysis data. Persistence has relatively little bias.

Mean Error

RWM Persistence

N 147 147
MEAN -23.178 -3.3913
SD 10.876 5.9070
MINIMUM -51.200 -16.440
MEDIAN -21.210 -2.4900
MAXIMUM -4.1000 14.810
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60- - RWM and Persistence Mean Absolute Error (MAE) for all cases and all times

40--------------- t---------------------------- -------------------
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RWM Persistence

Figure 55: The RWM mean absolute error is greater than that of persistence. Refer to Table 24 for
descriptive statistics.

Table 24: Descriptive statistics for Figure 55 for all cases and all times.

Mean Absolute Error

RWM Persistence

N 147 147
MEAN 39.256 33.990
SD 4.3187 9.0876
MINIMUM 31.540 0.0000
MEDIAN 38.580 35.750
MAXIMUM 53.260 44.040
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RWM and Persistence RMSE for all cases and all times
80 -------------------------------------------------------
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Figure 56: The RWM and persistence RMSE. This is another example of the RWM's total
cloud forecast inaccuracy during the late spring and early summer. Refer to Table 25 for
descriptive statistics.

Table 25: Descriptive statistics for Figure 56.

RMSE

RWM Persistence

N 147 147
MEAN 55.016 48.184
SD 3.7305 12.097
MINIMUM 48.140 0.0000
MEDIAN 54.350 50.760
MAXIMUM 66.650 58.750
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RWM and Persistence Pearson Correlation for all cases and all times
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Figure 57: The RWM Pearson Correlation Coefficient for all cases and all times is lower than
the correlation for persistence. For descriptive statistics, refer to Table 26.

Table 26: Descriptive statistics for Figure 57.

Pearson Correlation Coefficient

RWM Persistence

N 147 147
MEAN 0.0191 0.1088
SD 0.0425 0.2250
MINIMUM -0.0800 -0.0600
MEDIAN 0.0200 0.0400
MAXIMUM 0.1400 1.0000
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RWM and Persistence Cramer Statistic for all cases and all times
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Figure 58: RWM and persistence Cramer Statistic for all cases and all times. The RWM
shows no linear relation to the RTNEPH, while persistence is slightly higher. For descriptive
statistics, refer to Table 27.

Table 27: Descriptive statistics for Figure 58.

Cramer Statistic

RWM Persistence

N 147 147
MEAN 0.1209 0.1857
SD 0.0197 0.1596
MINIMUM 0.0600 0.1300
MEDIAN 0.1200 0.1500
MAXIMUM 0.1800 0.8700
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RWM PFC with and without point (0,0) for all cases and all times

4 0 -- - - - - - - - - - -- - - - - - - - - ----------------------- --------------------
p40 - --
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With (0,0) Without (0,0) +/- 6 With (,0) +/- 5 Without (1,0)

Figure 59: RWM PFC without point (0,0) and including the five diagonals either side of the
main diagonal. This figure indicates poor performance of the RWM in forecasting total clouds
with a heavy reliance on the point (0,0). Only a slight improvement in percentage forecast
correct is seen when including the additional 10 diagonals. This figure shows most of the
RWM's skill comes from forecasting 0% total cloud. For descriptive statistics, refer to
Table 28.

Table 28: Descriptive statistics for Figure 59.

RWM PFC (Percentage Forecast Correct)

With (0.0) Without (0.0) ± 5 with (0,0) ± 5 without (0,0)

N 147 147 147 147
MEAN 28.638 6.6931 34.045 11.664
SD 4.3781 2.9048 4.9598 3.3455
MINIMUM 17.360 0.5900 21.230 4.3800
MEDIAN 28.620 7.2800 34.320 12.360
MAXIMUM 41.520 13.250 45.900 18.600
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Persistence PFC with and without point (0,0) for all cases and all times
100 --------- ---------------------- --- ---- --------------------

00 --------------------------------------------------------------------------------
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Figure 60: As Figure 59, except Figure 60 shows persistence PFC. There is less of a
difference from the persisted "forecast" and RTNEPH when including the point (0,0). This
figure shows less of the persistence "forecast" skill comes from forecasting 0% total cloud.
For descriptive statistics, refer to Table 29.

Table 29: Descriptive statistics for Figure 60.

Persistence PFC (Percentagze Forecast Correct)

With (0.0) Without (0,0) ± 5 with (0,0) ± 5 without (0,0)

N 147 147 147 147
MEAN 31.339 17.580 37.362 23.597
SD 16.743 12.801 15.424 11.523
MINIMVUM 19.860 6.9100 26.070 12.150
MEDIAN 27.7 10 14.650 34. 100 21.420
,MAXIMUM 100.00 74.070 100.00 74.070
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RWM 0-19 and 81-100 score for all cases and all times
100 -------------------------------------------------

80 ------------------------------------------

S 60 . ....- ---
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RWM 0-19 RTNEPH 0-19 RWM 81-100 RTNEPH 81-100

Figure 61: The RWM significantly overforecasts clear conditions (0-19) by approximately 30%
and underforecasts the cloudy conditions (81-100) by approximately 17%. For descriptive
statistics refer to Table 30.

Table 30: Descriptive statistics for Figure 61.

RWM 0-19 and 81-100 score for all cases and times

RWM 0-19 RTNEPH 0-19 RWM 81-100 RTNEPH 81-100

N 147 147 147 147
MEAN 67.796 37.592 20.327 37.605
SD 10.981 5.9677 9.3429 4.4284
MINIMUM 46.000 26.000 2.0000 26.000
MEDIAN 66.000 37.000 22.000 37.000
MAXIMUM 92.000 53.000 41.000 50.000
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RWM Skill Scores with respect to persistence (MSE and Brier Score) for all cases and all times
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Figure 62: Cumulative Skill Score of the RWM. For descriptive statistics, refer to Table 31.

Table 31: Descriptive statistics for Figure 62.

RWM Skill Scores

MSE Brier Score

N 147 147
MEAN -0.1435 -0.6326
SD 0.1863 0.3499
MINIMUM -0.7300 -2.0100
MEDIAN -0.1150 -0.5700
MAXIMUM 0.1900 -0.0700
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Persistence 0-19 and 81-100 scores for all cases and all times
53 ---------------------------------

O*

44 ---------------------------------------------

S
C
0
R

I- -----------

26 - - --------- - -- ----------------
RTNEPH 0-19 Persist 0-19 RTNEPH 81-100 Persist 81-100

Figure 63: Persistence closely resembles the RTNEPH total cloud amount. Persistence and
RTNEPH scores differ by only 3%. For descriptive statistics, refer to Table 32.

Table 32: Descriptive statistics for Figure 63.

Persistence 0-19 and 8 1-100 scores

Persis 0-19 RTNEPH 0-19 Persis 81-100 RTNEPH 81-100

N 147 147 147 147
MEAN 34.476 37.592 40.286 37.605
SD 4.8531 5.9677 4.3808 4.4284
MINIMUM 26.000 26.000 33.000 26.000
MEDIAN 35.000 37.000 40.000 37.000
MAXIMUM 43.000 53.000 48.000 50.000
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V. Conclusions and Recommendations

5.1 Validation Summary

This chapter presents conclusions and recommendations based on the results shown in

Chapter 4.

This study evaluated the bias, accuracy, sharpness, and skill of the RWM total cloud forecasts

for selected days in May, June, and July 1996. The following six considerations must be taken

into account when analyzing the results.

1. The RWM forecasts and RTNEPH analysis data are assumed to be independent data sets.

This is appropriate because of the chi-square test which was performed on the RWM forecast

data and the RTNEPH analysis data. The results of the chi-square test strongly suggest

independence (Appendix H).

2. In order for the RWM to be considered useful to a forecaster, the RWM should be able to

significantly outperform persistence, both qualitatively and quantitatively. Persistence is

used in this study as a minimal skill baseline for comparison with the RWM.

3. No attempt was made to tune the Slingo algorithm. The algorithm was tested as

implemented at AFGWC.

4. The RWM European Window study, performed by AFGWC, suggests the RWM has a

tendency to overforecast clouds, especially in the middle and high levels.

5. The method of maximum overlap used to sum individual cloud layers within the Slingo

algorithm should overforecast total clouds, if the layers are forecast accurately. This method

of overlap is not a very realistic method of summing total cloud cover but is very simple

computationally.
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6. The Slingo algorithm was originally designed for forecasts of the global scale radiation

budget. The Slingo algorithm was not originally intended for accurate, small-scale cloud

forecasting.

With those considerations in mind, the conclusions can now be discussed.

5.2 Conclusions

This section includes the conclusions drawn from the results in Chapter 4.

5.2.1 Bias

The results of this study suggest the RWM total cloud forecasts have a negative bias

(mean error) in all cases and for all forecast times. A negative bias indicates the RWM

consistently underforecasts total cloud amounts, which contradicts the results of the fourth

consideration (previous page). Because of the poor initial RWM moisture fields, cloud forecasts

at the initial stages are very error-prone, making the persistence "forecast" very competitive. The

RWM had 36 hours to spin-up the three-dimensional moisture field and failed in outperforming

persistence. Throughout the entire forecast period, the RWM continued to maintain a negative

bias. The underforecast of the RWM is greatest at the initial (0) hour and improves significantly

for the 6-hour forecast. Finally, for all cases and all forecast times, the RWM exhibited no cases

of positive bias (no overforecasting).

The persistence results show a much lower bias for all cases and forecast times. Although the

overall persistence bias is negative, the magnitude is much less than that of the RWM. In fact,

the persistence bias is nearly an order of magnitude better than that of the RWM. The

persistence underforecasting shows a negative bias through time, but the box and whisker plots

suggest a diurnal tendency. The 24-hour forecast closely resembles the initial (0) hour, as would

be expected with persistence during the summer, with convective clouds.
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5.2.2 Accuracy

The results of the RMSE scores suggest the RWM is very inaccurate at the initial

hour with some improvement at the 6-hour forecast. The 6-hour forecast is relatively the most

accurate of the forecast period, but is absolutely inaccurate.

Persistence RMSE scores were slightly better than the RWM RMSE scores. The persistence

RMSE score was zero at the initial hour, with the RMSE score rapidly increasing over the first

6 hours. The accuracy of persistence continued to decline through the forecast period, with a

slight improvement at the 24-hour forecast, due in part to diurnal persistence in the cloud fields.

Overall, persistence is more accurate than RWM, based on RMSE. This suggests the RWM is

not an accurate forecast of total cloud.

5.2.3 Correlation

The Pearson Correlation Coefficient was calculated for both the RWM and

persistence against the RTNEPH. The mean and median correlation coefficient values of the

RWM were nearly identical. The equivalent values of persistence were 0.11 and 0.04, a slight

improvement over RWM, and indicate a very weak linear relationship with the RTNEPH. The

low correlation of persistence suggests the RTNEPH does have a fairly high refresh rate every

six hours, and suggests the RTNEPH persistence forecasts were not strongly biased by

persistence in the analysis. If a three-hour analysis was performed, the results may indicate a

higher correlation due to the RTNEPH's persisting data on the three-hour interval.

The results of the Cramer Statistic suggest the RWM' s performance was worse than that of

persistence. The Cramer Statistic for the RWM increases over time, while the Cramer Statistic

for persistence decreases over time. The lack of correlation between persistence and RTNEPH

again suggests the persistence scores are not strongly biased in favor of accuracy due to
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persistence within the RTNEPH. If RTNEPH widely persisted due to missing data, the expected

correlation and Cramer Statistic would suggest a higher correlation.

