Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

Development of Object-Based Teleoperator Control for
Unstructured Applications

Hyunki Cho

Follow this and additional works at: https://scholar.afit.edu/etd

b Part of the Artificial Intelligence and Robotics Commons, and the Controls and Control Theory

Commons

Recommended Citation

Cho, Hyunki, "Development of Object-Based Teleoperator Control for Unstructured Applications" (1996).
Theses and Dissertations. 5918.

https://scholar.afit.edu/etd/5918

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5918?utm_source=scholar.afit.edu%2Fetd%2F5918&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

810 011,66,

ll-llT— ——
Development of Object Based 'Teleoperator Control

[for Unstructured Applications

THIESITS

Hyunki Cho

Captain, Republic of Korea Army

] AFIT/GE/IENG/96D-01
LT u_———-p-'

DEYRRCs S aveuTT R
o FeIlT leiecse
m DTIC QUALITY T oy,

Rpprov QG

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GE/ENG/96D-01

Development of Object-Based Teleoperator Control

for Unstructured Applications

THESIS
Hyunki Cho
Captain, Republic of Korea Army

AFIT/GE/ENG/96D-01

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AFIT/GE/ENG/96D-01

Development of Object-Based Teleoperator Control

for Unstructured Applications

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Electrical Engineering)

Hyunki Cho, B.S.
Captain, Republic of Korea Army

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

This thesis could not have been done without those people who provided their
endless guidance and assistance. First of all, I would like to thank my thesis advisor,
Maj. Dean L. Schneider, who provided his insight comments and guidances. I also
want to thank Dr. Curtis H. Spenny and Dr. John J. D’Azzo for their assistances as
member of my thesis committee. All of them responded with enthusiasm whenever I
needed their supports. Thanks to Steven Parmley who looked my C-codes and helped
to understand the Chimera Real Time Operating systems, and Capt. Mark W.
Hunter who provided his intellectual comments for the grasp stability and MATLAB

m-files of the Contact Force Allocation.

I wish to acknowledge the continuouse support of staffs in the International
Military Students Office who helped me and other international military students
and their family both in and out of the school since we arrived here. I want to offer
my congratulations and my gratitude to all the Korean officers for their patients and

assistances.

Finally, my deepest gratitude goes to my lovely wife, Youjung, and my beautiful
daughter, Geonlan, who suffered through the long hours that I couldn’t be there when

they needed me.

Hyunki Cho

Table of Contents

Page
Acknowledgements Lo oo ii
List of Figures e v
Listof Tables e vii
List of Abbreviations and Symbols o000 viii
Abstract e xii
L. Introductiono oo o 1-1
1.1 Motivation e 1-1
1.2 Problem Statement 1-2
1.3 Method of Approach 1-3
1.4 Contributions o 000 1-5
1.5 Overviewof Thesis 1-5
II. Literature Review o0 2-1
2.1 Introduction. 2-1

2.2 Review of Object Manipulation Methods and Stability
Concerns e 2-2
2.2.1 Coordinative Manipulability Approach 2-2
2.2.2 Impedance Control Approach 2-4
2.2.3 Hybrid Control Approach 2-6
2.3 Macro / Micro Manipulation Approach 2-8
2.4 Selection of Method and Summary 2-9

11

Page
ITI. Development of Mathematical Model and Hierarchical Control Struc-

ture ... L. e 3-1
3.1 Overview e 3-1
3.2 Coordinate Frame Assignment 3-2
3.3 Force Evaluation and Derivation of Dynamic Equations 3-4

3.3.1 ForceSensor, 3-4

332 SOFrame, 3-5

3.3.3 Object Frame 3-6

3.4 Fingertip Actuation System(FAS). 3-11
3.5 Gross and Fine Motion Control Structures 3-11
3.5.1 Gross Motion Control 3-11

3.5.2 Fine Motion Control 3-13

3.5.3 FAS Centering Algorithm 3-15

3.6 Inverse Kinematics 3-16
3.7 Building Hierarchical Control Structures 3-19
3.8 Summary 3-20
IV. Simulation Experiment 4-1
4.1 Overview 4-1
4.2 Desired Robot Modeling 4-1
4.2.1 Forward Kinematics 4-1

4.2.2 Jacobian Matrix. 4-3

4.2.3 DynamicModel 4-4

4.2.4 Joint Range Limitation 4-4

4.3 Gross Motion Control Simulation 4-5
4.3.1 Free Space Motion Tracking without SO . . . 4-8

4.3.2 Free Motion Tracking with SO 4-8

4.3.3 Contact with Stiff Environment without SO . 4-10

v

4.3.4 Contact with Stiff Environment with SO . . .

4.4 Fine Motion Control Simulation
4.4.1 Step 1: One-Finger Motion Control Simulation
4.4.1.1 Performance using Nominal Gain Set .

44.1.2 Compliance
4.4.2 Step 2: Two-Finger Motion Control Simulation
4.4.2.1 Determination of Grasping Matrix . .

4.4.2.2 Step Disturbance Input
4.4.2.3 Normally Distributed Random Distur-

bance Input

4.5 Summary e e e e e e e

V. Implementation L oo oo
5.1 Overview of Experiment

5.2 Gross Motion Results

5.3 Gross + Fine Motion Control Results and Stability . .

53.1 Compliance

5.3.2 Stability oo

53.3 Instability

54 Summary e e e e e e e

VI. Conclusion and Recommendation of Future Work
6.1 Research Conclusion
6.2 Recommendation of Future Work

6.3 Summary e e
Bibliographyo

Appendix A. Forward Kinematics Development: 3 DOF Planar Case
of PUMAB60 i

Page
4-12
4-15
4-17
4-17
4-18
4-23
4-28
4-30

4-32
4-38

5-1
51
5-3
5-7
59

5-14

6-1
6-1
6-3
6-4

BIB-1

Appendix B. MATLAB Files and SIMULINK Diagrams
B.1 Files for Gross Motion Control
B.2 SIMULINK Block Diagrams of Gross Motion Control .
B.3 Files for Fine Motion Control
B31 Finger# 1.
B3.2 Finger# 2.
B.3.3 Object and Disturbance
B.3.4 CFA Algorithm
B.4 SIMULINK Block Diagrams of Fine Motion Control

Appendix C. Selection of Suitable Module Sampling Rate

Appendix D. C-codes for Implementation
D.1 mped.c and imped.rmodo,
D.2 Function files of emped.c L.
D.3 force.c and force.rmod
D.4 fine.cand finermod

D.5 gross.c and gross.rmod

vi

Page
B-1
B-1
B-7

B-10

B-10

B-14

B-18

B-20

B-26

C-1

D-1
D-1
D-13
D-21
D-29
D-36

Figure

2.1.
2.2.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.

4.4.

4.5.

List of Figures

(a) Stiffness Control, (b) Damping Control [30]
Impedance Control [30]

Assumed Robotic Structure with Multi-fingered Hand
Coordinate reference frames
Forces acting on SO frame
Forces acting on a rigid object 0.

Mechanical model of Fingertip Actuation System (FAS) and Con-
tact Force Relationship,

Gross Motion Control System
Fine Motion Control System
Mathematical Derivation of FAS Centering Algorithm
Diagram of FAS Centering Algorithm
Data Flow of Desired Control Structure

PUMA 560 Articulated Robot [25]
Desired Dynamic Model for Simulation

Diagram of Gross Motion Control Simulation: (a) Free space mo-

tion with and without SO, (b) Contact with environment

Gross Motion Control in Free Space Motion Tracking without SO
: (a) Measured position (manipulator moves left along z-axis while
maintaining the distance on z-axis), (b) Error between desired and

measured position, (c) End-effector orientation (601 = 0°)

Gross Motion Control in Free Space Motion Tracking with SO :
(a) Measured position (manipulator moves left along z-axis while
maintaining the distance on z-axis), (b) Error between desired and
measured position, (c) End-effector orientation (0 = 0°), (d)

Force measurement oL oo

vii

Page

2-5
2-6

3-2
3-3
3-5
3-7

3-10
3-13
3-15
3-16
3-17
3-19

4-1
4-5

4-9

4-11

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

4.19.

Gross Motion Control in Contact with Stiff Environment without

SO : (a) Measured position (manipulator tries to move into the wall
which lies along z-axis and maintains the same position unless the
stiff environment allows the manipulator to move), (b) Error be-
tween desired and measured position, (c) End-effector orientation

(O10ta1 = 0°), (d) Force measurement

Gross Motion Control in Contact with Stiff Environment with SO
: (a) Measured position (manipulator tries to move into the wall
which lies along z-axis and maintains the same position unless the
stiff environment allows the manipulator to move), (b) Error be-
tween desired and measured position, (c) End-effector orientation

(0tota1 = 0°), (d) Force measurement

Diagram of Fine Motion Control (—y, is the direction of gravita-

tionaleffect) L o

One-Finger Motion Control Response under Disturbance Force In-

put (Step Input with maximum 0.5 (cm))
Joint Stability using Phase Plot for Disturbance Force Input (Step

Input with maximum 0.5 (cm))

One-Finger Motion Control Response under Disturbance Input (Ran-

dom Input (Normal Distribution) with Mean zero and 30 = 0.25

(cm)) o e

Joint Stability using Phase Plot for Disturbance Input (Random
Input (Normal Distribution) with Mean zero and 3¢ = 0.25 (cm))

Finger Response using Ky, =0.001 and K. =50
Finger Response using Ky, = 0.001 and K. =150
Finger Response using Ky, = 0.006 and K, =150
Finger Response using Ky, = 0.006 and K. =50
Block Diagram of Simulation for Two-Finger Motion Control . .

Coordinate Assignments of each Fingertip Contact, Object and

Palm Frames for Two-Finger Motion Control Simulation

The Distance of Two Fingertips under Step Disturbance Input
(Magnitude 0.5 (cm)) L Lo

4-13

4-14

4-16

4-19

4-20

4-21

4-22
4-24
4-25
4-26
4-27
4-28

4-29

- 4-31

Figure
4.20

4.21.

4.22.

4.23.

4.24.

4.25.
4.26.

4.27.

4.28.

4.29.

5.1.
5.2.

3.3.

59.4.
d.9.

. Two-Finger Motion Control - Finger 1 Performance with Step Dis-
turbance Input (Magnitude 0.5 (cm))

Two-Finger Motion Control - Finger 1 Joint Stability with Step
Disturbance Input (Magnitude 0.5 (cm))

Two-Finger Motion Control - Finger 2 Performance with Step Dis-
turbance Input (Magnitude 0.5 (cm)))

Two-Finger Motion Control - Finger 2 Joint Stability with Step
Disturbance Input (Magnitude 0.5 (cm)))

The Distance of Two Fingertips under Normally Distributed Ran-
dom Disturbance Input (Mean Zero and 30 = 0.25 (cm))

Fingertips Distance Error after adding Internal Force (-0.018 (N))

Two-Finger Motion Control - Finger 1 Performance with Normally
Distributed Random Disturbance Input (Mean Zero and 3o = 0.25

(cm)) . . o e

Two-Finger Motion Control - Finger 1 Joint Stability with Nor-
mally Distributed Random Disturbance Input (Mean Zero and
30 =0.25 (cm))

Two-Finger Motion Control - Finger 2 Performance with Normally
Distributed Random Disturbance Input (Mean Zero and 3¢ = 0.25

(cm)) . o o e

Two-Finger Motion Control - Finger 2 Joint Stability with Nor-
mally Distributed Random Disturbance Input (Mean Zero and
30 =025 (cm))

Module Block Diagram of Gross Motion Control

Gross Motion Control Demonstration Results for Free Space Mo-
tion with Super Object (0.45 Kg)

Gross Motion Control Demonstration Results for Contact with En-
vironment with Super Object (0.45 Kg)

Gross + Fine Motion Planning using PUMA 560
Gross + Fine Motion Control Block Diagram

1X

Page

4-33

4-34

4-35

4-36

4-37

4-38

4-39

4-40

4-41

4-42

3-2

5-4

5-6
5-8

Figure

5.6.

5.7.

3.8.

5.9.

Al

B.1.
B.2.
B.3.

B.4.
B.5.

B.6.

C.1.
C.2.
C.3.

C.A4.

C.5.
C.6.
C.1.

Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.001,

Metal case o o e e e e e e e e e

Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Iz, Gain : 0.001,

Soft chair case« . . i i e e

Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.003,

Metal case o o o e e e e e e

Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.003,

Soft chaircase e
Link coordinate systems for a PUMA 560

SIMULINK Block Diagram of Gross Motion Control
Subsystem Block Diagrams of Gross Motion Control

SIMULINK Block Diagram of Fine Motion Control for One-Finger
Motion Control o

Subsystem Block Diagram of Fine Motion Control

SIMULINK Block Diagram of Fine Motion Control for Two-Finger
Motion Control (Main Block Diagram)

Finger Subsystem Block Diagram of Fine Motion Control for Two-
Finger Motion Control (FAS and Finger Dynamic Subsystem Block

Diagrams are the same of One-Finger Simulation)

Stable Cases of Test Sets for Overall Time History
Unstable Cases of Test Sets When Disturbance Input is applied .

Unstable Cases of Test Sets When Disturbance Input is applied.

Unstable cases of Test Sets for Overall Time History (cont’d) . .

Unstable cases of Test Sets for Overall Time History (cont’d) . .

Page

5-10

5-11

5-12

5-13

A-1

B-8
B-9

B-27
B-28

B-29

B-30

C-6
C-7
C-8
C-9

Figure Page
C.8. Unstable cases of Test Sets for Overall Time History (cont’d) . . C-10

X1

Table

4.1.
4.2.
4.3.
4.4.

5.1.

A.l.
A.2.

C.1.

List of Tables

Joint Range Limitation of PUMA 560 Planar Case
Set of Applied Gains to Gross Motion Control Simulation
Nominal Gain set of Applied to the Fine Motion Control Simulation

Experiment Sets of Fingertip Compliance
Module Sampling Rates of Test Set #5 in Appendix C

PUMA 560 D-H parameters
ROBOTICA Input Data File for a PUMA 560 6 DOF Robot . .

The Sets of Tests for the Gross + Fine Motion Control and Their

Performances. e

xil

Page

4-3

4-16

4-23

5-7

A-2
A-6

C-2

List of Abbreviations and Symbols

Abbreviations Description
ACC air combat command
] L contact force allocation
D-H conventioncoviiiiiiiiiiiiiat, Denavit-Hartenberg convention
DO e degree of freedom
FAS fingertip actuation system
OB O i e object-based control
SO (i super object including multifingered hand and object
SRANVETSE .ottt e e singular robust inverse
Symbols Description
Af j-th link coordinate transformation matrix with respect to i-th link
Qifp oo length of z-th fingertip link
F o resultant force and moment at the wrist
S P force represented on the object frame
S AR contact force vector
B omd oo e e e force applied by the operator
B o e environmental force
Fso oo, resultant force of the external forces applied to the SO
£ vector form of all fingertip contact forces
Of; o force error between the optimal and measured contact force
fig oo i-th fingertip optimal contact force provided by CFA algorithm

x1il

PP environmetal force applied to the object
A oo e force applied by i-th fingertip actuator
PR i-th contact external force in contact frame
grasping force vector
£ force applied to the object at the i-th contact
ST ¢-th contact internal force in contact frame
T S manipulating force vector
£ resultant force of the external forces applied to the object
force applied by i-th finger actuator
g e force applied by i-th finger actuators at the FAS centered position
o . i-th finger force error to be eliminated to provide the FAS centering action
Gi(d) gravitational vector of i-th finger
B(O) o gravitational vector of robot arm
H;(q;d;) coeeeeiiiiiiiiin Coriolis and centripetal vector of ¢-th finger
15 [(C) I Coriolis and centripetal vector of robot arm
T solution of SR inverse of Jacobian
Ji(Q) oo Jacobian matrix of :-th finger
J(O) oo Jacobian matrix of robot arm
K o environmental stiffness gain
Kip oo force to position conversion gain
Kiy oo force to velocity conversion gain
K oo integral gain of PID controller
Ky oo proportional gain of PID controller
Ky oo derivative gain of PID controller
L e e number of contacts
ML () oo inertia matrix of s-th finger
M(O) ot inertia matrix of robot arm
TTUOBGE « v e ev e ere v force due to the gravitational load of object

X1v

TRSOE « v eveeme ettt force due to the gravitational load of SO

2 T number of contacts
N,8,8 ovvneenennnn. normal, sliding and approach vector of the forward kinematic
00, Koy Yoy Do ovevnveronenenenenenen. absolute coordinates fixed at the base frame
Oobjy Kobjy Yobjr Bobj +vvvvrveess object coordinates fixed at the center of object mass
Ops Xpy ¥y Zp wovnvnrevnennnenn palm coordinates fixed at the center of palm frame
 « J position of SO with respect to the base frame
 +J A position of environment with respect to the base frame
o P derivative of i-th finger joints
& O acceleration of ¢-th finger joints
=g qiz - qr]F oo relative displacements of finger joint angles
Ui wvvvee e et i-th fingertip actuator joint displacement
position vector of object with respect to base frame
T e i-th contact position with respect to the object frame
f'f)bj F skew symmetric matrix of ¢-th contact position

with respect to the object frame
) o PSP deviation of position required to reduce

the force error of i-th fingertip in contact frame

T e e e e e torque applied by robot arm actuators
T et e et e torque reaction due to the environmental force
i« e et torque applied by -th finger actuators

Tom e e e torque required by gravitational load and dynamic

forces of SO due to the operator’s input

O=1[0:0,...0,)7 relative displacements of robot arm joint angles
O derivative of robot arm joints
O acceleration of robot arm joints
O v e desired robot arm joints
1 PP homogeneous transformation matrix

XV

... grasping matrix

... pseudo inverse of grasping matrix

xvi

AFIT/GE/ENG/96D-01

Abstract

For multi-fingered end-effectors in unstructured applications, the main issues
are control in the presence of uncertainties and providing grasp stability and object
manipulability. The suggested concept in this thesis is object-based teleoperator
control which provides an intuitive way to control the robot in terms of the grasped
object and reduces the operator’s conceptual constraints. The general control law is
developed using a hierarchical control structure, i.e., human interface / gross motion
control level in teleoperation control and fine motion control / object grasp stability
in autonomous control. The gross motion control is required to provide the position
/ orientation of the Super Object (SO), and the sufficient grasping force to the fine
motion control. Impedance control is applied to the gross motion control to respond
to the environmental forces. The fine motion control consists of serially connecting
the finger in position control and the Fingertip Actuation System (FAS) in force
control. The FAS has a higher bandwidth response than does the finger actuation
system and operates near the center of its joint range. The finger motion controller
attempts not only to track the displacement of the FAS but also to provide an FAS
centering action. Simulation experiments in both gross and fine motion control are
performed. The integrated gross / fine motion control is implemented using the
planar configuration of PUMA 560. The results show that the desired contact force
can be maintained in the direction of FAS motion. The mathematical proof of system

stability and the extension to spatial systems are required to complete the research.

xvil

Development of Object-Based Teleoperator Control

for Unstructured Applications

1. Introduction

1.1 Motivation

Robots have been used as standard tools in industrial systems, mainly where
a variety of repetitive tasks are carried out. In fact, robots are very useful in cer-
tain environments when hazardous or laborious tasks are required. The techniques
that control the robot autonomously or remotely have been addressed by many re-
searchers. For the autonomous or teleoperation control of robots, the parameters to
describe between the robot and the workspace environment should be predictable
or preprogrammed so that the developed techniques can be used for the advanced
applications such as object handling or interface with other robots. These are called
Structured Applications. If we think about more general types of robotic appli-
cations, the techniques should be developed for Unstructured Applications. The
definition of Unstructured Applications is that the relationship between the robot
and environment is highly variable and unpredictable so that the tasks should be

non-repetitive and can not be pre-programmed.

In general, the tasks performed in the military are in a dangerous environment,
require human intensity, and are laboriously repetitive. One such task of interest to
the Air Force is teleoperation assisted bomb loading or munitions handling. This
application consists of maneuvering a munition into the proper position and orien-
tation to be attached to a bomb or missile rack on an aircraft. Current procedures
require three technicians to perform this task which is extremely laborious under the

best of conditions. Under combat conditions, this task can be extremely dangerous,

1-1

and a goal of the Air Combat Command (ACC) is to reduce the number of personnel
required for this operation. The key to workload reduction is the presentation of the
maximum amount of information to the operator about the munition (object) being

manipulated while reducing the operator decision-making workload.

Generally, the object handling systems consist of more than two robotic struc-
tures such as dextrous manipulators and require coordinated control schemes. The
important issues of these systems are (1)how to coordinate the manipulation of a set
of robotic structures and (2)how to handle an object without it breaking or falling.
Both of these issues require the attention of the operator even during preplanned and
repetitive structured applications. The object handling control scheme is a more dif-
ficult problem while carrying out non-repetitive tasks in complicated or unstructured
environments. The teleoperated control method based on the Object-Based Control
(OBC) presented here can be a feasible solution to provide a control architecture for

general teleoperation systems with dextrous grasping.

1.2 Problem Statement

Towards the goal of a general dextrous manipulation system, the main objec-
tive of this thesis is to develop an object based teleoperation control architecture
for general telerobotic applications which provides a general grasping end-effector
which is more robust and stable in the presence of perturbations of the object due
to disturbance forces. This in effect will achieve a high fidelity object propulsion
system with the manipulator being transparent to the user. The tasks necessary
to accomplish this research are: to develop the mathematical model of teleoperated
multirobotic system handling an object, and the general control law development
for 4 cases of object manipulability: free space motion tracking of the end-effector,
end-effector in contact with an object, free space motion tracking with a grasped

object, and grasped object manipulability in contact with the environment.

1-2

The main obstacles to be overcome by an object based control method are to
determine the force components involved in object manipulation and to provide grasp
stability for a general motion command given by an operator. Generally, the grasping
stability can be accomplished by applying as much internal forces as an object can
withstand, and by providing special fixtures that constraint the grasp. However,
these techniques can only be applied to structured tasks with specific grasps. Current
techniques and formulations for the control of OBC systems are based on structured
environments. This application is centered about teleoperator controlled systems
and requires different inputs than autonomous systems. The information required

by the operator must be object based to minimize the requirements of data transfer.

One way of doing this is to present an operator with a way of controlling
the object itself (for example, a munition or missile) without having to impose the
conceptual constraints of controlling a robot to get the desired motion of the end-
effector which is attached to the object of interest. It is most intuitive for the
operator to think in terms of controlling the object itself, i.e., the object having its
own independent propulsion system commanded by forces applied by the operator.
The main goal of the OBC Architecture is to provide such an intuitive interface
for an operator with an arbitrary user input device. Additionally, precise force and

position control is also required by this application.

1.8 Method of Approach

A multi-fingered hand system for the coordinative manipulation can be mod-
eled as a set of robots which are coupled to each other, and an object manipulated
by this system can be modeled as a set of control constraints. One of the possible
ways of achieving this model is to decompose the control tasks into appropriate lev-
els. Each of the levels is represented as a hierarchical control structure. The desired
control system can be divided into 4 levels, i.e., object for the grasp stability at the

lowest level, fine motion (position and force) control for a multi-fingered hand with

1-3

an object, gross motion (position and force) control for the robot arm, and human

interface as a highest level.

The primary emphasis of this thesis is to review the current mathematical
model of control architectures and to select appropriate models which can be applied
to each control level. The selected models will be redefined at each control hierarchy
by determining the interacting force components between the control levels. The
gross motion control should asymptotically follow the desired operator’s motion input
and consider the uncertainties such as the object and unexpected environments. The
fine motion control is required to track the exact force and position of fingertips and
to achieve the object grasp stability. The force applied by an operator must be seen

in the object frame.

Once the individual control structures are defined, the general control law
will be developed considering four cases of manipulability: (1)free space motion
tracking without object, (2)end-effector contact with object, (3)free space motion
tracking with grasping object and (4)grasping object manipulability in contact with
the environment. For the hierarchical control structure, system variables must be
carefully specified at each level of hierarchy so that the overall control structure can
be easily obtained. The main control objective is to follow the commanded trajectory
at the gross motion control level while maintaining the object grasp stability at the
fine motion control level. For the object grasp stability, an additional actuation
device called Fingertip Actuation System (FAS) would be used between the end of
the finger and the contact force sensor to apply an appropriate force to the object

in any required direction.

A simulation is used for the verification of the general control law and is an
intermediate step to implementation. A 3-Degree of Freedom (DOF) planar robot
is used for the simulation. The simulated robot kinematics are derived from the
PUMA 560, links 2,3 and 5. The gross and fine motion controllers are simulated

separately to establish the characteristics of stable operation. The control concepts

1-4

are modeled in the MATLAB Simulink environment [1, 2]. Due to the limitations
of the experimental environment, the implementation would be accomplished by
demonstrating a 3-DOF planar robot that validates the concept of coupled position
and force control scheme, i.e., the last link is controlled by force control in the
direction of end-effector movement and the end-effector position is accompanied by
the result of force control. The concept used in simulation is transferred to the
CHIMERA Real Time Operating System [35] for implementation on the PUMA
560. First, experiments on the gross motion control with the SO are based on 4
cases of manipulabilities. Then, the integrated gross / fine motion control which
are simulated separately is experimented to validate the grasp stability and the

requirements of both gross and fine motion controllers.

1.4 Contributions

The primary contributions of this thesis effort are listed below:

1. Developed a hierarchical control architecture based on the concept of

Object-Based Control.
2. Implemented and tested a controller based on this architecture.

3. Provided the basis for intrinsic human-machine interface allowing the ac-

complishment of complex unstructured tasks such as munition handling.

1.5 Owverview of Thesis

This thesis is organized into five chapters. Chapter Two is a review of current
literature regarding coordinative control techniques and corresponding theories as
well as two different methods of compliant motion control. Chapter Three presents
the theoretical framework of the object based mathematical model, development of
teleoperated motion control concepts for the coordinative manipulation, and build-

ing hierarchical control structure. Chapters Four and Five contain the simulation

1-5

and implementation results respectively and discuss the experimental results and
analysis. Finally, Chapter Six concludes with a summary and provides some recom-

mendations for future work.

1-6

II. Literature Review
2.1 Introduction

Unlike a human being who has a highly developed manipulation system, it is
difficult to design a mechanical system which can perform versatile manipulation.
Even though some mechanical structures may perform certain tasks with high ac-
curacy and efficiency, these systems only have the capability of performing tasks
in specific areas and lack flexibility to carry out other tasks. For flexible manip-
ulation, the robotic manipulator with a dexterous hand is one possible approach.
Robotic manipulators contribute to increase productivity and safety developments
for many tasks which are dangerous and repetitive. However, many of those same
tasks, including operation of the robot, still require the involvement of a human
operator. These manipulative requirements néed complicated techniques to attain

human capabilities in artificial dexterous hands.

In most previous work, the main points addressed for object handling systems
are how to design the coordinative control system and the grasping stability of an
object handled by a multirobotic system. In fact, the grasping stability can be
obtained by coordinating each manipulator carefully and distributing appropriate
loads to the manipulators in order to avoid slippage and breakage. In order to
reduce the burden on an operator for intelligent decision making, the general solution
is to control forces in the object frame rather than in the base frame. If a system
is designated this way, the operator needs only to command an object position.
Considerable research effort has been performed to develop stable and implementable
solutions for this problem.

The purpose of this literature review is to evaluate current control schemes
used in object handling systems and provide possible solutions to use in this thesis

problem. Many control schemes have been introduced over a wide variety of ap-

plications and it is difficult to separate them. Thus, this chapter is presented the

2-1

object manipulation approaches consisted of three parts, i.e., coordinative manipula-
bility, impedance and hybrid control, and the review of macro / micro manipulation

approaches.

2.2 Review of Object Manipulation Methods and Stability Concerns

2.2.1 Coordinative Manipulability Approach. The general meaning of coor-
dinative motion control in robotic systems is to control the manipulation of a desired
object with multirobotic systems in order to achieve a given task. This includes top-
ics such as materiel transfer, assembly operation, object grasping to be able to carry
out other tasks, and so on. The basic concept of this control is to apply an oper-
ator’s command to the multiple manipulators using geometric techniques to handle

an object.

Arimoto et al. [6] proposed a bilateral master-slave control scheme of multiple
robotic mechanisms. By assigning a group of some manipulators as the part of master
and others as the part of slave, the master group is position controlled to follow a
given trajectory while the slave group is servoed to follow the master arm with
fixed relative position and orientation to accommodate an object. This approach
does not consider very complicated geometrical and dynamical relations between
manipulators and object. Thus, it is quite difficult to achieve the high accuracy of
manipulating the object but, in practical use, it is easy to implement and reduces

the operator’s control effort.

Tarn, Bejczy and Yun [13] derived the closed chain formulation which was
formed by two robot arms and the object through the ground. They assumed that
robot arms grasped the object so tightly that only rotation between the fingers
and object is possible. In this case, the contact between end-effector and object is
considered as a joint of one degree of freedom. This forms a closed kinematic chain.
They linearized and decoupled the dynamic equations of two robot arms including

the object held by the two arms. The coordinated control of two robot arms as well

2-2

as the single arm can be derived from the linearized and decoupled system. This
work showed that the structure of the controller doesn’t need to be changed from
one task to another task, however, the input command should be in task space so
that the both robot arms can accomplish their common tasks. This method can be
implemented for structured applications because accurate kinematic and dynamic

control requires the knowledge of robot arms and task descriptions.

For the practical applications of coordinative control systems, errors such as a
robot arm geometric error or errors due to task uncertainties may cause either criti-
cal system degradations or instability of object handling. Koga et al. [12] developed
a good coordinated motion control architecture of robot arms based on a virtual in-
ternal model in order to lessen the effect of those errors. The virtual internal model
is a reference model driven by sensory information, provided by a force sensor in this
case, implemented in the controller. In this control architecture, the virtual internal
model generates a virtual reference signal for a robot with specified dynamics, and
the servo compensator controls the robot to achieve the same behavior of a virtual
internal model. This research was performed by mainly considering the system state
bounded against the breakage of the manipulated object and the geometric errors
caused by robots arms. Since the virtual model adjusted each manipulator’s trajec-
tory, the conflicting action between the two arms can be minimized. Another similar
approach is used by Soloway and Alberts [14]. Using the knowledge of the forces
and torques acting on the jointly manipulated object, they present the extension
of kinematic resolved rate control method to accommodate multi robotic manipula-
tors. Since the geometric errors generate unwanted forces on the manipulated object
and lead to slippage of the end-effectors or damage the object, the sensor based
force control is required to provide the capability to apply a controlled force on the

environment through the jointly manipulated object.

Another way to provide coordinative manipulation is to establish a complete

dynamic model of a multirobotic manipulator and a desired object, and attempts

2-3

to obtain the object trajectory and its grasping stability. Murray, Li and Sastry
[3] develop a combined control concept via the grasp constraint, which is required
to connect the parameters of manipulators and the object. The main requirement
of this concept is that the geometric model of the manipulators and object must
be completely known and, in order to obtain the contact stability, the object and
manipulators are assumed to be rigid. The drawback with these assumptions is that
the system’s performance would be degraded if any of these assumptions are failed.
Hsu [4] propose the same control concept for the preplanned application such as

screwing a nut onto a bolt.

2.2.2 Impedance Control Approach. Under the uncertainty of the envi-
ronment, the interaction between the robot and its environment is a problem in
minimizing deviations from desired motions while simultaneously minimizing inter-
action force which can cause the instability of a robot [15]. For this reason, the en-
vironment forces, including the gravitational force, should be accommodated rather
than resisted so that an improved result, for instance, contact stability, can be ob-
tained. Impedance control is able to provide such a compliant response unless there
is no environmental contact. Whitney [30] provides the impedance control scheme
in Fig (2.2) that is a combination of two different types of controllers: stiffness and

damping controllers shown in Fig (2.1).

