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real soon. ['ll let you sleep in, I'll help do the laundry and the shopping, you name it. Amy, in another week
and a half I won't have to go to school anymore. We can play Lego on Saturday mornings and I promise I
won't get up in the middle of it, grab my briefcase, and kiss you goodbye. Anthony, some day maybe you'll
read this and understand why you went so many days in a row without seeing me at all. You've been a great
sport through all of this, though, and I promise to hold you and hold you when we get to Virginia. I love
you guys... like ca-ca-ca-crazy! Now let's go and have a great time in our new home.

Vincent Brian Zurita
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Abstract

Complex Distributed Virtual Environments (DVEs) present an outstanding opportunity for the
Department of Defense to train geographically separated units within a single realistic threat environment
with minimal logistical considerations or safety concerns. To increase the fidelity of these simulations,
minimize cost, and thereby maximize the training potential, DVEs must be populated with a realistic
number of Computer Generated Forces (CGFs). AThese are currently expensive to design and build due to a
lack of standard CGF architectures. A solution to this problem is presented in the form of a CGF
Architecture that is applicable to CGFs that model any weapon system. Mapping techniques are discussed
that take the architecture from generic templates to weapon system-specific templates ready for
implementation. An application based on this architecture, the Fuzzy Wingman, is discussed and its results

are presented.




A Software Architecture for Computer Generated Forces in Complex Distributed Virtual Environments

1. Introduction

1.1. Motivation

The Department of Defense (DoD) possesses an extremely valuable training tool in distributed
virtual environments (DVEs). DVEs allow armored units to support infantry in simulated tactical warfare,
even though the two may be separated by thousands of miles. They enable pilots to fly simulated combined
missions with warplanes of allied forces, without the cost or logistics involved in bringing the two together.
DVEs permit surface ships to engage simulated enemy vessels in potentially deadly confrontations, without
loss of life. Proximity without physical presence, formation without logistics, warfare without carnage;
these are but some of the military training benefits being reaped today by distributed virtual environments.

Yet in spite of these capabilities, the DoD is far from realizing the full potential of DVEs. It is
handicapped by a limited number of simulators suitable for interaction within these environments. If the
intent of a simulation is to model a small-scale engagement, then the existing quantity of simulators may
suffice. But the greatest benefits of DVEs are to be gained from large-scale, highly complex simulations in
which a diverse range of many thousands of entities interact. Such complex simulations more accurately
model the battles our forces are likely to encounter. Increasing the fidelity of a simulation enhances the
level of training, which in turn yields a better-prepared force. How then, does one model such battles with a

fraction of the number of required simulators?
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The answer lies in computer generated forces (CGFs). These computer representations of military
forces attempt to model sufficient human behavior to automatically execute a finite set of actions in
response to their environment [IST96]. These actions may be as simple as following a road or flying to a
waypoint, or as complex as cooperating with another friendly entity to defeat an enemy threat. CGFs of
various complexity have been created for many different platforms: dismounted infantry, tanks, and other
ground vehicles; rotary and fixed wing aircraft to include fighters and attack helicopters; and various types
of surface ships and submarines. CGFs can serve to augment friendly forces or populate enemy formations.
In either role, they bring to the virtual battlespace an added degree of fidelity by increasing the number of
entities participating in a simulation.

Unfortunately, CGFs have yet to realize their full potential because they're plagued with two
problems that are all too common with software today--they're expensive to develop and difficult to
maintain. Herein lies the irony: We cannot afford an adequate supply of manned simulators, so we turn to
CGFs to fill the void--yet CGFs turn out to be expensive as well.

Why is this so and how can the problem be remedied? CGFs are typically expensive and
unmaintainable because they suffer from a lack of standardized architecture. There's no accepted,
predefined way to go about creating one. This leaves the task of formulating an architecture to the
developers of each new CGF. In essence, they're reinventing the wheel with each new entity they design.
What is needed is a standardized architecture applicable to the development of all CGFs, regardless of their

platform.

1.2. Purpose

It is the intent of this thesis to propose just such an architecture--one that is applicable to the
development of any computer generated force to be operated in complex distributed virtual environments,

independent of the platform being modeled.
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1.3. Summary of Chapters

This proposed architecture is presented by first introducing, in Chapter Two, the topics that are
relevant to the development of CGFs. Chapter Three identifies the requirements levied against this thesis
project. Chapter Four reviews an existing CGF architecture and offers suggestions for improvement upon
it. Chapter Five provides a mapping from this improved CGF architecture to the design of an actual CGF.
Chapter Six describes the embodiment of this architecture in the Fuzzy Wingman F-15E CGF and relates
the results of this implementation, while Chapter Seven concludes the thesis.

Additionally, several appendices provide further information on a range of topics. Appendix A
contains a set of related Generic, Applied, and Complete CGF Module Design Templates. Appendix B
contains source code for the Common Object Database. Appendix C presents the fuzzy logic term sets and

rules used to fly point to point, while Appendix D contains output data from point to point runs.




2. Background

This chapter provides a brief overview of CGF architectures and directs the reader who is
unfamiliar with these topics to key sources of information that provide coverage in much more detail than is

possible in the scope of this work.

2.1. Distributed Virtual Environments

In the early 1980's, the Army realized the need to network its individual tank simulators to
facilitate training on the platoon and company scale. The Defense Advanced Research Project Agency
(DARPA) responded by developing a distributed architecture to support virtual simulations involving
multiple manned simulators. The resulting system was SIMNET [THORS8], which still enjoys limited use
today. SIMNET was successful in meeting its goal of aggregate training in a distributed virtual

environment, but it has been limited primarily to the domain of armor and other ground vehicles.

As the Army was gaining its benefits from SIMNET, the DoD began anticipating the need for a
more robust architecture to meet the demands of much more complex distributed simulations. These
environments would be populated with warfighting entities of all domains--land, sea, air, even space. These
entities would be based on manned simulators, CGFs, and instrumented live participants. To ensure
interoperability among this diverse collection of highly interactive entities, a standardized simulation
infrastructure was required. In 1989, the DoD addressed this concern with the initiation of the Distributed
Interactive Simulation (DIS) program [IST94, IST96a]. DIS-based protocol data units (PDUs) have
enabled the development of interoperable entities that communicate over the common Defense Simulation

Internet (DSI) [IEEE93, KOUP96, STYT96].

In October 1995, the DoD issued its Modeling and Simulation Master Plan, which calls for the
establishment of a common technical framework to, among other things, facilitate the interoperability of all
types of models and simulations, and provide for the reuse of modeling and simulation components

[DOD95]. Central to this framework is the High Level Architecture (HLA), which provides a functional
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definition of the simulations and services provided by HLA federations, an interface specification, and

object model templates [DMSO096]. HLA is intended as the successor to DIS.

2.2. Computer Generated Forces (CGFs)

CGFs are computer representation of forces to be employed in simulations. They attempt to model
either human cognition or human behavior to the point that the forces being represented will engage in some
actions automatically in response to their environment. Cognitive models, such as SOAR, attempt to model
the human decision-making process as a means of effecting behavior [ROSE91]. On the other hand,
behavioral models, such as ModSAF, seek to represent appropriate behavior within a domain without

attempting to emulate the human decision-making process [CERA95].

An unfortunate property of many rapidly-developed CGFs is their relative lack of intelligent
behavior. This property allows them to be easily discerned in the DVE from entities under the control of
manned simulators, giving an otherwise unattainable advantage to the participants being trained. A solution
to this problem is proposed by Santos et al that involves the use of fuzzy logic to deal with difficult
situations and give a CGF a more human behavior [SANT96]. This is the approach used in this research

project. Benslay [BENS96] gives a much deeper treatment of the role of fuzzy logic in this project.

2.3. Collaborative Research

This research was part of a collaborative effort with 1Lt James L. Benslay, Jr., who presents an in-
depth treatment of the role of fuzzy logic in a CGF architecture in A Domain Independent Knowledge
Based Architecture for Computer Generated Forces [BENS96]. Benslay's thesis should be considered an
essential companion volume to this work. Indicative of the close degree of cooperative effort, Chapter Four

of this thesis has been co-authored and is included in both theses for completeness.
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3. Requirements

Every verifiable project must begin with a set of requirements. Those levied against this project

are listed herein. Each requirement is accompanied by a description of its purpose and an indication of how

it was satisfied.

Requirement

Purpose

Method of Satisfaction

1. Develop a CGF Architecture

To facilitate the design of CGFs
of any weapon system

Modular Design Decomposition

2. Develop a Wingman CGF
consisting of an SDE, TDE, CDE,
DISManager, AeroModel, and
FlightController

To validate Modular Design
Decomposition of Control
Module Types

Set of six concurrent C++
programs

3. Wingman must fly formation

To validate Modular Design
Decomposition of Decision and
Entity Propagation Module Types

FltCntrl class, FW AeroModel
class

4. Wingman must fly point to
point

To validate Modular Design
Decomposition of Decision,
Knowledge Base, and Entity
Propagation Module Types

FltCntrl class, Basic Fighter
Maneuver data files,
FWAeroModel class

5. Wingman must perform DCA
mission

To validate Modular Design
Decomposition of Mission
Module Type

DCAMission class

6. Wingman must employ BVR
DCA tactics and weapons

To validate Modular Design
Decomposition of Decision
Process and Entity Propagation
Module Types

fuzzy_tree class, Weapons
functions

Table 3.1. Project requirements, their purposes, and means of satisfaction.

More information on the implementation of Requirement 1 can be found in Chapters Four and

Five. The remaining requirements are elaborated upon in Chapter Six.
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4. A General F Architecture

In order to effectively seek the solution of a problem, one must first thoroughly understand the
problem. The purpose of this chapter is to explore the domain of the CGF architecture problem, examine a
currently existing architecture, and to present a concurrent processing perspective of this architecture. This
will be done by breaking the architecture down into its subcomponents, and further defining the functions of
the essential subcomponents via semantic Areas of Concern. The concurrent processing perspective is

useful for understanding the dynamics of the CGF architecture.

4.1. Define the Problem Domain

When considering the virtual environment, it is certainly plausible to envision a CGF filling the
role of any of the entities within that environment. Regardless of the role of the entity, given that we have
sufficient understanding of the entity's knowledge and its behavior in a specified environment, we should be
able to create a CGF to fill that entity's role. If we assume for the moment that we do have an understanding
of an entity's knowledge base and its intrinsic behaviors, the question then arises "How do we assemble this
entity"? How would we combine our understanding of the entity's knowledge and behaviors into a software
architecture? But more than this, does an architecture already exist that could be used so we wouldn't have
to "reinvent the wheel"? If so, can it be adapted to suit this new entity, or has it been so tightly coupled to

its current implementation that it won't meet our needs?

This is the essence of the architecture problem domain. Given that a need exists to build a CGF. is
there some design architecture or methodology that can be applied to take the CGF from concept to
implementation, regardless of the type of CGF that needs to be implemented? This is a more complex
problem than may be at first realized. Consider the elements of Figure 4.1. Any CGF we consider will
have a combination of these elements, t;ut to identify these general types certainly doesn't appear complex.

The complexity comes in when all the specific instances of these elements and their resulting data and

control flows are considered.
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Figure 4.1. Generic elements of a CGF's domain.

Currently, it seems that whenever a simulation center implements a CGF, they do so from the

ground up. What is needed is a single, domain independent solution to solve this problem.

4.2. An Existing Architecture

There is an existing model that takes the first step in mapping this problem domain. Santos, et al
have devised a general architecture of CGF components [SANT96]. Figure 4.2 is their model for an
adaptable CGF architecture. To summarize their work, a CGF is essentially comprised of two types of

components, a Physical Dynamics Component (PDC) and an Active Decisions Component (ADC).

DVE

Figure 4.2. CGF architecture showing the Physical Dynamics Component, Active Decisions Component.
and CGF Router.




The PDC is made up of the components necessary to model the CGF's physical makeup, such as
entity propagation models, sensor models, weapons models, defensive elements models, etc. The PDC also
contains those initialization parameters that are necessary to give the CGF a specific identity, such as
performance specifications and limitations, as well as more human traits such as operator capabilities and

constraints.

The ADC is composed of the components that use the information from the PDC to make
decisions, and is broken down into three subcomponents: a Strategic Decision Engine (SDE), a Tactical
Decision Engine (TDE), a Critical Decision Engine (CDE), and a Basic Control Module (BCM). Each of

the decision engines comprises a different level of decision making process.

The SDE is concerned with high level functions such as understanding and implementing mission
level goals, communicating with other players, interpreting the surrounding environment, and revising

mission goals and subgoals.

The TDE's role is to manage the moment to moment operations of the entity. This entails
receiving specific taskings from the SDE (subgoals) and implementing these according to the knowledge
base of the particular entity. This will include activities such as determining which maneuvers to make in a
given situation, determining when to employ ordnance, and when to implement other application specific

elements such as electromagnetic counter measures.

The CDE is the survival instinct element of the virtual entity whose responsibility includes taking
over control of the entity in emergency situations where termination of the entity is eminent. This is

analogous to a person's instinctive reflexes transferred to the domain of the specific entity.

The BCM's role is to determine the proper propagation model inputs to perform the movements
dictated by either the TDE or CDE. The BCM is considered a subcomponent of the ADC because 1t uses

modeled behaviors to determine control inputs.

Interactions between the ADC subcomponents were defined as a number of finite state spaces and

were maintained in a central communication structure.
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Although not considered a component equal to the ADC or PDC, the CGF architecture has another
important structure. This is the CGF Router (see Figure 4.2), and represents the interface between the

Distributed Virtual Environment (DVE) and the two components, ADC and PDC.

The essence of this model lies in applying the concept of separation of concerns to the domain of
CGFs. As defined in the practice of software engineering, applying a separation of concerns in a system
design means separating the "how" from the "what” in the system. This is especially useful in creating an
architecture for modular CGFs where we want to separate out an entity's decision making ability from its
physical ability. It is also useful for scoping the entire decision making process down into manageable
subcomponents. This concept of applying a separation of concerns is the foundation on which this research

is based.

4.3 Essential Subcomponents

The CGF architecture was applied to the Intelligent Wingman as an integral part of this research. The idea
was to build the Wingman completely around the ADC/PDC concept so that modules such as the aero
model, sensor models, and behavioral components could be interchanged without disturbing the rest of the
system. The first step in this process was to identify the principle subcomponents of the architecture that
would be needed to begin constructing the Wingman. The following components were directly derived

from the architecture model:

ADC Subcomponents
1. SDE
2. TDE
3.CDE
4. BCM

PDC Subcomponents
1. Propagation Model

CGF Router Subcomponents
1. DIS Interface
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4.4 Semantic Areas of Concern

One of the primary purposes of Santos et al's architecture was to lay a common foundation from
which a software engineer and a knowledge engineer could successfully model both the design and behavior
of a CGE. Pursuant to this, the roles of the decision engines were described [SANT96]. However, as the
decision engines were being developed for the Wingman, it was necessary to more clearly define the
abstracted roles of the decision engines. To accomplish this, semantic Areas Of Concern (AOC) were used.
An AOC is simply a question that must be answered in order to understand the role of that decision engine.
The purpose of the AOCs is two fold: first, they help the knowledge engineer identify the kinds of
knowledge and behaviors that need to be modeled at the different levels of decision making, and second,
they help the software engineer organize the various processes into encapsulated modules that can be
replaced with like modules. In the end, the AOCs help both types of engineers make a smooth transition

from the generic architecture to an applied design.