5.2.4 Sharpness

Sharpness is a measure of how often a forecast method produces extreme (clear or

cloudy) forecasts. However, a sharp forecast is not necessarily a skillful forecast. The results of

the 0-19 (clear) and 81-100 (cloudy) scores suggest the RWM overforecasts the clear conditions

and underforecasts the cloudy conditions. The RWM overforecasted the clear conditions for all

cases and forecast times by approximately 30% and underforecasted the cloudy conditions by

approximately 15%. This finding is important for operational forecasters who use the RWM as

their primary guidance in formulating forecasts for operational purposes.

Previous studies show the RTNEPH has tendencies to overanalyze clear and cloudy

conditions (i.e., Hamill et al., 1992). With this in mind, the RWM's performance for clear

conditions (0-19) would be worse, but the RWM's performance for cloudy conditions (8 1-100)

would be better. Also, the maximum overlap method of the Slingo algorithm should have a

tendency to overforecast total clouds. Even with these considerations, the RWM's sharpness was

still poor. A significant reason why the RWM clearly overforecasts the clear conditions and

underforecasts the cloudy conditions is due to the absence of convection within the Slingo

algorithm. No clouds such as cumulus, cumulonimbus, cirrus clouds associated with

cumulonimbus, cirrus from dissipated cumulus clouds, and precipitating and non-precipitating

cumulus will be produced in the forecasts.

Persistence has a much improved sharpness over the RWM, as expected during the late spring

and early summer, when viewing the animated images using PV-WAVE®. The persisted clear

condition "overforecasts" and differs by only 2%. On the other hand, the cloudy condition
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"underforecasts" and differs by only 3%. This is reasonable since the RTNEPH 20/20 score is

relatively constant over 36 hours.

When qualitatively viewing the images of underforecast and overforecast total clouds, areas

of organized cloud cover are present in both the underforecast or overforecast images. This

indicates possible phase errors with the RWM forecast and the RTNEPH analysis. However, the

poor 0-19 and 81-100 scores suggest the poor accuracy of RWM total cloud forecast is not

entirely due to phase errors in the forecast fields, but is also due to amplitude errors and the

missing convection. An otherwise accurate, but out of phase forecast should show better 0-19

and 81-100 scores.

5.2.5 RWM Overall Total Cloud Forecast Skill

The results of the study suggests the RWM is a much poorer performer than

persistence through 36 hours during the late spring and early summer. One measure of skill was

determined using the percentage forecast correct (PFC), or hit rate. The RWM PFC relied

heavily on the forecasted and observed values of 0% total cloud cover (referred to as point (0,0)).

The RWM and persistence results were nearly identical for the forecasts of the PFC and the PFC

+ 5%. However, when PFC and the PFC ± 5% were modified by omitting the (0,0) point, the

RWM skill was half of persistence. The RWM skill was inflated by including the (0,0) point due

to the high frequency of no cloud forecasts, because the RWM severely overforecasts clear

conditions as shown by the 0-19 scores.

Other measures of RWM skill were also measured. The RWM total cloud forecast skill was

calculated using RWM MSE with respect to persistence MSE, and the RWM Brier Score with

respect to persistence Brier Score. Brier Score results suggests the performance of the RWM and

persistence as nearly perfect. This unrealistically high skill score of the RWM is due to the fact

that there are so many matches (ties) of the points (0,0) and (100,100). In both instances, the
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RWM cloud forecasts did not outperform persistence cloud "forecasts," but the RWM Brier

Score did show improvement over the forecast period. The RWM MSE skill score with respect

to persistence MSE indicates a near zero skill and no change with time of the skill over the

forecast period.

In summary, for all cases and forecast times, both skill scores suggest the RWM did not

outperform persistence in forecasting total clouds through 36 hours during the late spring and

early summer.

5.2.6 Summary of Conclusions

The results suggest the RWM showed no areas, subjectively or objectively, in which

its total cloud forecasts for the North American Window during the late spring and early summer

performed better than persistence through the entire 36-hours forecast period. In terms of the

RWM's bias, accuracy, sharpness and skill, the RWM performed poorly with respect to

persistence. The results of this study suggest the RWM, as tested, is not capable of accurately

fulfilling the total cloud forecasting needs of the Air Force during the late spring and early

summer over the North American Window.

However, the results of this study are dependent upon the RWM and the RTNEPH resolved

total cloud cover and the inherent limitations of the simple diagnostic relationships between

atmospheric parameters and total cloud cover resolvable on the scale of the RWM, which has

gross simplifications of the important physical processes. The results are also dependent upon

the accuracy of the RWM forecasts and RTNEPH cloud analysis.

The results of this study suggest the RWM total cloud forecasts are also not useful for the

operational forecaster unless the known characteristic, strengths, and weaknesses of the RWM

total cloud forecasts are understood.
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Despite the poor performance of the RWM, a biased model forecast can provide useful

guidance. If a model's bias is known, a forecaster can correct for this and adjust the forecast

appropriately. In this study, the bias of the RWM could be reduced by simply incorporating the

convective parameterization. Including solar and terrestrial radiation would also improve the

bias. In addition to the bias, poor RMSE scores do not necessarily indicate a useless forecast.

Accurate forecasts with phase or amplitude errors would have a high RMSE, but might provide

useful guidance to a skilled forecaster. Conversely, a useless forecast (for example, a consistent

50% total cloud forecast) may have a lower RMSE than demonstrated by the RWM in this study,

but also may be useless to the customer. High RMSE values suggests the forecasts could be

inaccurate due to phase or amplitude errors (or both). Therefore, the forecasts require skillful

interpolation to be useful, and the user must be careful in applying the output without

modifications.

5.3 Recommendations

The recommendations are centered upon two approaches to solving the suggested

deficiencies. The first approach focuses on short-term recommendations and suggests ways of

meeting the needs of today's operational forecast community. The second approach focuses on

the long-term recommendations and suggests ways of meeting the future needs of the operational

forecast community.

5.3.1 Short-term Recommendations

A similar study should be performed for the late spring and early summer which

incorporates the convective parameterization in the Slingo algorithm and with the RWM using

NOGAPS as the initial fields and boundary conditions. Once the convective parameterization is

included, manually tuning the convective parameterization and the critical RH can be tested. If
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the results show improved performance, then validation of each layer or ceiling vs no-ceiling can

be performed. However, until the total cloud forecasts improve, the more thorough validation of

model forecast of individual cloud layers should not be performed.

Second, other seasons should be tested to determine the RWM cloud forecast skill and

quantify its performance characteristics. The RWM may also be determined to serve as an

interim method until other more accurate models are incorporated into AFGWC. If the RWM is

retained as an interim solution, the 80% critical RH could be replaced, or tweaked, by a set of

relationships which would account for seasonal, land vs sea, or even latitudinal variations. The

critical RH value of 80% is a very crude estimate of the diagnosis of total cloud cover over such

a large geographical region, and modifications to the critical RH should be considered.

Third, studies including the adjustment of the convective parameterization should be

undertaken when convection does not play such a large role in the models output, such as during

the other seasons. This is especially true during the autumn and winter seasons where large-scale

condensation replaces the diabatic heating normally occurring in the subtropics associated with

cumulus convection during the summer months.

Fourth, validation statistics can be computed only for the grid points within the RTNEPH

which prove more timely, using the RTNEPH time flag in the RTNEPH data. In the data

provided, the RTNEPH time flag was not included and could not be used. Including the time

flag would ensure a more fair comparison between the forecast schemes and persistence and the

use of 3-hourly RTNEPH data could be used to validate the 3-hourly RWM total cloud forecast.

Finally, the results should be communicated to the field. Educating the forecasters on the

known characteristics, strengths, and weaknesses of a forecast model is critical in making the

model forecasts useful to operational forecasters. Communicating the results may be the most

simple means of improving the forecast support for today's operational forecasters.
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5.3.2 Long-term Recommendations

The forecast models of the future should have high horizontal and vertical resolutions,

improved planetary boundary layer physics, non-hydrostatic physics, explicit three-dimensional

moisture physics, and improved data assimilation. The more advanced data assimilation

techniques should also be implemented in the model over the next several years and incorporate

all satellite data, including GOES. The extratropical regions have a greater number of gridpoints

with updated cloud amounts due to the higher frequency of polar-orbiting satellites, while the

tropics have less frequent satellite refreshed data. This is a primary reason why GOES data

should be included in the analysis. In addition to the conventional satellite data, multispectral

analysis should also be performed to identify clouds in regions where cloud identification has

demonstrated to be a problem.

In summary, as computers become more powerful, the Air Force should seriously consider

deterministic cloud forecasting in the future. Cloud forecast studies should be performed to

determine at what forecast hour (cross-over point) during the forecast period the deterministic

cloud forecast outperforms the diagnostic cloud forecast. From the cross-over point and beyond,

the deterministic cloud forecast approach should provide a significant improvement over today's

diagnostic cloud forecast approach. Deterministic cloud forecasts should be capable of providing

more accurate, very high spatial resolution long-range cloud forecasts required to support new

DoD requirements in virtually all mission areas.
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Appendices

Appendix A: GSM Discussion.

The GSM was developed by the NMC in 1980, and AFGWC implemented the GSM in 1984.

For this study, the GSM was used as a first-guess model for HIRAS. The first-guess model is an

R30-wave, 12-layer vertical resolution of the GSM. The GSM produces 0-, 6-, and 12-hour

forecasts of winds, temperatures and heights from the surface to 100 mb and moisture from the

surface to 300 mb. In this study, HIRAS used the GSM six-hour forecast as its first guess input.

The GSM data was stored as spectral coefficients on a 2.50 x 2.50 latitude/longitude grid. The

GSM input fields include monthly sea surface temperature climatology, surface roughness, and

terrain.

The primary forecast model of the GSM was an R40-wave, and also included 12-layer vertical

resolution. The forecast model produced forecasts of heights, temperatures, winds, and vertical

velocity from the surface to 100 mb with forecasts out to 96 hours, with three-hour intervals out

to 48 hours.

The GSM strengths include its high dependability and its ability to handle long waves well.

Its original design was for flight-level wind forecasting.

The GSM weaknesses include poor horizontal and vertical resolution. The GSM first guess

model (R30-wave) is only able to resolve 30 waves around the globe. This is an equivalent

longitudinal resolution of 350 km and a latitudinal resolution of 270 kin, true at 35°N. Another

weakness is the GSM's overall inaccuracy. This inaccuracy is due to the lack of physics

parameterizations, the climatological use of sea surface temperatures, and the lack of moisture at

all layers. The GSM also forecasts geopotential heights (a function of temperature) too high

because the GSM temperatures are too warm in the troposphere (Neel et aL, 1993).
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Appendix B: High Resolution Analysis System (HIRAS) Description.

