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Abstract

Atmospheric turbulence parameters, such as Fried’s coherence diameter, the outer
scale of turbulence, and the turbulence power law, are related to the wavefront slope
structure function (SSF). The SSF is defined as the second moment of the wavefront slope
difference as a function of both time and position. Knowledge of the SSF allows turbulence
parameters to be estimated. Hartmann wavefront sensor (H-WFS) slope measurements,
composed of both signal and noise, allow the SSF to be estimated by computing a mean
square difference of H-WFS slope measurements. Wavefront slope measurements within a
single temporal frame are correlated as are the wavefront slope measurements in tempo-
rally spaced frames. This correlation is a function of the space-time separation between
measurements, the outer scale, the power law, and the temporal properties of the turbu-

lence.

The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of
the estimator. This thesis develops a theoretical SNR expression for the SSF estimator.
This SNR is a function of H-WFS geometry, the number of temporal frames included in the
estimate, the outer scale, power law, and temporal properties of the turbulence. Spatial
slope correlations are incorporated. Temporal slope correlations are incorporated using
Taylor’s frozen flow hypothesis. Results are presented for various H-WFS configurations

and atmospheric turbulence properties.
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PERFORMANCE ANALYSIS
OF A
HARTMANN WAVEFRONT SENSOR
USED FOR SENSING
ATMOSPHERIC TURBULENCE STATISTICS

1. Introduction

1.1 Background

Images taken from ground-based telescopes suffer degradation induced by atmo-
spheric turbulence. This degradation is widely described in the literature [11]. The
degree of degradation is characterized by the seeing condition and is commonly quan-
tified by Fried’s parameter, ro [11]. With the development of modern adaptive optics
systems [20, 21], understanding real-time seeing conditions may allow increased system

performance.

A seeing monitor is a device for determining seeing conditions and several such
devices are described in the literature [17, 2, 6, 18]. These devices generally image a bright
point source, such as a distant star. As the light travels through the atmosphere, both phase
and amplitude wavefront aberrations are induced. The seeing monitor senses the perturbed
wavefronts to infer turbulence properties. A simple method involves characterizing the
variance of the image motion as seen by a single aperture [18]. A second method involves
measuring the mean-square difference in angle-of-arrival of the light as seen through two
small apertures [4]. This method is commonly referred to as the Dual Image Motion
Monitor (DIMM) and is widely used [3, 2, 6, 17, 12]. Yet another, the generalization of the
DIMM idea, uses a Hartmann wavefront sensor (H-WFS) array to make multiple wavefront

slope measurements [13, 7].

Wavefront slope sensing devices make a sequence of measurements over a period

time. From these slope measurements, atmospheric parameters, such as Fried’s ry, may

1-1



be inferred by relating the estimated slope statistics to a theoretical model for turbu-
lence induced phase. The quality of the estimation must be addressed. The number of
measurements taken, the time between measurements, and the noise induced through the
measurement process are factors that must be considered. A standard measure for esti-
mation quality is the signal-to-noise ratio (SNR) defined as the estimator’s unbiased mean

divided by the estimator’s standard deviation.

This thesis focuses on using a H-WFS array for turbulence sensing. H-WFS mea-
surements allow the slope structure function (SSF) to be estimated. The SSF is related
to a theoretical model for atmospheric turbulence and thus may be used in determining

turbulence parameters. The theoretical SSF estimator SNR is developed and examined.

1.2 Atmospheric Turbulence

We begin by summarizing the properties of atmospheric turbulence. Turbulence-
induced index of refraction fluctuations are most often modeled by the Kolmogorov or von
Karman power spectral density with a 11/3 power law [10, 11]. Stribling [14] generalized
the Kolmogorov power spectral density to an arbitrary power law ranging between 3 and
4. Stribling’s expressions can be modified to obtain an equivalent arbitrary power law
expression for the von Karman power spectrum. Assuming that diffraction effects can be
ignored, the turbulence-induced index-of-refraction fluctuation power spectral density can
be related to the turbulence-induced phase fluctuation power spectral density, ®4(k), for
a plane wave propagating through the atmosphere [22, 1, 15]. The phase power spectral

density is

where

oo ([T 12
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. c I (%) a=2
Po = —(2)(+=0) 72k20(q)T (2—Ta) fOL C2(2)dz ) (1.3)
a(a) = —(@)eb732 L 12) L)

and I' is Euler’s Gamma function, k is the wavenumber for the propagating light, « is the
power law, pg is a generalized coherence diameter analogous to Fried’s rg, C? is the index

of refraction structure constant, and
ko = 1/ Ly, (1.5)

where Lg is the outer scale of turbulence.

Equation (1.1) does not model the temporal evolution of turbulence. Temporal effects
are included using Taylor’s frozen flow hypothesis [11:65]. This hypothesis states during
short time intervals and a single layer of turbulence, phase fluctuations remain fixed except
for a uniform transverse translation at a velocity ¢. Thus, if 7 is a point in space, then the

phase at time to, ¢(7, t2), is related to the phase at time t1 < to, ¢(7,t1), by
gb(f',tg) = gb(f'—l— 17(t2 —tl),tl). (1.6)

Equation (1.6) states that time differences may be represented by spatial shifts.

Equation (1.1) also assumes a single turbulent layer. A common model for layered
turbulence assumes the atmosphere is composed of a finite number of layers [11:66]. The
turbulence in each layer is assumed statistically independent to turbulence in any other
layer. Each layer is described by a po,, defined in Eqn. (1.3), and a layer velocity vector
v;. If there are ) layers, and the power law is assumed equal in all layers, the overall py,,,

is related to the individual py, by [11:72]

Q
Poms =D o (1.7)
1=1
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1.3 Hartman Wavefront Sensor as Turbulence Monitor

A H-WFS is a device which produces wavefront slope measurements spatially sepa-
rated over an arbitrary arrangement of arbitrarily shaped subapertures. Typical arrange-

ments are shown in Fig. 1.1 and include the DIMM as a special case.

A lens over each subaperture focuses the wavefront onto a detector array. The irradi-
ance centroid provides information as to the average wavefront slope over the subaperture.

Figure 1.2 shows a cross section for a representative subaperture.

We can define a slope structure function (SSF) as
- - <, \12
Dy (5,411, t2) = € { [sa(,t1) — (G, £2))} (18)

where € {-- -} is the statistical expectation operator; s; (7, ¢1) is the slope at time ¢; over a
subaperture centered at the point p’and in the direction of the unit vector a; s;(q,t2) is the
slope at time ¢y over a subaperture centered at ¢ and in the direction of the unit vector b.

Expanding Eqn. (1.8), assuming isotropic turbulence and Taylor’s frozen flow hypothesis,

we write

Dy, (B4t ts) = {30, t) + sH(@t2) — 25a(F, 1) s3(d, 1) |

— oD, (0) = 20, (- P+ (t2 — 1)), (L9)

where ¥ is the velocity of a single turbulent layer, and [y is the space-time slope correlation

function defined as

sy (7 =P+ 0(t2 — 1) = & {5a(P, 11)5;(, 12) } - (1.10)

When & and b are in the same direction, the SSF is said to be a self slope structure func-
tion whereas if @ and b are in different directions, the SSF is termed a cross slope structure
function. To simplify the analysis, only self slope structure functions are considered. Ad-

ditionally, our interest is limited to slopes in either of two orthogonal directions. We thus
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(©)

(d)

O
O
O

Figure 1.1  Typical H-WFS subaperture arrangements: (a) dense grid of square subaper-
tures (b) dense grid of circular subapertures (¢) non-dense grid of circular
subapertures (d) two circular subapertures separated by several diameters, a
Dual Image Motion Monitor (DIMM).
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Figure 1.2  Typical H-WFS subaperture element is a lens that images energy onto a
charge-coupled device (CCD) array. The location of the image centroid is
related to the average wavefront gradient over the lens.
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drop the a and b notation and require the slopes within our SSF to be in the same direction

and write

Ls(q7—p+ 9(ta — 1)) = E{s(pst1)s(q,t2)} - (1.11)

The slope structure function of Eqn. (1.8) may be estimated for a particular vector
separation, g = p — ¢, by computing the average mean square difference of H-WF'S slope
measurements for all subapertures separated by g. Assume a particular time realization
of H-WFS slope measurements contains M different slope measurements having the same
vector separation g. Thus, a set of N time realizations contains M N measurements at a
vector separation p. The SSF estimate can be written as

1] M XN
Do) = 557 2 O (5 ta) = i )] (112

m=1n=1
where ﬁs(ﬁ) is the SSF estimate for a vector separation g = G, — P, m is the index to
pairs of subapertures separated by p' = ¢y, — P, and §(Pin, ty) is the slope measurement

taken at time ¢, for a subaperture centered at p,.

Knowledge of the SSF as provided by the SSF estimator allows atmospheric turbu-
lence statistics to be estimated if a theoretical expression for I'y is known. The quality
of this estimation can be quantitatively considered if the SNR for the SSF estimator is
known. This SNR is defined as the estimator’s unbiased mean divided by the estimators’s

standard deviation,

(1.13)

where Ds is the SSF estimator.
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1.4 Problem Description and Scope

The goal of this thesis is to develop and analyze the signal-to-noise ratio (SNR) of the

SSE estimator for an arbitrary H-WFS arrangement when used for sensing atmospheric

turbulence statistics.

1.5

The analysis steps used in this thesis are:

Model atmospheric induced phase fluctuations with the spectral density given in

Eqn. (1.1).
Include temporal effects with the Taylor frozen flow hypothesis.

Derive the theoretical expression for the slope correlation function, I'y, as defined in

Eqn. (1.11).
Develop a theoretical SNR expression for the SSF estimator.
Extend the SNR expression to a multi-layer atmospheric model.

Develop a computer program to evaluate the SNR expression for an arbitrary H-WF'S

arrangement.

Use the computer program to present SNR results for various atmospheric conditions

and H-WFS configurations.

Organization

In Chapter II, a theoretical expression for the wavefront slope correlation function,

I's, is developed based on a Zernike polynomial expansion of the atmospheric induced

phase. With this expression, the theoretical SSF, Eqn. (1.8), is evaluated for various

atmospheric conditions.

In Chapter III, the H-WFS model is discussed and the slope measurement model

is defined. Next, the first and second moments of the SSF estimator, Eqn. (1.12), are

developed and combined to obtain the theoretical SNR expression. Finally, these results

are extended to a multi-layered atmospheric model.
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In Chapter IV, selected numerical results for the SSF estimator SNR expression are

presented and discussed.

Chapter V summarizes the major findings of this research and recommends areas for

further research.
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II. Slope Correlation Function and Slope Structure Function (SSF)

This chapter develops a method to evaluate the theoretical expression for the space-time
SSF defined in Eqn. (1.8) for turbulence induced phase fluctuations modeled with arbitrary
power law and finite outer scale. Taylor’s frozen flow hypothesis allows the temporal
evolution of turbulence to be included. The analysis is based on a Zernike polynomial
expansion of phase and we begin by summarizing this expansion. Next, a covariance
expression between expansion coefficients for two spatially separated circular apertures is
presented. Then, an expression for the space-time slope correlation function, I'y, is derived
and examined. Last, the space-time SSF is evaluated for various values of turbulence power

law and outer scale.

2.1 Zernike Polynomials

The analysis in this thesis is based on a modal decomposition of the wavefront phase
using the Zernike polynomials as defined by Noll [8]. The defining equations and properties

required for our analysis are summarized.

The Zernike polynomials are the set of polynomials defined on a unit circle in polar

coordinates by

Zeven j(r, 0) = n+ IR™(r)v2cos(mb)
Zydd j(r, 0) = n+1R™(r)v/2sin(m0) ; (2.1)
Zi(r,0) = Vn—+1R%(r) m =0

where
(n—m)/2
n (1) = (=1)%(n — 5)! Fn—2s
Ry (r) sgo s![(n+m)/2 — s]'[(n —m)/2 — s] . (2.2)

The value j is a mode ordering number and is a function of n and m. The values n and m

are integers and satisfy

m<n
= (2.3)

n — |m| = even
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These polynomials satisfy the orthogonality relation

o0
[ draow () Z(r.0) 2,1 (r,0) = b1 (2.4)
—00
where
/7 r<1
W(r) = , (2.5)
0 r>1
and
1 j=4
8 = (2.6)

0 otherwise

The Zernike expansion of an arbitrary function, ¢(r,#), over a circular aperture of

arbitrary radius, R, is given by

¢(R,O, 0) = Z aij (pv 9)? (2'7)
J
with
p=r/R, (2.8)
and
0 = % /_oo drdow (%) b (r,6) 2, (%,e) . (2.9)

The first 35 Zernike polynomials are listed in Tab. 2.1.