The AOCs were established as a result of modeling the real world considerations that confront a
present day war fighter. We placed ourselves in the role of a "generalized" war fighter, and used our
expertise as military officers to determine the knowledge that a decision engine would need in order to
accomplish its generalized purpose as described by Santos et al [SANT96)]. For example, perhaps the
single most fundamental question to any war fighter, regardless of service or rank, is determining one's
mission. If a person or unit wants to know their function, the question is asked, "What is my mission™"
Likewise, there are intuitive follow-on questions, such as "How do I go about accomplishing my mission?",
and "What is my current task within the mission"? These questions are absolutely germane to both the
decision engines and the role of a war fighter. In the process of enumerating the questions, they were then

tailored to be domain independent, and were focused a bit more to be in line with the thinking of a CGF.

To make the AOCs as simple and direct as possible, they are written in a first person perspective
from the CGF's point of view. They are designed so that by answering these questions in the context of a
specific type of CGF within a specified domain, the bulk of the work for identifying the CGF's behaviors

will be accomplished.
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Note that these AOCs are not arranged in any intended chronological order, and that they may be
tailored for a CGF type by adding new ones or by eliminating those that do not apply. The key questions

are as follows:

1. SDE

«  What's my mission?

«  How do I go about accomplishing my mission?

« Am ] able to accomplish my mission?

«  What's my current task within the mission?

« How do I communicate with other entities?

«  How do I perceive the outside world?

«  How do I deal with a lack of appropriate information?
«  What are the target types that 'm designed for?

«  What are my responsibilities?

2. TDE

«  What kinds of maneuvers am I capable of?

«  What kinds of weapons do I know how to use?

« How do I choose which maneuver to apply in a given situation?

«  How do I choose which type of weapon to employ in a given situation?
o How do I know when to employ ordnance?

«  How do I know that the weapon was effective?

«  How am I aware of my environment?

«  How do I take the environment into account in decision making?

«  What is my tasking within the mission?

3.CDE

« AmIinany immediate danger?

«  If I were in danger, what maneuvers do I know how to do to keep safe?
«  How would I decide on which maneuver to make?

«  What kinds of countermeasures do I know how to use?
« How do I decide on when to use that device?

Defining the roles of the decision engines in this fashion reinforces two points made by Santos et al
in their architecture. One, the decision engines are engaged in distinctly different levels of decision making.
This distinction implies different cyclic requirements for each decision engine. Two, the decision engines

rely on certain PDC components to make decisions.

A conclusion can be drawn from these two points in regards to program organization within the
CGF architecture. The conclusion is that concurrent program processes should be centered around the ADC
subcomponents. As for PDC subcomponents, they should also be concurrent program processes when
cyclic or control requirements demand, or they can be included in the program process they are most closely

tied to. An argument could be made to the contrary however, and state that each PDC subcomponent




should be a separate program process and not be included in the program processes primarily devoted to
ADC subcomponents. This argument goes against the opinion of established software professionals such as
Gomaa [GOMA93] who state that having too many tasks increases the system overhead and complexity

unnecessarily. Hence, program process consolidation should be done whenever feasible.

4.5. rrent Pro Per ive of CGF Architecture

As a result of the above conclusion, Figure 4.3 shows the ADC subcomponents embedded within
program processes of the same name. Parallelograms are used to denote program processes as established
by Gomaa [GOMA93]. The program processes are depicted as interlocking ADC/PDC components to
indicate the close relationship between those subcomponents within that program process. The separate
graphs within the PDC portions of the program processes represent separate PDC subcomponents. Note
that in keeping with the architecture design, control and state information flow are indicated by the arrows

going between the interlocking components.

SDE TDE CDE

Basic
Control
Module

Fﬂgsnd f POC [ T ADC. 4[]

Figure 4.3. ADC and PDC subcomponents embedded within program processes.
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Because the PDC and CGF Router subcomponents identified in Section 4.3 have a high

importance in the CGF architecture, they are included with the program processes of Figure 4.3 to make

Figure 4.4.

Figure 4.4. Essential PDC program processes in addition to the preceding ADC program processes.

SDE TDE CDE

DVE

DVE Propagation Basic
interface Model Control
Module Module

Figure 4.5. The completed concurrent process perspective of the CGF Architecture.
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Consequently, the CGF architecture can be broken down into a core of six concurrent process.
These are certainly not the only program processes that could be included here, they are simply the only
ones identified at this time. Identifying additional program processes would be the result of deciding a
particular PDC subcomponent needed to have its own process, or perhaps determining a need for a different

level of decision making.

Figure 4.4 does not show any inter-process communication occurring. In order to allow
asynchronous communications between the program processes, it is necessary to expand the definition of
the CGF Router to include a "Communication/Control Channel”. Figure 4.5 shows how this
Communication/Control Channel would interconnect all subcomponents between all the program
processes. The purpose of this construct is to give any subcomponent access to the information provided by

any other subcomponent, regardless of program process or cyclic requirements.

4.6. Conclusion

By defining the decision engines according to semantic AOCs, a common foundation is established
from which both software and knowledge engineers can begin the process of designing the software and
behaviors of a CGF. By grouping ADC subcomponents with the PDC subcomponents they need most into
the same program processes, a natural grouping of concurrent processes is established. By including the
essential PDC and CGF Router subcomponents as separate program processes and combining these with
the ADC program process, a concurrent process perspective of the CGF architecture is established that can

be useful for understanding the dynamics of the architecture.




5. Modular Design Architecture

With the framework of this domain-independent CGF architecture laid out, a mapping
methodology to a specific design is in order. This chapter details the steps of such a mapping that result in
complete templates that have been applied to a CGF of a specific weapon system. Figure 5.1 captures this
overall mapping process of the CGF Architecture, starting by mapping Areas of Concern to specific
modules. These modules are then categorized according to similar functionality, yielding a generic
template that describes at a high level the requirements that must be satisfied for this module--but it does so
without referring to any specific weapon system. This template is then applied to a specific domain of
weapon system, for example, fighter aircraft, or bombers. Finally, this applied template is tailored to
address concerns specific to a particular weapon system--an F-15E or a B-2; this results in a complete

template that is ready for coding.

5.1. Mapping Areas of Concern to Modules

The Areas of Concern presented in the previous chapter represent generic questions to be asked of
each decision engine, regardless of the domain of the intended CGF. For instance, the SDE AOC "How do
I perceive the outside world?" will be answered much differently for an M-1A1 Abrams than for an F-16D
Fighting Falcon. While the M-1 might perceive its world through various types of optical sensors, the F-16
would likely rely on a combination of radar, visual, and infrared sensors. Regardless of the domain,
however, each AOC may be mapped to a specific module. A CGF may contain such modules as a Weapon
Propagation Module, a Terrain Information Module, and a Maneuver Decision Module. A module may be
thought of as an abstract data type (ADT) as defined by Booch [BOOCS83]. In this sense. modules
contribute greatly to the various principles of software engineering. Particularly, they provide a solid level
of abstraction by separating the functionality from the underlying implementation. Figure 5.2 depicts an

appropriate mapping from each decision engine's AOCs to a core set of modules.
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Figure 5.1. Overall visualization of the mapping of Areas of Concern to Complete CGF Design Modules.
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Figure 5.2. Mapping AOCs to modules and type classification of these modules.
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5.2. Type Classification of Modules

Once the AOCs have been mapped into appropriate modules, the modules themselves must be
categorized. Table 5.1 identifies a core set of module types against which all modules may be categorized.

They are grouped as such to capture similar functionality.

Type Classification Criteria

I Control Process Maintains control over a set of related
modules

In Mission Provides functionality and maintains flow of
control necessary to effect a particular
mission

11 Knowledge Base Provides knowledge of a particular domain
that may be used by a Decision Process
Module Type

v Decision Process Employs some form of Artificial
Intelligence to make some decision

\% Entity Propagation Provides functionality needed to move an
entity through its medium

VI Communications Provides a means of transmitting
information between entities

Table 5.1. Module types and their associative criteria.

In addition to showing the modules that were mapped to the AQCs of the three decision engines.
Figure 5.2 shows the classification of the modules as well. Recall, from Section 3.2, the components
comprising the PDC and ADC as described by Santos et al. Note, in Figure 5.2, the natural distribution of
components of both the PDC and ADC throughout each of the decision engines. It is this natural biending

based on the AOCs of each decision engine that led to the refined architecture proposed herein.

Now that modules have been identified and classified for each of the AQCs, the stage is set for

creation of generic templates.
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5.3. Generic Templates

Generic templates identify the type and functionality of a given module. As the name implies, they
remain domain-independent--that is, they contain no verbiage that is specific to a particular category of
weapon system. This means it is acceptable to refer to an entity's offensive weaponry, but it would be a
mistake to mention air intercept missiles, since this template is intended to be equally applicable to a
bomber as to a fighter. This leads to the goal of a generic template--to enable reuse for any weapon system

that possesses the functionality being captured within it. Generic templates consist primarily of two parts.

The first part of a generic template identifies each AOC that has been mapped to the given module
and states the requirements for satisfying them as well as a suggested design for the solution. Each
requirement must support its parent AOC. The suggestions needn't be detailed; they'll be refined in later
templates. For instance, in addressing the AOC How do I choose which maneuver to apply?, one of the
requirements would be a knowledge of available maneuvers. The suggested design that corresponds might
be something as simple as a Maneuver Container Module that contains some representation of the

maneuvers this entity is capable of performing.

The second part of a generic template is a generic algorithm that provides one answer for all AOCs
embodied within the particular module. Again, care must be taken to ensure the omission of any platform-
specific verbiage. This algorithm may be very high-level pseudocode or, preferably, simple English
statements. Figure 5.3 illustrates a Generic CGF Module Design Template for the Maneuver Decision

Module identified as part of the TDE in Figure 5.2.
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GENERIC CGF MODULE DESIGN TEMPLATE

Type:
Decision Process Module Type
Function:
Maneuver Decision Module
Intended User: TDE
Specific Areas of Concern and their requirements:
1. How do I choose which maneuver to apply in a given situation?
a) Required: A knowledge of available maneuvers.
Suggested: A maneuver container module.

b) Required: A knowledge of to whom the maneuver is to be applied
against and where they are located, or an area the
maneuver is to be performed in.

Suggested: Method parameter.
c) Required: A knowledge of the goal in applying the maneuver.
Suggested: Assumed, method parameter, lookup, or module.

d) Required: A knowledge of if we're reevaluating a pervious maneuver
decision that we're currently carrying out, or a first
time decision.

Suggested: Method parameter.

e) Required: A knowledge of my location.
Suggested: Lookup.

f) Required: A knowledge of an adversary and his known abilities.
Suggested: An adversary information module.

g) Required: A methodology or representation of applying the
known maneuvers in relation to another entity or area to
accomplish the goal.

Suggested: An artificial intelligence algorithm/methodology,
potentially in a separate module.

h) Required: A mechanism for relaying the decision to those
that need it.

Suggested: Returned structure, reference pointer in argument
list, or TDE intracommunication methodology.
2. How do I take the environment into account in decision making?

a) Required: A knowledge of the terrain.

Suggested: A terrain container module.

b) Required: A knowledge of other entities, where they
are at, what they are, and what they are doing (when
allowable) .

Suggested: An array of sensor modules.
c) Required: A knowledge of atmospheric conditions.
Suggested: An atmosphere module.

Generic Algorithm:
Given the following:
1) my location,
2) an entity to which I'm supposed to move with or against and its
location, OR an area that I'm to move within,
3) an initial goal:
Determine if the goal is obtainable;
Determine how much time is available to make a decision;
In the given time, choose the best maneuver which comes closest to
accomplishing the goal that:
1) doesn't violate terrain knowledge,
2) takes into account atmospheric conditions,
3) considers other entities and their potential adverse actions;
Report the decision.

Figure 5.3. Generic CGF Module Design Template for the Maneuver Decision Module.

5.4. Applied Templates

Further refinement of a Module Design Template requires its application to the category of

weapon system (platform) being modeled. The result of this is an Applied CGF Module Design Template.
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Such a template is constructed by first identifying the intended platform, 1.e. fighter aircraft, aerial refueler,
tank, frigate, dismounted infantry, etc. Along with this, the domain of the platform is specified, i.e. land,

sea, air, or space.

Depending on the functionality of the module, specific attributes of the applied design must be
identified as well. In the example of a Maneuver Decision Module, it is not enough to specify merely that
the module will be determining maneuvers for a fighter aircraft. Indeed, the mission must also be defined as
a parameter, for the maneuvers appropriate for a fighter aircraft flying a defensive counter-air mission
would differ from those of the same aircraft laden with heavier ordnance for a ground strike mission.
Although it is impossible to enumerate all potential attributes that must be specified for all conceivable

modules, one can expect these attributes to become apparent as a result of a good domain analysis.

There are attributes that must be enumerated for two of the fypes of modules. The first type of
module with a standard attribute is the Knowledge Base Module Type. This has a Data Structure attribute
that must be provided. This allows developers to match suitable Knowledge Base Module Types to
particular Decision Module Types. Decision Process Module Types are the other type with a standard
attribute. Any module that's been classified as a Decision Process Module Type has the sole purpose of
inferencing over some knowledge base to come to some type of decision. This implies the use of some

form of artificial intelligence--that form must be specified as an attribute here at this level of abstraction.

By making use of attributes in this manner, entire libraries of modules of similar functionality may
be specified as variations of a theme. For instance, one could create a number of Applied CGF Module
Design Templates for a Maneuver Decision Module for fighter aircraft; one using fuzzy logic, one using
case-based reasoning, etc. This would facilitate experiments to measure behavioral differences between

CGFs that differ only in the processes they use to implement the same functionality.

An important attribute that is applicable to all modules, regardless of functionality or type. is the
Software Engineering Methodology. This attribute must be indicated for all Applied CGF Module Design
Templates. Doing so allows CGFs to be constructed based on templates utilizing similar software

engineering techniques. Figure 5.4 illustrates the attributes of a Maneuver Decision Module.
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APPLIED CGF MODULE DESIGN TEMPLATE

Module Type: Decision Process Module Type
Function: Maneuver Decision Module
Platform: Fighter Aircraft

Intended User: TDE
(NOTE: Applied specifics for this type are preceded by an "-->"}.
--> Target Domain: Air
--> Mission Type: Defensive Counter Air (DCA)
_-> Artificial Intelligence Methodology:
Asynchronous, adversarial game tree with fuzzy spatial relationship
evaluators.
_-> Software Engineering Methodology:
Modular Pseudocode Decomposition of Object Oriented Design
Specific Areas of Concern, their requirements, and platform type specifics:
1. How do I choose which maneuver to apply in a given situation?
a) Required: A knowledge of available maneuvers.
Suggested: A maneuver container module.

