
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

Adaptive Neural Network Controller for ATM Traffic Adaptive Neural Network Controller for ATM Traffic

Jeffrey E. Larson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Controls and Control Theory Commons

Recommended Citation Recommended Citation
Larson, Jeffrey E., "Adaptive Neural Network Controller for ATM Traffic" (1996). Theses and Dissertations.
5924.
https://scholar.afit.edu/etd/5924

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F5924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5924?utm_source=scholar.afit.edu%2Fetd%2F5924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CX>

ADAPTIVE NEURAL NETWORK CONTROLLER

FOR ATM TRAFFIC

THESIS
Jeffrey E. Larson
Captain, USAF

2h AFIT/GE/ENG/96D-o9I OT A
Appmw'ed b=02A ~e wk.m

Cbte~md Uu~xa1fd

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DT.Lfj 1*uA"..".Xrv=~

AFIT/GE/ENG/96D-09

ADAPTIVE NEURAL NETWORK CONTROLLER

FOR ATM TRAFFIC

THESIS
Jeffrey E. Larson
Captain, USAF

AFIT/GE/ENG/96D-09

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AFIT/GE/ENG/96D-09

ADAPTIVE NEURAL NETWORK CONTROLLER

FOR ATM TRAFFIC

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Jeffrey E. Larson, BSB, BSEE

Captain, USAF

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank the people that assisted me in completing this project.

This document is the result of a team effort and while there's only one name on the

front, there were more than that responsible for its completion.

First I would like to thank my advisor, Dr Steve Rogers, for hanging in there

with me and providing me with much needed direction when the objective occasion-

ally blurred. The rest of my committee, Dr. Marty DeSimio and Capt Rick Raines,

provided invaluable insight that kept me from areas that could have spelled disaster.

Thank you.

The most important people in this process probably payed the highest price,

my family. Thanks most of all to my wife Michelle for enduring the grueling hours

and providing me the support and encouragement I needed. Thanks also to my girls

Brittany, Kristin, Erika and Jeanette for constantly reminding me that school is not

the most important thing.

Jeffrey E. Larson

ii

Table of Contents

Page

Acknowledgements. ii

List of Figures vi

List of Tables vii

Abstract. viii

I. Introduction. 1

1.1 Background. 1

1.2 Problem Statement. 4

1.3 Scope. 4

1.4 Thesis Organization. 4

1.5 Summary. 5

I. Background. 6

2.1 Introduction 6

2.2 Non Neural Network ATM Congestion Control 6

2.3 Neural Network Control of ATM Networks 7

2.3.1 Introduction 7

2.3.2 Neural Network Architecture 8

2.3.3 Neural Network Training 11

2.3.4 Feature Set Reduction 15

2.4 Feature Space 16

2.5 Summary 17

iii

Page

II. Methodology 18

3.1 Introduction 18

3.2 System Model 18

3.2.1 Traffic Generator 19

3.2.2 ATM Network 19

3.2.3 Traffic Streams. 20

3.3 MLP Inputs 22

3.3.1 Feature Set 22

3.3.2 Feature Set Reduction 24

3.4 Neural Network Architecture. 28

3.4.1 Hidden Layers 28

3.4.2 Activation Function. 28

3.4.3 Hidden Nodes 28

3.5 Link Controller. 29

3.5.1 Single MLP 29

3.5.2 Parameter Set Based MLPs 29

3.5.3 Cluster Based MLPs. 32

3.6 Bayes Error Rate 32

3.7 Summary 34

IV. Results 36

4.1 Introduction 36

4.2 Single MLP Link Controller 36

4.3 Parameter Set Based MLP Link Controller. 38

4.3.1 MLP for Each Parameter Set 38

4.3.2 Cross Generalization. 40

4.4 Cluster Based MLP Link Controller 44

4.5 Bayes Error Rate 44

4.6 Summary 45

iv

Page

V. Conclusion. 47

5.1 Introduction. 47

5.2 Summary of Results 47

5.2.1 Single MLP. 47

5.2.2 Parameter Set based MLPs 48

5.2.3 Cluster Based MLPs. 48

5.2.4 Bayes Error Rate. 49

5.3 Conclusion. 49

Appendix A. Traffic Stream Generation. 51

A. 1 Introduction. 51

A.2 Traffic Generator 51

A.3 Network Model. 53

Appendix B. Link Controller and Bayes Error Code 55

B. 1 Single MLP 55

B.2 Parameter Set Based MLPs 58

B.2.1 Parameter Set Cross- Generalization 63

B.3 Cluster Based MLPs. 69

BA4 Bayes Error Rate 72

Bibliography. 78

Vita. 81

V

List of Figures
Figure Page

1. ATM Network 2

2. Typical Neural Network 9

3. Activation Functions 11

4. ATM Network 19

5. Traffic Stream 20

6. Segmentation Scheme Error 25

7. Detail of Feature Rank Plots 26

8. Feature Selection Results 27

9. Single MLP Link Controller 30

10. Parameter Set Based Link Controller 31

11. Cluster Based Link Controller 32

12. Single MLP Error Results 37

13. Parameter Set MLP Total Error Rates 39

14. Parameter Set MLP Feature Vector Comparison 40

15. Clustering Error Rates 45

16. Parzen Window Bayes Error Bounds 46

17. Top Level Simulation Model 51

18. Traffic Source 52

19. Network Model 53

20. FIFO Queue 54

vi

List of Tables
Table Page

1. Baseline Parameter Set 21

2. Parameter Set Values 22

3. Traffic Stream Classification 23

4. Interval Lengths 24

5. Single MLP Link Controller Results 38

6. Parameter Set MLP Complete Error Rates 41

7. Parameter Set Based MLP Error Rates 42

8. Cross Generalization Matrix 43

vii

AFIT/GE/ENG/96D-09

Abstract

Broadband-Integrated Services Digital Networks (B-ISDN), along with Asynchronous

Transfer Mode (ATM), were designed to meet the requirements of modern communication

networks to handle multiple users and a wide variety of diverse traffic including voice, data

and video. ATM responds to requests for admission to the network by analyzing whether

or not the grade of service (GOS) requirement, specified in the admission request, can

be guaranteed without violating the GOS guaranteed to traffic already accepted into the

network. The GOS is typically a parameter such as cell loss rate (CLR), average delay,

or some other measurement associated with network performance. In order to develop

a tractable mathematical algorithm for controlling admission, an accurate model of the

communication network and traffic in question is necessary. The complex and dynamic

nature of these communication networks make them very difficult to model. Even when

such a model can be developed, often with unrealistic simplifications or unsupportable

assumptions, the associated mathematical algorithm is frequently excessively cumbersome

and timely processing of an admission request is lost. An alternative to conventional math-

ematical algorithms for cases like these is the use of neural networks (NN). NNs can learn

complicated functions relating the inputs and outputs of a system without prior knowledge

about the system itself. For ATM B-ISDN networks, NNs can learn the function relating

input traffic parameters and resulting network performance by training on an appropri-

ate set of traffic parameter inputs and resulting GOS outputs. In this work three neural

network admission controller schemes are examined. The Bayes error rate, as bounded

by the Parzen window technique, is also introduced as a benchmark for measuring the

performance of these admission controllers. Results indicate that error rates approaching

the Bayes error rate can be obtained by using a self organizing, or clustering, algorithm

to segment the input space and then train separate MLPs on each cluster. This cluster-

ing algorithm can also be used to direct the traffic streams requiring classification to the

appropriately trained NN admission controller.

viii

ADAPTIVE NEURAL NETWORK CONTROLLER

FOR ATM TRAFFIC

L Introduction

1.1 Background

The Air Force's Global Reach - Global Power operational concept demands

smaller, rapidly deployable forces operating in dynamic environments [7]. To sup-

port these forces, the Air Force has implemented new Command, Control, Com-

munications and Intelligence (C31) structures to provide command and control in-

formation to the warfighters, whenever and wherever it is needed. One example is

Rome Laboratory's "Information For The Warrior" (IFTW) program [9] in support

of Air Mobility Command (AMC). These communications structures will employ a

variety of communications facilities, such as satellites, tactical radios, and terres-

trial networks based on asynchronous transfer mode (ATM). These networks may be

military, commercial or a combination of both. Efficient network management, in-

cluding congestion control, is essential to optimize the resources available and allow

the maximum amount of information possible to flow to the commanders who need

it.

Modern communication networks must be capable of handling multiple users

and a wide variety of diverse traffic including voice, data and video. Broadband-

Integrated Services Digital Networks (B-ISDN) are designed to meet these require-

ments. In order to efficiently and flexibly allocate bandwidth in the dynamic environ-

ment these networks operate in, asynchronous transfer mode (ATM) was developed

as the switching protocol. ATM combines high speed packet switching with statis-

tical multiplexing. Packet switching involves dividing a message into finite length

1

segments, with each segment addressed and sent to its destination separately. The

message is then reassembled at the destination. Each packet in ATM, referred to as

a cell, is 53 bytes long. A message that is broken into cells is termed a call. With

statistical multiplexing, packets from multiple traffic sources are combined in a single

First-In-First-Out (FIFO) queue with a constant service rate. ATM is distinguished

from synchronous transfer mode (STM) in that ATM allows each user to have an

effective data rate that matches their instantaneous data rate requirement. This

data rate requirement can be large or small and can change over time. In STM, the

user is assigned a fixed data rate.

A distributed ATM network is represented in Figure 1. The individual calls, or

messages, request admission to the network and identify the grade-of-service (GOS)

they require. The GOS is typically a parameter such as cell loss rate (CLR), average

delay, or some other measurement associated with network performance. The link

controller must decide if the GOS of the incoming call can be guaranteed while

maintaining the GOS of calls already admitted. The links to the network are bi-

directional, that is they can transmit as well as receive. The intermediate nodes are

routers and may also be sources or destinations of messages. The cells or packets

of a message may all take different routes through the network before they are

reassembled at their destination.

LINK LINK

MESSESCALLS "-INTERMEDIATE

MESSAGES/CALLS i L

LINK .LINK

Figure 1 Distributed ATM Network

2

In order to develop a tractable mathematical algorithm for deciding which

requests for admission are accepted, an accurate model of the communication net-

work and traffic in question is necessary. The complex and dynamic nature of these

communication networks make them very difficult to model. The traffic, as well

as the B-ISDN components comprising the communication network, are non-linear

with complex statistical characteristics. Even when such a model can be developed,

often with unrealistic simplifications or unsupportable assumptions, the associated

mathematical algorithm is frequently excessively cumbersome and timely processing

of an admission request is lost. The high speed nature of these communications

networks require high speed processing of each admission request. An alternative

to conventional mathematical algorithms for cases like these is the use of neural

networks (NN). Park and Lee [24] describe a NN as, "a parallel, distributed, infor-

mation processing structure consisting of many processing elements interconnected

via weighted connections." Another way to think of NNs is as a nonlinear circuit

mapping multiple inputs to multiple outputs. NNs can learn complicated functions

relating the inputs and outputs of a system without prior knowledge about the sys-

tem itself. For ATM B-ISDN networks, NNs can learn the function relating input

traffic parameters and resulting network performance by training on an appropriate

set of input and output data. This function can then be used to decide the merits

of network admission requests and make an appropriate decision.

The choice of an optimal neural network architecture, as well as the method

of training, that results in an accurate prediction of network performance are design

decisions that need to be made before an ATM B-ISDN network is deployed. The

training technique must be able to react to widely diverse traffic patterns while

maintaining the highest level of performance possible. An examination of the set of

feature parameters describing the network traffic, and used as inputs to the NN, to

arrive at an optimal minimum will further increase the efficiency of the admission

control process.

3

1.2 Problem Statement

This thesis will develop several neural network ATM admission controllers and

investigate their generalization capabilities and overall performance in recognizing

communication traffic streams that cause congestion situations in a link to an ATM

network.

1.3 Scope

Multi-layer perceptron (MLP) neural networks will be trained to classify ATM

network traffic into acceptable and unacceptable streams using back propagation.

The traffic streams will be generated by BONeS@ DESIGNERTM , a communication

network simulator. A baseline parameter set representing the boundary between

acceptable (does not cause congestion) and unacceptable streams (causes congestion)

will be determined. The primary baseline parameters will then be varied resulting

in 12 parameter sets at various distances from the boundary. These parameter sets

represent communication streams that are the most difficult to classify because of

their proximity to the boundary. The MLP neural network architecture will be

determined, implemented in various link controller schemes, and the performance of

these approaches will be compared to each other, as well as to the optimal Bayes

error rate.

1.4 Thesis Organization

The following chapter reviews previous research conducted using NNs to control

ATM networks. The types of neural networks used, features used for inputs, as well

as various training techniques are examined. Chapter III describes the techniques

employed in this effort to investigate the performance of various implementations of

MLPs for ATM link controllers. The results and analysis of this investigation, as

applied to simulated data is presented in Chapter IV. Chapter V contains conclusions

drawn from the results and areas of further study.

4

1.5 Summary

The heterogeneous nature of ATM traffic makes it very difficult to model. Neu-

ral networks show promise for the admission control task in these networks because

they do not require a predefined model. Without the effective control of high-speed

networks, capable of handling voice, data and video traffic, the successful deployment

of these networks, to provide timely and accurate C3I for commanders, is threatened.

5

II. Background

2.1 Introduction

This chapter begins with an examination of recent work in the area of algo-

rithmic control of ATM networks. Current research using neural networks for the

control of ATM networks is explored next, concentrating on network management

functions. Finally, training techniques and feature parameter analysis are covered.

2.2 Non Neural Network ATM Congestion Control

Congestion control in an ATM network is defined as maintaining the network's,

or link's, performance at a level sufficient to maintain the required grade of service

(GOS) guaranteed to all calls at network admission, while also making efficient use

of a large bandwidth [16]. Access, or admission, control is defined as keeping the

traffic level in the network, or link, below the congestion level.

Many different techniques have been developed to control ATM network con-

gestion [11,16,18,21,28] One approach involves employing different congestion control

procedures for different traffic types. Sriram [28] divided the traffic into two types,

data and voice. For voice traffic he proposed employing such techniques as cell drop-

ping. Cell dropping involves eliminating some cells from a call in order to keep traffic

below the congestion level and maintain the required GOS. It is argued that the loss

of some individual cells in a voice traffic stream will not significantly degrade the

sound quality. For data traffic he proposed a variety of techniques including window-

based flow control, bandwidth usage monitoring, prioritization and rate based flow

control. Window-based flow control involves dividing the traffic into finite lengths,

or windows, and basing the congestion control criteria on the characteristics of the

traffic contained in the window. Bandwidth usage monitoring tracks the traffic load

and relates it to the network capacity. The use of a ranking system to assign some

calls more importance than others and then using this ranking to decide which calls

6

are eliminated first when a congestion situation arises is the concept behind priori-

tization. Finally rate-based flow control uses the average and peak rate of calls to

predict network performance and control congestion.

Jiang and Meditch [18] divided the traffic into constant bit rate (CBR) and

variable bit rate (VBR) traffic. CBR traffic typically represents fixed rate video and

other real time traffic while VBR traffic represents voice, data and other bursty traffic

[14]. They used Synchronous Transfer Mode (STM), which allocates fixed time slots

per call, as the switching protocol for CBR traffic and ATM for VBR data. An

individual switch could then consist of all ATM, all STM, or a combination of both.

Most techniques involving an algorithmic approach to congestion and admis-

sion control make an a priori assumption of a finite number of traffic classes based

on a model of the incoming traffic. The extremely heterogeneous and high speed

nature of ATM networks, however, does not lend itself to any traffic modeling as-

sumptions. Neural network admission control does not require any a priori traffic

model assumptions, only that the data available for training is representative of the

traffic needing classification, and so can handle a wide variety of traffic.

2.3 Neural Network Control of ATM Networks

2.3.1 Introduction. Hiramatsu [13] is widely cited as conducting some of

the earliest work in controlling ATM networks with NNs. His initial work involved

call admission control at a single entry point and established the feasibility of us-

ing NN controllers in ATM networks to achieve results comparable to algorithmic

approaches. From this beginning, many researchers have expanded the scope of func-

tions handled by NNs. Current work ranges from viewing the challenge as a network

optimization problem [24] using feedback NNs to using distributed, interconnected

NNs to control all network functions [1].

Neural networks have many advantages that make them good candidates for

traffic controllers in ATM networks. Chen and Leslie [4] describe these as:

7

1. Adaptive learning process requires no system model.

2. High computation rate due to massive parallelism in the hardware implemen-

tation.

3. Ability to generalize, or adapt, to a situation it has not previously seen.

4. High degree of robustness.

There are also a few disadvantages [17] associated with neural networks:

1. Increased complexity.

2. Training phase.

3. Poor performance under low load.

The increased complexity and training phase are characteristics that will be

minimized as part of the design process. Complexity can be reduced by designing

the NN with the fewest number of nodes, or neurons, as possible. The number

of nodes in a NN is affected by the dimension of the input space, the number of

output classes, the number of hidden layers and the number of nodes in each hidden

layer. The duration of the training phase is also related to the number of neurons

in the NN, as well as the number of input, or feature, vectors available for training.