The development that follows requires the Fourier transform of the Zernike polyno-

mials. If Q;(k,$) is the Fourier transform of Z;(p, 6), then [8]

W(e)Zy(0.0) = [ & Q(k.¢) exp(~2mik - ), (2.10)

where 1 = y/—1, and with

Qeven j(ka¢) = (=1)(n=m)/2im/2 cos(mep)
. — \/ 1Mk _1\(n—m)/2,;m . 211
Qeven ](kv¢) = n+ - (-1) i"/2sin(me) - (2.11)
Qj(k, ¢) = (=12, ifm =0
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DN
Nel

4 (—4r+307r° —607° + 3577) sin(0)

|j‘m‘n‘Zj(r,0)
t]ofJoJu1
2 |1 |1]2rcos(f)
311 ]1]2rsin(9)
410 2[V3(-1+2r?
512 |2 v6r?sin(20)
6 | 2|2 V6r2cos(26)
71 1]3|22 (=27 43 sin(6)
8 | 1]3]22 (—2r+3r3) cos(h)
9 | 3 [3]22+2sin(30)
10| 3 |3]2%r3 cos(30)
110 |4]vV5(1—6r24+67%)
12 2 | 4| V10 (=372 +47%) cos(20)
13 2| 4] V10 (=372 +4r%) sin(20)
14 | 4 | 4| V10r* cos(46)
15| 4 | 4| V107" sin(46)
16 1 ]5][2v3(3r—1273+107°) cos(d)
1715 [2v3(3r—12r3+10r°) sin(9)
18 3 |5 |2v3 (—4r°+57°) cos(30)
19 3 |5 ]2vV3 (—4r+57r°) sin(30)
20 [ 5 | 5] 2v3r° cos(50)
21 [ 5 | 5| 2v3r°sin(50)
22| 0 |6 | V7 (=1+1272 307" +207°)
23| 2|6 V14 (672 —20r* + 1575) sin(20)
24 | 2 |6 | V14 (672 —207* + 1575) cos(20)
25| 4 |6 | V14 (=57 +67°) sin(46)
26 | 4 |6 | V14 (=57 +67°) cos(40)
27 | 6 | 6 | V1475 sin(60)
28 | 6 | 6 | V147 cos(66)
1]7
1]7
317
317
517
517
77

30 4 (—4r+307r° —607° +3577) cos(0)
31 4 (1073 — 3075 +2177) sin(30)

32 4 (107° —307° +217") cos(30)

33 4 (—67° +77r") sin(50)

34 4 (—67°+777) cos(50)

35 47" sin(70)

Table 2.1  The first 35 Zernike polynomials defined as Noll [8] where j is the mode
ordering index, m is the azimuthal frequency, and n is the radial frequency.
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2.2 Zernike Ezpansion Coefficient Spatial Covariance for Turbulence Induced Phase

We now use the Zernike polynomial expansion as summarized in the previous section
to derive an expression quantifying the correlation of phase between two H-WF'S subaper-

tures with arbitrary spatial separation.

Counsider two circular apertures of equal diameter D, with D = 2R, as shown in
Fig. 2.1. One is located with its center at the origin of the xy coordinate system; the other
is centered at the vertex of the vector 4. Let the magnitude of @, u, be measured in units
of diameter, and let 6y be the angle between @ and the = axis. The Zernike expansion of

the atmospheric induced phase over these apertures can be written as

HED) =3 0, Z;(p), (2.12)

j=1

and
o0

YR +2i0) = 3 ay (@) Zy (7). (2.13)
j'=1

The function ¢ is a random process whose spectral density, ®4, is given in Eqn. (1.1).

Using Eqn. (2.9), the expansion coefficients may be written as

w = [ HEHZ(HW (77 (2.14)

and
apli) = [ (R +2) 2 (5)W (747, (2.15)
where W (p) is given by Eqn. (2.5).  The correlation of Eqns. (2.14) and (2.15) is by

definition

e{aai @) = [ i [~ dpe (a8 (R +20)) 20 25 (5W AW ()
(2.16)

where € {---} is the statistical expectation operator.
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'R ﬁ(

Figure 2.1

Zernike coefficient correlation calculation geometry: two circular apertures
of equal radius, R = D/2; one is centered at the origin of the zy plane; the
other is centered at the vertex of the vector @D with respect to the origin of
the zy plane and is centered at the origin of the z'y’ plane; the magnitude of

the vector , |u|, is measured in units of diameter, D; 6 is the angle between
4 and the x axis.
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Takato and Yamaguchi [15] present the solution of Eqn. (2.16) for a 11/3 power law
phase spectral density. Applying Parsevals theorem, the Wiener-Kinchine theorem, the

Fourier shift theorem, and the Fourier scaling theorem, Eqn. (2.16) transforms to

1 00 2 .
g{aja;,(a)}:ﬁ /0 ak | df exp i 272k cos0=00) & (1 / RYQ; (k, 0) Q3 (K, 0),  (2.17)

where Qj(k,0) is the Fourier transform of the Zernike polynomials as given in Eqn. (2.11),

and k is the wavenumber of the propagating light. The integration over 6 is analytically

performed to arrive at a complicated expression given in Eqn. (12) of Ref. [15] .

We modify Takato and Yamaguchi’s results for the arbitrary power law spectral
density given in Eqn. (1.1) and absorb the index-of-refraction structure constant C2(z)
into the convenient py definition given in Eqn. (1.3). The integration over 6 is unchanged
from Takato and Yamaguchi’s result; only the correct scaling factor must be determined.

We find the coefficient correlation is

3 l—r(%) [0+ )0+ D] fi (.00, ko), (219)

£ {aja;,(ﬁ)} =4c <% ?%“)

[\

where
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fjj’ (U'a 007 k()) =

,

\

if m,n’ #0;4,4 are both even:
(1)t =mAtm/2 cos((m 4+ m")00) Lot 1.1 (26, ko)

(1) 2mAm=mD/2 cog((m — 1) 00) Lim— | 1 1 (24, ko)
if m,n' #£0 j " are both odd:

( )(n+n m)/2 COS((m +m )90) m+m/ ,n+1,n' +1(2’U, kO)

+(_1)(n+n ametm—m’l)/2 cos((m —m )HO)I\m—m’\;n+1,n’+1(2ua ko)
if m,n’ # 0;7 even, j' odd:
(—1)(n+nlim+m,)/2 sin((m + m')90)1m+m/7n+1,n/+1(2u, k())

— (= 1) 2mtm=m D2 sin((m — m)00) L | 11 (20, ko)

if m,n’ # 0;7 odd, j' even:
(_1)(n+nlim+m,)/2 sin((m +m') (0o + ) Lot 1,00 +1 (2, ko)

, , L (2.19
—(=1) (0 +2mtim=m /2 Gin ((m — m!) (0 + T et ;1,041 (20, ko) ( )
if m' =0, j even:
(= 1) =m)/23/2 co8(mbo) L ps1,m0-+1 (2u, Ko)
if m =0, j' even:
(1) =m/2 /2 cos(m (8o + 7)) I n-t-1,0041 (20 Ko)
m' =0, j odd:
(—1)(n+nlim)/2\/§Sin(m00)1m7n+1,n/+1 (QU, ko)
if m =0, j odd:
(— 1)+ =2 /G in(m (G + T It 1,mr+1 (20 ko)
ifm=m'=0:
(=12 L 1 g1 (20, ko)
D
ko =m— 2.2
0 7TL07 ( 0)
0o .—1
T pu(a, ) = / z J”(ax)‘]“(x)‘g”(x)dx, (2.21)
o @)
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and ¢ is given by Eqn. (1.2), D is the aperture diameter, Lg is the outer scale size, u and
6o are as shown in Fig. 2.1, and the functions Jy(z), Ju(z), J,(z) are Bessel functions of

the first kind and order &, p, and v respectively !.

Equation (2.18) allows the theoretical correlation of the Zernike expansion coefficients
for any two modes, j and j', to be calculated under very general conditions. The evaluation
of Eqn. (2.18) is central to this thesis. Plots of Eqn. (2.18) for various parameter values
are provided in Appendix A. Appendix B lists tables of Eqn. (2.18) evaluated with zero

vector separation and various parameter values: & {ajajr}.

2.3 Slope Correlation Function and Slope Structure Function Fuvaluation

We now consider how to evaluate the self-slope correlation function, I'y, as defined
in Eqn. (1.11) and the SSF, Dy, as defined in Eqn. (1.8). A common mathematical model

for slope is given by the average gradient of wavefront phase over a subaperture,
sal@ 1) = / A7 W (7 — ) (V(7, 1) - &), (2.22)

where s3(%,t) is the wavefront phase slope at time ¢ in the direction of the unit vector
a and for the subaperture centered at position Z, W (7) limits the integration to within
the subaperture and has unit area, ¢(7,t) is the wavefront phase, V is the vector gradient
operator, and - is the vector dot product [13]. If W (7) is taken as a circular weighting
function, the average phase gradient, s(Z,t), over the aperture centered at ¥ and in a
particular direction is often approximated as a linear combination of the second and third
modes of the Zernike decomposition for the phase [4]. This assumption is made to simplify

the mathematical analysis.

Noll [8] shows that the derivatives of the Zernike polynomials can always be stated
as a linear combination of Zernike polynomials. Using this fact, Primot et. al. [9] develop

an expression for Eqn. (2.22) as a function of Zernike polynomial. Our approach starts

!Evaluating Eqn. (2.21) is computational expensive and ultimately limits which problems can realisti-
cally be solved. Reference [15] presents a closed form solution for Eqn. (2.21), where @ > 2, consisting of
infinite sums of hypergeometric functions of type 4F3. They also state it is easier to numerically integrate
Eqn. (2.21) than to use the closed form. This author has explored both approaches and agrees.
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with Brummelaar’s [16] expression for the average gradient of Z;(p, ) over the aperture

W(p),

[amwip e _ ¢ Bl mEL (2.23)
0, m#1

where X is an axis at an angle € to the x axis such that
X =pcos(0 —e). (2.24)

We begin by writing each wavefront slope as an average wavefront gradient over a sub-
aperture as given by Eqn. (2.22). Thus, the self slope correlation function can be written

in polar coordinates on the unit circle as,

Ly(Zy — 1) = E{s(Z1)s(72)}
(om0 ( a0 5300

where X and X' are as defined in Eqn. (2.24), 0 < p < 1, R is the aperture radius, and

q=— (T — ). (2.26)

Applying Eqns. (2.12) and (2.13) to Eqn. (2.25), we write

Bi a; Z;(p) BZajr(ﬁ)Z] (7"

5 5 =1 N j'=1
Di-d) =4 | [amwp)-= | | [aiwin L=

. (2.27)

Exchanging the order of summation and integration and applying Eqn. (2.23) twice,

Eqn. (2.27) is written as

Fs(a_:'Q — fl) = £ { ( Z 'Z'(l 6)) ( Z C@'I(’lj)Zj/(l,E)) }
7,m=1 j'm'=1
= Y Y Elajap(i)} Zj(1,€)Z;(1,€). (2.28)

Jjm=17"m/'=1
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As discussed in Sec. (1.3), only SSF’s for slopes in the orthogonal Z and g directions,

or € = 0 and € = 7/2 respectfully, are of interest. Numerical evaluations for Z;(1,0) and

Z;(1,7/2) satisfying m = 1 are listed in Tab. 2.3 for all j < 500. Examining the definition

of Z; given in Eqn. (2.1) or looking at Tab. 2.3, we see only terms such that j and j'

are both even or are both odd contribute to the double summation within Eqn. (2.28).

Simplifying Eqn. (2.18) for this special case we find

¢ {aja; ()} = 4c) <Q>(a—z> Lp(i%)a

F(—) [(n * 1)(n, + 1)] 2 fjj'(“? 007 k[]),
2

[\

Figr(u, 00, ko) =
+(—1)(tn)/2 c08(200) Iz n+1,n/+1(2u, ko) if j,7" are both even
(=12, i (2u, )

?

—(—=1)(ntn")/2 cos(260) 2, n+1,n/+1(2u, ko) if j,7" are both odd
+(_1)(n+n’+2)/210,n+1,n’+1(2U7 kO)

(2.29)

(2.30)

with all symbols as previously defined. Since the cosine function in Eqn. (2.30) is an even

function, Eqn. (2.28) has the property

(2.31)

Figures 2.2 through 2.9 show I'y evaluated for various scenarios. Mode count refers

to how many contributing Zernike polynomials, as listed Tab. 2.3, are included in the

summation within Eqn. (2.28). Figures 2.10 through 2.15 show examples for the theoretical

SSF, Eqn. (1.9). For additional insight as to the behavior of I's and Dg, consult Appendix A

where the contributions to the wavefront slope for first six non-zero terms of Eqn. (2.28)

are plotted.
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| mode count | Fi | m | n | Z;(1,0) | Z;(1,7%) |

1 2 17172 0

2 3 11110 2

3 71130 25

4 8 [ 1|3 ]2 0

5 6 ]1]5 23 0

6 171510 23
7 20 [ 1] 770 4

8 30 [1]7 1[4 0

9 46 [ 1] 9 | 2v5 0

10 47 [ 119 |0 25
11 67 | 1 |11 ]0 V24
12 68 | 1 |11 ] v24 0

13 92 | 1 |13 ]2V7 0

14 93 | 1 |13 (0 27
15 121011500 23

16 1221 [ 15|23 0

17 1541176 0

18 1551 [17]0 6

19 1911 [19]0 V40
20 192 | 1 |19 | V40 0

21 232 | 1 ]21]2v11 o

22 23311 (2110 211
23 27711 12310 4/3
24 278 | 1 [ 23| 4V3 0

25 326 | 1 [25]2v13 |0

26 32711 125]0 213
27 379 1 [27]0 V56
28 380 | 1 [27] v56 0

29 436 | 1 [ 29 | 2v15 |0

30 43711 1290 215
31 497113110 8

32 498 [ 1 [31[8 0

Table 2.2 Z;(1,€) evaluated for the modes j < 500 with azimuthal frequency m = 1.
Mode count is the number of contributing terms included in the evaluation of
Eqn. (2.28).
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Figures 2.2 through 2.9 show that the slope correlation function, I'y, and the slope
structure function, Dy, are well represented by including the first four or six contributing
terms to the average wavefront gradient. The choice between four or six terms depends on
the turbulence power law and outer scale. Slope correlation, I's (i), is most often modeled
as depending only on the second and third modes of the Zernike phase decomposition. Our
I, Equation (2.28), does not make this assumption and includes all contributing terms.
For computing I'y, we must limit the number of terms included in Eqn. (2.28). These
figures show that the slope correlation is most dependent on the second, third, seventh,

and eighth Zernike modes (a mode count of 4) and is dependent on the power law, a.
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1. SSF Estimator Signal-to-Noise Ratio

This chapter develops the SNR for the SSF estimator. First, the H-WFS geometry is
presented. Then, the slope measurement model is presented. Next, the slope measurement
correlation is evaluated. Then, the SNR is defined and the first and second moments of
the SSF estimator are determined. Then, the final form for the SSF estimator SNR. is

summarized. Last, the extension to a multi-layered atmospheric model is addressed.