The HIRAS is the primary analysis system which is used in the Advanced Weather Analysis

and Prediction System (AWAPS). The HIRAS database (used as input into the RWM) uses ship

reports, surface observations, buoys reports, aircraft reports, satellite photos, satellite soundings

from the Defense Meteorological Satellite Program (DMSP) Microwave Temperature Sounder

(SSM/T-1) and Radiosonde Observations (RAOB) data. The HIRAS includes an Optimum

Interpolation (01) objective analysis method, and a 30-wave GSM to produce a 6-hour and

12-hour forecast used as a first guess for the RWM (Neel et al., 1993). The 01 method uses a

combination of observations and the first-guess routine. The better the first-guess, the less

weight is given to the individual observations. The HIRAS analyzes five variables: heights,

u and v wind components, temperature and relative humidity. Inherent to all observations, are

errors, and the HIRAS is manually and automatically quality controlled. Manually through

bogusing, and automatically through gross checks and buddy checks. Bogusing is referred to as

having an analyst identify and manually correct, discard, or add meteorological information to

the analysis data. Gross checks are comparisons of adjacent gridpoint data from the first-guess

model output. If the comparison is questionable the buddy check is initiated, where the

observation in question is compared to nearby stations. If the observation is drastically different,

the observation is discarded (Conklin, 1992).
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Appendix C: Sigma (a) Coordinate System Description.

A sigma (Y) coordinate system, or "terrain-following" coordinate system, is a system in which

the ground is always at the same level in the vertical, and is defined as:

P

P0

where P, is the surface pressure, and p is the pressure at the height under consideration.

The seventeen valid RWM a levels include:

00 - Surface

01- 1.000-.965

02- .965- .922

03- .922-.872

04- .872-.816

05- .816-.754

06- .754-.688

07- .688-.618

08- .618-.546

09- .546-.472

10- .472- .397

11 - .397-.323

12- .323- .250

13- .250-.180

14- .180-.114

15- .114-.054

16- .054-.000
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Appendix D: The 12 Mandatory Pressure Levels used by RWM.

The twelve mandatory levels include:

01- 1000 mb

02- 850 mb

03- 700 mb

04- 500 mb

05- 400 mb

06- 300 mb

07- 250 mb

08- 200 mb

09- 150 mb

10- 100 mb

11 - 50 mb

12- 10 mb
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Appendix E: Slingo FORTRAN Cloud Algorithm.

(Purpose: diagnose clouds for three layers of clouds using the Slingo method plus our
modifications.)

(Method: loop down from top of atmosphere and set the cloud amount for each layer using the
Slingo parameterizations. Return the low, mid, high cloud layer, base, top, and amount.)

(Inputs: RHBASE, RHCRIT, CNVAMT, CNVTOP, RHX, LOLAPS, OMEGAX, MISING,
IJMAX, KLXA , KLXM7, KLOW , KMID, CONV , LAPLEV)

(Outputs: CDAMT, CDBAS, CDTOP, CDLEV, CAMT)

(Variables:
CAMT INTERIM LAYER CLOUD AMOUNTS AT EACH POINT
CDAMT LOW, MID, HIGH CLOUD AMOUNTS
CDLEV LOW, MID, HIGH CLOUD LEVELS
CLDAMT FINAL LAYER CLOUD AMOUNTS
CNVAMT CONVECTIVE CLOUD AMOUNT
CNVTOP CONVECTIVD CLOUD TOP
CONV NUMBER OF CLOUD TYPES (4)
FINHI LOGICAL FINISH FLAG FOR HIGH CLOUD SEARCH
HI HIGH CLOUD LAYER NUMBER
IJMAX MAX NUMBER OF GRID POINTS IN HORIZONTAL PLANE
K VERTICAL SIGMA LEVEL INDEX
KLOW SIGMA LEVEL BELOW WHICH LOW CLOUDS OCCUR
KMID SIGMA LEVEL BELOW WHICH MID CLOUDS OCCUR
KLXA TOTAL EXPANDED VERTICAL LEVELS
KLXM7 KLXA MINUS 7
LAPLEV LAPSE RATE AT EACH SIGMA LEVEL
LOLAPS SIGMA LEVEL CONTAINING MOST STABLE LAPSE RATE
LOPM1 FIRST COEFFICIENT IN SLINGO'S EQN 8
LOPM2 SECOND COEFFICIENT IN SLINGO'S EQN 8
LOPRIM INTERIM LOW CLOUD CALCULATION
LOW LOW CLOUD LAYER NUMBER
MID MID CLOUD LAYER NUMBER
MISING MISSING FLAG
OMEGAX OMEGA AT EXPANDED VERTICAL RESOLUTION
RHBASE RH AT BASE OF INVERSION
RHC CRITICAL RELATIVE HUMIDITY
RHCRIT CRITICAL RELATIVE HUMIDITY LEVELS ARRAY
RHMOD FUNCTION - CONVECTION MODIFIED RH
RHX RH AT EXPANDED VERTICAL RESOLUTION)

(Updates: MAR95 INITIAL VERSION ....................... MR KIESS/SYSM
27Feb96 Added comments, changed high cloud convective parameter

to 400mb from 500mb, changed low level cloud with
inversion statement to remove cloud with RH < 60%,
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removed code duplicated in SPDCLD.F ....Capt Cantrell/SYSM)

(Paramete statements)
INTEGER CONV
INTEGER HI
INTEGER IJMAX
INTEGER KLXA
INTEGER LOW'
INTEGER MID
REAL LOPM1
REAL LOPM2

(Set parameter values)
PARAMETER (HI =3)
PARAMETER (MID = 2)
PARAMETER (LOW = 1)
PARAMETER (LOPM1 = -6.67)
PARAMETER (LOPM2 = 0.667)

(Variable declarations)
INTEGER CDLEV (IJMAX,CONV)
INTEGER CNVTOP (IJMAX)
INTEGER I
INTEGER K
INTEGER KLOW
INTEGER KLXM7
INTEGER KMID
INTEGER LAPLEV (UMAX)
LOGICAL FINHI
REAL CAMT (UMAX,KLXA)
REAL CDAMT (IJMAX,CONV)
REAL CLDAMT
REAL CNVAMT (UMAX)
REAL LOLAPS (IJMAX)
REAL LOPRIM
REAL MISING
REAL OMEGAX (IJMAX,KLXA)
REAL RHX (IMAX,KLXA)
REAL RHBASE (IJMAX)
REAL RHC
REAL RHCRIT (HI)
REAL RHMOD

(Statement functions: RHMOD => RH modified by convective cloud amount)
RHMOD (U,K) = RHX(IJ,K) * (1. - (CNVAMT(IJ) / 4.))
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(Loop through the layers starting at the top of the moist layers and set the cloud amounts, the hi,
mid, low determination, and the max cloud amount layer. (restrict cloud production from 980mb
to 215mb))

DO 200 U = 1, IJMAX
FINHI = .FALSE.
DO 100 K = KLXM7,3, -1

(Find the cloud level and calculate the cloud)
IF (K .GT. KMID) THEN
RHC = RHCRIT (HI)

(Set high cloud amount: algorithm differentiates between convective blow off and frontal cirrus.
Check for convection by convective cloud amount greater than 40% and convective top above
400 mb. Since convective cloud parameterization require just one pass, jump to next k index if
already through once.)

IF (FINHI) GO TO 100
IF ((CNVAMT(IJ).GT. 0.4).AND. (CNVTOP(IJ) .GT. 21)) THEN

(Use the convective cloud parameterization to set amount)
CDAMT (U,HI) = 2. * (CNVAMT(U) - 0.3)
CDLEV (U,HI) = CNVTOP(U)
FINHI = .TRUE.
ELSE

(Use the frontal cirrus parameterization)
CLDAMT = AMAXI (((RHX(IJ,K)-RHC)/(1.0-RHC)), 0.0)
CAMT (IJ,K) = CLDAMT * CLDAMT
END IF

(Set the initial amount, level, top, and base)
IF (CAMT(U,K) .GT. CDAMT(U,HI)) THEN
CDAMT(U,HI) CAMT (IJ,K)
CDLEV(IJ,HI) = K
END IF

(Check for middle level cloud, one parameterization used)
ELSE IF (K .GT. KLOW) THEN
RHC = RHCRIT (MID)
CLDAMT = AMAX1(((RHMOD(U,K)-RHC) / (1.0-RHC)), 0.0)
CAMT (IJ,K) = CLDAMT * CLDAMT
IF (CAMT(IJ,K) .GT. CDAMT(UI,MID)) THEN
CDAMT(IJ,MID) = CAMT (U,K)
CDLEV(U,MID) = K
END IF

(Low cloud parameterization uses two forms which are mutually exclusive: the first is associated
with boundary layer clouds and must have an inversion in the lowest layer. If there is not an
inversion, then parameterization associated with fronts and tropical disturbances is used.)
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ELSE
RHC = RHCRIT (LOW)
IF (LOLAPS(J) .NE. MISING) THEN

(If an inversion exists, use boundary layer parameterization calculate an initial low cloud
amount, loprim. then use the relative humidity at the base of the inversion to determine how to
modify loprim.)

LOPRIM = LOPMlI * LOLAPS(U) - LOPM2
IF ((RHBASE(U) .GE. 0.6) .AND.

&(RHBASE(U) .LE. 0.8)) THEN
CAMT(IJ,LAPLEV(JJ)) = LOPRIM*

&(I. - (RUC - RHBASE(IJ)) / (1. - RHC)
ELSE IF (RHBASE(J) .GT. 0.8) THEN
CAMT(IJ,LAPLEV(IJ)) = LOPRIM
ELSE
CAMT(UJ,LAPLEV(UJ)) = 0.0
END IF

(Update the output arrays. Since only one pass is needed and no more layers need to be checked,
jump out of the level loop.)

CDAMT(IJ,LOW) = CAMT (IJ,LAPLEV(IJ))
IF (CDAMT(IJ,LOW) .GT. 0.) THEN
CDLEV(IJ,LOW) = LAPLEV(U)
ELSE
CDLEV(U,LOW) = 0
END IF
GO TO 110
ELSE

(Use the frontal parameterization: check for subsidence, if there, then no low cloud. For rising
air, diagnose cloud using the standard RH diagnosis and then modify by vertical motion.)

IF (OMEGAX(IJ,K) .GE. 0) THEN
CAMT(IJ,K) = 0.0
ELSE
CLDAMT =AMAX1( (RHMOD(IJ,K)-RHC) / (1.0-RHC), 0.0)
LOPRIM = CLDAMT * CLDAMT
IF (OMEGAX(U,K) .GT. -0. 1) THEN
CAMT(IJ,K) = -10.0 * OMEGAX(IJ,K) * LOPRIM
ELSE
CAMT(IJ,K) = LOPRIM
END IF
END IF
IF (CAMT(IJ,K) .GT. CDAMT(IJ,LOW)) THEN
CDAMT(U,LOW) =CAMT (UJ,K)
CDLEV(U,LOW) =K

END IF
END IF
END IF
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100 CONTINUE
110 CONTINUE

(Make sure cloud amounts are between 0.0 and 1.0)
DO 150 K =LOW, HI
CDAMT(U,K) = MAX(CDAMT(U,K), 0.0)
CDAMT(U,K) = MIIN(CDAMT(U,K), 1.0)

150 CONTINUE
200 CONTINUE

RETURN
END



Appendix F: PV-WAVE Code.