Poor performance under low load conditions is not important given the objective

of controlling the communication network under high load conditions. The benefit

of adequately controlling the network under high load conditions outweighs any

performance fall off under low load conditions.

2.3.2 Neural Network Architecture. A multi-layer perceptron (MLP) is a

neural network consisting of an input layer, one or more hidden layers and an output

layer. The input layer contains one neuron, or node, for each element of the input

feature vector. The only observable output of an MLP is the result of the processing

of the last layer, or output layer, with the middle, or "hidden" layer(s) outputs being

fed to the next layer. Figure 2 shows a typical MLP neural network. The inputs are

8

weighted by matrix W1 and fully interconnected to the single hidden layer. Each

node in the hidden layer sums the weighted outputs of the input layer and applies a

non-linear function. This sum of weighted outputs from the previous layer is termed

the activation and the non-linearity is the activation function. The output of the

hidden nodes are then weighted by matrix W2 and supplied to the output node.

Similar to the hidden node, the output node sums its inputs and applies its own

activation function, which may or may not be the same activation function as the

hidden layer.

Hidden Layer
6Output Layer

Inputs W W2

12

n

Figure 2 Typical Neural Network

The architecture of a MLP involves such things as the number of hidden layers,

the number of nodes in each hidden layer and the activation function employed by

each layer in a MLP. The following sections briefly describe these items.

2.3.2.1 Number of Hidden Layers. The number of hidden layers is

usually chosen in anticipation of the complexity of the decision regions. The more

complex the decision regions, the more hidden layers required to accurately represent

it. It has been shown, however, that any non-linear function can be approximated

9

by a MLP with only one hidden layer, given enough nodes in that hidden layer [5].

This effort will, therefore, use a single hidden layer MLP.

2.3.2.2 Number of Hidden Layer Nodes. The number of nodes re-

quired in the single hidden layer, to accurately classify a given set of feature vectors,

is a function of the complexity of the feature space. The more complex the feature

space, the more nodes required. Since the feature space complexity is unknown, the

number of hidden nodes will be varied to determine the minimum number required

to achieve optimal performance. It is desirable to keep the number of hidden nodes

to a minimum so the computational complexity of the MLP is minimized, resulting

in faster processing and better generalization, and the number of feature vectors

required to adequately train the NN is minimized.

A rule of thumb for determining the number of training vectors required to

adequately train a NN is given by P = S, where P is the number of training vectors

required, S is the number of weights in the NN and E is the acceptable uncertainty

rate [2]. Using this rule, for an accuracy rate of 90% (corresponding to E = 0.1),

P = 10 * S. For example, a NN with two input features, three hidden layer nodes

and two classes (which can be implemented with one output node) has nine total

weights associated with it (2 input nodes X 3 hidden nodes = 6 weights connecting

the input and hidden layers, plus, 3 hidden nodes X 1 output node = 3 weights

connecting the hidden and output layers for a total of nine weights). Now, using the

rule of thumb at least 90 training vectors are required to adequately train this NN.

Note that the value c represents the level of confidence in the MLPs classification

accuracy, not the actual classification accuracy.

2.3.2.3 Activation Functions. The last part of a NNs architecture is

the activation function employed by the hidden and output layers. The activation

function is a nonlinearity applied to the summed total of the weighted inputs to a

particular node. The summation of the inputs to a particular node is the activation

10

and can be viewed as a measure of similarity between the input vector and the weight

vector. The activation function typically approaches some upper limit for large

positive activations and a lower limit for large negative activations. Two popular

activation functions are the hyperbolic tangent (tanh) and the sigmoid (see Figure 3).

It has been argued that the use of tanh as the activation function on hidden nodes is

advantageous in the construction of efficient training methods [19] and so, based on

this argument, it is used for all hidden layer nodes in this thesis. The problem being

examined is a two class problem, so only a single output node is required. A sigmoid

activation function is used on the output node, with a threshold of 0.5 separating

the classes. The sigmoid is defined by Equation 1 and the tanh by Equation 2 where

a is the activation.
1

f(a)- 1 + e-a (1)

f(a) = tanh(a) (2)

1.4

1.2-

0.5. 0.8.
.-

0..-

-0.5 0.2

-0.2

-3 -2 -1 o 1 2 3 -5 -4 3 -2 -1 0 1 2 3 4 0

Activation Activation

(a) (b)

Figure 3 Common activation functions (a) Hyperbolic Tangent (b) Sigmoid

2.3.3 Neural Network Training. Neural network training is an area of

considerable interest and is widely discussed in the literature [3,20,30]. Thus, a full

discussion is impossible here. Only training techniques specifically related to the

neural network control of ATM networks will be covered.

11

The training of a neural network involves two important design decisions: first,

the training method; and second, the update rule used to adjust the NNs intercon-

nection weights.

2.3.3.1 Training Methods. Many researchers have explored the area

of NN training methods and several innovative training methodologies have been

proposed [3, 20, 30]. Hiramatsu, in 1991, [14] developed a two phased approach,

combining off-line and on-line training. The NN is first trained off-line to obtain a

near optimal set of interconnection weights. The weights are then adjusted, using

on-line training, to the optimal values for the given situation. Training data for the

on-line training is selected using a leaky pattern table approach. This involves the

storing of data resulting in desirable output, as well as data resulting in undesirable

output, in a pattern table. These outputs typically represent some GOS parameter

such as throughput or cell loss rate. The NN then alternates between a control cycle,

when the NN performs the function it is intended to, and a training cycle, when the

NN is trained on the contents of the pattern table. This allows the NN to adapt to

changing traffic patterns. The problem with this approach is the time required to

retrain the NN. The NN is unavailable to perform it's required function while it is

being retrained.

Hiramatsu continued to refine real-time training proposing a virtual output

buffer method in 1995 [15]. This method routes the communication traffic through

a number of virtual buffers, each with a smaller capacity than the actual buffer. By

monitoring these virtual buffers, and using their loss and delay parameters as inputs

to a NN connection admission controller, he was able to map the performance of the

virtual buffers to the actual buffer.

Nordstrom, et al, proposed reinforcement training via construction of hypo-

thetical targets [8]. This approach accumulates, and discounts, two sets of weight

vectors. The first set assumes a series of actions will result in a favorable outcome

12

and the second assumes an unfavorable outcome. Once the result is determined

to be favorable or unfavorable, the appropriate weight update vector (the one as-

suming a favorable outcome or the one assuming an unfavorable outcome) is used

to adjust the NN weights. This approach assumes that if a series of actions re-

sults in a favorable/unfavorable outcome all actions leading to that outcome were

favorable/unfavorable.

One of the most popular training methods, and the one used for this work, is

back propagation. Back propagation is a gradient descent technique that seeks to set

the interconnecting weights so as to minimize some objective function. The objective

function is typically an operation performed on the difference between the desired

and actual output. This difference, or error, is then propagated backwards through

the net from the output layer to the hidden layer(s). The weights are typically

updated immediately following the presentation of a feature vector used for training.

Once all available feature vectors to be used for training are presented, an epoch of

training has occurred. It typically takes many epochs of training before the MLP

can accurately classify previously unseen feature vectors. One danger that must be

considered is if the MLP is trained too long, it will memorize the training data and

will not be able to generalize to data outside the training set.

2.3.3.2 Update Rule. The second area of interest, closely related

to the training technique, is the method used to update the NN's interconnection

weights. Traditional approaches use a mean-square-error function, with the error

defined as:

E=k - (dk - yk) (3)
k=1

where K is the number of outputs, dk is the desired output and yk is the actual

output. The learning law for each set of weights, W, is written as:

W + = W- + 77 W_ (4)

13

where W + is the updated weight matrix, W- is the old weight matrix and 77 is the

learning rate. A learning rate is a parameter that controls step size and is used to

control the rate of convergence. It is typically a constant and is chosen to be a small

positive. Innovative variations of this traditional approach include Chen and Leslie's

use of an adaptive learning rate [4]. They proposed reducing the learning rate each

time the sign of the error changed. This scheme resulted in faster convergence of the

weight matrix and a substantial reduction in training time. Ogier [23] proposed the

use of an asymmetric error function. In the two class problem Ogier was concerned

with, he used the following error function:

K 1K

E = 2 EZ (d - yk)2 + 2 _(dy -yk) 4 (5)
k _= k=1

classl class2

The asymmetric nature of this error function allows the controller to place more

importance on one outcome versus another. In this case, Ogier's objective was to

place more importance on rejecting a traffic stream that would result in unacceptable

performance (class 2) than accepting a stream that would not adversely affect the

network's performance (class 1).

The Levenburg-Marquardt method [6] uses an approximation of Newton's

method versus the traditional gradient descent method. The update rule for this

method is:

W + = W- (jTj + LI)-ljTe (6)

where J is the Jacobian matrix of derivatives of each error to each weight, Pu is a

scalar and e is the error vector. After each successful step (a decrease in the error

rate), p is decreased and is only increased when a step results in an increase in the

error. As p increases, this method approaches gradient descent and as [decreases

it approaches the Gauss-Newton method, making it faster and more accurate near

an error minima. The problem with this approach is that while it usually converges

14

in fewer epochs than gradient descent it requires large amounts of memory and may

take more actual time to train. This approach is used whenever computer resources

permit, otherwise gradient descent will be used.

2.3.4 Feature Set Reduction. A new area of research into the NN approach

to traffic control of ATM networks involves the analysis of NN input parameters, or

features. The objective here is to reduce the set of features to some optimal minimum

in order to reduce the complexity of the NN controller and increase processing speed.

Another benefit of a reduced feature set is a fewer number of feature vectors are

required to accurately train the MLP because there are fewer nodes and therefore

fewer weights in the network (recall rule of thumb from Section 2.3.2.2). This will

also reduce the training time. This is a new aspect of the NN design process as it

relates to ATM networks and so there is little discussion in the literature. Ogier [23],

however, was able to reduce the size of his input vector from 17 elements to 3, with no

loss in performance, by preprocessing the feature vector using a linear compression

technique. This technique essentially involved the additional of another hidden layer

with a linear activation function used to pre-process the full feature vector. The three

elements in the reduced feature set were not three of the original 17, but rather a

combining of the 17 into three.

Ruck developed a parameter relating the sensitivity of the output to each input

feature called saliency [26]. Using this metric it is possible to rank the feature set

in order of importance. He showed the saliency metric, which involves the partial

derivatives of the NN outputs with respect to the inputs, to be equivalent to criteria

based on probability of error. The implementation of Ruck's method can become

computationally intensive and was further improved by Steppe [29]. Steppe also pro-

vides an excellent overview of feature selection techniques as well as NN architecture

design considerations.

15

A simpler feature selection technique involves the sequential search of the fea-

ture set. Forward search is a technique that ranks the features from the most to

least important. This approach uses a k nearest neighbor (kNN) classifier and leave

one out error estimation. All elements of the feature set are used to train a kNN

classifier and then the feature elements are presented to the trained classifier one at

a time. The feature element achieving the best classification rate is selected as the

most important and the process is repeated using the remaining elements. This con-

tinues until there are no features left. Backward search is similar to forward search

except all the feature elements except one are presented to a trained kNN classifier

to arrive at a classification rate. The element left out of the feature set achieving

the highest classification rate is then ranked last. Again this continues until there

are no feature elements remaining. Backward search allows the interaction of mul-

tiple feature elements to be considered. Forward and backward search combines the

previous two search methods. This technique starts with no features and proceeds

as if it were a forward search. When two feature elements have been selected, it

searches for one to take away, as in a backward search. It continues adding two and

taking away one until all the feature elements have been ranked. The forward and

backward search may find interdependencies amongst the feature elements that were

not discovered by either the forward or the backward search. All three techniques

are used for the feature set analysis accomplished in this thesis.

2.4 Feature Space

In order to gain insight into the feature space, it may be desirable to organize

the feature vectors by some measure of similarity. One measure of similarity is the

Euclidean distances between feature vectors. A self organizing network can learn

to detect correlations among input vectors. A competitive learning self organizing

network organizes the feature space into clusters by calculating the distance between

an input vector and a user defined number of cluster centers. The closest cluster

16

center wins the "competition" and is the only cluster center to be updated, effectively

moving it closer to the input vector. Using this approach the feature space can be

segmented without making any a priori assumptions about its distribution.

2.5 Summary

The MLP architecture as well as the treatment of the feature set are important

design decisions that impact the overall performance and computational complex-

ity of the MLP link controller. This thesis will examine the MLP architecture, the

feature set used to describe the communication traffic and the scheme used to em-

ploy the MLP(s) to control congestion in an attempt to determine the combination

resulting in optimal performance.

17

III. Methodology

3.1 Introduction

The previous chapter discussed some of the research conducted in the area of

neural network control of ATM communication networks. This chapter describes

the network traffic model used to generate simulated communication streams that

may be seen in an ATM network. The description of this network traffic model is

followed by a presentation of the model used to represent the ATM communications

network, or in this case, a single link into the network. The types of simulated traffic

streams generated to depict ATM communications traffic flowing through a network

are discussed next.

Section three presents the approach used to characterize the traffic streams and

extract features that can be presented to a NN used to control link admission. The

procedure used to arrive at an appropriate MLP architecture, including the number

of hidden nodes, is the topic of section four. Section five describes the alternative

architectures that will be used to implement the MLP as a link controller for an

ATM network. Finally, the Bayes error rate, which is the minimum average error

rate that can be achieved with the available data, is discussed in section six.

3.2 System Model

The ATM communications traffic assumed for this work is a superposition of

multiple calls collected at a single source. A call refers to a series of cells containing

information to be transmitted. A call may contain video, voice, or data information

in an ATM network. The single source can be thought of as representing an entry

point, or link, into a distributed ATM network (Figure 4). For any call, the admission

criteria is the prevention of congestion on this particular link, which we define to

be a cell loss rate (CLR) of less than 0.001. The challenge is to accurately predict

whether the admission of the call will cause a congestion situation on the link.

18

LINK LINKGN

MESSAGES/CALLS LINK

LINK ,LINK

Figure 4 Distributed ATM Network

3.2.1 Traffic Generator. An ATM traffic source can be effectively modeled

as an on-off Markov process [27]. This process is characterized by two states. When

in the "on" state the source generates traffic at a constant rate and is idle in the

"off" state. Traffic streams, representing a collection of calls present in an ATM

communication link, were generated using the "Bursty Traffic Source" (BTS) in

DesignerTM . The traffic source is controlled by three primary parameters: Inter-

Pulse Time (IPT); Mean Delay Between Bursts (MDBB) and Mean Pulses per Burst

(MPPB). Using this terminology the "on" time is a burst and the "off" time is the

delay between bursts. IPT is a constant while MDBB is exponentially distributed

and MPPB has a geometric distribution.

The BTS produces pulses at a constant rate (IPT) during the duration of the

"on" time (MPPB) and is idle during the "off" time (MDBB). The pulses are treated

as packets, or cells, for the purpose of running them through the ATM network. An

example of the traffic generated is shown in Figure 5.

3.2.2 ATM Network. Only a portion of the ATM communication network

is modeled; a single link into a distributed ATM network. Since the link has a

finite capacity, it is represented by a simple First-In-First-Out (FIFO) queue with

a constant transmission rate. An arbitrary capacity of 1000 cells was chosen as the

19

Delay Between Bursts Burst

r . Each Arrow Represents a Cell

time

MDBB -- - MPPB
IPT

Figure 5 Traffic Stream

queue buffer size. A transmission delay of 6.817 ,sec per cell (or packet) is used to

represent a link transmission rate of 62.2 Mbps (62.2 Mbps/8 bits per byte = 7.775

e+06 bytes per sec/53 bytes per cell = 146.698 e+03 cells per second = 6.817 usec

to transmit one cell).

The objective of the admission controller is to keep traffic on the link below the

congestion level, defined as a CLR of 0.001. To do this it must be able to recognize

a traffic stream that causes congestion. The simulated traffic streams represent the

traffic on the link resulting when a request for admission has been accepted and

is added to previously accepted calls. The job of the NN admission controller is

to analyze the stream and decide whether it is acceptable (does not result in a

congestion situation) or unacceptable (results in a congestion situation).

3.2.3 Traffic Streams. The parameters used to describe the communication

traffic, as discussed in 3.2.1, were varied and streams of one second in length were

generated. One objective was to generate streams containing at least 100,000 cells

so that an accurate CLR could be calculated. The streams were then fed through

the ATM network described in Section 3.2.2 and a cell loss rate was determined by

comparing the number of buffer rejects with the total cells generated. If the CLR

was less than the congestion level of 0.001 the stream was classified as acceptable

and unacceptable otherwise. The three primary parameters (IPT, MDBB, MPPB)

were varied until they produced approximately 50% acceptable streams and 50%

20

unacceptable streams, while still generating at least 100,000 cells per stream. These

parameters, along with the buffer size and service delay, were assumed to represent

the boundary between the acceptable and unacceptable regions (Table 1).