3.1 H-WFS Specification

Although many H-WFS’s are composed of equally sized square subapertures, the
Zernike polynomial approach requires equally sized circular subapertures. Thus every
subaperture weighting function is defined in polar coordinates as

/7 r<1

W) = , (3.1)
0 r>1

where r = |7]. In our analysis, a particular H-WFS is specified by a common subaperture
diameter, D, and a list of vectors specified in rectangular coordinates whose vertices locate

the subaperture centers and whose magnitudes are measured in units of diameter. For

example, the H-WFS shown in Fig. 1.1 (b) is specified by

i | (5, 5) i | (5 D)
1| (00 9| (02
2| (10 0] (1,2
3| (20 11| (22
4| (30 12 32
50 (0,1) 13 (03)
6| (11 14| (1,3)
71 @ 15| (23)
8| (3,1 16| (33)

and some subaperture diameter D. The coordinate system origin is arbitrary.
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3.2 Slope Measurement Model

The measured wavefront slope, $;(p,t), is modeled as a sum of the true wavefront

slope, s;3(7,t), and an additive noise term, n(p,t), each a function of position and time,

8a(pyt) = sa(pt) + n(p,t). (3.2)

The true wavefront slope is taken as the average wavefront gradient over the subaperture
and is defined in Eqn. (2.22). Both the wavefront slope and the additive noise are mod-
eled as zero mean, Gaussian, wide-sense stationary random processes. Additionally, the

following properties are assumed:

e Noise in one subaperture is uncorrelated to that in any other subaperture.
e Noise in different temporal frames is uncorrelated.
e Noise variance, 02, within all subapertures is the same.

e Noise is uncorrelated with the true wavefront slope.

3.8  Slope Measurement Correlation

The correlation between slope measurements taken at different times, in different

subapertures, is defined as

E{3(P t1)3(qt2)} - (3.3)

Taylor’s frozen flow hypothesis allows Eqn. (3.3) to be written as a function of ¢ — p'+
¥(ta —t1) where ¥ is the velocity vector for the turbulent layer. Substituting Eqn. (3.2) into
Eqn. (3.3), applying the wavefront slope and noise assumptions listed above, and assuming

isotropic turbulence, Eqn. (3.3) may be expanded as

EL3(p,t1)3(q,t2)}
= E{[s(p,t1) + n(p,t1)] [s(q, t2) + n(q, t2)]}
= E{s(p,t1)s(q.t2)} + E{s(P.t1)n(q t2)} +

E{s(q t2)n(p, 1)} + E{n(p,t1)n(q, t2)}
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L5(0) + 02 ,p=¢qand t; =ty

Ls(§—p+ U(ta —t1)) , otherwise

where Ty is the self slope correlation function defined in Eqn. (1.11).

3.4 SSF Estimate SNR Definition

The SSF estimator of Eqn. (1.12) is a random function depending on the statistics of
atmospheric turbulence, the number of measurement realizations, and the geometry of the
H-WFS. The SNR of the random function D (/) is defined as the unbiased mean divided
by the standard deviation,

5{ (ﬁ)} — bias

. D,
SNR(Dy(p) = — —— (3.5)
{(0.9)"} - e D)
Thus, the first and second moments of D,(F) must be computed.
3.5 First Moment of the SSF Estimator
The first moment of Eqn. (1.12) is
R 1 M N ,
e{oin} = ef 5 X S lstan) - s
1 M N )
= N € {[S(CI,tn) 3(p,tn)] }
m=1n=1
1] M N ,
= a7 2 2 E (@ 1) (@) = (s k) + 07 1))} (36)

where all variables are as defined in Sec. (1.3). Expanding the power within the expectation

operator and using the slope and noise assumptions listed in Sec. (3.2) we find

. 1 M N .
(D} = Fap X X [2on + 200 —oru(d - )
= 202 421, (0) — 2'5(7). (3.7)

3-3



Comparing the mean of the SSF estimator, Eqn. (3.7), with the SSF, Eqn. (1.9), we see
our estimator is biased by 202. It is this bias which is subtracted in the numerator of

Eqn. (3.5).

3.6 Second Moment of SSF Estimator

The second moment calculation unfortunately is not as simple as the first moment

calculation. We begin with the definition of the second moment,

5{[155(5)]2} —¢ { lNM ) Z 8(T,tn) — 57 t)] r} (3.9)

m=1n=1

We then use the identity

A B 2 A B C D
(sz(a,m) =3 33> fla,b)f(e,d) (3.9)

a=1b=1 a=1b=1c=1d=1

to rewrite Eqn. (3.8) as

5{[155(5)]2} _

1 M N M N
¢ { (NM)? Z Z Z Z [8(Gm, tn) = 3(Fims ta)]” [8(Gur to) — é(ﬁﬂ,ty)]Q}. (3.10)

m=1n=1pu=

Exchanging order of summation and expectation, we can write

R 9 N N M M
e{[0:0]"} = e 2o 3 30 3 € {[8(dn ) = 807t 50508 — 578}

n=1lv=1m=1pu=1
(3.11)

3.6.1 Expectation Simplification.  Simplifying the expectation within Eqn. (3.11)
is a tedious task. Using Taylor’s frozen flow hypothesis of Sec. (1.2), the time dependence
in Eqn. (3.11) is rewritten as a spatial dependence only. In making this notation change,

we adopt a simpler notation and label the four unique time-position vectors of Eqn. (3.11)
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in terms of the four unique position vectors,

(3.12)

This geometry is shown in Fig. 3.1. The subapertures centered at #; and #2 form a
subaperture pair, as do the subapertures centered at #3 and #4. These two pairs are
referred to as a set of subaperture pairs. Figure 3.2 shows different arrangements for sets

of subaperture pairs that must be considered in the following development.

We write the expectation within Eqn. (3.11) as
€ {[8(@) - s(@)]° [3(22) - 8(&)]} - (3.13)
Using our slope measurement model, we write Eqn. (3.13) as
€ {(s(F2) + n(@2) — (s(21) +n(@)))* [(s(Z0) +n(@) = (s(8) +n(@))°} . (3.14)

Multiplying out Eqn. (3.14) we obtain a sum of 100 fourth-order joint moments. For
jointly Gaussian random variables, joint moments of order higher than two can always be
expressed in terms of first and second order moments [5:39]. In particular, it can be shown

for the zero-mean Gaussian random variables, w1, u2, u3, and u4, that
& {U1U2U3U4} =& {U1UQ} & {U3U4} + €& {U1U3} & {’11,2’[1,4} + & {u1U4} & {U2U3} . (3.15)

We can thus further simplify the 100 fourth-order joint moments into a 300 term summation
with each term a product of two second-order moments. FEach of these second order
moments can be expressed in terms of the slope correlation function, I'y, and the noise
variance, o2, as shown in Sec. (3.3). Special attention must be given to properly account for

each of the time-position cases shown in Fig. 3.2. This process is difficult to perform reliably
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T L= ﬁm + 6tn. #2
Ty = q-'m. + i"tn,
f:j = l-;u, + {)’tu

By =+ Tty #1

Figure 3.1  Geometry used in calculating second moment of SSF estimator: Application
of Taylor’s frozen flow hypothesis reduces the mixed temporal-spatial correla-
tion of Eqn. (3.11) to spatial correlations only. The vector §'is the separation
for which the SSF is estimated. The subaperture centers are located by the
vectors I, @9, o3, and Iy in the zy plane. Subapertures #1 and #2 form
a pair whose vector separation is always p as do the pair #3 and #4. Each
pair can be located anywhere in the zy plane. The two pairs are referred to
as a set of subaperture pairs.
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by hand, but the computer program Mathematica [23] is perfectly suited. Appendix C lists

the Mathematica program used to express Eqn. (3.14) in terms of I's and o?2.
Using Mathematica’s results and further requiring that
i(t, —tp) = 07(v —n), (3.16)

where 7 is the time between temporally adjacent samples, and v and n are integers, the

expectation within Eqn. (3.11) can be written as

& {[g(imutn) - §(ﬁmatn)]2 [§((j’u,t,,) - §(ﬁu7tu)]2} = Fsm(ﬁa UnaﬁT(V - n)uﬁmaimuﬁuaiu)
(3.17)

where
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Fsm(ﬁ, Un,ﬁT(V - n)aﬁma q'maﬁ;u q'u) =

case 1:
1202 4 24021 (0) + 12T'2(0) — 2402T(p) if = P

and ¢, =
—241,(0)L',(p) + 1202() 5 0

607 + 120215(0) + 6I2(0) — 1602T5(p)
cases 2 and 3:

—1605(0)T's(p) + 12I75(p) + 407 T5(20) if G = P
+4T5 (0)T5(27) — 8T (0)T'(27)) o Zf
+2T5(20)
.(3.18)
4ot 4+ 802T5(0) + 4I'2(0) — 802T4(p)
—8I'5(0)Ts(P) + 4'2(p) + 8L2(Fy, — P + 07 (v — 1))
—8L5(Py — P + UT(v = n))Ts (P — G + 07 (v — 1))
LG, — G+ T — ) otherwise
-85 (P — + 07(v —n))Ls(gu — P + U7 (v — 1))
+4ALs (P — Gm + 7 (v — n))Ls(qy — P + 7 (v — 1))
[ +205(qu - vr(v —n))
3.6.2 Four Dimensional Summation Simplification. Evaluating the four dimen-

sional summation in Eqn. (3.11) presents a serious computational problem. Here, we show

that the four dimensional summation may be replaced by a two dimensional summation.

Since the double summation in Eqn. (3.11) with respect to time depends only on the

difference v — n, the equality

N

N N I
E a—b)=N E 1—— C 3.19

a=1b=1

can be used [19]. A triangular weighting function properly accounts for the repetition
of terms through the range of index differences. Additionally, if f(a —b) = f(b — a),
Eqn. (3.19) can be further reduced to

N N |c|
S S fa—b) =2 )N (1 - W) £(o), (3.20)

a=1b=1 c=0
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where

1 ife=0
dp,c = . (3.21)
0 otherwise

It is shown in Eqn. (2.31) that the slope correlation function, I'y, has this property and
therefore so does Eqn. (3.18).

The double summation with respect to subaperture pairs, indexes m and p, also sim-
plifies to a one dimensional summation. Unfortunately, the new index range and weighting

function are not as simple as the time index range and weighting function in Eqn. (3.20).

The two dimensional arrangement of H-WFS subapertures must be considered in
combination with the particular vector separation, p, for which the SSF estimate is to
be calculated. Figure 3.1 shows the geometry for a single evaluation of Eqn. (3.11) for
a particular set of indexed values. For a fixed time index difference, only the relative
orientation of the pair 1 and &5 to the pair Z3 and Z4 effect the expectation. Any other set
of subaperture pairs with the same relative orientation will give the same numerical answer

for Eqn. (3.14). We write the final form of the second-moment of the SSF estimator as

{[0.0)'} = i 2 ~ a0 (1- %) > W) Eorn (7, 0m, 57 580,300, 50, 09),

T (3.22)
where the function Fj,, is given in Eqn. (3.18) and w(j) is a weighting function depending
on H-WFS geometry. Let M, represent the number of uniquely oriented sets of subaper-
ture pairs (characterized by a subaperture pair separation of p) with M, <= M?2. The
summation over sets of subaperture pairs is indexed by j. Each j maps to w(j) identically
oriented sets of subaperture pairs. Any one of these w(j) sets may be the source for the
vectors ﬁﬁj ), ﬁ,g{ ), q75j ), and (j'n(f ). The summation over time is indexed by 7. Additionally,

it is required that

Mr
> w(j) = M. (3.23)
7j=1

Figure 3.3 illustrates how the spatial two dimensional summation over m and p in

Eqn. (3.11) can be replaced by a one dimensional summation over j as in Eqn. (3.22).
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Figure 3.3 considers the simple H-WFS composed of an evenly spaced 2 by 3 grid of sub-
apertures. As the number of sensor subapertures increase, the complexity of identifying
like-oriented sets of pairs increase. This complicated process is best left to the software
which evaluates the SNR for a particular H-WFS. Table 3.1 shows how this problem scales

for larger H-WFS arrays.

Without this modification from a four dimensional summation to a two dimensional
summation, computing the SNR for a large H-WFS array quickly becomes computationally

improbable using available resources.

3.7 Final SSF Estimator SNR Expression

All expressions necessary to evaluate the SSF estimator SNR have now been devel-
oped. The SNR, defined in Eqn. (3.5), is in terms of the first and second moments of the
SSF estimator, Eqns. (3.7) and (3.22). Both of these moments are in terms of the slope
correlation function, I'y, which is evaluated using Eqn. (2.28). The SNR is independent of
po but does depend on Ly/D, «, the number of frames, N, and the H-WFS geometry.

3.8 Extension to a Multi-layer Atmospheric Model

Equation (1.12) is valid regardless of the atmospheric model. If the multi-layered

atmospheric model of Sec. (1.2) is considered, our previous results can be modified.