PRO nn

NAME: SLINGO VERIFICATION (MAIN DRIVER)

PURPOSE: TO VERIFY RWM (WITH SLINGO DIAGNOSTICS) AGAINST RTNEPH

VARIABLES

BOX NEPH BOX
CLDAMT RWM GRID LOW, MID, HIGH, CONV CLOUD AMOUNTS
CNT(#) TEMPORARY COUNT OF INDEX(#) ELEMENTS
CRTOTL CEILING ARRAY FOR RWM TOTAL CLOUD AMOUNT (1=YES, O=NO)
CRHAMT CEILING ARRAY FOR RWM HIGH CLOUD AMOUNT (l=YES, O=NO)
CRMAMT CEILING ARRAY FOR RWM MIDDLE CLOUD AMOUNT (I=YES, O=NO)
CRLAMT CEILING ARRAY FOR RWM LOW CLOUD AMOUNT (1=YES, O=NO)
CVTOTL CEILING ARRAY FOR VER TOTAL CLOUD AMOUNT (I=YES, O=NO)
CVHAMT CEILING ARRAY FOR VER HIGH CLOUD AMOUNT (l=YES, O=NO)
CVMAMT CEILING ARRAY FOR VER MIDDLE CLOUD AMOUNT (1=YES, O=NO)
CVLAMT CEILING ARRAY FOR VER LOW CLOUD AMOUNT (I=YES, O=NO)
DTOTL DIFFERENCE OF TOTAL ARRAYS (VERIFICATION - FORECAST)
DHAMT DIFFERENCE OF HIGH ARRAYS (VERIFICATION - FORECAST)
DMAMT DIFFERENCE OF MIDDDLE ARRAYS (VERIFICATION - FORECAST)
DLAMT DIFFERENCE OF LOW ARRAYS (VERIFICATION - FORECAST)
FILENAME DATA FILE NAME
H LOOP INDEX
I LOOP INDEX
IEND I-INDEX END
INDEX(#) TEMPORARY ARRAY INDEX
ISRT I-INDEX
JEND J-INDEX END
JSRT J-INDEX START
LAYR(#) LAYER- 1,2,3, or 4 1/8 MESH CLOUD DATA (BIT PACKED)
L(#)AMT LAYER-1,2,3, or 4 1/8 MESH CLOUD AMOUNT (ENCODED %)
L(#)BSE LAYER-1,2,3, or 4 1/8 MESH CLOUD BASE (ENCODED)
L(#)TOP LAYER-1,2,3, or 4 1/8 MESH CLOUD TOP (ENCODED)
L(#)TYP LAYER-1,2,3, or 4 1/8 MESH CLOUD TYPE (ENCODED)
NOE NUMBER OF ELEMENTS ON A LEVEL AT A GIVEN FORECAST HOUR
PGCAFH PERCENT GOOD CLOUD AMOUNT FCST FOR HIGH AMOUNTS
PGCAFL PERCENT GOOD CLOUD AMOUNT FCST FOR LOW AMOUNTS
PGCAFM PERCENT GOOD CLOUD AMOUNT FCST FOR MIDDLE AMOUNTS
PERCENT GOOD CLOUD AMOUNT FORECAST FOR TOTAL AMOUNTS
PYNFFOTL PERCENT YES/NO FORECAST TOTAL CEILING
PYNFHAMT PERCENT YES/NO FORECAST HIGH CEILING
PYNFMAMT PERCENT YES/NO FORECAST MIDDLE CEILING
PYNFLAMT PERCENT YES/NO FORECAST HIGH CEILING
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PNFTOTL PERCENT RWM UNDER FORECAST TOTAL CEILING
PNFHAMT PERCENT RWM UNDER FORECAST HIGH CEILING
PNFMAMT PERCENT RWM UNDER FORECAST MIDDLE CEILING
PNFLAMT PERCENT RWM UNDER FORECAST HIGH CEILING
PYFTOTL PERCENT RWM OVER FORECAST TOTAL CEILING
PYFHAMT PERCENT RWM OVER FORECAST HIGH CEILING
PYFMAMT PERCENT RWM OVER FORECAST MIDDLE CEILING
PYFLAMT PERCENT RWM OVER FORECAST HIGH CEILING
RCAMT RTNEPH GRID CONVECTIVE CLOUD AMOUNT
RHAMT RTNEPH GRID RWM HIGH CLOUD AMOUNTS
RLAMT RTNEPH GRID RWM LOW CLOUD AMOUNTS
RMAMT RTNEPH GRID RWM MID CLOUD AMOUNTS
RMSET RMSE OF TOTAL
RMSEH RMSE OF HIGH LEVEL
RMSEM RMSE OF MIDDLE LEVEL
RMSEL RMSE OF LOW LEVEL
RTOTL RTNEPH GRID RWM TOTAL CLOUD AMOUNTS

; SQT SUM OF SQUARE OF TOTAL DIFFERENCE AMOUNTS
; SQH SUM OF SQUARE OF HIGH DIFFERENCE AMOUNTS
; SQM SUM OF SQUARE OF MIDDLE DIFFERENCE AMOUNTS
; SQL SUM OF SQUARE OF LOW DIFFERENCE AMOUNTS
; STHOUR STRING EQUIVALENT OF INTEGER HOUR

TOTL8 TOTAL 1/8 MESH CLOUD COVERAGE (%)
TOTLB BYTE VERSION OF TOTL8 ARRAY

; TOTCLDUS RWM GRID TOTAL CLOUD AMOUNTS
; S(#)AMT SUPER GRID 1/8 MESH AMOUNT FOR LAYER-1,2,3, or 4 (ENCODED)
; S(#)BSE SUPER GRID 1/8 MESH BASE FOR LAYER-1,2,3, or 4 (ENCODED)
; S(#)TOP SUPER GRID 1/8 MESH TOP FOR LAYER-1,2,3, or 4 (ENCODED)
; S(#)TYP SUPER GRID 1/8 MESH TYPE FOR LAYER-1,2,3, or 4 (ENCODED)

STOTL SUPER GRID TOTAL 1/8 MESH CLOUD COVERAGE (%)
TEMPORARY TEMP ARRAY TO RESIZE RTNEPH VERIFICATION ARRAYS
UNIT1 LOGICAL UNIT NUMBER FOR EXTERNAL FILE
UNIT2 LOGICAL UNIT NUMBER FOR EXTERNAL FILE
VHAMT VERIFICATION HIGH CLOUD AMOUNT
VLAMT VERIFICATION LOW CLOUD AMOUNT
VMAMT VERIFICATION MIDDLE CLOUD AMOUNT

UPDATES

AUG 96 ORIGINAL VERSION .............................. CAPT CANTRELL/SYSM
DEC 96 Changed for the North American region ........ LT HARRIS/AFIT

; BYTARR - returns a byte array
; FLTARR - returns a single-precision floating-point array
; INTARR - returns an integer array
; LONARR - returns a longword integer array
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INFO, /Device

DEVICE, PSEUDOCOLOR=8
DEVICE, TRUECOLOR=24

Transfers images from top to bottom
!ORDER = 1

"box" sets up the 9 RTNEPH grid boxes in order from top left to bottom right
box=[35,36,37,43,44,45,5 1,52,53]

;The layers of the RTNEPH grids follow:
;The LONARR function returns a longword integer vector or array

totl8 =LONARR(64,64)

layri LONARR(64,64)
layr2 =LONARR(64,64)

layr3 LONARR(64,64)
layr4 =LONARR(64,64)

llamt =BYTARR(64,64)

Ilbse =BYTARR(64,64)

Iltop =BYTARR(64,64)

Iltyp =BYTARR(64,64)

l2amnt =BYTARR(64,64)

l2bse BYTARR(64,64)
12top =BYTARR(64,64)

l2typ =BYTARR(64,64)

l3arnt =BYTARR(64,64)

l3bse =BYTARR(64,64)

l3top =BYTARR(64,64)

l3typ BYTARR(64,64)
l4amt =BYTARR(64,64)

l4bse =BYTARR(64,64)

14top =BYTARR(64,64)

l4typ =BYTARR(64,64)

The RTNEPH 3x3 (192x192) grid for 8 time steps 0,3,6,9,12,15,18,21
stotl = BYTARR(64*3,64*3,8)
slamt =BYTARR(64*3,64*3,8)

sibse BYTARR(64*3,64*3,8)
sitop =BYTARR(64*3,64*3,8)

sityp BYTARR(64*3,64*3,8)
s2amt =BYTARR(64*3,64*3,8)

s2bse =BYTARR(64*3,64*3,8)

s2top =BYTARR(64*3,64*3,8)

s2typ =BYTARR(64*3,64*3,8)

s3amt =BYTARR(64*3,64*3,8)

s3bse =BYTARR(64*3,64*3,8)
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s3top = BYTARR(64*3,64*3,8)
s3typ = BYTARR(64*3,64*3,8)
s4amt = BYTARR(64*3,64*3,8)
s4bse = BYTARR(64*3,64*3,8)
s4top = BYTARR(64*3,64*3,8)
s4typ = BYTARR(64*3,64*3,8)

;/- Begin Interactive --------------
day: 1 1 1 1 2 2 2

; If (FORECAST eq 00) then, hour: 00, 06, 12, 18, 00, 06, 12
;or FORECAST (looping) h: 0, 1, 2, 3, 4, 5, 6

; THEN ANALYSIS is: hour: 00, 06, 12, 18, 00, 06, 12
; or ANALYSIS (looping): h: 0, 1, 2, 3, 0, 1, 2

day: 1 1 2 2 2 2 3
;If (FORECAST eq 12) then, hour: 12, 18, 00, 06, 12, 18, 00
;or FORECAST (looping): h: 0, 1, 2, 3, 4, 5, 6

; THEN ANALYSIS is: hour: 12, 18, 00, 06, 12, 18, 00
;or ANALYSIS (looping): h: 0, 1, 0, 1, 2, 3, 0

bgn =0
fin = 6

FCST=0
Read,'Enter the RWM Forecast hour (00 or 12):',FCST

IF (FCST EQ 0) THEN BEGIN
mondal="
Read,'Enter RTNEPH verification numerical month and day (0728):96',mondal
monda2="
Read,'Enter RTNEPH verification numerical month and day (0729):96',monda2

ENDIF ELSE BEGIN
monda3="
Read,'Enter RTNEPH verification numerical month and day (0728):96',monda3
monda4="
Read,'Enter RTNEPH verification numerical month and day (0729):96',monda4
monda5="
Read,'Enter RTNEPH verification numerical month and day (0730):96',monda5

ENDELSE
;/ ------ Begin to account for corrupt data or data which does not match up
; If the analysis data does not contain all values (0-6) continue building
; the arrays but only build the files which exist.
; The analysis data will more than likely be present and not be garbled
; but may not necessarily matchup with the Forecast data.
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;If an hour within a Forecast file or Analysis file is corrupt,
;don't build the file but keep building the other "good" files.