If the environment is an admittance, the manipulator should be an impedance
[18]. This is true in Whitney’s force control scheme in which the stiffness control
which converts force into position is modeled as a spring mechanism and the damping
control which converts force into velocity is modeled as a damper. Different from the
hybrid position and force control, the impedance control is focused on the dynamic
relationship between the force and position rather than tracking the desired position
and force. Therefore, the impedance control is useful not only for the uncertainty

on the manipulator but also for insufficient knowledge of the environment.

2-4

X A
ARM @:—!E

— Kgq [+{SENSOR J Kga [+{SENSOR

(a) (b)
Figure 2.1 (a) Stiffness Control, (b) Damping Control [30]

For extended applications, the above statement can be developed in multi-
ple robotic systems. If all of the manipulators in this system are considered as
impedances, the rigid object grasped by multiple robot arms can be considered as an
admittance. Under the contact with the stiff object, impedance control for the each
manipulator provides the open-loop force control capability while the desired posi-
tion gives the constant contact force. Cutkosky [15] applies the concept of impedance
control in his static grasping model, i.e. the impedance control is used to feedback
the resolved force of manipulators so that they can be stiff in the unconstrained di-
rections and compliant in the constrained directions. One effort using the impedance
control concept has been proposed by Schneider and Cannon [16]. In their concept,
the controlled impedance is applied to the manipulated object directly, thus, the in-
tuitive object behavior can be easily’specified. For the general cases of teleoperation,
the virtual object dynamics fixed in its apparent center of mass is used rather than
using the actual object dynamics to obtain the desired object motion. Additionally,

when using this concept, the internal force needs to be controlled explicitly.

Even though the impedance control is extremely simple and robust in the

presence of parameter uncertainties, the achieved manipulation speed may be slow.

2-5

REACTION
LQAD
1

Kg2
]»—-Isenson|—--

Figure 2.2 Impedance Control [30]

Another limitation of impedance control is that it does not perform well in tracking
the desired force and position compared with the dynamic hybrid position and force

control [17].

2.2.3 Hybrid Control Approach. A common method in coordinative mo-
tion control is a hybrid position and force control scheme in which the end-effector
is position controlled in the unconstrained directions while controlling force in the
constrained directions. Hayati [7] used this method to develop the cooperative con-
trol architecture of multiple manipulators. Based on certain point in the object fixed
by an absolute coordinate frame, two subspaces of position and force are defined for
the control of the object. Compared with conventional position and force control
techniques [8, 9] that define the control directions, in this approach the object itself
can have natural and artificial constraints and the manipulators can exert the force
at the end-effector without contact with the environment. The distribution of force
to each manipulator requires a precise knowledge of the mass property of all the
manipulators and the object. For the unstructured applications, the problem that
appeared in this paper is the stability of the system. To stabilize the system, the

authors assumed that either the mass of object should be much less than that of

2-6

the manipulators or the object mass should be known when it has a large amount of
mass. If stability concerns appear when large scale objects need to be handled, this
approach may not work well. Another drawback of the hybrid approach is that its
control structure has to be changed for a given task. This means that the control law
can be valid only for the perfectly structured model so that the planning mode can
perform with mathematical precision. Rather than selecting appropriate matrices,
Chiaverini and Sciavicco [10] provides the parallel approach to force and position
control which has no selection mechanism and provides the robustness for the con-
flicting situations between the position and force tasks. This approach is based on
Hogan’s impedance control concept [18], i.e. the manipulator and environment are
defined by two complementary components: admittance (accept motion input and
yield force output) and impedance (accept force input and yield motion output).
The limitation of parallel approach is that the sensor measurements must always be

available in order to provide sufficient knowledge of the environment.

Among the coordinative control concepts introduced in recent years, Naka-
mura developed a concept based on grasping stability. Using his concept, grasping
stability can be defined in two way: object stability and contact stability. The for-
mer is the ability to return to the static equilibrium position and the latter is the
ability to maintain contact with the object when it is disturbed by external forces.
The grasping stability can be easily implemented in the static case model. However,
both static and dynamic problems can not be separately handled in the object ma-
nipulation of a multirobotic system because of their dependency. Excessive contact
force to provide the static equilibrium can cause object instability and inappropriate
dynamic force also cause the object to be dropped. To achieve the purposes of both
properties properly, two separated controllers, i.e. a coupled nature of position con-
trol corresponding to dynamic equilibrium and force control corresponding to static
equilibrium, are required. This is a quite different concept of conventional hybrid

position and force control approach. The main idea is that there is no constraint

2-7

direction and both position and force control can be performed in the direction of
end-effector work. If the grasped object is sufficiently rigid, the displacement of one
robotic mechanism could cause the motions of other robotic mechanisms. This may
be valid with the following assumptions used by Nakamura: (1) A robotic mechanism
makes a frictional point contact with the object, and (2) a contact point does not
move on the object surface by the motion command. Also, these assumptions allow
us to consider contacts which can produce only 3-axis force on the grasped object.
As Nakamura mentioned in his work, it is required to develop the feedback control
systems that guarantee the stability. The modified control concept is presented in

Chapter 3.

2.3 Macro / Micro Manipulation Approach

In general, the macro manipulation is characterized by a slow and large scale
motion control using the macro robotic structure, and the micro manipulation is
characterized by a fast and precise motion control using the relatively smaller robotic
structure than the macro motion manipulators. In most cases, the micro motion
manipulator is attached to the end of the macro motion manipulator, and the micro
motion controller compensates for the error, or responds to the imperfectness of the
macro motion controller. Lew and Trudnowski [31] applied the micro manipulator
(rigid link) to damp out the vibration in the macro manipulator (flexible link).
They used two types of controllers, i.e., the PD controller is designed to provide
the joint angle motion of micro manipulator, and the flexible motion compensator is
designed to control the damping of the macro manipulator. The dynamic connection
between micro and macro motion controller is the flexible motion compensator which
compensates between the micro and macro motion controller. The dynamics of both
manipulators are not coupled each other and the PD feedback loop and flexible
motion compensator are independent. In fact, they can be considered as damping

control.

2-8

Stevens and How [32] developed the combined micro and macro control ar-
chitecture as a coupled system. Basically, they designed the controllers so that the
macro motion controller is to reach the large scale of work volume in the world frame,
and the micro motion controller is to zero out the error between the desired and the
current end-effector positions. Two controllers are combined by two coupling terms,
i.e., the output of micro motion controller added to the macro manipulator, and the
position of macro manipulator fed back to the micro motion controller to compute

the position difference. These two coupling terms make the overall system closed.

For the object handling systems, the precise force and position control schemes
are required to prevent the object from falling or breaking by the fingers. Both
introduced control schemes have the complementary control that results in force
and position, i.e., Lew and Trudnowski [31] focused on controlling the inertial force
and Stevens and How [32] developed the position control of the manipulator tip.
However, both control schemes used the high bandwidth response of micro motion
controller to fespond faster than the macro motion controller to compensate the
position or force errors. This is the main idea of the Fingertip Actuation System

(FAS) discussed and developed in this thesis.

2.4 Selection of Method and Summary

This chapter has reviewed the motivation for developing coordinative control
concept for handling the object under the unstructured environment. Some works
have been introduced and evaluated to provide a possible approach. Based on the
hierarchical control structure, two ways have been suggested in this thesis: one
is the teleoperated control for the robot arm (gross motion) and another is the
autonomous control for the SO (fine motion). For the teleoperated control under the
unstructured environment, the robot controller is not required to track exactly the
desired operator’s input because the controller itself admits the presence of workspace

uncertainties. Since it is teleoperated control, we assume the operator can handle

2-9

this error. For this reason, the impedance control concept can be used for the
gross motion control algorithm. However, the fine motion requires exact motion
tracking to provide the grasp stability. Nakamura [5] presents a force domain control
concept which provides the dynamic and static equilibriums in order to obtain the
object grasp stability. The main objective for the coordinative manipulation with
the object is to provide an autonomous control algorithm that can handle the grasp
stability without being considered by the operator. This should be applied to the
unstructured applications. The hybrid position and force control concept is used for
fine motion control. The next chapter develops the overall control architecture of an

object handling system based on hierarchical control structures.

2-10

IIT. Development of Mathematical Model and Hierarchical Control
Structure
3.1 Overview

The purpose of this chapter is to derive the basic equations used to resolve the
motion (position and force) of the manipulator and multi-fingered hand with grasped
object and develop the hierarchical control structures to provide an overall concept
of manipulations. The assumed robotic structure of planar configuration is shown in
Fig (3.1) and is refered in this thesis to develop the general object-based teleoperator
control architecture. A two-fingered hand is attached to the end of robot arm and
is used to grasp and manipulate an object. The Super Object (SO) presented in
Chapter 1 consists of a two-fingered hand and an object and is used for the payload
of the robot arm in gross motion control. The additional actuation device, called
Fingertip Actuation System (FAS) located between the finger and the contact force

sensor, is used to increase the grasp stability in fine motion control.

There are two steps to define the components of forces occurred in gross or
fine motion control level. As mentioned in Chapter 1, the assumed robotic structure
can be separated into two robots, i.e., one is the robot arm and the other is a
two-fingered hand. The robot arm simply handles the gross motion of the SO and
resists the external forces (gravitational load of two-fingered hand with or without
an object, environmental compliance forces or teleoperator’s command). The two-
fingered hand is required to provide grasp stability after picking up an object. This is
accomplished by the fine motion control. We assign a division of the motion control
to a hierarchy based upon the type of motions [3, 28, 29]. At the upper level of the
hierarchy, the operator’s intelligence is used to direct overall strategy and task being
pursued and the lower levels become more autonomous. Thus, the human interface
and the gross motion control levels are included by the concept of teleoperation

control, and the fine motion control and the object grasp stability levels are included

3-1

Multifingered

Hand

g Robot Arm @

Wrist Force Sensor

p‘— =7 .)
Fingertip Actuator [[
Contact Force Sensor [C
Fingertip [
Object

FingertipActuationSystem

Figure 3.1 Assumed Robotic Structure with Multi-fingered Hand

by the concept of autonomous control. The critical issue in developing hierarchical
control structures is to define the signals which are incoming to and outgoing from
each level of hierarchy. One such problem is to determine the forces acting on either
the SO frame or the object frame and establish the relationship between them. The

following sections show the framework to develop the general control structure based

on appropriate coordinate frames.

3.2 Coordinate Frame Assignment

In the control of multiple robotic systems such as dextrous hands, one of the
important issues is to control the each robot simultaneously to achieve the desired
task. The assignment of coordinate reference frames is significant to incorporate

the kinematic issues and recognize the interacting forces between each control level.

3-2

Yp
X p X obj i
Palm Frame obj
P
p
1%p Zp Ocbj Zabj
p : Object Frame
P d
L R U
P Super Object (SO)
z, Frame
0, Yo
Base Frame

Figure 3.2 Coordinate reference frames

There are five reference frames in Fig (3.2): base frame, end-effector or SO frame,

palm frame, object frame, and contact frame.

e Base Frame : Absolute coordinate frame (World Frame). The position and

orientation of the SO is expressed in this frame.

¢ End-Effector or SO Frame : End-effector or SO coordinate frame is fixed
to the center of mass of a multifingered hand or the center of mass of the end-
effector with an object in its grasp (including the mass of object). We assume
that (1) the movement of the object with respect to the end-effector is small
compared to the overall gross motion of the object caused by the gross motion
joints of the manipulator, and (2) the mass of the object will dominate the
mass characteristics of the multifingered hand / object (SO) and the center of
mass of SO can be assumed to be located at the center of the object mass.
Thus, the origin, 0.;, can be placed at the center of the object mass and the

position vector, r, is the position of the object represented in the base frame.

3-3

e Palm Frame : Multifingered hand base frame. This is an intermediate frame
between the robot arm and fingers to express the position of all fingers with
respect to the base frame. The position vector, p, is the position of the palm
frame, o,, represented in the base frame. This frame is used as the fine motion

control base frame.

e Contact Frame : Contact coordinate frames are to represent the finger con-
tact positions and forces applied by fingers to an object. For simplification,
contact frames are chosen so that the z-axis of these frames are pointing inward

of the normal direction on the object surface.

e Object Frame : Object coordinate frame fixed its center of mass. By the
assumption that the mass of the object will dominate the mass characteristics
of the multifingered hand / object (SO), the position and orientation of this
frame should be the same as that of the end-effector frame so that the total

force on the object can be evaluated.

3.8 Force Fvaluation and Derivation of Dynamic Equations

3.3.1 Force Sensor. There are two kinds of force sensors needed to develop
the control concept in this thesis, i.e. a wrist force/torque sensor and fingertip
contact force sensors. The wrist force/torque sensor is mounted between the wrist
and the hand to measure the 6-axis force information in the palm frame i.e., F
= [F, F, F, M, M, M,]?, applied to the super object. The sensed forces by this
device are used for the gross motion control and calculation of optimal contact force
for each finger. The fingertip contact force sensor is a device in line between the
fingertip and the fingertip actuation system that measures 3-axis force information,
f = [fz, fu, f-)7, applied to the object shown in Fig (3.1). For simplicity, we assume
that the contact between the fingertip and the object is only a point contact so that

the moments are not required. In contrast to the wrist force sensor, the force sensed

3-4

by fingertip contact force sensor is fed back only to the fingertip actuation system

to provide robust grasp stability.

3.8.2 SO Frame. The forces acting on this frame are forces due to the
operator’s command input as applied by the wrist, gravitational load and environ-
mental forces. Fig (3.3) shows those forces acting on the SO frame. The total mass
of multi-fingered hand and object is called the mass of SO. To simplify the problem,
we assume that the mass of the multi-fingered hand is much smaller than that of
the grasped object. Thus, the mass of multi-fingered hand can be ignored and the
center of mass of SO is the center of mass of the object located at the center of its

gravity.

Super Object (SO) S0

Object

z N

v F

m

SOg

Figure 3.3 Forces acting on SO frame

o F .4 : Force due to operator’s input.
e Fso : Resultant force of the external forces applied to the SO.

F. : Environmental interaction force.

msog : Force due to the gravitational load of SO.

3-5

The equation of resultant force, Fgo, is represented by
Fso =msog+ Fema + Fe (3.1)

where mgo is the total mass of SO and g is the gravitational acceleration. If the
generalized coordinate vector of a manipulator, ® = [0 8 - - - 0,]7 denotes the rela-
tive displacements, 8;, between two links at i-th joint, the manipulator equations of
motion [22, 25] can be represented in the form

M(0)0 + H(0,0)0 +g(0) =7 — J*(0)Fs0 (3.2)

where M(0) is the symmetric and positive definite joint space inertia matrix, H(O, 0)
the Coriolis and centripetal vector, g(©) the gravitational vector, 7 the torque ap-
plied by actuators, and JT(®) the transpose of Jacobian matrix. The last term of
right hand side in Eq (3.2) is the torque required to apply the force, Fso, statically
to the end-effector.

3.3.3 Object Frame. The object frame includes a manipulated object and
multi-fingered hand. The forces acting on this frame could be a gravitational force
due to the mass of the object, total sum of contact forces applied by each finger
and an environmental force in case of contact with environment. We make some

assumptions to simplify the problem, i.e.

1. The grasped object is rigid.

2. There is a frictional point contact with the object. Thus, only 3-axis force

needs to be considered at the contact points.

3. Each contact point does not move on the object surface by the change of
contact force and object orientation. Thus, there is no slip of finger on

contact point.

3-6

The first and third assumptions provide a simplified kinematic problem. With-
out these assumptions, we need to consider the specific kinematics dealing with the
change of object motion. The second assumption means that the forces can be ex-
erted in any direction within the friction cone for the contact according to the friction

between the finger and an object. The forces in Fig (3.4) are defined as

Figure 3.4 Forces acting on a rigid object

e f; : Contact forces applied to the object by the ¢-th finger.
o f, : Resultant force of the forces applied to the object.

e f. : Environmental force.

mep;g : Force due to the gravitational load of object.
The resultant force at the object center of mass, f,, is represented by
!
fo = Zfz + Mobi g + fe (33)
=1

where m, is the mass of the object, [is the number of contacts, and g is the gravi-
tational acceleration. For the restricted workspace in contact with the environment,

most position and force control schemes separate the control directions: position

3-7

control accomplished in the unconstrained direction (tangential to a constraint sur-
face) and force control in the constrained direction (normal to a constraint surface).
The requirement of force control in this method is to keep the static equilibrium in
the constrained direction while the position controller tracks the desired trajectory.
In contrast, dynamic coordinative manipulation such as handling an object using
multi-robotic structure requires the control of force and in the direction of motion.
In Nakamura’s concept [5], the force controller is required to satisfy static and dy-
namic equilibrium while the position controller is a result of the force control. The
static equilibrium generates the desired contact force at the contact point so that
grasp stability can be obtained. The dynamic equilibrium provides the acceleration
to each finger necessary to follow the desired motion at the contact point while main-
taining contact with the object. This concept implies that the motion control in the

object frame should be autonomous rather than teleoperated.

We assume that the mass of object dominates the mass characteristics of the
multifingered hand. The measured force on the SO should be the sum of fingertip
contact forces in Eq (3.3), that is, Fgo is the desired input force of object frame.

From Eq (3.1), let Fop; = [Fso Mso], then
fobj = ch (34)

where f, is defined by
L=[f £, --- £ (3.5)

where [denotes the number of contacts, and W is defined by

E, E, --- E
W = N 2 ¥ (3.6)
Tob; Tobj """ Topj

where f'f,bj is the skew symmetric of i-th contact position vector represented by the

object frame. Using the pseudoinverse of Eq (3.4), the vector form of all contact

forces is represented by

f, = W* T, + fins (3.7)

where f;,; is the desired internal force to grasp the object. As mentioned by [3,
26, 27], the first and second terms of right hand side in Eq (3.7) represent the
manipulating force and the grasping force respectively. We assume that the result of
a Contact Force Allocation (CFA) algorithm developed by Hunter [23] can provide a
near optimum contact force to satisfy the friction cone constraints and the stability

of object grasp as well as generating the commanded force.

Additionally, we need to consider the static force applied to the object that is
controlled explicitly. The purpose of finger controller task is to make the force such

as

£ =f (3.8)

where f; is the fingertip contact force and f;, is the force applied by ¢-th finger
actuator. This ignores the dynamics of FAS. The purpose of FAS task is to eliminate
of force error between f; and f;, so that f;, can follow f;. The FAS can be represented
by

firas =1 — 1 (3.9)

where f;r45 is defined as the error function. Thus, the FAS shown in Fig (3.5) can
maintain the contact position and improve the feasibility of grasp stability. This is

discussed more in the following section.

In addition to following the desired contact force, the ¢-th finger actuators
is also driven to provide the FAS centering action once there exists the difference

between the FAS current and centered positions. The dynamic model of finger is

+f;, (3.10)

3-9

i-th Finger

i-th Fingertip r
Actuation

Contact Force Sensor

10

i-th Fingertip

f;

Figure 3.5 Mechanical model of Fingertip Actuation System (FAS) and Contact
Force Relationship

where f; denotes the force applied by the ¢-th finger actuators at the FAS centered
position, and f;, denotes the force error due to the FAS response and input command

of the i-th finger position controller.

A generalized coordinate for each finger is represented at the palm frame, i.e.,
]T

q; = [%‘1 gi2 *** Qik

where q; is the joint position of ¢-th finger and k£ denotes the number of joints of

each finger. The equation of motion of z-th finger is
Mi(q;)g; + Hi(q;, 4;)a; + g:(a;) = 7ip (3.11)

where M;(q;), Hi(q;, q;) and g;(q;) are i-th finger inertia matrix, Coriolis and Cen-
trifugal vector and gravity vector respectively, and 7;, is the joint torque required to

achieve the desired input of ¢-th finger.

3-10

3.4 Fingertip Actuation System(FAS)

Most control models of coordinative manipulation [3, 5, 26, 27| have decom-
posed the contact force into two components: manipulating and grasping forces. The
manipulating component tracks a given object trajectory and the grasping compo-
nent maintains a desired internal force to prevent slipping or breakage. Under struc-
tured models, those tasks could be achieved by using the existing control models.
However, for unstructured models, we need to consider the uncertainties that occur
while the fingers are both manipulating and grasping the object. They are gener-
ated from imperfect fingertip control, uncertainties in the external forces applied to
the object, and uncertainties in the estimations of object properties, and they cause

degradation of the grasping stability.

In Fig (3.5), the FAS is attached to the end of each finger and it is required
to perform force control explicitly. The FAS is required to have a higher bandwidth
than the finger actuators in order to increase the grasping stability by responding
to external disturbanées. It can apply a force in any direction and its displacement
range is much less than the range of finger actuators. The FAS reduces the force
.error, &f;, between the desired contact force, f;4, provided by the CFA algorithm and

the measured contact force, f;.

3.5 Gross and Fine Motion Control Structures

3.5.1 Gross Motion Control. The main objective of gross motion control is
to track the desired position and orientation of the SO asymptotically. In addition,
the force between the controlled SO and the environment should be controlled so
that the necessary total force for the fine motion control can be provided. With
this purpose, the subtasks of gross motion control can be specified by 4 cases of
manipulability: (1) free space motion tracking without an object, (2) contact with
environment without an object, (3) free space motion tracking with a grasped object,

and (4) contact with environment with a grasped object. To accomplish these control

3-11

tasks, we assign the impedance to account for the uncertainty in the SO such as
object mass. In an ordinary robotic control system, the motion of a robot arm can
be controlled so as to follow a desired command accurately. With the requirements
of manipulation such as interactions between a robot and its working environment,
compliant motion control is required once the robot contacts the environment. The
gravity effect on the SO must also be included. As mentioned in previous sections,
the forces resolved by the gross motion control will effect the fine motion control in
any cases of manipulability since this force is used to calculate the optimal contact
force for each finger via the CFA algorithm. Thus, whenever the SO contacts the
environment until the operator selects an option to release the object, the object

should not slip or fall down under unexpected environmental forces.

The control technique used in this level is an impedance control strategy which
implies that force does not need to be controlled explicitly and the desired position
and orientation of the SO can be obtained either in contact or non-contact with the
environment. If the position of the SO is p and the position of enviroﬁment is p,,
the force exerted on the environment is given by

K.(p—p.) ifp>p.
P, = (P—p.) ifp>p (3.12)

0 otherwise

where K. is the environmental stiffness. From Eq (3.2), the equation of motion in

joint space can be written as
M(0)0 + H(0,0)0 +g(O®)=7— 7 — T (3.13)

where 7, is the torque required by the gravitational load and dynamic forces of the
SO due to the operator’s input and 7, is the torque reaction due to the environmental

force, F.. By applying the Proportional Integral Derivative(PID) control law [22, 33]

3-12

- PID
Pd 5 3p Inverse 50 Kop
Ki ti -
{ mematic L \‘>’\ P \sz
T Robot
I/S Ki Z Am | . N
. - . p
Pg / \KE\SP Inverse 30 K Ve
N N(& Kinematic v
\
JT
K fy
F
Sensor Ke
K fp
Figure 3.6 Gross Motion Control System
that provides the zero steady state tracking error response
r =K, (0, 0) + K; /(@d —0)+ K, (64— 0) (3.14)

where K,, K; and K, are the proportional, integral, and derivative gains respec-
tively, the desired control system based on Whitney’s force feedback architectures

mentioned in Chapter 2 can be developed and is shown in Fig (3.6).

3.5.2 Fine Motion Control. =~ While the gross motion control is performed
to achieve the desired position and orientation of SO asymptotically, the fine motion
control is required to perform the force control in the object frame that produces
the stable grasping force and the small displacement of contact position but not
slipping. The purpose of fine motion control is to autonomously provide a stable
grasping force to the finger and resist unexpected external forces. The rationale at

this level is to control the desired force rather than position. The proposed input in

3-13

this level is the desired contact force which needs to be controlled explicitly. Thus,

the position control can be considered as a result of force control.

The force controller must produce both static and dynamic equilibrium. Thus,
the force controller can contribute both the object grasping stability and the move-
ment. It is assumed that there is only a small deviation of contact position due to the
result of force control or the disturbance produced by the gross motion control, and
also small amount of force error existing between the desired and measured contact
force at each fingertip because we already assume that the CFA algorithm provides
sufficient conditions for the grasping force. If f;; is the desired ¢-th fingertip contact
force from the CFA and f; is the measured i-th fingertip contact force, then the force

error is given by

§f = £y — f; (3.15)

and the deviation of position required to reduce the force error of the i-th fingertip

in the contact frame is given by
0x; = Ky, 6f; (3.16)

where Ky, is the gain to convert force to position.

The FAS can be considered as a force controller and its response must be faster
than the finger position controller because it needs to respond to the force change
rapidly. The FAS also requires to have a sufficient range of motion in order to be
able to respond to the force change adequately between the finger controller and the
object. The finger controller operates based on the result of FAS response. This
controller provides the FAS centering action so that the FAS is able to operate in
the near center of its joint range. For this reason, both FAS and finger have their
own independent controllers but the motion must be coupled between the position

and force control loops, i.e., one is to control the z-th fingertip to keep the desired

3-14

contact force (explicit force control) and the other is to control the i-th finger to

follow the result of force control (pure position control).

Fig (3.7) shows the fine motion control block diagram developed in this section.
In force control, the fingertip force error between the desired (f;;) and the measured
and disturbance forces (f; +f;45:) is converted into the position difference (6%;) which
is the desired motion input of the FAS. The response of FAS (éry;) is restricted by
applying the maximum allowable joint range called the dead-band. This allows the
FAS to operate within its reasonable joint range to be able to grasp the object, even
though there is a large disturbance force presented on the object instantaneously. In
finger position control, the difference (ér;) between current (r;) and joint centered
(rf; + riq) fingertip positions is provided to make the FAS centering action. The

result of finger position control causes the response of the fingertip force control.

Explicit Force Control (FAS) Position Control (Finger)

Figure 3.7 Fine Motion Control System

3.5.3 FAS Centering Algorithm. The motion of FAS is restricted to be
centered in its joint displacement range to be able to maintain contact with the

object. As stated in previous section, the FAS operates to apply the desired contact

3-15

force to the object autonomously. The response of FAS due to the force error,
Ax; = Ky, (fig— 1), is superimposed on the commands of finger actuators. Eq (3.17)
describes the relationship between position displacement and joint displacement in

the planar case.

current fingertip position

difp
Ax i
FAS centered
O -

position

Figure 3.8 Mathematical Derivation of FAS Centering Algorithm

AXi
difp

) (3.17)

q; s, = asin(

where q;;,, is the i-th fingertip actuator joint displacement, and d;y, the length of
¢-th fingertip link.

By the movement of fingertip actuator, the next higher level joint actuators
follow into the direction of fingertip actuator movement which implies the pure po-
sition control, and the overall FAS centering algorithms can be represented as a fine
motion control. Since the FAS centering algorithm was restricted in the SO, it can

be also considered as an object propulsion system. The diagram of this algorithm is

shown in Fig (3.9).

3.6 Inverse Kinematics

In both gross and fine motion control, the desired commands are in object
space rather than in joint space. An inverse kinematic algorithm is required to
determine the joint space displacement that doesn’t perturb the grasp stability at
singular points or their neighborhoods. In the singular points or their neighborhoods,

a small change in task space requires an enormous change in joint space and can cause

3-16

Fingers

Palm

Object ‘ j

Figure 3.9 Diagram of FAS Centering Algorithm

unstable results of either the robot arm or fingers. Another requirement is to provide
joint space solution in the limitation of joint range resulting from the physical design

of the robot arm and fingers. In general, using the following equation
ox = J(0)60 (3.18)

where 8% is the increments of position and orientation, J(©) is the Jacobian matrix,

and 6O is the joint space increments, the inverse kinematics are solved as
60 = J1(0)éx (3.19)

However, for kinematically redundant robotic structures, Eq (3.19) cannot pro-
vide the inverse solution at the singular points that make J(©) not full rank, i.e.,
det J(©) = 0. To achieve the inverse solution of J(O) even at the singular points,

the pseudoinverse is a proposed way which is defined as
60 = J#(0)éx (3.20)

where J#(0) is defined as the pseudoinverse of J(@). At the singular points or
their neighborhoods, Eq (3.20) satisfies the exactness of x — J(©)60© but it fails the

3-17

feasibility of 6@ due to the nature of discontinuity of the pseudoinverse at singular
points or the enormous change of §0 in the neighborhood of singularity. For the

control of a finger grasped object, this result can cause the object to drop or break.

To satisfy both exactness and feasibility, Nakamura’s Singular Robust Inverse
(SR Inverse) [5] is used because it provides not only the most feasible solution but
also the minimized error. Suppose that ée consists of §x — J(©)6O which represents

the exactness and §© which represents the feasibility. Then

min||de||lw
so— ox — J(©)60 (3.21)
(")

where || * ||w is the weighted norm and W € Rm+mX(m+m) the weighting matrix,
symmetric and positive definite. For the simple computation, we assume that W is

the identity matrix. The following equation is used;

min||ée||lw = VIeT Wie (3.22)

Let J(©) € R™*™ where m is the number of constraints and n the number of
degrees of freedom. Then, the general solution of the SR-inverse using Eq (3.22) is

obtained as following equations.
J*(0) = [37(0)J(0) + kE|'J*(0) (3.23)

or

J*(0) = 3(©)[3(©)I7(0) + kE] ™ (3.24)

where J*(0) is the SR Inverse, k is a scale factor allowing the computation to avoid
the singularity, and E is the identity matrix. Two equations produce the same results

of J7(0) € ™™,

3-18

3.7 Building Hierarchical Control Structures

As stated in previous sections, we model overall robot structure as a connected
set of robots: the arm, a multi-fingered hand(finger) and object. Normally, the
hierarchical control structures are divided by their control purposes based on the task

description. The data flow of the proposed control structure is shown graphically in

Fig (3.10).
p (I,
- Pq Gross Pe Robot 0 | Fine I'd i
uman
Interface Fgq Motion | F. | Arm w/|Fgy | Motion | fy Fingers | fj Object F
L Control Hand Control J
Super Object

p d * Desired Super Object Position

: Desired Environment Force

: Position Command of Super Object
F ¢ : Environment Force Command

T'q : Desired i-th Finger Position

f4 : Desired i-th Finger Contact Force

i * Resolved i-th Finger Position

fi . Resolved i-th Finger Contact Force
P ¢ Super Object (Object) Position
Fgo F : Super Object (Object) Resultant Force

In Contact with Environment

Figure 3.10 Data Flow of Desired Control Structure

At the lowest level, the interaction between the fingers and object should op-
erate without the operator’s intelligent decision making. The resolved forces are

fed back to the fine motion control level rather than feeding back to a higher level.

3-19

At the fine motion control level, the position and force control are highly coupled
and, furthermore, the finger motions are also dependent on the others. This means
that the movement of one finger will affect the other’s resolved position and force
under the assumption stated previously. The next higher level connects both gross
and fine motion control. By the assumption that the displacement of fine motion
control is small and doesn’t affect the overall motion of the SO, the output of gross
motion control, i.e., sensed force due to the payload of SO and its resolved position
based on the estimation of the object’s mass, is input to the fine motion control.
The fine motion control returns the output of its resolved object position. Thus, the
gross motion control must provide enough force to the fine motion control to resist
movement when the robot touches the environment or is disturbed by other external
forces, i.e., it provides a stable base for fine motion operations. The highest level is

human supervision through the sensor system and input devices.

3.8 Summary

This chapter has developed the general control structure of the robot including
a multi-fingered hand. To accomplish the 4 cases of manipulability, the control
scheme was separated into two main parts, i.e. the gross motion control which is
required to control the position and orientation of SO and the force when the SO is
in contact with the environment, and the fine motion control which is required to
control the finger contact force to stably grasp an object and the position due to the
result of force control. The significant issue is to define the input and output signals

of each control level and the connections to yield consistent results.