Assuming near field conditions [11:72], optical phase is additive. Thus the total
induced phase seen by the estimator, ¢y (7, t), is the sum of the phase induced by the @

individual layers,

Q
brot (Fa t) = Z o (Fa t)a (324)
=1

where ¢;(7,t) is the phase induced by layer [. Using Eqn. (2.22), the average gradient for

wavefront slope over a subaperture is

Su(0) = [ A7 WG~ 3 (Dua(7.0) - 0)



Table 3.1

| Sensor | M | M? M,
I1x1 0 0 0
2x2 2 4 3
3x3 6 36 15
4x4 12 144 35
5x5 20 400 63
6x6 30 900 99
X7 42 1764 143
8x8 56 3136 195
9%9 72 5184 255
10x10 | 90 8100 323
11x11 | 110 | 12100 | 399
12x12 | 132 | 17424 | 483
13x13 | 156 | 24336 | 575
14x14 | 182 | 33124 675
15x15 | 210 | 44100 783
16x16 | 240 | 57600 | 899
17x17 | 272 | 73984 | 1023
18x18 | 306 | 93636 | 1155
19%x19 | 342 | 116964 | 1295
20x20 | 380 | 144400 | 1443
21x21 | 420 | 176400 | 1599
22x22 | 462 | 213444 | 1763
23x23 | 506 | 256036 | 1935
24x24 | 592 | 304704 | 2115
25x25 | 600 | 360000 | 2303
26x26 | 650 | 422500 | 2499

Computational savings realized by identifying like-oriented sets of subaperture
pairs: Sensor column specifies the H-WFS arrangement. For example, 10x10
refers to a H-WFS with 100 subapertures arranged in a 10x10 grid with
adjacent subapertures spaced center-to-center one diameter D apart. The SSF
estimate is to be computed for the vector separation g = (D,0). There are M
pair of subapertures in the sensor having vector separation j. There are M?
sets of subaperture pairs to consider if like-oriented sets of subaperture pairs
is not exploited. There are only M, unique sets of subaperture pairs within
each sensor for the chosen p. Each unique set, indexed by j in Eqn. (3.22),

occur w(j) (not shown) times in the sensor.
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w(l) =2 w(2) = 2 w(3) =1

®© O O O
. L] O O
w(d) = 2 w(s) = 1 w(6) = 1
O ® . . O O
O O
w(7) = 2 w(8) =1 w(9) = 4
. O O ® ©
O .
Figure 3.3  Duplication of Fg, (7, an,UTi,ﬁ,%),cj'n(g),ﬁ,gj),@',sj)) for a 2 by 3 H-WFS: As-

suming p = (D,0°) in Eqn. (3.11), the two dots represent a pair of sub-
apertures indexed by n, and the two circle represent a pair of subapertures
indexed by v. We desire to reduce the two dimensional summation to a one
dimensional summation by exploiting only the relative orientation of the set
of subaperture pairs influence the evaluation of Eqn. (3.18). There are M, =9
unique sets of subaperture pairs out of the total sixteen sets of subaperture
pairs. Each of these unique nine sets are shown above with the proper value
for the weighting function, w(j).
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Q
= Y [@r W= Dan(E -0
=1

Q
= D Sa- (3.25)
=1

Thus the total slope, sg,,,, is simply the sum of slopes for individual layers. Our multi-
layered atmospheric model assumes independent layers, and thus so are the slopes for the
individual layers. Since we model a single layer’s slope as a zero-mean Gaussian random
variable, so must be our total slope [5:39]. Because of this, the derived form for the SSF
estimator SNR is unchanged when considering a multi-layered atmosphere. Only the form

for the slope correlation function, I'y, must be modified.

We define a multi-layered slope correlation function, Iy, ,, as
D00 (3_7'2 - fl) =& {Stot(fl)stot(fZ)}- (3.26)

Equation (3.26) can be simplified as

Lo (T2 = T1) = E{810t(T1)10t(T2) }

Q Q
= & {Z Sal(f1) Z Say (52)}
I=1

=1

QR Q
= 3 & {50 (@)sa, (@)}

=10=1
Q
= 25 {S@l (fl)sflz (52)}
=1
Q

= > Dy (@ — ), (3.27)
=1

where we have used the independence of turbulent layers as noted in Sec. (1.2), and where

'y, is the self slope structure function for the [ layer.
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1V. SSF Estimator SNR Numerical Results

This chapter presents results for the SSF estimator SNR developed in Chapter III. The
SNR. equation is complex and difficult to intuitively understand. In addition, the SNR
equation is non-trivial to implement and is computationally intensive to numerically eval-
uate. Representative results for the simplest H-WFS configuration, the DIMM, are pre-
sented and discussed. Additional DIMM results are included in Appendix D. For more
complex H-WFS configurations, only how the SSF estimator SNR changes as the number

of H-WF'S subapertures increase is presented and discussed.

4.1 SSF Estimator SNR Numerical Results for the DIMM Geometry

A DIMM has two subapertures. Thus, a SSF estimate can be attained at only a single
vector separation, p. Within a single frame, wavefront slope measurements are correlated
as a function of both the outer scale and the power law. To increase the SSF estimator
SNR, multiple temporally spaced frames are included in the SSF estimate. If we assume
that temporally spaced frames are uncorrelated, the SNR increases as the VN, where N is
the number of frames [9, 19, 24]. But the wavefront slope measurements in different frames
are correlated. This temporal correlation is a function of the turbulent layer’s velocity and
the time between frames. In addition, the noise inherent to the measurement process tends

to decrease the SNR.

Figures 4.1 through 4.9 show representative SSF estimator SNR results for the DIMM
geometry. As noted in the figure captions, these figures are selected from the five groups
of results presented in Appendix D and summarized in Tab. D.1. The theoretical SSF
estimator SNR predicted if temporal frames are assumed independent, an increase as the
VN, is the thick solid top line shown in the figures. This v/N line is always well above
the other SNR curves and thus does not obscure the SSF estimator SNR predictions when
temporal correlations are incorporated. All results are presented as SSF estimator SNR
vs. the number of integration frames, N, included in the estimate. The wavefront slope
is taken along the axis co-linear to the vector connecting the centers of the two DIMM

subapertures.
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Figures 4.1 through Fig. 4.3 show the theoretical SNR for a DIMM with subaper-
tures separated by one diameter. Each plot shows the SNR for ratios of outer scale to
subaperture diameter, Lo/D, ranging between one and infinity. The three plots assume
different turbulence layer motion velocity magnitudes, |U'7|. As the outer scale decreases,
the correlations between the temporal frames also decreases and tend to increase the SNR.
But outer scale appears to have a rather weak effect on the SNR results. As the turbu-
lence layer velocity increases, the correlations between temporal frames decrease and tend
to increase the SNR. For a velocity magnitude of 2.50D, outer scale has no effect on the
SNR results for this DIMM geometry. Figures D.1 through D.24 include plots for other

turbulence layer velocity magnitudes and with non-zero noise.
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Figure 4.1  Slope structure function estimator SNR vs. number of integration frames, IV,
for the DIMM geometry with a subaperture separation of §= (1.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
o7 = (0.10D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T's(0) = 0%. The ratio Lo/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.1, Group A.)



Figure 4.2

Figure 4.3

SNR

Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (1.00D, 0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
o7 = (0.50D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T'5(0) = 0%. The ratio Ly/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.3, Group A.)
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Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of p'= (1.00D, 0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
1 = (2.50D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T'5(0) = 0%. The ratio Ly/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.4, Group A.)



Figures 4.4 through Fig. 4.6 assume identical turbulence properties as in Fig. 4.1
through Fig. 4.3 but is for a DIMM with subapertures separated by four diameters. This
larger subaperture separation causes turbulence slope measurements within a frame to be
less correlated since wavefront slope correlation decreases as separation increases (as shown
in Sec. (2.3)). Hence, the SNR for identical turbulence conditions increase as the subaper-
ture separation increases. Figures D.25 through D.48 include plots for other turbulence
layer velocity magnitudes and with non-zero noise.
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Figure 4.4  Slope structure function estimator SNR vs. number of integration frames, IV,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
o7 = (0.10D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T's(0) = 0%. The ratio Lo/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.25, Group B.)



Figure 4.5

Figure 4.6

SNR

Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
o7 = (0.50D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T'5(0) = 0%. The ratio Ly/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.26, Group B.)
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Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
1 = (2.50D,90.00°), and a ratio of the slope measurement noise variance to
the wavefront slope variance o2 /T'5(0) = 0%. The ratio Ly/D ranges from 1
to oo. The top solid line is the theoretical SNR predicted if temporal frames
are assumed independent. (Same data as in Fig. D.28, Group B.)



Figure 4.7 shows how additive slope measurement noise decreases SNR. Noise is
expressed as a ratio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0). As the noise increases, the SNR, decreases. Figures D.49 through D.78 include

plots for other turbulence layer velocity magnitudes and outer scales.
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Figure 4.7  Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity
U1 = (2.50D,90.00°), and a ratio Ly/D = co. The ratio of the slope mea-
surement noise variance to the wavefront slope variance, o2/I's(0), varies
from 0% to 50%. The top solid line is the theoretical SNR for zero noise, a
VN increase, predicted if temporal frames are assumed independent. (Same
data as in Fig. D.76, Group C.)

Figure 4.8 shows how turbulence layer velocity magnitude affects the the SNR. As
the velocity magnitude increase, the temporal slope correlation between frames decrease
and results in an increase in SNR. Figures D.79 through D.98 include similar plots for

different outer scale and noise conditions.
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Figure 4.8  Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of o = 3.6667, a turbulence layer motion velocity an-
gle arg(v) = 90.00°, a ratio Ly/D = oo, and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The magni-
tude of the turbulence layer motion velocity varies from 0.1D to 10D. The
top solid line is the theoretical SNR, a v/N increase, predicted if temporal
frames are assumed independent. (Same data as in Fig. D.95, Group D.)

Figure 4.9 demonstrates the effect of turbulence layer velocity direction with respect
the direction of a vector connecting the DIMM subaperture centers. As noted above, all
slopes are taken in the direction of a vector connecting the DIMM subaperture centers.
Equation (2.31) shows the slope correlation is symmetric with respect to this subaperture
center-to-center vector. In the 0° case, the layer velocity direction is co-linear to a subaper-
ture center-to-center vector. In the 90° case, the layer velocity direction is perpendicular
to a subaperture center-to-center vector. The effect of turbulence layer velocity direction
on the SNR is small. Figures D.99 through D.118 include similar plots for different outer

scale and turbulence layer velocity magnitudes.
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Figure 4.9  Slope structure function estimator SNR vs. number of integration frames, N,
for the DIMM geometry with a subaperture separation of = (4.00D,0.00°),
a turbulence power law of a = 3.6667, a turbulence layer motion velocity mag-
nitude |0] = 1.00D, a ratio Ly/D = oo, and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The angle of
the turbulence layer motion velocity, arg(?), is 0, 45, or 90 degrees. The top
solid line is the theoretical SNR, a v/N increase, predicted if temporal frames
are assumed independent. (Same as Fig. D.111, Group E.)

4.2 SSF Estimator SNR Numerical Results for non-DIMM Geometry

With non-DIMM arrays, SSF estimates for multiple vector separations are measured.
Many SSF estimates at each p may be present within a single frame. Due to the difficulty
in evaluating the SNR expression for large arrays over multiple frames, only single frame
results are presented. The goal is to show how the SNR varies with the number of H-WFS
subapertures. Figure 4.10 and Fig. 4.11 are different views of the same results. Figure 4.10
shows that a single frame SNR is a near-linear function of the number of subapertures on

a single side of a square array of H-WF'S subapertures.
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Figure 4.10

Figure 4.11
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Slope structure function estimator SNR vs. sensor subaperture array size
for a single temporal frame. The ratio o2 /T's(0) ranges from 0% to 50%.
The estimate is for a single frame of wavefront sensor measurements and
at a vector separation g = (D,0). The turbulence has an o = 11/3 power
law and outer scale Ly/D = oo. The horizontal axis denotes the number
subapertures on a side for a square H-WFS array whose subapertures are
spaced one diameter center-to-center. For example, 26 denotes a 26 x 26
H-WFS array. A linear relationship is observed between the number of
subapertures on a side in the H-WFS array and the SSF estimator SNR.
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Slope structure function estimator SNR vs. the ratio o2 /I's(0) for a single
temporal frame. The estimate is for a single frame of wavefront sensor
measurements and a vector separation p'= (D,0). The turbulence has an
a = 11/3 power law and outer scale Ly/D = co. Sensor subaperture arrays
range from a 2 x 2 with the lowest SNR to a 26 x 26 with the highest SNR.
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V. Results, Conclusions and Recommendations

This chapter summarizes the major results of this research and recommends related future

research.

5.1  Summary of Theoretical Development

In Chapter II, the slope correlation function I's, Eqn. (2.28), was developed based
on a Zernike polynomial decomposition of phase over two circular apertures with arbitrary
vector separation. Often, the wavefront average gradient is approximated by the second
and third modes of the Zernike decomposition [4]. Equation (2.28) does not make this
assumption and includes the effect of high order modes on wavefront average gradient.
Figure 2.2 shows how I'4(0) changes based on the number of modes included for various
turbulence power laws. With this I'y expression, the theoretical slope structure function

D;, Eqn. (1.8), is calculated and presented in Figs. 2.10 through 2.15.

In Chapter III, the SNR of the SSF estimator is developed. For the SSF estimator
defined in Eqn. (1.12), the first and second moment are calculated. The first moment is
shown in Eqn. (3.7) and the second moment is shown in Eqn. (3.22). The SSF estimator is
biased in the presence of noise by 202. The SSF estimator SNR, defined in Eqn. (3.5), is
formed with the resulting first and second moment expressions and depends on the H-WFS
geometry, the number of frames included in the estimate, the outer scale of turbulence,
and the power law of turbulence. The SNR expression does not depend on the atmospheric

coherence diameter, pg.