--> Knowledge representation of maneuvers should represent movement in 3D
space, and should be identified in terms of the actual maneuvers they
represent.

b) Required: A knowledge of to whom the maneuver is to be applied against and
where they are located, or an area the maneuver is to be performed in.
Suggested: Method parameter.
--> Tt would be useful to have some sort of pointer to where this entity
' resides in order to quickly access the necessary data such as location
and type. Also, as a backup, give some other identifying information
about the entity that can verify the entity being pointed to.

Figure 5.4. Portion of Applied CGF Module Design Template for a Maneuver Decision Module showing
attributes and enhanced suggested implementations.

Another move toward making Applied CGF Module Design Templates platform-specific is a more
detailed description of the suggested implementation of each requirement of an AOC. This serves to further
focus the solution on an implementation for a particular category of weapon system. Verbiage must not
violate that level of abstraction. For instance, it would be reasonable to refer to a fighter aircraft's air to air
missiles, but it would violate the level of abstraction to refer specifically to AIM-54 Phoenix missiles since

these are only capable of being carried by F-14 Tomcats.

Finally, this focused solution is incorporated with all of the module's attributes and the previously
designed generic algorithm to produce an applied algorithm for a specific platform category. Figure 5.5
illustrates how this applied algorithm lowers the level of abstraction from that of the generic algorithm by
addressing computational concerns specific to the intended class of weapon system. Whereas a generic
algorithm might have addressed the position of an entity, the applied algorithm for a tank may specify the
Jatitude and longitude, while a fighter's algorithm would undoubtedly go even further and address altitude as

well.
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This combination of applied algorithm and attributes yields an Applied CGF Module Design
Template that may utilized across an entire category of weapon system, enhancing reuse. A fighter aircraft

defensive counter-air Maneuver Decision Module may be adapted just as easily for an F-14 as for an F-15

or F-16 CGF.

Applied Algorithm: Fighter Aircraft

1. - Construct the module object with the needed objects.

2. - Determine pilot performance parameters.

3. - Determine locations and orientations of aircraft and bandit.

4. - 1If target is offensive capable, evaluate geometry for a no-win situation.

5. - As a function of geometry, determine the maximum allowable decision making time.

6. - Determine if this decision process is the first applied to this target. If not,
then evaluate whether or not the actual movements are in keeping (by some
fuzzified amount) with those decided on. If either the aircraft or the
bandit are sufficiently off the chosen maneuver, then scrap the current
maneuver and reevaluate. As long as the aircraft and bandit are performing
reasonably as expected, then keep the score of the current maneuver as a
comparison to consequent evaluations.

7. - Depending on the bandit type and the geometry involved, construct a game tree
based on the known maneuvers for those posture states.

8. - Determine pruning heuristics.

9. - Based on positions, bandit type, velocities, maneuver selections, weapon
choices, and terrain info, evaluate as many combinations as possible
without exceeding the maximum allowable decision making time. Retain the
highest scoring combination.

10. - If this is a follow-on maneuver evaluation for a bandit, then compare the
results of this decision with the previous one. Choose the better of the
two and report that for implementation.

11. - If directed, record necessary data for a decision trace.

Figure 5.5. Applied Algorithm Portion of an Applied CGF Module Design Template for the Maneuver
Decision Module as Applied to a Fighter Aircraft Domain.

5.5. Complete Templates

The final refinement to the system of templates is to map an Applied CGF Module Design
Template from its platform to a specific weapon system to be run on a specific computer system, using a
specified language and libraries. The end result is a Complete CGF Module Design Template, ready for

coding.

The first step in this final mapping is to identify, as attributes, the intended weapon system (F-16D
vs. F-15E, AH-1 vs. AH-64, etc.), the target computer system and operating system, programming language.
and any specific software libraries that are to be used. Specifying these attributes allows one to build a
repository of many varieties of Complete Templates based on differing combinations of attribute values.

Additionally, existing attributes may be further clarified by giving references to source information. Figure
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5.6 shows the various attributes of a Complete CGF Module Design Template for an F-15E DCA Maneuver

Decision Module.

-—>
>>>
-->
>>>
-—>

>>>

>>>

>>>

COMPLETE CGF MODULE DESIGN TEMPLATE

Module Type: Decision Process Module Type
Function: Maneuver Decision Module
Platform: Fighter Aircraft

Weapon System: F-15E

Intended User: TDE

Target Computer System: SGI Onyx

Target Operating System: Irix 6.2

Programming Language: C++

(NOTE: Applied specifics for this type are preceded by an "-->"
(NOTE: Complete specifics for this type are preceded by an ">>>").

Mission Type: Defensive Counter Air (DCA)
Combat Air Patrol as defined by Shaw.
Target Domain: Air

As defined by IST-CR-95-14.
Artificial Intelligence Methodology:
Asynchronous, adversarial game tree with fuzzy spatial relationship
evaluators.
Inferencing Library:
FuzzyCLIPS.
Software Engineering Methodology:
Modular Pseudocode Decomposition of Object Oriented Design
Intracommunication Library:
Common Object Data Base (CODB)
DVE Interface Library:
DIS Manager

Figure 5.6. Portion of a Complete CGF Module Design Template for an F-15E Defensive Counter-Air

Maneuver Decision Module.

In addition to clarifying existing attributes, the suggested implementations of AOC requirements

are refined to the point of being specific to the modules new attributes. Figure 5.7 shows how suggestions

are tailored to the specific weapon system, while bearing in mind the intended hardware and software

constraints.

Finally, all of the constraints identified so far are combined with the previously-created Applied

Algorithm to produce a Complete Algorithm. This captures all details necessary to go straight to code. If

properly constructed, the algorithm itself will serve well as in-line comments in the resulting code. Figure

5.8 presents the level of detail required in a Complete Algorithm. It is at this level that all restrictions on

verbiage are finally removed, allowing the developer to address computational and representational

concerns specific to an individual weapon system. It is here that addressing Phoenix missiles is not only

acceptable, but expected when creating an F-14 CGF.
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>>>

Specific Areas of Concern, their requirements, and platform type specifics:
1.

How do I choose which maneuver to apply?

a) Required: A knowledge of available maneuvers.
Suggested: A maneuver container module.
Knowledge representation of maneuvers should represent movement in 3D
space, and should be identified in terms of the actual maneuvers they
represent.
Maneuvers are modeled as a series of points in a matrix, sufficient in
number to allow the maneuver to maintain a recognizable shape when scaled
in 3D to meet the geometry requirements. The maneuver container module
should keep the methods necessary to read in and lookup the maneuvers and
their points.
DESIGN CONCERN: It is possible, that with all the maneuvers possible from a
particular state from a particular task, that the maneuver module could be
quite large, and the overhead for categorizing the structure could be
overly complicated if not handled properly.

Figure 5.7. Portion of a Complete CGF Module Design Template for an F-15E Defensive Counter-Air

Maneuver Decision Module showing a Refinement of Suggested Implementation.

Complete Algorithm: Fighter Aircraft: F-15E
Central Algorithm: Make_Decision

- Pass in ptr to entity_identification_record that identifies specific target.
- Pass in target index.
Determine pilot performance parameters.
- Obtain Pilot Profile (PP) rating.
Determine locations and orientations of Wingman and target.
- Get current XYZhpr of Wingman and target.
Determine if Bandit ID as passed in is accurate, if not, search for
appropriate.
ID. If not found, pass back some sort of error flag.

If target is offensive capable, evaluate geometry for a no-win situation. If
Target's score is above a certain threshold, and the PP rating is high
enough to realize this, limit tree construction to disengaging maneuvers
and set goal to "disengage"”.

As a function of geometry, determine the maximum allowable decision making time.

_ As a function of relative distance to Wingman and Bandit, determine longest
allowable decision time for game tree decision making.

Determine if this decision process is the first applied to this target. If not,
then evaluate whether or not the actual movements are in keeping (by some
fuzzified amount) with those decided on. If either the aircraft or the
bandit are sufficiently off the chosen maneuver, then scrap the current
maneuver and reevaluate. As long as the aircraft and bandit are performing
reasonably as expected, then keep the score of the current maneuver as a
comparison to consequent evaluations.

- passed in as a parameter - decided by the calling method.

- If following up on a previous decision, evaluate geometry based on actual
movements. Retrieve previous XYZhpr of both aircraft, the maneuver
decision made, and resulting score. Place both aircraft in the Wingman
centered coordinate system, but offset each aircraft's XYZhpr by the
changes observed from the previous iterations. Determine how far off the
maneuver path both aircraft have drifted. Fuzzify this value. As a
function of PP, determine if the algorithm can detect a discernible
difference from either aircraft's actual position from the previously
projected position. If so - then scrap the current maneuver and reevaluate
completely. Otherwise, consider the current maneuver score as a baseline
to compare all new maneuvers against.

Figure 5.8. Portion of a Complete Algorithm for an F-15E Defensive Counter-Air Maneuver Decision

Module.
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5.6. Conclusion

The methodology presented in this chapter maps the individual Areas of Concern of each Decision
Engine into appropriate modules and then incrementally develops those modules into weapon system-
specific designs, ready to be coded into solutions. This CGF Architecture provides the framework within
which CGFs of any domain may be built, reusing designs and implementations from related CGFs that were

previously developed, and in so doing, can help lower the cost of CGF development.
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6. Implementation and Results

This chapter presents the embodiment of the CGF architecture as the Fuzzy Wingman, a fighter
aircraft CGF employing fuzzy logic for its inferencing processes. The Wingman can currently be
configured to fly as either an F-16D Fighting Falcon or an F-1SE Eagle by simply initializing the
propagation model to mimic the appropriate aircraft. It is also able to carry out F-15E defensive counter-air
missions. Details are presented of the three Decision Engines, as well as the other major components that
make up the Fuzzy Wingman CGF: the AeroModel Aircraft Propagation Module; the FlightController
Module, which provides control inputs to the AeroModel; the DISManager, AFIT's interface to DIS-based
DVEs:; and the Common Object Database, which serves as the communication/command channel for all of
these individual processes. Other support modules will be detailed that play an important role in the
Wingman project as well, such as the Round Earth Utilities Module, which provide the coordinate
conversion functions necessary to interact in a DIS DVE; the Terrain Module; the Maneuver Container
Module; the Weapon Module; and the Sensor Module. For specific information regarding the role of fuzzy

logic in this project, refer to Benslay's thesis [BENS96], which covers this topic in great detail.

Unless otherwise noted, all programs were written in C++ and compiled and executed on Silicon
Graphics workstations using SGI's own compiler, CC, and running under the IRIX 6.2 operating system.
The configurations of the various machines used in the implementation of the Wingman are enumerated in
Table 6.1. Makefiles were used extensively to facilitate the tasks of compiling the large number of

dependent modules.

Workstation | Model Number of | CPU Speed | RAM

CPUs
leonardo Onyx 4 100 MHz 192 MB
rembrandt Onyx 2 100 MHz 192 MB
donatello Indigo2 1 250 MHz 192 MB
monet Indigo® | | 250 MHz | 192 MB
dali Indigo® | 1 250 MHz | 192 MB

Table 6.1. Configuration of hardware used in Fuzzy Wingman implementation.
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Figure 6.1 provides an object diagram of the Fuzzy Wingman showing the distinct processes that

communicate with each other via the CODB.

TDE
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Figure 6.1. Object diagram of the Fuzzy Wingman.

6.1. Common Object Database

The concurrent nature of the CGF Architecture demands a communications/command
infrastructure that is able to bridge the gap between separate processes. The Common Object Database
(CODB) fulfills this requirement [STYT97]. The CODB is a C++ template class that uses shared memory
techniques to pass information between unrelated processes. The CODB employed by the Wingman
includes improvements to the standard version. The improvements focus on the relationship of the
processes using the CODB. The standard version of CODB enabled communications only between closely

related processes; that is, processes that have been spawned by a common parent process. When a process
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is spawned using the C++ sproc() function with the PrR_saDDR attribute, it shares all virtual space (shared
memory, mapped files, data space) with its parent process [SILI91]. In this manner, the single CODB
object was implicitly shared in memory among all related processes. The newer version of the CODB built
for and incorporated into the Wingman does not rely on processes being closely related. Instead, it builds a
shared memory arena using IRIX inter-process communications (IPC) functions [SILI91]. This enables
processes that are completely independent (i.e. launched separately from the command prompt) to access a
single CODB by explicitly joining the shared arena in which the CODB resides. This "heavy duty” CODB
has been tested on both sproc'd and completely independent processes, and successfully transmits correct

information in both cases.

The CODB accomplishes its task of directing information flow between multiple processes through
the use of ten public and three private methods. With these methods, it creates a shared memory arena and
places in it an array of double buffers. There exists one set of doublebuffers and a readbuffer and
writebuffer pointer for each structure type recognized by the CODB (see dbtypes.h in Appendix B). At
any given time, one of these buffers (pointed to by readbuffer) contains the most recently accessible
information and is available to any number of concurrent readers, while the other buffer (pointed to by
writebuffer) is available to only one process at a time for writing. When the writing process relinquishes
control of the write buffer, the pointers to the buffers are swapped, effectively turning the write buffer into
the read buffer, and vice versa. This dual buffer swapping is the key to maximizing accessibility to data,
even while fresh data is being written. Figure 6.2 illustrates the array that comprises the internal structure of

the CODB.




Figure 6.2. The DoubleBuffer array--the heart of the CODB, shown referencing four
readbuffer/writebuffer pairs that have been allocated in shared memory.

The shared memory arena and its contents are initialized by the CommonobjectDds constructor and
its calls to initCommonObjectDB and initDoubleBuffer. These three methods allocate | MB of RAM for
the arena at a base virtual address of 0x20000000 (512MB). It is important that none of the CGF processes
attempt any other memory operations in this space to avoid corrupting the CODB data with a memory
collision. The initialization process allows 50 sets of DoubleBuffers and access by up to 16 distinct

processes. All of these values may be modified as needed. They are defined in dbtypes.h.

In order to either read or write data to a particular data structure, that structure must first be
registered with the CODB. This is done by instantiating a CODB object with the desired structure as the
template type and indicating its associated structureType enumeration. The structureType value simply
serves as an index into the DoubleBuffer array, while the structure that completes the template is used
solely to obtain the amount of memory that needs to be allocated for the DoubleBuffers themselves. In
other words, there is no mandated correlation between the template structure and the structureType value.

When registering a new structure, the CODB first checks to see if a DoubleBuffer has already been
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established at the array position indicated by the new structure’s associated StructureType value. If so. the
new structure is ignored and a warning message is returned to the calling process. If not, sufficient memory
is allocated in the shared arena for the new DoubleBuffer, and its associated locks and pointers are
initialized.

While it is acceptable to attempt to register a structure twice, it is fatal to attempt to read or write a
structure that hasn't been registered. If a process attempts this operation, CODB will issue an error message
to the offending process and terminate it, leaving other processes unaffected. To avoid this problem, any
process can first check to see if another process has registered a structure by calling the Registered method

before attempting to read or write that structure.