Table 1 Baseline Parameter Set

Parameter Baseline Value

Buffer Size 1000

Service Delay 6.817 /sec

Inter-Pulse Time (IPT) 5.863 1 sec

Mean Delay Between Bursts 0.005 sec

Mean Pulses per Burst (MPPB) 1467

The three primary parameters were then adjusted away from the boundary,

one parameter at a time while holding the others constant. This resulted in 12

parameter sets at various locations near the boundary. Each parameter set represents

an adjustment in two directions, one towards the acceptable region and one towards

the unacceptable region. For example, in parameter set IPT-1 the inter-pulse time

was varied from its baseline of 5.863 1 sec (86% of service delay (SD)) to 5.794 fsec

(85% of SD) for a move towards the "unacceptable" region and 5.931 1 sec (87% of

SD) for a move towards the "acceptable" region (Table 2).

The choice of the parameters in Table 2 was determined by trial and error, with

the goal of sequentially moving the streams farther into the two decision regions.

As each parameter is moved away from the boundary into its respective region, it is

expected that an ever increasing percentage of the streams produced will be classified

as belonging to that region. This expectation is validated by Table 3.

These parameter sets represent the most difficult streams to classify because

they are generated using parameters describing the "boundary" between accept-

able and unacceptable streams. If the MLP can successfully classify these streams

it should be able to generalize to streams that are deeper into the acceptable or

unacceptable regions and therefore easier to classify.

21

Table 2 Parameter Set Values

Parameter Set "Acceptable" Stream "Unacceptable" Stream

IPT-1 5.931 /sec 5.794 psec

IPT-2 5.999 1 sec 5.726 ,sec

IPT-3 6.067 /sec 5.658 ,sec

IPT-4 6.135 /sec 5.590 ,sec

MDBB-1 0.006 sec 0.004 sec

MDBB-2 0.007 sec 0.003 sec

MDBB-3 0.008 sec 0.002 sec

MDBB-4 0.009 sec 0.001 sec

MPPB-1 1367 1567

MPPB-2 1267 1667

MPPB-3 1167 1767

MPPB-4 1067 1867

3.3 MLP Inputs

This section describes the approach taken to characterize the traffic streams

into a feature set used as inputs to the MLP link controller, specifically the variation

of counts (VOC) method [12,23]. Once the traffic descriptors, or features, are deter-

mined the question of an optimal minimum set is explored, that is; is there a smaller

number of features that can be used as MLP inputs without a loss in performance.

3.3.1 Feature Set. The traffic streams generated using the parameter sets

described in Section 3.2 are divided into equal length segments. Using Ogier's [23]

notation we let Ns(i) represent the number of cells contained in segment i and

Ns(i, j) the number of cells in segments i through j. Each stream is then represented

by a feature vector containing the mean number of cells in each segment (As) and

15 VOCs of exponentially increasing length. The VOC of an interval of m segments

22

Table 3 Traffic Stream Classification

Parameter % Acceptable in % Unacceptable in

Set "Acceptable" Streams "Unacceptable" Stream

IPT-1 65.4% 65.4%

IPT-2 75.0% 76.9%

IPT-3 80.8% 86.5%

IPT-4 90.4% 88.5%

MDBB-1 55.8% 65.4%

MDBB-2 59.6% 78.8%

MDBB-3 67.3% 96.2%

MDBB-4 75.0% 100%

MPPB-1 63.5% 63.5%

MPPB-2 71.2% 75.0%

MPPB-3 75.0% 80.8%

MPPB-4 88.5% 82.7%

is defined as:

VOCs(m) = var(Ns(i + 1, i + M)) (7)

VOCs are used as the traffic descriptor because they characterize all second order

statistics of the stream, they are additive, that is if S is the sum of statistically

independent streams Si then VOCs is the sum of VOCs, over Si, and because

moments of interval counts have been shown to accurately predict queuing delay [12,

23].

Ogier [23] used intervals of lengths 2, 4, 8, ... ,2 M with M = 15. This requires

dividing the traffic stream into 32,768 equal length segments. In order to explore the

reasonableness of this choice, the streams were also processed using 100 segments

and 1000 segments. The interval lengths for these last two cases were determined by

23

dividing the space between ln(2) and In(100) (or lIn(1000)) into 15 equal segments.

The interval lengths for each segmentation scheme are shown in Table 4.

Table 4 Interval Lengths

#of Number of Segments in Interval:

Segments 112 1!] 4 5 6 7 7J8 9 [10 11 - 12 13 14 15

100 2 3 3 5 6 8 11 14 19 25 33 43 57 76 100

1000 2 3 5 8 12 18 29 45 70 109 169 264 412 642 1000

32,768 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Traffic streams were generated using each of the 12 parameter sets and each

was processed with the three segmentation schemes. The resulting features were

then used to train identical NNs. The minimum achievable training error over all

parameter sets was used to determine which segmentation scheme provided the most

information to the NN. The results are shown in Figure 6 for each parameter set

sub-group. A sub-group is defined as the parameter sets associated with varying

one of the three primary parameters. For example the IPT subgroup contains the

four parameter sets associated with varying the inter-pulse time while holding the

mean delay between bursts (MDBB) and mean pulse per burst (MPPB) constant.

Based on these results the 32,768 segment scheme appears reasonable as it has the

most consistently decreasing error rate, as would be expected, as the parameter sets

are moved farther away from the boundary. The segmentation approach originally

proposed by Ogier [23] will be used for the remainder of this thesis.

3.3.2 Feature Set Reduction. Following the choice of a segmentation scheme

the question of reducing the size of the feature vector is considered. Recall from the

previous section that the full feature vector contains the mean number of packets

per segment and the VOC of 15 intervals of exponentially increasing length. The

feature vectors of each parameter set were processed using all three feature selection

24

Interpulse Time
50

45 32768 Segments

100 segments
40- 1000 segements

35--

so -

.25 2
a t - - - s e g -me n t s -

• \ ---- - - -Seg-nt

20~

15

3C •"x /
•

10 seg ent

15

1 1.5 2 2.5 3 3.5 4
Simulation

(a)
Mean Delay Between Bursts Mean Pulses per Bumet

35~~ 32768 Segments

0 "n1000 segmentst2768 segments

10

1.5 2 2.5 3 3.5 41.5 2 2.5 3 3.5

Simulation Simulation

(b) (c)

Figure 6 Segmentation scheme error for each of three parameter set subgroups (a)
IPT (b) MDBB and (c) MPPB. Plots show the 32,768 segment scheme
has the most consistently decreasing error rate as parameter sets are
moved away from the boundary.

25

techniques discussed in section 2.3.4 and the number of times a parameter was ranked

in a certain position tabulated. The detailed plot in figure 7 shows the results from

feature 1 and feature 7. It can be seen that the distribution from feature 1 is skewed

toward the higher ranks, indicating its importance across the parameter sets. The

plot from feature seven shows a fairly uniform distribution indicating it does not

consistently provide a significant amount of information for classification. The results

for all feature vectors are shown in Figure 8. Based on this analysis, it appears the

features in the middle of the feature vector provide little or no useful information.

Feature 1 Feadur 7
10 ,7

9-
6-7 5-l ...,mR l n

55

2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 18
Rank Rank

Figure 7 Detailed feature rank plots (a) Feature 1 (b) Feature 7.

In order to verify the notion that the center features in the feature vector

provide no useful information, the feature vector is reduced to seven features by

removing feature elements 5-13. These elements were choosen for removal after an

empirical analysis of the ranking distributions (a more detailed analysis of the feature

elements is left for future research). This reduced feature vector (along with the full

full feature vector of 16 elements) is used to train and test the MLPs while varying

the number of hidden nodes. The choice of feature vector used for continuing trials

will be based on the results from the first few trials.

26

(a) (b) (c) (d)

(e) (g) (h) (i)

(________)__ (k) (1) (i)

(n) (o) (p) (q)

Figure 8 Feature selection combined results from forward search, backward search,
and forward and backward search. (a,b,c,d,e,fg,h,ij,k,l,m,n,o,p,q) Fea-
ture 0 through feature 16. Plots suggest little or no information contained

in middle of feature vector.

27

3.4 Neural Network Architecture

The NN architecture design includes decisions involving the number of hidden

layers used, the activation function used for the hidden and output layers and the

number of hidden nodes used in each hidden layer.

3.4.1 Hidden Layers. As was discussed in Section 2.3.2.1 any non-linear

function can be approximated by a MLP with a single hidden layer [5]. For this

reason the MLPs used in this effort contain one hidden layer.

3.4.2 Activation Function. The activation function is a non-linear function

applied to the weighted sum of inputs to each node (Section 2.3.2.3). Two popular

activation functions are the hyperbolic tangent and sigmoid function. Each of these

functions approach a lower limit for large negative activations and an upper limit

for large positive activations (see Figure 3). The MLPs in this thesis will use the

hyperbolic tangent activation function for the hidden layer nodes [19] and the sigmoid

as the activation function for the output layer node.

3.4.3 Hidden Nodes. The more complex the function being approximated,

the more hidden nodes required to achieve optimal accuracy. In order to investigate

the complexity of the feature space, the number of hidden nodes is varied and the

MLPs accuracy, as defined by the classification error rate, is used as the measure of

performance. This is done in conjunction with the investigation of the feature set

size. The optimal combination of feature vector size and number of hidden nodes

will be determined from the results.

Once the number of hidden nodes has been decided, an estimate of the ac-

curacy of the MLP can be made using the rule of thumb from Section 2.3.2.2. It

should be pointed out that the accuracy discussed here is not an estimate of the

classification accuracy expected but rather a level of confidence in the correctness of

28

the classification error rate. There are 900 feature vectors available for each of the

12 parameter sets described in Chapter H for a total of 10,800 feature vectors.

3.5 Link Controller

The methodology for generating the simulated communication traffic, as well

as determining the MLP architecture, is complete and so the last piece to investigate

is the best way to implement the MLP to achieve optimal results. There are three

approaches that will be compared and analyzed: a single MLP, multiple MLPs based

on parameter set and multiple MLPs based on clustering.

3.5.1 Single MLP. The first approach (Figure 9) makes no assumptions on

the characteristics of the traffic, it only assumes that the training vectors available

are representative of the traffic expected to be seen on the link. This scheme uses all

10,800 feature vectors available. The combined set of vectors are randomly mixed

and divided into four groups to be used for training and testing. Three groups are

used for training the MLP and the remaining group is used to test its performance.

This is accomplished four times with each group used as the test group for one of the

four cycles. The training vectors are used to train a single MLP for 1000 epochs using

back propagation with gradient descent update rule, after which the testing vectors

are presented and the classification error rate determined. This cycle is accomplished

with the number of hidden nodes varied from one to twenty. It is expected that this

approach will give an upper bound, or worst case error rate, for the link controllers

considered because of the wide variety of traffic streams it must be able to generalize

over.

3.5.2 Parameter Set Based MLPs. The next approach assumes it is possible

to determine to which parameter set a stream belongs (Figure 10). The exact nature

of this determination is not considered. Each of the 900 vectors associated with the

12 individual parameter sets is used to train a MLP. The MLPs are trained for 500

29

Traffic Stream MLP Accept

-Link
Controller

Reject

Figure 9 Single MLP trained with all available training data.

epochs, with the Levenberg-Marquardt update rule, using a hold out 25% technique.

The 900 vectors are split into groups of 225, with three groups used for training and

the remaining group used for testing. This is done four times with a different group

of 225 vectors used as the test group each time. This allows all vectors to be used for

testing and training and should also allow for a good averaging of error rates. This

process is repeated for various numbers of hidden nodes from one to twelve. This

approach should give us the best possible performance because it assumes a priori

knowledge of which parameter set a particular stream belongs to and this knowledge

is then used to switch the stream to an MLP trained only on examples from that

parameter set.

In an attempt to reduce the complexity of the link controller as much as pos-

sible, an analysis of the cross-generalization abilities of the MLPs trained on each

parameter set is explored. The question here is can we reduce the number of MLPs

from 12 and maintain an similar level of performance. To investigate this possibil-

ity each MLPs is trained and tested on a particular parameter set as described in

the previous paragraph. Following training each of the other 11 parameter sets are

presented and the MLPs ability to correctly classify the streams is determined. It

is anticipated that MLPs trained on feature vectors generated close to the bound-

ary between the acceptable/unacceptable regions will be able to generalize well to

feature sets generated farther away from the boundary.

30

Link Controller

IFT-

Reject

Figure 10 Parameter set based link controller. Multiple MLPs each trained on a

separate parameter set. Correct switching to appropriate parameter set
MLP is assumed.

31

3.5.3 Cluster Based MLPs. One final scheme will determine if the feature

space clusters itself in a way different from the parameter set assumption of scheme

two (Figure 11). In order to answer this question, the entire feature set was presented

to a competitive learning algorithm using the Kohonen learning rule with the number

of pre-defined cluster centers varied from two to twenty. Once the feature vectors

were clustered, a separate MLP was trained and tested only on the vectors in each

cluster. Again a hold out 25% technique is used for training and testing as described

in previous sections. The total error rate used for comparison purposes is the average

of the error rates for each cluster. The advantage of this technique is that the

clustering algorithm provides a convenient switch that can be used to direct the

communication streams to the MLP trained on similar vectors.

Link Controller

Cluster 1

MLP

Cluster 2 1

MLP

Traffic Steam C lt 3

MLPCluserin Ljogrij' Accept

Cluster k

MLP

I Reject

Figure 11 Cluster based link controller. Multiple MLPs are trained on vectors
belonging to a given cluster. Clustering algorithm also used as a switch

for new traffic streams.

3.6 Bayes Error Rate

The Bayes error rate is the minimum average probability of error. There are

two general approaches to estimating the Bayes error rate. The first approach uses a

32

neural network to estimate the a posteriori probabilities directly from the available

data. This is the approach employed above. The second approach entails the use

of non-parametric techniques that estimate the density functions directly from the

data, without assuming a functional form. The non-parametric technique used in

this effort, to compare to the neural network estimate of the Bayes error rate, is the

Parzen window technique [25]. The Parzen density estimation is a sum of window

functions centered at each sample point [22]. These window functions are evaluated

at a sample point of interest and the values are summed to obtain the estimate of

the pdf at that point. The problem is how to use a finite set of data samples to test a

classifier so that the error rate obtained by the test will accurately predict the error

rate expected when future samples are classified. There are two approaches that will

give an upper and lower bound on the actual Bayes error rate. The first approach

is re-substitution. This method uses all available data to design the classifier and

the same complete data set to test it. The error estimation is the percentage of

vectors misclassified. Because the same vectors are used to design and to test the

classifier, the resulting error estimation is overly optimistic, that is the classifier is

not expected to achieve an error rate as low as this estimate when tested with new

data. The second method is leave-one-out. This method uses all the data available,

except one, to train the classifier and then it is tested with the held out vector. This

process is repeated until all vectors have been held out and used for testing. The

proportion of vectors misclassified is taken as the error rate estimate. Because each

test vector is not used to train the classifier, this technique has significantly less bias.

The re-substitution and leave-one-out methods for estimating the error rate can be

used to bound the Bayes error rate [10,22] with the re-substitution estimate providing

the lower bound and the leave-one-out estimate supplying the upper bound.

33

3.7 Summary

This chapter described the methodology used to generate the simulated traffic

streams that represent communication traffic expected to be seen in an ATM net-

work. Traffic streams were generated from 12 different parameter sets near the border

between the acceptable and unacceptable regions. These traffic streams model the

most difficult traffic streams to classify because of their proximity to the boundary.

Each traffic stream was characterized into a feature vector by dividing it into fixed

length segments and determining the mean number of packets per segment and 15

VOCs of intervals of exponentially increasing length. This 16 element feature vec-

tor was then analyzed using the forward search, backward search and forward and

backward search algorithms.

Once the traffic parameters were determined, and the feature vector analyzed,

the MLP architecture was explored. The result was a MLP with a single hidden

layer, with an as yet undetermined number of hidden nodes, and an output layer

containing one node. The activation function for the hidden layer nodes is the

hyperbolic tangent while the sigmoid serves as the output layer node activation

function.

The next area considered is the implementation scheme used by the link con-

troller to most accurately classify the traffic streams. Three approaches are pre-

sented, training a single MLP to handle all traffic streams, training twelve MLPs

corresponding to the twelve parameter sets and finally clustering the available train-

ing vectors and training an MLP for each cluster.

Finally a technique for bounding the actual Bayes error rate gives us an ob-

jective measure to compare the classification performance of the previous techniques

against.

34

The following chapter implements the link controller schemes, analyzes and

compares the results and compares their performance to the optimal Bayes error

rate.