5.2 Summary of Numerical Results

Selected numerical SSF estimator SNR results are presented in Chapter IV. Results
focus on the simplest H-WFS geometry, the DIMM, with limited results presented for non-
DIMM geometries. This is necessary due to the difficulty of numerically evaluating the
SNR expression for non-DIMM geometries. The SSF estimator SNR is seen to be lower

than that predicted if temporal frames are assumed uncorrelated. The single frame SSF
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estimator SNR is observed to be a near-linear function of the number of subapertures on

a single side of a square grid H-WFS array.

5.8  Recommendation for Future Research

In this section, recommendations for further research in this area are proposed.

e Develop a SSF estimator SNR simulation capability '. The theoretical SSF estimator
SNR is difficult to compute for large H-WFS—even for a single frame. Thus, predicting

a theoretical SNR over dozens of frames is extremely difficult.

e Develop and simulate a method for retrieving atmospheric coherence diameter, outer
scale, and power law from the SSF as estimated with a H-WFS. A H-WFS with more
than two subapertures can estimate the SSF at more than one separation. Thus, a
large H-WF'S array allows many points on a theoretical SSF to be estimated. These
multiple points should allow the turbulence parameters to be determined with greater

confidence than with a DIMM.

! This simulation should include a phase screen generator capable of including outer scale, power law, and
temporal effects. This author has developed and tested a phase screen generator, with all these capabilities,
based on Eqn. (2.18).



Appendiz A. Zernike Expansion Coefficient Covariance Plots

This appendix shows the behavior the Zernike coefficient correlations required in the com-
putation of the slope correlation function I'y, Eqn. (2.28), developed in Sec. (2.3). The
desired coefficient correlation is given by the Equations (2.29), (2.30), (2.21), and (2.20)
which are restated as

£ {aja;fr (ﬁ)} =4a <2> o l_F(%)a

P0 [(n 4+ 1)(n' + D] fijr(u,00, ko), (A1)

where

f]]’ (UJ 007 ko) =

+(=1) )72 c08(200) I g 1.0 1+1(2u, ko) if §, 5" are both even
+(_1)(n+n’+2)/210,n+1,n’+1 (QU, kO)

| L ()
— (=) *+7/2 ¢08(200) Iy g 11 (2u, ko) if §, 5" are both odd
(=) D2 g 1 (2u, Ko)
D
ko =m— A.
0 7TL07 ( 3)
© ¢~V (ax)J, ()], (z
I"iyllyl’(a7$0) :/ ( ) u(a)/2 ( )dx’ (A4)
0 (22 + z?)

and ¢ is given by Eqn. (1.2), D is the aperture diameter, Lg is the outer scale size, u and
6 are as shown in Fig. 2.1, and the functions Ji(z), Ju(x), J,(z) are Bessel functions of

the first kind and order &, p, and v respectively

Figures A.1, A.2, and A.3 reproduce Takato and Yamaguchi’s [15] Figs. 3, 4, and 5
and verify that the code developed for this thesis to evaluate Eqn. (A.1) produces results

matching published results.

Figures A.4 through A.39 show Eqn. (A.1) evaluated as a function of aperture sepa-

ration for various turbulence power laws « and outer scale LoD. Only the correlations for
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| Figure | modes | 6y (°) | « | Lo/D | | Figure | modes | 6y (°) | a | Lo/D |
A4 odd 0 3.3 10 A.22 even 0 3.3 10
A5 odd 0 3.3 100 A.23 even 0 3.3 100
A6 odd 0 3.3 0 A24 even 0 3.3 0
A7 odd 0 3.6667 | 10 A25 | even 0 3.6667 | 10
A8 odd 0 3.6667 | 100 A.26 even 0 3.6667 | 100
A9 odd 0 3.6667 0 A.27 even 0 3.6667 0
A10 odd 0 3.8 10 A.28 even 0 3.8 10
A1l odd 0 3.8 100 A.29 even 0 3.8 100
A2 odd 0 3.8 0 A.30 even 0 3.8 0
A.13 odd 90 3.3 10 A31 even 90 3.3 10
A.14 odd 90 3.3 100 A.32 even 90 3.3 100
A.15 odd 90 3.3 0 A.33 even 90 3.3 0
A.16 odd 90 3.6667 10 A34 even 90 3.6667 10
A7 odd 90 3.6667 | 100 A.35 even 90 3.6667 | 100
A.18 odd 90 3.6667 0 A.36 even 90 3.6667 0
A.19 odd 90 3.8 10 A.37 even 90 3.8 10
A.20 odd 90 3.8 100 A38 | even 90 3.8 100
A21 odd 90 3.8 0 A39 | even 90 3.8 0
Table A.1  Summarization of Figures A.1 through A.39 showing Eqn. (A.1) evaluated

as a function of aperture separation for various turbulence power laws and
outer scale. Only the correlations for Zernike modes Zy through Zig which
contribute to the slope correlation I'y, Eqn. (2.28) developed in Sec. (2.3),
are shown. The “modes” column refers to the mode correlations considered
in each figure. The designator “odd” includes correlations between all com-
bination of modes 3, 7, and 17. Likewise, the designator “even” includes

correlations between all combinations of modes 2, 8, and 16.

Zernike modes Zy through Z4 which contribute to the slope correlation I'y, Eqn. (2.28),

are shown. Tab. 2.3 shows that the wavefront slope in the 6y = 0 direction depends only

on the Zernike modes with even order j. Similarly, the wavefront slope in the 6y = 7/2

direction depends only on the Zernike modes with odd order 5. The parameters examined

in the figures are summarized in Tab. A.

The turbulence power law, a, determines how the power in the random process (the

turbulence induced phase) is distributed as a function of Zernike mode order. The ratio

of turbulence outer scale to subaperture diameter, Ly/D, determines the rate of correla-

tion roll-off. The requested accuracy for numerical integration of the highly oscillatory
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Eqn. (A.4) is 10E-12. Thus, erroneous coefficient correlation results are seen when the

magnitude of the numerical correlation is less than 10E-12.
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by code developed in this thesis. 8y = 0
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Appendiz B. Zernike Ezpansion Coefficient Covariance Tables

Noll’s Eqns. (25) and (A2) in Ref. [8] give the closed form solution for the covariance
between any two Zernike expansion coefficients, £ {aja;f,}, for atmospheric induced phase
over a single subaperture. Noll’s results are limited to a 11/3 power law with infinite outer
scale. Winker’s Eqn. (1) in Ref. [22] gives a closed form solution to & {a?} for an 11/3
power law and finite outer scale. Setting @ = 0 in our Eqn. (2.18), & {aja;f,} may be
numerically computed for arbitrary powers laws and finite outer scale. Tables B.2 through

B.31 present selected numerical evaluations of £ {aja;‘-,} as summarized in Tab. B.1

| Table | a | Ly/D | | Table | « | Ly/D |

B2 |31 1 B.17 | 11/3 1

B3 |31 ) B.16 | 11/3 Y

B4 |31 10 B.17 | 11/3 10
B.5 |3.1] 100 B.20 | 11/3 | 100
B.6 | 3.1 00 B.21 | 11/3 00
B.7 |32 1 B.22 | 3.8 1

B8 |3.2 ) B.23 | 3.8

B9 |32 10 B.24 | 3.8 10
B.10 | 3.2 | 100 B.25 | 3.8 100
B.11 | 3.2 00 B.26 | 3.8 00
B.12 | 3.4 1 B.27 | 3.9 1

B.13 | 3.4 ) B.28 | 3.9

B.14 | 3.4 10 B.29 | 3.9 10
B.15 | 34| 100 B.30 | 3.9 100
B.16 | 3.4 00 B31 | 3.9 00

2—
Table B.1 ~ Summarization of Tables B.2 through B.31 listing € {a;a; } (pQO) “ for var-
ious turbulence power laws and outer scale.

The turbulence power law, a, determines how the power in the random process (the
turbulence induced phase) is distributed as a function of Zernike mode order. The ratio of
turbulence outer scale to subaperture diameter, Ly/D, determines the rate of correlation
roll-off. For infinite outer scale, the piston variance, £ {a?}, is infinite [8]. This causes the
numerical integration to fail, as denoted in the tables by a question mark, for the piston

variance when considering infinite outer scale. The “blank” table elements are zero.
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Appendiz C. SSF Estimator Second Moment Simplification

To simplify the expected value within Eqn. (3.11), the symbolic computation program
Mathematica [23] is used. The program listed below substitutes the slope measurement
model of Eqn. (3.2) into Eqn. (3.11), multiplies out all terms, applies the signal-noise
assumptions listed in Sec. (3.2), applies the joint moments theorem of Eqn. (3.15), and
rewrites the resulting expression in terms of the slope correlation function defined by

Eqn. (1.11) and represented by G- -].

This Mathematica code helps determine the second moment for the
slope structure function estimator.

x2-x1=p
x4-x3=p

casel: x1=x3 and x2=x4 and delta_time=0

case2: x2=x3 and delta_time=0

cased: x4=x1 and delta_time=0

cased4: x1,x2,x3,and x4 are four unique location (no overlap)

Toby D. Reeves, July-Sept 1996
*)

Define the Expected Value Operator
*)

EV[a_+b_]:=EV[a]+EV[b]
EV[a_Integer b_]:=a EV[b]

Define a Wrapper zmgrv[ ] for Zero Mean Gaussian Random Variable,
then define rules that apply to zmgrv.

*)

Format [zmgrv[x_]1]:=x

EV[ul_zmgrv u2_zmgrv u3_zmgrv u4_zmgrv]:
EV[ul u2] EV[u3 u4] +
EV[ul u3] EV[u2 u4] +
EV[ul u4] EV[u2 u3]
)

EV[ul_zmgrv ul_zmgrv u3_zmgrv u4_zmgrv]:
EV[ul u2] EV[u3 u4] +

]
~

]
~
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EV[ul u3] EV[u2 u4] +
EV[ul u4] EV[u2 u3]
)/ .u2->ul
EV[ul_zmgrv ul_zmgrv u3_zmgrv u3_zmgrv]:
EV[ul u2] EV[u3 u4] +
EV[ul u3] EV[u2 u4] +
EV[ul u4] EV[u2 u3]
)/ .{u2->ul,u4->u3}
EV[ul_zmgrv ul_zmgrv ul_zmgrv ué4_zmgrv]:
EV[ul u2] EV[u3 u4] +
EV[ul u3] EV[u2 u4] +
EV[ul u4] EV[u2 u3]
)/ .{u2->ul,u3->ul}
EV[ul_zmgrv ul_zmgrv ul_zmgrv ul_zmgrv]:
EV[ul u2] EV[u3 u4] +
EV[ul u3] EV[u2 u4] +
EV[ul u4] EV[u2 u3]
)/ .{u2->ul,u3->ul,ud->ul}

]
~

]
~

]
~

Properties of the Noise

*)

noiseRules= {
EV[zmgrv[nla_]] zmgrv[n[a_l1]11->sig~2,
EV[zmgrv[n[a_]] zmgrv[n[b_1]]1->0,
EV[zmgrv[n[a_]11]1->0,
EV[zmgrv[n[a_]] zmgrv[s[x_1]11->0

s

(ke ————_————————————————————————————————————————————
Apply these rules to my problem of calculating the expectation
within the Second Moment formula

*)

fi= (a-b)"2 (c-d)"2 /.
{a->zmgrv[s[x1]]+zmgrv[n[x1]],
b->zmgrv[s[x2]]+zmgrv[n[x2]],
c->zmgrv[s[x3]]+zmgrv[n[x3]],
d->zmgrv[s[x4]]+zmgrv[n[x4]]
¥

BigMess=EV[Expand[f1]];

convertRule={
EV[zmgrv[s[x_]1]"2] ->G[0],

EV[zmgrv[s[x1]] zmgrv[s[x2]]] ->G[x2-x1],
EV[zmgrv[s[x3]] zmgrv[s[x4]1]] ->G[x4-x3],

EV[zmgrv[s[x1]] zmgrv[s[x3]1]] ->G[x3-x1],
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EV[zmgrv[s[x2]] zmgrv[s[x4]1]] ->G[x4-x2],

EV[zmgrv[s[x1]] zmgrv[s[x4]1]] ->G[x4-x1],
EV[zmgrv[s[x2]] zmgrv[s[x3]1]] ->G[x3-x2]
s

(* apply geometry and noiseRules for each case *)
caselRule={x1->x3,x2->x4};
casela=(BigMess/.caselRule)/.noiseRules;

case2Rule={x2->x3%};
case2a=(BigMess/.case2Rule)/.noiseRules;

case3Rule={x1->x4};
case3a=(BigMess/.case3Rule)/.noiseRules;

case4Rule={};
cased4a=(BigMess/.cased4Rule)/.noiseRules;

(* write in Gamma notation *)
caselb=casela/.convertRule;
case2b=case2a/.convertRule;
case3b=case3a/.convertRule;
casedb=caseda/.convertRule;

(* use geometry to simplify more *)
geoRule={x2-x1->p,x4-x3->p,x4-x2->x3-x1} (*valid all casesx)
caselc=ExpandAll [caselb/.geoRule];
case2c=ExpandAll[(case2b/.geoRule)/.{x3-x1->p,x4-x1->2p}];
case3c=ExpandAll[(case3b/.geoRule)/.{x3-x1->-p,x3-x2->-2p}];
cased4c=ExpandAll [casedb/.geoRule] ;

(* We know that for our case G[pl=G[-p] *)

g=case3c
case3c=case3c/.{-2p -> 2p, -p -> p};

Drum roll please!!