To facilitate the shared nature of the data stored in the CODB, all read and write operations
involve a pair of method calls, one to begin the operation, and one to end it. It is absolutely imperative that
these operations be performed in pairs. BeginRead locks out the aforementioned swapping process until the
last reader of the particular structure issues its EndRead. If any reader process fails to match up an endread
to each BeginRead, the process writing to that same buffer will become deadlocked, and all other processes
that read that structure will receive the same stale data over and over again. BeginWrite, BeginReadWrite,
and BeginMagic all lock out subsequent writers from accessing the indicated buffer until the corresponding
Endwrite, EndReadWrite, OF EndMagic method, respectively, is called. If any writer process fails to match
up an EndwWrite, EndReadWrite, Or EndMagic to each BeginWrite, BeginReadWrite, and BeginMagic, not
only will that same process become deadlocked, but so too will all other processes attempting to write to
that same buffer, and all other processes that read that structure will receive the same stale data over and

over again.

The functionality of the BeginRead/EndRead pair is straightforward. BeginRead indicates to the
CODB that a process is attempting to read the readbuffer residing in the DoubleBuffer array at the slot
indicated by the structureType value. EndRead indicates to the CODB that the process is finished reading

the same readbuffer.



BeginWrite/Endwrite are just as straightforward. Beginwrite indicates to the CODB that a
process is attempting to write to the writebuffer residing in the DoubleBuffer array at the slot indicated
by the structureType value. Endwrite indicates to the CODB that the process is finished writing to the
same writebuffer. Because BeginWrite assumes the entire structure will be written to, it doesn't bother
copying the current contents of the readbuf fer into the writebuffer before handing over the stale contents
of the writebuffer to the calling process. As long as the entire structure is written to, the stale contents
will be completely overwritten by the new contents with no problems. However, if a process calls
Beginwrite and then only updates a portion of the data in the structure, the remaining data items in the

structure risk being corrupted by previous data.

Figure 6.3 illustrates this phenomenon. Initially, the writer process calls Beginwrite, then writes
the entire simple structure from its local copy into the CODB. After it calls Endwrite, the readbuffer and
writebuffer pointers are swapped enabling all reading processes to access the correct data. The writer
then calls Beginwrite again, but because only the contents of str1 have changed, it only writes that one
value to the CODB before calling Endwrite. It is at this point that the problem of data persistence occurs.
Any reader processes that access simple_struct in the CODB will unknowingly read stale data, indeed in
this case the values of num and str2 have never even been initialized. This problem is remedied by the

inclusion of the BeginReadwrite/EndReadwrite pair of methods.




struct Simple_Struct{
char str1(3) ;
int  num;
char str2(3) ;

}; //end struct

Simple_Struct LocaiSimple ;
LocaiSimple.str1 = "ABC";
LocalSimple.num = 123;
LocalSimple.str2 = "XYZ",

Simple_Struct *GlobaiSimple;

GlobalSimple = CODB->BeginWrite(SimpleStruct);
*GlobalStruct = LocaiStruct;

CODB->EndWrite(SimpleSiruct);

LocalSimple.str1 = "DEF";
GlobaiSimpie = CODB->BeginWrite(SimpleStruct);
GlobaiStruct->sir1 = LocalStruct.sirl;

 pEF [oo9] 222
ABCIT23} XYZ]|

CODB->EndWrite(SimpleStruct); ‘

DEF |.999) 222 |
ABC]123] XY¥Z|

Figure 6.3. The stale data persistence phenomenon. If the contents of readbuffer aren't copied over to
wntebuffer before writing only portions of the structure, then stale data will persist in the unwritten
portions.

The BeginReadWrite/EndReadWrite and BeginMagic/EndMagic pairs are identical to each other.
BeginMagic/EndMagic were names given to these methods in early stages of development of the CODB.
They've since been replaced by the more appropriately-named BeginReadWrite/EndReadWrite. but they
remain for backwards-compatibility. Their function is identical to that of the BeginWrite/EndWrice pair.
with one major exception. BeginReadwrite first copies the contents of the current readbuffer into the
writebuffer before handing over the writebuffer to the calling process. This enables the writer process

to update only portions of the structure and still maintain integrity of the remaining data items within that
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structure.  The argument can be made of eliminating the BeginReadWrite/EndReadWrite and
BeginMagic/EndMagic pairs and simply having BeginWwrite perform this initial copy function. If all
structures maintained within the CODB were very small, then performance wouldn't suffer as a result of the
memcopy operation that performs this task. But many structures registered within the Wingman system
consume large amounts of memory; frivolously copying such large memory segments can take a noticeable

toll on CPU performance.

6.2. DISManager

The DISManager is the Wingman's implementation of a generic DVE Interface Module. It was
created by Mr. Steven Sheasby of Distributed Simulation Technologies, Inc for use in AFIT DVEs. It uses
the DIS 2.0.3 protocol to exchange Protocol Data Units (PDUs) between the Wingman and the DVE

[IST95, IST96b]. It is designed to use the CODB to distribute incoming PDU information between

processes.

The DISManager consists of two closely-related processes--the parent process that is responsible
for sending PDUs from the local application (i.e. the Wingman) to the DVE, and its child process that
receives PDUs from the DVE and places their information into the CODB for any other process to access.
The DISManager provides method calls for sending various PDUs. For most applications, this design is
sufficient for a proper interface to a DVE. But because the Wingman consists of several unrelated
processes running concurrently, a problem arises. Namely, how does one process make a method call to a
completely unrelated process? The solution to this lies in a subclass of the DISManager that uses the

CODB as a means of passing control between processes.

This subclass is the FWDISManager. It registers with the CODB a DISManager control structure
that contains booleans that serve as switches for the various PDUs that can be sent; the structure can best be
thought of as a matrix containing rows of weapons and columns of PDU types as shown in Table 6.2. This
control structure is then used by the weapons propagation process that, for instance, launches an
AMRAAM, and needs a corresponding Fire PDU to be broadcast to the DVE. This weapon propagation

process indicates the need for such a PDU by setting the Firepou field to TruE for that particular
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AMRAAM in the CODB. On the other end, the FWDISManager process reads this switch setting from the

CODB and makes the appropriate call to the DISManager's broadcast_fire_pdu method.

Fire Detonate
PDU PDU
Mk-82 FALSE FALSE
Mk-82 FALSE FALSE
Mk-82 FALSE FALSE
Mk-82 FALSE FALSE
Mk-82 FALSE FALSE
MKk-82 FALSE FALSE
AIM-120 TRUE FALSE
AIM-120 FALSE FALSE
AIM-9 FALSE FALSE
AIM-9 FALSE FALSE

Table 6.2. Matrix representation of the DISManager control structure showing an AIM-120 AMRAAM
that has been launched and needs a corresponding Fire PDU to be broadcast.

The FWDISManager subclass is one of two instances in the Wingman system of using the CODB
as a means of control. The other example occurs in the CDE and is presented in Section 6.11. All other

processes use the CODB strictly as a means of communicating data.

6.3. AeroModel Module

The AeroModel Module propagates the Wingman aircraft through the air within the DVE. It was
originally written in the C programming language for Wright Laboratory’s Flight Simulation Facility
(WL/FIGD). Capt Terry A. Adams converted it into a C++ class for use in the Rapidly Reconfigurable
Virtual Cockpit [ADAM96]. This same version is used in the Wingman. The AeroModel has the ability to
model the flight dynamics of F-15, F-16, F-18, F-5E, and A-10 aircraft. Since this model was used as is, it

was obviously not subject to development according to the CGF Architecture described herein.

It is important to note several points of concern with the AeroModel. First, the AeroModel
propagates the aircraft entity on a 20 Hz cycle through a North East Down (NED) flat earth coordinate
system. This means the positive X-axis corresponds to North, while the positive Y- and Z-axes are
associated with East and Down, respectively. This is a right-hand coordinate system. The linear units

associated with the NED system are feet. Additionally, the heading, pitch, and roll of the aircraft are
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identified by their aeronautical engineering notation, namely psi, theta, and pht, respectively. Table 6.3

describes how these orientation angles are measured.

Orientation | Measurement Description
Range

+ Heading | 0°to 180° Positive rotation around +Z-axis
- Heading 0° to -180° Negative rotation around +Z-axis
+ Pitch 0° to 90° Positive rotation around +Y-axis
- Pitch 0° to -90° Negative rotation around +Y-axis
+ Roll 0° to 180° Positive rotation around +X-axis
- Roll 0° to -180° Negative rotation around +X-axis

Table 6.3. Measurement methods for heading, pitch, and roll.

Finally, the unitless measurements of the throttle, stick, rudder, and airbrake controls are outlined

in Table 6.4. These are the basic inputs that control the cycle to cycle propagation of the aircraft.

Control Measurement Description
Device Range
Throttle 00to 15 0.0 to 0.99 is mil power,
1.0 to 1.5 is afterburner
Stick Lat -1.0to 1.0 0.0 to -1.0 is stick left (-roll)
0.0 to +1.0 is stick right (+roil)
Stick Long | -1.0to 1.0 0.0 to -1.0 is stick forward
(-pitch)
0.0 to +1.0 is stick back (+pitch)
Rudder -1.0t0 1.0 0.0 to -1.0 is rudder left (-hdg)
0.0 to +1.0 is rudder right (+hdg)
Air Brake 1,0,0r-1 1 = extend, 0 = hold, -1 = retract

Table 6.4. Throttle, stick, rudder, and airbrake measurements.

Figure 6.4 shows the Aircraft Body Coordinate System (ABCS), which has the same configuration
as the NED system, but is locked to the airframe such that the positive X-axis projects through the nose of
the aircraft, positive Y goes out the right wing, and positive Z drops out the bottom. It is important to be
intimately familiar with these measurements in order to construct proper solutions to aircraft control

problems (i.e. flying formation or flying point to point).
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+Z

Figure 6.4. The Aircraft Body Coordinate System.

The AeroModel has proven itself to be an excellent aircraft propagation model for the Wingman.

Two F-16 pilots flew the Virtual Cockpit and praised the fidelity of the AeroModel [ADAM96].

6.4. Round Earth Utilities Module

The Round Earth Utilities (REU) Module provides functions that translate an entity's position and
orientation between the AeroModel's NED Coordinate System and the World Coordinate System (WCS)
used in DIS applications. The NED Coordinate System is described in Section 6.3. The WCS is a right-
handed geocentric Cartesian coordinate system that has its origin at the center of the earth. The positive
X-axis passes through the Prime Meridian at the Equator, while the positive Y-axis passes through the
Equator at 90° East longitude and the positive Z-axis passes through the North Pole [IST94a]. Its unit of

linear measurement is the meter; it measures angles in radians. Figure 6.5 illustrates this coordinate system.



Figure 6.5. The World Coordinate System used in DIS applications.

Before position/orientation information can be converted from one system to the other, REU must
first be initialized. This entails mapping the origin of the flat earth terrain to its corresponding point on the
surface of the earth in WCS coordinates. This flat earth origin in WCS coordinates is referred to as FEOy,.
Using the Fort Knox, Kentucky terrain supplied with ModSAF as an example, if the point on the surface of
the flat earth terrain (which also falls within the boundaries of the Knox terrain) at 37°40'N 86°26'W is used
as the origin of that flat earth terrain model, then its corresponding point FEOyw in WCS xyz coordinates
would be (314487.7674, 5045478.7908, 3876337.4122). This is calculated using data from the WGS 84
standard [DMA1]. From this, REU calculates the angle of rotation around the WCS Z-axis necessary to

align FEOw with the 90° West line of longitude. This angle is theta. It then calculates beta, the angle of
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rotation around the WCS X-axis necessary to align FEOy, with the North Pole. These converéion of points

between the two coordinate systems is straightforward as seen in Figure 6.6.

NED to WCS WCS to NED
e NED Coordinate System is mapped to WCS e NED Coordinate System is mapped to WCS
such that NED +X lies on WCS +Y, NED +Y such that NED +X lies on WCS +Y, NED +Y
lies on WCS +X, and NED +Z lies on WCS -Z lies on WCS +X, and NED +Z lies on WCS -Z
e Coordinate is raised up by the earth's radius ¢ Coordinate is rotated around WCS +Z by -theta
e Coordinate is rotated around WCS +X by beta | e  Coordinate is rotated around WCS +X by -beta
e Coordinate is rotated around WCS +Z by theta | ®  Coordinate is lowered by the earth’s radius

Figure 6.6. Algorithms for converting between WCS and NED Coordinate Systems.

REU makes extensive use of the Performer version 2.0 library matrix and vector functions. This
limits the Wingman to operation on SGI machines configured with Performer 2.0. This is unfortunate since
Performer is primarily a graphics library and the Wingman produces no graphical output. Another point of
concern is that Performer automatically allocates memory to be used as shared arenas. Care must be taken

to ensure these arenas don't conflict with those of the CODB.

6.5. Terrain Module

The Terrain Module developed for the Fuzzy Wingman is a C++ class that makes use of existing
ModSAF compact terrain database (CTDB) files and their accompanying functions written in the C
programming language. The ModSAF CTDBs were chosen to maintain consistency with ModSAF, the

primary application whose CGFs the Wingman would be tested against. The ModSAF Knox terrain is

shown in Figure 6.7.
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Figure 6.7. The ModSAF Knox terrain used in with the Fuzzy Wingman. Elevation is exaggerated by a
factor of 15 to highlight the peaks and valleys.

The primary purpose of the Terrain Module is to provide elevation information about the terrain
over which the Wingman is flying. Using the ModSAF Knox CTDB proved to be an effective way to

ensure consistency of terrain elevation data between applications.

6.6. Maneuver Container Module

In order to determine the best maneuver to fly in a particular situation, the Wingman must have a
repository of known maneuvers that the aircraft is able to perform. The Maneuver Container Module

provides this repository.
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Figure 6.8. The 3D points that comprise simple lead right turn.

Individual maneuvers are represented as sets of 3D points in the Maneuver Coordinate System
6-15

z value, and an associated heading, pitch, and roll. The Maneuver Container Module stores these variably-

Body Coordinate System when the maneuver is initiated as in Figure 6.8. A variable number of subsequent
points follow to define the particular maneuver. Table 6.5 shows how each point in the set has an x, y, and

(MCS). The MCS is identical to the NED Coordinate System, with the exception of the location of the
origin. The MCS origin semantically marks the beginning of the maneuver and is laid on top of the Aircraft

sized point sets as linked lists.



NED
X Y Z Heading __ Pitch Roll
154.5 24.5 0.0 18.0 0.0 30.0
293.9 95.5 0.0 36.0 0.0 30.0
404.5 206.1 0.0 54.0 0.0 30.0
475.5 345.5 0.0 72.0 0.0 30.0
500.0 500.0 0.0 90.0 0.0 30.0
475.5 654.5 0.0 108.0 0.0 30.0
404.5 793.9 0.0 126.0 0.0 30.0
293.9 904.5 0.0 144.0 0.0 30.0
154.5 975.5 0.0 162.0 0.0 30.0
0.0 10000 0.0 180.0 0.0 30.0

Table 6.5. Numerical representation of a lead right turn. Each row defines a subsequent point in the
maneuver.