35

IV. Results

4.1 Introduction

The MLP architecture discussed in the previous chapter is now used in three

link controller schemes. The ability of these link controllers to correctly classify

sample communication streams is analyzed and compared to the Bayes error estima-

tion as bounded by the Parzen window technique [251. The Bayes error rate is the

minimum average error rate any classifier can achieve.

The first link controller configuration is a single MLP used to classify all in-

coming streams. This configuration will show how well the MLP can classify the

feature space with no prior knowledge of the parameters associated with the incom-

ing traffic stream. The second configuration employs twelve separate MLPs, each

trained on a separate parameter set, used to classify only communication streams

identified as belonging to that particular parameter set. This configuration should

result in the best performance because it assumes perfect prior knowledge of the

feature vectors' origin. The final link controller configuration employs a promising

new method that clusters the feature space with a competitive learning algorithm

and trains MLPs based on this clustering. This approach will determine if the fea-

ture space naturally arranges itself in ways not associated with the parameter sets

and also uses the clustering algorithm to direct incoming traffic to the proper MLP.

These link controller schemes are then compared to the optimal Bayes error rate as

bounded by the Parzen window technique [25].

4.2 Single MLP Link Controller

To explore the classification and generalization ability of a single MLP all the

available data, generated using the twelve parameter sets, is used to train and test

the MLP. The combined vectors are randomly mixed to ensure a random distribution

from all parameter sets for training and testing. The vectors are then divided into

36

Single MLP Unk Controller
48 I I I

I . .

4 6 -

- Full Feature Set
44 I

4 2 --.R. . .q.a t re..t

3 8 r V.. !...!...3 6

U 3 4 !... / : _

3 2 ,

Lii" ii\ !

281
0 2 4 6 8 10 12 14 16 18 20

Number of Hidden Nodes

Figure 12 Results from training and testing a single MLP using all available data.

four groups, with three groups used for training the MLP and the remaining group

used for testing the performance of the trained MLP. Following the training of the

MLP the error rate is determined as the percentage of test vectors misclassified. The

MLP was trained for 1000 epochs, using the back propagation method and gradient

decent update rule, four times, with each group used for the test group for one of

the four runs. This multiple presentation attempts to compensate for any variations

resulting from the randomly chosen initial weights, vector presentation order and

choice of training and testing groups. This training and testing cycle was conducted

using two different feature sets (full set of 16 elements and a reduced set of seven

elements) and the number of hidden nodes were varied from one to twenty. The

average results for the two feature sets and various numbers of hidden nodes are

shown in Figure 12.

Recall that the feature vector was reduced as a result of the search techniques

described in Section 3.3.2, specifically vector elements five through thirteen were

37

removed. As indicated by the plots there is not a great difference between the full

feature vector and the reduced feature vector. The error rate over the entire range of

hidden nodes considered averaged 34.18% for the full feature vector and 35.95% for

the reduced feature vector. The full feature vector achieved a minimum error rate,

at fifteen hidden nodes, of 30.4% and and the reduced feature vector had a minimum

at 19 nodes of 29.18%. The results are summarized in Table 4.2

Table 5 Single MLP Link Controller Results
Full Feature Reduced Feature

Vector Vector

Average
Error 34.18% 35.95%

Minimum
Error 30.40% 29.18%

of Nodes
@ Min Error 15 19

4.3 Parameter Set Based MLP Link Controller

An alternative approach for classifying incoming communication streams as-

sumes that the parameter set the stream was generated from can be determined

and the stream can be switched to the appropriate classifier on that basis. For this

scheme a separate MLP is trained and tested for each parameter set using only vec-

tors generated using that particular parameter set. In order to reduce the complexity

of the link controller the cross generalization ability of the individual MLPs is also

investigated. The objective here is to reduce the number of MLPs required without

a decrease in classification performance.

4.3.1 MLP for Each Parameter Set. Again each MLP is trained and tested

on two different feature vectors as the number of hidden nodes is varied. There are

900 vectors from each parameter set available and the MLP is trained by holding

out 225 feature vectors for testing after training on the other 675 vectors for 500

38

epochs, using back propagation and the Levenberg-Marquardt [6] update rule. This

is done four times so that all vectors will be used for training as well as testing. This

process was accomplished using the full feature vector as well as the seven element

feature vector. The total average error rates, arrived at by averaging the errors of

each parameter set MLP while varying the hidden nodes, are shown in Figure 13.

28

2 7 .5

2 6

25.5~~~~~~~ ~ ~ ~ ~ ~ ~i :

2 5i

o -

/ \

Full Feature Set
24.5 e......... RO 6 W F6 t e Set

24 L I I
0 2 4 6 8 10 12

Hidden Nodes

Figure 13 Total error rates for MLPs trained and tested on the individual param-
eters sets. Total average error rate has a minima at one hidden node,
and a seven element feature vector, of 24.29%.

To employ this scheme the feature vector used must be constant for all the

parameter set based MLP link controllers, as we must assume that for timely pro-

cessing the communication stream is presented as a set of features and not as raw

data that must be characterized before it can be classified. As can be seen from Fig-

ure 13, the seven element feature vector performs better than the full feature vector

for total overall error. The same can be said for the individual parameter set based

MLPs. An example of this is shown in Figure 14 for the IPT subset of parameter

sets. Table 6 lists all the results for both feature sets. Based on these results the

39

seven element feature vector will be used for comparison purposes because of its

superior performance and the added advantage of the reduced complexity associated

with a smaller feature vector. The number of hidden nodes used for each MLP can

be determined on a case by case basis because it involves a very small differential

in processing time. The best results achieved from the previous examination are

summarized in Table 7. Averaging these error rate gives us an overall average error

rate of 23.70%.

45

3 5d ii ,

30 IPti Ful Fe t re .S .e t.
W IPT1-7 Element Feature'Set

IPT3-Full Feature Set

S PT3,7E ment FeatureSet

2 0 !' i..... , .,

0 2 4 6 8 10 12
Hidden Nodes

Figure 14 Comparison of feature vector performance in parameter set MLPs. Re-
suits here are typical across all parameter sets, the seven element feature
vector consistently out-performs the full feature set.

4.3.2 Cross Generalization. The MLPs from the previous section are now

used to classify the vectors from the other parameter sets to test their generalization

abilities. To do this the MLPs trained on a particular parameter set are presented

the feature vectors from the other parameter sets and the classification error rates

are determined. As stated earlier the goal here is to eliminate some MLPs without

significantly affecting the error rate. The seven element feature vector is used along

with a four hidden node MLP. Four hidden nodes were choosen strictly for computa-

40

Table 6 Complete listing of error rates for parameter set based MLPs. For each
parameter set the upper number is the error rate for the full feature vector
and the lower number represents the error rate for the seven element
feature vector. Bold face indicates best error rates achieved with seven
element feature vector.

Para Hidden Nodes
Set 11 213 4 5 6 7 81911011112

IPT1 33.44 34.22 34.11 37.00 35.22 33.78 34.00 33.56 36.33 31.11 34.33 33.89
31.00 35.11 32.78 35.11 32.67 32.11 32.44 34.56 33.11 35.33 32.11 34.89

IPT2 27.11 28.33 27.67 27.22 30.00 30.67 27.67 27.67 26.89 29.33 27.22 27.56
24.55 26.00 26.11 26.33 24.89 24.44 26.11 26.56 25.67 26.56 25.11 27.00

IPT3 16.78 25.67 23.22 16.11 17.78 18.22 19.11 22.33 17.11 17.22 18.11 18.11
15.33 15.89 15.78 16.33 15.78 15.22 16.78 15.44 16.33 17.11 18.78 17.56

IPT4 11.44 10.89 11.44 12.22 11.67 12.11 10.67 12.78 13.11 13.00 10.44 11.00
9.78 20.89 10.33 10.44 9.22 10.78 10.22 11.67 11.00 10.00 11.00 10.56

MDBB1 38.33 37.00 38.22 38.33 40.33 41.33 38.33 40.11 40.56 41.44 37.89 37.56
35.33 35.44 35.67 37.89 35.33 36.11 37.78 37.78 39.56 36.67 38.33 38.44

MDBB2 31.67 33.67 35.89 33.00 35.78 35.89 35.22 36.67 37.89 36.33 35.44 36.11
32.56 33.33 32.67 34.11 34.55 34.55 32.89 35.00 32.78 32.67 33.00 33.44

MDBB3 21.89 26.22 24.56 25.89 24.00 22.44 23.22 24.11 23.33 22.44 24.22 22.67
20.56 22.00 21.22 23.56 22.00 23.56 23.11 24.67 20.89 23.67 24.44 23.00

MDBB4 18.33 19.33 18.56 19.11 18.33 19.89 18.22 17.11 19.67 19.22 17.56 18.78
17.56 17.67 18.44 18.78 17.00 18.00 19.22 18.22 18.00 20.22 18.11 18.67

MPPB1 33.67 36.33 38.22 40.33 34.22 36.67 40.44 39.44 37.00 39.56 36.00 35.56
37.33 32.78 34.11 35.44 34.67 34.89 34.78 34.22 34.78 33.33 37.44 36.89

MPPB2 31.11 33.11 35.89 33.67 34.00 31.67 31.11 33.11 32.22 32.89 34.22 36.44
29.67 30.11 29.11 30.11 31.56 30.56 32.33 32.67 29.78 32.67 32.22 31.67

MPPB3 22.56 23.22 24.11 24.33 24.11 25.67 26.33 24.67 25.89 27.44 28.78 28.33
21.78 21.33 23.00 22.00 23.89 22.67 23.33 22.67 24.89 22.22 23.00 26.11

MPPB4 16.67 18.22 18.56 19.00 19.67 20.67 18.00 18.22 24.00 19.22 16.78 20.11
16.00 15.89 15.89 16.89 18.44 16.89 16.56 18.56 18.67 17.22 19.44 18.89

41

Table 7 Error rates for MLPs trained and tested on each parameter set. Error
rates based on seven element feature vector. Total average error for this
scheme is 23.70%.

Parameter Hidden Error
Set Nodes j Rate

IPT-1 1 31.00%
IPT-2 6 24.44%
IPT-3 6 15.22%
IPT-4 5 9.22%

MDBB-1 1 35.33%
MDBB-2 1 32.56%
MDBB-3 1 20.56%
MDBB-4 5 17.00%
MPPB-1 2 32.78%
MPPB-2 3 29.11%
MPPB-3 2 21.33%
MPPB-4 2 15.89%

tional efficiency. The MLPs are trained on one parameter set for 500 epochs, using

back propagation and the Levenberg-Marquardt update rule, then tested against the

others for five cycles. The results are shown in Table 8.

Using the error rates in Table 8, the average error over all MLPs, assuming

all twelve are used, is 23.11%. The best error rates achieved are highlighted in

bold and indicate the MLP trained on parameter set IPT1 classified the feature

vectors from parameter sets IPT2 and IPT3 better than the MLPs trained on those

parameter sets. The same effect can be seen with the MLP trained on parameter

set MDBB2, it also classified the feature vectors from MDBB3 more accurately

than the MLP trained on that parameter set. The optimal results are obtained by

eliminating the MLPs associated with parameter sets IPT2, IPT3 and MDBB3. This

reduces the number of MLPs by 25% while decreasing the error rate to 22.06%. We

have therefore accomplished the objective of reducing the link controller complexity

without decreasing its performance and in fact, the performance increased.

42

tz t t~ tz tz td t tz00
04 W t'3D

S-4 00 cc - 00 41. m ~ I" -

U)CD

-- 0 w~ NDO 0 0; mO w 00 -

w D m C/n CD3 c

w' cn m' 00 00 - i 0 q

-*0

CD~ ~~~~, cc, cnc 000 ,U

ND00 00 M~ --I r=t~ 00 W~ Ob o..

to' CAD w CA C' W C4 W 00C t

- - - - H

OP cc O b pp 00 C-) W 00 t~d c

o p E- 0. (D ~ c ~ ~ o o

0 i t 00 00 W 00 00q P;

W00 Ob M~ 0O 0 00

43 C

4.4 Cluster Based MLP Link Controller

The final scheme to be explored for the link controller is based on clustering the

input space using a competitive learning algorithm with a pre-determined number

of clusters. The advantage of this approach is that it allows the clustering algorithm

to be used as a switch for communication streams requiring classification. For this

approach all available seven element feature vectors are presented to a competitive

learning clustering algorithm for 10,000 epochs. The feature vectors assigned to a

particular cluster are then used to train and test a four hidden node MLP for 500

epochs using back propagation and the Levenberg -Marquardt update rule. 75%

of the vectors are used for training and 25% used for testing. Again this cycle is

repeated 4 times so all the vectors will be used for training as well as testing. The

feature vectors are clustered for each pre-defined number of clusters from two through

twenty and each time the feature space is clustered, MLPs are trained and tested as

described above. The average total error rates (average error rate over all MLPs)

versus number of clusters for this scheme are shown in Figure 15.

The results show that the best performance is achieved with the fewest number

of clusters. Specifically an error rate of 23.17%, occurring with 4 clusters, is the

lowest rate observed. While this error rate is slightly higher than the optimal rate

achieved training MLPs on the individual parameter sets (22.06%)it has two distinct

advantages over that approach. First there are less than half the number of MLPs

required (four vs. nine) resulting in a simpler implementation. Second, and most

importantly, the clustering algorithm provides a built in switch that can be used to

direct the communication streams to the appropriate MLP classifier.

4.5 Bayes Error Rate

The bounds on the Bayes error rate are now calculated using the Parzen window

technique [25] (see Section 3.6). Recall that the Bayes error rate can be bounded

by the re-substitution (lower bound) and leave-one-out (upper bound) methods.

44

Performance of MLPs Trained on CL Clusters
28 -- ---

27.5

27

26.5

25.5

" 25

24.53.5

Number of Clusters

Figure 15 Average total error rates for MLPs trained on the basis of competitive
learning clustering algorithm. Best performance is achieved with four
clusters, 23.17% error rate.

The error rate was calculated for both these techniques in conjunction with the

Parzen window method while varying the parameter h. The parameter h controls

the "spread" of the window function [22]. The results of this examination are shown

in Figure 16. Based on this figure, it appears that the upper and lower bounds are

converging to a Bayes error rate of approximately 20-21%. This compares favorably

with parameter set based MLPs error rate of 22.06% and the cluster based MLPs

error rate of 23.17% while the single MLP error rate lags at 29.18%.

4.6 Summary

This chapter has presented three techniques for use of MLP(s) to classify com-

munication streams in an attempt to control congestion in a link to an ATM network.

The results indicate that making no assumptions about the distribution of the input

space and training a single MLP to handle all incoming traffic resulted in a clas-

sification error rate of 29.18%. When perfect prior knowledge of a communication

45

35 I
II I
II I
I I
I I

25 -- - - -- - - -- -r- - - - - I -- - - - -r- - - - -II

25 --- r - - T

0 1 5 ~ ~ ~ ~ - - - - - - 4 - - - - - - --- - I - - - - - -r - - - - -
20 ----------

0

I

.5 1 r

III I
III I
III I

h

Figure 16 Bounded Bayes error rate estimation calculated using the Parzen win-
dow technique. Figure indicates the Bayes error rate to be within 20-
21%.

streams distribution is assumed an error rate of 22.06% was achieved but the prob-

lem of how to determine which MLP to use remains. The final technique employed a

clustering algorithm to gather similar feature vectors, and train MLPs based on this

clustering. This approach has the advantage of using the clustering algorithm as a

switch, directing incoming communication steams to the appropriate MLP, follow-

ing the training period. A classification error rate of 23.17% was observed using this

method. Finally the bounds on the Bayes error rate was calculated using the Parzen

window technique. The result of this calculation indicates the Bayes error rate lies

between 20 and 21 percent. This result shows that by dividing the feature space

into groups based on a particular criteria, in this case parameter sets and Euclidean

distance, the average error rate approaches the Bayes rate. This suggests that the

link controller schemes employing these techniques are near optimal.

46

V. Conclusion

5.1 Introduction

The primary objective of this thesis was to investigate the best neural network

approach to classifying simulated ATM traffic streams in order to control congestion

on a link to an ATM network. A single hidden layer multi-layer perceptron was

used to classify simulated communication streams in three different link controller

schemes. The number of nodes in the hidden layer was examined, as well as the

size of the feature set used. An objective way to measure the performance of the

three link controller schemes, by comparing results to the Bayes error rate, was

also introduced. This chapter summarizes the results of this effort and draws some

conclusions based on these results.

5.2 Summary of Results

5.2.1 Single MLP. For this link controller approach all incoming com-

munication streams requiring classification are handled by a single MLP. The only

assumption about the distribution of the communication traffic made for this scheme

is that the communication streams used for training the MLP are representative of

the future traffic streams expected. The number of hidden nodes in the MLP were

varied and the trial conducted using two feature sets, a full feature set as described

in Section 3.3.1 and a reduced feature set containing seven elements using the tech-

niques of Section 3.3.2. The results from this trial indicated that the seven element

feature vector performed almost as well as the full 16 element feature vector. The

average error over all hidden node variations was 34.18% for the full feature set and

35.95% for the reduced feature set. The seven element feature vector achieved a

minimum average error rate of 29.18% compared to 30.40% for the full feature set.