;The case where there's garbled/corrupt data in the Forecast
ONIQERROR, BADOBS
Start=O

;Each place corresponds to a value of h
VALIDOBS=[O,O,O,0,0,O,0]

-\----End Account for data not always matching up perfectly -----------------------

FOR h=bgn,fin DO BEGIN

IF (FCST EQ 0) THEN BEGIN
IF (h LE 3) THEN BEGIN
day=l
hour--6*h

ENDIF ELSE BEGIN
day=2
hour=6*(h-4)

ENDELSE
ENDIF ELSE BEGIN
IF (h LE 1) THEN BEGIN

day=1
hour=12+(h*6)

ENDIF ELSE IF(h LE 5) THEN BEGIN
day=2
hour--6*(h-2)

ENDIF ELSE BEGIN
day=3
hour=0O

ENDELSE
ENDELSE

PRINT,'RWM FCST=',FCST,' Day=',day,' h=',h,' Hour=-',hour

IF (hour LT 10) THEN BEGIN
sthour = '0'+ STRCOMPRESS(STRING(hour),IREMOVE.ALL)

ENDIF ELSE BEGIN
sthour = STRCOMPRESS(STRING(hour),JREMOVE..ALL)

ENDELSE

Do for all 9 boxes
FOR i = 0, 8 DO BEGIN

00 hour forecast:
IF (FCST EQ 0) THEN BEGIN
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]IF (day EQ 1) THEN BEGIN
filename = '-/rtnephdata/rtneph_96'+mondal+'/b' +

STRCOMPRESS(box(i),/REMOVE ALL) + $
' 1+ sthour + 'hr'

ENDIF ELSE BEGIN
filename = '-/rtnephdatalrtneph_96'+monda2+'/b' +

STRCOMPRESS(box(i),/REMOVE ALL) + $
_' I+ sthour + 'hr'

ENDELSE
ENDIF ELSE BEGIN

IF (day EQ 1) THEN BEGIN
filename = '-/rtnephdata/rtneph_96'+monda3+'/b' +

STRCOMPRESS(box(i),/REMO YE ALL) + $
11+ sthour + 'hr'

ENDIF ELSE IF (day EQ 2) THEN BEGIN
filename = '-/rtnephdatalrtneph_96'+monda4+'/b' +

STRCOMPRESS(box(i),IREMOVE..ALL) + $
_'+ sthour + 'hr'

ENDIF ELSE BEGIN
filename = '-/rtnephdatalrtneph_96'+monda5+'Ib' +

STRCOMPRESS(box(i),IREMOVE-ALL) + $
'+ sthour + 'hr'

ENDELSE
ENDELSE

;---------------End Interactive -------------------------- I
,open the RTNEPH file / Get a unique file unit and open the file

OPENR, /Get Lun, uniti, filename
OPENR, unit 1, filename, /Get-Lun

Start=1

;PRINT, 'Reading cloud amounts from RTNEPH data files'
READU, uniti, totl8, layri, layr2, layr3, layr4

;unpack the layer-i1 amount, type, base, and top of the RTNEPH
llamt =BYTE(layrl,O,64,64)

Iltyp BYTE(layrl,1,64,64)
Ilbse =BYTE(layrl,2,64,64)

Iltop =BYTE(layrl,3,64,64)

; unpack the layer-2 amount, type, base, and top of the RTNEPH
l2amt =BYTE(layr2,O,64,64)

12typ =BYTE(layr2,1,64,64)

12bse =BYTE(layr2,2,64,64)

12top =BYTE(layr2,3,64,64)
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unpack the layer-3 amount, type, base, and top of the RTNEPH
l3amt =BYTE(layr3,O,64,64)

l3typ =BYTE(layr3, ,64,64)
l3bse =BYTE(layr3,2,64,64)

l3top =BYTE(layr3,3,64,64)

;unpack the layer-4 amount, type, base, and top of the RTNEPH
l4amt =BYTE(layr4,O,64,64)

l4typ =BYTE(layr4, 1,64,64)
l4bse =BYTE(layr4,2,64,64)

l4top =BYTE(layr4,3,64,64)

;unpack the total amount
totib = BYTE(totl8)

;Get the index range of the super grid for the RTNEPH North American box.
;These are the i and j start and end coordinates of the 3x3 RTNEPH

CASE i OF
0: BEGIN

isrt = 0
iend =63

jsrt = 0
jend= 63
END

1: BEGIN
isrt = 64
iend= 127
jsrt = 0
jend= 63
EN])

2: BEGIN
isrt = 128
iend= 191
jsrt = 0
jend= 63
END

3: BEGIN
isrt = 0
iend =63

jsrt = 64
jend= 127
END

4: BEGIN
isrt = 64
iend= 127
jsrt = 64
jend= 127
END
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5: BEGIN
isrt = 128
iend= 191
jsrt = 64
jend= 127
END

6: BEGIN
isrt = 0
iend =63
jsrt = 128
jend = 191
END

7: BEGIN
isrt = 64
iend = 127
jsrt = 128
jend = 191
END

ELSE: BEGIN
isrt = 128
iend = 191
jsrt = 128
jend = 191
END

ENDCASE

write the data to the supergrids
stotl(isrt:iend, jsrt~jend, h) = totlb(*,*)

set...plot,'ps'
;Save in results subdirectory***********************

device,filenamne= '/workspace/eharris/results/untrimmed.eps',/encapsulated
tv, BYTSCL(stotl(*,*,5))
DEVICE,/Close-file
SETLPLOT,'X

;PRINT, 'stotl array is: ', stotl
slamt(isrt:iend, jsrt.-jend, h) = Ilamt(*,*)
s2amt(isrt:iend, jsrt~jend, h) = l2amt(*,*)
s3amt(isrt:iend, jsrt.-jend, h) = l3amt(*,*)
s4amt(isrt:iend, jsrt~jend, h) = 14amt(*,*)
slbse(isrt:iend, jsrt-jend, h) = Ilbse(*,*)
s2bse(isrt:iend, jsrt-jend, h) = l2bse(*,*)
s3bse(isrt:iend, jsrt~jend, h) = 13bse(*,*)
s4bse(isrt:iend, jsrt~jend, h) = l4bse(*,*)
s ltop(isrt:iend, jsrt.-jend, h) = I ltop(*,*)
s2top(isrt:iend, jsrt~jend, h) = l2top(*,*)
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s3top(isrt:iend, jsrt~jend, h) = 13top(*,*)
s4top(isrt:iend, jsrt.-jend, h) = 14top(*,*)
sltyp(isrt:iend, jsrt.-jend, h) = lltyp(*,*)
s2typ(isrt:iend, jsrt~jend, h) = l2typ(*,*)
s3typ(isrt:iend, jsrt~jend, h) = l3typ(*,*)
s4typ(isrt:iend, jsrt-jend, h) = l4typ(*,*)

GOTO, DONEOBS
BADOBS: PRRT,'Corrupt data in SlingofRWM',h
;Mark the data as "not valid"

VALIDOBS(h)= -1
DONEOBS:

IF (Start EQ 1) THEN BEGIN
FSLUNI=FSTAT(unitl)
IF (FSLUN1.OPEN EQ 1) THEN BEGIN

FREE,_LUN, unit 1
ENDIF

ENDIF

ENDFOR
ENDFOR

Cancels the ONIQERROR, BADOBS "prompt"
ONIOERROR,null

Free all useless arrays
totl8 =0
layrl 0
layr2 =0
layr3 =0
layr4 =0

llamnt 0
Ilbse 0
lltop 0
lltyp=O
l2amt =0
l2bse =0

l2top = 0
l2typ =0
l3amt = 0
l3bse = 0
l3top = 0
13typ = 0
l4amt =0
l4bse =0

l4top =0
l4typ =0
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PROCESS SLINGO OUTPUT CLOUDS

Reinitialize the grids to the North American RWM
Forecast times are: 0, 6, 12, 18, 24, 30, 36

bigsldamt = FLTARR(61,61,4,8)

TOTCLDUS = FLTARR(61,61,8)
cldamt = FLTARR(61,61,4,8)

Open the rwmn total cloud and cloud amount files
change the files to match what the Slingo code puts out

OPENR, uniti, '-/rwmdataITOTCLD_-US', /GET_-LUN
A--------------------------------------

temnpread = 0.0

ONIOERROR, BADFCST
VALIDFCST=[0,0,0,0,0,0,0]

FOR h =bgn, fm DOBEGIN
FOR j = 0,60 DO BEGIN

FOR i = 0,60 DO BEGIN
READU, uniti, tempread

;Rearranges the order of the RWM array to correspond to the RTNEPH
;array with point (0,0) in the upper left comner for both arrays
;Change the array to a new "j-inverted" array:
;From: TOTCLD -US(ij,h) = tempread To:

TOTCLD-..JS(i,60-j,h) = tempread

GOTO,DONEFCST
BADFCST: PRLNT,'Bad Forecast data',h
VALIDFCST(h)=- 1
DONEFCST:

ENDFOR
ENDFOR

ENDFOR

;Encapsulate the RWM Forecast data "TOTCLDUS" after it's correctly inverted
set...plot,'ps'

Save in results subdirectory

device,filename= '/workspace/eharris/results/correctrwm.eps',/encapsulated
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tv, BYTSCL(TOTCLDUS(*,*,5))
DEVICE,/Closefile
SETPLOT,'X'

; Cancels the ONIOERROR, BADFCST "prompt"
ON_IOERROR,null

tempread = 0.0

FOR h = bgn, fm DO BEGIN
FOR k = 0,3 DO BEGIN
FOR j = 0,60 DO BEGIN

FOR i = 0,60 DO BEGIN

This is the RWM 61 x 61 x 4 x 8
bigscldamt(ij,k,h) = tempread

ENDFOR;i
ENDFOR ; j

ENDFOR ; k
ENDFOR ; h

close data files and free LUN's

FREELUN,unitl

cldamt(0:60,0:60,0:3,0:7) = big_cldamt(0:60,0:60,0:3,0:7)

free useless arrays
bigscldamt = 0.0

- Begin Diagnostic code for the RWM ------------
result = BYTSCL(array) where array is the array to be scaled and
converted to byte data type. The result is a copy of array whose

;values have been scaled and converted to bytes.
WINDOW,3, XS=244,YS=244, Xpos=5, Ypos=5, Title='RWM'
WSET,3

abd=bytscl(congrid(TOTCLDUS(*,*,4),6 1*4,61*4))
tv, abd

;/---- Begin Enable mouse to display pixel values ---\
RDPIX, abd

;\---- End Enable mouse to display pixel values --- -/

---- -- End Diagnostic code for the RWM ------------- 4

PRINT, 'Converting floating RTNEPH data to low, mid, and high amounts'
These are the trimmed RTNEPH size values which corresponds to the North
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American supergrid and RWM similar corner points.
Where: rtxsize: 162-34+1=129, rtysize: 174-46+1=129

rtxsize = 129
rtysize = 129

These are the trimmed sizes for North America
Subtract 1 to get the arrays to zero (0) for PVWave

rtxsizeml = rtxsize - 1
rtysizeml = rtysize - 1

PRINT, 'Trimming RTNEPH "supergrid" data to match RWM data and window'
temporary = BYTARR(rtxsize,rtysize,8)

PRINT,'Keeping only the corresponding RTNEPH data which matches the RWM window'
and call it stotl

temporary(O:rtxsizeml ,0:rtysizeml ,O:7) = stotl(34: 162,46:174,0:7)
stoti = temporary
temporary(O:rtxsizeml ,O:rtysizeml ,0:7) = s lamt(34: 162,46:174,0:7)
slIamnt = temporary
temporary(O:rtxsizeml ,0:rtysizeml ,0:7) = s lbse(34: 162,46:174,0:7)
sibse = temporary
temporary(0:rtxsizenl ,0:rtysizeml ,0:7) = s ltop(34: 162,46:174,0:7)
sitop = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s ltyp(34: 162,46:174,0:7)
sityp, = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s2amt(34: 162,46:174,0:7)
s2amnt = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s2bse(34: 162,46:174,0:7)
s2bse = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s2top(34: 162,46:174,0:7)
s2top = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s2typ(34: 162,46:174,0:7)
s2typ = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s3amt(34: 162,46:174,0:7)
s3amt = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s3bse(34: 162,46:174,0:7)
s3bse = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s3top(34: 162,46:174,0:7)
s3top = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s3typ(34: 162,46:174,0:7)
s3typ = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s4amt(34: 162,46:174,0:7)
s4amt = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s4bse(34: 162,46:174,0:7)
s4bse = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s4top(34: 162,46:174,0:7)
s4top = temporary
temporary(0:rtxsizeml ,0:rtysizeml ,0:7) = s4typ(34: 162,46:174,0:7)
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s4typ = temporary