Maneuvers are grouped together as either offensive, defensive, or high aspect. Each group of
maneuvers is then placed in the module as a higher level linked list, as illustrated in Figure 6.9. Data dumps
of the contents of the Maneuver Decision Module proved it to be a reliable storage and retrieval facility,

providing abstract, rapid access to the maneuvers employed by the Wingman.




6.7. Weapon Module

The Wingman employed a simplistic Weapon Module to provide the ability to fire, propagate, and
detonate weapons. This module contains NED propagation models of Mk-82 bombs and AIM-120
AMRAAMs. It can easily be expanded to model any other type of dumb bomb or air intercept missiles.
This is due to the fact that weapon parameters such as acceleration, maximum speed, maximum range, and
lethal blast radius are maintained in separate data files. This also facilitates the use of either classified or
unclassified values based on the security of the system. No classified weapons data was used in this

Weapon Module or any of its weapons data files.

The Mk-82 propagation model drops the bomb according to simple Newtonian acceleration
models. It performs computationally inexpensive estimations of aerodynamic considerations. Each bomb is
initially given the same x, y, and z velocities and accelerations as the Wingman aircraft as reported by the
AeroModel at bomb release time. The initial bomb velocity vectors are then multiplied by a random value
very near to 1.0 to provide a slight dispersion factor for multiple bombs as they drop. When observed in
ModSAF, the bombs appeared to fall in a realistic manner, dispersing slightly and drifting behind the
Wingman as the aircraft continued its flight. The bombs detonated properly upon impact with the ground.
However, ModSAF only allows direct-fire weapons to destroy vehicles. Since ModSAF does not recognize

Mk-82s as direct-fire weapons, the lethality of the Mk-82s could not be tested.

The AIM-120 propagation model is very lethal due to its simplicity. When launched, it simply
accelerates along the Wingman's velocity vector for two seconds (target acquisition phase) and then
immediately orients itself and its velocity and acceleration vectors toward the target aircraft (target lock
phase). With every subsequent iteration, it repeats this reorientation, until it reaches its intended target or
runs out of propellant and crashes to the ground. In every test in which the target was within range. the
AMRAAM scored a kill. This closely approximates the probability of kill that has been quoted by domain
experts. Although most aspects of the missile model suffice for their low level of complexity, the transition
from target acquisition to target lock would benefit by being smoothed out, possibly with a splining

technique.




6.8. Sensor Module

No explicit Sensor Module was built for the Wingman. Instead, the Fuzzy Wingman was simply
endowed with perfect knowledge of its environment by having access to information about all entities in its
DVE. This was done in order to facilitate testing of formation flying and weapon employment. To properly

model an F-15 or E-16 aircraft, appropriate Sensor Modules must be incorporated.

6.9. Strategic Decision Engine

A generic Strategic Decision Engine is charged with the high level responsibilities of
understanding and implementing mission level goals, communicating with other players, interpreting the
surrounding environment, and revising mission goals and subgoals. In the case of the Fuzzy Wingman, the
SDE has limited responsibilities in these areas. It does not communicate with any other entities; the
intended means of inter-entity communication was to have been the Command and Control Simulation
Interface Language (CCSIL), however, this software was unavailable during the implementation phase of
this project. Nor does the Wingman revise mission goals; the scope of this project precludes

implementation of this responsibility.

6.9.1. SDE Control_Module The Wingman's SDE Control Module exists as the method

decision_logic in the SDE class. It currently embodies the strategic-level requirements of a DCA mission
in an E-15E aircraft, such as communicating with the lead aircraft, setting target priorities, determining
mission state, checking radar, interrogating threat aircraft, performing visual checks, determining intercept
flow state, determining strategies, and assessing the mission. Because the SDE is not currently responsible
for revising mission goals, it is able to simply remain in the decision_logic loop until the mission has been

completed.

6.9.2. SDE F-15E Defensive Counter-Air Mission Module The SDE F-15E DCA Mission Module

is embodied in the SDE class as a series of methods. These methods perform the strategic-level
requirements of a DCA mission in an F-15E aircraft as outlined in Air Combat Command's F-15E Fighter

Fundamentals Manual [ACC92].




6.10. Tactical Decision Engine

A TDE's role is to manage the moment to moment operations of the entity. In the Wingman, this
entails receiving the specific mission from the SDE (in this case DCA only) and implementing it according
to the mission employment tactics of an F-15E Eagle. This includes activities such as flying formation,
determining which basic fighter maneuvers (BFMs) to perform in a threat environment in which one or

more bandit aircraft exist, and determining when to employ air intercept missiles (AIMs).

6.10.1. TDE Control Module The Wingman's TDE Control Module exists as the method

decision_logic in the TDE class. It currently embodies the tactical-level requirements of a DCA mission
in an F-15E aircraft, such as determining BFM state, determining the best maneuver to perform, getting the

status of the bandit aircraft, and determining whether to release weapons.

6.10.2. TDE F-15E Defensive Counter-Air Mission Module The TDE F-15E DCA Mission

Module is embodied in the TDE class as a series of methods. These methods perform the tactical-level
requirements of a DCA mission in an F-15E aircraft as outlined in Air Combat Command's F-15E Fighter

Fundamentals Manual [ACC92].

6.11. Critical Decision Engine

The CDE is ultimately to embody the survival instinct reflexes of the Wingman whose
responsibility includes taking over control of the aircraft in emergency situations where a collision or other
immediate and dire threat is eminent. As implemented, the CDE monitors the aircraft for ground collisions.
When a collision is detected, the CDE clears the alive flag in the CODB's cpEstruct to signal other

processes to cease processing.

6.12. Flight Control Module

A large portion of the implementation effort focused on enabling the Wingman to fly formation

and fly point to point. These functions are both manifested in the Flight Control Module.
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6.12.1. Fly Point To Point The Wingman's task of flying from point to point brings together a vast

majority of the system components. The TDE obtains the set of maneuver points to be flown from the
Maneuver Decision Module. It then passes the points to the Flight Control Module via the CODB. The
Flight Controller obtains the current aircraft positional data from the AeroModel through the CODB, uses
fuzzy logic to decide upon the appropriate aircraft controls, and then passes these controls through the
CODB to the AeroModel to alter the dynamics of the aircraft. This section will focus on the use of fuzzy
logic in determining the aircraft controls. Creating a fuzzy logic controller entails the creation of many
smaller items, such as rule chaining diagrams, reasoning schemas, and term sets. Benslay provides a
thorough treatment of these [BENS96]. The products of interest here are the term sets and rule sets. But
before any numbers can be processed through a controller, the identity of those numbers must be known. It
is therefore important to gain an insight into how a human pilot goes about the task of flying a high-

performance fighter aircraft through a point in space. This is essentially a three step process:

e  First, the aircraft is rolled until the destination point is aligned on the negative Z half of the XZ plane of
the aircraft body coordinate system (ABCS).

e  Back pressure is applied to the stick until the destination point lies directly ahead of the aircraft.

e  The aircraft is rolled again until its wings are level with the ground. The aircraft is then maintained in
this attitude until it passes through the point.

Several term sets are necessary to model this behavior. These are listed in Table 6.6. The terms of
each set are named such that they complete the phrase Target is Wingman. The complete contents

of each term set are included in Appendix C.

Term Set Functionality

RelativelyX Measures relative X in NED coordinate system in angular fashion.
RelativelyY Measures relative Y in NED coordinate system in angular fashion.
RelativelyZ Measures relative Z in NED coordinate system in angular fashion.
RelativelyDist Measures relative distance in NED coordinate system.

Table 6.6. Term sets required to fly point to point.

In addition to the terms sets, a set of 81 rules were devised to model the three steps of flying to a
point in 3D space. Eighty-one rules were needed to provide coverage for all combinations of RelativelyX.

RelativelyY, RelativelyZ, and RelativelyDist.
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Figure 6.10 shows the results of using these term sets and rules to control the aircraft. Figure
6.10(a) shows the four points comprising the zigzag route to be flown with the Wingman just under way at
the starting point initially flying straight East. Figures 6.10(b)-(e) show the Wingman as it approaches each
of the points. Data was collected from five runs over this course. These complete data can be found in

Appendix D. A summary of the minimum proximity of the Wingman to the points is presented in

Table 6.7.

()

(b) ©) (d (e)

Figure 6.10. ModSAF representation of the Wingman flying a zigzag course over Fort Knox.

Minimum Proximity to Point Run i Run 2 Run3 Run 4 Run5
(feet) (feet) (feet) (feet) (feet)

1 299 291 287 287 285

2 294 299 295 294 296

3 304 291 292 294 294

4 303 299 298 302 311
Average Minimum Proximity 300 | 205 | 293 | 294.25 | 296.5

Overall Average Minimum
Proximity 295.75

Table 6.7. Minimum proximity between the Wingman and the zigzag points across five runs.

One may ask why the Wingman can't seem to get much closer than 300 feet to its intended route

points. A suggested solution might be to tighten up the values used in the fuzzy term sets, but doing so
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would defeat the original intent of using fuzzy logic. The purpose was to introduce a measure of variability
in the Wingman's actions to provide a better emulation of a human operator. Indeed, the very fact that the

Wingman only ever gets to within about 300 feet of its points indicates that the fuzzy logic is working

exactly as planned.
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7. Conclusions

In this thesis, a new architecture was presented that facilitates the design and construction of CGFs
of any domain and addresses the important issue of concurrent processing. The use of such an architecture
can have profound effects on the way CGFs are constructed. No longer would developers need to start from
the ground floor with every new CGF built. Instead, repositories of CGF Module Design Templates could

be maintained for all to either reuse or modify for their own particular needs.

Widespread use of this new architecture could enable a greater variety of CGFs to be built, so
Distributed Virtual Environments could be populated with a more realistic set of entities. This equates to

more realistic training exercises, resulting in better prepared military forces.

The Fuzzy Wingman implementation of this architecture shows the good deal of extensibility
afforded by the CGF Architecture. Although it proved the architecture viable, the Wingman would benefit
greatly from a more robust set of modules. Weapon, sensor, and communication modules all need to be
enhanced. On the other hand, many of the critical infrastructure components proved themselves to be
reliable. The CODB provided an easy method of inter-process communication and control. The

DISManager efficiently passed PDUs between the application and the DVE.

An excellent opportunity for future research lies in the modification of the CODB to enable
communication and control between distributed processes, as opposed to merely multiple processes running
concurrently on one machine. This would allow for a much more powerful CGF that could take advantage

of numerous modules developed under the CGF Architecture.
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Appendix A
CGF Module Design Templates

A.l. Generic CGF Module Design Templates

GENERIC CGF MODULE DESIGN TEMPLATE

Type and Function:

Decision Process Module Type: Maneuver Decision Module

Intended User:

TDE

Specific Areas of Concern and their requirements:

1. How do I choose which maneuver to apply in a given situation?

a)

b)

c)

e)

£)

g)

h)

Required: A knowledge of available maneuvers.

Suggested: A maneuver container module.

Required: A knowlege of to whom the maneuver is to be applied
against and where they are located, or an area the maneuver
is to be performed in.

Suggested: Method parameter.

Required: A knowledge of the goal in applying the maneuver.
Suggested: Assumed, method parameter, lookup, or module.
Required: A knowledge of if we're reevaluating a pervious maneuver
decision that we're curently carrying out, or a first time
decision.

Suggested: Method parameter.

Required: A knowledge of my location.

Suggested: Lookup.

Required: A knowledge of an adversary and his known abilities.
Suggested: An adversary information module.

Required: A methodology or representation of applying the
known maneuvers in relation to another entity or area to

accomplish the goal.

Suggested: An artificial intelligence algorithm/methodology,
potentially in a separate module.

Required: A mechanism for relaying the decision to those
that need it.

Suggested: Returned structure, reference pointer in argument
list, or TDE intracommunication methodology.

2. How do I take the environment into account in decision making?

a)

b)

c)

Required: A knowledge of the terrain.

Suggested: A terrain container module.

Required: A knowlege of other entities, where they
are at, what they are, and what they are doing (when
allowable).

Suggested: An array of sensor modules.

Required: A knowledge of atmospheric conditions.
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Suggested: An atmosphere module.
Generic Algorithm:
Given the following:
1) my location,

2) an entity to which I'm supposed to move with or against and its
location, OR an area that I'm to move within,

3) an initial goal;
Determine if the goal is obtainable;
Determine how much time is available to make a decision;

In the given time, choose the best maneuver which comes closest to
accomplishing the goal that:

1) doesn't violate terrain knowlege,
2) takes into account atmospheric conditions,
3) considers other entities and their potential adverse actions;

Report the decision.
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A.2. Applied CGF Module Design Templates

APPLIED CGF MODULE DESIGN TEMPLATE

Module Type: Function: Platform Type:

Decision Process Module Type: Maneuver Decision Module: JetFighter

Intended User: TDE

(NOTE:

Applied specifics for this type are preceeded by an "-->"

--> Mission Type:

Defensive Counter Air (DCA)

--> Target Domain:

Alr

_-> Artificial Intelligence Methodology:

Asynchronous, adversarial game tree with fuzzy spatial
relationship evaluators.

--> Software Engineering Methodology:

Modular Pseudocode Decomposition of Object Oriented Design

Specific Areas of Concern, their requirements, and platform type specifics:

1.

How do I choose which maneuver to apply in a given situation?
a) Required: A knowledge of available maneuvers.
Suggested: A maneuver container module.

--> Knowledge representation of maneuvers should represent
movement in 3D space, and should be identified in
terms of the actual maneuvers they represent.

b) Required: A knowlege of to whom the maneuver is to be applied
against and where they are located, or an area the maneuver
is to be performed in.

Suggested: Method parameter.

--> Tt would be useful to have some sort of pointer to
where this entity resides in order to quickly access
the necessary data such as location and' type. Also,
as a backup, give some other identifying information
about the entity that can verify the entity being
pointed to.

c) Required: A knowledge of the goal in applying the maneuver.
Suggested: Assumed, method parameter, lookup, or module.

--> Highly dependent on mission type. Because of the complexities
involved with making a single maneuver decision module consider
all the possible missions, their individual states, and the
resulting possible maneuver combinations, this applied module is
built specifically for a DCA mission. Hence, the goal of

_ applying the maneuver is implied: maneuver this aircraft as
to put it in an optimum position for firing missiles or guns at
a bandit aircraft while denying the bandit any superior
positional advantage.

Consequently, this module will need to have knowledge of the
available weapons that can be employed and their performance
characteristics so that these parameters can be used in the
maneuver evaluations. Hence, this module should have a




reference to a weapon data container module.

d) Required: A knowledge of if we're reevaluating a previous
maneuver decision that we're currently carrying out, or a first
time decision.

Suggested: Method parameter.

--> The TDE should decide and pass as a parameter if this is the
first decision for this target.

e) Required: A knowledge of my location.
Suggested: Lookup.