3-20

IV. Simulation Experiment

4.1 Overview

This chapter evaluates the concept of a control system proposed in the previous
chapter. The MATLAB SIMULINK environment [1, 2] is used for the simulation.
For the simple case and implementation in Chapter 5, a 3 DOF planar robot is used
as the desired robot model for gross and fine motion controls with kinematic data
from a PUMA 560 articulated robot [25]. Fig (4.1) shows the structure of PUMA

560 and its kinematic data. Joint 2, 3 and 5 are selected to provide planar motion.

Figure 4.1 PUMA 560 Articulated Robot [25]

4.2 Desired Robot Modeling

4.2.1 Forward Kinematics. The forward kinematics is used to transform
joint space position to Cartesian space position and orientation. In this thesis,
the forward kinematics is limited to the -z plane in accordance with the Denavit-

Hartenberg(D-H) convention [22] of PUMA 560 in Fig (4.1), i.e., §; = 04 = 5 = 0.

The homogeneous transformation matrix is given by

Ng Sz G Pg
Ny Sy ay Py
n, 8, a4y P2

0 0 0 1

where n, s and a are the normal, sliding and approach vectors respectively. The
terms, n, s and a, represents the rotational matrix and p represents the position
vector of the end-effector. The complete forward kinematics computation is found
in Appendix A. The computed forward kinematics equations of the 3 DOF planar

robot are:

ny, = sin(fz+ 05+ 0s)
ny = 0

n, = cos(fy+ 65+ 65)
8y = —cos(fy + 03+ 05)
sy = 0

Sy = sin(@z + 03 + 05)

a;, = 0
a, = 1
a, = 0 (4.1)

pe = agc08(0y) + dycos(Oy + 03) + (ds + di)cos(02 + 05 + 05)

py = 0
Pz — agsin((%) + d4SiIl(02 + 03) + (de -+ dt)SiH(HQ + 03 + 05) (42)

4-2

where a9, dy and dg are the lengths of link 2, 3 and 5 respectively and d; is the

distance from the end of the last link to the center of SO frame(object frame).

4.2.2 Jacobian Matriz. The Jacobian matrix for the end effector or finger
is used to translate the force in Cartesian space into torque in joint space, 7 =
JT(G))F, and the end-effector displacement at a sample time or velocity into joint

displacements or rates, 60 = J(0©)dr.

In motion tracking problems, the position and orientation are the most im-
portant concern. The gross motion control counts on the position and orientation
problems while the fine motion control concerns only the position problem. If the

desired tasks, r(©), are represented by Eq (4.3)

1‘1(("))
r(0) = 4.3
(0) (rz(e)) | (4.3)

where r;(0) and ry(0) represent the task 1 (SO position) and task 2 (SO orientation)
vectors which are functions of the joint angles, ©, the differentiation of Eq (4.3) with

respect to O is given by

9
3(0) = 5% € Rmxn (4.4)

where J(0) is the Jacobian matrix, m the number of task constraints and n the

number of DOF. From Eq (4.2), the desired task 1 and task 2 are

(©) = (px)
P

r2(0) = sin(f; + 03+ 65) (4.5)

By differentiating Eq (4.5), the Jacobian matrix can be obtained by the following

equations.
Ju Jiz i
JO)=1Ju Jz Jo (4.6)
Ja1 Jz2 Jas

Jin = —agsin(8;) — dysin(0y + 0s) — (de + d;)sin(8; + 05 + 05)

Jiz = —dssin(f; + 05) — (ds + di)sin(0, + 05 + 65)

Jiz = —(dg+ dy)sin(b; + 05 + 05)

Jan = aycos(f2) + dycos(0y + 03) + (ds + di)cos(82 + 05 + 65)

J2o = dycos(02 + 03) + (de + di)cos(0s + 03 + 05)

Jos = (ds+ di)cos(0; + 05 + 05)

Js1 = cos(fz + 05+ 05)

Jsg = Jsz=Jy (4.7)

4.2.8 Dynamic Model. The purpose of simulations is to show the developed
control concept using the currently available simulation tool. The actual robot takes

the torque input and produces the joint space output. The equation of motion is
7 =M(0)0 + H(0,0)0 + g(0) (4.8)

where 7 is the torque applied by actuators, M(©) the symmetric and positive definite
joint space inertia matrix, H(O, G)) the Coriolis and centripetal vector, and g(©) the
gravitational vector. If we assume that M is a unity matrix and g is ignored, then
the inverse dynamic consists of amplified double integrator terms with joint velocity

feedback. The inverse dynamic equation is
0 =M"Y(0)[r — H(0,0)0] (4.9)

This eliminates the nonlinear terms in the manipulator’s equation of motion and

results in a second order linear system shown in Fig (4.2).

4.2.4 Joint Range Limitation. One of the significant problem in inverse

kinematics is to overcome the joint range limitation which is a physical constraint

4-4

v -
v =

T /)8
+

H

Figure 4.2 Desired Dynamic Model for Simulation

of robotic manipulators. For most robots, the solution of inverse kinematics is not
unique. This means that one of the joint values determined by the inverse kinematics
could be over its limit. Thus, the simulation and demonstration algorithm should
consider explicitly that a joint at the end of its motion keeps either its minimum or
maximum value while the other joints adjust their values so that the desired end-
effector motion can be achieved. The set of joint range limits of the planar case
PUMA 560 is shown in Table 4.1. The z-axis is according to the D-H parameter

table determined in the forward kinematics.

| Joint 7 | Joint range(Degree) |

2 —45° to 225°
3 —223° to 45°
5 —100° to 100°

Table 4.1 Joint Range Limitation of PUMA 560 Planar Case

4.8 Gross Motion Control Simulation

As mentioned in Chapter 3 Fig (3.6), the gross motion controls the position
and orientation of SO and the force for the contact with environment including the
gravity effect of the SO. The trajectory planning for the simulations is shown in
Fig (4.3). The free space motion tracking with and without the SO is simulated
using the trajectory planning in Fig (4.3) (a) which is the straight line movement in
the negative x direction. The robot performance in contact with the environment

with and without the SO is simulated using the trajectory planning in Fig (4.3) (b)

4-5

Manipulator

\Manipulator

(a) (b)

Figure 4.3 Diagram of Gross Motion Control Simulation: (a) Free space motion
with and without SO, (b) Contact with environment

which has a wall on the z-axis and moves in a straight line in the positive z direction.
All of trajectory plans keep a constant input on the z-axis. The initial robot position

of both trajectory plans is © = [90° —90° 0°]%.

For this simulation, the appropriate gains, K., Ky, and Ky, need to be ob-
tained. In general, Ky, and Ky, depend on the characteristics of environment, K.,
i.e., if K, is large, K, needs to be decreased, and if K. is small, K, needs to be
increased. However, the initial K. is selected heuristically. The relationship between

Ky, and Ky, is derived by the following equations.
Af(t) = mAp(¢) (4.10)

where Af is the force error between the desired and the measured contact forces, m
is the total mass of the systems, and Ap is the position deviation due to force error.

The Laplace transform of Eq (4.10) yields

AF(s) = ms*AP(s) (4.11)
AP(s) = -ml—szw(s) (4.12)
LYAP(s)} = —%Af(t) (4.13)

Thus, the terms, ¢/m can be represented as Ky, and 1/m can be represented as Ky,
based on Eq (4.12) and (4.13) respectively. In the gross motion control simulation,
the system is running at the sampling rate ¢ = 0.01 (sec). Therefore, Ky, is 100
times larger than K s,. However, the initial selection of Ky, depends on the selection
of K. and they are heuristically chosen at the initial step. The actual hardware PID
gains are the same as used in the PUMA 560 Joint 2, 3 and 5 because the same
kinematic structure is used in this simulation and the dynamic structure is the ideal
case for robot performance. The SR-Inverse gain, k, is selected by the measure of
manipulability of the manipulator. For the simple computation, a constant number

is used in this simulation. The gains used in this simulation are listed in Table (4.2).

| Joint i | 2 13 |5]
PID | K, 5000 1500 | 160
gain | Ky 5 d d
set | K, 114 25 | 12
environmental stiffness
gain K, 15100
force to position gain Ky, | 0.000254
force to velocity gain Ky, 0.0254
SR-Inverse gain k 0.01

Table 4.2 Set of Applied Gains to Gross Motion Control Simulation

The specific SIMULINK block diagram and MATLAB function files are listed
in Appendix B.

4-7

4.8.1 Free Space Motion Tracking without SO. The free motion tracking
without SO involves the only position and orientation control in free space. Based

on Fig (4.3) (a), the position command is

Pr = Pz — 0.12¢

Pz = Pzo (414)

where p,, = 48.93 (cm) and p,, = 43.18 (cm) are the initial positions of the SO.
The desired orientation of the SO is Oy1a1 = 03 + 03 + 05 = 0°. Fig (4.4) (a), (b)
and (c) show the desired position orientation tracking and their errors. In Fig (4.4)
(b), the errors at the initial points are relatively larger than the other points, but
the controller track the desired input quickly within 0.5 (sec). The z-axis error is
larger than the z-axis error for the entire time history because of the gravity effect
of the link masses. For the orientation, Gtéml = 0, + 03 + 05, Fig (4.4) (c) shows the
orientation of end-effector. As a consistent result of position control, the orientation
is disturbed at the initial points, but it overcomes the error eventually as the time
goes to t=5 (sec). If ¢ > 5 (sec), the orientation will be more disturbed to achieve
the desired position due to workspace constraints. In both position and orientation,
the errors are not perfectly eliminated because the constant SR-Inverse gain was
used for overall trajectories. This means that the error was added intentionally to
the inverse solution even though there is no singular point. Another reason is that
the concept of impedance control was used for the gross motion control. From the
teleoperation point of view, this is good enough for the manipulator feasibility rather

than the exactness of trajectory following.

4.8.2 Free Motion Tracking with SO. Fig (4.5) shows the free space motion
of the manipulator with the SO. The same trajectory used in the previous simulation
is applied. The difference is that a 20 (N) SO (the maximum load of PUMA 560
is 2.04 (kg) which is 20 (N)) is attached to the tool frame. Thus, the end-effector

4-8

XZ Plot 0-1 T T T T T T T T T
80 ! ! ! ! ! ! :
005}]
55
50 O e e |
t
45 s |
o i
Zar 5
N z =01 1
g
o 1
35r i
0.5} i
il
|: x: solid fine
02 2: dash line 1
20 ; i ; ; i ; 095 S S S S S
20 10 0 10 20 30 40 50 0 05 1 15 2 25 3 35 4 45 5
X Axis (cm) Time(sec)
(a) (b)
025 T T T T T T T T T
02 _
0.15 1
B
g 01]
s
g
[~
8 005
6
0
005} 1
_0.1 1 1 1 1 13]] 1. 1
05 1 15 2 25 3 35 4 45 5
Time(sec)
(c)
Figure 4.4 Gross Motion Control in Free Space Motion Tracking without SO : (a)

Measured position (manipulator moves left along z-axis while main-
taining the distance on z-axis), (b) Error between desired and measured
position, (c) End-effector orientation (fta; = 0°)

4-9

motion should be disturbed mainly by the gravitational force due to the SO. The
main error occurs in the motion along the z-axis because the controller compensates
for the effect of gravity on the SO. This error is shown in Fig (4.5) (a) and (b)
that the largest error occurs at the initial time and then tries to track the desired
trajectory. This allows the system to pick up an undetermined object because the
impedance control can regulate unexpected force occurring at the SO rather than
tracking. Since we are operating as a teleoperator, the human will be zeroing out
those errors which the controller can not track. The position deviation mainly occurs
on the z-axis since this is the direction of the gravity vector. If the mass of SO is
quite large, other dynamic disturbance forces may have an effect on the SO. However,
at low speeds, they can be ignored except for the gravitational force. Fig (4.5) (b)
shows the position error on the z-axis that exists as a small value at all times. The
orientation is also bounded with the range —1° ~ 3.7° which is 15 times greater
than the free motion tracking simulation without the SO. Since there are two other
types of feedbacks from the force measurement (gravity of SO), the exact trajectory
tracking is not possible. However, for the stable performance of robot, these are

acceptable results due to the purpose of gross motion control.

4.8.8 Contact with Stiff Environment without SO. In this simulation,
Fig (4.3) (b) is applied to see the robot performance under the contact with the en-
vironment. Fig (4.6) shows the simulation results of the manipulator without an SO
in contact with stiff environment. The main objective is to simulate the stable robot
performance under the contact with environment in the presence of uncertainties
such as unexpected workspace limits or external forces. Let the initial joint position
be the same used in free space tracking, i.e., © = [90° —90° 0°]7, and the wall lo-
cated at p. = 55 (cm). When the manipulator hits the wall, the impedance control
attempts to pull back the manipulator while the position errors generate the torque
commands to approach the desired position. By these conflicting commands, the

manipulator will stay at the surface of wall until the human recognizes the existence

4-10

XZ Plot 2-5 T T T T T T T T T
80 ! ! ! ! ! ! ;
g : : : : ; :: x: sold ine
55_ ,,,,,,,,,,,,, J 2t 7 dash line]
: : : : : : i
i H
50 ! ! PNormm .
1.5_: l, ______________________________________ i
=45 f § |
§ : g |
a : moqff
<4 : s |
N : = |
N 17} -
: o] (
85| oo e . 4
: 0.5; 1
2 o :
2% :
20 1) ! I 1 | -05 L ' 1 1 L 1 I 1 1
-20 -10 0 10 20 30 40 50 0 05 1 15 2 25 3 35 4 45 5
X Axis (cm) Time(sec)
(a) (b)
4 T T T T T T T T T ! ! ! T T T ! ' T
20 ___ —
3_
15 1
2 -
)
(] -
ke z
z £
2 1t g0 1
g 5
c w
2
¢}
0.
5 J
4] x: solid line
Z: dash line
0
_2 1 1 1 1 1 1. 1 1 1 1 1 1 i 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Time(sec) Time(sec)

(¢) (d)

Figure 4.5 Gross Motion Control in Free Space Motion Tracking with SO : (a) Mea-
sured position (manipulator moves left along z-axis while maintaining
the distance on z-axis), (b) Error between desired and measured posi-
tion, (c) End-effector orientation (6;,1 = 0°), (d) Force measurement

4-11

of the wall and provides no position command to the teleoperator. Fig (4.6) (c)
shows the manipulator orientation within their joint ranges. Due to the conflicting
commands, the end-effector orients in an upward direction as a result of impedance
control as the measured force in Fig (4.6) (d) is increased. The measured force is

obtained by the following relationship.

Fa: - Ke(pa: _pa:e) (415)

where K. is the environmental stiffness gain listed in Table (4.2) and p, — py. is the

difference between the measured position of end effector and environment in z-axis.

4.8.4 Contact with Stiff Environment with SO. This section simulates
the overall external force effects that we can account in the simulation. Including
previous planning, a 20 (N) SO is added to the end of robot as a load. The force
in both z and z directions can be seen during the motion and how the impedance
controller overcomes these effects over the time history. As shown in Fig (4.7) (a), the
motion is relatively coarse compared with the other cases. However, the performance
is still acceptable to show the controller being stable. The orientation of end-effector
shows the combined performance of the free space and contact simulations. This

simulates the worst case of robot operation by the teleoperator.

For both contact cases (with and without SO), a single environmental stiffness,
K., was applied to the controller. In true applications, this K. is a variable of the
environment over which we have no control. Unfortunately, K. has an effect on
system performance. The advantage of a teleoperator is that the operator will in all

likelyhood know what he is contacting and can select the gain accordingly.

4-12

XZ Plot 3 T T ¥ T T T T T
5 ! !
: 5 x: solid line
N 2 .
5 z: dash line
2
45_.. - —~
: £ 15
: L
/ 8
% ; o
N 2
8
o 05-
40,. ... -
0 L
-0.5r "-\,\
35 | | -1 1 N] 1 1 L 1 L 1
45 50 55 60 0 0.5 1 15 2 25 3 35 4 45 5
X Axis Time{sec)
(a) (b)
12 T T T T T T T T T 45' ' i j ! j T ' ! j
x: solid line
e 40r 7 dash line
35r
0.8¢
301
§06— =251
g v 4
§ 3
g £ 207
g 04f
O
15
0.2r
10r
oA 5F
0
02 L 1 L] L L Il Nl L Il L 1 1 Il L L It 1
0 0.5 1 15 2 25 3 35 4 45 5 0 0.5 1 15 2 25 3 35 4 45 5
Time({sec) Time(sec)

()

(d)

Figure 4.6 Gross Motion Control in Contact with Stiff Environment without SO :
(a) Measured position (manipulator tries to move into the wall which
lies along z-axis and maintains the same position unless the stiff envi-
ronment allows the manipulator to move), (b) Error between desired
and measured position, (c) End-effector orientation (0 = 0°), (d)

Force measurement

4-13

Z Axis

Orientation{deg)

X Z Plot 3 T T T T T T T T T
5 T !
: : x: solid line
251 zdashline
5 5 i
é i i
: : 2H1
: : 1
F Y SRR R R LR TR P RIS RPI NS 4 _ N I
: : 3 Do e -
! : S P \- S
| 5 o M
; 5 wo s
N N c o ~
: : 8 i .
: : A !
: : o A \
. N d \
40 : : E ! ’
: : 0.5}
; I _O‘E 1 1] 1 1 1 1 1 L
% 50 55 60 W 05 1 15 2 25 3 35 4 45 6
X Axis Time(sec)
() (b)
4 T T T T T T T T T 45' i T ' ' ' ' ' ' " B
~ x:solidline
41 z: dash fing
3r J
351 E
ol i 30+
225 F
?
T e
LE 20 __
15F
0 L e e i e S - — -
10
-1 5t
0
_2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 §
Time(sec) Time(sec)

()

(d)

Figure 4.7 Gross Motion Control in Contact with Stiff Environment with SO : (a)
Measured position (manipulator tries to move into the wall which lies
along z-axis and maintains the same position unless the stiff environ-
ment allows the manipulator to move), (b) Error between desired and
measured position, (¢) End-effector orientation (6;ar = 0°), (d) Force

measurement

4-14

4.4 Fine Motion Control Simulation

To simulate the fine motion control scheme described in the previous chapter
for the simplest case, the same structure described in Section (4.2) is applied in this
section. Since the fine motion control is restricted in the palm frame, the coordinate
is changed from z-axis to y-axis. Based on the hierarchical control structure, the
fine motion control inputs are the forces fed by the wrist force sensor attached to the
robot arm. In addition to these forces, the fine motion control attempts to respond
due to the object disturbance forces to achieve the desired contact force. We assume
that the optimal contact force for each finger can be obtained using Mark Hunter’s
Contact Force Allocation algorithm [23] and the contact force can be explicitly fed
back to the fine motion controller. Thus, each fingertip actuator operates under
force control and the finger actuators operate under position control due to the
contact position deviation resulting from the force control. The fine motion control
is divided into two steps: the first step is to simulate one-finger motion control as
an intermediate goal, and the second step is to simulate a coordinated two—ﬁngér
motion control as the integration goal. The diagrams of both simulations are shown
in Fig (4.8). Both diagrams show only the SO because the fine motion control

operates in the SO with palm as a base frame.

The derivation of the environmental stiffness and force to position gains are the
same procedure described in Section (4.3). Since the same kinematic and dynamic
structure are used in this simulation, the PID gains for the finger joints are also
equal to the ones of gross motion control. This assumes that each finger is a planar
configured PUMA robot. Table (4.3) shows the gains used in the fine motion control

simulations.

There are some assumptions required in this simulation due to the limitations

of MATLAB SIMULINK environment. The assumptions are:

4-15

Fingertip Contact

]
i
!
I
)
i
1

q Finger 1 /“/ "' ! \‘f\ Finger 2
1
b y Shi

.{\ \‘ P /I /

Object

P P
Pali Frame Disturbarice Force Palm Erame
(a) Step 1: Simulation of (b) Step 2: Simulation of
One-Finger Motion Control Two-Finger Motion Control
Figure 4.8 Diagram of Fine Motion Control (—y, is the direction of gravitational
effect)
I Joint ¢ | 2 ’ 3 I
PID K, 5000 | 1500
gain K; 5 5
set K, 116 25
environmental stiffness | z-axis | y-axis
gain K, 100 100
force to position gain Ky, 0.003

Table 4.3 Nominal Gain set of Applied to the Fine Motion Control Simulation

1. The FAS responds perfectly when the finger joints operate to keep the
FAS joint centered in its range of actuator motion. When the finger
joints operate to provide the FAS centering action due to the response of
FAS, the FAS also responds simultaneously due to the movements of finger
joints. This assumption allows the above physical phenomenon which can

not be obtained through the simulation.

2. The FAS operates faster than the finger joints. As mentioned in Section
(3.4) and Section (3.5.2), the FAS should response fast enough to zero

4-16

out the force error by each sample period. This is shown in the results of

simulations of this section.

3. The initial contact is already obtained and initial contact force is also

provided.
4. CFA algorithm provides an optimal contact force to each fingertip.

The MATLAB M-files and SIMULINK block diagram used are listed in Appendix
B.

4.4.1 Step 1: One-Finger Motion Control Simulation.

4.4.1.1 Performance using Nominal Gain Set. One-finger simula-
tion is the intermediate step for the two-finger simulation in next section and the
demonstration of the control division scheme in Chapter 5. The desired force in-
put is f;g = [0 -10]7 (N) and the object disturbances in this simulation are the step
input with magnitude 0.5 (cm) at ¢t = 0 (sec) to verify the stability of finger perfor-
mance and the normally distributed random disturbance input with mean zero and
30 = 0.25 (cm) for simulating the general finger performance under varying distur-
bance. The object displacement as an object disturbance is applied here because
certain disturbance forces can cause to the object to move so that it can represent
the hardware implementation. The disturbance inputs are applied only in the y-axis
shown in Fig (4.8) (a). Let the initial joint positions of finger and fingertip be,
q; = [30° —30° 0°]7, and be the contact position at t = 0. Thus, the initial contact
position is r; = [0.8633 0.5199]7 (m).

Fig (4.9) and (4.10) show the results of finger performance using step input.
By applying the constant disturbance input on the object for entire time history, the
FAS responds adequately to track the desired contact force as shown in Fig (4.9).
The contact position deviation due to this result is added to the current contact

position as a new desired position input for the movement of finger to provide an

4-17

FAS centering action. This result is shown in Fig (4.9) (a). Once the FAS is centered
of its joint range, in this case ¢t = 15 (sec), the finger does not move further from
its initial position because the finger joints respond to provide the FAS centering
action whenever disturbance forces exist. In addition to this, the FAS has the limit
of its joint range £:10°, called the dead-band, to prevent instantaneous reaction due
to the abrupt disturbance input. In Fig (4.10) (a) and (b), Joint 1 and 2 converge
asymptotically to their equilibrium points while responding to the disturbance input.
Fig (4.10) (c) shows the convergence of FAS to asymptotic equilibrium and also the

FAS centering result.

Fig (4.11) and (4.12) show the results of finger performance using the random
disturbance input applied only in the y-axis. The movement of finger is quite close
to the step disturbance input. As shown in Fig (4.11) (c), even though the random
disturbance input is applied to the object, the FAS is centered in its range. The range
of contact position is within 50.3 ~ 52.8 (cm) in the y-axis and 86.2 ~ 86.5 (cm) in
the a-axis direction (Fig (4.11) (a)). Different from the step disturbance input, the
force error in Fig (4.11) (b) is much larger than the case of step disturbance input
because the varying disturbance input causes larger joint rate and FAS response.
Fig (4.12) (a) and (b) show the results of Joint 1 and 2 stabilities converged to their
equilibrium point, and Fig (4.12) (c) shows the results of FAS stability and centering

action under the random disturbance input.

4.4.1.2 Compliance. This section simulates fingertip compliance mo-
tion control by varying the K;, and K. defined by Fig (3.7). The sets of Ky, and
K. are shown in Table (4.4).

The gains in Table (4.4) are heuristically selected to show the comparison of
fine motion control between the relative stiff and compliant environment. To get the
desired fingertip contact force under the stiff or compliant environment (object), the

stiffness gain, Ky,, needs to be changed interactively by the operator. Fig (4.13)

4-18

x-axis : sofid line
y-axis : dotline

' ' L 1 1 L)

525 , ; 05
04f
: | o3t
52.. -
£ < oz
S <] B
2 oo
3 g |
> 5 0dF:
w :
515_ ... 4
o
0.1+
5 i ' 02
85 % 85 &
X-axis {cm})
(a) Measured contact position
0~25 L T T T T T T T T
02]
015 1
3
o
5 o]
o
)
o
£ 0051]
Q.
$
s
o O
i
-005f]
01F]
_0‘15 1 1 1 1 1 1 1 1

Figure 4.9 One-Finger Motion Control Response under Disturbance Force Input

)
0 5 10 1 20 25 3% ¥ 40 4 50

Time (sec)

(c) FAS measurement

(Step Input with maximum 0.5 (cm))

4-19

L
0 t5 20 25 30 3B 40 45
Time (sec)

(b) Force error

T T T T T T L S

on

v 0
§ s
E H
8 E
T b
g g
N N
[]
EI EI
3 8
0

Il

I B 4 : R S S
05232 05233 05233 05234 05234 05235 05235 05236 05296 05237 05207 054 052 05 0518 0516 054 -0512 051 -0508

Q_mez (radian) Q_mez (radian)
(a) Joint 1 (b) Joint 2
002 ; ! ! ! !)
0.015
. 001
Q
3
T
£ 0005
)
£
gl
0
~0.005}-
001 ; ; ; ; ; ;
3 -2 -1 0 1 2 3 4
Q_mez (radian} «0®
(c) FAS

Figure 4.10 Joint Stability using Phase Plot for Disturbance Force Input (Step
Input with maximum 0.5 (cm))

4-20

53 | r | | | l | 0.8 T T T T T T T T T
06} :
525
04}]
52
.02
~ Z
£ T
< g
2515 G0
3 2
> 6
w
-02
51 :
NV
505
-081 x-axis : solid e]
: y-axis : dot line
50 1 L 1 1 L A I 08) | . 1 \ T 1)
8 845 85 855 8 865 & 875 88 0 5 10 15 20 25 3 35 4 45
X-axis (cm) Time {sec)
(a) Measured contact position (b) Force error
1.5 T T T T T T T T T
1t]
05f
g
2
o
O
e ow Wﬂ
(]
g n
<3
g
§-05;]
]
&
-1t E
15} 1
_2 1 1 1 | - 1 1 1. 1 4‘

Time (sec)

(c) FAS measurement

Figure 4.11

0 5 0 15 20 25 0 3B 4 45

One-Finger Motion Control Response under Disturbance Input (Ran-

dom Input (Normal Distribution) with Mean zero and 30 = 0.25 (cm))

4-21

0.02 7

0.015F

=3
=2

=
=
p=3
S

'o‘x'l.“
\)‘ v’ ‘ \\“

Qd_mez (radian/sec)
o
=3
=
o =

(a) Joint 1

1
0.525 0.53

Qd_mez (radian/sec)

-005-

0.1F

015

i
002 0
Q_mez (radian)

202 1 I 1
-01 -0.08 -0.06 -0.04

(c) FAS

1
002 004 006 008 0.1

Qd_mez (radian/sec)

e
=

o
=
==

o

=3

>
T

=3

=3

=
T

o

=

3
T

=3
T

1-0.02

004}

-0.06F

-0.08-

-0.1
-06

] i
-054 052
Q_mez {radian)

(b) Joint 2

1
-0.56

)
-0.58

Figure 4.12 Joint Stability using Phase Plot for Disturbance Input (Random Input
(Normal Distribution) with Mean zero and 3¢ = 0.25 (cm

4-22

)

Experiment set | Ky, | K.
Set # 1 0.001 | 50
Set # 2 0.001 | 150
Set # 3 0.006 | 150
Set # 4 0.006 | 50

Table 4.4 Experiment Sets of Fingertip Compliance

through (4.16) show the response of fingertip using the sets of these gains and show
how to combine between K 7, and K.. For the stiff environment (object), the stiffness
gain needs to be decreased as shown in Fig (4.14) and (4.15). For the compliant
environment (object), the stiffness gain should be increased as shown in Fig (4.13)
and (4.16). In the implementation phase, the compliant motion control will use

metal and soft surfaces.

4.4.2 Step 2: Two-Finger Motion Control Simulation. A two-finger motion
control is the integrating step using the previous section’s motion control to simulate
the object grasp stability and finger performance under unexpected object distur-
bance inputs. The CFA algorithm is used for the contact force distribution using the
result of object wrench due to the object gravitational load, i.e., F = [0 10 0 0 0 0]T.
The step disturbance input with magnitude 0.5 (cm) is used for the first experiment.
The normally distributed random disturbance input with mean zero and 3o = 0.25
(cm) is used for the second experiment to verify the finger performances under gen-
eral disturbance inputs. These disturbances are applied only in the z-axis shown in
Fig (4.8) (b). The overall block diagram applied in these experiments is shown in
Fig (4.17).

As shown in Fig (4.8) (b), two fingers grasped an object are straight upward
to show the object gravity effect of both fingers. Fig (4.18) shows the coordinate
frames of each fingertip contact, object and palm. All of the selected frames are
based on the planar case of robot. We choose the y-axis of both contact frames

pointing in the direction of the inward surface normal at the points of contacts. For

4-23

Y-axis (cm)

524

522

o
RS>

wn
oo

@
o

<n
b
S

o
=
[y

R

{

1 1 R

51
8 86.05 861

86.15 862 8626 863 8635 864 8645 865

X-axis {cm)

(a) Measured contact position

02

L
&

e

=}
=3
(=3

Time {sec)

(c) FAS measurement

02

s 2
o o
T e e

=3

o

>
=

0.25 r T T ¥ T

T T T

x-axis : solid line
y-axis : dot line

b L L 1 i S

5 0 15 20 25 X
Time (sec)

(b) Force error

% 4 45 50

Figure 4.13 Finger Response using K¢, = 0.001 and K, = 50

4-24

Wr—r—7 7T T T T T
528
5261

524

Y—axis (cm)
o
on NG
N N

o
=
(=)

516

514

512

" N S S S U
86 8605 861 80615 862 8.25 863 8635 864 8645 865
X-axis (cm)

(a) Measured contact position

o

o
=
=il

=

FAS Response (Degree)

-0.05

Time (sec)

(c¢) FAS measurement

4-25

08

Force Error (N)
(=]
[¥]

06

04F

x~axis : sofid line
y-axis : dot line

1 1 L 2 s 1

04
0

)
5 20 25 3 3B 40 46

Time (sec)

(b) Force error

Figure 4.14 Finger Response using K¢, = 0.001 and K. = 150

50

53 0.25 ¥ T T T T T T ¥ T
528 02 x-axis : solid fine
: : : Tl y-axis : dot line
524 0.15"%
522 s |
£ € oaf
3 E
2 5 E
i 8 I
5 005t
7 518 e
516 O
514 o
005} ¢ ;
512
) E S S SN N SN S S S e
8 05 061 8615 862 8625 863 8635 864 8645 865 0 5 10 15 20 2 N B & &
X-axis {cm) Time (sec)
(a) Measured contact position (b) Force error

L

FAS Response (Degree)

0 5 0 15 2_2% ® B 0 & 50
Time (sec)
(c) FAS measurement

Figure 4.15 Finger Response using Ky, = 0.006 and K. = 150

4-26

! S S S A S A A 07F
: : : : : : ‘] [x-axis : solid line
08 1 y-axis : dot line
05}
s24 0}
_522 z |
5, 5 0.3-E
2 5 W
§ 8 02F
| 5 R
> 518 L
01t
516
514
512
) S S S S S S : U
8 8605 8.1 8615 862 8625 863 8635 864 8645 865 0 5 10 15 2 2% 30 3B 4 45
X-axis (cm) Time (sec)
(a) Measured contact position (b) Force error

FAS Response (Degree)

Time (sec)

(c) FAS measurement

Figure 4.16 Finger Response using Ky, = 0.006 and K. = 50

4-27

i-th Finger Model Object Model

F =M 8 CFA Fingers

i-th Contact Force Sensor

Figure 4.17 Block Diagram of Simulation for Two-Finger Motion Control

simplification, the directions of Finger # 2 contact and object frames are same and
Finger # 1 contact frame is rotated by —90°. By the assumption stated in Section
(3.3), the directions of both contact and object frames are not changed. The initial
joint positions of fingertip contacts are q; = [30° —30° 0°]¥ and q, = [—30° 30° 0°]7
and the initial contact forces in the contact frames due to the object gravity are
f; = [12.5 5|7 (N) for finger one and f, = [-12.5 5|7 (N) for finger two. The initial
contact positions with respect to the palm frame are r; = [-0.5159 0.8633]7 (m) and
ry = [0.5159 0.8633]7 (m). All of disturbance inputs are applied only in the z-axis
with respect to the palm frame. The assumptions used in one-finger motion control
simulation are also used in this simulation. Since the same kinematic and dynamic
structures of one-finger motion control simulation are used here, the same gain sets

are also applied.