These averages were over four runs using a hold out 25% technique, with random

presentation order and initial weights.

47

5.2.2 Parameter Set based MLPs. This link controller technique assumes

it is possible to determine the origin of a communication stream, that is, which

parameter set was used to generate the stream. This information can then be used to

direct the communication stream to a MLP trained only on communication streams

from that particular set. As part of this trial the generalization abilities of the

MLPs were also examined. Here we looked at the ability of a MLP trained on one

parameter set to classify streams from another parameter set. The objective was to

reduce the number of MLPs without a significant decrease in overall performance.

Again this trial used the full as well as the seven element feature vectors. This

trial demonstrated, using all twelve MLPs, an average error rate of 23.11% was

achievable with the seven element feature vector. The ability of the seven element

feature vector to out-perform the full feature vector was evident in this trial. The

best performance achievable by the full feature set was 24.72%. Only the seven

element feature vector was used for the generalization experiment and the results

showed that the the number of MLPs can be reduced to nine (a 25% reduction) with

the overall error rate actually improving to 22.06%.

5.2.3 Cluster Based MLPs. The problem of not having a practical switch

to direct the communication streams to the appropriate MLP is solved with this

link controller scheme, which uses a competitive learning clustering algorithm to

sort the feature space. This trial sorted the feature space into various numbers of

clusters, trained MLPs based on the feature vectors belonging to those clusters and

determined an overall error rate. It is assumed that the communication streams used

for the original training, and determination of the cluster centers, are representative

of future communication streams that will be processed by this scheme. Based on

this, the same clustering algorithm can be used to determine which cluster center

is closest to the communication stream requiring classification and an MLP, trained

only on other communication streams assigned to the same cluster, is used to classify

the stream. The results of this trial indicated that the feature space can be sorted

48

into a relatively few number of cluster centers to achieve optimal results. Specifically,

the best performance, an error rate of 23.17%, was seen with four cluster centers.

This error rate compares favorably with the error rate seen in the parameter set

based MLPs of 22.06%

5.2.4 Bayes Error Rate. The last step in this research was to bound the

best performance that can be expected, with the given data. This number is given

by the Bayes error rate. Although the MLPs of the previous trials approximate

the Bayes error rate, there was no way to tell how good that approximation was.

Using the Parzen window technique, with re-substitution and leave-one-out, the

Bayes error rate was bounded. The results from this analysis indicated that the

Bayes error rate lies between 20 and 21 percent. The Bayes error rate represents

the minimum average error rate any classifier can achieve. This indicates that by

dividing the feature space, either by the parameter set assumption or by using a

clustering algorithm, we can classify incoming streams at a near optimal rate.

5.3 Conclusion

The results from this research lead to a number of interesting conclusions:

1. The 16 element feature vector can be reduced to less than half with no signif-

icant reduction, and in some cases an increase, in performance.

2. The performance of a single MLP, trained to handle a wide variety of commu-

nication streams, can be significantly improved by dividing the feature space

in some fashion.

3. A promising approach to dividing the feature space employs a clustering algo-

rithm that serves the dual purpose of dividing the feature space and switching

the incoming traffic to the appropriate classifier.

4. The performance of the cluster based MLP is a near optimal approximation of

the true Bayes error rate.

49

These conclusions indicate that the objective of designing a link controller that can

adequately control congestion on a single link to an ATM network has been met. An

optimal MLP architecture with a minimum feature vector and a realistic link con-

troller scheme was determined that achieved an error rate that closely approximates

the Bayes error rate.

50

Appendix A. Traffic Stream Generation

A. 1 Introduction

This appendix describes the simple model used to generate and classify the

simulated traffic streams, using BONeS8 DESIGNERTM block oriented network sim-

ulator. The model consists of two main parts, the traffic generator and the network

model as shown in Figure 17. The two parts are considered separately in the follow-

ing sections. All of the parameters shown are set when a simulation is run and are

described in the section dealing with the part of the model where they originate.

Modell-Modl [23-Oct-1996 9:44:49]

..

Source-
Mod 1

System
1tP Mean Delay Between Bursts Model

MP mean number of pulses per burst
1P Inter-Pulse ime (during burst)

P maximum Queue Size

1P Service Delay
tP File to Open

Cells Out Mem

Figure 17 Top level model used for generating and classifying simulated traffic
streams

A.2 Traffic Generator

The traffic generator, shown in Figure 18, generates pulses using the Bursty

Pulse Train (BPT) block. This block generates pulses with constant Inter-Pulse

51

times (IPT), geometrically distributed pulses per burst and exponentially distributed

delay between bursts. These parameters are adjusted by the user by specifying the

IPT and the mean for the geometric and exponential distributions. The pulses

coming from the BPT are converted into 53 byte cells and given a time stamp and

sequence number.

Traffic Soomo- Mod I [23-ct-19 9:47.3 I

1 P I M r - P uL O 7 k (d u d n b "r)
tP Mun rnimftr 0 pul.. pel bWr

IP M n DWy Bu. aou41n

t'P Re ow Open

Figure 18 Block diagram of traffic source.

The uniform pulse train is used in conjunction with the counter to determine

how many cells are generated during a given time period. The time period is de-

termined by how long the data stream is and how many equal length segments are

desired. Recall that for this thesis the data streams are one second long and 32,768

segments are desired. The uniform pulse train is therefore set to fire every 30.52

Isec (1/32,768) triggering the counter to output the number of cells generated in

that time period and then reset.

The final blocks in this part simply open a file to write the number of cells

in a segment to, as well as the number of rejects resulting from the network model

discussed in the next section. The "Cells Out Mem" is a pointer to the open file

stream that can be used by other file access modules to write to this stream after it

has been opened. In this case it will used to write the number of rejects from the

system model.

52

A.3 Network Model

The network modeled in this thesis is an ATM network, but more specifically

the entrance, or link, to an ATM network. Since the link has a finite capacity, it is

represented by a simple First-In-First-Out (FIFO) queue with a constant transmis-

sion rate as represented by the two blocks in Figure 19.

System Model [23-Oct-i 996 10:18:32]

Celli FIFO vw/Reject-modilliedDIAsiedea -

IM Cells Out Mem
1P Maximum Queue Size IP Service Delay

Figure 19 Block diagram of network model, or in this case a single link to an ATM
network.

The FIFO queue is characterized by its maximum queue size. When the queue

is full of cells awaiting service any newly arriving cells are rejected. It is these

rejected cells, along with total cells generated, that is used to determine the cell loss

rate (CLR). The queue cannot service, or transmit, more than one cell at a time so

the time required to service a cell, represented by the fixed absolute delay, is directly

related to the transmission rate of the channel.

Figure 20 shows the detailed breakdown of the FIFO queue to show how the

number of rejects are output to the data file. The Final Queue Statistics block

outputs various queue statistics at the completion of a simulation. The number of

rejects occurring during the simulation is selected and written to the output data

file. The last line in the data file is therefore the number of rejects.

53

FIFO w/Reject-modified [23-Oct-1996 1025:12]

Place a display on the port to the left for continous
stlaistics during interactive simulation.

Rt, Iu~l Select sSNumber > Write

File INTEGER

Queue Input

General > Mt File Mem

Reject Queue Initial Queue State

"P Maximum Queue Size

.0. Queue Memory

Clear to Send

Figure 20 Detail of FIFO queue to show how number of rejects occurring during
simulation are collected.

54

Appendix B. Link Controller and Bayes Error Code

This appendix contains the MATLAB® code used to implement the three link con-

troller schemes. The code for the Bayers error bounding is also included with thanks

to Curtis Martin. All functions and subfunctions are included.

B.1 Single MLP

This code implements the single MLP link controller. The MLP is trained and

tested using a hold out 25% technique.

onenn.m

function [AveError, stdev]=onenn[train,target,minnodes,maxnodes]

% This function will train and test a single MLP using back propagation, 1000 epochs
l using the hold out 25% technique

% Pass: train = feature vectors
/IVO target = classification vector
%o minnodes = minimum number of hidden layer nodes
/010 maxnodes = maximum number of hidden layer nodes;
0// Hidden nodes varied from minnodes to maxnodes
O Return: AveError = average classification errors per # of hidden nodes

/IVO stdev = standard deviation of average classification error

o Randomly mix feature and target vectors

mix = randperm(size(train,2));
train=train(:,mix);
target =target (:,mix);

%o Train NN

for j=minnodes:maxnodes

fprintf(1, 'Processing 7d nodes\n'j)
[error(j), stdev(j)]=holdoutnbp(train,target,2700j);

end; ofor j

55

holdoutnbp. m

function [errmean, errstd]=holdoutnbp(trainvect,targvect ,numholdout,11)
%JEL 100896
%Performs Hold-One-n training of MLP holds out n vectors for testing

after training on remaining vectors using BP Method where n is
an integer multiple of total number of vectors in p. This
function holds out n vectors [(number of vectors in p)/n] times
and averages the error

%Display Frequency, Maximum Epochs, SSE Goal and
YO # of Hidden Layers parameters set in function
% Pass: trainvect =Training vector

targvect =Target vector
numhold out = Number of vectors to hold out for testing

YO 11 = # of Neurons in Hidden Layer
%Return: errmean = Mean of test errors

errstd = Standard Deviation of Training Errors

global trainvect targvect

% Set NN parameters

df 0; % Display Frequency
me =1000; 1% maximum epochs
eg .02; % SSE Goal

numvect=size(trainvect,2);
numiterations=numvect/numholdout;

% Determine first training set
ptrain=trainvect (:,numholdout+l:numvect);
ttraiin=targvect (numholdout+l1:numvect);

76 train and test
for i=l:numiterations

ep=0;
start=numholdout*(i-1)+1;
while ep<25

[wi ,bl,w2,b2,ep,tr]=bprop(ptrain,ttrain,df,me,eg,1);
end; %0'while
ptest=trainvect(:,start:numholdout*i);
ttest=targvect(stat:numholdout*i);
testresult=simuff (ptest,wl,bl1, It tans ig' Iw2,b2, I logsig I);
error (i) = classerr (testresult,ttest);
if i==numvect-1

ptrain=trainvect (:,1:i*numholdout);
ttrain=targvect (1:i*numholdout);

elseif i==numvect
XXX=0; Y% if

else

56

ptrain= [trainvect (:, 1 i*numholdout) ,trainvect (:,(((i+2)*numholdout) + 1 :umvect)];
ttrain=[targvect(1:i*numholdout) ,targvect(((i+2)*numholdout)+1 :numvect)];

end; % if
end; %0for

errmean=mnean(error);
errstd=std (error);

bp rop. mn

function [wl,bl,w2,b2,ep,tr] = bprop(p,t,df,me,eg,11)
% JEL 102496
/%1 Application of back propagation with learning rate and momentum

using a single tanh hidden layer MLP and sigmoid output layer
to Comm Stream problem.

% Pass: p = Training vector
/WO t = Target vector
/WO 11 = Number of neurons in hidden layer

df =Display frequency
me =Maximum # of epochs
eg =SSE goal

% Returns: wl,bl,w2,b2
ep =Number of epochs

/WOtr =error vector

% Initialize weights
[wl,bl,w2,b21 =initff (p,11,t tans ig' It, I logs ig'I); %Initiaize weights

wA Set training parameters
tp=[df me eg]; % Training parameter vector

1%6 Train the net
[wl,bl,w2,b2,ep,tr]=trainbpx(wl,bl, I tansig' ,w2,b2, 'logsig ',p,t,tp);

classerr.m

function error = classerr(test,target)
% JEL 090396
% Determines the average classification error of a NN 'logsig' output
%Pass: test = output vector from NN with a logsig output layer

/070 activation function
target = correct classification of input vectors

% Return: error = Percent of input vectors mis-classified

numvect=length(test);

for k=1:numvect
if test(k) <0.5

57

test(k)=O;
else

test(k)=l;
end; lo if

end; X for k

error=nnz (test -target) /numvect;

B.2 Parameter Set Based MLPs

This code trains 12 separate MLPs based on the parameter set used for their

generation. The hold out 25% technique is again used to get average error rate.

pbmlp. m

%JEL 100896
This script trains 12 separate MLPs based on the parameter sets and two different subsets

%of the feature vector (16 and 7 feature elements)

clear;
close all;

1% Load all vectors
load iptsltrain900.dat;
load iptsltarget900.dat;
load ipts2train900.dat;
load ipts2target900.dat;
load ipts3train900.dat;
load ipts3target900.dat;
load ipts4train900.dat;
load ipts4target900.dat;
load mdbbsltrain900.dat;
load mdbbsltarget900.dat;
load mdbbs2train900.dat;
load mdbbs2target900.dat;
load mdbbs3train900.dat;
load mdbbs3target900.dat;
load mdbbs4train900.dat;
load mdbbs4target900.dat;
load mppbsltrain900.dat;
load mppbsltarget900.dat;
load mppbs2train900.dat;
load mppbs2target900.dat;
load mppbs3train900.dat;
load mppbs3target900.dat;
load mppbs4train900.dat;
load mppbs4target900.dat;
disp(' Load Complete'

58

10o mix feature vectors
mix=randperm(900);
iptslItrain =ipts ltrain900 (mix'
ipts2train=ipts2train90(mix',)
ipts3train=ipts3train90(mix':)
ipts4train=ipts4train90(mix',)
ipts ltarget=ipts ltarget900 (mix)
ipts2target=ipts2target900 (mix')
ipts3target=ipts3target90 (mix)
ipts4target=ipts4target900 (mix I);
mdbbsltrain=mdbbsltrain90(mix',:);
mdbbs2train=mdbbs2train900 (mix',:);
mdbbs3train=mdbbs3train900 (mix',:);
mdbbs4train=mdbbs4train900(mx',:);
mdbbs ltarget=mdbbslItarget900 (mix');
mdbbs2target=mdbbs2target900 (mix');
mdbbs3target=mdbbs3target900 (mix');
mdbbs4target=mdbbs4target900 (mix')
mppbs ltrain=mppbs ltrain90 (mix',)
mppbs2train=mppbs2train90 (mix',)
mppbs3train=mppbs3train90(miix',)
mppbs4train=mppbs4train90(mix',)
mppbsltarget=mppbsltarget900(mix);
mppbs2target=mppbs2target900(mix');
mppbs3target=mppbs3target900 (mix');
mppbs4target=mppbs4target900 (mix')I

for u=1:4
num=num2str(U)
eval(['clear ipts' num 'train900 ipts' num 'target900 mdbbs' num 'train900 mdbbs'

num 'target900 mppbs' num 'train900 mppbs' num ltarget900'])
end; lo for u

7o generate reduced feature sets
iptlrs7trn=[iptsltrain(:,1:4) iptsltrain(:,14:16)]';
ipt2rs7trn=[ipts2train(:,1:4) ipts2train(:,14:16)]'
ipt3rs7trn=[ipts3train(:,1:4) ipts3train(:,14:16)]';
ipt4rs7trn=[ipts4train(: ,1:4) ipts4train(: ,14:16)]';
mdbblrs7trn=[mdbbsltrain(:,1:4) mdbbsltrain(:,1416)]';
mdbb2rs7trn=[mdbbs2train(:,1:4) mdbbs2train(:,14:16)]' ;
mdbb3rs7trn=[mdbbs3train(:,1:4) mdbbs3train(:,14: 16)]';
mdbb4rs7trn=[mdbbs4train(:,1:4) mdbbs4train(:,14:16)]';
mppblrs7trn=[mppbsltrain(:,1:4) mppbsltrain(:,14:16)]'
mppb2rs7trn=[mppbs2train(:,1:4) mppbs2train(:,14:16)]';
mppb3rs7trn=[mppbs3train(: ,1:4) mppbs3train(:,14: 16)]';
mppb4rs7trn= [mppbs4train(: ,1:4) mppbs4train(:, 14:16)]';