_-> This module should have a simple way of ascertaining
the aircraft's exact location and orientation.

£f) Required: A knowledge of an adversary and his known abilities.
Suggested: An adversary information module.

--> In order to determine the correctness of a particular
maneuver combination, possible adversarial responses
to established maneuvers should be known. For
simplicity, and when engaged against another like acft,
these could be a duplication of the known
maneuvers for this aircraft type. For higher fidelity
reasoning, an adversary information module should be
developed, especially if the target is dissimilar.

g) Required: A methodology or representation of applying the
known maneuvers in relation to another entity or area to
accomplish the goal.

Suggested: An artificial intelligence algorithm/methodology,
potentially in a separate module.

--> For this application, modify an adversarial game tree
for asynchronous play which uses a fuzzy inferencing
engine to score positions by evaluating the geometry
between this aircraft and the bandit. The game tree
should compare possible maneuvers and their relative
strengths/weaknesses and choose an appropriate maneuver.

Naturally, depending on the number of resulting

maneuver combinations, the number of node evaluations
could grow quite large, so some heuristic must be
applied to trim the game tree, as well as establishing

a time limit in which a decision must be reached.
Depending on system level design methodologies, choose a
heuristic which reflects the pilot's abilities to make
the same choice.

The game tree should take into account the types of
maneuvers used for a specific DCA state, as well as disgarding
any maneuver that violates the terrain knowledge.

Measure and fuzzify the following Battle Space Domain
measurement types:

“Range to Designated Target (RDT)
Relative Target Altitude (RAL)
Target Aspect (TAS)

Approach Quarter Nose (AQN)
aApproach Quarter Tail (AQT)

Create an evaluation term set which describes the “goodness”
of the resulting geometry configuration.

h) Required: A mechanism for relaying the decision to those
that need it.

Suggested: Returned structure, reference pointer in argument
list, or TDE intracommunication methodology.
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--> Pass by reference parameter that points to a modified maneuver
point list.

2. How do I take the environment into account in decision making?

a) Required: A knowledge of the terrain.

Suggested: A terrain container module.

—-> This module should have access to a terrain container
module, and not necessarily own one itself. Perhaps
the best technique would be to pass a reference as an
argument parameter, or through an intracommunictaion
mechanism like .the CODB, as long as immediate use can
be made of it.

b) Required: A knowlege other entities, where they

are at, what they are, and what they are doing (when

allowable) .

Suggested: An array of sensor modules.

--> Similar to the terrain container module, this module
should have access to the sensor modules that are owned
by other modules in the system. Likewise, references to
these modules could be made through argument parameters
or through the intracommunictaion mechanism.

c) Required: A knowledge of atmospheric conditions.

Suggested: An atmosphere module.

--> This module should have access to an atmospheric
module, and not necessarily own one itself. Perhaps
the best technique would be to pass a reference as an
argument parameter, oOr through an intracommunictaion

mechanism like the CODB, as long as immediate use can
be made of it. :

Generic Algorithm:
Given the following:
1) my location,

2) an entity to which I'm supposed to move with or against and its
location, OR an area that I'm to move within,

3) an initial goal;
Determine if the goal is obtainable;
Determine how much time is available to make a decision;

In the given time, choose the best maneuver which comes closest to
accomplishing the goal that:

1) doesn't violate terrain knowlege,
2) takes into account atmospheric conditions,
3) considers other entities and their potential adverse actions;
Report the decision.
applied Algorithm: Jet Fighter
--> Mission Type:
Defensive Counter Air (DCA)
--> Artificial Intelligence Methodology:

Asynchronous, adversarial game tree with fuzzy spatial
relationship evaluators.

A-5




_-> software Engineering Methodology:

Modular Pseudocode Decomposition of Object Oriented Design

1. - Construct the module object with the needed objects.

2. - Determine pilot performance parameters.

3. - Determine locations and orientations of aircraft and bandit.
4. - If target is offensive capable, evaluate geometry for a no-win
situation.

5. - As a function of geometry, determine the maximum allowable

decision making time.

6. - Determine if this decision process is the first applied to

this target. If not, then evaluate whether or not the actual movements
are in keeping (by some fuzzified amount) with those decided on.

If either the aircraft or the bandit are sufficiently off the chosen
maneuver, then scrap the current maneuver and reevaluate. As long

as the aircraft and bandit are performing reasonably as expected, then
keep the score of the current maneuver as a comparrison to consequent
evaluations.

7. - Depending on the bandit type and the geometry involved,

‘construct a game tree based on the known maneuvers for those

posture states.

8. - Determine pruning heuristics.

9. - Based on positions, bandit type, velocities, maneuver
selections, weapon choices, and terrain info, evaluate as many
combinations as possible without exceeding the maximum allowable
decision making time. Retain the highest scoring combination.

10. - If this is a follow-on maneuver evaluation for a bandit, then
compare the results of this decision with the previous one.

Choose the better of the two and report that for implementation.

11. - If directed, record necessary data for a decision trace.
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A.3. Complete CGF Module Design Templates

COMPLETE ICGF MODULE DESIGN TEMPLATE

Module Type: Function: Platform Type: Role:
Decision Process Module Type: Maneuver Decision Module: JetFighter: Wingman
Intended User: TDE
(NOTE: Applied specifics for this type are preceeded by an "-->").
(NOTE: Complete specifics for this type are preceeded by an ">>>").
--> Mission Type:

Defensive Counter Air (DCA)

>>> Combat Air Patrol as defined by Shaw.
--> Target Domain:

Air

>>> As defined by IST-CR-95-14.
--> Artificial Intelligence Methodology:

Asynchronous, adversarial game tree with fuzzy spatial
relationship evaluators.

>>> Use FuzzyCLIPS as the fuzzy inferencing logic.
--> Software Engineering Methodology:
Modular Pseudocode Decomposition of Object Oriented Design
>>> Intracommunication Structure:
Common Object Data Base (CODB)
>>> Virtual Entity Managers
DIS Manager + World State Manager
Specific Areas of Concern, their requirements, and platform type specifics:
1. How do I choose which maneuver to apply in a given situation?
a) Required: A knowledge of available maneuvers.
Suggested: A maneuver container module.
--> Knowledge representation of maneuvers should represent
movement in 3D space, and should be identified in
terms of the actual maneuvers they represent.
>>> Maneuvers are modeled as a series of points in a matrix,
sufficient in number to allow the maneuver to maintain a
recognizable shape when scaled in 3D to meet the geometry
requirements. The maneuver container module should keep the
methods necessary to read in and lookup the maneuvers and
their points.
DESIGN CONCERN: It is possible, that with all the maneuvers
possible from a particular state from a particular task,
that the maneuver module could be quite large, and the
overhead for categorizing the structure could be overly

complicated if not handled properly.

b) Required: A knowlege of to whom the maneuver is to be applied
against and where they are located, or an area the maneuver

AT




is to be performed in.
Suggested: Method parameter.

--> It would be useful to have some sort of pointer to
where this entity resides in order to quickly access
the necessary data such as location and type. Also,
as a backup, give some other identifying information
about the entity that can verify the entity being
pointed to.

>>> The module will need two things: 1) a pointer to the
entity_identification_record that has the detailed specs of the
target, and 2) an index into the entity array within the World
State Manager for quick lookups.

c) Required: A knowledge of the goal in applying the maneuver.
suggested: Assumed, method parameter, lookup, or module.

--> Highly dependent on mission type. Because of the complexities
involved with making a single maneuver decision module consider
all the possible missions, their individual states, and the
resulting possible maneuver combinations, this applied module is
built specifically for a DCA mission. Hence, the goal of
applying the maneuver is implied: maneuver this aircraft as
to put it in an optimum position for firing missiles or guns at
a bandit aircraft while denying the bandit any superior
positional advantage.

Consequently, this module will need to have knowledge of the
available weapons that can be employed and their performance
characteristics so that these parameters can be used in the
maneuver evaluations. Hence, this module should have a
reference to a weapon data container module.

d) Required: A knowledge of my location.
Suggested: Lookup.

—_> This module should have a simple way of ascertaining
the aircraft's exact location and orientation.

»>> Access to the aircraft's entity identification record
through the CODB.

e) Required: A knowledge of an adversary and his known abilities.
Suggested: An adversary information module.

_-> In order to determine the correctness of a particular
maneuver combination, possible adversarial responses
to established maneuvers should be known. For
simplicity, and when engaged against another like acft,
these could be a duplication of the known
maneuvers for this aircraft type. For higher fidelity
reasoning, an adversary information module should be
developed, especially if the target is dissimilar.

>>> To maintain simplicity on this first module, consider that
the bandit aircraft has the same maneuver database as we do,
hence use the appropriate BFM State category of the Maneuver
Decision Module.

f) Required: A methodology or representation of applying the
known maneuvers in relation to another entity or area to
accomplish the goal.

Suggested: An artificial intelligence algorithm/methodology,
potentially in a separate module.

--> For this application, modify an adversarial game tree
for asynchronous play which uses a fuzzy inferencing
engine to score positions by evaluating the geometry
between this aircraft and the target. The game tree
should compare possible maneuvers and their relative
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strengths/weaknesses and choose an appropriate maneuver.

Naturally, depending on the number of resulting
maneuver combinations, the number of node evaluations
could grow quite large, so some heuristic must be
applied to trim the game tree, as well as establishing

a time limit in which a decision must be reached.
Depending on system level design methodologies, choose a
heuristic which reflects the pilot's abilities to make
the same choice.

The game tree should take into account the types of
maneuvers used for a specific DCA state, as well as disgarding
any maneuver that violates the terrain knowledge.

Measure and fuzzify the following Battle Space Domain
measurement types:

Range to Designated Target (RDT)
Relative Target Altitude (RAL)
Target Aspect (TAS) :
Approach Quarter Nose (AQN)
Approach Quarter Tail (AQT)

Create an evaluation term set which describes the "goodness"
of the resulting geometry configuration.

>>> Use FuzzyCLIPS as the inferencing logic.

DESIGN CRITERION 1: FuzzyCLIPS is a regular C product and not
a C++ product. Hence, when the library files are used
within an object, it is important that only one process be
allowed to use that library at any given time. Otherwise, if
multiple processes attempt to access and use the library,
FuzzyCLIPS has no mechanism to keep separate rule firing
stacks or state spaces for the individual processes. Hence
when considering where this module is to be used within the
TDE (or other DE), it must exist in an object that uses a
single process approach.

DESIGN CRITERION 2: Because this Maneuver Decision Module
will more than likely co-exist with other Maneuver Decision
Modules within the DE, it will be important to introduce the
rule sets as separate modules within the FuzzyCLIPS
corporate memory. This will allow this Maneuver Decision
Module to specify the subset of rules with which it is
concerned. This is important in that if each of of the
Maneuver Decision Modules have 300+ rules, you do not want
to incur the performance hit of evaluating rules that do not
pertain to your mission perspective.

Game Tree Construction: Note that this will not be a
traditional (ie static & synchronous) game tree, but one
modified for dynamic & asynchronous input. Instead of
separate minimizing and maximizing levels, there will be
only two major levels below the root node - one to describe
the Wingman's possible moves, then one to describe the
Bandit's possible moves. Nodes beyond this point will
describe fuzzily determined evaluations of the resulting
spatial orientations based on a yet to be defined time
interval.

Pruning Heuristics: Determine by Pilot profile (PP) if the
algorithm will receive any additional pruning heuristics in
the way of hints to which combination of maneuvers to look
first (could be given as a .dat file, easilly modifiable,
that is read in from program start).

Evaluations: The first evaluations should be a "snapshot"
of what the resulting geometry will look like should the
chosen maneuvers be employed.

Tree Traversal: Should begin with those maneuver
combinations that appear in the "hints" file as discerned by
the PP heuristic, and which also have a snapshot evaluation
above a certain threshold. If this combination does not
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exist, then simply start with the combination that has the
best evaluation.

"l.ook Ahead" Time: As a function of PP, determine the
intervals of time that will be used to evaluate the
intermediate spatial orientations of the Wingman and Bandit
as they proceed through the maneuver combinations. For
instance, the h8igher the PP rating, the farther ahead the
pilot will be able to accurately discern the potential
outcome of his chosen maneuver.

The following Battle Space Domain measurement types have the
following term sets:

RDT: nil, close, near, far

RAL: low, same, high

TAS: cold, nil, hot

AQN: left_beam, nose, right_beam
AQT: right_beam, tail, left_beam

Go through the process of illiciting the knowledge
neccessary from a domain expert (fighter pilot) as to the
terms to use in the evaluation term set, the membership
functions for this and the measurement sets, and the rules
that model the pilot situational evaluation behaviors.

g) Required: A mechanism for relaying the decision to those
that need it.

Suggested: Returned structure, reference pointer in argument
list, or TDE intracommunication methodology.

--> Pass by reference parameter that points to a modified maneuver
point list.

>>> The main decision logic function of the module should return an
enumerated error code type that can be checked in the
calling method prior to utilizing the referenced pointer.

How do I take the environment into account in decision making?
a) Required: A knowledge of the terrain.
Suggested: A terrain container module.

--> This module should have access to a terrain container
module, and not necessarily own one itself. Perhaps
the best technique would be to pass a reference as an
argument parameter, or through an intracommunictaion
mechanism like the CODB, as long as immediate use can
be made of it.

>>> Use a module that reads in and stores a ModSAF terrain
database and which returns a terrain altitude based on X Y
coordinates.

b) Required: A knowlege other entities, where they
are at, what they are, and what they are doing (when
allowable) .

Suggested: An array of sensor modules.
_-> Similar to the terrain container module, this module
should have access to the sensor modules that are owned
by other modules in the system. Likewise, references to
these modules could be made through argument parameters
or through the intracommunictaion mechanism.
>>> For now, a simplified radar model is being integrated into
the system that simply reports the entities that are visible as
a result of applying a filter algorithm.
c) Required: A knowledge of atmospheric conditions.

Suggested: An atmosphere module.
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—-> This module should have access to an atmospheric
module, and not necessarily own one itself. Perhaps
the best technique would be to pass a reference as an
argument parameter, or through an intracommunictaion
mechanism like the CODB, as long as immediate use can
be made of it.
>>> No atmospheric module is planned at this time.

Generic Algorithm:
Given the following:
1) my location,

2) an entity to which I'm supposed to move with or against and its
location, OR an area that I'm to move within,

3) an initial goal;
Determine if the goal is obtainable;
Determine how much time is available to make a decision;

In the given time, choose the best maneuver which comes closest to
accomplishing the goal that:

1) doesn't violate terrain knowlege,
2) takes into account atmospheric conditions,
3) considers other entities and their potential adverse actions;
Report the decision.
APPLIED ALGORITHM: JET FIGHTER
--> Mission Type:
Defensive Counter Air (DCA)
--> Target Domain:
Air
--> Artificial Intelligence Methodology:

Asynchronous, adversarial game tree with fuzzy spatial
relationship evaluators.