4.4.2.1 Determination of Grasping Matriz. The determination of
grasping matrix follows the method described by Nakamura [5]. The force on the

object frame is required in the contact frame to do the force control in the FAS. If

4-28

Finger 1 Finger 2
Contact

Frame

Contact
Frame

Palm Frame

Figure 4.18 Coordinate Assignments of each Fingertip Contact, Object and Palm
- Frames for Two-Finger Motion Control Simulation

the force on the object frame is obtained as
Fori = WH, (4.16)

where F,p; is the force represented on the object frame, W is the grasping matrix,
and f, = [f; f,]* where f; and f, are the fingertip contact forces of contact 1 and 2.

From the Fig (4.18), the i-th contact position with respect to the object frame is

ribj =[r%;, 0 0] (4.18)

Thus, the grasping matrix for each fingertip is obtained by following equations

E E

w= | (4.19)
Al A2
Tob; Tobj

4-29

i i
0 ~Tobi, Tobjy
sl i e
B, = Tobi. 0 Tobjs (4.20)
i i
—robjy robjz 0

where I, is the skew symmetric matrix of i-th contact position vector with respect

to the object frame. The calculated grasping matrix is

[1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
W = (4.21)
0 0 0 0 0 0
0 Tibjx 0 0 Tgbjm 0 |

Using the result of Eq (4.21), the fingertip contact forces can be determined as
fc - W#]:obj + fint i (4:22)
where f;,,; is the nullspace solution of pseudoinverse.

4.4.2.2 Step Disturbance Input. The nominal gains listed in Table
(4.3) are applied for simulating the stability of two-finger motion under the step
disturbance input applied to the object. The results of this simulation are simi-
lar to the results of the one-finger motion simulation. As stated in Chapter 3, the
movement of one finger should cause the other finger movements. Thus, whenever
the disturbance input is applied to the object, both fingers should respond simul-
taneously. The important thing is that both fingers should follow the direction of
disturbance force input to achieve the desired contact force and the FAS centering
action, and, in addition to these, both finger should grasp the object without losing
contact. The constraint is that the distance between both finger contact positions

should be constant. The distance of two fingertips for all time history is shown in

4-30

103.188

103.186

103.184F

103.182f-

=2
@«
=3

Distance (cm)

103.178[

103176

174 \ 1 L L 1
10817 0 5 10 15 20 25 30
Time (sec)

Figure 4.19 The Distance of Two Fingertips under Step Disturbance Input (Mag-
nitude 0.5 (cm))

Fig (4.19). Compared with the original distance of two fingertips (103.18 (cm)), the
maximum distance error range is about 0.013 (¢m) which would cause the object to
slip or be dropped. The solution to reduce this error will be discussed in context of

the normally distributed random disturbance experiment in the next section.

Fig (4.20) and (4.22) show the results of finger 1 and finger 2 performances
respectively. Different from the one-finger motion simulation, the disturbance input
is applied to z-axis in the palm frame. The control purpose is that the positions
on y-axis of both fingers are constant while the positions on z-axis are varied due
to the responses of both FAS’s. Fig (4.21) and (4.23) show the stabilities of both
finger 1 and finger 2 joints respectively. In Fig (4.21) and (4.23), we show that the
joint velocity of FAS (Fig (4.21) (¢) and (4.23) (c)) is larger than the joint velocities
of finger (Fig (4.21) (a) and (b) and (4.23) (a) and (b)). Fig (4.21) and (4.23)
also show the stabilities of every joint which converge their asymptotic equilibrium

points while the FAS joint operates in its near centering location.

Fig (4.21) (a) and (4.23) (a) have different responses that the movement of
Joint 1 in Fig (4.21) (a) has about 1 x 10~* (radian) while the movement of Joint 1 in

4-31

Fig (4.23) (a) has about 1.2 x 10™* (radian). Since the direction of step disturbance
input was applied to +z-axis, the measured contact force in y-axis with respect to
contact frame was decreased in Finger 1 (Fig (4.20) (b)) and increased in Finger 2
(Fig (4.22) (b)), but the contact force errors in z-axis for both fingers were shown
differently. This is the reason that Joint 1 and 2 of both fingers do not have similar

results.

4.4.2.83 Normally Distributed Random Disturbance Input. This ex-
periment shows the responses of each finger under the normally distributed random
disturbance input applied on the object. The applied disturbance has the mean zero
and 30 = 0.25 (cm). Therefore, the disturbance is applied on the object in the
+z-axis with respect to the palm frame. Since the direction of disturbance input is
instantaneously changed, the magnitudes of every joint velocities should be larger
than the results of previous experiment. This causes the larger FAS and finger re-
sponses. The distance error of two fingertips in Fig (4.24) (a) is about total 0.15
(cm) which is about 10 times larger than previous experiment. The original distance

between two fingertips grasped an object is 103.18 (cm). For the non-slip constraint,

" we desire the distance of two fingertips during the operation should be less than or

equal to 103.18 (cm). If z-th contact force, f;, is specified as
fi = fizt + 1,:nt (4-23)

where f_, is the i-th contact external force applied by the external forces (in this
case, the gravitational force due to the object load and disturbance force are only
applied) and fz:m is the 7-th contact internal force to grasp the object. By the following

equation,

Forj = WH, (4.24)

the internal force, f. ,, is mapped into the null space of W. Since the grasp stability

can be obtained by applying as much internal force as the object can withstand, we

4-32

025 : . . : .
x-axis : solid ling
02r y-axis : ot line 7
015]
At
82 s °
G N
e ¢
2 8 & 005 1
]
o
838 & o S
85
005 1
84
01}
g5l ; i i i i i 015 . s : : .
2 518 16 514 512 51 608 506 0 5 10 15 2 %
X-axis (cm) Time (sec)
(a) Measured contact position (b) Contact force error
02 T T T T T
015]
o1]

o
=
>

FAS Response {Degree)
_IO
=)
o [=]

10 15 20 25 30
Time (sec)

(c) FAS measurement

30

Figure 4.20 Two-Finger Motion Control - Finger 1 Performance with Step Distur-

bance Input (Magnitude 0.5 (cm))

4-33

2
S

4_

3, .. 4

2
o 9
Q o
21 2
c c
9 8
T k]
o g
N N
o [}
€ 1 E
'cl_ _UI
¢} g

-3

-4

5 i i i i i y I S N T S R

05232 0.5233 0.5234 0.5235 0.5236 05237 05238 —(%.54 -0538 -0536 -0534 -0532 -053 -0528 -0526 -0.524 -0.522
Q_mez (radian) Q_mez (radian)

(a) Joint 1 (b) Joint 2

o

o

2

-4

Qd_mez (radian/sec)

-6

Q_mez (radian) «10°

(c) FAS

Figure 4.21 Two-Finger Motion Control - Finger 1 Joint Stability with Step Dis-
turbance Input (Magnitude 0.5 (¢m))

4-34

& 015 : . : . ;
) x-axis : solid line
01 i y-ais : do fne
008 :
e
00 Z
£ 5
2 g
2 005
8 §
> £
' -0
015t]
02k i
i l | 1 1 1 1 1 1 1 1 J.
02
¥ 5 516 ss s w0 w4 % 0% 5 10 15 20 5
X-axis {cm) Time {sec)
(a) Measured contact position (b) Contact force error
0.2 T T T T T
015]

0.1

o
=
&

FAS Response (Degree)
=]

)
e

-0.15

_02 L 1 1 1 1
0 5 10 15 2 25

Time (sec)

(¢) FAS measurement

30

30

Figure 4.22 Two-Finger Motion Control - Finger 2 Performance with Step Distur-
bance Input (Magnitude 0.5 (cm)))

4-35

o

~ -
Q Q
[} Q
2 4
c c
8 8
T T
go <
N N
3 0
EI EI
el T
g]

-5 i 1 l 1] _12 l J 1 1 I | I
-03238 -05237 05236 05235 -0524 -05233 -05232 0506 0508 051 0512 0514 0516 0518 052 052 0524
Q_mez {radian} Q_mez {radian)
(a) Joint 1 (b) Joint 2
x10°

Qd_mez (radian/sec)

_12 1 1
Q_mez (radian} «10°
(c) FAS

Figure 4.23 Two-Finger Motion Control - Finger 2 Joint Stability with Step Dis-
turbance Input (Magnitude 0.5 (cm)))

4-36

10326 1032
103‘18 ..
103.24}
E 103.16
A -
2103.22} 5
£ 2 103.14f
g %
5 1082f i%’103.12—
3 c
g g 1031}
o
£ 103.08[
10316} E
103,08}
103,14}
103,04}
10317 5 0 5 % % 30 10302, 5 10 5 2 % 30
Time (sec) Time (sec}
(a) Before adding internal (b) After adding internal
force force (-0.018 (N))

Figure 4.24 The Distance of Two Fingertips under Normally Distributed Random
Disturbance Input (Mean Zero and 30 = 0.25 (cm))

increase the internal force to make a non-slip grasping. For this experiment, we added
-0.018 (N) in the y-axis of both contact frames shown in Fig (4.18). To get better
performance in force control, the stiffness gain is also increased to Ky, = 0.0043.
The distance of two fingertips after adding the additional internal force is shown
in Fig (4.24) (b), and the fingertips distance error, measured distance - nominal

distance (103.18 (cm)), is shown in Fig (4.25).

Fig (4.26) and (4.28) show the results of both finger performances for the
random disturbance input. The position deviations of both fingertips are relatively
larger than the case of step disturbance input compared both maximum magnitudes
of disturbance inputs. The main cause of the larger position deviation of both
fingertips is that we use the normally distributed random disturbance with zero
mean and 30 = 0.25 (cm) rather than the step disturbance with 0.25 (cm) at ¢ =0
(sec). Thus, there are some disturbances larger than 0.25 (cm), and the direction of

disturbance is continuously changing while the step disturbance is not changed at

4-37

=3

8

‘

=3

Y
T

'
(=3
>

'
-
T

Fingertips Distance Error (mm)
S
<o

5 10 15 20 25 30
Time (sec)

Figure 4.25 Fingertips Distance Error after adding Internal Force (-0.018 (N))

all after ¢t = 0 (sec). The stability is shown in Fig (4.27) and (4.29) for both fingers
with larger joint rates. The FAS centering actions are also achieved even though

there exists the unexpected disturbance input like the random input.

4.5 Summary

The gross and fine motion control schemes are simulated using the MATLAB
SIMULINK environment. The concepts described in Chapter 3 are used in two
separate ways. Based on the 4 cases of manipulability, the gross motion control is
simulated in the view of teleoperation control. In the fine motion control simulation,
the control purposes are imposed to the robot as autonomous control. In particular,
a two-finger motion control is simulated to integrate the gross and fine motion control
concepts. In next chapter, the implementation of gross motion and integration of

both gross and fine motion control concepts are experimented using the AFIT PUMA
560.

4-38

86.8

86.6

Y-axis (cm)

FAS Response (Degree)

87

=
>

1 ;
-53 -52.5 -52 -51.5 -51 ~50.5 50
X-axis (cm)

(a) Measured contact position

5 10 15 20 25 30
Time (sec)

(c) FAS measurement

Force Error (N)

0.6

0.4r

o
[

!
e

-0.4

x-axis : solid line
y-axis : dotline

10

15 20 25 30
Time (sec)

(b) Contact force error

Figure 4.26 Two-Finger Motion Control - Finger 1 Performance with Normally

Distributed Random Disturbance Input (Mean Zero and 3o = 0.25

(cm))

4-39

001}

0.005

Qd_mez (radian/sec)
=

001}

i 1

. \N

o 7 ! _r ! ; !
0.08F
0.06-
0.04r

0.02F

mez (radian/sec)

1-0.02

Qd.

-0.04F

-0.06f

-0.081-

i i . . . l -01

1 1
0514 0516 0518 052

1 1 1 1 1 I I i | I 1
0522 0524 0526 0528 053 0532 06 -058 -056 054 052 05 048 -046
Q_mez (radian) Q_mez (radian)

(b) Joint 2

Qd_mez (radian/sec)
1]
=3 2 [—43 =
3 — (=) (=] (=3 —a 3 NN (3]
T T T T T T T

L

4

Ly
T

-0.25-

i I 1] 1 1 i i i
-01 -008 -006 -004 002 O 002 004 006 008 01

Q_mez (radian)

(c) FAS

Figure 4.27 Two-Finger Motion Control - Finger 1 Joint Stability with Normally
Distributed Random Disturbance Input (Mean Zero and 30 = 0.25

(cm))

4-40

o
=
=

T 0.6 T T T T T

=3
L
o

04

oo

>

>
T

02}

==
>
=

-3
>
)

Force Error (N)
=]

Y-—axis {cm)
=3

oo
o
o

-02
856

854 -04f

x-axis : sofid line
y-axis : dotline

85.2

: : 08 . . .
; ; 0 5 10 15 20 2% 30

1 1
515 52 52.5 53 Time {sec)
X-axis {cm)

(a) Measured contact position (b) Contact force error

25 T T T T T

onn
(=3
al ..
on
o
=

=<3

FAS Response (Degree)
g
(=] o
7 T
—————
——

1

=

o
N

] 1 L L 1

0 5 10 15 20 25 30
Time (sec)

(c) FAS measurement

Figure 4.28 Two-Finger Motion Control - Finger 2 Performance with Normally
Distributed Random Disturbance Input (Mean Zero and 3o = 0.25

(em))

4-41

. 01 T T T T T | T
001+ :
: 0.08
006}
7 ' 0 §
£ 2 onf :
g 8 :
K] k<] :
£ 0 g o :
E’ é 0.2
| . !
§ : & g
0005+ -0.04r
008
001+ 008
A N SN S| N SO S S ol ; ; ; ; i .
0532 -053 0528 -0526 -0524 -0522 -052 -0518 -0.516 0,514 046 048 05 052 054 056 058
Q_mez (radian) Q_mez (radian)
(a) Joint 1 (b) Joint 2

Qd_mez (radian/sec)
! |
=3 1 o o o =
o — = (=] o — o) L
T T T T T T T T

]

o

[
T

~0.25+
1] | R ! I 1] |
-01 -008 -006 -004 -002 0 002 004 006 008 0.1
Q_mez {radian)
(c) FAS

Figure 4.29 Two-Finger Motion Control - Finger 2 Joint Stability with Normally
Distributed Random Disturbance Input (Mean Zero and 30 = 0.25

(cm))

4-42

V. Implementation
5.1 Overview of Experiment

This chapter validates the simulation results obtained in the previous chapter.
There are two experimental tasks to be performed. The first experiment shows
the gross motion control for the robot arm motion with and without payload (SO).
The gross motion plans are the same as in Chapter 4. The second experiment
demonstrates a special case of fine and gross motion control concepts. This is a
partial validation of overall control architecture using the AFIT PUMA 560 Joint 2,
3 and 5 as a one finger motion attached at the end of robot arm. The last joint (Joint
5) is used for the fingertip motion control, and the other two joints are used for fine
and gross motion control respectively. By responding to the fingertip actuator, the
fine motion control provides the fingertip actuator centering action to provide the
desired contact force, and the gross motion control provides the sufficient actuation
range for the finger motion. There are three independent controllers operated with
different speed in this experiment. The Chimera Real Time Operating System [35]
is used to demonstrate both control concepts. The c-code used in these experiments

is listed in Appendix D.

5.2 Gross Motion Results

The gross motion control simulation in Chapter 4 is implemented on a 3 DOF
PUMA 560 robot which is equipped with a JR3 Force/Torque Sensor. The modules
used in this experiment are imped.c (kinematic module) (listed in Appendix D)
running at a rate of 100 Hz, ctrackball.c (input module) running at a rate of 60 Hz,
and jr3fts.c (force feedback module) running at a rate of 50 Hz. The joint position
and velocity are measured at a rate of 500 Hz by puma_pidg.c module. The module
block diagram is shown in Fig (5.1) to describe the inputs and outputs of each

module. The motion planning used in Fig (4.3) is applied again in this experiment

3-1

P_REF . Q_REF . Torque
ctrackball imped puma_pidg
Q*_REF
PUMA
P_MEZ 560
Q_MEZ
Q*_MEZ
F MEZ JR3 Force /
jr3fts Torque Sensor
—_— S

P_REF : Reference Position
P_MEZ : Measured Position

Q_REF : Reference Joint Value
Q_MEZ : Measured Joint Value
Q*_REF : Reference Joint Velocity Value
Q"_MEZ : Measured Joint Velocity Value
F_MEZ : Measured Force Value

I::” : Module Block
D : Physical Description of Robot and Device

Figure 5.1 Module Block Diagram of Gross Motion Control

to validate the concept using the physical robot. There are 2 cases of experiments

based on the 4 cases of manipulabilities.

Fig (5.2) shows the results of free space motion control with the SO (0.45 Kg).
Using the concept of impedance control, the controller attempts to regulate the force
measurement in z-axis while keeping the desired position input. Fig (5.2) (b) and
(d) show the results of position and force with respect to the base frame. Since the
gravity of SO affects the performance of the end-effector mainly in the z-axis, the
deviation of position output in z-axis is also larger than the response of z-axis. By
the same reason, the result of second task in Fig (5.2) (c), orientation, has an error

range about 1° ~ —2° mainly caused by the gravity effect of SO.

Fig (5.3) shows the results of contact with environment. In this experiment,

the same object is used. The wall is located around z = 60 (cm) which means that

the wall is a little inclined to the —x direction. As shown in Fig (5.3) (b) and (d),
the responses of position and force are correlated to each other. For example, if
the error in z-axis is increased, the measurement of force in z-axis is also increased
and this result affects the position controller by the concept of impedance control.
This correlated performance makes contact with the environment while regulating
the force in both z and z-axis. The orientation of end-effector has the error about

2° mainly caused by the gravity effect of SO.

The results of both experiments are quite acceptable in the view of gross
(coarse) motion operated by the teleoperator. From these experiments, we see that
the controller does not control position and/or orientation or force exactly. This is
a characteristic of an impedance controller. We remind the reader that this is the

portion of the system (gross motion controller) under teleoperator control.

5.8 Gross + Fine Motion Control Results and Stability

This experiment is the integration of fine and gross motion control to show a
partial validation of grasp stability of a multifingered hand attached to the end of
robot arm. As shown in Chapter 4, the higher speed of low level actuation system
provides more robust grasp stability. For this experiment, the Joint 2, 3 and 5 of
PUMA 560 are selected to make a three-link serial planar revolute joint robot, i.e.,
the Joint 5 represents the motion of fingertip actuation system, and the Joint 2 and
3 represent the motions of gross and fine motion control system. All three different
systems are correlated by the performance of each other. Fig (5.4) shows the motion

planning of this experiment.

There are three modules experimented with different sampling rates: force.c
module, fine.c module, and gross.c module. In Appendix C, the sets of tests are
listed to demonstrate the performance of fingertip under different sampling rates.
The purpose of these tests is to show that the higher sampling rate in Real Time
Operating System corresponds to the higher speed of system response. For this

5-3

0.15

25

T T T T
0.1F 4
005}
8 [
£ -
= g
2425 : ul 0,05}
3 : $
2 : e 01t
] POt IR PRTOT: .. 4
? 015}]
P O PP .. i
P S S S S S SO | -02r x:dotling T
2 : solid line
40 [} (1 I 1 1. _025 1 1 1 1
50 -40 -20 0 2 4@ 60 0 5 10 15 20
X-Axis (cm) Time (sec)
(a) Measured end-effector (b) Position error
position
91 1.5 T T T T
X : dot line
905 Z : solid line
1
90
~ 05
[}
0
o
ésg.s s
5 g Ops
= [+]
£ g L
ko
e}
05
885
88} -
875 Il 1 1) -15 1 5 1 L
0 5 10 15 20 2 0 5 10 15 20 25
Time (sec) Time (sec)

(¢) Orientation of end-effector

(05 + 03 + 05 = 90°)

(d) Measured force with

respect to Base Frame

Figure 5.2 Gross Motion Control Demonstration Results for Free Space Motion

with Super Object (0.45 Kg)

5-4

=23
=3

1 T T T T
x 2 dot fine
08 IR 22 solid fine
50 f‘.,“.‘\l-_l‘.\,_r_‘.; \\
r’ !
ok v H ‘.\ _
40 ./..IA,_\,\"‘ 3\
£
- S 04
s 5"
230 i
< 5
N 202
e
o
20
0
10 | 02
0 [l 1 1 1 1 1] 1 I _04
55 56 57 58 59 60 61 62 63 64 65
X~Axis (cm) Time (sec)
(a) Measured end-effector (b) Position error
position
905 T T T T
0r 1

83.5

Force (N)

Orientation (Degree)
o
L=2
T

o

bl

o
T

i S0k x:doth Ln hon”]
- x: dotline oy
2 sofid line
85, 5 10 15 20 P 5 10 15 2 2%
Time (sec) Time (sec}
(c) Orientation of end-effector (b) Measured force with
(02 + 03 + 05 = 90°) respect to Base Frame

Figure 5.3 Gross Motion Control Demonstration Results for Contact with Envi-
ronment with Super Object (0.45 Kg)

5-5

Contact Force
Gross (Arm) Fine (Finger) FAS Sensor

Apply
Constant
Disturbance

Force

Initial Position

|m\

React FAS Due to Disturbance Force

)

React Fine Motion Controller
To Provide FAS Centering Action

React Gross Motion Controller

To Provide Hand Centering (Leveling) Action

Figure 5.4 Gross + Fine Motion Planning using PUMA 560

5-6

integrated control system, it is necessary to provide the lower level control hierarchy
with higher bandwidth response so that the lower level control system can respond
for the unexpected disturbance or imperfect control performance. The test set #5 in
Table (5.1) is chosen for further experiment because it provides the best performance

for any cases of experiment.

Module Sampling Rate Force
gross (Hz) | fine (Hz) | force (Hz) | Error Range (N)
| 5 | 50 | 500 | -1.9695 ~ 1.5882 |

Table 5.1 Module Sampling Rates of Test Set #5 in Appendix C

The control block diagram used is shown in Fig (5.5) which is extended from
the fine motion control block diagram developed in Fig (3.7) in Chapter 3. Thus,
in Fig (5.5), the Joint 5 (FAS) responds due to the force error and the position
difference between the FAS centering location and current FAS location affects the
movement of the Joint 3 (Fine). When the Joint 3 operates due to the movement
of the Joint 5, the Joint 5 also operates by the FAS centering algorithm. Finally,
the Joint 2 which is the slowest control level operates due to the motion of the Joint
3 and provides the Hand leveling action. The force to position gain (Kjy,) which is
the stiffness gain in force control is obtained by experimenting with the materials of
fingertip and object. There are two types of object used, i.e., soft surface and metal
surface. For this special case of experiment, we assume that the objects are known

and not arbitrary.

5.8.1 Compliance. The control concept developed combines position and
force control which operates in the same direction and causes coupled motions. In
general, the high accuracy of position control requires the rigidity of finger. However,
it is difficult to accomplish stable operation under force control with such a rigid

body. A simple way to overcome this problem is to design the finger to be a spring

dist
fq ~N SF Kr 8 1(5) 1 545 [o 1% [puma | 1
P nv . X
+ Yoint(5 Joint(5
HH (5) (5)
f
Fingertip +
5 dq@3 3 3
Sl Centering 96) PID 3) PUMA 1(3) \H R r
Algorithm Joint(3) Joint(3) IH d
3 Hand 3q(2) > .
1) Centering }‘)ID u2) PI‘JMA 1(2)
Algorithm Joint(2) Joint(2)
Sensor Ke H

Figure 5.5 Gross

model. Thus,

+ Fine Motion Control Block Diagram

f=K.(r—r.)

(5.1)

where f is the measurement of contact force, K, is the environmental stiffness gain

and r and r. are the measured fingertip position and the location of environment

respectively. In this experiment, the environmental stiffness gain, K, is not known.

Therefore, as shown in Fig (5.5), the force to position conversion gain, Ky, is used as

a compliance gain. The initial selection of Ky, is performed heuristically. However,

this gain should be changed by the characteristics of object surfaces, i.e., Ky, is

increased when the object surface is more compliant, and is decreased when the

object surface is more stiff. In this experiment, Ky, is chosen as

Kfp =
Kfp =

0.001 for metal case

0.003 for soft surface case

9-8

(5.2)

Fig (5.6) (d), (5.7) (d) and (5.9) show the results of force controls using combinations
between Ky, and object surfaces. As stated previously, we can obtained better
performances for both object cases by changing the stiffness gain shown in Fig (5.6)
(d) and (5.9) (d). However, if we apply the inappropriate gain to the controller,
worse performance of force control occurred as shown in Fig (5.7) (d), or even the
controller failed to make the contact (in this case, the force error was not plotted
as shown in Fig (5.8)). Furthermore, the initial selection of K, without known
the object can be made by the operator’s genéral knowledge for the object before
operating the controller. One interesting result from these experiments was that the
finger did not stay at one position sometimes (it had hiccup at ¢t = 23 (sec) shown
in Fig (5.6)) even though there were no disturbance inputs. This happened because

we only controlled the stiffness.

5.3.2 Stability. The same method [36] is used to validate the system
stability. Using the same way done in Chapter 4, the phase variables such as joint
position and velocity of every joints are plotted in the phase plane based on the
combinations of Ky, and the object surfaces. As shown in Fig (5.4), the fingertip at
the equilibrium point is perturbed by the disturbance force occurred on the object,
and it will return asymptotically to the equilibrium point. Fig (5.6) (a), (b) and (c)
through (5.9) (a), (b) and (c) show these results. In addition to these results, the
FAS centering actions are also shown in Fig (5.6) (c) through (5.9) (c) that respond
in the center of its joint range even though there is an unexpected disturbance applied

to the object.

5.8.3 Instability. One of requirements of FAS is that it must be faster than
the finger actuators so that it can achieve the stable operation under disturbance
inputs. The previous section shows only positive results of this assumption. As
a contradiction, this section discusses the unstable results of fine motion control

resulting from improper selection of FAS and finger actuator speeds, i.e., the speed

9-9

W T T

o
=
=

o
=
(=3

o
2
=]

(radian/sec)
o
2

Qd_mez
=

-0.01

0.02F - Ll

o i A
082 074 072

Q_mez {radian)

(a) Joint 2

1 1
-078 -0.76

-0.7

1 1
-068 -0.66 -0.64

T T T T T T

il
3 3|
Y S — :~1$|¢
T N T e
< el
5 1\-'\ h
£ D T ST S ;’
| A
6 "‘i

: : \. f

Force Error (N)

03

02

(radian/sec)
=
= =

T
=3

Qd_mez

&

03
4 L I 1
2.15 22 225 23 2.35 24 245
Q_mez {radian)
(b) Joint 3
10 T T T T T T T T
8 |

-8t

i i i ; 1
01 008 -006 -D04 -002 0 002
Q_mez (radian)

(c) Joint 5

case

004 006 008

0.1

5-10

5 20 25 3 3B 40 4 50
Time (sec)

(d) Force Error

Figure 5.6 Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.001, Metal

0.06 T T T T T T 0.3 T T T T T T T
004 02
0 5 M
g §
hl
B g 9
£ 0 ¥
) £
E 3'
- : : 0.1
8_0.02.”,.. . THEE A 4
: : ; 0.2
03 ; i ; : ; : ;
006 ; ; ; ; ; ; 2 205 21 215 22 225 23 23 24
076 -074 072 07 068 086 -064 062 Q_mez (radian)
Q_mez {radian)
(a) Joint 2 (b) Joint 3
10 T T T T T T T T
8f]
6F |
o 4 I
z 2
5
m 0
8
£ ot |
s J
-6} J
-8t J
R A S S S S S e
01 -008 -006 -004 002 0 002 004 006 008 0.1 0 5 10 15 20 2 30 3% 4 4 50

Q_mez (radian)

(c) Joint 5

Time (sec)

(d) Force error

Figure 5.7 Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.001, Soft

chair case

5-11

0.1

04 T T T T T
03+
005} o2l
5 % 01F
£ s
g g of :
g § z
1-0.05F | :
§ § . .| 5
| O
04 :
015 ; ; L i 05 i j i i i
0-(\)’.78 -0.76 -0.74 -0.72 -0.7 21 215 22 225 23 235 24
Q_mez (radian) Q_mez (radian)
(a) Joint 2 (b) Joint 3

15

|| (radian/sec)
bt
(=2 o

Qd_mez

1
=)
o

T

-

O S U R SO S S
-0.1 -008 -006 -004 -002 0 002 004 006 008 01
Q_mez (radian)

(c) Joint 5

Figure 5.8 Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.003, Metal

case

5-12

008 T T T T l
0-4 T T T I
0.06 :
03
0.04F
0
g 0.02 5 02
5 3
k] 5
£ of 3 .
N = 01
% : : : , 8
8_0'02 AN AN AR AR A AT I R -:E;I
] : ; ¢ or
-01 :
006t :
008 i H i i ;) ; . : :
7R) -07 068 086 -064 082 3 2.15 22 225 23 235
Q_mez (radian) Q_mez (radian)
(a) Joint 2 (b) Joint 3
15 T T T T T T 7 Y T 10 T T T T T T T T
8..
1 -
6_
4— -
.. 05
H
2 Z 2
& Al <
g Al g
g ok '.!"/; b 0
: / :
| o
8| ,/4 '."; ‘ L -2
-05; sl
i b
-BF
4
8
0 N S T S S S S S B I
-01 -008 -0.06 -0.04 -0.02 0 002 004 006 00 0.1 0 5 10 15 20 25 30 35 40 50

Q_mez (radian)

(c) Joint 5

Time {sec)

(d) Force error

Figure 5.9 Speed : Force - 500 Hz, Fine - 50 Hz, Gross - 5 Hz, Gain : 0.003, Soft

chair case

5-13

of gross module is faster than the speed of fine module and the speed of fine module
is faster than the speed of force module. The sets of tests are shown in Appendix
C. The results can be interpreted that the fine motion control level actuators should
be a higher speed than the gross motion control actuators. In other words, the FAS
should operate faster than the fine motion controller which operates faster than the
gross motion controller. This implies that the order of controller speed must be used

to achieve the stable operation.