-/-------Begin Diagnostic code - for RTNEPH ---------
congrid says stoti array will be resampled to 244,244 to match the size
and pixel resolution of the RWM 61x61 output.
fInterp - specifies the interpolation method to be used in the resampling
If zero, uses the nearest neighbor method
If you want nearest neighbor, don't put /interp in code (UG- 141)
If nonzero, uses the bilinear interpolation method
RTNEPH to include: 00, 06, 12, 18, 24, 30, 36
;or another way: 0, 1, 2, 3, 0, 1, 2

WIlNDOW,5,XS=244,YS=244, XPos=269, Ypos=5, Title='RTNEPH'
WSET,5

stotltrim=BYTARR(6 1,61,8)

FOR h= bgn, fin DO BEGIN
stotltrim(*,*,h)=congrid(stotl(*,*,h),6 1,61)

ENDFOR

abc=bytscl(congrid(stotltrim(*,*,2),6 1*4,61 *4))

Plot the stotl trimmed image for comparison to the untrimmed image
set-..plot,'ps'
Save in results subdirectory

device,filename= '/workspace/eharris/results/trimmed.eps',/encapsulated, Scale-factor--.667
tv, bytscl(stotl(*,*,5))
DEVICE,/Close-file
SETLPLOT,'X

;tv, bytscl(stotl(*,*,5))
WINDOW,4,XS=244,YS=244, Xpos=5, Ypos=5, Title='RTNEPH & RWM Domains'

Plot the stotl image for comparison to the untrimmed image
set-..plot,'ps'
;Save in results subdirectory***********************

device,filename= '/workspace/eharris/results/stotltrimmed.eps',/encapsulated
tv, bytscl(congrid(stotltrim(*, *,5),6 1*4,61 *4))
DEVICE,/Close-file
SETLPLOT,'X

---------End Diagnostic code - for RTNEPH ---------------

-/-------Begin Plot the domains of RTNEPH and RWM grids----------------

MAP, Projection=7, Range =[150.4, 10.3, -40.6, 70.7], Gridstyle=0, $
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;Gridlines=0, /gridlines, Gridcolor=-'OOO0ffx, INoErase

;WVlNDOW,4,XS=244,YS=244, Xpos=152, Ypos=293, Title='Grid Domains'

,abc=WIlNDOW,4,XS=244,YS=244, Xpos=5, Ypos=5, Title='NEPH & RWM Domains'
,device,filename= 'domain.eps',/encapsulated
,tv, abc
,WINDOW,4,XS=244,YS=244, Xpos=5, Ypos=5, Title='NEPH & RWM Domains'
,DEVICE,/Close-file
,SETPLOT,'X'

,WINDOW,4,XS=244,YS=244, Xpos=5, Ypos=5, Title='RTNEPH & RWM Domains'
,set..plot,'ps'

;Uncomment the line below when you want to save to a postscript file

;map,center--[-95,50] ,zoom--3,Gridlines='O0ffOO'x,Gridstyle=0,Projection=7, $
Gridcolor-'OOOO7fx

;VWTNDOW,7,XS=244,YS=244, Title='Domain2'
;WSET,7
,map,center--[-95,50],zoom=1 ,/gridlines,Gridstyle=l1,Projection=1
;MAP, Projection=7, Range = [- 160.0, -20.0, 120.0, 80.0], $
;Gridlines=3, Gridcolor-='O0ffffx, INoErase

,MAP, Range = [- 108.8, 13.3, -44.6 , 64.7], $
Gridlines=3, Gridcolor--9, INoErase

,Color 'B G R' 0-255, 0-255, 0-255
0-9,a-f = hex digits, using base 16
,i.e., Blue 'ffflOO'x , Red '0000ff x , Green 'OOffOO'x ,
,Medium grey '7f7f7fx , Yellow 'O0ffffx

,The RWAM border with straight lines and no great circle lines plotted
UL and UR

MAPPLOTS, [-144.4, -44.6],[44.2, 64.7], Linestyle=0, $
Psym=0, Thick=2, INoCircle

,LR and UR
MAPPLOTS, f-69.4, -44.6],[19.6, 64.7], Linestyle=0, $

Psym=-0, Thick=2, INoCircle
LR and LL

MAPPLOTS, [-108.8, -69.4 ],[13.3, 19.6], Linestyle=0, $
Psym=-0, Thick=2, INoCircle

,UL and LL
MAP _PLOTS, [-144.4, -108.81,[44.2, 13.3], Linestyle=0, $

Psym=0O, Thick=2, /NoCircle

,Border the RTNEPH window
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UL and UR
MAPPLOTS, [-170.0, 10.O],[35.707, 61.672], Color-'O0ffOO'x, Linestyle=0, $

Psym=O-, Thick=2, INoCircle
,LR and UR

MAPPLOTS, f-61.745, 10.0],[12.285, 61.672], Color-'O0ffOO'x, Linestyle=0, $
Psym=O, Thick=2, fNoCircle

LR and LL
MAPPLOTS, [-61.745, -113.828],[12.285, 4.707], Color='O0ffO'x, Linestyle=0, $

Psym=0O, Thick=2, JNoCircle
UL and LL

MAPPLOTS, [-170.0, -1 13.828],[35.707, 4.707], Color=-'O0ffOO'x, Linestyle=0, $
Psym=-O, Thick=2, INoCircle

------End Plot the domains of RTNEPII and RWM grids------------------I

rtotl = FLTARR(61,61,8)
rcamt = FLTARR(61,61,8)
rhaint = FLTARR(61,61,8)
rmamt = FLTARR(61,61,8)
rlamt = FLTARR(61,61,8)
rtotlt = FLTARR(61,61,8)

rcamtt = FLTARR(61,6 1)
rhamtt = FLTARR(6 1,6 1)
rmamtt =FLTARR(61,6 1)
rlamtt = FLTARR(61,6 1)

totcldt = FLTARR(61,6 1)
cldamt3 = FLTARR(6 1,61)
cldamt2 = FLTARR(61,61)
cldamtl = FLTARR(61,61)
cldamt0 = FLTARR(61,61)

rtotltt= FLTARR(rtxsize,rtysize,h)

FOR h = bgn, fin DO BEGIN
FOR i = 0,60 DO BEGIN

FOR J = 0,60 DO BEGIN
totcldt(i,j)=TOTCLD -.US(ij,h)
cldamt3(i,j)=cldamt(i,j,3,h)
cldamt2(i,j)=cldamt(i,j,2,h)
cldamtl(i,j)=cldamt(ij,l1,h)
cldamt0(i,j)=cldamt(i,j,0,h)

ENDFOR
ENDFOR

;Use congrid to get RWM and RTNEPH to match up the grid sizes
to match up with the icombo
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;NEPH(0:60,0:60,h) = congrid(stotl(*,*,h), 61, 61)

rtotltt(0:60,0:60,h) =congrid(stotl(*,*,h), 61, 61)
rtotlt(0:60,0:60,h) = congrid(TOTCLDUS(*,*,h),6 1,61)

;WSET,3
tv,bytscl(congrid(TOTCLDUS(*,*,0),61 *4,61*4))

rcamtt(0:60,0:60)=congrid(cldamt3(*,*),6 1,61)
rhamtt(0:60,0:60)=congrid(cldamt2(*,*),61 ,61)
rmamtt(O:60,:60)=congrid(cldamtl (*,*),6 1,61)
rlamtt(0:60,0:60)=congrid(cldamto(*,*),6 1,61)

ENDFOR

initialize verification low, mid, and high and total amount arrays
vhamt = BYTARR(rtxsize, rtysize, 8)
vmamt = BYTARR(rtxsize, rtysize, 8)
vlamt = BYTARR(rtxsize, rtysize, 8)
vtotl = BYTARR(rtxsize, rtysize, 8)

;print,'Evaluating 4 layers of supergrid rtneph data to 3 layers of RWM'
print,''1
print, ' This will take a minute..

;for each point in the verification grid
FOR h =bgn, fin DO BEGIN
FOR i = ,rtxsizeml DO BEGIN
FOR j O,rtysizeml DO BEGIN

;evaluate layer 1 super grid rtneph data to low, mid, and high amounts.
IF (slItyp(ij,h) EQ 0 1 OR slItyp(ij,h) EQ 11) THEN BEGIN
vhamt(ij,h) = slamt(ij,h)
vmamt(ij,h) = s Ilamt(ij,h)
vlamt(ij,h) = slamt(ij,h)

ENDIF
IF (sltyp(ij,h) EQ 02 OR sltyp(ij,h) EQ 12 OR $

sltyp(ij,h) EQ 03 OR sltyp(ij,h) EQ 13 OR $
sltyp(ij,h) EQ 04 OR sltyp(ij,h) EQ 14 OR $
sltyp(i,j,h) EQ 06 OR sltyp(ij,h) EQ 16 ) THEN BEGIN

vlamt(ij,h) = slamt(ij,h)
ENDIF
IF (sltyp(ij,h) EQ 05 OR sltyp(ij,h) EQ 15 OR $

sltyp(ij,h) EQ 07 OR sltyp(ij,h) EQ 17 ) THEN BEGIN
vmamt(i,j,h) = s lamt(ij,h)
IF (slbse(ij,h) LT 77) THEN vlamt(ij,h) = slamt(ij,h)

ENDIF
IF (sltyp(ij,h) EQ 08 OR sltyp(ij,h) EQ 18 OR $
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sltyp(i,j,h) EQ 09 OR sltyp(ij,h) EQ 19 OR $
sltyp(ij,h) EQ 10 OR sltyp(ij,h) EQ 20 ) THEN BEGIN

vhamt(i,j,h) =slamt(ij,h)
IF (slbse(ij,h) LT 197) THEN vmamt(ij,h) = slamt(ij,h)
IF (s lbse(ij,h) LT' 77) THEN vlamt(ij,h) = sl1amt(ij,h)

ENDIF

;evaluate layer 2 super grid rtneph data to low, mid, and high amounts.
IF (s2typ(ij,h) EQ 01 OR s2typ(ij,h) EQ 11) THEN BEGIN

vhamt(ij,h) = MAX([s2amt(ij,h),vhamt(ij,h)])
vmamt(ij,h) = MAX([s2amt(ij,h),vmamt(ij,h)])
vlamt(ij,h) = MIAX([s2amt(ij,h),vlamt(ij,h)])

ENDIF
-* IEF (s2typ(ij,h) EQ 02 OR s2typ(ij,b) EQ 12 OR $

s2typ(ij,h) EQ 03 OR s2typ(ij,h) EQ 13 OR $
s2typ(ij,h) EQ 04 OR s2typ(ij,h) EQ 14 OR $
s2typ(ij,h) EQ 06 OR s2typ(ij,h) EQ 16 ) THEN BEGIN

vlamt(ij,h) = IIAX([s2amt(ij,h),vlamt(ij,h)])
ENDIF
IF (s2typ(ij,h) EQ 05 OR s2typ(ij,h) EQ 15 OR $

s2typ(ij,h) EQ 07 OR s2typ(ij,h) EQ 17 ) THEN BEGIN
vmamt(ij,h) = MAX([s2amt(ij,h),vmamt(ij,h)])
]IF (s2bse(ij,h) LT 77) THEN vlamt(ij,h) =$