*)

sout=0OpenWrite["sfbn.txt" ,FormatType->0utputForm,PageWidth->75]
Write[sout,"BigMess= ",ExpandAll[BigMess]]

Write[sout,'"casela= ",casela]
Write[sout,'"case2a= ",case2a]
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Writel[sout,'"case3a= ", case3al
Write[sout,'"caseda= ",caseda]

Write[sout,'"caselb= ",caselb]
Write[sout,'"case2b= ",case2b]
Write[sout,'"case3b= ",case3b]
Write[sout,'"casedb= ",case4db]

Write[sout,'"caselc= ",caselc]
Write[sout,'"case2c= ",case2c]
Writel[sout,'"case3c= ",case3c]
Write[sout,'"casedc= ",case4dc]

Close[sout]

2
BigMess= 2 EV[n[x1] n[x3]] - 4 EV[n[x1] n[x3]] EV[n[x2] n[x3]] +

2 2 2
> 2 EV[n[x2] n[x3]] + EV[n[x1] ] EV[n[x3] ] -

2 2 2
> 2 EVin[x1] n[x2]] EV[n[x3] ] + EV[n[x2] ] EV[n[x3] ] -

> 4 EV[n[x1] n[x3]] EV[n[x1] n[x4]] +

2
> 4 EV[n[x2] n[x3]] EV[n[x1] n[x4]1] + 2 EV[n[x1] n[x4]] +

> 4 EV[n[x1] n[x3]] EV[n[x2] n[x4]]

> 4 EV[n[x2] n[x3]] EV[n[x2] n[x4]]

2
> 4 EV[n[x1] n[x4]] EV[n[x2] n[x4]1] + 2 EV[n[x2] n[x4]] -

2
> 2 EV[n[x1] ] EV[n[x3] n[x4]] + 4 EV[n[x1] n[x2]] EV[n[x3] n[x4]] -

2 2 2
> 2 EV[n[x2] ] EV[n[x3] n[x4]] + EV[n[x1] ] EV[n[x4] 1 -

2 2 2
> 2 EV[n[x1] n[x2]] EV[n[x4] ] + EV[n[x2] ] EV[n[x4] ] +

2
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2 EV[n[x3] ] EVIn[x1] s[x1]] - 4 EV[n[x3] n[x4]] EV[n[x1] s[x1]1] +

2 2
2 EV[n[x4] ] EV[n[x1] s[x1]] - 2 EV[n[x3] ] EV[n[x2] s[x1]] +

2
2 EV[n[x4] ] EV[n[x2] s[x1]] +

4 EV[n[x3] n[x4]] EV[n[x2] s[x1]]

4 EV[n[x1] n[x3]] EV[n[x3] s[x1]1] -

4 EV[n[x2] n[x3]] EV[n[x3] s[x1]1] -

4 EV[n[x1] n[x4]] EV[n[x3] s[x1]] +

4 EV[n[x2] n[x4]] EV[n[x3] s[x1]] + 2 EV[n[x3] s[xl]]2 -
4 EV[n[x1] n[x3]] EV[n[x4] s[x1]] +
4 EV[n[x2] n[x3]] EV[n[x4] s[x1]] +
4 EV[n[x1] n[x4]1] EV[n[x4] s[x1]] -
4 EV[n[x2] n[x4]1] EV[n[x4] s[x11] -
2

4 EV[n[x3] s[x1]] EV[n[x4] s[x1]]

+

2 EV[n([x4] s[x1]] +

2 2 2
EV[n[x3] ] EV[s[x1] 1 - 2 EV[n[x3] n[x4]] EV[s[x1] 1 +

2 2 2
EV[n[x4] ] EV[s[x1] ] - 2 EV[n[x3] ] EV[n[x1] s[x2]] +

2
4 EV[n[x3] n[x4]] EVIn[x1] s[x2]] - 2 EV[n[x4] ] EV[n[x1] s[x2]] +

2
2 EV[n[x3] ] EV[n[x2] s[x2]] - 4 EV[n[x3] n[x4]] EV[n[x2] s[x2]] +

2
2 EV[n[x4] ] EVIn[x2] s[x2]] - 4 EV[n[x1] n[x3]] EV[n[x3] s[x2]] +

4 EV[n[x2] n[x3]] EV[n[x3] s[x2]] +
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EVIn[x1] n[x4]] EV[n[x3] s[x2]1] -

EVIn[x2] n[x4]] EV[n[x3] s[x2]1] -

EV[n[x3] s[x1]] EV[n[x3] s[x2]] +

2

EVIn[x4] s[x1]] EV[n[x3] s[x2]] 2 EV[n[x3] s[x2]] +

+

EVin[x1] n[x3]] EV[n[x4] s[x2]] -

EV[n[x2] n[x3]] EV[n[x4] s[x2]] -

EV[n[x1] n[x4]] EV[n[x4] s[x2]] +

EV[n[x2] n[x4]] EV[n[x4] s[x2]] +

EV[n[x3] s[x1]] EV[n[x4] s[x2]] -

EV[n[x4] s[x1]] EV[n[x4] s[x2]] -

2

EV[n[x3] s[x2]] EV[n[x4] s[x2]] 2 EV[n[x4] s[x2]] -

+

2
EVIn[x3] ] EV[s[x1] s[x2]] + 4 EV[n[x3] n[x4]] EV[s[x1] s[x2]] -

2 2 2
EV[n[x4] ] EV[s[x1] s[x2]] + EV[n[x3] 1 EV[s[x2] 1 -

2 2 2
EVIn[x3] n[x4]] EV[s[x2] ] + EV[n[x4] ] EV[s[x2] ] +

EV[n[x1] n[x3]] EV[n[x1] s[x3]1] -

EV[n[x2] n[x3]] EV[n[x1] s[x3]] -

EVIn[x1] n[x4]] EVIn[x1] s[x3]1]1 +

EV[n[x2] n[x4]] EVIn[x1] s[x3]1]1 +

EVIn[x3] s[x1]] EVIn[x1] s[x31]1 -

EVIn[x4] s[x1]] EVIn[x1] s[x31]1 -
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EV[n[x3] s[x2]] EVIn[x1] s[x3]1]1 +

EVIn[x4] s[x2]] EV[n[x1] s[x3]]

+

EVin[x1] n[x3]] EV[n[x2] s[x3]] +

EVIn[x2] n[x3]] EV[n[x2] s[x3]] +

EVin[x1] n[x4]] EV[n[x2] s[x3]] -

EVIn[x2] n[x4]] EV[n[x2] s[x31] -

EV[n[x3] s[x1]] EVIn[x2] s[x3]1]1 +

EVIn[x4] s[x1]] EVIn[x2] s[x3]1]1 +

EVIn[x3] s[x2]] EV[n[x2] s[x31]1 -

EVIn[x4] s[x2]] EV[n[x2] s[x31]1 -

EVin[x1] s[x3]] EVIn[x2] s[x3]1]

+

2
EVin[x1] ] EV[n[x3] s[x3]] - 4 EV[n[x1] n[x2]]

2
EV[n[x2] ] EV[n[x3] s[x3]] + 4 EV[n[x1] s[x1]]

2
EVIn[x2] s[x1]] EV[n[x3] s[x3]] + 2 EV[s[x1] ]

EVIn[x1] s[x2]] EV[n[x3] s[x3]1] +

EVIn[x2] s[x2]] EV[n[x3] s[x31] -

2
EV[s[x1] s[x2]] EV[n[x3] s[x3]] + 2 EV[s[x2] ]

2
EVIn[x1] ] EV[n[x4] s[x3]] + 4 EV[n[x1] n[x2]]

2
EVIn[x2] ] EV[n[x4] s[x3]] - 4 EV[n[x1] s[x1]]
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2

2 EV[n[x1] s[x3]] -

2

2 EV[n([x2] s[x3]] +

EV[n[x3]

EV[n[x3]

EV[n[x3]

EV[n[x3]

EV[n[x4]

EV[n[x4]

s [x3]]

s [x3]1]

s [x3]]

s [x3]]

s [x3]1]

s [x3]]



2
2 EV[s[x1] ] EV[n[x4] s[x3]] +

EV[n[x2] s[x1]] EV[n[x4] s[x3]1]

EVin[x1] s[x2]] EV[n[x4] s[x31]1 -

EV[n[x2] s[x2]] EV[n[x4] s[x3]1]1 +

2
2 EV[s[x2] ] EV[n[x4] s[x3]] +

EV[s[x1] s[x2]] EV[n[x4] s[x3]]

EV[n[x1] n[x3]] EV[s[x1] s[x3]] -

EV[n[x2] n[x3]] EV[s[x1] s[x3]] -

EVIn[x1] n[x4]] EV[s[x1] s[x3]1]1 +

EV[n[x2] n[x4]] EV[s[x1] s[x3]1]1 +

EVIn[x3] s[x1]] EV[s[x1] s[x31]1 -

EVIn[x4] s[x1]] EV[s[x1] s[x31]1 -

EVIn[x3] s[x2]] EV[s[x1] s[x3]] +

EV[n[x4] s[x2]] EV[s[x1] s[x3]] +

EVIn[x1] s[x3]] EV[s[x1] s[x3]] -

2
2 EV[s[x1] s[x3]] -

+

EV[n[x2] s[x3]]1 EV[s[x1] s[x3]1]

EV[n[x1] n[x3]] EV[s[x2] s[x3]] +

EV[n[x2] n[x3]] EV[s[x2] s[x3]] +

EVin[x1] n[x4]] EV[s[x2] s[x3]] -

EVIn[x2] n[x4]] EV[s[x2] s[x3]] -

EVIn[x3] s[x1]] EV[s[x2] s[x3]] +

EVIn[x4] s[x1]] EV[s[x2] s[x3]] +

EVIn[x3] s[x2]] EV[s[x2] s[x3]] -
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4 EV[n[x4] s[x2]] EV[s[x2] s[x3]]

4 EV[n[x1] s[x3]] EV[s[x2] s[x3]]

+

4 EV[n[x2] s[x3]] EV[s[x2] s[x3]]

2
4 EV[s[x1] s[x3]] EV[s[x2] s[x3]1] + 2 EV[s[x2] s[x3]] +

2 2 2
EV[n[x1] ] EV[s[x3] ] - 2 EV[n[x1] n[x2]] EV[s[x3] ] +

2 2 2
EV[n[x2] ] EV[s[x3] 1 + 2 EV[n[x1] s[x1]] EV[s[x3] 1 -

2 2 2
2 EV[n[x2] s[x1]] EV[s[x3] 1 + EVI[s[x1] 1 EV[s[x3] 1 -

2 2
2 EV[n[x1] s[x2]] EV[s[x3] ] + 2 EV[n[x2] s[x2]] EV[s[x3] ] -

2 2 2
2 EV[s[x1] s[x2]] EV[s[x3] 1 + EV[s[x2] ] EV[s[x3] ] -

4 EV[n[x1] n[x3]] EV[n[x1] s[x4]] +

4 EV[n[x2] n[x3]] EV[n[x1] s[x4]] +

4 EV[n[x1] n[x4]] EV[n[x1] s[x4]1] -

4 EV[n[x2] n[x4]] EVIn[x1] s[x4]1] -

4 EV[n[x3] s[x1]] EV[n[x1] s[x4]1] +

4 EV[n[x4] s[x1]] EV[n[x1] s[x4]1] +

4 EV[n[x3] s[x2]] EV[n[x1] s[x4]1] -

4 EV[n[x4] s[x2]] EV[n[x1] s[x4]1] -

4 EV[n[x1] s[x3]] EV[n[x1] s[x4]1] +

4 EV[n[x2] s[x3]] EV[n[x1] s[x4]1] -
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EV[s[x1] s[x3]] EV[n[x1] s[x4]] +

2

EV[s[x2] s[x3]] EV[n[x1] s[x4]] 2 EV[in[x1] s[x4]] +

+

EVin[x1] n[x3]] EV[n[x2] s[x4]] -

EVIn[x2] n[x3]] EV[n[x2] s[x4]] -

EVin[x1] n[x4]] EV[n[x2] s[x4]] +

EV[n[x2] n[x4]] EV[n[x2] s[x4]] +

EV[n[x3] s[x1]] EV[n[x2] s[x4]] -

EV[n[x4] s[x1]] EV[n[x2] s[x4]] -

EV[n[x3] s[x2]] EV[n[x2] s[x4]] +

EV[n[x4] s[x2]] EV[n[x2] s[x4]] +

EVIn[x1] s[x3]] EV[n[x2] s[x4]] -

EV[n[x2] s[x3]] EV[n[x2] s[x4]] +

EV[s[x1] s[x3]] EV[n[x2] s[x4]] -

EV[s[x2] s[x3]] EV[n[x2] s[x4]] -

2
2 EV[n[x2] s[x4]] -

+

EV[n[x1] s[x4]] EV[n[x2] s[x4]]

2
EV[n[x1] ] EV[n[x3] s[x4]] + 4 EV[n[x1] n[x2]] EV[n[x3] s[x4]1] -

2
EVin[x2] ] EV[n[x3] s[x4]] - 4 EV[n[x1] s[x1]] EV[n[x3] s[x4]] +

2
EV[n[x2] s[x1]] EV[n[x3] s[x4]] - 2 EV[s[x1] ] EV[n[x3] s[x4]] +

EVIn[x1] s[x2]] EV[n[x3] s[x4]1] -

EV[n[x2] s[x2]] EV[n[x3] s[x4]] +
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2

EV[s[x1] s[x2]] EV[n[x3] s[x4]] - 2 EV[s[x2] ]

2

EVin[x1] ] EV[n[x4] s[x4]] - 4 EV[n[x1] n[x2]]

2

EVIn[x2] ] EV[n[x4] s[x4]] + 4 EV[n[x1] s[x1]]

EV[n[x2]

EV[n[x1]

EV[n[x2]

EV[s[x1]

EV[n[x1]

EV[n[x2]

EV[n[x1]

EV[n[x2]

EV[n[x3]

EV[n[x4]

EV[n[x3]

EV[n[x4]

EV[n[x1]

EV[n[x2]

EV[s[x1]

EV[s[x2]