5.4 Summary

The concepts of gross and fine motion control are implemented using the AFIT
PUMA 560. The capability of impedance control used in the gross motion control
is proved under the contact with the physical environment. The integration of gross
and fine motion control is demonstrated for the special cases of control purpose. The
concept of FAS centering algorithm is well achieved and provides the robustness of

object grasping problem under unexpected disturbance inputs.

5-14

VI. Conclusion and Recommendation of Future Work
6.1 Research Conclusion

This thesis has presented a general control architecture of teleoperation control
including object manipulation in unstructured applications. The main problems in
unstructured applications are to determine the force components between the robot
and environment and to provide grasp stability of the object manipulation for an
operator’s motion command. The hierarchical control structure was suggested as a
way to solve the given problems. The teleoperation systems involving object handling
requires the operator’s attention in most cases. The method developed in this thesis
attempts to reduce the operator’s conceptual constraints and provides an intuitive
way to control the robot in terms of Object Based Control (OBC). There were
two main control levels based on the control hierarchy. The gross motion control
which includes the robot arm and Super Object (SO) is to achieve the position and
orientation of SO. Since this is a teleoperation system, the concept of impedance
control was used for the gross motion control to control the contact with environment.
In experiments of both simulation and demonstration, the gross motion control shows
satisfactory results for the 4 cases of manipulability. In the contact with environinent,
the dynamic relationship between the robot and environment was well controlled by

the impedance controller.

The fine motion control involves the finger motions and object grasp stability
in the Super Object (SO) of gross motion control. The connection between the
gross and fine motion control is the forces provided by the gross motion wrist force
/ torque sensor to determine the fingertip contact forces. To accomplish successful
object manipulation, stable grasping is the main issue to be addressed. Providing
the optimal fingertip contact force [24] to each finger is the main way to ensure grasp
stability. However, for unexpected disturbance inputs occurring on the object, the

finger controllers in position control must react appropriately to avoid dropping or

6-1

breaking the object. The Fingertip Actuation System (FAS) has higher bandwidth
response than does the finger motion system and operates in force control to maintain
the desired optimal contact force of each fingertip. The Fingertip Actuation System
(FAS) centering algorithm using the finger and FAS was developed to make the grasp
stability robust. The FAS centering algorithm causes the FAS to be near the center
of its displacement range by using the finger in position control. The command to
the position control is the FAS displacement from its centered location. The FAS
centering action was designed to be able to reduce the error in the finger contact
positions when the object model is uncertain. Contrary to the gross motion control,
the fine motion control should be autonomous so that the workload requirements of

the operator are reduced.

The simulation experiment in fine motion control used the FAS centering al-
gorithm for a two-finger object grasp. The main goal of this level is to show the suc-
cessful grasp stability for two types of disturbances (step and normally distributed
random inputs) applied to the grasped object. In this experiment, the FAS responds
in the direction of disturbance input on the object and the finger attempts to re-
duce the offset between the FAS centered and current positions by moving the finger
links. This provides adequate FAS centering action and accomplishes the object
grasp stability. The implementation step is an integration of gross and fine motion
control to partially validate the developed control architecture using the 3 Degree
Of Freedom (DOF) planar robot that each DOF represents a different robot with its
own controller (FAS, Fine, or Gross) and each robot depends on the performances
of other robots (controllers). This special case of experiment develops the force and
position controlled actuator centering / leveling algorithm as a general case of serial

actuation system and can be applied to the separately controlled robot applications.

6.2 Recommendation of Future Work

The control architecture developed in this thesis is only applied to the case of
planar robot for the gross and fine motion control. In general, robots require the
control architecture to be able to operate the spatial cases. Thus, it is necessary to

extend the control architecture developed in this thesis to the spatial case.

In fine motion control, the grasp stability can be achieved by applying as much
the internal force as the object can withstand. However, for unexpected disturbance
forces occurring on the object or imperfect grasp due to the object uncertainty, finger
force overload must be prevented. The concept of explicit force control [30] was used
to track the desired fingertip contact force. As mentioned in Section (5.3.1), the
problem was that the performances of fingertips in the real applications do not stay
at one position (they had hiccups) even though there are no disturbance inputs. This
problem was solved by applying the order of controller speeds (force > fine > gross)
in this thesis. However, this is not a feasible solution in general cases. Another
problem was that the performance of fine motion controller using the explicit force
control did not provide the minimum force requirement to grasp an object. If there
is an instantaneously large amount of disturbance input applied to the object, the
deviation of FAS can be increased and the joint rates of the fingers can also be
increased. This instantaneous large velocity can cause the object to drop or break
due to the over-response of the fine motion controller. To reduce this effect, we need
to add the damping control mode in the finger position controller so that the abrupt
joint rates of the fingers can be controlled. It is recommended that impedance control

is used for finger control to include the damping mode.

One concern of this thesis is to show the contact stability of the fingertip. The
proof of contact stability was only shown by using the results of experiments rather
than proving through mathematical procedures. Therefore, the proof of contact

stability using mathematical procedures is also recommended as further research.

6-3

1. The summary of research conclusion is listed below:

e Teleoperation control including object handling system
- Force components need to be determined

|
6.3 Summary
- Grasp stability should be achieved for an operator’s motion com-
mand
- How to reduce the operator’s control attention
- Hierarchical control structure is suggested way
e Gross Motion Control
- Robot arm and SO - achieve the position and orientation of SO
- Impedance control - address environment uncertainties
- Teleoperation control
e Fine motion control / grasp stability
- Serial force and position control
- Force is controlled in the direction of motion

- FAS centering algorithm - provide the sufficient joint range to the
FAS

- Experimented for different environments
- Well achieved grasp stability

e Implementation - integrated gross and fine motion control
- PUMA 560 planar configuration
- FAS centering and hand leveling motion
- Partial validation of developed control architecture

2. The summary of recommendations is listed below:

e Extend to spatial applications

e Need to add damping mode for force control - impedance control
- Control the finger to response the abrupt disturbance input
- Need to damp the unforeseen disturbance input

e Prove and analysis architecture stability through mathematical method

6-4

10.

11.

12.

13.

14.

Bibliography

MATLAB User’s Guide (High-Performance Numeric Compuation and Visual-
ization Software), The Math Work Inc., 1992.

MATLAB SIMULINK (Dynamic System Simulation Software), The Math Work
Inc., Mar. 1992.

Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic
Manipulation, CRC Press, 1994.

Hsu, Ping, “Coordinated Control of Multiple Manipulator System,” IEKEE
Transactions on Robotics and Automation, Vol. 9, No. 4, Aug 1993.

Nakamura, Y., Advanced Robotics Redundancy and Optimization, Addison-
Wesley Publishing Company, 1991.

Arimoto, S., Miyazaki, F. and Kawamura, S., “Cooperative Motion Control of
Multiple Robot Arms or Fingers,” IEEFE International Conference on Robotics
and Automation, Vol. 3, pp. 1407-1412, 1987.

Hayati, S., “Hybrid Position/Force Control Of Multi-Arm Cooperative Robots,”
IEEE International Conference on Robotics and Automation, Vol. 1, pp. 82-89,
1986.

Mason, M. T., “Compliance and Force Conrol for Computer Controlled Manip-
ulators,” IEEE Trasactions on System, Man, and Cybernetics, Vol. SMC-11,
pp. 418-432, 1981.

Craig, John J., Introduction to Robotics: Mechanics and Control, Addison-
Wesley Publishing Company, Inc. 1986.

Chiaverini, Stefano and Sciavcco, Lorenzo, “The Parallel Approach to Force /
Position Control of Robotic Manipulators,” IEEFE Transactions on Robotics and
Automation, Vol. 9, No. 4, Aug 1993.

Yun, X., “Nonlinear Feedback Control of Two Manipulators in Presence of
Environmental Constraints,” IEEE International Conference on Robotics and
Automation, Vol. 2, pp. 1252-1257, 1989.

Koga, M., Kosuge, K., Furuta, K. and Nosaki, K., “Coordinated Motion Control

of Robot Arms Based on the Virtual Internal Model,” IEEE Transactions on
Robotics and Automation, Vol. 8, No. 1, pp. 77-85, Feb. 1992.

Tarn, T. J., Bejczy, A. K. and Yun, X., “Design of Dynamic Control of Two Co-
operating Robot Arms: Closed Chain Formulation,” IEEE International Con-
ference on Robotics and Automation, pp. 7-13, 1987.

Soloway, D. I. and Alberts, T. E., “Force Control of A Multi-Arm Robot Sys-
tem,” IEEE International Conference on Robotics and Automation, pp. 1490-
1496, 1988.

BIB-1 -

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Cutkosky, Mark R., Robotic Grasping and Fine Manipulation, Boston: Kluwer
Academic Publishers, 1985.

Schneider, S. A. and Cannon, R. H., “Object Impedance Control for Cooper-
ative Manipulation: Theory and Experimental Results,” IFEE International
Conference on Robotics and Automation, pp. 1076-1083, 1989.

Asada, H. and Slotine, J. J. E., Robot Analysis and Control, John Wiley and
Sons, 1986.

Hogan, N., “Impedance Control: An approach to manipulation, Part I,” Trasac-
tion of ASME, Journal of Dynamic System, Measurement, and Control, Vol.
107, Mar. 1985.

Hogan, N., “Impedance Control: An approach to manipulation, Part II,”
Trasaction of ASME, Journal of Dynamic System, Measurement, and Control,
Vol. 107, Mar. 1985.

HogaJn.7 N., “Impedance Control: An approach to manipulation, Part III,”
Trasaction of ASME, Journal of Dynamic System, Measurement, and Control,
Vol. 107, Mar. 198.

Tarn, T. J., Xi, N., Guo, C. and Berjczy, A. K., “Function-Based Control
Sharing for Robotic Systems,” IEEE International Conference on Intelligent
Robotics, pp. 1-6, 1995.

Spong, M. W. and Vidyasagar, M., Robot Dynamics and Control, John Wiley
and Sons, 1989.

Hunter, M. W., Spenny, C. H., Contact Force Assignment Using Fuzzy Logic,
Air Force Institute of Technology, 1995.

Hunter, M. W., Contact Force Assignment Using Fuzzy Logic Based Reactions,
PhD Prospectus, Air Force Institute of Technology, 1996.

Fu, K. S., Gonzalez, R. C. and Lee, C. S. G., Robotics (Controls, Sensing,
Vision, and Intelligence), McGraw-Hill Book Company, 1987.

Nagai, K. and Yoshikawa, T., “Manipulating and Grasping Forces in Manip-
ulation by Multifingered Robot Hands,” IEEE Transactions on Robotics and
Automation, Vol. 7, No. 1, pp. 67-77, Feb. 1991.

Nagai, Kiyoshi and Yoshikawa, Tsuneo, “Dynamic Manipulation / Grasping
Control of Multifingered Robot Hands,” Proceedings of the IEEE Conference
on Robotics and Automation. pp. 624-629 1993.

Snyder, W. E., Introduction Robots(Computer Interfacing and Conirol),
Prentice-Hall Inc., 1985.

Stangaard, A. C. Jr., Robotics and AI(An Introduction to Applied Machine
Intelligence), Prentice-Hall Inc., 1987.

BIB-2

30.

31.

32.

33.
34.

35.

36.

Whitney, D. E., “Historical Perspective and State of the Art in Robot Force
Control,” IEEE Proceedings of the International Conference of Robotics and
Automation, pp. 262-268, 1986.

Lew, Jae Y. and Trudnowski, Dan J., “Vibration Control of a Micro / Macro-
Manpulator System,” IEEE Control Systems, pp. 26-31, Feb. 1996.

Stevens, H. D. and How, Jonathan, “The Limitations of Independent Controller
Design for a Multiple-link Flexible Macro-manipulator Carrying a Rigid Mini-
manipulator,” Robotics for Challenging Environments, Proceedings of RCE II,
the Second Conference, pp. 93-99, June, 1996.

Schneider, D. L., EENG 540 Class Notes, 1994.

Nethery, John, Robotica : User’s guide and reference manual, University of
[lnois, September 1993.

Stewart, David B. and Khosla, Pradeep K., Chimera 3.1, The Real-Time Oper-
ating System for Reconfigurable Sensor-Based Control Systems, Advanced Ma-
nipulators Laboratory, The Robotics Institute and Department of Electrical and
Computer Engineering, Carnegie Mellon University, 1993.

D’Azzo, J. J. and Houpis, C. H., Linear Control System Analysis and Design,
Conventional and Modern, 4th Edition, McGraw-Hill, Inc., 1995.

BIB-3

Appendiz A. Forward Kinematics Development: 8 DOF Planar Case
of PUMA 560

Fig (4.1) shows the overall structure of 6 DOF PUMA 560 and the following
procedures generate the appropriate 3 DOF planar robot derived from PUMA 560.
The purpose is to provide the consistent equations to fit a special case of PUMA
robot. First, the overall forward kinematics were computed using the ROBOTICA
mathematic software [34], then some of joints are set to be zero. The result forms
the planar equations of motion of the manipulator. The link coordinate systems is
shown in Fig (A.1) and the D-H parameters of 6 DOF PUMA 560 are listed in Table
A.l.

Z3 a3 Y4 / /

X9 \L ZS \l/ 26
Z

Figure A.1 Link coordinate systems for a PUMA 560

The homogeneous matrix, T¢, is to specify the i-th link coordinate frame

with respect to the base coordinate frame and it can be expressed by the following

A-1

| Joint: | 02 [dl I a; I (674 I
1 0, 0 0 90°
2 02 0 ag 0
3 65—90° | 0 | —as | —90°
4 04 dy| 0 90°
3 05 0 0 | -—90°
6 Os ds | O 0

Table A.1 PUMA 560 D-H parameters

relationship.

ALAL--- A
n;, s; a;
0 0 O

-1
P;
1

for ¢=1,2,--

.,n

(A1)

WhereAj_1 is the ¢-th link coordinate transformation matrix with respect to ¢ — 1

link, [n;,s;, a;] € R3*3 is the orientation matrix of i-th coordinate frame, and p; € R*
? 1

is the position vector expressing the origine of ¢-th coordinate frame with respect to

the origin of base coordinate frame.

Using the ROBOTICA mathematic software, the ¢-th link coordinate transfor-

mation is obtained. The results are:

| Coslql]l ©
| Sin[q1] ©
Af1]1=1 0 1
| 0 0

Cos[q2] -Sin[q2]

I

| Sin[q2] Cos[q2]
Af2]=| © 0

| o 0

| Sin[q3] ©

|-Cos[q3] ©
A[3]=] 0 -1

| 0 0

Sin[q1]
-Cos[q1]

0

0

O = O O

Cos[q3]
Sin[q3]

= O O O

a2 Cos[q2]
a2 Sin[q2]
0
1

a3 Sin[q3]
-(a3 Cosl[q3])

0

1

A-2

| Cos[q4] © Sin[q4] 0
| sin[q4] © -Cos[q4] 0
| 0 1 0 d4
| 0 0 0 1

| Cos[qgb] © -Sinl[q5]1 0
| Sinlqg5] © Cos[q5] 0
Al5]=] © -1 0 0
| 0 0 0 1

| Cosl[q6] -Sin[q6]
| Sin[g6] Cos[q6]
| 0 0
| 0 0

o r O O
(o)

Cos[ql] Cos[q4] Cos[q5] Cos[q6] Sinl[q2 + 3] -
Cos[q5] Cos[q6] Sin[q1] Sin[q4] +

Cos[ql] Cos[q2 + q3] Cos[q6] Sin[qg5] -

Cos[q4] Sin[q1] Sin[q6] -

Cos[ql] Sin[q2 + 93] Sin[q4] Sin[q6]

—
/i
[
-
-
—
]

T[1,2]

Cos[q1] Cos[q4] Cos[q5] Sin[q2 + 93] Sin[q6] -
Cos[q4] Cos[q6] Sin[ql] -

Cos[q1] Cos[q6] Sin[q2 + 3] Sin[q4] -

Cos[qb] Sin[q1] Sin[q4] Sin[q6] -

Cos[ql] Cos[q2 - q3] Sin[q5] Sin[q6]

T[1,3] = Cos[ql] Cos[q2 + q3] Cos[q5] -
Cos[ql] Cos[q4] Sin[q2 + g3] Sin[q5] +

Sin[q1] Sin[g4] Sin[q5]

T[1,4] = a2 Cos[ql] Cos[q2] + a3 Cos[ql] Sin[q2 + 3] +
d4 Coslqil Cosl[q2 + q3] +

d6 Cosl[qil Cos[q2 + q3] Cosl[qg5] -

d6 Cosl[ql] Cos[q4] Sin[q2 + q3] Sin[q5] +

d6 Sinl[q1] Sin[q4] Sin[q5]

T[2,1] = Cos[q4] Cos[g5] Cos[g6] Sin[qll Sin[q2 + q3] +

A-3

T[2,3]

T[2,4]

T[3,1]

T[3,2]

T[3,3]

T[3,4]

T[4,1]
T(4,2]
T[4,3]

T[4,4]

Cos[q1] Cos[q5] Cos[q6] Sin[q4] +

Cos[q2 + q3] Cos[q6]

Sin[q1] Sin[q5] +

Cos[q1] Cos[q4] Sin[q6] -

Sin[q1] Sinlq2 + q3]

Sin[q4] Sin[q6]

Cos[ql] Cos[q4] Cos[q6] -

Cos[q6] Sinl[q1] Sin[q2 + q3] Sinl[q4] -

Cos[q4] Cos[g5] Sin[q1] Sin[q2 + ¢3] Sin[q6] -
Cos[q1] Cos[q5] Sin[q4] Sin[qg6] -

Cos[q2 - 93] Sin[q1l]

Cos[q2 + 93] Cosl[q5]

Sin[q5] Sin[q6]

Sin[ql] -

Cos[q4] Sin[q1] Sin[q2 + 93] Sin[q5] -
Cos[q1] Sin[q4] Sin[q5]

a2 Cos[q2] Sin[ql] +

a3 Sinl[q1] Sin[q2 + g3] -

d4 Cos[q2 + 93] Sin[q1] +
d6é Cos[q2 + g3] Cos[q5] Sin[ql] +

d6 Cos[q4] Sin[q1] Si
d6 Cos[q1] Sin[q4] Si

-(Cos[q2 + q3] Coslqg4]
Cos[q6] Sin[q2 + q3]
Cos[q2 + 93] Sin[q4]

Cos[q2 + 3] Cos[qg6]
Cos[q2 + q3] Cosl[q4]
Sin[q2 + g3] Sin[q5]
Cos[q5] Sin[q2 + q3]

a2 Sin[q2] - a3 Coslqg
d4 Sinl[q2 + q3] + d6

nlq2 + ¢3] Sin[g5] -
n[q5]

Cos[q5] Cos[q6]) +
Sin[qg5] +
Sin[q6]

Sintq4] +

Cos[qg5] Sin[q6] -

Sin[q6]

+ Cos[q2 + g3] Cos[q4] Sin[q5]

2 + q3] +
Cos[q5] Sin[q2 + 3] +

d6 Cos[q2 + q3] Cosl[q4] Sin[g5]

0

0

A-4

The ROBOTICA input file used for these calculations are listed in Table A.2
based on the D-H table.

To make the 3 DOF planar motion, the joints rotated along y-axis are taken
and other joints are set to zero. For the simple case, the link length between joint 3
and 4, as, is also set to zero. The final forms of 3 DOF planar robot corresponding

to 6 DOF PUMA 560 are generated as following equations.

- Ng Sz Gy Dg (| T[1,1] T[1,2] T[L,3] T[1,4] -
T — My Sy Gy Py | _ T[2,1) T([2,2] T[2,3] T[2,4] (A.2)
n, 8, A, P T[3,1] TI[3,2] TI[3,3] TI[3,4]
[0 0.0 1| |74 TH2 T3] T4

ny = sin(gz + ¢z + ¢s)
ny, = 0

n, = cos(qz+ q3+ gs)

sz = —cos(q2 +gs+¢s)

sy, = 0 (A.3)
s, = sin(g2+ g3+ ¢s)

a;, = 0

ay, = 1

a, = 0

Pr = a2c08(q2) + dacos(ge + ¢3) + (ds + di)cos(g2 + g3 + ¢s)

py = 0 (A.4)

p. = agsin(q2) + dasin(qa + ¢3) + (ds + di)sin(gz + ¢3 + ¢5)

A-5

A Robotica input data file for a PUMA 6-dof robot
{Kinematics}

DOF = 6

The Denavit-Hartenburg parameters
jointl = revolute
al = 0
alphal = Pi/2

d1 = 0

thetal = ql
joint2 = revolute
a2 = a2
alpha2 = 0

d2 = 0
theta2 = ¢2
joint3 = revolute
a3 = a3
alpha3 = -Pi/2
d3 = 0

theta3 = q3-Pi/2
jointd = revolute
ad = 0
alphad = Pi/2

d4 = d4
thetad = q4
joints = revolute
ad = 0
alphab = -Pi/2
db = 0

thetab = ¢b
joint6 = revolute
ab = 0
alpha6 = 0

dé6 = db
thetab = b

Table A.2 ROBOTICA Input Data File for a PUMA 560 6 DOF Robot

A-6

Appendiz B. MATLAB Files and SIMULINK Diagrams

The files and specific simulation block diagrams used in this thesis are listed

in this Appendix. The gross and fine motion simulations are performed separately

but the kinematics and dynamics model of each motion control have the same data

and structures except for gains (These gains are listed in Chapter 4).

B.1 Files for Gross Motion Control

%
h
pA
h

%

h

%

fwdkin.m

This function file is to compute the PUMA 3 DOF(Planar) forward
kinematics using gmez. The equations are derived from Robotica.

function p=fwdkin(q)

PUMA link parameters

al =0.4318; a2 = 0.43307; a3 = 0.05625;

Using the D-H convention, get the position vector
pos(1)=al*cos(q(1))+a2*cos(q(1)+q(2))+a3*cos(q(1)+q(2)+q(3));
pos(2)=alxsin(q(1))+a2*sin(q(1)+q(2))+a3*sin(q(1)+q(2)+q(3));
p=[pos(1); pos(2)];

End of function file

B-1

%
%
%
%
%
%

%

jac3dof.m

This file is to calculate the planar 3 DOF PUMA Jacobian using

gqmez.
Task 1 is positioning the end-effector.
Task 2 is orientation.

function J=jac3dof (u)

al = 0.4318; a2 = 0.43307; a3 = 0.05625;
jli=-at*sin(u(1))-a2*sin(u(1)+u(2))-a3*sin(u(1)+u(2)+u(3));
j12=-a2*sin(u(1)+u(2))-a3*sin(u(1)+u(2)+u(3));
j13=-a3*sin(u(1)+u(2)+u(3d));
j21=atl*cos(u(1))+a2*cos(u(1)+u(2))+a3*cos(u(1)+u(2)+u(3d));
j22=a2*cos(u(1)+u(2))+a3*cos(u(1)+u(2)+u(3d));
j23=a3*cos(u(1)+u(2)+u(3));

j31=cos(u(1)+u(2)+u(3));

j32=j31; j33=j31;

Ji=[j11 j12 j13;
j21 j22 j231;

J2=[j31 j32 j33];
J=[J1;32];

End of function file.

B-2

%
%
%
%
%
%

%

A
%
%
%

sinvkin.m

This function file is to compute the joint increment
associate with position increment.

The algorithm is develoded by using the Nakamura’s
singular robust inverse.

function dgq=sinvkin(u)

qmez=[u(1); u(2); u(3)]; dr=[u(4); u(6); u(6)];

define PUMA parameters

JIHI = 3.926990; % 225 degrees in rads
J1LO = -0.785398; % -45 degrees in rads
J2HI = 0.785398; % 45 degrees in rads
J2L0 = -3.926990; % -225 degrees in rads
J3LO = -1.745329; % -100 degrees in rads
J3HI = 1.745329; % 100 degrees in rads
k= 0.01;

al = 0.4318; a2 = 0.43307; a3 = 0.05625;

pmez=fwdkin(qmez) ;
pref=dr(1:2,1)+[pmez(1); pmez(2)];

check the workspace limitation. if the desired position is
out bound of workspace, then the controller should command
to stay in previous joint position until the position input
is within its workspace.

if sqrt(pref(1)~2+pref(2)°2) > (al+a2+a3)

dq=[0;0;0];

else
J=jac3dof (qmez) ; % getting the jacobian
J_sr=inv(J’*J+k*eye(3))*J’; J take singular inverse
delta_q=J_sr*dr;
gq=qmez+delta_q; % update joint values

% check for limitation of updated joint angles. if the joint

B-3

% angles are out of limitation, then their maximum or minimum
% angle is next joint command.

if (q(1) < J1LO)

q(1) = J1L0;
elseif (q(1) > J1HI)
q(1) = J1HI;
else
q(1) = q(1);
end
if (q(2) < J2LO0)
q(2) = J2L0;
elseif (q(2) > J2HI)
q(2) = J2HI;
else
q(2) = q(2);
end
if (q(3) < J3LD)
q(3) = J3LO;
elseif (q(3) > J3HI)
q(3) = J3HI;
else
q(3) = q(3);
end

Qmez=[q(1);q(2);9(3)];
dg=Qmez-qmez;
end % end of if-else loop.

% End of sinvkin.m function file.

B-4

%
%
h
h

%

envir.m

This file is to set the position of environment and its stiffness gain.
The output is the environmental force components.

function Fe=envir(u)
Ke = 15100; J environment stiffness gain

x=[u(1); u(2)];
xe = 0.55;

if x(1) > xe
xnet=[x(1)-xe;0];
else
xnet=[0;0];
end

Fe = Ke*[xnet(1);xnet(2)]1; % environmental interacting
% force

End of function file

B-5

%
%
%
%
//

%

%

%

%
%

%
%
%
%
%

%

inputl.m

This function file is to compute the desired position vector
and initial joint command based on each sample time and initial
joint angle.

function p=inputil(u)

PUMA link parameters

al =0.4318; a2 = 0.43307; a3 = 0.05625;
initial joint values

q = [u(3); u(4); uls)];

Using the D-H convention, get the position vector

pos(1)=al*cos(q(l))+a2*cos(q(1)+q(2))+a3*cos(q(1)+q(2)+q(3));
pos(2)=al*sin(q(1))+a2*sin(q(1)+q(2))+a3*sin(q(1)+q(2)+q(3));

p=[pos(1)+0.018*u(1); pos(2)]; % contact with environment
p=[pos(1)-0.12*u(1); pos(2)]; % free space motion tracking

End of function file

input2.m

This function file is to compute the desired task2 vector.
The desired input is set to the sum of initial joint
angles.

function p=input2(u)

p = sin(u(1)+u(2)+u(3));

End of function file

B-6

B.2 SIMULINK Block Diagrams of Gross Motion Control

B-7

peoy
198100 Jadng

JusuiLioNALg

Kyoojan 1o}
uoljejuslQ juauopd
5 B
EWy 1008 Ryoopen dola
> i lojesieny bung - Aot Jopd
I g -
, -] e
Al_ -
zaupd)
,Iv@
uoisod oy
uonelusuo
>
upipmd anbuoy
YiNd wy _ 104 Uogisod lous old
13)08u09™(ld 10} 8S1aAU] hung ! uopised
unipsy ¢ N
P ad g — _|M
]
mATAI_ _l.

[ognd-znd]

019

—0

Figure B.1 SIMULINK Block Diagram of Gross Motion Control
B-8

<&

Gain

in 1

in_1 Integrator Ki out_2
2] >
in_ 2 Kv out_3

(b) Model of PID Controller

1 P>
i1 Ll Mux ey M O] |
2 task1_pos out_1
in 2 Mux3
MATLAB >
> Function 2

task? out 2

(c) Model of Input Generator

1

Sum Integrator Integrator2 out_1
(a) Robot Arm Dynamic Model

Figure B.2 Subsystem Block Diagrams of Gross Motion Control

B-9

B.3 Files for Fine Motion Control

%

%

%

B.3.1 Finger # 1.

fwdkinl.m

This function file is to compute the 3 DOF(Planar) finger 1 forward
kinematics using qmez. The equations are derived from Robotica.

function p=fwdkin1(q)

PUMA link parameters

al =0.4318; a2 = 0.43307; a3 = 0.05625;

Using the D-H convention, get the position vector
pos(1)=-al*sin(q(1))-a2*sin(q(1)+q(2))-a3*sin(q(1)+q(2)+q(3)) - 0.3;
pos(2)= alxcos(q(1))+a2*cos(q(1)+q(2))+a3*cos(q(1)+q(2)+q(3));
p=[pos(1); pos(2)];

End of function file

B-10

[/
A
%
%
%
%

A

jac3dofl.m

This file is to calculate the planar 3 DOF PUMA Jacobian using

qmez.
Task 1 is positioning the end-effector.
Task 2 is orientation.

function J=jac3dofi(u)

al = 0.4318; a2 = 0.43307; a3 = 0.05625;
jli=-al*cos(u(1))-a2*cos(u(1)+u(2))-a3d*cos(u(1)+u(2)+u(3));
j12=-a2*xcos(u(1)+u(2))-a3*cos(u(1)+u(2)+u(3));
j21=-al*sin(u(1))-a2*sin(u(1)+u(2))-a3d*sin(u(1)+u(2)+u(3));
j22=-a2*sin(u(1)+u(2))-a3*sin(u(1)+u(2)+u(3));

J = [j11 j12;
j21 §221;

End of function file.

B-11

%
%
%
%
%
%

h

sinvkini.m

This function file is to compute the joint increment
associate with position increment for the finger 1.
The algorithm is develoded by using the Nakamura’s

singular robust inverse.

function dg=sinvkini(u)

gmez=[u(1); u(2); 0]; dr=[u(d); u(4)];

define PUMA parameters

JIHI = 3.926990; % 225 degrees in rads
JILO = -0.785398; % -45 degrees in rads
J2HI = 0.785398; % 45 degrees in rads
J2L0 = -3.926990; %h -225 degrees in rads
k = 0.01;

al = 0.4318; a2 = 0.43307; a3 = 0.05625;

J=jac3dof1(qmez);

% getting the jacobian

J_sr=inv(J’*J+kxeye(2))*J’; ¥ take singular inverse

delta_q=J_sr*dr;

q(1) = gmez(1)+delta_q(1); % update joint values

q(2) = gmez(2)+delta_q(2);

% check for limitation of updated joint angles. if the joint
% angles are out of limitation, then their maximum or minimum

% angle is next joint command.

if (q(1) < JiLD)

q(1) = J1LO;
elseif (q(1) > J1HI)
q(1) = J1iHI;
else
q(1) = q(1);
end

if (q(2) < J2LO)

q(2) = J2LO;

elseif (q(2) > J2HI)

q(2) = J2HI;

B-12

else
q(2) = q(2);
end

Qmez=[q(1);q(2)]1;
dg=[Qmez-qmez(1:2,1)];

% End of sinvkin.m function file.

B-13

%
%
%
%

%

[

%

B.3.2 Finger # 2.

fwdkin2.m

This function file is to compute the 3 DOF(Planar) finger 2 forward
kinematics using gmez. The equations are derived from Robotica.

function p=fwdkin2(q)

PUMA link parameters

al =0.4318; a2 = 0.43307; a3 = 0.05625;

Using the D-H convention, get the position vector
pos(1)=-al*sin(q(1))~a2*sin(q(1)+q(2))-a3*sin(q(1)+q(2)+q(3)) + 0.3;
pos(2)=al*cos(q(1))+a2*cos(q(1)+q(2))+al3*cos(q(1)+q(2)+q(3));
p=[pos(1); pos(2)]1;

End of function file

B-14

h
%
A
h

h

jac3dof2.m

This file is to calculate the planar 3 DOF Jacobian of finger 2 using
qmez.

function J=jac3dof2(u)

al = 0.4318; a2 = 0.43307; a3 = 0.05625;
jli=-al*cos(u(l))-a2*cos(u(1l)+u(2))-a3*cos(u(1)+u(2)+u(3d));
j12=-a2*cos(u(1)+u(2))-al3*cos(u(1)+u(2)+u(3));
j21=-al*sin(u(1))-a2*sin(u(1)+u(2))-a3*sin(u(1)+u(2)+u(3));
j22=-a2xsin(u(1)+u(2))-a3*sin(u(1)+u(2)+u(3));

J = [11 j12;
j21 j221;

End of function file.