MAX([s2amt(ij,h),vlamt(ij,h)])
ENDIF
IF (s2typ(ij,h) EQ 08 OR s2typ(ij,h) EQ 18 OR $

s2typ(ij,h) EQ 09 OR s2typ(ij,b) EQ 19 OR $
s2typ(ij,h) EQ 10 OR s2typ(ij,h) EQ 20 ) THEN BEGIN

vhamt(ij,h) = MAXI([s2amt(ij,h),vhamt(ij,h)])
IF (s2bse(ij,h) LT 197) THEN vmamt(ij,h) =$

MAX([s2amt(i,j,h),vmamt(i,j,h)])
ENDIF

;evaluate layer 3 super grid rtneph data to low, mid, and high amounts.
IF (s3typ(ij,h) EQ 01 OR s3typ(ij,h) EQ 11) THEN BEGIN

vhamt(i,j,h) = MAX([s3amt(ij,h),vhamt(ij,h)])
vmamt(i,j,h) = MAX([s3amt(ij,h),vmamt(ij,h)])
vlamt(ij,h) = M4AX([s3amt(ij,h),vlamt(ij,h)])

ENDIF
IF (s3typ(ij,h) EQ 02 OR s3typ(ij,h) EQ 12 OR $

s3typ(ij,h) EQ 03 OR s3typ(ij,h) EQ 13 OR $
s3typ(ij,h) EQ 04 OR s3typ(ij,h) EQ 14 OR $
s3typ(ij,h) EQ 06 OR s3typ(ij,h) EQ 16 ) THEN BEGIN

vlamt(ij,h) = MAX([s3amt(ij,h),vlamt(ij,h)])
ENDIF
IF (s3typ(ij,h) EQ 05 OR s3typ(ij,h) EQ 15 OR $

s3typ(ij,h) EQ 07 OR s3typ(ij,h) EQ 17 ) THEN BEGIN
vmamt(ij,h) = MAX([s3amt(ij,h),vmamt(ij,h)])

128



IF (s3bse(ij,h) LT 77) THEN vlamt(ij,h) $
MAX([s3amt(ij,h),vlamt(ij,h)])

ENDEF
IF (s3typ(ij,h) EQ 08 OR s3typ(ij,h) EQ 18 OR $

s3typ(ij,h) EQ 09 OR s3typ(ij,h) EQ 19 OR $
s3typ(ij,h) EQ 10 OR s3typ(ij,h) EQ 20 ) THEN BEGIN

vhamnt(ij,h) =MAX([s3amt(ij,h),vhamt(ij,h))
IF (s3bse(ij,h) LT 197) THEN vmamt(ij,h) =$

MAX([s3amt(i,j,h),vmamt(i,j,h)])
IF (s3bse(ij,h) LT 77) THEN vlamt(ij,h) =$

MAX([s3amt(i,j,h),vlamt(i,j,h)])
ENDIF

,evaluate layer 4 super grid rtneph data to low, mid, and high amounts.
IF (s4typ(ij,h) EQ 0 1 OR s4typ(ij,h) EQ 11) THEN BEGIN
vhamt(ij,h) = MAX([s4amt(ij,h),vhamt(ij,h)])
vmamt(ij,h) = MAX([s4amt(ij,h),vmamt(ij,h)])
vlamt(ij,h) = MLAX([s4amt(ij,h),vlamt(ij,h)])

ENDIF
IF (s4typ(ij,h) EQ 02 OR s4typ(ij,h) EQ 12 OR $

s4typ(ij,h) EQ 03 OR s4typ(ij,h) EQ 13 OR $
s4typ(ij,h) EQ 04 OR s4typ(ij,h) EQ 14 OR $
s4typ(ij,h) EQ 06 OR s4typ(ij,h) EQ 16 ) THEN BEGIN

vlamt(ij,h) = MIAX([s4amt(ij,h),vlamt(ij,h)])
ENDIF
IF (s4typ(ij,h) EQ 05 OR s4typ(ij,h) EQ 15 OR $

s4typ(ij,h) EQ 07 OR s4typ(ij,h) EQ 17 ) THEN BEGIN
vmamt(i,j,h) = MAX([s4amt(ij,h),vmamt(ij,h)])
IF (s4bse(ij,h) LT 77) THEN vlamt(ij,h) =$

MAX([s4amt(ij,h),vlamt(ij,h)])
ENDIF
IF (s4typ(ij,h) EQ 08 OR s4typ(ij,h) EQ 18 OR $

s4typ(ij,h) EQ 09 OR s4typ(ij,h) EQ 19 OR $
s4typ(ij,h) EQ 10 OR s4typ(ij,h) EQ 20 ) THEN BEGIN

vhamt(ij,h) = MAX([s4amt(ij,h),vhamt(ij,h)])
IF (s4bse(ij,h) LT 197) THEN vmamt(ij,h) =$

MAX([s4amt(ij,h),vmamnt(ij,h)])
IF (s4bse(ij,h) LT 77) THEN vlamt(ij,h) =$

MAX([s4amt(ij,h),vlamt(ij,h)])
ENDIF

ENDFOR ;j
ENDFOR ;
ENDFOR ;h

Find the total cloud amount for verification array
vtotl = ((vhamt + vmamnt + vlamt) < 100)
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Free useless arrays
temporary =0
stoti = 0
slamt 0
slbse=0
sltop=O
sltyp=0
s2amt =0
s2bse =0
s2top =0

s2typ =0
s3amt =0
s3bse =0
s3top =0

s3typ =0
s4amt =0
s4bse =0
s4top =0

s4typ =0

-------- ----- Begin Build contingency table---------------

IF (FCST EQ 0) THEN BEGIN
Forecast = '00-

ENDIF ELSE BEGIN
Forecast =112-

ENDELSE

PRINT, 'Max Neph Table Value = ',max(stotltrim)
PRINT, 'Min Neph Table Value = ',min(stotltrim)

PRINT, 'Max RWM Table Value = ',max(100*TOTCLD...US)
PRIN,q r'Mi RWM Table Value = ',min(100*TOTCLDJJS)

FOR h=bgn,fin DO BEGIN

;Check to see is the value of h is any good?
;The value of 0 represents "true" and -1 represents "false"

IF ((VALIDFCST(h) EQ 0) AND (VALTDOBS(h) EQ 0)) THEN BEGIN

IF (FCST EQ 0) THEN BEGIN
IF (hLE 3)THEN BEGIN
day=1
hour--6*h

ENDIF ELSE BEGIN
day=2
hour--6*(h-4)
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ENDELSE
ENDIF ELSE BEGIN
IF (hLE 1) THEN BEGIN

day=1
hour=-12+(h*6)

ENDIF ELSE IF(h LE 5) THEN BEGIN
day=2
hour=-6*(h-2)

ENDIE ELSE BEGIN
day=3
hour=-O

ENDELSE
ENDELSE

IF (hour LT 10) THEN BEGIN
sthour = '0'+ STRCOMPRESS(STRING(hour),IREMOVE-ALL)

ENDIF ELSE BEGIN
sthour = STRCOMPRESS(STRING(hour),/REMOVE-ALL)

ENDELSE

;00 hour forecast:
IF (FCST EQ 0) THEN BEGIN
IF (day EQ 1) THEN BEGIN

monda = mondal
ENDIF ELSE BEGIN

monda = monda2
ENDELSE

ENDIF ELSE BEGIN
IF (day EQ 1) THEN BEGIN

monda = monda3
ENDIF ELSE IF (day EQ 2) THEN BEGIN
monda = monda4

ENDIF ELSE BEGIN
monda = mondaS

ENDELSE
ENDELSE

IF (h LT 2) THEN BEGIN
FT7 =' -0' + STRCOMPRESS(STRING(6*h),/REMOVE ALL)

ENDIF ELSE BEGIN
FT ='_-'+ STRCOMPRESS(STRING(6*h),/REMOVE ALL)

ENDELSE

To make sure all files are unique, append the forecast hour to the filename
for both days. For example, FT would = 00, 06, 12, 18, 24, 30, 36

filenamne = '/workspace/eharris/results/'+ Forecast + monda + 'table' + sthour +FT + '.prn'
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table=MAKEARRAY(101,101, Type=2, Value=O)

OPENW, 25, filename

;PRINT,'RWM FCST=',FCST,' Day=',day,' h=',h,' Hour=',hour,' FT=',FT

FOR i=0,60 DO BEGIN
FOR j=0,60 DO BEGIN

a=FIX(stotltrim(i,j,h))
b=FIX(100.*TOTCLDUS(i,j,h))

account for values of a < 0 and > 100
IF (a GT 100) THEN BEGIN
a= 100

ENDIF ELSE IF (a LT 0) THEN BEGIN
a=0

ENDIF
; account for values of b < 0 and > 100
IF (b GT 100) THEN BEGIN
b= 100

ENDIF ELSE IF (b LT 0) THEN BEGIN
b=0

ENDIF

Discard the data outside the bounds of 0 to 100
IF (a LTE 100) or (a GTE 0) THEN
BEGIN
table(a,b)=table(a,b)+ 1
ENDIF

table(a,b)=table(a,b)+ 1

ENDFOR
ENDFOR
PRINT, 'Table Value =',max(table)
PRIN=F, 25, FORMAT='(101(i4))',table
CLOSE,25

; END the "h check"
ENDIF

ENDFOR
;\ End building of contingency table -----------
print, ' ... just a few more seconds.'

; I have 8 frames of observed RTNEPH data "converted" (rtotltt, a 61x61x8 array),
; and 8 frames of forecast RWM data (rtotlt, a 61x61x8 array). I'm going to display
; these two images side by side, and then two more under them (each 61x61x8)
; and both being rtotltt(ij,k) minus rtotlt,(ij,k), with one displaying the
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; pixels with a positive result (underforecast), and the other displaying
; the pixels with a negative result (overforecast). I'll combine all 4 images into one
; array for display, and I will call it icombo ..... it has dimension (244,61,7)
; If there is an extra image (i.e., 7 vs 8) the extra image can be a blank image to see clearly the
; beginning of another loop. The eighth image is not necessary but makes the end of the loop
; much more clearer to see.

icombo=BYTARR(122,122,8)

;print, 'MAX=',max (rtotlt)
;print, 'MIN=',min (rtotlt)

RWM=BYTARR(61,61,8)
NEPH=BYTARR(61,61,8)

RWM=BYTSCL(rtotlt)
NEPH=BYTSCL(rtotltt)

FOR kk = bgn, fin DO BEGIN
FOR jj = 0,60,1 DO BEGIN

FOR ii = 0,60,1 DO BEGIN
ll=ii+61
nn=jj+61

bytscl arranges brightness scale to be from 0 - 255
128,128 to 61,61 will have a new array both 61,61
Transforming from coarser to finer resolution would be incorrect
and would be degrading the "pixel replication"
and this would make it "blockier", visually.