EV[n[x1]

s[x1]] EV[n[x4] s[x4]]

s[x2]]

s[x2]]

s[x2]1]

n[x3]]

n[x3]]

n[x4]]

n[x4]]

s[x1]]

s[x1]]

s[x2]]

s[x2]1]

s[x31]

s[x31]

s[x31]

s[x31]

s[x4]]

EV[n[x4]

EV[n[x4]

EV[n[x4]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

EV[s[x1]

+

s[x4]] +

s[x4]] -

s[x4]1]

+

s[x4]] +

s[x4]] +

s[x4]] -

s[x4]] -

s[x4]] +

s[x4]] +

s[x4]] -

s[x4]] -

s[x4]] +

s[x4]] -

s[x4]] +

s[x4]] +

s[x4]] -
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2 EVIs[x1] ]

2
2 EVIs[x2] ]

EV[n[x3]

EV[n[x4]

EV[n[x4]

EV[n[x4]

EV[n[x4]

s [x4]]

s[x4]1]

s [x4]]

s[x4]1]

s[x4]1]

+

+



2

EV[n[x2] s[x4]] EV[s[x1] s[x4]] 2 EV[s[x1] s[x4]] +

+

EVin[x1] n[x3]] EV[s[x2] s[x4]] -

EVIn[x2] n[x3]] EV[s[x2] s[x4]] -

EVin[x1] n[x4]] EV[s[x2] s[x4]] +

EVIn[x2] n[x4]] EV[s[x2] s[x4]] +

EVIn[x3] s[x1]] EV[s[x2] s[x4]1]1 -

EVIn[x4] s[x1]] EV[s[x2] s[x4]]1 -

EV[n[x3] s[x2]] EV[s[x2] s[x4]] +

EV[n[x4] s[x2]] EV[s[x2] s[x4]] +

EVIn[x1] s[x3]] EV[s[x2] s[x4]] -

EV[n[x2] s[x3]] EV[s[x2] s[x4]] +

EV[s[x1] s[x3]] EV[s[x2] s[x4]] -

EV[s[x2] s[x3]] EV[s[x2] s[x4]1] -

EVin[x1] s[x4]] EV[s[x2] s[x4]] +

EVIn[x2] s[x4]] EV[s[x2] s[x4]] -

2

EV[s[x1] s[x4]] EV[s[x2] s[x4]] 2 EV[s[x2] s[x4]] -

+

2
EVIn[x1] ] EV[s[x3] s[x4]] + 4 EV[n[x1] n[x2]] EV[s[x3] s[x4]1] -

2
EVIn[x2] ] EV[s[x3] s[x4]] - 4 EV[n[x1] s[x1]] EV[s[x3] s[x4]] +

2
EV[n[x2] s[x1]] EV[s[x3] s[x4]] - 2 EV[s[x1] ] EV[s[x3] s[x4]] +

EV[n[x1] s[x2]] EV[s[x3] s[x4]] -

C-12



> 4 EV[n[x2] s[x2]] EV[s[x3] s[x4]1] +

2
> 4 EV[s[x1] s[x2]] EV[s[x3] s[x4]] - 2 EV[s[x2] ] EV[s[x3] s[x4]1] +

2 2 2
> EV[n[x1] ] EV[s[x4] ] - 2 EV[n[x1] n[x2]] EV[s[x4] ] +

2 2 2
> EV[n[x2] ] EV[s[x4] 1 + 2 EV[n[x1] s[x1]] EV[s[x4] 1 -

2 2 2
> 2 EV[n[x2] s[x1]] EV[s[x4] 1 + EV[s[x1] ] EV[s[x4] 1 -

2 2
> 2 EV[n[x1] s[x2]] EV[s[x4] 1 + 2 EVI[n[x2] s[x2]] EV[s[x4] 1 -

2 2 2
> 2 EV[s([x1] s[x2]] EV[s[x4] 1 + EV[s[x2] ] EV[s[x4] ]
4 2 2 22
casela= 12 sig + 12 sig EV[s[x3] ] + 3 EV[s[x3] 1 -

2 2
> 24 sig EV[s[x3] s[x4]] - 12 EV[s[x3] ] EV[s([x3] s[x4]] +
2 2 2 2 2
> 4 EV[s[x3] s[x4]] + 12 sig EVI[s[x4] 1 + 2 EV[s[x3] ] EV[s[x4] 1 -
2 22
> 12 EV[s[x3] s[x4]] EV[s[x4] ] + 3 EV[s[x4] 1 +
2 2 2
> 4 (2 EV[s[x3] s[x4]] + EV[s[x3] ] EV[s[x4] 1)
4 2 2 2

case2a= 6 sig + 2 sig EV[s[x1] ] - 8 sig EVI[s[x1] s[x3]] +

2 2 2 2 2
> 2 EV[s[x1] s[x3]] + 8 sig EV[s[x3] ] + EV[s[x1] ] EV[s[x3] 1 -

2 22
> 6 EV[s[x1] s[x3]] EV[s[x3] ] + 3 EV[s[x3] 1 +

2 2
> 4 sig EV[s[x1] s[x41] + 2 EV[s[x1] s[x4]1] -
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2 2
> 8 sig EV[s[x3] s[x4]] - 6 EV[s[x3] ] EV[s[x3] s[x4]] +

2
> 2 EV[s[x3] s[x4]] - 2 (2 EV[s[x1] s[x3]] EV[s[x1] s[x4]1] +

2
> EV[s[x1] ] EV[s[x3] s[x4]]1) +

2
> 4 (EV[s[x3] 1 EVI[s[x1] s[x4]] + 2 EV[s[x1] s[x3]] EV[s[x3] s[x4]1]1) +

2 2 2 2 2 2
> 2 sig EV[s[x4] 1 + EV[s[x1] ] EV[s[x4] 1 + EV[s[x3] 1 EV[s[x4] 1 -

2
> 2 (2 EV[s[x1] s[x4]] EV[s[x3] s[x4]] + EV[s([x1] s[x3]1] EV[s[x4] 1)
4 2 2 2
case3a= 6 sig + 2 sig EV[s[x2] ] + 4 sig EVI[s[x2] s[x3]] +

2 2 2 2 2
2 EV[s[x2] s[x3]] + 2 sig EV[s[x3] 1 + EV[s[x2] 1 EV[s[x3] ] -

A\

2 2
> 8 sig EVI[s[x2] s[x4]] + 2 EV[s[x2] s[x4]1]1 -

2 2
> 8 sig EV[s[x3] s[x4]] + 2 EV[s[x3] s[x4]] -

2
> 2 (2 EV[s[x2] s[x3]] EV[s[x2] s[x4]] + EV[s[x2] ] EV[s[x3] s[x4]]) -

2
> 2 (EV[s[x3] ] EVIs[x2] s[x4]] + 2 EV[s[x2] s[x3]] EV[s[x3] s[x4]]) +

2 2 2 2 2 2
> 8 sig EV[s[x4] ] + EV[s[x2] ] EV[s[x4] 1 + EV[s[x3] ] EV[s[x4] ] -

2 2
> 6 EV[s[x2] s[x4]] EV[s[x4] 1 - 6 EV[s[x3] s[x4]1] EV[s[x4] 1 +

2 2
> 3 EV[s[x4] 1 + 4 (2 EV[s[x2] s[x4]] EV[s[x3] s[x4]] +

2
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> EV[s[x2] s[x3]] EV[s[x4] 1)
4 2 2 2
caseda= 4 sig + 2 sig EVI[s[x1] 1 - 4 sig EVI[s[x1] s[x2]] +

2 2 2 2
> 2 sig EV[s[x2] ] + 2 EV[s[x1] s[x3]] + 2 EV[s[x2] s[x3]] +

2 2 2 2 2 2
> 2 sig EV[s[x3] 1 + EV[s[x1] 1 EV[s[x3] 1 + EV[s[x2] 1 EV[s[x3] 1 -

2
> 2 (2 EVIs[x1] s[x3]1] EVIs[x2] s[x3]] + EV[s[x1] s[x2]] EV[s[x3] 1) +

2 2 2
> 2 EV[s[x1] s[x4]] + 2 EV[s[x2] s[x4]] - 4 sig EV[s[x3] s[x4]] -

2
> 2 (2 EV[s[x1] s[x3]] EV[s[x1] s[x4]] + EVI[s[x1] ] EVI[s[x3] s[x4]]) +

> 4 (EV[s[x2] s[x3]] EV[s[x1] s[x41] +

> EVIs[x1] s[x3]]1 EVIs[x2] s[x4]] + EVI[s[x1] s[x2]] EVI[s[x3] s[x4]11)\
> - 2 (2 EV[s[x2] s[x3]] EV[s[x2] s[x4]] +
2 2 2
> EV[s[x2] ] EV[s[x3] s[x41]1) + 2 sig EV[s[x4] 1 +
2 2 2 2
> EV[s[x1] ] EV[s[x4] ] + EV[s[x2] ] EV[s[x4] ] -
2
> 2 (2 EVIs[x1] s[x4]1]1 EV[s[x2] s[x4]] + EV[s[x1] s[x2]] EV[s[x4] 1)
4 2 2 2

caselb= 12 sig + 24 sig G[0] + 8 G[0] - 24 sig G[-x3 + x4] -

2 2 2
> 24 G[0] G[-x3 + x4] + 4 G[-x3 + x4] + 4 (G[0] + 2 G[-x3 + x4] )

4 2 2 2
case2b= 6 sig + 12 sig G[0] + 6 G[0] - 8 sig G[-x1 + x3] -

2 2
> 6 G[0] G[-x1 + x3] + 2 G[-x1 + x3] + 4 sig G[-x1 + x4] +

2 2
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> 2 G[-x1 + x4] - 8 sig G[-x3 + x4] - 6 G[O] G[-x3 + x4] +

2
> 2 G[-x3 + x4] - 2 (2 G[-x1 + x3] G[-x1 + x4] + G[0] G[-x3 + x4]) +

> 4 (G[0] G[-x1 + x4] + 2 G[-x1 + x3] G[-x3 + x4]) -
> 2 (G[0] G[-x1 + x3] + 2 G[-x1 + x4] G[-x3 + x4])
4 2 2 2
case3b= 6 sig + 12 sig G[0] + 6 G[0] + 4 sig G[-x2 + x3] +

2 2
> 2 G[-x2 + x3] - 8 sig G[-x2 + x4] - 6 G[0] G[-x2 + x4] +

2 2
> 2 G[-x2 + x4] - 8 sig G[-x3 + x4] - 6 G[O] G[-x3 + x4] +

2
> 2 G[-x3 + x4] - 2 (2 G[-x2 + x3] G[-x2 + x4] + G[0] G[-x3 + x4]) -

> 2 (G[0] G[-x2 + x4] + 2 G[-x2 + x3] G[-x3 + x4]) +
> 4 (G[O] G[-x2 + x3] + 2 G[-x2 + x4] G[-x3 + x4])
4 2 2 2
casedb= 4 sig + 8 sig G[O] + 4 G[0] - 4 sig G[-x1 + x2] +

2 2
> 2 G[-x1 + x3] + 2 G[-x2 + x3] -

2
> 2 (G[0] G[-x1 + x2] + 2 G[-x1 + x3] G[-x2 + x3]) + 2 G[-x1 + x4] +

2
> 2 G[-x2 + x4] - 2 (G[0] G[-x1 + x2] + 2 G[-x1 + x4] G[-x2 + x4]) -

2
> 4 sig G[-x3 + x4] - 2 (2 G[-x1 + x3] G[-x1 + x4] +

\%

G[0] G[-x3 + x4]) 2 (2 G[-x2 + x3] G[-x2 + x4] +

\%
+

G[0] G[-x3 + x4]) 4 (G[-x2 + x3] G[-x1 + x4] +

\%

G[-x1 + x3] G[-x2 + x4] + G[-x1 + x2] G[-x3 + x4])
4 2 2 2
caselc= 12 sig + 24 sig G[0] + 12 G[0] - 24 sig G[pl - 24 G[0] G[p] +
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2
> 12 G[p]
4 2 2 2
case2c= 6 sig + 12 sig G[0] + 6 G[0] - 16 sig G[p]l - 16 G[0] G[p] +

2 2 2
> 12 G[p] + 4 sig G[2 p] + 4 G[0] G[2 p] - 8 G[p] G[2 p] + 2 G[2 p]
4 2 2 2
case3c= 6 sig + 12 sig G[0] + 6 G[0] - 16 sig G[p] - 16 G[0] G[p] +

2 2 2
> 12 G[p] + 4 sig G[2 p] + 4 G[0] G[2 p] - 8 G[p] G[2 p] + 2 G[2 p]
4 2 2 2
cased4c= 4 sig + 8 sig G[0] + 4 G[0] - 8 sig G[p] - 8 G[0] G[p] +

2 2
> 4 G[p] + 8 G[-x1 + x3] - 8 G[-x1 + x3] G[-x2 + x3] +

2
> 2 G[-x2 + x3] - 8 G[-x1 + x3] G[-x1 + x4] +

2
> 4 G[-x2 + x3] G[-x1 + x4] + 2 G[-x1 + x4]
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Appendiz D. SSF SNR Results for DIMM Geometry H-WFS

This appendix presents results for the SSF estimator SNR developed in Chapter III for
the simplest H-WE'S configuration-the DIMM. The results are divided into five groups of
plots. Each plot shows the SSF estimator SNR vs. the number of integration frames, N,
included in the SSF estimate. The five groups, as listed in Table D.1, are chosen to show
the SNR behavior as different SSF estimate and turbulence parameters are varied. All
plots are for a turbulence power law « = 11/3 and a average gradient mode count of four.
The wavefront slope is taken along the axis co-linear to the vector connecting the centers

of the two DIMM subapertures.