--> Software Engineering Methodology:

Modular Pseudocode Decomposition of Object Oriented Design

1. - Construct the module object with the needed objects.

2. - Determine pilot performance parameters.

3. - Determine locations and orientations of aircraft and target.
4. - Determine if this decision process is the first applied to

this target.

5. - If target is offensive capable, evaluate geometry for a no-win
situation.
§&. - As a function of geometry, determine the maximum allowable

decision making time.

7. - Depending on the target domain and the geometry involved,
construct a game tree based on the known maneuvers for those
posture states.

8. - Determine pruning heuristics.

9. - Based on positions, target domain type, velocities, maneuver
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selections, weapon choices, and terrain info, evaluate as many
combinations as possible without exceeding the maximum allowable
decision making time. Retain the highest scoring combination.
10. - If this is a follow-on maneuver evaluation for a target, then
compare the results of this decision with the previous one.
Choose the better of the two and report that for implementa-
tion.
11. - If directed, record necessary data for a decision trace.
COMPLETE ALGORITHM: Jet Fighter: Wingman
--> Mission Type:

Defensive Counter Air (DCA)

>>> Combat Air Patrol as defined by Shaw.
--> Target Domain:

Air

>>> As defined by IST-CR-95-14.
--> Artificial Intelligence Methodology:

Asynchronous, adversarial game tree with fuzzy spatial
relationship evaluators.

--> Software Engineering Methodology:
Modular Pseudocode Decomposition of Object Oriented Design
Constructor:
1. - Construct the module object with the needed objects.
- Pass in ptr for REU module.
- Pass in ptr for Maneuver Container Module
- Initialize class attributes
- Load clips file
- Setup debug/dump flags
- Output file setup.
Central Algorithm: Make_Decision

- Pass in ptr to entity_identification_record that identifies
specific target

- Pass in target index.

2. - Determine pilot performance parameters.
- Obtain Pilot Profile (PP) rating.

3. - Determine locations and orientations of Wingman and target.
- Get current XYZhpr of Wingman and target.

Determine if Bandit ID as passed in is accurate, if not, search for

appropriate

ID. If not found, pass back some sort of error flag.

4. - If target is offensive capable, evaluate geometry for a no-win
situation.

If Target's score is above a certain threshold, and the PP rating is
high enough to realize this, limit tree construction to disengaging
maneuvers and set goal to "disengage".




As a function of geometry, determine the maximum allowable
decision making time.

_ As a function of relative distance to Wingman and Bandit, determine longest
allowable decision time for game tree decision making.

Determine if this decision process is the first applied to

this target. If not, then evaluate whether or not the actual
movements are in keeping (by some fuzzified amount) with those
decided on. If either the aircraft or the bandit are sufficiently
off the chosen maneuver, then scrap the current maneuver and
reevaluate. As long as the aircraft and bandit are performing
reasonably as expected, then keep the score of the current maneuver
as a comparrison to consequent evaluations.

- passed in as a parameter - decided by the calling method.

- If following up on a previous decision, evaluate geometry based on
actual movements.

Retrieve previous XYzZhpr of both acft, the maneuver decision made,
and resulting score.

Place both acft in the Wingman centered coordinate system, but
offset each acft's XYzZhpr by the changes observed from the previous
iterations.

Determine how far off the maneuver path both acft have drifted.
Fuzzify this value.

As a function of PP, determine if the algorithm can detect a
discernable difference from either acft's actual position from the
previously projected position.

If so - then scrap the current maneuver and reevaluate completely.

Otherwise, consider the current maneuver Score as a baseline to
compare all new maneuvers against.

Depending on the bandit type and the geometry involved,
construct a game tree based on the known maneuvers for those
posture states.

- If goal has not already been set to disengage, and based on the
BFM state (BFM state being determined by CDE), set the goal to
"engage", and construct the basic tree by

(Wingman BFM State maneuvers) X
(Bandit's opposite BFM State maneuvers)

Determine pruning heuristics.

- Determine by PP if the algorithm will receive any additional
pruning heuristics in the way of hints to which combination of
maneuvers to look first (could be given as a .dat file, easilly
modifiable, that is read in from program start)

- Determine “look ahead" time. As a function of PP, determine the
intervals of time that will be used to evaluate the intermediate
spatial orientations of the Wingman and Badit as they proceed
through the maneuver combinations. For instance, the higher the
PP rating, the farther ahead the pilot will be able to accurately
discern the potential outcome of his chosen maneuver.

Based on positions, bandit type, velocities, maneuver
selections, weapon choices, and terrain info, evaluate as many
combinations as possible without exceeding the maximum allowable
decision making time. Retain the highest scoring combination.

- Translate and rotate both the Wingman and Bandit according to a
Wingman centered coordinate system.

- Establish maneuver orientation and scaling changes according to the
following:




X = distance between Wingman and Bandit

OR = optimum firing range for specified weapon
LBR = weapon lethal blast radius

OR/AAM.vel = T1

W.vel*T + OR + LBR + B.vel*Tl + B.vel*T = X

Take W.vel*T and make that the end point of the maneuver.
Scale maneuver to match last maneuver pt w/ W.vel*T in the XY plane.

Take note of hpr in this position, and extend weapon employment zone according
to weapon type.

First, take "snapshots" of what the spatial geometry will be at
the end of the maneuver. Fuzzy evaluations will be based on the
following:

Distance

Weapon range

Weapon lethal blast radius
Bandit aspect

Wwingman orientation

Use a breadth first search (BFS) algorithm to begin the search and
evaluations.

Start the BFS with the maneuver combination that turned up on the
most desired list & which had the highest evaluation. If none fit
this category, then start with the highest evaluation.

Evaluate a given maneuver combination:

Translate and rotate both the Wingman and Bandit according to the
possible distance traveled along the maneuver path.

Inbetween each fuzzy evaluation, determine the remaining time
allowable and if another evaluation is possible. If yes, then
continue the BFS algorithm. If not, return the maneuver
combination with the best evaluation.

If this is a follow-on maneuver evaluation for a bandit, then
compare the results of this decision with the previous one.
Choose the better of the two and report that for implementation.

- If this is a follow up evaluation, determine if the new maneuver
score is higher than the newest projected score for the current
maneuver.

- If the new maneuver score is higher, save the geometry and score
for the next comparrison, then report a change in tactic with the
new maneuver combination.

- If the new maneuver score is NOT higher, disregard the newest
maneuver, and report no change in tactic.

If directed, record necessary data for a decision trace.
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Appendix B

Common Object Database Source Code

The Common Object Database (CODB) implements shared memory techniques to allow

communication between independent processes. Its functionality is described in detail in Chapter Six.

B.1. dbtypes.h

#ifndef _DBTYPES_H_
#define _DBTYPES_H_

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

// The maximum number of structure types allowed in the system.

#define MaxDoubleBuffers
#define MaxCODBProcesses
#define CODBArenaBaseAddress 536870912

#define MaxCODBArenaBytes

//#define MaxCODBArenaBytes

// List of structure types.

// MaxDoubleBuffers.
enum StructureType(
MouseStruct,
KeyboardStruct,
AircraftStruct,

RendererStruct,

HotasStruct,
FastrakStruct,
WSMStruct,
PodStruct,
AcftCtriStruct,
StateStruct,
EnvironStruct,

PerformerWSMStruct,

PlanetStruct,
MoonStruct,
SDEStruct,
TDEStruct,
CDEStruct,
AsteroidStruct,
CometStruct,
TimeStruct,
TrailsStruct,
SMStruct,
SatStruct,
GUIStruct,
DummyStruct,
WSMEntityStruct,
WSMEventStruct,
WSMMgtStruct,
WSMpfEntityStruct,
WSMpfEventStruct,
OwnStateStruct,
OwnMgtsStruct,
WSMGPSStruct,
PatientVitals,
DoctorTreatment,
IVPumpStruct,

PatientWarmerStruct,

DefibStruct,

//
/7
/7
/7
//
//
1/
/7
/7
/7
//
/7
//
//
/!
//
/7
/7
//
/7
/7
//
1/
//
1/
//
/7
/7
//
//
/7
//
//
/7
/1l
/7
/7
//

WO WwN PO

// S512MB (2729
// 1IMB (2720
// 128KB (2717)

0x20000000)
0x00100000)

The number of enumerations here must not exceed
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WingmanStruct, // 38

CockpitStruct, /7 39
RadarStruct, // 40
INSStruct, // 41
MFDStruct, // 42
LocalCoordsStruct, // 43
WeaponStruct, // 44
DISMgrCtrlstruct, // 45
WingmanReadyStruct, // 46
BombDataStruct, /7 47
AIMDataStruct, // 48
AGMDataStruct // 49

}i

#endif

B.2. commonobjdb.h

#ifndef __ CommonObjectDB__
#define _ CommonObjectDB__

#include <ulocks.h>
#include "dbtypes.h"

struct DoubleBufferData(
ulock_t ReadAccess;
ulock_t WriteAccess;
ulock_t ReadCountAccess;

int ReadCount;
void *ReadBufferPtr;
void *WriteBufferPtr;

size_t BuffersSize;
};//end struct DoubleBufferData

// Data structure to be accessed by the Common Object Database
struct CommonObjectDBDataf{

ulock_t AccessLock;
DoubleBufferData DoubleBuffer [MaxDoubleBuffers];
unsigned int BytesAllocated;

};//end struct CommonObjectDBData

// Arena Control Structure

struct CommonObjectDBControl_t({
ulock_t UpdateLock;
CommonObjectDBData *Data;

};//end struct CommonObjectDBControl t

// CommonObjectDB Class
template <class T>
class CommonObjectDB({

public:
// Methods:

CommonObjectDB (StructureType structure);
void *BeginRead( StructureType structure):
void EndRead ( StructureType structure);
void *BeginWrite( StructureType structure);
void EndwWrite( StructureType structure);
void *BeginReadWrite(StructureType structure);
void *BeginMagic( sStructureType structure);
void EndReadWrite( StructureType structure);
void EndMagic( StructureType structure);
int Registered( StructureType structure};

// Attributes:

// (None)
private:
// Methods:




void initCommonObjectDB() ;
void initDoubleBuffer (StructureType structure);
void ReportArenalnfo( StructureType structure);

// Attributes:
usptr._t *Arena;
CommonObjectDBControl_t *ArenaControl;

#endif

B.3. commonobjdb.cc

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <sys/stat.h>

#include <fstream.h>

#include "commonobjdb.h"

#include <sys/types.h> // for getpid
#include <unistd.h> // for getpid

// The CommonObjectDB constructor joins a specified arena, creating it and
// initializing it if necessary.

template <class T>

CommonObjectDB<T>: : CommonObjectDB (StructureType structure) {

boolean init_arena = FALSE;
int lock_status;

int mem_status;

int config_status;
mode_t arena_mode;

// Set usinit tracing variable
//_utrace = 1;
_uerror = 1;

// First. set up the lock type --- Set to DEBUGPLUS will allows for error messages
// to be printed to the screeen.

config _status = usconfig(CONF_LOCKTYPE, US_DEBUGPLUS) ;

if (config_status == -1)

cerr << "CODB Error #" << errno << " in setting the lock type for the shared memory

arena!" << endl;

// Next, set up the size and virtual base address of the arena.
usconfig (CONF_INITSIZE, MaxCODBArenaBytes) ;
usconfig (CONF_ATTACHADDR, (void*)CODBArenaBaseAddress) ;

// Identify the max number of processes that can leech onto this CODB.
usconfig (CONF_INITUSERS, MaxCODBProcesses);

// Join the arena, creating it if necessary. Exit on error.
Arena = usinit ("/usr/tmp/CommonObjectDB.arena”);
usconfig (CONF_ATTACHADDR, (void*)-~0);
cerr << "CODB<" << structure << "> (pid " << getpid()
<< ") has Arena at " << Arena << "\n"';
if (Arena == NULL) (

cerr << "CODB Error #" << errno << " in creating the shared memory arena!" << endl:

exit(0);
}

// Now set the arena to rw permissions across the board (owner, group, world) for the
// arena.

arena mode = ((S_IRUSR) | (S_IWUSR) |{ (S_IRGRP) | (S_IWGRP) | (S_TROTH) | (S_IWOTH)):
config_status = usconfig (CONF_CHMOD, Arena, arena_mode) ;
if (config_status == -1)
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cerr << "CODB Error #" << errno << " in changing file permissions on the shared
memory arena!" << endl;

// Do the following as many times as necessary until the arena has been
// initialized.
while (!init_arena) {

ArenaControl = (CommonObjectDBControl_t *) usgetinfo (Arena);

if (ArenaControl == NULL)} {

// This process appears to be first to call usinit. Allocate an

// ArenaControl structure with its UpdateLock already held and 1

// process joined, and try to swap it into place as the active one.

// We expect no errors in setting up ArenaControl. If one occurs,

// the arena is simply unusable.

ArenaControl = (CommonObjectDBControl_t *) usmalloc

(sizeof (CommonObjectDBControl_t}, Arena) ;

if (ArenaControl == NULL} {
cerr << "CODB Error in memory allocation of shared memory arena!"” << endl;
exit (0);

} else {

ArenaControl->UpdateLock = usnewlock (Arena);
if (ArenaControl->UpdateLock == NULL) ({
cerr << "CODB Error #" << errno << " in allocating lock from shared memory
arena!” << endl;
exit(0);
} else {

lock_status = uscsetlock (ArenaControl->UpdateLock, 1};
if (lock_status == 0) {
cerr << "CODB Error in acquiring lock from the shared memory arena!" <<

endl;
exit(0);

}

mem_status = uscasinfo (Arena, NULL , ArenaControl) ;
if (mem_status == NULL) {

// uscasinfo either did not find a current value (indicating a
// race with another process executing this code) or it failed
// for some other reason. In any case, release allocated memory
// and repeat the loop.

usfreelock (ArenaControl->UpdateLock, Arena):;

usfree (ArenaControl, Arena);

} else {

// Our ArenaControl structure is now installed. Initialize it.
// The loop now ends.
initCommonObjectDB () ;

lock_status = usunsetlock (ArenaControl->UpdateLock) ;
if (lock_status == -1) {
cerr << "CODB Error #" << errno << " in releasing lock from the shared
memory arena!" << endl;
exit(0);
}

init_arena = TRUE;
} // end if-then-else

} else {

// Another process has created the arena, and either has initialized
// it or is initializing it right now. Acquire the lock, which will
// block us until initializing is done.

lock_status = ussetlock (ArenaControl->UpdateLock);

if (lock_status == 0}
cerr << "CODB Error in acquiring lock from the shared memory arena!" << endli;
exit(0);



}
lock_status = usunsetlock (ArenaControl->UpdateLock);

|
|
|
if (lock_status == -1) {
cerr << "CODB Error #" << errno << " in releasing lock from the shared memory

arena!" << endl;
exit(0);
}
init_arena = TRUE;
} // end if-then-else
| } // end while loop

// Last thing done in the constructor is to initialize the appropriate
// DoubleBuffer structure.

initDoubleBuffer (structure);

}; // end CommonObjectDB constructor

// This method sets up the data structure of the arena.
template <class T>
void CommonObjectDB<T>::initCommonObjectDB () {

int i;

// Allocate new memory for data structure.