B-15

h
A
A
%
A
b

h

sinvkin2.m

This function file is to compute the joint increment
associate with position increment for the finger 2.
The algorithm is develoded by using the Nakamura’s

singular robust inverse.

function dg=sinvkin2(u)

gmez=[u(1); u(2); 0]; dr=[u(d); u(4)]1;

define PUMA parameters

JILO = -3.926990;

JIHI = 0.785398;

J2L.0 = -0.785398;

J2HI = 3.926990;

k =0.01;

al = 0.4318; a2 = 0.43307; a3

J=jac3dof2(qmez) ;

%
%
/
%

-225 degrees in rads
45 degrees in rads

-45 degrees in rads
225 degrees in rads

0.05625;

% getting the jacobian

J_sr=inv(J’*J+k*eye(2))*J’; ¥ take singular inverse

delta_q=J_sr*dr;

q(1) = gmez(1)+delta_q(1); % update joint values

q(2) = qmez(2)+delta_q(2);

% check for limitation of updated joint angles. if the joint
% angles are out of limitation, then their maximum or minimum

% angle is mext joint command.

if (q(1) < J1LO)

q(1) = J1LO;
elseif (q(1) > J1HI)
q(1) = J1HI;
else
q(1) = q(1);
end

if (q(2) < J2LO)

q(2) = J2LO;

elseif (q(2) > J2HI)

q(2) = J2HI;

B-16

else
q(2) = q(2);
end

Qmez=[q(1);q(2)];
dq=[Qmez-gqmez(1:2,1)]1;

% End of sinvkin.m function file.

B-17

A

B.3.3 Object and Disturbance.

% obj_dist.m

%

% This file is to set the position of object and
determine the object disturbance force components.

%

%
%

%

function out = obj_dist(u)

assign the inputs (finger positions, joint values

u(7); u(8)]; % joint position of finger 1
u(2); u(3)]; % joint position of finger 2

position of finger 1
position of finger 2

initial contact force of finger 1
initial contact force of finger 2

and desired contact forces)
ql = [u(6);

q2 = [u(1);

pl = [u(9); u(10)l; %

p2 = [u(4); u(5)1; h

step = u(i1);

f1 = [u(18); u(16)]; %

£2 = [u(12); u(13)1; %

t = u(18); % time

assign the value of parameters

Ke = 50;

% environmental gain

initial contact position

contactil
contact?2

% object disturbance

xe_step = 0.005%step;

% xe_sine = 0.005*sin(t*pi/5);

sigma =
xe_rand
disturb

0

.0025/3;

fwdkinl ([pi/6;-pi/6;0]);
fwdkin2([-pi/6;pi/6;0]);

sigma*randn(1,1);

Xe_step;

% contact positions after disturbed

dist_conl

dist_con2

= contactl + [disturb;0];

contact2 + [disturb;0];

B-18

% compute object disturbance and measured force

% finger1

Rl = [cos(q1(1)+q1(2)+q1(3)-pi/2)
-sin(q1(1)+q1(2)+q1(3)-pi/2)

0

sin(q1(1)+q1(2)+q1(3)-pi/2) 0;
cos(q1(1)+q1(2)+q1(3)-pi/2) 0;
0 11;

F_netl = Ke*R1*([p1;0] - [dist_con1;0]);

Fel = F_net1(1:2,1) + f1;

h finger2

R2 = [cos(q2(1)+q2(2)+q2(3)+pi/2)
-5in(q2(1)+q2(2)+q2(3)+pi/2)

0

sin(q2(1)+q2(2)+q2(3)+pi/2)
cos(q2(1)+q2(2)+q2(3)+pi/2) 0;
0 11;

o O

F_net2 = Ke*R2*([p2;0] - [dist_con2;0]);

Fe2 = F_net2(1:2,1) + £2;

Fe = [Fel; Fe2];
out = [Fe; disturb];

% End of function file

B-19

B.3.4 CFA Algorithm. [23]

h tc_ini.m

%this is an initialization script for the two contact problem
hof contact force assignment, user must specify contact positions
hand normal directions, in object coordinates, before using
%halso specify mu, the contact coefficient of friction

% Mark Hunter, Capt, Air Force Institute of Technology

h 29 Mar 96

%

% Modified by Capt. Hyunki Cho, 10 May 96

0,

h

clear all
global T_i n in mu mu2 eta e_I e_Ic num_I e_n_oi r Wp

%hassume coeffecient of friction
nu=.4;

mu2=mu”2;

eta=1/sqrt(1+mu~2);

% degrees to radians
deg2rad=pi/180;

% establish object base coordinates
x=[10 0]’;
y=[0 1 01’;
z=[0 0 1]’;

% enter number of contacts
n=2;

% initialize variables

in=1:n;

num_I=(n*n-n)/2; %number of internal forces

% contact positions in object x-y-z coordinates of r
= fwdkinl([pi/6;-pi/6;0]);

= ri(1,1);

rl
ri_
r2 = fwdkin2([-pi/6;pi/6;0]1);

N

B-20

r2_x = r2(1,1);

r(:,1)=[r1_x 0 0]’; %you specify contact positions
r(:,2)=[r2_x 0 0]7; %r(:,1) and r(:,2)

% contact normal directions, in object x-y-z coordinates
e_n_oi(:,1)=[-ri_x 0 0]’; Y%you specify contact normals
e_n_oi(:,2)=[-r2_x 0 0]’; %e_n_oi(:,1) and e_n_oi(:,2)
for i=1:n

% make sure e_n_oi is converted to unit vector

%

e_n_oi(:,i)=e_n_oi(:,i)/norm(e_n_oi(:,i));

% determine appropriate tangent vectors to contact surface
e_t(:,1)=cross(e_n_oi(:,1i),x);

e_t(:,2)=cross(e_n_oi(:,1),y);
e_t(:,3)=cross(e_n_oi(:,1),z);

for j=1:3
norm_e_t (j)=norm(e_t(:,3j));
end

i_et=max(find(norm_e_t==max(norm_e_t)));
e_t_1(:,i)=e_t(:,i_et)/norm(e_t(:,i_et));

e_t_2(:,i)=cross(e_t_1(:,1i),e_n_oi(:,i));
e_t_2(:,i)=e_t_2(:,i)/norm(e_t_2(:,1));
T_i(3%1-2:3%i,1:3)=...

[e_n_o0i(:,1) e_t_1(:,1i) e_t_2(:,i)];

end

clear W

B-21

d2r=pi/180; Jdegree to radian conversion

e_y=[0 1 0]’; %establish global basis vectors
e_x=[10 0]’; '
e_z=[0 0 1]°;

% establish internal force unit vectors and their weights associated
% with the fuzzy membership functions

for i=1:n
for j=1:n
ji=(i-1)*n+j;
if i==j
e_I(:,jj)=[0 0 0]";
else
r_ij=r(:,i)-r(:,3);
e_I(:,jj)=-r_ij/norm(r_ij); %internal force unit vectors
end
e_Ic(:,jj)=T_i(3*i-2:3%i,1:3)’*e_I(:,jj); %e_I in
happropriate contact frame
end
end

% begin initialization for pseudo-inverse solution/external force solution
g P
I3=eye(3,3);

for i=1:n
eval ([’P’ int2str(i) ’'=[0 -r(3,’ int2str(i) ’) r(2,’ int2str(i) ’);
r(3,’ int2str(i) ’) 0 -r(1,’ int2str(i) ’);
-r(2,? int2str(i) ’) r(1,’ int2str(i) ’) 0 1;’1)
end

for i=1:n
eval([’Wi=[I3;P’,int2str(i),’]1;’ 1);

W=[W Wil;
end

Wp=pinv (W) ;

hensure this grasp configuration will allow force closure

B-22

if((e_Ic(2,2)"2+e_Ic(3,2) 2-e_Ic(1,2) " 2*mu2)>0 |...
(e_Ic(2,3) 2+e_Ic(3,3)"2-e_Ic(1,3)"2*mu2)>0)
error(’Contact configuration is not consistent with force
closure’)

end

%end initialization routine

B-23

function F=two_c(u)

%this function determines the min norm solution of the contact forces
%F=[fix fly fiz f2x f2y f2z]’

%for the two contact problem. this function is called with the

%object wrench, [fx, fy, fz, Mx, My, Mzl’ to be applied to the object,
%and returns the stable contact forces rquired to so. Run tc_ini before
%using, to inititialize the contact configuration variables. Only run tc_ini
%once for any contact configuration. Run this function as many times
has required for contact force solution.

% Mark Hunter, Capt, Air Force Institute of Technology

% 29 Mar 96

%

% Modified by Capt. Hyunki Cho, 10 May 96

4

global T_i n in mu mu2 eta e_I e_Ic num_I e_n_oi r Wp
Q=[u(1);u(2);u(3);u(4);ul5);ul6)];

Fo=Wp*Q;

jj=2; kfor contact one

i=1;
focl=T_i(8%i-2:3%1,1:3)*Fo(1:3); %convert external contact force to contact frame

al=e_Ic(2,jj) " 2+e_Ic(3,jj) " 2-e_Ic(1,j]) "2*mu2;
b1=2*(foc1(2)*e_Ic(2,jj)+focl(3)*e_Ic(3,jj)-focl(1)*e_Ic(1,jj)*mu2);
cl=foc1(2) " 2+focl1(3)"2-focl1 (1) "2*mu2;

k11=(-bl+sqrt(bl~2-4%al*c1))/(2*al);
k12=(-b1-sqrt(b12-4%ai*c1))/(2*al);

jj=3; %for contact two

i=2;

foc2=T_i(3%i-2:3%i,1:3)*Fo(4:6); %convert external contact force to contact frame
a2=e_Ic(2,jj) " 2+e_Ic(3,jj) "2-e_Ic(1,j]) "2*mu2;
b2=2%(foc2(2)*e_Ic(2,jj)+foc2(3)*e_Ic(3,jj)-foc2(1)*e_Ic(1,jj)*mu2);
c2=fo0c2(2) " 2+foc2(3)"2-foc2(1) "2*mu2;

k21=(-b2+sqrt (b2~ 2-4%a2*xc2))/(2*a2);

B-24

k22=(-b2-sqrt(b2~2-4*a2*c2))/(2*a2);
mi=max(real(k1l),real(k12));
m2=max (real (k21) ,real (k22));

k=max(m1,m2);

F1=Fo(1:3)+k*e_I(1:3,2);
F2=Fo(4:6)+k*e_I1(1:3,3);

F=[F1; F2];

B-25

B.4 SIMULINK Block Diagrams of Fine Motion Control

B-26

indu deig 1XNN
x% H ewuonAug
- Ll
xnW — JIAUT
> L - |
¢b
poiisep
1008
Buel
uBipMd zowd le[jonuoo Jous uoysod Hu o : 9010} o010
I_ﬂ Je uAg ald opesioay W nduy 1ol g4 SV= diy] ue_mm_o
unIpM | XNy < I
_ [dobuiy NIY AN

B-27

Figure B.3 SIMULINK Block Diagram of Fine Motion Control for One-Finger Mo-
tion Control

(zewgb) 1n0 zow ¢b

(zew ™ b) 1no

zew gpb

Ja||04uo0
aid

Zow b

ious ¢b

(b) Fingertip Dynamic Model

(a) Finger Dynamic Model

Figure B.4 Subsystem Block Diagram of Fine Motion Control

B-28

fd1_x Mux
u[5]
fd1
» CFA ~ fd1
convert desired
contact force in u[1
palm frame via Mux —
object frame to fd2 x
contact frame
using CFA ta2 >
(two_c.m) Y fd2
Finger
—
fel_x Mux
p——]| o
fel_y 1
e Finger
Desired fe2_x Mux
sire
[10:10:00:0,0] | Object Wrench
in Palm Frame fe2_y 12
@
4
-
Object_dist [<u— MU
Object disturbace ¢ D
and disturbed ‘-——S@TMT_
contact forces —
(Obj_dist.m) mux
Clock

Figure B.5 SIMULINK Block Diagram of Fine Motion Control for Two-Finger Mo-
tion Control (Main Block Diagram)

B-29

csvyd

W ZUDIPM, W guBiAul G J0BU00
Ammmﬂm _% {9POW g 10Buy jo ﬂmhmmm.v,_h__ _.m) g sobuy jo g ssBuy jo wmmwmwm__o Jo Jous
uonsod OWIBUAQ Joonuoo Jous uomsod juswaJou uopisod Nuwy sbues 8010} 4]

Sv4 1dy

10R1UOD posseq wiol gy

g 10buig aid

sl

10j 8s18AU| PXON

NIXANI

19}
(W Lupipm) (W unjruig) 1 0E00
| Jebuy jo 18pow | JoBuy jo | JoBuyy jo | 1eBuy jo 1 Jobuy jo wmmwu j0 10 Joue
1zowd uolISOd olweuAg SO oo uoiysod Juawasoul uopsod i ebuel uodssi 9010}
| Jobuiy aid 104 ©SI9AU] NN J0BIU0) pauissq Svd -
urypmd < 1sep §

11d7p

E NIXANI

Finger Motion Control (FAS and Finger Dynamic Subsystem Block

Figure B.6 Finger Subsystem Block Diagram of Fine Motion Control for Two-
Diagrams are the same of One-Finger Simulation)

B-30

Appendiz C. Selection of Suitable Module Sampling Rate

The combinations of module sampling rates and their performances are listed
here. The AFIT PUMA 560 was used to show the validation of assumption that the
response of lower level control system must be faster than the higher level control
system. The consequent results compared with the Chaper 4 and 5 are obtained here
and provide the selection of appropriate module sampling rate for the integrated gross
and fine motion control experiment. Table (C.1) shows the sets of module sampling
rates and corresponding force error ranges. In this thesis, the test set # 5 is selected

for the integrated gross and fine motion control experiment.

C-1

Test Module Sampling Rate Force

set gross (Hz) | fine (Hz) | force (Hz) | Error Range (N)
test # 1 5 5 5 Unstable
test # 2 5 5 50 | -1.561 ~ 3.021
test # 3 5 5 500 | -3.8754 ~ 2.9153
test # 4 5 50 50 | -1.9554 ~ 1.4682
test # 5 5 50 500 | -1.9695 ~ 1.5882
test # 6 5 500 500 | -2.0683 ~ 2.3929
test # 7 50 50 50 | -8.2449 ~ 6.2894
test # 8 50 50 500 | -4.7790 ~ 4.3200
test # 9 50 500 500 | -2.1248 ~ 1.7294
test # 10 500 500 500 Unstable
test # 11 500 500 50 | -4.2566 ~ 4.3765
test # 12 500 500 5 Unstable
test # 13 500 50 5 Unstable
test # 14 500 50 50 Unstable
test # 15 50 50 250 | -1.0660 ~ 3.4588
test # 16 50 250 50 | -4.8848 ~ 1.4682
test # 17 250 250 250 | -0.1895 ~ 0.1740
test # 18 250 50 50 Unstable
test # 19 250 250 50 Unstable
test # 20 50 250 250 | -1.8636 ~ 1.3270
test # 21 250 50 250 | -6.9602 ~ 9.7271

Table C.1 The Sets of Tests for the Gross + Fine Motion Control and Their

Performances

C-2

Force Ermor {N)

Force Eror (N)

Force Enor (N)

o
8 ’ 4
6 i
a .
2 i
o
—2 -
—a i
-6 .
—8 -
~1% 5 10 15 20 25 30 35 40 a5 50
Time (sec)
(a) test # 4
10 . ; . . ;
8 4
& i
a i
> i
© |
2 M
—a 4
—6 -
_8 4
—1%% 5 70 15 20 55 30 35 20 as 50
Time (sec)
(b) test # 5
10 : : . . . ' T . .
8 _
6 4
4 |
2|l
ol
2| .
—a 4
—6 4
8 -
—1%% 5 10 15 20 25 30 35 40 as 50
Time (sec)
(c) test # 6
Figure C.1 Stable Cases of Test Sets for Overall Time History

C-3

Force Eror (N)

Force Emor (N)

Foree Error (N}

o
8
6
4
2
o
—2
—a
—6
—8
—10 . : 1 1 . .
o 20 25 30 a5 40 as
Time (sec)
(a) test # 2
10 ; . : T
al
sl
al
Py
o
2 "
—a
—_6
8|
—19; 5 16 15 6 25 30 35 20 a5
Time (sec)
(b) test # 3
10 v . T . r . r : .
al
6 B 1|
4l
2h
ol
2
a4
—6
—8
—10 1 1 . . L . L 1 L
[¢) 5 10 15 20 25 30 3s 40 as
Time (sec)
(c) test # 9

Figure C.2 Unstable Cases of Test Sets When Disturbance Input is applied
C4

Foree Error (N)
N MO O O

|
N

|
1Y

—6

-8

~10

15

10

Force Error (N)
o]

—5

—10

10 15 20 25 30
Time (sec)

(d) test # 11

35

40

50

—~15

N . 1 1 N

25
Time (sec)

(e) test # 15

35

40

50

15

10

Force Eror (N)
o]

—5

—~10

N . L 1 1

~15

10 15 20 25 30
Time (sec)

(f) test # 16

C-5

40

a5

Figure C.3 Unstable Cases of Test Sets When Disturbance Input is applied.

50

15

10

s
=
—
£
L o
a
=
2
—5

—10

_1 L L L L L s) : L
50 5 10 15 20 25 30 35 40 a5 50
Time (sec)
(g) test # 17
15 y T = T T T T T
10 B
5 .
=
=]
L O
8
2
_5 |- _
10} |
_15) s L L L s)
(o] 5 20 25 30 35 40 a5 50

Time (sec)

(h) test # 20

Figure C.4 Unstable cases of Test Sets When Disturbance Input is applied. (cont’d)

C-6

o N M O O O

=
=]
[hu]
<
e
2 =
—a
—6
—8
—10
10

Force Error (N)

10

15 20 25
Time (sec)

(a) test # 7

\ L L L
30 35 40 45

2

3 4 5
Time (sec)

Force Ertor (N)

—1 s

(b) test # 10

i

.
10

L L)
15 20 25
Time (sec)

(c) test # 12

30 35 40 45

Figure C.5 Unstable cases of Test Sets for Overall Time History

C-7

50

15

—10

Foroe Error (N)
| =
o o] 0 o]
T T
c;‘-
—————
e

-y

————

a————

1 |] i ?l

L ' 2))
20 25 30 35 40 45 50
Time (sec)

(d) test # 13

”\F““ i h l WMWMM !

o]
0
-
of
-
o]

Lol
0 0

Force Error (N)

—25 - 1
30} -
_as |]
_a40) s . 1 L L X L \
o 5 10 15 20 25 30 as 40 45 50
Time (sec)
(e) test # 14
20 T T

Force Error (N)

. L L 2 . L L L L
O 5 10 15 20 25 30 35 40 45 50
Time (sec)

(f) test # 18
Figure C.6 Unstable cases of Test Sets for Overall Time History (cont’d)
C-8

Fore Error {N)

—15
_20 s L 2 : L ' L . '
(o] 5 10 15 20 25 30 35 40 45 50
Time (sec)
(g) test # 19
10 T T
sl .
6 k- .
a |
= =2
=]
[o
=3
= —2 il
A~ -
6~ .
8 .
_10 ' N L L 1 L L
o 5 10 15 20 25 30 35 40 45 50
Time (sec)

(h) test # 21
Figure C.7 Unstable cases of Test Sets for Overall Time History (cont’d)

C-9

Foroe Error (N)

Foroe Error (N)

O N » O O O

|
N

—a

O N d O O O

) ' L L : ' L L
(o] 10 15 T 20 25 30 35 40 45 50
Time (sec)
(i) test # 8
T T
i
et]
AT ‘
i ‘
i .
i
|
‘ [
L L '
10 15 20 25 30 35 40 a5 50

Figure C.8 Unstable cases of Test Sets for Overall Time History (cont’d)

Time (sec)

(j) test # 11

C-10

Appendiz D. C-codes for Implementation

The following C-codes are consisted of two parts based on the purpose of
the implementation. imped.c is for the impedance control and force.c, fine.c and
gross.c are for the integration of gross and fine motion control. All of C-codes have

their own reconfigurable files.

D.1 mped.c and tmped.rmod
[% R AR R ARk kKRR R KRR KRR ok Kok KRR R KRR Rk ok

/* */
/* imped.c */
/* */
/* created by Hyunki Cho 11-08-95 */

/% (Republic of Korea, Army) */
/* Air Force Institute of Technology */
/% */
/* modified: x/
/* */
/* $ date $ $ initials $§ $ comments $ */
/x */

/* reviewed by $ Some name here $ $ date $ */
/* */

[F e e */
/* */
/* Control the PLANAR PUMA3DOF Motion and Force (Joint 2,3 */
/¥ and 5) */
/* */
/* State variable table: */

/* INCONST: none ’ */
/% OUTCONST: none */
/% INVAR: F_MEZ - measured force */
/* N_MEZ - measured normal vector */
/% 0_MEZ - measured orient vector */
/% A_MEZ - measured approach vector */
/* P_MEZ - measured position vector */
/* P_REF - desired next position */
/% Q_MEZ - measured current joint */
/* Q"_MEZ - neasured joint velocity */

D-1

/* OUTVAR: Q_REF - reference joint */

/* Q" _REF - reference joint velocity */
/* */
/* Special notes: */
/* This is an Impedance control module using the */
/* Nakamura’s Singular Robust Inverse Kinematic */
/* solution. */
/% */

/* 2k ok 3K ok ok e o S Sk ok ok ek ok ok sk ok sk sk sk sk sk Kok ok Sk ok ok kok ok Sk sk ok ok ok Kok ok skook kst sk stk sk ok ok ok ok ok skok ok ok ok ok ok ok */

/* 3k 3k ok ok sk 3 ok ok K K ok s Ok ok sk ok ok sk ok koK sk >k K ok ok ok ok sk ok ok s ok ok ok ok ok ek ok sk ok s ok ok ke ok ok k ok sk sk sk kok sk ok k */

/* include files */
/% sokokskok kol kool skokok ook sk sl okl sk ok skok stk sk stk sk sk ok ek stk sk ok sk sk kokskokok ok

#include <chimera.h>
#include <sbs.h>
#include <math.h>

/* 33K K ke ok 2k s ok sk sk ok Kk Sk ok ok sk sk ok sk ok ok ok sk sk Sk ok 3k ek sk sk sk sk ok sk ok sk sk Sk skeske sk sk sk sk ok ok sk Sk ok sk sk sk ok ok ok k */

/* external function prototypes */
[% sokskorskokokoskksok otk dokkookk ok ok skoksok sk kol ok ksl ok ook Rk ok kR kKRR kK K

extern void psrInv();
extern void choFwdKin();
extern int pumaConfig();

/* ko o ok e sk Sk sk ook ok ok Sk ok sk skesk sk ok ok sk sk Sk ok ok kok ok s sk sk sk sk sk sk sk ke skeske sk sk sk sk sk sk ok sk ok ok sk sk ok ok sk */

/* module ’Local_t’ definition as required by Chimera */
[kkokodokakokskokskok ok sk sk sk sk skok stolskeskok ok okt sk sk oksfolok ok ok sk stk sk sk ok kokok sk skokokskokok ok /

typedef struct {
svarVar_t *svarNmez, *svarOmez, *svarAmez, *svarPmez,
*¥svarPref;
float *Qref, *Qdref, *Qmez, *Qdmez;
float *Fmez, *Pref, *Nmez, *Omez, *Amez, *Pmez;
float *lastPmez;
float srKgain, f2pgain, f2vgain, herz;
float lastql6], lastqd[6];
float task2Q[61, task2dqf6];
int config;
} impedLocal_t;

D-2

/*
/*
/*

SB

/*
/*
/*

/*
/*
/*

3K 2k 2k sk ok ok o 3k 3k 3k ok sk ok sk sk ok ok sk ok ok ok ok ok ok sk sk ok ok sk ok Sk ok K ok sk ok sk sk Sk ok Sk Ok ok Sk ok e sk ok ok sk ok 3K ok ok ok sk ok ok kK */

module initialization as required by Chimera */
ok sokokskokok kokskokolok okl kakok stk sk sokokokokok sk kolok sk skok ko stk sk ok koo ok otk okokokok -k /

S_MODULE(imped) ;

ok 3k ok ok ok ok ok ok sk Sk Sk ok sk sk sk sk sk ok sk ok ok K Sk sk sk sk ok ok ok ok ok ok sk sk ok ok ok ok 3k koK ok sk sk sk ok okok sk ok ok ok sk sk sk k ok */

functions */
stk ks sk ok ok sk e stk s sk kst ks sk ok el sk ko ks skt ks sk ko ok sk sk kokok ok ok skeokskokok ok

K3k 2k sk sk ok ok ok sk ok ok ok ok e sk ok sk sk sk ok sk ok sk ok 2k sk ok ok Sk ok 2k sk ok ok sk sk sk sk sk ok Sk sk sk Sk Sk sk ke ok ok e ok ok ok ok sl sk ok ok ok */

impedInit Initialize the module. */
sk ok AR AR HOK K AR R kKR ok KoK A R ok ok ok ok ok Kk oo Kok KoK KoKk ok Kok sk kK % [

int impedInit(cinfo, local, stask)

ctf

igInfo_t *cinfo;

impedLocal_t *local;

sb
{

sTask_t *stask;
sbsSvar_t *svar = &stask->svar;

/* Get pointers to state variables. */

local->Fmez = svarTranslateValue(svar->vartable, "F_MEZ",float);
local->Qref svarTranslateValue(svar->vartable, "Q_REF",float);
local->Qdref = svarTranslateValue(svar->vartable, "Q~_REF",float);
local->Qmez = svarTranslateValue(svar->vartable, "Q_MEZ",float);
local->Qdmez = svarTranslateValue(svar->vartable, "Q"_MEZ",float);
local->svarPref = svarTranslate(svar->vartable, "P_REF");
local->svarPmez = svarTranslate(svar->vartable, "P_MEZ");
local->svarNmez = svarTranslate(svar->vartable, "N_MEZ");
local->svarOmez = svarTranslate(svar->vartable, "0_MEZ");
local->svarAmez = svarTranslate(svar->vartable, "A_MEZ");
local->Pref = svarValue(local->svarPref, float);

local->Pmez = svarValue(local->svarPmez, float);

local->Nmez svarValue(local->svarNmez, float);

local->0Omez svarValue(local->svarOmez, float);

local->Amez = svarValue(local->svarAmez, float);

/* One time initialization. */

cfigCompulsory(cinfo, "F2P_GAIN", &local->f2pgain, VT_FLOAT, 1);

D-3

cfigCompulsory(cinfo, "F2V_GAIN", &local->f2vgain, VT_FLOAT, 1);
cfigCompulsory(cinfo, "SR_K_GAIN", &local->srKgain, VT_FLOAT, 1);
cfigCompulsory(cinfo, "HERZ", &local->herz, VT_FLOAT, 1);

return (int) local;

¥

/* ok 3k ok ok ok sk ok ok ok sk ok ok ok sk skesk sk sk ke sk ok sk skl sk sk sk Sk sk sk sk ok sk skook K sk ok ok sk ok sk ok ok ok Sk ok ok ok ok ok skok sk ok ok */

/* impedReinit Re-Initialize the module. */
[% skoskskokokstoksk kool ok ok ko sk ok okl sk ok kR RS RK kR sk oKk ko ook ok /

int impedReinit(local, stask)
impedlLocal _t *local;
sbsTask_t *stask;
{

return I_0K;

}

/* ok ok 3k ok ok >k ok 3k ok sk ok ok ok ok Sk sk sk sk ok s sk sk sk sk sk skl o sk ok sk sk sk ke sk sk ok ok ok sk sk okt ok Sk ok ke ok ok sk sk ok ok ke ck ok */

/* impedOn Start up the module. */
J% oksrokstok koo kR kR R kR sk Kok kR sk sk ok sk R skt ok skl kol stk ok skl skkskokok ok /

int impedOn(local, stask)
impedLocal_t *local;
sbsTask_t *stask;
{
char str_cfgl[16];
int 1i;
float joint[6], noap[12];
sbsSvar_t *svar = &stask->svar;

for (i = 0; 1 < 6; ++1)

{
joint[i] = local->Qmez[i];
local->lastq[i] = joint[il;
local->lastqd[i] = local->Qdmez[i];
local->task2Q[i] = joint[il;
local->task2dQ[i] = local->Qdmez[i];
+

/* Compute initial configuration. */

D-4

local->config = pumaConfig(joint, str_cfg);

/* Compute initial position and normal vector to prevent large */
/* jump in the first cycle. */

choFwdKin(joint, noap);
for (i=0; i<3; i++)

{

local->Nmez[i] = noapl[i];

local->0Omez[i] = noapl[i+3];
local->Amez[i] = noapl[i+6];
local->Pmez[i] = noap[i+9];

local->Pref[i] = noapl[i+9];
local->lastPmez[i] = noap[i+9];

¥

/* Write these values to the state variable table directly. */

svarWrite(local->svarNmez) ;
svarWrite(local->svarOmez);
svarWrite(local->svarimez) ;
svarWrite(local->svarPmez);
svarWrite(local->svarPref);

/* Display inital configuration information. */
printf("PUMA configuration: %s\n", str_cfg);

/* Return from start up. */
return I_OK;

/* ok ok sk ok ok ok ok ok sk ok ok sk sk sk ok sk ok ok sk sk sk ok sk sk sk Sk sk sk ok sk sk sk sk sk ok sk ok sk sk sk ok ok ok ok sk ok ok ok sk ok ok ok sk ok sk ok ok ko */

/* impedCycle Process module information. */
[% Fkokokokskok ok kR ko Rkt ok sk ok skak ko sk sk kK sk ok ok ok ok sk sk kot ook sk ok ok kok ok f

int impedCycle(local, stask)

impedLocal_t *local;
sbsTask_t *stask;

int i;

D-5

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

qlo]
ql1]
ql2]

qd [0]
qdl1]
qd[2]

/* Task

lastpmez[0]
lastpmez[1]

*nmez = local->Nmez, *omez = local->Omez;

*amez = local->Amez, *pmez = local->Pmez;

*pref = local->Pref, *fmez = local->Fmez;

xqref = local->Qref, *qdref = local->Qdref;
*qmez = local->Qmez, *qdmez = local->Qdmez;
*joint = local->lastq, *jointd = local->lastqd;

*task2q = local->task2(, *task2dq = local->task2dQ;
ql3], qdl3], Q[3], Qdl3];

pdes[2], pos[2], lastpmez[2], noapl[12];

pdref[2], pdmez[2], dp[3], ddpl[3];

force[2];

T = local->herz, K = local->srKgain;.

f2p = local->f2pgain, f2v = local->f2vgain;
pmez_f[2], pdmez_f[2];

task2ref, task2dref;

joint[1];
joint[2];
joint[4];

jointd[1];
jointd[2];
jointd[4];

/* Assign joint values to Planar PUMA 3 DOF skkkiokskokickokiokkiikk %/

1 Calculation skskskskskskok sk skokskkskokskokskkokkokskkokokkokskokokkokoskoksdkokokok ok /

/* bring the last Pmez from local variables table and store
/* to lastpmez. */

local->lastPmez[0];
local->lastPmez[2];

/* take the desired position input (pref). */

pos[0] = pmez[0];