% peform hold-out-n training and testing
disp(' Start training')
for i=1:12

59

[ipt lerr(i) ipt Ilstd (i)]=holdout n(iptl1t rain,ipt 1ltarget,225, i);
[iptlerr7(i) iptlstd7(i)] =holdoutn(iptlrs7trn,iptltarget, 100,i);

fprintf (1, 1ipt2 %~d nodes',i)
[ipt2err(i) ipt 2st d(i)]=holdout n(ipt 2train,ipt 2target,225,i);
[ipt2err7(i) ipt2std7(i)]=holdoutn(ipt2rs7trn,ipt2target,225,i);

fprintf (1, 1ipt3 %~d nodes',i)
[ipt3err(i) ipt3std(i)]=holdoutn(ipt3train,ipt3target,225,i);
[ipt3err7(i) ipt3std7(i)] =holdoutn(ipt3rs7trn,ipt3target,225,i);

fprintf (1,'1ipt4 %d nodes',i)
[ipt4err(i) ipt4std(i)]=holdoutn(ipt4train,ipt4target,225,i);
[ipt4err7(i) ipt4std7(i)] =holdoutn(ipt4rs7trn,ipt4target,225,i);

fprintf (1,mdbbl %d nodes ',i)
[mdbblerr(i) mdbblstd(i)] =holdoutn(mdbbltrain,mdbbltarget,225,i);
[mdbblerr7(i) mdbblstd7(i)]=holdoutn(mdbblrs7trn,mdbbltarget,225,i);

fprintf (1, 'mdbb2 %d nodes 'j)
[mdbb2err(i) mdbb2std(i)J=holdoutn(mdbb2train,mdbb2target,225,i);
[mdbb2err7(i) mdbb2std7(i)]=holdoutn(mdbb2rs7trn,mdbb2target,225,i);

fprintf (1, ' mdbb3 %d nodes' ,i)
[mdbb3err(i) mdbb3std(i)]=holdoutn(mdbb3train,mdbb3target,225,i);
[mdbb3err7(i) mdbb3std7(i)] =holdoutn(mdbb3rs7trn,mdbb3target,225,i);

fprintf(1,'mdbb4 %d nodes',i)
[mdbb4err(i) mdbb4std(i)]=holdoutn(mdbb4train,mdbb4target,225,i);
[mdbb4err7(i) mdbb4std7(i)]=holdoutn(mdbb4rs7trn,mdbb4target,225,i);

fprintf (1, 'mppbl %~d nodes ',i)
[mppblerr(i) mppblstd(i)]=holdoutn(mppbltrain,mppbltarget,225,i);
[mppblerr7(i) mppblstd7(i)] =holdoutn(mppblrs7trn,mppbltarget,225,i);

fprintf (1, 'mppb2 %d nodes 'J)
[mppb2err(i) mppb2std(i)]=holdoutn(mppb2train,mppb2target,225,i);
[mppb2err7(i) mppb2std7(i)]=holdoutn(mppb2rs7trn,mppb2target,225,i);

fprintf (1, 1mppb3 %~d nodes 'j)
[mppb3err(i) mppb3std(i)]=holdoutn(mppb3train,mppb3target,225,i);
[mppb3err7(i) mppb3std7(i)J=holdoutn(mppb3rs7trn,mppb3target,225,i);

fprint f(1, 'mppb4 %d node s',i)
[mppb4err(i) mppb4std(i)]=holdoutn(mppb4train,mppb4target,225,i);
[mppb4err7(i) mppb4std7(i)]=holdoutn(mppb4rs7trn,mppb4target,225,i);

fserr= [ipt lerr;ipt2err;ipt3err;ipt4err;mdbblerr;mdbb2err;mdbb3err;mdbb4err;
mppblerr;mppb2err;mppb3err;mppb4err];

fsstd=[iptlstd;ipt2std;ipt3std;ipt4std;mdbblstd;mdbb2std;mdbb3std;mdbb4std;
mppblstd;mppb2std;mppb3std;mppb4std];

60

rs7err=[iptlerr7;ipt2err7;ipt3err7;ipt4err7;mdbblerr7;mdbb2err7;mdbb3err7;mdbb4err7;
mppblerr7;mppb2err7;mppb3err7;mppb4err7];

rs7std= [iptlIstd7;ipt2std7;ipt3std7;ipt4std7;mdbb lstd7;mdbb2std7;mdbb3std7;mdbb4std7;
mppblstd7;mppb2std7;mppb3std7;mppb4std7];

save pbmlperr.dat fserr -ascii
save pbmlpstd.dat fsstd -ascii
save pbmlperr7.dat rs7err -ascii
save pbmlpstd7.dat rs7std -ascii

end; % for i

holdoutnim. m

function [errmean, errstd]=holdoutnlm(numholdout,1)
%JEL 100896
%Performs Hold-One-n training of MLP holds out n vectors for testing

after training on remaining vectors using L-M Method where n is
an integer multiple of total number of vectors in p. This
function holds out n vectors [(number of vectors in p)/nJ times
and averages the error

%Display Frequency, Maximum Epochs, SSE Goal and
of Hidden Layers parameters set in function

% Pass: trainvect =Training vector
70 targvect =Target vector

numhold out = Number of vectors to hold out for testing
11 = # of Neurons in Hidden Layer

%Return: errmean = Mean of test errors
/'VO errstd = Standard Deviation of Training Errors

global trainvect targvect

% Set NN parameters

df =0; %Display Frequency
me =500; %maximum epochs
eg =.02; 76 SSE Goal

numvect=size(trainvect,2);
numiterations=numvect/numholdout;

X Determine first training set
ptrain=trainvect(:,numholdout+1:numvect);
ttrain=targvect (numholdout+1:numvect);

7o train and test
for i=1:numiterations

ep=0;,
start=numholdout*(i-1)+1;
while ep<25

61

[wi ,bl ,w2,b2,ep,tr]=levmar(ptrain,ttrain,df,me,eg,l1);
end; %while
ptest=trainvect(:,start:numholdout*i);
ttest=targvect(stat:numholdout*i);
testresult=simuff (ptest,wl,bl, I tansig' ,w2,b2, logsig');
error (i) =classerr (testresult,ttest);

if i==numvect-I
ptrain=trainvect(:,1:i*numholdout);
ttrain=targvect (:i*numholdout);

elseif i==numvect
xxx=O; %0 if

else
ptrain= [trainvect(:, 1:i*numholdout) ,trainvect (: ,((i+2)*numholdout)+1:numvect)J;
ttrain=[targvect (1:i*numholdout) ,targvect(((i+2)*numholdout)+ 1:numvect)];

end; % if

end; %01for

errmean=mean(error);
errstd=std(error);

levmar. m

function [wl,bl,w2,b2,ep,tr] = levmar(p,t,df,me,eg,I1)
% JEL 081396
% Application of Levenburg-Marquardt method to with tanh hidden activation

% and sigmoid output activation.
% Pass: p =Training vector

% t =Target vector
% 11 =Number of neurons in hidden layer
% df =Display frequency
% me =Maximum # of epochs
/010,eg =SSE goal

% Returns: wl,bl,w2,b2
/010,ep =Number of epochs
% tr =error vector

1% Initiaize weights
[wl,bl,w2,b2]=initff (p,11, I tansig',t Ilogsig'1);

1% Set training parameters
tp=[df me eg]; 10% Training parameter vector

7o Train the net
[wl,bl,w2,b2,ep,tr]=trainlm(wl,bl, I'tans ig' ,w2,b2, 'logs ig' ,p,t,tp);

62

B.2.1 Parameter Set Cross- Generalization. This code trains MLPs on one

parameter set and tests them on the other to test their generalization abilities

cross gen. m

% JEL 081496
/IO Train one single hidden layer MLP, with 4 hidden nodes, for each of 12 parameter sets

for 500 epochs, using L-M method. Test against other parameter sets.
7 element feature vector.

clear;
close all;

% load feature vectors

for i=1:4

eval([' load ipts ',num2str(i), 'train900 .dat;'])
eval([Iload ipts'I,num2str(i), Itarget900. dat;']
eval(['I load mdbbs ',num2str(i), 'train90. .dat;']
eval(['I load mbs',num2str(i), 'target900 .dat;']
eval(['I load mppbs ' ,num2str(i), I train90. .dat; 'I)
eval([I load mppbs ',num2str(i), 'target900 .dat;')

end 10% for i

disp('Load Complete')

% Reduce feature set to 7

iptsltrain900=[iptsltrain90(:,1:4) iptsltrain900(:,l4:l6)]I;
ipts2train900=[ipts2train900(:,1:4) ipts2train900(:,14:16)]';
ipts3train900=[ipts3train900(:,1:4) ipts3train900(:,14:16)]';
ipts4train900=[ipts4train900(:,1:4) ipts4train900(:,14:16)]'

mdbbsltrain900=[mdbbsltrain900(:,1:4) mdbbsltrain900(:,l4:l6)]';
mdbbs2train900=[mdbbs2train900(:,1:4) mdbbs2train900(:,14:16)]';
mdbbs3train900=[mdbbs3train900(:,1:4) mdbbs3train900(:,14: 16)]';
mdbbs4train900=[mdbbs4train900(:,1:4) mdbbs4train900(:, 14:16)]';

mppbsltrain900=[mppbsltrain900(:,1:4) mppbsltrain900(:,14:l6)jI;
mppbs2train900=[mppbs2train900(:, 1:4) mppbs2train900(: ,14:16)]';
mppbs3train900=[mppbs3train900(:, 1:4) mppbs3train900(:, 14:16)]';
mppbs4train900=[mppbs4train900(: ,1 :4) mppbs4train900(:,l4: 16)]';

j=O;
df=100;
me=500;
eg=.02;
11=4;

63

hidact= Itansig 1;
outact= Ilogsig 1;

for i=1:5
iteration = i

% Train NN using L-M method
fprintf (1, 'Start MLP training, Iteration: %d\n,J)
for j=1:4

eval([' [ws' ,num2str(j),'I1 ,bs ',numn2str(j), I ,ws ',num2str(j), '2 ,bs' ,num2str(j),
'2,ep,tr] =levmar(ipts ',numn2str(j),'train900, ipts',numn2str(j),1target900,

df,mne,eg,11); I2);
eval([' Ewd' ,num2str(j),'1 ,bd' ,num2str(j),'1 ,wd' ,num2str(j), '2 ,bd' ,num2str(j),

I2 ,ep,trllevmar~mdbbs ',num2str(j), 'train900,mdbbs' ,num2str(j), 'target900
,df,mne,eg11); I2);

eval([' [wp' ,nuxn2str(j),' 1,bp' ,num2str(j),' 1,wp' ,num2str(j), '2 ,bp' ,num2str(j),
'2,ep,tr=levmar(mppbs I,num2str(j), 'train900 ,mppbs' ,num2str(j), 'target900,

df,mne,eg,11); '2);
end; %v for j

for j=1:4
fprintf(1,' Starting Cross Generalization test, Iteration: %d\n',i)
evaI([' tsls ' ,num2str(j), I'=simuf f (ipts'I,numn2str(j), Itrain900,

wsll,bsll,hidact,wsl2,bsl2,outact);' I);
eval(['errsis'1,num2str(j),'I (i)=classerr~ts1s',num2str) ,ipts,

num2str(j), 'target900); '2);
eval([' tsid ',num2str(j),'=simuff Cmdbbs ',num2str(j), 'train900,

wsll,bsll,hidact,wsl2,bsl2,outact);' I);
eval([' errsid' ,num2str(j), I (i)=classerr (tsid ',num2str(j), ' mdbbs',

num2str(j), I target900); '2);
eval([' tslp' ,numn2str(j), I=simuff Cmppbs ',num2str(j),'1 train900,

wsl 1,bsl 1,hidact,wsl2,bsl2,outact);' '2);
eval([' errsip' ,num2str(j), I (i)=classerr~tsip ',num2str(j), ' ,mppbs'

,n2str(j), 'target900); '2);
eval([' ts2s ' ,num2str(j), ' =simuff Cipts' ,rnm2str(j), 'train900,

ws2l,bs2l,hidact,ws22,bs22,outact); 2);
eva([' errs2s' ,num2str(j),' ICi)=classerr(ts2s'I,num2str(j), ',ipts'

,num2str(j), 1 target900); I2);
eval([' ts2d' ,num2str(j),'=simuff Cmdbbs ',num2str(j),'train900,

ws2l ,bs2l ,hidact,ws22,bs22,outact); I2) ;
eval([Ierrs 2d',num2str(j),'I (i)=classerr~ts2d',num2str(j),' ,mdbbs',

num2str(j), I target900); '2);
eval(['I ts2p' ,num2str(j),'I =simuf f Cmppbs ' ,num2str(j), 1 train900,

ws2l,bs2l,hidact,ws22,bs22,outact);' '2);
eval([I errs2p' ,num2str(j),' (i) =classerr (ts2p' ,num2str(j),' ,mppbs'

,num2str(j),'target900) ; '2);
eval(['I ts3s ',numn2str(j),' =simuf f Cipts' ,num2str(j), 1'train900,

ws3l,bs3l,hidact,ws32,bs32,outact); ') ;
eva1([' errs3s ',numn2str(j),'I (i)=classerr(ts3s'I,num2str(j),' , ipts,

num2str(j), 1 target900); '2);

64

eval([' ts3d' ,num2str(j),' Isimuf f Cmdbbs' ,num2str(j),' train900,
ws3l ,bs3l ,hidact,ws32,bs32,outact);' D2;

eval([' errs3d' ,num2str(j),'(iCi=classerr (ts3d' ,num2str(j),', mdbbs'
,num2str(j), 1 target9OO) ; '2I) ;

eval([t s3p' ,num2str(j), ' simuff (mppbs' ,num2str(j), 1'train900,
ws3l,bs3l,hidact,ws32,bs32,outact);, '2);

eval([' errs3p' ,num2str(), I(i)=classerr~ts3p l,num2str(j), ' ,mppbs',
num2str(j), Itarget900); '2I);

eval(['I ts4s ' ,num2str(j), I =simuf f (ipts' ,num2str(j), 1train900,
ws4l,bs4l,hidact,ws42,bs42,outact);, I);

eval([' errs4s ',num2str(j), I Ci)=classerr(ts4s I,num2str(j),' ipts,
num2str(j),' target900); '2);

eval([' ts4d ',nuxn2str(j), 'simuf f (mdbbs ',num2str(j), I train900,
ws4l,bs4l,hidact,ws42,bs42,outact);, '2);

eval([' errs4d' ,num2str(j), I i)=classerr(ts4d' ,num2str(j)' ,mdbbs',
num2str(j), target90); 1]);

eval(['I ts4p' ,num2str(j), I =simuf f (mppbs ',num2str(j), 1 train900,
ws4l,bs4l,hidact,ws42,bs42,outact);, '2);

eval([' 's~p,num2str(j), I(i)=classer-Cts4p ,num2str(j),I ,mppbs',
num2str(j),' target900); '2);

eval([tis',num2str(j),' Isimuff (ipts I ,num2str(j),'1 train900,
wdll,bdl 1,hidact,wdl2,bdl2,outact);, '2);

eval([' errdis ' ,num2str(j), I(i)=classerr~tdls' ,num2str(j),' , ipts'
num2str(j), 'target900); 11);

eval([' tdld' ,num2str(j), I simuff Cmdbbs ' ,num2str(j), 1 traini900,
wdll,bdll,hidact,wdl2,bdl2,outact); '2);

eval([' errdid ',num2str(j), I (i)=classerr~tdld' ,num2str(j),' ,mdbbs,
num2str(j), Itarget900); I]);

eval([tdlp ',num2str(j),' =simuff (mppbs ',num2str(j), 1 train900,
wdll,bdll,hidact,wdl2,bdl2,outact);, I2);

eval([errdlp ',num2str(j),' Ci) classerr (tdlp' ,num2str(j),' mppbs'
num2str(j),' target900); '2);

eval([' td2s ' ,num2str(j), I'simuf f (ipts ',num2str(j), Itrain900,
wd2l,bd2l,hidact,wd22,bd22,outact);'2I);

eval([' errd2s ',num2str(j), I (i)=classerr~td2s' ,num2str(j),' , ipts'
num2str(j), 1 target900); '2);

eval([' td2d ',num2str(j), '=simuff (mdbbs ',num2str(j), 1 train900,
wd2l,bd2l,hidact,wd22,bd22,outact);, '2);

eval([' errd2d' ,num2str(j),' i)=classerr(td2d' ,num2str(j)' ,mdbbs',
num2str(j),' target900); '2);

eval([' td2p',num2str(j),' =simuf f (mppbs' ,num2str(j),' train900,
wd2l,bd2l,hidact,wd22,bd22,outact); '2);

eval([' errd2p' ,nulm2str(j), I(i)=classerr~td2p' ,num2str(j),' ,mppbs',
num2str(j), I target900); '2I);

eval(['td3s ' ,num2str(j),' =simuf f (ipts I ,num2str(j), I train900,
wd3l ,bd3l,hidact,wd32,bd32,outact); '2) ;

eval([' errd3s ',num2str(j),' (i)classerrsl~u~t~is ' , ipts'1,
num2str(j), 'taz-get900); '2);

eval([td3d ',num2str(j),'=simuff (mdbbs' ,num2str(j), 1'train900,
wd3l,bd3l,hidact,wd32,bd32,outact);, '2;

eval([' errd3d' ,num2str(j),' Wi=classerr (td3d' ,num2str(),' ,mdbbs,

65

num2str(j), I target900); '2);
eval(['td3p ',num2str(j), I'simuff (mppbs ' ,num2str(j), 'train900,

wd3l,bd3l,hidact,wd32,bd32,outact); '2);
eval([' errd3p' ,num2str(j),'I (i) =classerr (td3p ',num2str(j), ' ,mppbs,