;Upper-left box of icombo with RTNEPH Imagery
icombo(ii,jj,kk)=NEPH(ii,jj,kk)

; Upper-right box of icombo with RWM Forecast Imagery
icombo(ll,jj,kk)=RWM(ii,jj,kk)

; Calculate difference in bytescale between upper left and upper right
idiff= FIX(NEPH(iijj,kk))-FIX(RWM(ii,jj,kk))

; If difference is greater than zero, we've underforecasted
if (idiff ge 0) then begin

;Put the difference in lower left box and convert to BYTE
icombo(ii,nn,kk)=BYTE(idiff)

Make sure the same pixel location in overforecast box is black
icombo(ll,nn,kk)=0
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If difference calculated above is less than zero, then it's overforecasted
endif else begin

make sure pixel location in underforecast box is black
icombo(ii,nn,kk)=0O

,and put the difference in that pixel location in overforecast box
icombo(ll,nn,kk)= BYTE(ABS(idiffJ)

endelse
ENDFOR

ENDFOR
ENDFOR

;Write icombo to file for fast display
get-lunjun
OPENW,lun,'icombo.dat'
WR1TEU,lun,ICOMBO

bigicombo=BYTARR( 122*4,122*4,8)

Set the environment for postcript then change to encapsulated to input into WORD
set..plot,'ps'

FOR h = 0,6 DO BEGIN
bigicombo(*,*,h)=congrid(ICOMBO(*,*,h), 122*4,122*4)

IF (h LT 2) THEN BEGIN
FT7 ='_0' + STRCOMPRESS(STRING(6*h),IREMOVE-ALL)

ENDIF ELSE BEGIN
FT ='_'+ STRCOMPRESS(STRING(6*h),IREMOVE-ALL)

ENDELSE

DEVICE,filename='/workspace/eharris/results/' + FT + 'table.eps',/encapsulated
tv, bigicombo(*,*,h)
DEVICE,/Close-file

ENDFOR

;Set the environment back to X to view the movie
SET...PLOT,'X
WINDOW, 2, XS=122*4,YS=122*4, Xpos=5, Ypos=750, $
TITLE=' RTNEPH Analysis / RWM Forecast'

WINDOW, 3, XS=122*4,YS=122*4, Xpos=5, Ypos=470, $
TITLE--' RWM Under Forecast /RWM Over Forecast'

movie, bigicombo, order--1
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;-------- --- Begin Build Persistance contingency table---------------

IF (FCST EQ 0) THEN BEGIN
Forecast = '00-

ENDIF ELSE BEGIN
Forecast ='12'

ENDELSE

FOR h=bgn,fin DO BEGIN

IF ((VALIDFCST(h) EQ 0) AND (VALIDOBS(h) EQ 0)) THEN BEGIN

IF (FCST EQ 0) THEN BEGIN
IF (h LE 3) THEN BEGIN

day=1
hour--6*h

ENDIF ELSE BEGIN
day=2
hour--6*(h-4)

ENDELSE
ENDIF ELSE BEGIN
IF (hLE 1) THEN BEGIN

day=1
hour=-12+(h*6)

ENDIF ELSE IF(h LE 5) THEN BEGIN
day=2
hour=-6*(h-2)

ENDIF ELSE BEGIN
day=3
hour=0O

ENDELSE
ENDELSE

;PRINT,"
;PRINT,'RWM FCST=',FCST,' Day=',day,' b=',h,' Hour=-',hour

IF (hour LT 10) THEN BEGIN
sthour = '0'+ STRCOMPRESS(STRING(hour),IREMOVELALL)

ENDIF ELSE BEGIN
sthour = STRCOMPRESS(STRING(hour),IREMOVE-ALL)

ENDELSE

;00 hour forecast:
IF (FCST EQ 0) THEN BEGIN
IF (day EQ 1) THEN BEGIN

monda = mondal
ENDIF ELSE BEGIN
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monda = monda2
ENDELSE

ENDIF ELSE BEGIN
IF (day EQ 1) THEN BEGIN
monda = monda3

ENDIF ELSE IF (day EQ 2) THEN BEGIN
monda = monda4

ENDIF ELSE BEGIN
monda = monda5

ENDELSE
ENDELSE

IF (h LT 2) THEN BEGIN
FT ='_0' + STRCOMPRESS(STRING(6*h),/REMOVE-ALL)

ENDIF ELSE BEGIN
FT ='_'+ STRCOMPRESS(STRING(6*h),IREMOVE-ALL)

ENDELSE

;PRINT,'RWM FCST=',FCST,' Day=',day,' h=',h,' Hour=',hour,' FT=',FT

filename = '/workspace/eharris/results/-i Forecast + monda + 'perstable' + sthour + FT + '.prn

perstable=MAKEARRAY( 101,101, Type=2, Value=O)
OPENW, 24, filename

FOR i=0,60 DO BEGIN
FOR j=-0,60 DO BEGIN
Fl7=FIX(stotltrim(i,j,O))
OBS=FIX(stotltrim(i,j,h))

account for values of FT < 0 and > 100
IF (FT GT 100) THEN BEGIN

FT = 100
ENDIF ELSE IF (FT LT 0) THEN BEGIN

FT7 = 0
ENDIF
;account for values of OBS < 0 and > 100

IF (OBS GT 100) THEN BEGIN
OBS = 100

ENDIF ELSE IF (OBS LT 0) THEN BEGIN
OBS= 0

ENDIF

perstable(FT,OBS)=perstable(FT,OBS)+ 1
ENDFOR

ENDFOR
PRINT, 'Persis -table Value=',max(perstable)
PRINTIF, 24, format='(101 (i4))',perstable
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CLOSE,24
ENDIF
ENDFOR

;.- End building of Persistance table array ----------

;.- Begin persistance movie ------------------

Magnitude: RMSE is a good score but it's limited.
Qualitatively a forecast may look good and yet have poor RMSE scores.
A visual check can't be replaced by any score.

;Make a movie with the initial RTNEPH analysis persisted and build table
;like the RWM forecast

persicombo=BYTARR(122,122,8)
persNEPH=BYTARR(61,61,8)
persNEPH=BYTSCL(rtotltt)

FOR kk = bgn, fim DO BEGIN
FOR jj = 0,60,1 DO BEGIN
FOR ii = 0,60,1 DO BEGIN

ll=ii+61
nn=jj+61

Upper-left box of icombo with RTNEPH "Analysis" Imagery
persicombo(ii,jj,kk)=persNEPH(ii,jj,kk)

Upper-right box of icombo with Persisted RTNEPH "Forecast" Imagery
persicombo(ll,jj,kk)=NEPH(ii,jj,0)

Calculate difference in bytescale between upper-left and upper-right box
persidiff= FIX(persNEPH(iijj,kk))-FIX(NEPH(iijj,0))

If difference is greater than zero, we've underforecasted
IF (persidiff GE 0) THEN BEGIN

Put the difference in a pixel in lower-left box converted to BYTE
persicombo(ii,nn,kk)=BYTE(persidiff)

Make sure the same pixel location is black in overforecast box
persicombo(ll,nn,kk)=0

If difference calculated above is less than zero, then it's overforecasted
ENDIF ELSE BEGIN

make sure pixel location in underforecast box is black
persicombo(ii,nn,kk)=0
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and put the difference in that pixel location in overforecast box
persicombo(ll,nn,kk)= BYTE(ABS(persidiff))

ENDELSE

ENDFOR
ENDFOR

ENDFOR

get-lun lun
OPENW,lun,'persicombo.dat'
WRITEU,lun,PERSICOMBO

persbigicombo=BYTARR(122*4, 122*4,8)

;Set the environment for poscript then change to encapsulated to input into WORD
set...plot,'ps'

FOR h = 0,7 DO BEGIN
persbigicombo(*,*,h)=congrid(PERSICOMBO(*,*,h), 122*4,122*4)

IF (h LT 2) THEN BEGIN
FT ='_0' + STRCOMPRESS(STRING(6*h),IREMOVE.ALL)

ENDIF ELSE BEGIN
FT ='_'+ STRCOMPRESS(STRING(6*h),/REMOVE-ALL)

ENDELSE

DEVICE,filename='/workspace/eharris/results/' + FT + 'persist.eps',/encapsulated
tv, persbigicomnbo(*,*,h)
DEVICE,/Close-file

ENDFOR

;Set the environment back to X to view the movie
SETLPLOT,'X

WINDOW, 3, XS=1I22*4,YS= 122*4, Xpos=700, Ypos=5, $
TITLE=' RTNEPH Analysis / RTNEPH Persisted'

movie, persbigicomnbo, order--1

END
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Appendix G: Example of Other Quality Control Data Used.
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Figure 65: IR satellite picture for 1 July 1996 at 0015 UTC near domain of study (RWM
window). A satellite photo is different from a bytescale image. With a satellite photo, a
meteorologist can infer low, middle, high and type of cloud. However, a bytescale image only
displays the total cloudiness represented by a brightness value. For example, over Northern
Minnesota and Wisconsin (highlighted), the satellite photo shows what appears to be overcast
low clouds. These low clouds are relatively warm and appear darker than colder, higher clouds.
A bytescale representation of the clouds in the same region would display a bytescale of 100
(a brightness of 255 indicating 100% cloud coverage).
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Appendix H: Chi-Square Test and Results.

. The chi-square (Q2) test is used in this study as a statistical test, based on frequency of

occurrence, applicable to quantitative variables. Among its many uses, the most common are

tests of hypothesized probabilities or probability distributions (goodness-of-fit), statistical

dependence or independence (association), and common population (homogeneity). When

studying only one variable, the interest is how frequently each categorical value of variable

occurs among our set of objects. However, in this study, evaluation is in multivariate form, with

each object measured on two variables. We want to determine whether the variables are related

to one another (dependent) or are independent. During the study, we are only observing a sample

from the population of RWM forecasts. The statistical comparison of the observed and expected

frequencies of variables is referred to as goodness-of-fit test.

In interpreting the results, one must remember that large samples may produce significant

differences that are so small that they have no practical importance. Likewise, if the sample size

is very small, a high degree of relationship may exist between the two variables but the X2 will

not reflect the significance of this relationship. Finally, because )2 is computed on interval data,

the obtained values of )? can only increase by increments of whole values (Devore, 1995 and

Wilks, 1995). The figure on the following page is a scatterplot of the RWM chi-square test

through time for all cases and its descriptive statistics.
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RWM Chi-square test for all cases through time
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Figure 65: RWM chi-square test of association for all cases through time. Values becoming less
positive over time indicates a trend towards dependence of the RWM against the RTNEPH.
However, the values all indicate strong independence of the RWM against the RTNEPH. Refer
to Table 33 for descriptive statistics.

Table 33: Descriptive statistics for Figure 64.

Chi-Square Test of Association

RWM Persistence

MEAN 4448.8 -12175
SD 1715.3 59671
MINIMUM -1592.0 -272764
MEDIAN 4328.0 2018.0
MAXIMUM 8465.0 4159.0
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Appendix I: Hypothesis Testing.

Hypothesis testing is the process of statistically inferring from sample data whether or not to

accept the null hypothesis about the total population from which the data was obtained. The

hypothesis to be tested (null hypothesis) is evaluated on the basis of the evidence contained in

the sample data. The null hypothesis is then either accepted or rejected by a test applied to the

sample data (late spring and early summer data), in this case using the Chi-square test. Rejection

carries the meaning that evidence from the sample shows enough doubt about the null hypothesis

to say with some identified degree of confidence that the hypothesis is false.

The identified degree of confidence is usually translated into a quantity called the level of

significance. This level of significance is defined as the maximum probability of rejecting a true

null hypothesis.

The null hypothesis established for this research project is one of independence. The

alternate hypothesis, the statement accepted if the null hypothesis is rejected, states the

observations under one criteria (RWM forecasts) are dependent on the second criteria (RTHEPH

analysis). Dependence is defined as one criteria (variable) being associated with the numerical

quantity of the second criteria (variable). Therefore, the analysis has two possible outcomes for

any specified level of significance: (1) the null hypothesis is accepted (independence cannot be

disproven) or (2) the null hypothesis is rejected (dependence is accepted).
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