Slightly modified versions of Figures D.1, D.3, D.4, D.25, D.26, D.28, D.76, D.95,

and D.111 are discussed in Sec. (4.1). The remaining figures are similarly interpreted.
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Figure D.1

Figure D.2

SNR
IS
T
i

Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I';(0) = 0%. The ratio
Ly/D ranges from 1 to co.

SNR

10 20 30 40 50 60 70 80 90 100

Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.3  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I';(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.4  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.5  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I';(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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10 20 30 40 50 60 70 80 90 100

N

Figure D.6  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (10.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.7

Figure D.8
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Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.9  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
p = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.10  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.11  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.12  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §=(1.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 10%.
The ratio Ly/D ranges from 1 to oo.
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Group A: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.

SNR

Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.15  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.16  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.17  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.18  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §=(1.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 20%.
The ratio Ly/D ranges from 1 to oo.
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Group A: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.

SNR

Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.21  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.22  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.23  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (1.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.24  Group A: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §=(1.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 50%.
The ratio Ly/D ranges from 1 to oo.
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Figure D.25

Figure D.26
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Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.

SNR

Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.27  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.28  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.29  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 0%. The ratio
Ly/D ranges from 1 to co.
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Figure D.30  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 0%.
The ratio Ly/D ranges from 1 to oo.
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Figure D.31
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Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.

SNR

Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.33  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.34  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.35  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 10%. The ratio
Ly/D ranges from 1 to co.
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Figure D.36  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 10%.
The ratio Ly/D ranges from 1 to oo.

D-20



Figure D.37
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Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.

SNR

Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.39  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.40  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.41  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 20%. The ratio
Ly/D ranges from 1 to co.
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Figure D.42  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 20%.
The ratio Ly/D ranges from 1 to oo.
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Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.10D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (0.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.

D-24



SNR

Figure D.45  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (1.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.46  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, IV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (2.50D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.47  Group B: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 77 = (5.00D,90.00°), and a ratio of the slope measurement
noise variance to the wavefront slope variance o2 /I's(0) = 50%. The ratio
Ly/D ranges from 1 to co.
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Figure D.48  Group B: Slope structure function estimator SNR. vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity ¥7 = (10.00D,90.00°), and a ratio of the slope mea-
surement noise variance to the wavefront slope variance o2 /I's(0) = 50%.
The ratio Ly/D ranges from 1 to oo.
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Figure D.49  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.10D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.

.t . : 1 omo

—0
-—--10
20
—--50

SNR

10 20 30 40 50 60 70 80 90 100

Figure D.50  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.50D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.51  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (1.00D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.52  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (2.50D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.53  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (5.00D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.54  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (10.00D,90.00°), and a ratio Ly/D = 1.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.55
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.10D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.50D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (1.00D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (2.50D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.59  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (5.00D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.60  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (10.00D,90.00°), and a ratio Ly/D = 5.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.10D,90.00°), and a ratio Ly/D = 10.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (0.50D,90.00°), and a ratio Ly/D = 10.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.63  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (1.00D,90.00°), and a ratio Ly/D = 10.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.64  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (2.50D,90.00°), and a ratio Ly/D = 10.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.

D-34



;/Ts(0)

—0
-—--10
20
—-—50

SNR

Figure D.65 Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity o7 = (5.00D,90.00°), and a ratio Ly/D = 10.00. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.66  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 7 = (10.00D,90.00°), and a ratio Ly/D = 10.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 7 = (0.10D,90.00°), and a ratio Lo/D = 100.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 97 = (0.50D,90.00°), and a ratio Lo/D = 100.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.69  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 97 = (1.00D,90.00°), and a ratio Lo/D = 100.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.70  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 7 = (2.50D,90.00°), and a ratio Lo/D = 100.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.71  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity 7 = (5.00D,90.00°), and a ratio Lo/D = 100.00. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.72  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (10.00D,90.00°), and a ratio Lo/D = 100.00.
The ratio of the slope measurement noise variance to the wavefront slope
variance o2 /T's(0) varies from 0% to 50%.
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Figure D.73

Figure D.74
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (0.10D,90.00°), and a ratio Ly/D = co. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (0.50D,90.00°), and a ratio Ly/D = co. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.76
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (1.00D,90.00°), and a ratio Ly/D = co. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (2.50D,90.00°), and a ratio Ly/D = co. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.77  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity o7 = (5.00D,90.00°), and a ratio Ly/D = co. The ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.78  Group C: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity v7 = (10.00D,90.00°), and a ratio Lo/D = co. The ratio
of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) varies from 0% to 50%.
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Figure D.79
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(d) = 90.00°, a ratio Ly/D = 1.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 0%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 1.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 10%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.

D-42



Figure D.81

Figure D.82
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(d) = 90.00°, a ratio Ly/D = 1.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 20%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 1.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 50%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.83

Figure D.84
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(d) = 90.00°, a ratio Ly/D = 5.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 0%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 5.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 10%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.85

Figure D.86
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(d) = 90.00°, a ratio Ly/D = 5.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 20%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 5.00, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 50%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.87

Figure D.88
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 10.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 0%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Lo/D = 10.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 10%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.89

Figure D.90
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 10.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 20%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Lo/D = 10.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 50%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.91

Figure D.92
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity angle arg(?) = 90.00°, a ratio Lo/D = 100.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 0%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 100.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 10%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.93

Figure D.94
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of & = 3.6667, a turbulence layer
motion velocity angle arg(?) = 90.00°, a ratio Lo/D = 100.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 20%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, NV, for the DIMM geometry with a subaperture separation of
g = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence layer
motion velocity angle arg(v) = 90.00°, a ratio Ly/D = 100.00, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 50%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.95

Figure D.96
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(?) = 90.00°, a ratio Ly/D = oo, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 0%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = oo, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 10%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.97

Figure D.98
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(?) = 90.00°, a ratio Ly/D = oo, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 20%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Group D: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of = (4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity angle arg(v) = 90.00°, a ratio Ly/D = oo, and a ratio
of the slope measurement noise variance to the wavefront slope variance
02 /Ts(0) = 50%. The magnitude of the turbulence layer motion velocity
varies from 0.1D to 10D.
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Figure D.99

Figure D.100
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of §'=(4.00D,0.00°), a turbulence power law of a = 3.6667, a turbulence
layer motion velocity magnitude |7| = 1.00D, a ratio Lo/D = oo, and a ra-
tio of the slope measurement noise variance to the wavefront slope variance
02 /T5(0) = 0%. The angle of the turbulence layer motion velocity, arg(7),
is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /I'5(0) = 10%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.101

Figure D.102
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 20%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 50%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.103

Figure D.104
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 0%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /I'5(0) = 10%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.105

Figure D.106
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 20%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 50%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.107

Figure D.108
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 0%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /I'5(0) = 10%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.109

Figure D.110
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 20%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 50%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.111

Figure D.112

SNR

SNR

10 20 30 40 50 60 70 80 90 100

Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 0%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /I'5(0) = 10%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.113

Figure D.114
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 20%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 50%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.115

Figure D.116
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 0%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /I'5(0) = 10%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Figure D.117

Figure D.118
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of p'= (4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 20%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.
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Group E: Slope structure function estimator SNR vs. number of integra-
tion frames, N, for the DIMM geometry with a subaperture separation
of f'=(4.00D,0.00°), a turbulence power law of o = 3.6667, a turbulence
layer motion velocity magnitude |¢] = 1.00D, a ratio Ly/D = oo, and a
ratio of the slope measurement noise variance to the wavefront slope vari-
ance 02 /T'5(0) = 50%. The angle of the turbulence layer motion velocity,
arg(v), is 0, 45, or 90 degrees.

D-61



10.

11.

12.

13.

14.

15.

16.

17.

Bibliography

Boreman, Glenn D. and Christopher Dainty. “Zernike expansions for non-Kolmogorov
turbulence,” J. Opt. Soc. Am. A, 13(3):517-522 (March 1996).

Eaton, Frank D., et al. “Comparison of two techniques for determining atmospheric
seeing.” Optical, Infrared, and Millimeter Wave Propagation Engineering 926 . Optical,
Infrared, and Millimeter Wave Propagation Engineering. SPIE, 1988.

Eaton, Frank D.; et al. “Phase structure function measurements with multiple aper-
tures.” Propagation Engineering1115. Propagation Engineering. SPIE, March 1989.

Fried, D. L. “Differential angle of arrival: Theory, evaluation, and measurement feasi-
bility,” Radio Science, 10(1):71-76 (January 1975).
Goodman, Joseph W. Statistical Optics. John Wiley & Sons, 1985.

Iye, M., et al. “Differential Dome-Seeing Monitor,” Publications of the Astronomical
Society of the Pacific, 104:760-767 (September 1992).

Nicholls, T.W., et al. “Use of Shack-Hartmann wavefront sensor to measure deviations
from a Kolmogorov phase spectrum,” Applied Optics, 20:2460-2463 (July 1995).

Noll, R. J. “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.,
66:207-211 (1976).

Primot, J., et al. “Deconvolution from wave-front sensing: a new technique for compen-
sating turbulence-degraded images,” J. Opt. Soc. Am. A, 7(9):1598-1608 (September
1991).

Roddier, F. “The effects of atmospheric turbulence in optical astronomy.” Progress in
Optics 19, edited by E. Wolf, 283-368, Amsterdam: North-Holland, 1981.

Roggemann, Michael C. and Byron M. Welsh. Imaging through Turbulence. CRC
Press, Inc., 1996.

Sarazin, M. and F. Roddier. “The ESO differential image motion monitor,” Astron.
Astrophys., 227:294-300 (1975).

Silbaugh, Eric E., et al. “Characterization of atmospheric turbulence phase statistics
using wavefront slope measurements.” Unpublished, 1996.

Stribling, Bruce Edward. Laser Beam Propagation in Non-Kolmogorov Atmospheric
Turbulence. MS thesis, Air Force Institute of Technology, 1994.

Takato, Naruhisa and Ichirou Yamaguchi. “Spatial correlation of Zernike phase-
expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc.
Am. A, 12(5):958-963 (May 1995).

ten Brummelaar, T.A. “The contribution of high order Zernike modes to wavefront
tilt,” Optics Communication, 115 (April):417-424 (1995).

Vernin, Jean. “Measuring Astronomical Seeing: The DA/IAC DIMM,” Publications
of the Astronomical Society of the Pacific, 107:265-272 (March 1995).

BIB-1



18.

19.

20.

21.

22.

23.

24.

Walters, D. L., et al. “Vertical path atmospheric MTF measurements,” J. Opt. Soc.
Am., 69:828-837 (June 1979).

Welsh, Byron M. “Speckle imaging signal-to-noise ratio performance as a function of
frame integration time,” J. Opt. Soc. Am., 12(6):1364-1374 (June 1995).

Wild, W. J. and R. Q. Fugate. “Untwinkling the stars—Part 1,” Sky & Telescope, 25-31
(June 1994).

Wild, W. J. and R. Q. Fugate. “Untwinkling the Stars—Part I1,” Sky & Telescope,
20-27 (June 1994).

Winker, D. M. “Effect of a finite outer scale on the Zernike decomposition of atmo-
spheric optical turbulence,” J. Opt. Soc. Am. A, 8(10):1568-1573 (October 1991).

Wolfram, Stephen. Mathematica, The Student Book. Addison-Wesley Publishing Com-
pany, 1994.

Ziad, A., et al. “Experimental estimation of the spatial-coherence outer scale from a
wavefront statistical analysis,” Astronomy and Astrophysics, 282(3):1021-1033 (1994).

BIB-2



Vita

Capt Toby D. Reeves received a Bachelor of Science degree in Electrical Engineering
from the University of Alabama in July, 1990. Upon graduation he was commissioned as a
second lieutenant in the United States Air Force, where he was assigned to the Follow-on
Early Warning System Program Office as a Ground Communications Systems Manager.
In January 1994, Capt Reeves became Project Manager of Infrared Space Experiments
for the Space Based Infrared Systems Program Office. He is currently assigned to the Air
Force Institute of Technology where he is conducting thesis research on Hartmann wave-
front sensor performance when used in sensing atmospheric turbulence statistics. Upon

graduation from AFIT he will be assigned to Rome Laboratory’s Hanscom AFB facilities.

Permanent address: |GG

VITA-1



December 1996 Master’s Thesis

PERFORMANCE ANALYSIS OF A HARTMANN WAVEFRONT SEN-
SOR USED FOR SENSING ATMOSPHERIC TURBULENCE STATIS-
TICS

Toby D. Reeves
Captain, USAF

Air F Institute of Technol WPAFB OH 45433-6583
ir Force Institute of Technology, AFIT/GEO/ENG /96D-17

Dr. Brent Ellerbroek, PL/LIG
3550 Aberdeen Ave S.E.
Phillips Lab / LIG

Kirtland AFB, NM 87117-5776

Approved for public release; Distribution Unlimited

Atmospheric turbulence parameters, such as Fried’s coherence diameter, the outer scale of turbulence, and the
turbulence power law, are related to the wavefront slope structure function (SSF). The SSF is defined as the
second moment of the wavefront slope difference as a function of both time and position. Knowledge of the
SSF allows turbulence parameters to be estimated. Hartmann wavefront sensor (H-WFS) slope measurements,
composed of both signal and noise, allow the SSF to be estimated by computing a mean square difference of
H-WFS slope measurements. The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of
the estimator. This thesis develops a theoretical SNR expression for the SSF estimator. This SNR is a function
of H-WFS geometry, the number of temporal frames included in the estimate, the outer scale, power law, and
temporal properties of the turbulence. Spatial slope correlations are incorporated. Temporal slope correlations
are incorporated using Taylor’s frozen flow hypothesis. Results are presented for various H-WFS configurations
and atmospheric turbulence properties.
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