. D-6

*/

pdes[0] = pref[0];
pdes[1] = pref([2];
/* take the current position (pos) from local variable table. */

pos[1] = pmez[2];
/* re-store the pos to lastPmez for next step. */

local->lastPmez[0] = pos[0];
local->lastPmez[2] = pos[1];

/* compute the desired velocity using pdes and pmez. (pdref) */

for (i=0; i<2; i++)
pdref[i] = (pdes[i] - pos[il)/T;

/* compute the current velocity using pmez and lastpmez. */
/* (pdmez). */

for (i=0; i<2; i++)
pdmez[i] = (pos[i] - lastpmez[il])/T;

/* transform the contact force to Cartesian coordinate frame. */

nmez[0] *fmez[1]+omez [0] *fmez [0] -amez[0] *fmez[2] ;
nmez[2] *fmez[1]+omez[2]*fmez [0] -amez[2] *fmez[2] ;

forcel[0]
forcel1]

/* compute the position due to the Sensed Feedback Force. */
/* (pmez_f) --> wrist force sensor. */

for (i=0; i<2; i++)
pmez_f[i] = forcel[i]l*f2p;

/* compute the velocity due to the sensed feedback force. */
/* (pdmez_f). */

for (i=0; i<2; i++)
pdmez_f[i] = force[i]*f2v;

/* compute the position / velocity error and store to dp[2] */
/* [/ddp[2]. =/

for (i=0; i<2; i++)
{
dp[i] = pdes[i] - pos[i] - pmez_f[il;
ddp[il = pdref[i] - pdmez[i] - pdmez_f[i];

D-7

/* Task 2 Calculation dkskskskskskskskokskskokkokokskskokkstokkokskokskodkokkokokokskok ok kokk k[

/* bring the task2 referenrce input stored in task2ref / */
/* task2dref. =/

task2ref = sin(task2ql1] + task2q[2] + task2q[4]);
task2dref = sin(task2dq[1] + task2dq[2] + task2dq[4]);

/* compute the error and store to dp[2]/ddp[2] */

dp[2] = task2ref - sin(q[0] + q[1] + q[2]);
ddp[2] = task2dref - sin(qd[0] + qd[1] + qd[21);

/* Compute SR-Inverse kkkikikkikokikkkoksdokkokokkokkodokkodoktokdkokkkdoktork s /

psrInv(Q, dp, q, pos, K);
psrinv(Qd, ddp, qd, pdmez, K);

/* store new joint values (Qref) to the variable joint and */
/* jointd. */

joint[1] = Q[0]; /* They were the 3 DOF PLANAR */
joint[2] = Q[1]; /* Thus, re-assign joint values */
joint[4] = Q[2]; /* to spacial case 6 DOF. */
jointd[1] = Qd[0];

jointd[2] = Qd[1];

jointd[4] = Qd[2];

for (i=0; i<6; i++)
{
qref[i]l = joint[i]; /* Store to local variable tablex/
qdref[i] = jointd[i]; /* for 6 DOF calculation. */
}

/* Compute measured forward kinematics using the result Qref.** */
choFwdKin(joint, noap);

for (i=0; i<3; i++)

D-8

{
local->Nmez[i] = noaplil;
local->Omez[i] = noap[i+3];

local->Amez[i] = noap[i+6];

local->Pmez[i] = noap[i+9];

}
svarWrite(local->svarPmez); /* write the NOAP vector to the */
svarWrite(local->svarNmez) ; /* state variable table to use */
svarWrite(local->svarOmez); /* next step and check the */

svarWrite(local->svarAmez); /% difference to the P_REF. */

return I_OK;

3

/* ok 3k >k ok ok sk ok sk sk sk sk ok sk sk ok ok sk sk ok sk sk ke sk Sk sk sk ok sk sk Sk Sk ok ok ok sk sk sk sk ok ok K Kk sk ok K ok ok ok ok ok >k %k k ok sk ok */

/* impedOff Stop the module. */
[% Fsokkokskokkokokok ook ook sk R skok ok sk kKo sk sk skok ok skok sk skok ook ok sk ok skl ok ko okokk ok /

int impedOff(local, stask)
impedLocal_t *local;
sbsTask_t *stask;
{
kprintf("imped: OFF\n");
return I_0K;

¥

/* 3k ok ok ok e sk sk sk ok st skosk sk sk sk ok sk Sk sk stk dkesk sk sk ok ok ok sk sk sk ok ok o sk ok sk Sk ok sk sk ok 3K ok sk ok K ok ok %k Kok ok %k k */

/* impedKill Clean up after the module. */
[% Fokokskok ook ok sok Kok KRk Rk Rk Rk R Rk Kk kKKK sk Rk Kok Kk koK ok

int impedKill(local, stask)
impedLocal_t *local;
sbsTask_t *stask;

{
kprintf ("imped: FINISHED\n");
return I_0K;

¥

/* ke 3k ok ok ok ok ok sk sk skt sk sk sk sk sk e sk Sk ok ke sk Sk ok Sk sk sk ok ok ok Sk sk Skok sk ok sk sk skok sk sk ok skeok ok ok sk ok ok ok ok ok k kok ok sk k */

/* impedError Attempt automatic error recovery. */
[% soksokokokoR sk skok kool ok skkoskokskok skok ok skokoskokokskok kkok skl skt skokok sk tokokotokokok ok ok skokokok ok ok /

D-9

int impedError(local, stask, mptr, errmsg, errcode)
impedLocal_t *local;

sbsTask_t *stask; '

errModule_t *mptr;

char *errmsg;

int errcode;

{

/* Return after not correcting error. */

return SBS_ERROR;
}

/* 3k 3k 3k 3k 3K Sk ok ok sk ok sk sk ok sk sk Sk sk sk sk sk sk ok ok Sk ok ok ok ok sk sk ok ok sk sk sk ke sk sk Sk ok kok ok s sk ok koK ok ok %k k ok okok sk sk kok */

/* impedClear Clear error state of the module. */
[% KRRk A AR AR KA A KA KKK KRRk KKK Aok ok

int impedClear(local, stask, mptr, errmsg, errcode)
impedLocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

{

/* Return after not clearing error. */

sbsNewError(stask, "Clear not defined, still in error state",
errcode) ;

return SBS_ERROR;
}

/* ok >k 3k ok ok sk ok 2k ok ok e Sk o ok 2k ok e sk ok ok ok 3k ok Sk Sk ok sk Sk sk sk sk Sk Sk sk sk sk sk ok ok ok ke Sk ok s sk ok ok ok ok ok ok ok ok sk ok k kK */

/* impedSet Set module parameters. */
[% kKR ok ok sk kR okok kR sk K sk ok kKR KRSk kR sk ok ok kK sk Kk ok ok Kok Kk koK ook ok ok ok ok

int impedSet(local, stask)
impedLocal_t *local;
sbsTask_t *stask;
{

return I_0K;

¥

D-10

/*
/%
/*

sk sk ok ok ok 3k 3k sk ok ok ok ok ok ok ok ok ok sk ok sk ok sk o ok e sk sk sk sk sk ok ok skl sk Sk sk sk sk ok Sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok */

impedGet Get module parameters. */
ok ok ok ok sk ok ok sk ok sk okok ok kK skok ok sk stk fksokoskok ksl okl skokok stk sk skok skkok kol okkok -k /

int impedGet(local, stask)
impedlLocal_t *local;
sbsTask_t *stask;

{
}

/%
/%
/*
/*

return I_0K;

ke ok ok ok ok ok ok ok ok ok ok ok ok 2k ok sk sk ok 3k ok ok sk ok ok ok sk sk sk s ok sk ke ok ok ok sk ok ok Sk ke sk sk sk skesk sk ke ok ek ok ok ok skok sk ok ok */

impedSync For modules which synchronize to */

something other than the clock. */
okt koR ok sk ok ook ok Rk KK sk sk koK kK ok kol sk sk kR kR kR ok

int impedSync(local, stask)
impedLocal_t *local;
sbsTask_t *stask;

{
}

return I_0OK;

D-11

#

imped.rmod

#

Reconfigurable module file for the impedance control of
the puma 3 dof planar robot.

#

MODULE imped

DESC controls puma in 6 DOF

INCONST NDOF DH

OUTCONST none

INVAR F_MEZ P_REF N_MEZ O_MEZ A_MEZ P_MEZ Q_MEZ Q~_MEZ
OUTVAR Q_REF Q" _REF

TASKTYPE periodic

FREQ 100

LOCAL

#F2P_GAIN 0.00041
#F2V_GAIN 0.041
F2P_GAIN 0.00015
F2V_GAIN 0.0015
SR_K_GAIN 0.01
HERZ 100

EOF

D-12

D.2 Function files of imped.c

/* ok 3k ok ok e 3 ok ok 3k ok ok ok Sk ok K ok koK ok ok 3k sk ok ok ok Sk ok ok ok sk ok Sk ok sk sk ok ok ok sk sk ok Sk ok ok ok ok ok >k ok ok sk ok ok ok ok ok %k ok ok %k */

/*
/* psri
/*
/*
/*
/*
/*
/*

nvkin.c

modified by

Hyunki Cho

11-10-95

refer to Nakamura’s singular robust

inverse

[k e e

/*

/* Computes SR-inverse kinematics given the error between
/* current position and desired position for PUMA3DOF PLANAR
/* case (using joint 2,3 and 5).

/*

/* 3k ok ok ok ok ke sk ok sk sk sk ok Sk ok S ok sk sk ok sk ok ok ok K K ok ok sk sk Sk 3k skl ok ok ok e ok sk sk ok ke Sk ok ok 3k ok ok ok sk ok vk ok ok ok ok sk kok

/* 3K 3k 3k 2k ok o sl ok sk sk ok 2k ok >k Sk skook sk ok ok sk sk sk sk ok ok ok ok ok sk sk sk Sk sk sk ok ok ok Kk sk sk sk sk sk ok sk sk ok ok ok skok ok %k ok ok sk ok kok

/* incl

ude files

/* 3K 2K 3 ok ok ok sk ok sk ok sk o sk sk ok ok skeok sk sk sk kok ok ok ok ok vk ook ok sk sk sk sk sk sk ok s Sk ke ok sk skokok ok ok ok ok ok ok sk ok sk sk ok kok skok

#include <chimera.h>

#tinclude <sb

s.h>

#include <math.h>
#include "puma.h"

/* ok ok 2k ok ok o s e sk sk ok ko ok ok ok ok sk sk sk ok Sk ok sk K ok ok ok ok sk ok ok ok Sk K ok ok ok ok sk sk ok ok sk ok sk ok ok Sk ok K koK ok ok ok ok ko ok k

/* macr

o definitions

/* % o K ok ok e sk sk sk sk ok ok ok ok Sk ok ok stk sk sk dk koK ok ok ok K Sk ok ok sk ok Sk ok sk ok sk sk o ok ok ok ok ok sk 3k 3k ok Sk ok ok koK ok ok sk ok sk ok ok k

#define J2LO
#tdefine J2HI
#tdefine J3LO
#define J3HI
#define J5LO
#define JBHI
#define a2

#define a3 -
#define d4

#tdefine d6

=-3.926990
0.785398
-0.785398
3.926990
-1.745329
1.745329

/*
/*
/*
/%
/*
/*

0.4318 /% length of link 2 */

0.02032

0.43307 /* length of 1link 4 */
0.05588 /* length of tool */

D-13

-225 degrees in rads
45 degrees in rads
-45 degrees in rads
225 degrees in rads
-100 degrees in rads
100 degrees in rads

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

/* sk sk sk sk sk ok ok sk ok sk ok ok 3 oKk ok ok sk ok ok ok ok ok sk ok ok ok stk ok sk sk skt sk skeske ok sk ko sk sk sk sk sk ok ok ok ok ok ok ok okok sk ok ok ok ok */

/* psrinv Compute singular robust inverse kinematics.*/
[% rkokkkkokskokok ks ok skok sk kK Rk kR sk ok ok ok skok s koksioksk okt stk kol ook okokok ok kokokokok k% /

void psrlnv(q,dp,qmez,pmez,k)

float dp[3], pmez[2];
float ql[3], gmez[3];
float k;
{

int i,3;

float pjac(), inverse();
float tjac(), multi();

float p[2], dq[3];
float J[31[3], Jt[31[3], Jm[3]1[3], Jm_inv[31[3], J_sri[3]1[3];

for (i=0; i<2; i++)
pli]l = pmez[i] + dpl[il;

/* check limit of workspace whether it is singular position or not. */
/* if singular position, then stay at the current position, */
/* if not singular position, then proceed SR-Inverse. */

if (sqrt(plol*p[0]+p[11*p[1]) >= sqrt((a2+d4+d6)*(a2+d4+d6)+a3*a3))
{ ,
for (i = 0; i < 3; i++)
qlil=qgmez[i];
}

else

{

/* compute singular robust inverse. */

pjac(J, qmez); /* get jacobian matrix. */
tjac(Jt, J); /* compute transpose of jacobian. */

multi(Jm, Jt,J); /* multiply jacobian and transpose J.*/

for (i = 0; i < 3; i++)
IJm[i][i] = Im[iJ[i] + k; /* add k term in diagonal of Jm. */

inverse(Jm_inv, Jm); /* compute inverse of Jm added by k. */
multi(J_sri, Jm_inv, Jt); /* compute J SR-inverse. */

/* compute joint increments. */

D-14

dqlo] = J_sri[0][0]*dp[0] + J_sri[0][11xdpl[1] + J_sri[0][2]*dp[2];
dql1] = J_sri[1]1[0]1*dp[0] + J_sri[1][1]*dp[1] + J_sri[1][2]*dp[2];
dql2] = J_sril[2][0]*dp[0] + J_sril[2][1]*dp[1] + J_sril[2] [2]*dp[2];

/* add the joint increment to qmez. */

for (i = 0; i < 3; i++)
q[i] = gmez[i] + dql[il;

/* check for the defined joint limit. */

if (q[0] < J2L0) ql0] = J2LD;
if (q[0] > J2HI) q[0] = J2HI;
if (q[1] < J3L0) q[1] = J3LO;
if (ql1] > J3HI) ql[1] = J3HI;
if (q[2] < J5LO) ql[2] = J5LO;
if (q[2] > J5HI) q[2] = J5HI;

} /% end of if-else loop. */
} /* end of singular robust inverse function. */

/* 3k >k 3k 3 o sk ok 3k ok sk Sk Sk ok ok ok sk sk sk Sk ok sk ok ok Sk ok ok sk sk sk ke ok ok ok ok ok sk sk sk ok 3k sk ook ok ke ok skeok ok sk sk sk Rk ok ok ok */

/* Compute PUMA3DOF PLANAR case Jacobian */
J% kR ko kokkok sk kR ok sk skok sk ok koK Kok sk ok ok ok s Kok ok ok ki sk ok sk sk sk sk ok ok ok ok ok ok ok /
float pjac(j,angle)
float anglel[3];
float j[3]1[3];
{
float c2, c23, c235, s2, s23, s235;

s2 = sin(angle[0]); c2 = cos(angle[0]);

s23 = sin(angle[0]+angle[1]); <23 = cos(angle[0]+angle[1]);
5235 = sin(angle[0]+angle[1]+angle[2]);

c235 = cos(anglel[0]+angle[1]+angle[2]);

jL0I[0] = -a2%s2 - a3*s23 + d4*c23 + d6xc235;
jIOJ[1] = -a3%s23 + d4*c23 + d6*c235;

jlol[2] = d6%c235;

jI11[0] = -a2%c2 - a3%c23 - d4*s23 - d6%s235;

D-15

j[11[1] = -a3%c23 - d4*s23 - d6*s235;
j[11[2] = -d6%s235;
j[21[0] = c235; j[21[1]l= c235; j[21[2]= c235;

} /* end of PUMA3DOF PLANAR jacobian function. */

/* sk 3k e sk e ok ok 3k Sk sk ok ok ok Sk ok ok ok sk ok sk sk sk ok sk ok sk ok ok sk sk sk skl ek ke sk sk e sk Sk sk sk sk sk sk sk ok ok ok sk ok ok ok ok ok k ok */

/* Compute Transpose matrix of PUMA3DOF PLANAR case Jacobian */
/% sokskksk kR ks koK kR skoRok ko sksokskoksk ok skl stk tok okl oloksk ok ok ok ok sk ok ok kok ok /

float tjac(jt,jac)
float jt[3]1[3];
float jac[3][3];

{

int i,j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

if (i==3)
jtlil[il=jacl[i] [i];
else

jtljllil=jac[il[j]1;
} /* end of matrix transpose function. */

/* ke ok ok sk e ok vk ok ok ke ok ok ok s sk ok ok sk ok sk sk sk sk ok sk sk sk sk ke ok sk ok sk sk ke ok ke sk sk sk sk sk sk sk ok sk ok ko ok ok ke ok Sk sk skok */

/* Compute Inverse matrix Using Determinant and Adjoint matrix */
[soksoksok ko sk koK sk ok skok sk kok sk skok sk sk skk ok skokok ok ok sk ok sk sk kokokok okl sk ok skok sk ok kokkkok ok /

float inverse(inv_A, A)
float inv_A[3][3];
float A[3][3];

{

float det, a, b, ¢, d, e, £, g, h, m;

a = A[0J[0]; b= A[01[1]; ¢ = Al[0][2];
d = A[1][0]; e = A[11[1]; £ = A[1]1[2];
g = A[2]1[0]; h = A[21[1]; m = A[2][2];

det = a*e¥m + bxf*g + ckxd*h - ckexg - bkd*m - a*xf*h;

D-16

inv_A[0][0] = (e*m-f*h)/det;
inv_A[1]1[0] = (f*g-d*m)/det;
inv_A[2] [0] = (d*h-exg)/det;
inv_A[0][1] = (c*h-b*m)/det;
inv_A[1]1[1] = (a*m-c*g)/det;
inv_A[2][1] = (b*g-axh)/det;
inv_A[0] [2] = (b*f-c*e)/det;
inv_A[1][2] = (c*d-a*f)/det;
inv_A[2][2] = (a*e-b*d)/det;

} /* end of matrix inversion function. */

/* ok ok ok sk ok ok 3k ok sk ok sk ok S ok 2k Sk sk s sk sk sk ok sk ok sk sk sk ok sk ok sk ok sk sk sk e sk sk ok sk ok ok sk sk sk sk sk sk sk ok ok sk sk sk ok sk sk */

/* Matrix multiplication for 3 by 3 */
[KA AR AAAAAA AR A A A AR A KA A A KA A AAAAF KA KKK AK ok [

float multi(D,B,C)
float D[3][3], BI31[3], c[3]1[3];
{

int i,j,k;
float temp;

DLo][0] = 0; DLO][1] = 0; D[0]1[2] = 0;
D[1][0] = 0; D[11[1] = 0; D[1][2] = 0;
D[2][0] = 0; D[2][1] = 0; D[2][2] =

1
o

for (i = 0; 1 < 3; i++)
for (j = 0; j < 3; j++)
for (k = 0; k < 3; k++)
{
temp=B[i] [k]1*C[k][j]1;
D[i] [j1=D[i] [j]l+temp;
}

} /* end of matrix multiplication function. */

D-17

/* 3K 3k ok ok 3k e sk sk ok sk sk Sk ok ok ke sk sk Sk sk ok sk ok K ok K oK ok e ok sk sk ok sk sk ok kesk sk skok sk sk ok ok ok >k ok sk sk sk kok ok ok sk sk ko */

/* */
/* chofwdkin.c */
/* */
/* created by Wayne F. Carriker 11-24-92 */
/* (taken from code obtained from Fred Seiler) */
/* */
/* modified by Hyunki Cho 12-16-95 */
/* Air Force Institute of Technologe */
/% */
/* modified for Chimera 3.0 release */
/* changed all double precision to float */
/* */
J* e */
/* */
/* Compute forward kinematics given current joint positions */
/% */

/* e 3k ok 3k e sfe sk ke sk ok ok ok ke 2k ok sk sk Sk sk sk ok Sk ok 3k 3k ok ok ok ok koK sk ok ok ok K sk sk skook sk ok sk ok ok ko sk sk ok ok ok ok ok sk ok ko */

/* ok ok ok ok ok sk sk ok sk sk Sk ok sk K ok sk sk sk sk sk ok ok ok K K sk sk ok sk ok sk ok sk sk kst sk st sk sk sk ok ok sk kok sk ok sk sk ok sk ok sk sk ko */

/* include files */
[skskakskokok sk ok ok ok ko ko sk ks K skok ok stk ok sk ok kok ok ok ok sk sk kokkkok ok ok ok sk

#include <chimera.h>
#include <sbs.h>
#include <math.h>
#include "puma.h"

/* >k 3k ok K sk ok sk sk sk sk sk ok ok ok ke ok ok sk sk sk ok ok K sk ok ok sk sk sk sk ok sk ok sk sk ke sk sk sk skeok sk sk ok kg sk ke sk sk sk sk ok sk sk skok */

/* choFwdKin Compute forward kinematics. */
[otokskokokokokokokokokokskok sk ok sk skok ok sk skokok skok ok kokskoskskok ek skok skskoskkoksk skokokskok kokokokksk ok /

void choFwdKin(jtang, noap)
float jtangl[6];
float noapl[12];
{
float a2, a3, d3, d4, d6;
float cl, c2, c23, c3, c4, cb, c6, s1, s2, s23, s3, s4, sb, s6;

D-18

a2 = PUMAG60_A2;
a3 = PUMAG560_A3;
d3 = PUMA560_D3;
d4 = PUMA560_D4;
d6 = PUMA560_D6;

s1 = sin(jtang[0]); cl = cos(jtangl[0]);
s2 = sin(jtang[1]); c2 = cos(jtang[1]);
s3 = sin(jtang[2]); c3 = cos(jtangl[2]);
s4 = sin(jtang[31); c4 = cos(jtangl3]);
s5 = sin(jtang[4]); c5 = cos(jtangl4]);
s6 = sin(jtang[5]); c6 = cos(jtangl5]1);

523 = s82%c3 + c2*s83; c23 = c2%c3 - s2%s3;

/* The following solution was obtained using macsyma. */
/* n vector */

noap[0] = (-cl * c23 *s4 - sl * c4) * s6 +

((cl * c23 * c4 - s1 * s4) * cb - cl * 523 * s5) * c6;
noap[1] = (cl * c4 - s1 * c23 * s4) * s6 +

((cl * s4 + s1 * c23 * c4) * cb - s1 * s23 * s5) * c6;
noap[2] = s23 * 54 * 56 +(-c23 * s5 - 523 * c4 * cb) * c6;

/* o vector %/

noap[3] = (cl * 523 * s5 + (s1 * s4 - c1 * c23 * c4) * cb) * s6 +
(-c1 * c23 * s4 - s1 * c4) * c6;

noapl[4] = (s1 * 823 * s5 + (-cl * s4 - sl * c23 * c4) * c5) * s6 +
(cl * c4 - s1 * c23 * s4) * c6;

noap[5] = (c23 * s5 + 523 * c4 * c5) * s6 + 523 * s4 * c6;

/* a vector */

noap[6] = (cl * c23 * c4 - sl * s4) * sb + cl * 523 * cb;
noap[7] = (cl * s4 + s1 * c23 * c4) * sb + sl * 523 * c5;
noap[8] = c23 * c5 - 823 * c4 * s5;

D-19

/* p vector */

noap[9] = (noapl[6]) * d6 + c1 * 23 * d4 - sl * d3 +

cl * c23 * a3 + c1
noap[10] = (noap[7])
sl * c23 * a3 + sl
noap[11] = (noap[8])

return;

*
*
*
*

c2 ¥ a2;

dé + sl * s23 * d4 + c1 * d3 +

c2 ¥ a2;

dé + ¢c23 * d4 - s23 * a3 - s2 * a2;

D-20

D.3 force.c and force.rmod
[Fokokskoksok ok dok sk ksk ok ok okk ok ok ks kR ko kR sk ok ok ok ok sk R KRk ok ok kR Kok % /

/*
/%
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/*
/%
/*
/%
/*
/%
/%
/%
/%
/*
/%
/*
/%
/*
/*
/*

/*
/*
/*

force.c
created by Hyunki Cho 02-23-96 */
(Republic of Korea, Army)
This module specify the force control on fifth link
State variable table:
INCONST: none
QUTCONST: none
INVAR: F_MEZ - measured force

Q_MEZ - measured joint values
Q_TEMP2 - temporary reference
joint 2
Q_TEMP3 - temporary reference
joint 3
OUTVAR: Q_REF - refernce joint values

Special notes:
This module is to compute the joint 5 increment
due to the force error between the desired and
measured forces.

Kk ok ok ok sk sk sk sk ok sk ke sk 3k sk ok sk ok s ok ok sk koK 3k K ok sk sk ok ok >k 3k sk ok ok sk Sk sk sk sk ok sk ook Sk 3k k Kok ok ok sk ok sk ok sk sk ok

3k ok ok 2k sk ok ok ok Kok sk ok ok vk ok koK ok ok K sk sk ok Sk Sk ok Sk ok o ok sk sk skok Kok sk Sk skl sk sk skookeok Sk Sk k Kok ok ok 3k sk sk ok sk ok k

include files */
sk sk sk sk sk ok ok ok sk e ok ok sk sk ok ok sk s o sk sk ok sk ok o ok ok sk ok ok ok o s o ok sk sk s ok kK ok ok sk o ok ok K ok sk ok o o oK

#include <chimera.h>
#include <sbs.h>
#include <math.h>

/*
/%

stk stk ok sk sk ok ksl s s e ke ek skt sk kofeskskoksk st sk ok ke skokskskok sk sk sk s ok ksk sk ko sk ok ok sk kok
module ’Local_t’ definition as required by Chimera */

D-21

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

/* >k 3k ok ok 2k sk ok ok sk ok ok ok ok ok kol sk ok >k sk sk ok Sk ok ok ok ok Sk Ok sk 3k ok ok Sk ok ok ko ok K ok ke ok Sk ok >k ok sk ok Kk ok ok ok ok ok ok ok %k ok */

typedef
float
float
float
float
float
float

struct {

*Qtemp2, *Qtemp3;
*Fref;

*Fmez;

*Qmez, *Qref;
f2pgain, tool;
Deadband;

} forceLocal_t;

/* 3k sk ok ok sk ok sk ok ok ok >k ok ok Kok ok sk sk sk sk ok ok K ok ok ok ok kosk sk ok Sk sk ok Kok ok ki sk ok sk sk ok sk kok ok ok ok skok ok sk ok ok ko */

/* module initialization as required by Chimera */
[% KR kKRR ok K ok ok Kook oK K ok sk ok koK ok KRR ok ok Kok K ok ok Kk sk okok koK ok ok

SBS_MODULE(force) ;

/* 3k ok ok 3k 2k 3k 3k ok 3k ok ok sk ok ok ok sk sk ok 2k sk ok sk ok ok ok ok sk sk ok ok sk ok >k ok ok sk ok ok sk sk sk ok sk skosk kool kol ok skek sk kok Xk ko */

/* forceIlnit Initialize the module. */
[k okskskokok ok stk sk ok k sk skok o kol sk ok sk ok sk o o stk sk ok sk sk sk stk kskok skl sk sk ko kkok sk kok ok /

int forceInit(cinfo, local, stask)
cfiginfo_t *cinfo;

forceLocal_t *local;

sbsTask_t *stask;

{

sbsSvar_t *svar = &stask->svar;

/* Get pointers to state variables. */

local~>Fmez = svarTranslateValue(svar->vartable, "F_MEZ",float);
local->Qmez = svarTranslateValue(svar->vartable, "Q_MEZ",float);
local->Qref = svarTranslateValue(svar->vartable, "Q_REF",float);

local->Qtemp2 = svarTranslateValue(svar->vartable, "Q_TEMP2",float);

local-

>Qtemp3 = svarTranslateValue(svar->vartable, "Q_TEMP3",float);

/* One time initialization. */

cfigCompulsory(cinfo, "F_REF", local->Fref, VT_FLOAT, 3);
cfigCompulsory(cinfo, "F2P_GAIN", &local->f2pgain, VT_FLOAT, 1);
cfigCompulsory(cinfo, "TOOL", &local->tool, VT_FLOAT, 1);

D-22

cfigCompulsory(cinfo, "DEADBAND", &local->Deadband, VT_FLOAT, 1);

return (int) local;

}

/* 33k ok ok K e sk ok ok s sk skl sk ok ok 2k skesk sk sk sk sk sk ok ok 3k K sk ok sk sk 3k ok ke S Sk skoak ks ok ok sk sk Kok ok ok ok dkok ok ok sk sk ok */

/* forceReinit Re-Initialize the module. */
[k skoksrokkskok ook ook ok ok ok stok tokokokok sk ok sk okskoskskok ko ok stk stk ok ok sokskskok ok okkokokok ok /

int forceReinit(local, stask)
forcelLocal_t *local;
sbsTask_t *stask;
{

return I_O0K;

¥

/* 3k ok ok ok K ke ok S sk s ke ok ok e sk ok A sk sk sk ok ko ok ke ok sk ok sk Sk ok sk Kok sk sk ok Sk Sk ok sk sk sk ok ok sk ok ok ok ok ok ok sk sk sk kok */

/* forceOn Start up the module. */
[% R AR AR A AR AR AR ok KA ARk R Kok ok ok sk kR K ok KRk K kok % /

int forceOn(local, stask)
forcelLocal_t *local;
sbsTask_t *stask;
{

int 1i;

float *fdes = local->Fref;

printf("Explicite Force Control: ON\n");

printf ("Desired Contact Force: Fx = f Fy = }f Fz = Jf\a",
fdes[0], fdes[1], fdes[2]);

return I_0OK;

by

/* 3k 3k ok ok ok ok ok ke e sk ok ok ke sk ok >k 2keok ok sk sk ko ok Sk ok ok ok sk skook ok ok ok Sk sk sk ok ko ok sk sk sk sk sk sk ok ok ok ok ok sk ok ok sk sk */

/* forceCycle Process module information. */
[srokskokskokokskolok sokokokok sk ook ok kol skl ok stok kol skkastok kool ok skokskskokokskok kol ok ok ok sk okokok ok /

int forceCycle(local, stask)
forcelocal_t *local;
sbsTask_t *stask;

{

int 1i;

D-23

float *fref local->Fref;

float *fmez local->Fmez;

float *qgmez = local->Qmez, *qref = local->Qref;
float *qtemp2 = local->Qtemp2;

float *qtemp3 = local->Qtemp3;

float force;

float joint, dq;

float static dé6 = 0.05588;

float pos_f;

float deadband = local->Deadband;

/* assign current Qmez[4] to joint. */

joint = qmez[4];

/* determine the force error. */

force = fmez[1] - frefl1];

/* computé the last link movement due to the force error.
/* using the force to position gain, the displacement of
/* link 5 can be obtained easily. */

pos_f = force*local->f2pgain;

/* compute fifth joint increment. */

dq = asin(pos_f/(d6 + local->tool));

*/
*/

/* add dq to joint 5 to provide appropriate motor torque of */

/* joint 5. */

joint = joint + dq;

/* check the joint limit. in this case, the displacement of */

/* joint 5 is restricted intentionally to prevent lossing
/* contact or unallowable motion of link 5. */

if (joint < -deadband) joint = -deadband;
if (joint > deadband) joint = deadband;

/* copy joint values to Qtemp. */

D-24

*/

gref[1] = qtemp2[0];
qref[2] = qtemp3[0];
qref[4] = joint;

return I_0K;

/* 3 K ok ok k ok 3k sk ok ok K ok ok ok ok sk sk sk ok K ok ok ok Sk ok koo sk ok ok ok ok k ok sk ok ok sk sk s s ok >k R ok ok sk ok kok ok sk sk ok ok ok ok */