num2str(j), 'target900); '2);
eval(['td4s I ,num2str(j), ' =simuff ipts' ,num2str(j), 1'train900,

wd4l,bd4l,hidact,wd42,bd42,outact);, I) ;
eval([' errd4s ' ,num2str(j),'I (i)=classerr (td4s ',num2str(j),'I , ipts'1,

nuxn2str(j), I target900); 'I2);
eval([td4d ',num2str(j),' Isimuff (mdbbs' ,num2str(), I'train900,

wd4l,bd4l,hidact,wd42,bd42,outact); '2) ;
eva([' errd4d' ,num2str(j),' (i)=classerr~td4d' ,num2str(j)' ,mdbbs',

num2str(j), 'target900); '2);
eval(['td4p ',num2str(j), I simuf f Cmppbs ' ,num2str(j), I train900,

wd4l,bd4l,hidact,wd42,bd42,outact); '2);
evaI([errd4p' ,num2str(j), ' Wi=classerr (td4p ',num2str(j), ' ,mppbs',

num2str(j), I target900); 'I2);
eval([I tpis ' ,num2str(j), ' =simuf f (ipts' ,num2str(j), 'train900,

wpll,bpll,hidact,wpl2,bpl2,outact); '2);
eval([Ierrpis ',num2str(j),' (i)=classerr(tpls I,num2str(j), I , ipts,

num2str(j), 'taxget900); '2);
evaI([tpld' ,num2str(j),' =simuff Cmdbbs ' ,num2str(j), I train900,

wpll,bpll,hidact,wpl2,bpl2,outact); '2) ;
eval([errpid ',num2str(j),' Wi class err (tp ld',num2str(j), ,mdbbs',

num2str(j),'target90); '2I);
eval([tplp ',num2str(j), 'simuf f Cmppbs ' ,num2str(j), 1 train900,

wpll,bpll,hidact,wpl2,bpl2,outact); '2);
eval([' errplp ',num2str(j), I Ci) classerr (tpip' ,num2str(j), I , mppbs,

num2str(j),' target900); '2);
eval([I tp2s' ,num2str(j), I'simuf f Cipts' ,num2str(j),' train900,

wp2 1,bp2l,hidact,wp22,bp22,outact); '2);
eval([I errp2s ' ,num2str(j), I (i)=classerr(tp2s ',num2str(j), ,ipts,

num2str(j),'target900);'2);
eval([tp2d ',num2str(), ' =simuff (mdbbs ',num2str(j), 'train900,

wp2l,bp2,hidact,wp22,bp22,outact); '2) ;
eval([' errp2d ',num2str(j),' ICi) classerr (tp2d ',num2str(), ,mdbbs',

num2str(j), 'target90) ; '2I);
evaI(['tp2p ',num2str(j), 'simuff Cmppbs ' ,num2str(j), 1 train900,

wp2l,bp2l,hidact,wp22,bp22,outact); '2) ;
evaI([errp2p' ,num2str(),' (I Wclasserr (tp2p' ,num2str(j), ' ,mppbs'

num2str(j), 'target900) ; 'I2);
evaI([I tp3s' ,num2str(j), ' =simuf f (ipts ' ,num2str(j), I train900,

wp3l,bp3l,hidact,wp32,bp32,outact); '2) ;
eval([I errp3s ' ,num2str(j),'I (i) classerr (tp3s ' ,num2str(j), I , ipts'1,

num2str(j), I target900); 'I2);
,eval(['tp3d' ,num2str(j), ' simuff (mdbbs ',num2str(j), tanO,

wp3l,bp3l,hidact,wp32,bp32,outact); '2) ;
eval([' errp3d ',num2str(j),'I Ci)classerr(tp3d ',num2str(j), ' ,mdbbs,

num2str(j),Itarget900); '2);
eval(['tp3p ',num2str(j), I'simuf f (mppbs ',num2str(j)an,

wp3l,bp3l,hidact,wp32,bp32,outact); '2)

66

eval([I errp3p' ,num2str(j), I (i)=classerr~tp3p' ,num2str(j),' Imppbs',
num2str(j), I target900);'D1;

eval([Itp4s' ,num2str(j), I =sirnuff ipts' ,num2str(j), I train900,
wp4l,bp4l,hidact,wp42,bp42,outact);']D;

eval([errp4s ',num2str(j),' (i)=classerr~tp4s' ,num2str(),' ,ipts',
numn2str(j), 'target90);'1);

eval(['tp4d' ,numn2str(j),' Isimuf f Cmdbbs ',numn2str(j), ' train900,
wp4l,bp4l,hidact,wp42,bp42,outact);' I) ;

eval([' errp4d' ,numn2str(j),'I Ui)=classerr (tp4d' ,num2str(j),' Imdbbs,

num2str(j),'target900);')1);
eval(['tp4p' ,numn2str(j),' Isimuff Cmppbs' ,numn2str(j), 1train900,

wp4l,bp4 l,hidact,wp42,bp42,outact); ') ;
eval([' errp4p' ,numn2str(j),' Ii)=classerr~tp4p' ,num2str(j),' Imppbs,

num2str(j), 1 target900); 'I)
end; %1for j

end; %1for i

1% Generate error and standard deviation matrices
for k=1:4

for m=1:4
eval(['I errs' ,num2str(k), ' s' ,numn2str(m) , I

mean(errs' Inum2str~k), ' s' Imm2str~m), ');'2)
eval([I errs' ,num2str(k),' d I,num2str(m),'I =

mean(errs' ,nuyn2str(k), 'd' ,nim2str~m), 1);']);
eval([' errs' ,num2str(k),'I p' ,numn2str(m),I=

mean(errs'I , num2 str W), I p' , nui2 str (m) ,');I
eval([' stds' ,numn2str(k), I s' ,numn2str(m),I=

std(errs' ,numnstr(k), 's' ,num2str~m), ');']);

eval([' stds ',numn2str(k), 'd ',numn2str(M),' =
std(errs' ,num2str~k), ' Inwm2str~m),); 1)

eval([' stds ',numn2str(k), ' p' ,numn2str(m),I=
std(errs' , num2str W), I pI ,nuim2strm) W);)I

eval([' errd ',numn2str(k), ' s' ,numn2str(m),I=
mean(errd' Inum2str (k), 's', num2str W),');'])

eval([' errd I,numn2str(k), ' d ',numn2str(M),'
mean(errd I ,in2str (k), Id I , num2str (m),);')

eval([Ierrd ',num2str(k), ' p' ,numn2str(m), I =
mean(errd'I ,nuy2str (k) , Ip' , num2str W), I)')

eval([I stdd ',numn2str(k), ' s' ,num2str(m) , I =
std(errd ' wnin2str~k), 's' ,mum2str(m), ');'21

eval([I stdd ' ,num2str(k), Id ',num2str(m),I=
std(errd' ,num2str(k), ld' ,wlyn2str~m), 1);']);

eval([I stdd ',num2str(k), ' p I,num2str(m),I=
std(errd ' ,nim2str(k), ' p' ,num2str~m), ');'12);

eval(['I errp' ,numn2str(k), ' s ',numn2str(m),I=
mean(errp'I , num2str (k) , 's'I , num2str W), ')'I

eval([I errp ',numn2str(k), ' d ,numn2str(m), ' =

mean(errp'I , num2str (k) , 'd' , nim2str (m) ,')';
eval([' errp' ,num2str(k), 'p' ,numn2str(m),' =

mean(errp'I , num2str Wk, 'p', ,n2str W ,')')
eval([' stdp' ,num2str(k),' I ,nuxn2str(m),I

67

std(errp' ,num2str(k), 's' ,m2str(m), ');'1);
eval(['stdp' ,num2str(k), ' d' ,num2str(m), I =

std(errp' ,m2str(k), 'd' ,m2str(m), ');'3);
eval([I stdp',num2str(k), 'p',num2str(m), I

std(errp I ,nim2str(k),I ' nilm2str-(m) ,')))
end; %'vfor m

end; Z for k

slerr=[errslsl errsls2 errsls3 errsls4 errsldl errsld2 errsld3 errsld4
errslpl errslp2 errslp3 errslp4];

s2err=[errs2sl errs2s2 errs2s3 errs2s4 errs2dl errs2d2 errs2d3 errs2d4
errs2pl errs2p2 errs2p3 errs2p4];

s3err=[errs3sl errs3s2 errs3s3 errs3s4 errs3dl errs3d2 errs3d3 errs3d4
errs3pl errs3p2 errs3p3 errs3p4l;

s4err=[errs4sl errs4s2 errs4s3 errs4s4 errs4dl errs4d2 errs4d3 errs4d4
errs4pl errs4p2 errs4p3 errs4p4l;

dlerr=[errdlsl errdls2 errdls3 errdls4 errdldl errdld2 errdld3 errdld4
errdlpl errdlp2 errdlp3 errdlp4];

d2err=[errd2sl errd2s2 errd2s3 errd2s4 errd2dl errd2d2 errd2d3 errd2d4
errd2pl errd2p2 errd2p3 errd2p4];

d3err=[errd3sl errd3s2 errd3s3 errd3s4 errd3dl errd3d2 errd3d3 errd3d4
errd3pl errd3p2 errd3p3 errd3p4l;

d4err=[errd4sl errd4s2 errd4s3 errd4s4 errd4dl errd4d2 errd4d3 errd4d4
errd4pl errd4p2 errd4p3 errd4p4];

plerr=[errplsl errpls2 errpls3 errpls4 errpldl errpld2 errpld3 errpld4
errplpl errplp2 errplp3 errplp4];

p2err~[errp2s1 errp2s2 errp2s3 errp2s4 errp2dl errp2d2 errp2d3 errp2d4
errp2pl errp2p2 errp2p3 errp2p4];

p3err=[errp3sl errp3s2 errp3s3 errp3s4 errp3dl errp3d2 errp3d3 errp3d4
errp3pl errp3p2 errp3p3 errp3p4];

p4err=[errp4sl errp4s2 errp4s3 errp4s4 errp4dl errp4d2 errp4d3 errp4d4
errp4pl errp4p2 errp4p3 errp4p4];

slstd=[stdslsl stdsls2 stdsls3 stdsls4 stdsldl stdsld2 stdsld3 stdsld4
tdslpl stdslp2 stdslp3 stdslp4];

s2std=[stds2sl stds2s2 stds2s3 stds2s4 stds2dl stds2d2 stds2d3 stds2d4
stds2pl stds2p2 stds2p3 stds2p4];

s3stcb=[stds3sl stds3s2 stds3s3 stds3s4 stds3dl stds3d2 stds3d3 stds3d4
stds3pl stds3p2 stds3p3 stds3p4];

s4std=[stds4sl stds4s2 stds4s3 stds4s4 stds4dl stds4d2 stds4d3 stds4d4
stds4pl stds4p2 stds4p3 stds4p4];

dlstd=[stddlsl stddls2 stddls3 stddls4 stddldl stddld2 stddld3 stddld4
stddlpl stddlp2 stddlp3 stddlp4];

d2std=[stdd2sl stdd2s2 stdd2s3 stdd2s4 stdd2dl stdd2d2 stdd2d3 stdd2d4
stdd2pl stdd2p2 stdd2p3 stdd2p4];

d3std=[stdd3sl stdd3s2 stdd3s3 stdd3s4 stdd3dl stdd3d2 stdd3d3 stdd3d4
stdd3pl stdd3p2 stdd3p3 stdd3p4];

d4std=[stdd4sl stdd4s2 stdd4s3 stdd4s4 stdd4dl stdd4d2 stdd4d3 stdd4d4
stdd4pl stdd4p2 stdd4p3 stdd4p4];

plstd=[stdplsl stdpls2 stdpls3 stdpls4 stdpldl stdpld2 stdpld3 stdpld4
stdplpl stdplp2 stdplp3 stdplp4];

68

p2std=[stdp2sl stdpMs stdp2s3 stdp2s4 stdp2dl stdp2d2 stdp2d3 stdp2d4
stdp2pl stdp2p2 stdp2p3 stdp2p4];

p3std=[stdp3sl stdp3s2 stdpWs stdp3s4 stdp3dl stdp3d2 stdp3d3 stdp3d4
stdp3pl stdp3p2 stdp3p3 stdp3p4l;

p4std=[stdp4sl stdp42 stdp4s3 stdp4s4 stdp4dl stdp4d2 stdp4d3 stdp4d4
stdp4pl stdp4p2 stdp4p3 stdp4p4l;

cgerror= [slIerr; s2 err; s3err; s4err; dlIerr; d2err; d3err; d4err; perr;p2err; p3err; p4err];
cgstd= [slstd;s2std;s3std;s4std;dlstd;d2std;d3std;d4std;plstd;p2std;p3std;p4std];

save cgerrorndat cgerror -ascii
save cgstd.dat cgstd -ascii

B.3 Cluster Based MLPs

This code clusters all available data into a varying number of clusters, trains

and tests MLPs based on those clusters using the hold out 25% techniques and

Levenb erg- Marquardt method and determines the average error.

clandt rain. m

%'V JEL 091196
/IO This script runs vectors through a competitive learning clustering algorithm,

% with variable hidden nodes, trains NNs based on the clustering and
y% computes error rate.

clear;
close all;
load iptsltrain900.dat;
load iptsltarget900.dat;
load ipts2train900l.dat;
load ipts2target900l.dat;
load ipts3train900.dat;
load ipts3target900.dat;
load ipts4train900.dat;
load ipts4target900l.dat;
load mdbbsltrain900.dat;
load mdbbsltarget900.dat;
load mdbbs2train900.dat;
load mdbbs2target900.dat;
load mndbbs3train900.dat;
load mndbbs3target900.dat;
load mndbbs4train900.dat;
load mdbbs4target900.dat;
load mppbsltrain900.dat;
load mppbsltarget900.dat;
load mnppbs2train900.dat;
load mppbs2target900.dat;

69

load mppbs3train900.dat;
load mppbs3target900.dat;
load mppbs4train900.dat;
load mppbs4target900.dat;
disp(' Load Complete')

% Create training and target matrices
train= [iptsltrain900; ipts2train900; ipts3train900; ipts4train900;

mdbbsltrain900; mdbbs2train900; mdbbs3train900; mdbbs4train900;
mnppbsltrain900; mppbs2train900; mppbs3train900; mppbs4train900];

target= [iptsltarget900 ipts2target900 ipts3target900 ipts4target900
mdbbsltarget900 mdbbs2target900 mdbbs3target900 mdbbs4target900
mppbsltarget900 mppbs2target900 mppbs3target900 mppbs4target900];

% Reduce feature set to 7
train= [train(:, 1:4) train(:, 14:16)];

/W Find minimum and maximum values for each feature
minl1=min(train (1,:));
min2=min(train(2,:));
min3=min(train(3,:));
rnin4=min(train(4,:));
min5=min(train(5,:));
min6=min(train(6,:));
min7=min(train(7,:));
maxl =max (train (1 ,:));
max2=max(train(2,:));
max3=max(train(3,:));
max4=max(train(4,:));
max5=max(train(5,:));
max6=max(train(6,:));
max7=max(train(7,:));
p=[minl maxl;min2 max2;min3 max3;min4 max4;min5 max5;min6 max6;min7 max7];

cldf=1000;
clme= 10000;
Ir=0.1;
tp=[cldf cine Ir];

% Vary number of clusters from 2 to 20
for i=1:10;

fprintf(1,'Number of Clusters: %d/n', 2*4)
n=2*i;

1%' initailize weights
W1=initc(P,n);

1% Cluster with competitive learning
wl=trainc(wl ,train,tp);
al=simuc(train,wl);

70

%Classify vectors according to CL results train and test MLP
for j=1:n

% find vectors belonging to cluster

eval(['cltgt=target(: ,find~ai(' num2str(j)',) ;';
Yo Determine number in cluster
numinclust=size(cltrn,2)
% split vectors in cluster into four groups
indexl=roumd(numinclust*.25);
index2=round(numinclust*.50);
index3=round(numincust*.75);
trainl=ctrn(:,l:indexl);
train2=cltrn(:,indexl+:index2);
train3=cltrn(:,index2+1:index3);
train4=cltrn(: ,index3+1 :numinclust);
target l=cltgt(:,l:indexl);
target2=cltgt(:,indexl+:index2);
target3=cltgt(:,index2+1:index3);
target4=cltgt (: ,index3+1 :numinclust);

1%' Train and test MLP using hold out 251%
mlpdf= 100;
mlpme=500;
eg=.02;
11=4;

ep=0;
while ep<50
[wl,bl,w2,b2,ep,tr]=levmar([traini train2 train3],

[targeti target2 target3] ,mlpdfmlpme,eg,11);
end; %while
testdat=simuff (train4,wl,bl, I'tans ig' Iw2,b2, '1ogs ig')
errl1=classerr (testdat,target4);
ep=O;

while ep<50
[wl,bl,w2,b2,ep,tr]=levmar([traini train2 train4],

[targeti target2 target4],mlpdfmpme,eg,11);
end; %while
testdat=simuff (train3,wl,bl, ' tansig' ,w2,b2, '1ogsig'1);

err2=classerr(testdat,target3);
ep=O;

while ep<50
[wl,bl,w2,b2,ep,tr]=levmar([traini train4 train3],

[targeti target4 target3],mlpdfmpme,eg,11);
end; %6while
testdat=simuff(train2,wl,bl, 'tansig' ,w2,b2,' logsig');
err3=classerr(testdat,target2);
ep=0;