/* forceOff Stop the module. */
[% KRRk kR ok Kok K ok KA K ok kK ok Kok Ko Kk ok ok ok K ks ok ok ok oKk KRk Kk Kk k ok k

int forceOff(local, stask)
forcelocal_t *local;
sbsTask_t *stask;
{
kprintf ("force: OFF\n");
return I_0K;

}

/* 3Kk ok ok ok sk sk ok sk ok sk s ok sk Sk Sk sk sk sk sk sk ok ok sk sk ok sk ok sk sk sk sk sk ok ok ok sk sk ok Sk sk ke sk ke sk o sk sk skok ok ok sk sk sk sk sk skok */

/* forceKill Clean up after the module. */
[xskskskokrokskokokokokokskok ok skokokokokokok sk kol sk kkotol ook ok kskokskokokok sk stk ok kekskskokkokok ok f

int forceKill(local, stask)
forcelLocal_t *local;
sbsTask_t *stask;
{
kprintf("force: FINISHED\n");
return I_0OK;

}

/* 3k ok ok ok ok ok sk ok sk ok ok ok ok Sk ok ok ok sk sk sk sk sk ok ok Sk Sk ok >k sk sk sk sk sk sk ok ok ok sk sk R e s sk sk sk ke ok sk sk skok ko sk sk sk ok sk sk sk */

/* forceError Attempt automatic error recovery. */
[kkckokskskskokskokok sk ko ok skokokoksk sk ok stk skok s kok skoskokokokok ok skokskok kst kokok skook ok ksl ok ok ok %k /

int forceError(local, stask, mptr, errmsg, errcode)
forcelocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

D-25

{

/* Return after not correcting error. */

return SBS_ERROR;
}

/* S 3k ok 3k ok sk sk ok sk sk ke sk ok sk ok sk ok ok sk sheok sk ok ok sk sk ok sk sk e sk s ok sk sk sk sk sk kst sk sk ok Sk ok 3k sk ok ko ok skok sk ok ok ok ok */

/* forceClear Clear error state of the module. */
[% sekskokskokskokok ko skokkokokok iRk ok Rk KRR R Rk ok Rk Rk kR ko sokoksokskok sk ok ok /

int forceClear(local, stask, mptr, errmsg, errcode)
forcelocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errccde;

{
/* Return after not clearing error. */
sbsNewError(stask, "Clear not defined, still in error state",
errcode) ;
return SBS_ERROR;
}

/* s sk 3k ok 3k ok sk >k ok 3k ok sk ok ok >k ok sk ok ok ok ok sk sk sk sk sk sk sk ok sk e o sk sk sk ok sk sk sk sk s ok e Sk sk sk ok ok ke ok ok ok ok sk ok ok ok ok ok */

/* forceSet Set module parameters. */
[% koksrokskokokok ook tokokokok okl ok ok sk kol kR skok s skoRk Rk skok ok sk sk ok sk sk kskok sk ook ok

int forceSet(local, stask)
forcel.ocal_t *local;
sbsTask_t *stask;

{

return I_0K;

¥

/* ok 3k ok ok 3k 3k ok ok ok ok >k >k ok ok sk ok ok ok ok ok S sk sk sk sk sk sk sk sk ke sk sk skesk sk sk ok skook ok ok sk ke sk ok ok ok ke ok ok sk ok ke ok ok ok ok ok */

/* forceGet Get module parameters. */
[% Fokskokok ok ook kR KRR R sk skoR s Rk sk sk sk ks ksl Rtk stk okl skl skokok ok /

int forceGet(local, stask)
forcelLocal_t *local;
sbsTask_t *stask;

D-26

{

return I_0OK;

}

[% wkskokskskskosk kR oskok Rk ok kR skok o kR ok ok ok sk ook ko ko sk ok kR ok Kok sk koK ok ok /
/* forceSync For modules which synchronize to */

/* something other than the clock. */
[AR A A KA AAAAA AR KA AR AAA A A KK AA KA A A AFAKAA KKK KK K [

int forceSync(local, stask)
forcelLocal_t *local;
sbsTask_t *stask;
{

return I_OK;

}

D-27

#
force.rmod

#

Reconfigurable module file for the explicite force
control of the puma 3 DOF planar robot at last link.
#

MODULE force

DESC controls puma in 3 DOF planar
INCONST none

OUTCONST none

INVAR F_MEZ Q_MEZ Q_TEMP2 Q_TEMP3

OUTVAR Q_REF

TASKTYPE periodic

FREQ 500

LOCAL

F_REF 0 6 0

F2P_GAIN -0.001

TOOL 0.1905
DEADBAND 0.1745

EQF

D-28

D.4 fine.c and fine.rmod

[serskokokokokskkskoktokokokoksk sk ok sk ko skok stk s kool ok koo sk ok skt ek sk ok skskok ok sk ok ksl ke s kok
/*

/* fine.c

/*

/* created by Hyunki Cho 03-08-96

/* Air Force Institute of Technology

/*

K e
/*

/* State variable table:

/* INCONST: none

/* OUTCONST: none

/* INVAR: Q_MEZ - measured current joint
/* OUTVAR: Q_TEMP3 - temporary reference
/* joint 3

/*

/* Special Note:

/* This module is to compute the joint 3 increment
/* to make the joint 5 centering action in its

/* center of joint range. The controller takes the
/* difference of position between joint 5 current
/* position and its centering position.

/*

/* 2k 3k ok ok ke ok ok ok ok sk ok ok Sk koK sk ek ok sk sk sk sk sk ok ok ok kok sk ok ok sk sk sk koK e ok sk skok sk sk sk ook skok sk kok sk ok ok %k kok

/* ok 3K ok K ok o e Sk S Sk ok ok ok Sk Sk ok ok sk ok ke Sk ok ok ok ok ok 3k sk sk ok sk 3k Sk ok ok ok kK ok s sk sk skeok ok ok Kok ok ok sk ok ok ok sk ok ok kok

/* include files */
[Akskokok ook skok sk ok sk ok sk ok ok stk o stk sk ek sk o ok ko sk sk ok sk sk ko ok ok sk ke sk ek ok sk ok o ok

#include <chimera.h>
#include <sbs.h>
#include <math.h>

/* 2k 2k ok sk ok ok ek sk ok sk sk ok ok sk sk skook sk ok ok ok ok ok ke ok sk ke sk ki ok ok 3k ok Ok 2k Sk sk sk ok Sk ok ok 3k 3k ok ok ok ok sk Sk ok sk ok ok ok ok

/* module ’Local_t’ definition as required by Chimera */
[sroksokokokokskokokkok sk skokkolok skskolskok kst skokokoslo sk stokoskokok skksk sk skoleok sk ko o sk skok ok skok ok ok

typedef struct {
float *Qtemp3;
float *Qmez;
float Tool;

D-29

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

float Dg3_limit;

} finelocal_t;

/* sk 3k 3k ok >k ok ok ok ok ok ok sk ok ok ok ok ok ok s ok sk sk sk ok sk ok sk sk sk sk ok e sk ok sk ko sk ok ok sk sk ke ok sk sk sk ok ok sk ok sk ok ok ok ke ok */

/* module initialization as required by Chimera */
[skokokokskokok sk skl sk soksk ok skok sk sk sk sk kkok ok sk kot ok skoksko ok ok ko sk stk skkolololokkok ook kokok ok /

SBS_MODULE(fine);

/* sk 3K sk ok sk ok ok >k ok ok sk ok ok ok ok 3k ok ok ok o ke sk sk ok sk ok ok ok ke ok sk ok sk ok sk sk sk sk sk ok ok ok ok sk sk ok sk skeok ok ok ok ok ok sk ok ok ok sk ok */

/* fineInit Initialize the module. */
[skokorokskokokokokok ok sk ok kokskok ok ok sk ok sk ko ok skl sk ok sk ok skok sk kR ok kol solok kool okok ok /

int fineInit(cinfo, local, stask)
cfigInfo_t *cinfo;

finelocal_t *local;

sbsTask_t *stask;

sbsSvar_t *svar = &stask->svar;
/* Get pointers to state variables. */

local->Qtemp3 = svarTranslateValue(svar->vartable, "Q_TEMP3",float);
local->Qmez = svarTranslateValue(svar->vartable, "Q_MEZ",float);

/* One time initialization. */

cfigCompulsory(cinfo, "TOOL", &local->Tool, VI_FLOAT, 1);
cfigCompulsory(cinfo, "DQ3_LIMIT", &local->Dq3_limit, VT_FLOAT, 1);

return (int) local;

/* sk ok ok ok ok sk ok sk sk ok s sk sk skesk ok o sk sk ok Sk sk ok sk sk ke sk ok sk sk sk sk sk ok sk sk sk ok ok sk ok ok sk sk sk okook ok ok ok ok ok ok ok sk ok okeok */

/* fineReinit Re-Initialize the module. */
[% sokokokokokdokodok ok sk ok Kok ok sk kK ok kR KR sk kK ok K sk sk sk kK sk KRk ok koK ok ok ok /

int fineReinit(local, stask)
finelocal_t *local;
sbsTask_t *stask;

D-30

return I_0K;

}

/* 3k 3k sk ok sk ok ok ok Sk ok ok ok sk stk ok Sk sk ok ok ok k sk sk ok ok ok K ok ok Sk ok ok ek ke ok ok Sk ok ok ok sk ok ok sk sk ok ok ok ok sk kok sk ok sk ok k */

/* fineOn Start up the module. */
[F FEEARA A KA AAAAAAAA KA KA AR K FAA KA AR A A AR A A KA A A KA KA AF KA K [

int fineOn(local, stask)

finelocal_t *local;

sbsTask_t *stask;

{
kprintf("Last joint Actuator centered algorithm : On\n");
return I_0K;

3

/* k2 3k sk ok sk ok ok ok sk ok ok ok ok ok 3k Sk Sk ok ok koK skook ok ok ok >k ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ke ok Sk ok %k skok ok ok sk sk ok k */

/* fineCycle Process module information. */
[sksokskorokok ko skokok ook kokok ksl sokok ok ki sk sl skokioksk ok skokstokok ok ok skok okl ok kokok ok ok /

int fineCycle(local, stask)
finelocal_t *local;
sbsTask_t *stask;
{
int i;
float *qtemp3 = local->Qtemp3;
float *qmez = local->Qmez;
float g3, 95, dq;
float static d4 = 0.43307;
float static d6 = 0.05588;
float tool = local->Tool;
float dq_limit = local->Dq3_limit;

/* copy current joints values. */

g3 = gmez[2];
q5 = qmez[4];
dq = asin(sin(q5)*(d6 + tool)/(d6+tool+d4));

/* restrict the joint displacement at one sample period */
/* to prevent unallowable motion of link 3 or make sure */
/* to maintain contact with object. */

D-31

if (dq < -dq_limit) dq = -dq_limit;
if (dq > dq_limit) dq = dq_limit;

/* add to current joint 3 value to provide appropriate */
/* joint 3 motor torque. */

g3 = q3 + dqg;
/* check the limit of joint 3 and joint 5. */

if (93 < -0.785398) g3 = -0.785398;
if (g3 > 3.926990) q3 = 3.926990;

/* copy joint 3 value to Qtemp3 as a temporary value. */
qtemp3[0] = q3;

return I_0OK;

}

/* K3k ok ok 2k 3k ok 2k sk 3k ok ok ok ok Sk ok s ok ok sk sk sk ok Sk ke ok ok ok sk sk ok Sk dfe ok ok ok e sk 2k sk sk sk ok ok sk ok e ok ke sk ok sk ok sk Rk sk k */

/* fineOff Stop the module. */
[% AR A AR KKK A KA A A A KA KA A A F A AR A KK AA KA AR KK A FA KKK K [

int fineOff(local, stask)
finelLocal_t *local;
sbsTask_t *stask;

{
kprintf("fine: OFF\n");
return I_0K;

3

/* 3k ok ok ok >k ok 3k sk sk ok Sk ok 2k Sk ok ok Sk sk sk sk ok ok Sk ok ok Sk ok ok Sk ok sk sk ok ok sk ke ok Sk ok ok Sk sk sk Sk sk sk ok ok sk ok sk ok ok ok ok 2k sk ok */

/* fineKill Clean up after the module. */
[kskokoksk ok sk ok Rk ok ok sk sk Kok KRR sk sk ok KRSk R SRR KR KR KRR kK Kk KRk k[

int fineKill(local, stask)
finelocal_t *local;
sbsTask_t *stask;

{
kprintf("fine: FINISHED\n");

D-32

return I_OK;

}

/* 3k koK ok ok ok ke sk sk Sk sk ok sk sk sk ok sk ok sk Sk sk ok ke sk koo ok sk ok e sk ok Kok sk ok sk sk sk ok ok ok ok Skeok ok skook skok ok ok ok ok skok sk ok */

/* fineError Attempt automatic error recovery. */
/% Rskskokokorokokkostokokskokokkstok dokok ok ok stk okl sokskskokskokokoskok kokok sk skokokok fokskkokokokok ok /

int fineError(local, stask, mptr, errmsg, errcode)
finelLocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

{

/* Return after not correcting error. */

return SBS_ERROR;
}

/* 3k 3k ok ok 3k ok ok ok ok sk ok K ok sk Sk sk ok ok Sk Sk ok Kk ok ok ok sk ok 3k Sk ok ok sk ok ok ok sk ok sk ok ok 3k ok S ok ok ok ok sk ok sk ok ok ok ko sk ok sk */

/* fineClear Clear error state of the module. */
[® ddoksksokokokokskok kK skskok kst o oksk ok ok stk kol ok ok sk ok ok ko ok ok sk ok sk skok kiR sk sk ksk sk ok ok ok /

int fineClear(local, stask, mptr, errmsg, errcode)
finelLocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

{
/* Return after not clearing error. */
sbsNewError(stask, "Clear not defined, still in error
state", errcode);
return SBS_ERROR;
}

[% KRR KA A KA KA A KA A A AR A KK FAA KA F KA AR KK K
/* fineSet Set module parameters. */
[% KA AR IR F A A A AR FA KA AR A KA F A A A A FAAF A A AAKAA KA KA KK K [

int fineSet(local, stask)

D-33

finelocal_t *local;
sbsTask_t *stask;
{

return I_0K;

¥

/* sk 3k ok ok ok ok ok ok o ok ok ok sk s ok sk ok sk ok sk sk sk ok sk sk skeske ok ok sk ok ke sk ke sk sk sk sk Sk ko skeok sk ks sk ok ke ok ok ok ok sk ke ok ok sk ok sk */

/* fineGet Get module parameters. */
[% kkskskokskokokok ok ook ko skokokskokokskoksk ok sotok ok kokok koot ok ok ok kb sk ok ok kR ok sk okok ok /

int fineGet(local, stask)
finelLocal_t *local;
sbsTask_t *stask;

return I_OK;
[k kokokrokkok ok ok sk ook ok ok ok ok sk ksk ok koK sk kR ok sk ok sk sk ko sk sk sk sk ok ok /
/* fineSync For modules which synchronize to */
/* something other than the clock. */

/* ok ok o ok ok sk vk sk sk e ke sk sk ok ok ok ook Sk e ok sk sk ok ok sk sk sk sk ok sk sk sk ok sk kK ok sk ok Kk Sk ko ok ok ok sk ok ok ok ok ok ok ok ok ko */

int fineSync(local, stask)
finelocal_t *local;
sbsTask_t *stask;

{

return I_0K;

}

D-34

#

fine.rmod

#

Reconfigurable module file for the finger fine control of
the puma 3 dof planar robot.

#

MODULE fine
DESC controls puma in 6 DOF
INCONST NDOF DH
QUTCONST none
INVAR Q_MEZ
OUTVAR Q_TEMP3
TASKTYPE periodic
FREQ 50

LOCAL

TOOL 0.1905

#DQ3_LIMIT 0.00872
DQ3_LIMIT 0.01745

EOF

D-35

D.5 gross.c and gross.rmod
[k sskstoksokskokok ok skok ook ko ook ok ok ok ko kR Kok Rk sk kK sk sk sk kok kool fokkokokok ok f

/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%
/%
/*
/%
/*
/*

/*
/*
/*

gross.c
created by Hyunki Cho 03-13-96
(Republic of Korea, Army)
State variable table:
INCONST: none
OUTCONST : none
INVAR: Q_MEZ - measured current joint
OUTVAR: Q_TEMP2 - temporary reference

joint 2

Special Note:
This module is to compute the joint 2 increment
to make the joint 3 leveling action to make the
proper performance of joint 5.

ok ok 2l ok ok ok 3k sk ok ok ok ok ok ok ok ok sk ok sk sk ok sk sk sk sk ke ok ok ok sk sk sk sk ok sk sk ok sk ok ok sk ko sk ok ok sk ok ok ko ok kok sk kok sk ok

3k >k ok ok ok ok ok e ok o ok sk ok ok sk ok vk sk ok ok sk sk sk sk ok Sk ok sk ok sk sk sk ok sk ok sk ok ok ok ok ok 3k >k ok sk ok ok ok ok ok ok ok ok %k %k k

include files */
stk ok ok sk ok ok sk sk sk ok sk sk sk ok o ok sk sk K sk s e o o s o sk e skok sk sk sk ok s sk sk sk sk ek s s o ok oksk ke sk s s s skeok sk sk ok

#include <chimera.h>
#include <sbs.h>
#include <math.h>

/*

>k 3k 3k ok ok 3k ok ok ok ok ok Sk ok ok ok sk sk sk ok ok s ok sk sk sk sk sk Sk Sk ok ok sk sk sk ok 3k ke ok sk ok sk skl 3k ok ok ok ok ok ok ok kok skok ok ok ok ok

/* module ’Local_t’ definition as required by Chimera */

/*

ok 3k >k 3k ok 3k ok ok ok ok ok sk sk ok sk ok sk sk ok ok ok ok ok ok sk sk Sk sk sk ok sk sk sk sk ok sk ok Sk ok sk Sk ke ok o >k sk sk ok oK %k >k ok k ok ok ok ok ko

typedef struct {

float *Qtemp2;
float *Qmez;
float Dq2_limit;

} grosslocal_t;

D-36

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

/* 3k 3k 3k ok ok sk sk sk ok 3k ok ok e Sk ok 3k sk sk sk Sk ok 3k ok ok K K ok ke ok sk sk sk sk ok koo sk skok sk sk sk ok ok ok ok ok skok sk ok ok sk ko ok ok ok */

/* module initialization as required by Chimera */
[Fokckokskskokkrokatokokskokok dokakokokokolok ok kokokkok kool ol stk skl otk ok sk ik kokokokokk ok /

SBS_MODULE(gross) ;

/* K ok ok sk ke sk s e ok sk oK sk Sk Sk Sk sk sk sk sk sk ok ok ok sk ok ok ke ok sk sk ok sk kol sk sk ok sk sk skesk sk kok sk ok ok ko sk ok sk ok kR k ok k */

/* grossInit Initialize the module. */
[F kR ok kR sk Kok K sk Kk KRRk Rsk KRk ok ok ok sk Rk ook koK ok Rk ok ok

int grossInit(cinfo, local, stask)
cfigInfo_t *cinfo;

grossLocal _t *local;

sbsTask_t *stask;

‘ sbsSvar_t *svar = &stask->svar;
/* Get pointers to state variables. */
local->Qtemp2 = svarTranslateValue(svar->vartable, "Q_TEMP2",float);
local->Qmez = svarTranslateValue(svar->vartable, "Q_MEZ",float);
/* One time initialization. */
cfigCompulsory(cinfo, "DQ2_LIMIT", &local->Dq2_limit, VT_FLOAT, 1);
return (int) local;

}

/* A ok ok sk sk 3k ok ok K ok ok Sk sk ok sk ok ok ok sk sk ok ok ok ok ok ok ok sk sk sk ok ok sk ok sk sk sk sk sk sk sk skok ok ok ok 3K ke sk sk sk Sk sk ok ok ok ok */

/* grossReinit Re-Initialize the module. */
[% scksckokokskskokokokskoksk sk skok ok sk ko ko K ok ok koo R skok ok ok sk ok Kok kKRR KKk

int grossReinit(local, stask)
grossLocal_t *local;
sbsTask_t *stask;

{

return I_0OK;

3

/* 2k 2k sk ok o sk ok >k ok ok ok sk sk sk sk sk ok skesk ok sk Sk ok Sk sk ok Sk Ok s sk ok sk sk sk sk ok R ok sk sk sk sk sk sk sk sk sk ksl sk sk ok sk sk sk ok ok sk ok sk */

D-37

/* grossOn Start up the module. */
[% koo Kok Rk kR ok skok kK Kok ok Kok koK K koK ok kR ok K kKRR sk oKk kK ok kK ok

int grossOn(local, stask)
grossLocal_t *local;
sbsTask_t *stask;

{

kprintf("Gross Motion Control : On\n");

return I_0OK;

¥

/* 3k sk e sk sk sk ok ok 5k sk Sk Sk sk sk sk ok e Sk 2k koK sk sk sk skok sk ok Sk ok sk sk sk e sk sk sk ok sk sk sk ok sk sk sk sk skook Kok oK sk ok ok o sk sk sk ok */

/* grossCycle Process module information. */
[% Aok Rk Kok Kok ok Kok K okok KK KKK KKk KRSk R sk oK KR kR Rk Rk K

int grossCycle(local, stask)

grossLocal_t *local;

sbsTask_t *stask;

{
int i;
float *qtemp2 = local->Qtemp2;
float *gmez = local->Qmez;
float q2, 93, q_t, dq;
float static a2 = 0.4317;
float static d4 = 0.43307;
float dgq_limit = local->Dq2_limit;

/* copy current joints values. */

q2 = qmez[1];
q3 = qmez[2];

/* determine the displacement of joint 2 that joint 3 is */
/* centered its displacement range with respect to joint 2. */

q.t = (q2+93) - 1.5708;
dq = d4*q_t/a2; /* assume that the joint increments between */

/* joint 2 and 3 are inverse relationship */
/* between their link length. */

D-38

/* restrict the joint displacement at one sample period */
/* to prevent unallowable motion of link 2 or make sure */
/* to maintain contact with object. */

if (dq < -dq_limit) dq = -dq_limit;
if (dq > dq_limit) dq = dq_limit;

/* add to current joint 2 value to provide appropriate */
/* joint 2 motor torque. */

q2 = 92 + dq;

/* check the limit of joint 2. range of joint 2 is restricted */
/* intentionally to make desired motion (prevent unallowable */
/* or loosing contact. */

if (q2 > 0.1705) q2 = 0.1705;
if (g2 < -1.5708) q2 = -1.5708;

/* copy joint 2 value to Qtemp2 as a temporary value. */
qtemp2[0] = q2;

return I_0OK;

}

/* 3 2k sk 2k 2 2k s ok ok 3k > 3k ok Sk ok ok sk sk ok ok ok ok S ok 3k ok ok sk sk sk sk sk sk ok sk skook ok ok sk ok sk sk sk sk sk ok ok sk ok keok ok skok ok ok ok ok */

/* grossOff Stop the module. */
[% koo ks sk sok Rk KoK sk Rk KK KoK ok kR KKK KRR KRR R SRR Kok kK ok [

int gross0ff(local, stask)
grossLocal_t *local;
sbsTask_t *stask;

{
kprintf("gross: OFF\n");
return I_0K;

}

/* 3Kk ok sk ok sk ok ke ok Sk sk sk ok ke sk Sk sk sk sk sk Sk sk sk ok bk oK e ske sk sk sk sk sk sk sk sk ko sk ke sk sk sk sk ok sk ok ok K ok ok skokesk skok ko */

/* grossKill Clean up after the module. */
[k seckskokokskok ko skokoskokfokok ok sk sk ok sk ok skok ok Kok sk ko sk sk Kok sk kKRR Rk kKR Rk ok K

D-39

int grossKill(local, stask)
grossLocal_t *local;
sbsTask_t *stask;
{
kprintf("gross: FINISHED\n");
return I_0K;

b

/* 3k ok ok ok ok ok ok sk ok S ok 3k ok ok ok K sk sk Sk ok ok sk K 3K Sk ok ok ko sk ok ok ok ok sk K ok Sk Sk ok sk ok ok ok ok Kok ok ok ok koK ok sk ok ok ok */

/* grossError Attempt automatic error recovery. */
[koskokoksksskokskokkestetokokok ok ket skok sk ke ki sk sk sk sk sk skok skok ok ok sk stokok sk ko ok sk kokokok sk ok ok ok /

int grossError(local, stask, mptr, errmsg, errcode)
grossLocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

{

/* Return after not correcting error. */

return SBS_ERROR;
}

/* 3k 2 3k s ok ke sk ok sk ok ok Sk ok Sk Sk 3k Sk Sk Sk ok ok ok K ok Sk Sk ok sk sk ok sk sk ok >k ok 3k ok Sk ok Sk s ok sk ok ok sk ok ok Kok ok R ok ok %k ok %k kok */

/* grossClear Clear error state of the module. */
[* Hskokoksokskskskokkkokok ook ok ook kok sk ok skk ok sk ok ok skl ko sk sk ks sok sk ok ok

int grossClear(local, stask, mptr, errmsg, errcode)
grossLocal_t *local;

sbsTask_t *stask;

errModule_t *mptr;

char *errmsg;

int errcode;

{

/* Return after not clearing error. */

sbsNewError(stask, "Clear not degrossd, still in error
state", errcode);

return SBS_ERROR;
}

D-40

/* sk sk ok 3k ok sk sk sk ok ok sk ok ok sk ok ok ok sk sk ok ok ok ok sk skeok ok sk sk ke sk sk sk sk sk sk sk ok ok ok sk ok ok ok ok sk sk ok ok ok ok ke ok ok skok sk ok ok */

/* grossSet Set module parameters. */
[% dokskokokokk ook Rk kR R skok Rk R R kR sk Rk ks ok sk sk sk skt ook ok okok b okok ok /

int grossSet(local, stask)
grossLocal _t *local;
sbsTask_t *stask;
{

return I_0OK;

3

/* sk ok sk sk ok ok >k sk ok ok ok sk ok ok ok ok ok ke sk ok ok ok ok ok ok sk sk sk sk ok sk ke sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk ok ok ok ok ok ke skeok sk ok ok ko */

/* grossGet Get module parameters. */
[% sokskokkokok ookl kR sk ok sk sk KoKk kK ok sk ko sk iRk ok ok ki ok ok ok g okok ok /

int grossGet(local, stask)
grossLocal_t *local;
sbsTask_t *stask;
{

return I_0OK;

¥

/* sk ok 3k 3K 3k ok ok ok ok ke ok Sk ok ok sk sk sk sk ke ok Skeok sk sk sk ok sk ok sk ok ok Sk sk sk ok Sk sk ok ok K sk ok ok sk ok ke ok ok ok ok ok sk ok sk ok ko */

/* grossSync For modules which synchronize to */

/* something other than the clock. */
[% kokokokokok ks skok ok sk sk kR skok Kk KKk koK sok ok skl sk ok skok sk ok sk kokskokok ook ok /

int grossSync(local, stask)
grosslLocal_t *local;
sbsTask_t *stask;

{

return I_0OK;

¥

D-41

#

gross.rmod

#

Reconfigurable module file for the finger gross control of
the puma 3 dof planar robot.

#

MODULE gross

DESC controls puma in 1 DOF
INCONST none

OQUTCONST none

INVAR Q_MEZ

OUTVAR Q_TEMP2

TASKTYPE periodic

FREQ 5

LOCAL

#DQ2_LIMIT 0.00436
DQ2_LIMIT 0.00436

EQOF

D-42

Vita

Capt. Hyunki Cho

" He grew up in Chungjoo-Si, Chungchungbook Do,

and graduated from Chungjoo High School in February 1986. He entered the Korca

Military Academy (KMA) in March 1986. He learned a lot of things required for
the great ROK Army officer. In March 1990, he graduated from the KMA with a
Bachelor of Science degree in Flectrical Enéincering, and was commissioned in the
Republic of Korea Army. After the Officer’s Basic Course in the Army Infantry
School, he was assinged to 1st ROK Army Infantry Division as a platoon leader. In
January 1991, be took the Officer's English Course for six months, and was assined
to United Nations Command Security Force, Joint Sccunty Arca (Panmoonjum)
aronnd Demilitarized zone as aplatc:on leader of Joint Secunl._y Force. Tn July 1992,
he was assngned to Jomt. Security Force as a Deputy Commander for onc year. In
June 1991, he cnt(rc(l AFIT rnrollocl in the Scool of Engincering, Department of
Electrical and .Compm.m Englneermg. In March 1992, he married Youjung Han.

‘They now have one child, Geonlan, and his wife ix pregnancy.

.

\: FI'A-1

]

[

1z?ORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-.::88

i

Public reporting burden for this collection of information 15 estimated to average 1 hour per response, including the time for rewiewing instructtons, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this ;

collection of information, including suggestions for reducing this burden. to Washington Headguarters Services, Directorate *or Information Operations and Reports, 1215 lefferson |
Davis Highway, Suite 1204, Arlington, YA 22202-4302, and to the Office of Management and 8udget, Paperwork Reduction Project (G704-0188), Washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) {2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

December 1996 Master’s Thesis

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS
Development of Object-Based Teleoperator Control for Unstructured Appli-
cations

6. AUTHOR(S)

Hyunki Cho
Captain, Republic of Korea Army

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER ~

i i f B OH 45433-6583
Air Force Institute of Technology, WPAFB OH 45433-658 AFIT/GE/ENG,/96D-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/ MONITORING
Captain Thomas Deeter AGENCY REPORT NUMBER
Director, AFMC Robotics and Automation Center of Excellence (RACE),
Robotics and Automation Branch

SA-ALC/TIER Bldg 324

505 Perrin Rd. Kelly AFB, TX 78241-6435

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200words) <~ = w7 -

12b. DISTRIBUTION CODE
Approved for Public release; Distribution Unlimited

For multi-fingered: end-eﬁ'ectors in unstructured a.pphca.tmns, the mairr issues are control in the presence of
uncertainties: and providing grasp-stability and object manipulability. The suggested concept in this thesis is
object-based teleoperator control! whick: prmdes**am intuitive: way: to control the robot in terms of the grasped
object and reduces the operator’s conceptua.l constraints. The general control law is developed using a hierarchical
~control structure, i.e., human interface / gross motion control level in teleoperation control and fine motion control
/ object grasp stabxhty in autonomous control. The gross motion control is required to provide the position /
orientation of the Super Object. (SO), and the sufficient grasping force to-the fine motion control. Impedance
control is applied to the gross motion control to respond to the environmental forces. The fine motion control

consists of serially connecting the finger in position control and’ the Fingertip Actuation System (FAS) in force 5

control. The FAS has a higher bandwidth response than does the finger actuation system and operates near
the center of its joint range. The finger motion controller attempts not only to track the displacement of the
FAS but also to provide an FAS centering action.-Simulation: experiments.in both gross and fine motion control

~are performed. The integrated gross / fine motion control is: implemented using the planar configuration of
PUMA 560. The results show that the desired contact force can be maintained in the direction of FAS motion.
The mathematical proof of system stability and the extensmn to spatial systems are reqmred to complete the
research.

14. SUBJECT TERMS

15. NUMBER OF PAGES
Object-Based Teleoperator Control, Structured / Unstructured Applications, 208

Impedance Control, Serial Actuation System, Gross (Macro) Motion Control, Fine |16. PRICE CODE

(Micro) Motion Control, Fingertip Actuation System (FAS)

17. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT
UL

18. SECURITY CLASSIFICATION }19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

UNCLASSIFIED: - - UNCLASSIFIED

OF REPORT
UNCLASSIFIED

NSN 7540-01 -280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18 :
298-102 :

	Development of Object-Based Teleoperator Control for Unstructured Applications
	Recommended Citation

	tmp.1691527767.pdf.ErE_z