71

while ep<50
[wl,bl ,w2,b2,ep,tr]=levmar([train4 train2 train3],

[target4 target2 target3],mlpdfmpme,eg,11);
end; %while
testdat=simuff (train l,wl,b1, 't ans ig' ,w2,b2, I logsig');
err4=classerr(testdat,targetl);

err(j)=mean([errl err2 err3 err4]);
end; 1%' for j (go to next cluster)
toterror(i) =mean(err);
totstd(i) =std(err);
save clusterr.dat toterror -ascii
save cluststd.dat totstd -ascii

end; 101 for i (re-cluster)

B.4 Bayes Error Rate

This code bounds the Bayes error rate using the Parzen window technique with

re-substitution and leave-one-out. Thanks to Curtis Martin.

pknn. m

%' PKNN: Run Parzen and UNN procedure for one subset of Xi and X2

Yo /Rp, Lp, Rk, Lk] = PKNN(Xi, X2, Si, S2, h, k, opt)

% Inputs: Xi, X2: data sets (n x Ni and n x N2)
% Si, S2: Covariances (true or estimated) of Xi and X2
/1V0h, k: values to use for h and k

opt: i = threshold option 3
2 = threshold option 4

%All h's must be greater than zero, and k must be between 2 and
%min(Ni, N2)-i

% Outputs: Rp, Lp: Parzen R and L errors for each test (one test per row)
% Rk, Lk: k-NN R and L errors for each test

function [ftp, Lp, Rk, Lk] = pknn(X1, X2, Si, S2, h, k, opt)

[n1, N1] = size(X1);
[n2, N2] = size(X2);
if n1 -= n2

fprintf(2, 'Data sets X1 and X2 must have same number of rows (features)\n');
return;

e nd loif

16% Keep this value on hand

72

dim = n1;
ntests = 10;
Rp = zeros(size(h));
Lp = zeros(size(h));
Rk = zeros(size(k));
Lk = zeros(size(k));

n1 = size(X1, 2);
n2 = size(X2, 2);
fprintf(l, %d Class 1 samiples, %d Class 2 samples\n', n1, n2);
fprintf(1, IInverting covariance matrices . .. \n;
detratio = -0.5 * log(det(S2)/det(S1));
iSi = inv(SI);
iS2 =inv(S2);

fprintf(l, 'Computing distanices . .. \n)

[d11, d12, d21, d22] = compute-distances(Xl, X2, iSi, iS2);

clear X1 X2 iSi iS2

fprintf(1, 'Classifying (Parzen) . .. \n;
Rerr =

Lerr =

for r = hi,

% Compute sums:
temp = -0.5 / r-2;
S11 = sum(exp(temp * dli));
M1 = sum(exp(temp * d12));

s21 = sum(exp(temp * d2l));
s22 = sum(exp(temp * d22));

z1 = flnd(sll==0 s21==0);
sll(zl) = realmin *ones(size(zl));

s21(zl) = realmin *ones(size(zl));

z2 = find(s12==0 s22==0);
s1(z2) = realmin *ones(size(z2));

s22(z2) = realmin * nes(size(z2));

Irl = detratio - log((n2 * sil) *1(ni * s21));
1r2 = detratlo - log((n2 * s12) .1(ni * s22));

sll(zl) = zeros (size (zl));
s21(zl) = zeros (size (zl1));
s12(z2) = zeros (size (z2));
s22(z2) = zeros (size (z2));

zi = find(sll==l & s21==0);
Sil(zl) = sll(zl) + realn-iin * ones(size(zl));

73

s21(zl) = realmin *ones(size(zl));

z2 = find(s12==0 M 2==l);
s12(z2) = realmin *ones(size(z2));

s22(z2) = s22(z2) + realmin * ones(size(z2));

111 = detratio - log((n2 * (sl - 1)) *1((ni - 1) *s21));

112 = detratio - log(((n2 - 1) M 1) *1(ni (s22 -1)));

[rerr, lerr] = classify(lrl, 1r2, 111, 112, opt);

Rerr = [Rerr, rerr];
Lerr = [Lerr, lerr];

end 7ofor r

Rp = 100 * Rerr /(nl+n2);
Lp = 100 * Lerr /(nl+n2);

fprintf(1,' Classifying (k-NN) . . .\

1% sort distances
dll = sort(dll);
d12 = sort(d1);
d21 = sort(d21);
d22 = sort*22);

tr =detratio + log(nl/n2);
tl detratio + log((nl-1)/n2);
t12 =detratio + log(nl/(n2-1));
Rerr =[;
Lerr =

for i = k,

Irl = tr + 0.5 * dim * log(dll(i,:) *1d21(i,:));
Ir2 = tr + 0.5 * dim * log(d12(i,:) *1d22(i,:));

Ill = tIl + 0.5 * dim * log(dll(i+1,:) ./ d21(i,:));
112 = t12 + 0.5 * dim * log(d12(i,:) ./ d22(i+l,:));

[rerr, lerr] = classify(Irl, 1r2, 111, 112, opt);

Rerr = [Rem, rem];

Lerr = [Lenin, lenin];

end 1%ofor i

Rk = 100 * Rem / (nl~n2);
Lk = 100 * Lenin (nl+n2);

74

cumputedistances. m

COMPUTE-DISTANCES: Compute K distances between samples in X1 and X2.

[Dll, D12, D21, D22] = COMPUTEDISTANCES(X1, X2, invS1, invS2)

Dll = class 1 distances for samples of class 1
D12 = class 2 distances for samples of class 1

% D21 = class 1 distances for samples of class 2
D22 = class 2 distances for samples of class 2

invS1 and invS2 are the covariance matrix inverses (maybe estimated).
1 X1 and X2 have one observation per column.

function [Dll, D12, D21, D22] = compute-distances(X1, X2, invSl, invS2)

% Number of columns is the number of samples
NI = size(Xl,2);
N2 = size(X2,2);

% Allocate space
Dll = zeros(N1,Nl);
D12 = zeros(Nl,N2);
D21 = zeros(N2,N1);
D22 = zeros(N2,N2);

Calculate intra-class distances:
% Class 1:

for i = l:N1-1
for j = i+l:N1

Dll(ij) = (XI(:j) - Xl(:,i))' * invSl * (Xl(:,j) -Xl(:,i));

D11(j,i) = D1l(ij);
end

end

% Class 2:
for i = 1:N2-1

for j = i+l:N2
D22(ij) = (X2(:j) - X2(:,i))' * invS2 * (X2(:,j) - X2(:,i));
D22(,i) = D22(ij);

end
end

% Calculate inter-class distances:
for i = 1:N1 % Rows for D12, Columns for D21

for j = l:N2 % Columns for D12, Rows for D21
% Pull samples out of matrices only once
v = X2(:j) - xl(:,i);
D12(ij) = v' * invSl * v;

1 These could be (-v), but there's no reason for it. (note (j,i))

75

D21(j,i) = v' invS2 * v;
end

end

classify. m

%CLASSIFY: Select thresholds and classify resubstitution and
leave-one-out discriminant values.

[R, L] = CLASSIFY(Lrl, Lr2, Ll1, L12, option)

%Inputs: Lrl, Lr2: resubstitution discriminant values
L11, L12: leave-one-out discriminant values
option: 1 = threshold option 3

2 = threshold option .4

%Outputs: R: Resubstitution error
L: Leave-one-out error

function [Rt, L] = classify(Lrl, Lr2, L11, L12, option)

% First get the minimum resubstitution error and threshold
fprintf(l,' Resubstitution...
[Rt, t] min..error(Lrl, Lr2);
fprintf (1,'done. \n');

% Now, depending on the option, get the minimum leave-one-out error
fprintf(l,' Leave one out ...
if option == 1

L =sum(L11 > t) + sum(L12 < t);
else

n1 size(L11, 2);
n2 =size(L12, 2);
L =0;

fprintf(1,'Class 1...)
for i = 1:nl,

[err, t] = mnin-error(LI1([1:i-1 i+l:nl]), L12);
if L11(i) > t

L = L + 1;
end 1%1 if Ll1(i) > t

end %for i
fprintf(1,'Class 2. ..)

for i = 1:n2,
[err, t] = min-error(L11, L12([l:i-1 i+1:nl]));
if L12(i) < t

L =L + 1;
end %if L12('i) < t

end %for i
end 1% if option == 1

76

fprintf (1,'done. \n');

77

Bibliography

1. A. A. Tarraf, et al. "Intelligent Traffic Control for ATM Broadband Networks,"
IEEE Communications Magazine (October 1995).

2. Baum, Eric B. "What Size Net Gives Valid Generalization?," Neural Computa-
tion, 1 (1989).

3. Chan, L.-W and F. Fallside. "An Adaptive Training Algorithm for Back Prop-
agation Networks," Computer Science and Language, 2:205-218 (1987).

4. Chen, X. and I.M. Leslie. "Neural Network Approach Towards Adaptive Con-
gestion Control in Broadband ATM Networks." GlOBECOM '91. 1990.

5. Cybenko, G. "Approximation by Superpositions of a Sigmoidal Function," Math.
Control, Signals Sys. 2, 303-314 (1989).

6. Demuth, H. and M. Beale. Neural Network Toolbox. Natick, Massachusetts: The
Mathworks, Inc., 1994.

7. Dennis M. Drew, Col. "Basic Aerospace Doctrine of the United States Air
Force," Air Force Manual 1-1 (March 1992).

8. E. Nordstrom, et al. "Neural Networks for Adaptive Control in ATM Networks,"
IEEE Communications Magazine (October 1995).

9. Evanowsky, John B. "Information for the Warrior," IEEE Communications
Magazine (October 1995).

10. Fukunaga, Keinosuke. Introduction to Statistical Pattern Recognition. Boston:
Acedemic Press, Inc, 1990.

11. Gudta, Barbosa and Georganas. "Switching Modules for ATM Switching Sys-
tems and Their Interconnection Networks," Computer Networks and ISDN Sys-
tems, 26(1):433-445 (1993).

12. Heffes, H. and D. Lucantoni. "A Markov Modulated Characterization of Packe-
tized Voice and Data Traffic and Related Statistical Multiplexer Performance,"
IEEE Journal on Selected Areas in Communication (September 1986).

13. Hiramatsu, A. "ATM Communications Network Control by Neural Networks,"
IEEE Transactions on Neural Networks (March 1990).

14. Hiramatsu, A. "Integration of ATM Call Admission Control and Link Capacity
Control by Distributed Neural Networks," IEEE Journal on Selected Areas in
Communications (September 1991).

15. Hiramatsu, A. "Training Techniques for Neural Network Applications in ATM,"
IEEE Communications Magazine (October 1995).

78

16. Imrich, et al. "A counter based congestion control for ATM networks," Computer
Networks and ISDN Systems, 26(1):1-162 (1993).

17. J.E. Neves, et al. "Neural Networks in B-ISDN Flow Control: ATM Traffic
Predictor or Network Modeling," IEEE Communiocations Magazine (October
1995).

18. Jiang, X. and J. Meditch. "A high speed integrated services ATM/STM switch,"
Computer Networks and ISDN Systems, 1:459-477 (1993).

19. Kalman, Barry L. and Stan C. Kwasny. "Why Tanh: Choosing a Sigmoidal
Function," IJCNN International Joint Conference on Neural Networks (June
1992).

20. Karayiannis, N. B. "Accelerating the Training of Feedforward Neural Networks
Using Generalized Hebbian Rules for Initializing the Internal Representations,"
IEEE Transactions on Neural Networks (March 1996).

21. Li and Weng. "B+ -Tree: A High Speed Switching Structure for ATM with
Dual Input Buffering," Computer Systems and ISDN Networks, 28(1):1499-1522
(1995).

22. Martin, 2Lt Curtis Eli. Non-Parametric Bayes Error Estimation for UHRR
Target Identification. MS thesis, AFIT/GE/ENG/93D-26, Graduate School of
Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB
OH, December 1993.

23. Ogier, Roger and Nina T. Plotkin. "Neural Network Methods with Traffic De-
scriptor Compression for Call Admission Control." IEEE Infocom Proceedings.
March 1996.

24. Park, Y.K. and G. Lee. "Applications of Neural Networks in High Speed Com-
munications Networks," IEEE Communications Magazine (October 1995).

25. Parzen, Emanuel. "On Estimation of a Probability Density Function and Mode,"
Ann. Math. Stat., 33 (1962).

26. Ruck, Capt Dennis W. Characterization of Multilayer Perceptrons and Their
Application to Multisensor Automatic Target Detection. PhD dissertation, Grad-
uate School of Engineering, Air Force Institute of Technology (AETC), Wright-
Patterson AFB OH, December 1990.

27. Sole-Pareta, J. and J. Domingo-Pascual. "Burstiness characteristics of ATM cell
streams," Computer Networks and ISDN Systems, 26(2):1351-1363 (1994).

28. Sriram, K. "Methodologies for bandwidth allocation, transmission scheduling,
and congestion avoidance in broadband ATM networks," Computer Networks
and ISDN Systems, 26(1):43-59 (1993).

79

29. Steppe, Jean. Feature and Model Selection in Feedforward Neural Networks. PhD
dissertation, Graduate School of Engineering, Air Force Institute of Technology
(AETC), Wright-Patterson AFB OH, December 1992.

30. Van Der Smagt, P. Patrick. "Minimisation Methods for Training Feedforward
Neural Networks," Neural Networks, 7(1):1-11 (1994).

80

Vita

Captain Jeffrey E. Larson mm' . ,..

He graduated from the University of Minnesota in 1982 with a Bachelor of Science

in Business degree. In 1984 he enlisted in the United States Air Force and, following

basic training and technical school, was stationed at Wright-Patterson AFB, OH.

In 1987 he was accepted into the Airmen's Education and Commissioning Program

and graduated cum laude from Wright State University with a Bachelor of Science

in Electrical Engineering degree in 1990. Following Officer Trainlng School, Captain

Larson received his commission in the United States Air Force on October 1, 1990 and

was assigned to Hanscom AFB, MA. In May 1995 he was assigned to the Air Force

Institute of Technology, Wright-Patterson AFB, OH to pursue a Masters of Science

in Electrical Engineering degree. Upon completion Captain Larson is assigned to

Wright Laboratory, Wright Patterson AFB, OH.

81

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of informatior, including suggestions for reducing this burden to Washington Headduarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December, 1996 final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ADAPTIVE NEURAL NETWORK CONTROLLER FOR ATM TRAFFIC

6. AUTHOR(S)
Jeffrey E. Larson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GE/ENG/96D-09

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

Dr John Evanowsky AGENCY REPORT NUMBER

RL/C3B
Griffis AFB, NY

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Broadband-Integrated Services Digital Networks (B-ISDN), along with Asynchronous Transfer Mode (ATM), were designed to meet
the requirements of modern communication networks to handle multiple users and a wide variety of diverse traffic including voice,
data and video. ATM responds to requests for admission to the network by analyzing whether or not the grade of service (GOS)
requirement, specified in the admission request, can be guaranteed without violating the GOS guaranteed to traffic already accepted
into the network. The GOS is typically a parameter such as cell loss rate (CLR), average delay, or some other measurement associated
with network performance. In order to develop a tractable mathematical algorithm for controlling admission, an accurate model of
the communication network and traffic in question is necessary. The complex and dynamic nature of these communication networks
make them very difficult to model. Even when such a model can be developed, often with unrealistic simplifications or unsupportable
assumptions, the associated mathematical algorithm is frequently excessively cumbersome and timely processing of an admission
request is lost. An alternative to conventional mathematical algorithms for cases like these is the use of neural networks (NN). NNs
can learn complicated functions relating the inputs and outputs of a system without prior knowledge about the system itself. For
ATM B-ISDN networks, NNs can learn the function relating input traffic parameters and resulting network performance by training
on an appropriate set of traffic parameter inputs and resulting GOS outputs. In this work three neural network admission controller
schemes are examined. The Bayes error rate, as bounded by the Parzen window technique, is also introduced as a benchmark for
measuring the performance of these admission controllers. Results indicate that error rates approaching the Bayes error rate can
be obtained by using a self organizing, or clustering, algorithm to segment the input space and then train separate MLPs on each
cluster. This clustering algorithm can also be used to direct the traffic streams requiring classification to the appropriately trained
NN admission controller.

14. SUBJECT TERMS 15. NUMBER OF PAGES

neural networks, ATM, Bayes Error 91
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

	Adaptive Neural Network Controller for ATM Traffic
	Recommended Citation

	tmp.1691605784.pdf.cedFc