ArenaControl->Data = (CommonObjectDBData *) usmalloc (sizeof (CommonObjectDBData),
Arena) ;
if (ArenaControl->Data == NULL) {
cerr << "initCommonObjectDB(): Error in memory allocation of shared memory arena!"
<< endl;
exit(0);
}

// Initialize the values in the data structure.

// First the two locks.
ArenaControl->Data->AccessLock = usnewlock (Arena);

if (ArenaControl->Data->AccessLock == NULL) {
cerr << "initCommonObjectDB(): Error #" << errno << ° in allocating lock from shared
memory arena!" << endl;
exit (0} ;

}

// Finally, initialize all data.
for (i = 0; i < MaxDoubleBuffers; ++1i){
// No need to initialize the locks...

ArenaControl->Data->DoubleBuffer(i].ReadCount = 0;
ArenaControl->Data->DoubleBuffer (i} .ReadBufferPtr = NULL;
ArenaControl->Data->DoubleBuffer (i) .WriteBufferPtr = NULL;
ArenaControl->Data->DoubleBuffer(i].BufferSize = 0;

}//next i

// Report the amount of memory allocated from the shared arena.
ArenaControl->Data->BytesAllocated = sizeof (CommonObjectDBData) ;
cerr << "CODB data structure consuming

<< ArenaControl->Data->BytesAllocated << " bytes ("

<< (int) ((float)
(ArenaControl—>Data—>BytesAllocated/MaxCODBArenaBytes)*lOO)

<< "%) of shared memory arena.\n";

}; // end initCommonObjectDB

template <class T>
void CommonObjectDB<T>::initDoubleBuffer (StructureType structure) {

int lock_status;
DoubleBufferData *ThisDoubleBuffer;
size_t DoubleBufferSize:;
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lock_status = ussetlock (ArenaControl->Data->AccessLock) ;

if (lock_status == 0) {
cerr << "CODB - initDoubleBuffer(): Error in acquiring lock from the shared memory
arena!" << endl;
exit(0);

}

ThisDoubleBuffer = &ArenaControl->Data->DoubleBuffer(structure];
if (!Registered(structure)) {

// Initialize the locks.

ThisDoubleBuffer->ReadAccess = usnewlock(Arena);

if (!ThisDoubleBuffer->ReadAccess) (
cerr << "Error allocating ReadAccess from shared memory arena.\n";
exit(0);

}//endif

ThisDoubleBuffer->WriteAccess = usnewlock(Arena);

if (!ThisDoubleBuffer->WriteAccess) {
cerr << "Error allocating WriteAccess from shared memory arena.\n";
exit (0);

}//endif

ThisDoubleBuffer->ReadCountAccess = usnewlock (Arena) ;

if (!ThisDoubleBuffer->ReadCountAccess) {
cerr <<"Error allocating ReadCountAccess from shared memory arena.\n";
exit(0);

}//endif

// Initialize the read counter.
ThisDoubleBuffer->ReadCount = 0;

// Grab some shared memory space for the two buffers.
ThisDoubleBuffer->ReadBufferPtr = usmalloc(sizeof (T), Arena);
ThisDoubleBuffer->WriteBufferPtr = usmalloc (sizeof (T), Arena);

// If we've run out of room in the arena, say so!
if (ThisDoubleBuffer->ReadBufferPtr == NULL ||
ThisDoubleBuffer->WriteBufferPtr == NULL}({
cerr << "Error allocating Doublebuffer " << structure
<< " from shared memory arena.\n"
<< "\nINCREASE SIZE OF ARENA BY "
<< "INCREASING MaxCODBArenaBytes!\n\n";
exit(0):
}//endif

// Hang on to the size of this bad boy (we need it for memcpys) .
ThisDoubleBuffer->BufferSize = sizeof(T);

// Report the amount of memory allocated from the shared arena.
DoubleBufferSize = 2 * ThisDoubleBuffer->BufferSize;
ArenaControl->Data->BytesAllocated =
ArenaControl->Data->BytesAllocated + DoubleBufferSize;
cerr << "DoubleBuffer <" << structure << "> consuming
<< DoubleBufferSize << " bytes ("
<< (int)((float)(DoubleBufferSize/MaxCODBArenaBytes)*100)
<< "%) of shared memory arena.\n";
cerr << " v << ArenaControl->Data->BytesAllocated << " bytes (
<< (int) ((float)
(ArenaControl—>Data—>BytesAllocated/MaxCODBArenaBytes)*100)
<< "%) of shared memory arena is now being used.\n";

}//endif
lock_status = usunsetlock (ArenaControl->Data->AccessLock) ;
if (lock_status == -1} {
cerr << "CODB - initDoubleBuffer(): Error #" << errno << ° in releasing lock from
the shared memory arena!" << endl;
exit (0);

}

template <class T>
void *CommonObjectDB<T>::BeginRead (StructureType structure) {
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DoubleBufferData *ThisDoubleBuffer;

ThisDoubleBuffer = &ArenaControl->Data->DoubleBuffer(structure];

if (!Registered( structure))(
cerr << °"CODB BeginRead(" << structure << ") Error in pid "
<< getpid() << "!\n";
ReportArenalInfo(structure);
exit(0):
}

// WAIT your turn to access ReadCount.
ussetlock (ThisDoubleBuffer->ReadCountAccess) ;

// BEGIN ReadCountAccess CRITICAL SECTION-----------=-==-=---==—==----=o=

ThisDoubleBuffer->ReadCount++;

// If this is the first reader of a group, WAIT for WAITing writer
// finish swapping buffers.
if (ThisDoubleBuffer->ReadCount == 1){
ussetlock (ThisDoubleBuffer->ReadAccess) ;
}//endif

// END ReadCountAccess CRITICAL SECTION--------===-==-=--<------=-=--o=-=oc

// Let others mess with ReadCount.
usunsetlock (ThisDoubleBuf fer->ReadCountAccess) ;

return ThisDoubleBuffer->ReadBufferPtr;

}//end BeginRead

template <class T>
void CommonObjectDB<T>::EndRead(StructureType structure) {

DoubleBufferData *ThisDoubleBuffer;

ThisDoubleBuffer = sArenaControl->Data->DoubleBuffer (structure};

if (!Registered( structure))
cerr << "CODB EndRead(" << structure << ") Error in pid "
<< getpid() << "!\n";
ReportArenaInfo(structure);
exit(0):
}

// WAIT your turn to access ReadCount.
ussetlock(ThisDoubleBuffer->ReadCountAccess) ;

// BEGIN ReadCountAccess CRITICAL SECTION------=------==-=-=-=-=----=-o-=—=

ThisDoubleBuffer->ReadCount--;

// If this is the last reader of the group, let any WAITing writer
// start swapping buffers.
if (ThisDoubleBuffer->ReadCount == 0){
usunsetlock (ThisDoubleBuffer->ReadAccess) ;
}//endif

// END ReadCountAccess CRITICAL SECTION--------=---=-=-=-=---------==="=""

// Let others mess with ReadCount.
usunsetlock (ThisDoubleBuffer->ReadCountAccess) ;

}//end EndRead

template <class T>
void *CommonObjectDB<T>::BeginWrite(StructureType structure) {

DoubleBufferData *ThisDoubleBuffer;
ThisDoubleBuffer = &ArenaControl->Data->DoubleBuffer structure];

if ('Registered( structure)){
cerr << "CODB BeginWrite(" << structure << ") Error in pid

<< getpid() << "i\n";

ReportArenalnfo(structure);

to




exit(0);
}

// WAIT for any other writers to finish up their business.
ussetlock (ThisDoubleBuffer->WriteAccess);

return ThisDoubleBuffer->WriteBufferPtr;
}//end BeginWrite

template <class T>
void CommonObjectDB<T>::EndWrite(StructureType structure) {

// Temp pointer for swapping buffers.
void *temp;
DoubleBufferData *ThisDoubleBuffer;

ThisDoubleBuffer = sArenaControl->Data->DoubleBuffer[structurel;

if (!Registered( structure)){
cerr << "CODB EndWrite(" << structure << ") Error in pid "
<< getpid() << "!\n";
ReportArenalnfo(structure);
exit(0):
}

// Wait for any existing readers to finish up.
ussetlock (ThisDoubleBuffer->ReadAccess) ;

// BEGIN ReadAccess CRITICAL SECTION-----==----=---=---=---==------o---
// Swap the pointers.

temp
ThisDoubleBuffer->WriteBufferbPtr
ThisDoubleBuffer->ReadBufferPtr
// END ReadAccess CRITICAL SECTION---=---==---=-=----=----==-o-mocooooo-=o-

ThisDoubleBuffer->WriteBufferPtr;
ThisDoubleBuffer->ReadBufferPtr;

// Open up the floodgates and let the readers pour in.
usunsetlock (ThisDoubleBuffer->ReadAccess);

// Let other writers in to do their thing.
usunsetlock (ThisDoubleBuffer->WriteAccess) ;
}//end Endwrite

template <class T>
void *CommonObjectDB<T>::BeginReadWrite (StructureType structure) {

void *ReadBuff;
void *WriteBuff;
DoubleBufferData *ThisDoubleBuffer;

ThisDoubleBuffer = sArenaControl->Data->DoubleBufferstructure];

if (!Registered( structure)){
cerr << "CODB BeginReadWrite(" << structure << "} Error in pid "

<< getpid() << "!\n";

ReportArenalnfo(structure);

exit(0);
}
WriteBuff = BeginWrite(structure);
ReadBuff = BeginRead(structure);

memcpy (WriteBuff, ReadBuff, ThisDoubleBuffer->BuffersSize);
EndRead (structure) ;

return WriteBuff;
}//end BeginReadWrite

template <class T>
void CommonObjectDB<T>::EndReadWrite(StructureType structure) {
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if (!Registered( structure)){
cerr << “CODB EndReadWrite(" << structure << ") Error in pid
<< getpid() << "!\n";
ReportArenalnfo(structure);
exit(0);
}

EndWrite(structure);
}; // end EndReadWrite

template <class T>
void *CommonObjectDB<T>::BeginMagic (StructureType structure) {

return (BeginReadWrite(structure));

}: // end BeginMagic

template <class T>
void CommonObjectDB<T>::EndMagic (StructureType structure) {

EndReadWrite (structure);
}; // end EndMagic
template <class T>
int CommonObjectDB<T>::Registered(StructureType structure) {

int ThisThingIsRegistered =
!(ArenaControl—>Data->Doub1eBuffer[structure].ReadBufferPtr == NULL) ;

return ThisThingIsRegistered;
}//end Registered(StructureType structure)
template <class T>

void CommonObjectDB<T>::ReportArenaInfo(StructureType structure) {
ofstream Errlog;

char FileName(21];
char Buffer(20];
sprintf( FileName, "CODBArena%06u.dat”, (int) (getpid(}));

ErrLog.open(FileName, ios::out, 0664) ;
ErrLog << "CODB Failure Reporti\n®;

ErrLog << "Structure that caused failure: " << structure << "\n";

ErrLog << "Failure occurred in process * << getpid() << "\n";

ErrLog << "CODB Arena Address: " << Arena << "\n";

ErrLog << "BytesAllocated: " << ArenaControl->Data->BytesAllocated << "\n";

ErrLog << "\nDoubleBuffer resides at address: "
<< ArenaControl->Data->DoubleBuffer << "\n";
ErrLog << "Contents of DoubleBuffer array:\n";
ErrLog << “Index ReadCount ReadBufferPtr WriteBufferPtr BufferSize\n";

for (int i = 0; i < MaxDoubleBuffers; ++i){

sprintf (Buffer, "$5i", 1);

ErrLog << Buffer;

sprintf (Buffer, "$10i",
ArenaControl->Data->DoubleBuffer(i].ReadCount);

ErrLog << Buffer;

sprintf (Buffer, "%14p",
(void*)(ArenaControl—>Data->DoubleBuffer[i].ReadBufferPtr));

ErrLog << Buffer;

sprintf (Buffer, "$15p",
(void*)(ArenaControl—>Data—>DoubleBuffer[i].WriteBufferPtr));

ErrLog << Buffer;

sprintf (Buffer, "$1lu",
(void')(ArenaControl->Data—>DoubleBuffer[i].Buffersize));

ErrLog << Buffer;

ErrLog << "\n";




}//next i
ErrLog.close();

}//end ReportArenalnfo(StructureType structure)

B-10




Appendix C
Fuzzy Terms Sets and Rules for Flying Point To Point

;; Filename: wingclips.pt2pt.htm
;: Project: Air Force Institute of Technology Fuzzy Wingman Thesis 1996

;; Functionality: Contains term sets and rules for flying point to point in
i3 FLTCntrl::PointToPoint (). Intended to be loaded on top of

i wingclips.fltentrl.htm so that its common functions are

1 available.

;; Author(s): Capt Vincent Brian Zurita GCS 96-D

; 1Lt James L Benslay GCS 96-D
;; Revision History:

; 17 Sep 96, VBZ: Initial write.

; Term Set: RelativelyX

; Category: Measurement Term Set

; Semantic: Target is Wingman

; Functionality: Measures relative X in NED coordinate system in angular
i fashion.

; Assertion: asin(Point->Coord.X/Distance(Point->Coord)) *RAD_TO_DEG
; Author(s): Capt Vincent Brian Zurita GCS 96-D

; 1Lt James L Benslay GCS 96-D

; Revision History:

; 17 Sep 96, VBZ: Initial write.

. 08 Oct 96, VBZ: Changed from (-90 to 90) to (0 180), reversed order of terms.
. 24 Oct 96, VBZ: Went back to asin, -90.0 90.0 degrees.

(deftemplate RelativelyX
-90.0 90.0 degrees
(
{behind (z -12.5 -2.5))
(even_with (PI 5.0 0.0))
(in_front_of (S 2.5 12.5))

;; Term Set: RelativelyY
;; Category: Measurement Term Set
;; Semantic: Target is Wingman
;; Functionality: Measures relative Y in NED coordinate system in angular
; fashion.
Assertion: asin(Point~>Coord.Y/Distance(Point—>Coord))*RAD_TO_DEG
Author(s): Capt Vincent Brian Zurita GCS 96-D

H 1Lt James L Benslay GCS 96-D

; Revision History:

; 17 Sep 96, VBZ: Initial write.

; 08 Oct 96, VBZ: Changed from (-90 to 90) to (0 180), reversed order of terms.
; 24 Oct 96, VBZ: Went back to asin, -90.0 90.0 degrees.

(deftemplate RelativelyY
-90.0 90.0 degrees
(
(left_of (z -12.5 =-2.%))
(even_with (PI 5.0 0.0))
(right_of (S 2.5 12.5))

;; Term Set: Relatively?Z
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Category: Measurement Term Set

;; Semantic: Target is Wingman

;; Functionality: Measures relative Z in NED coordinate system in angular
i fashion.

;; Assertion: asin(Point->Coord.Z/Distance(Point->Coord)) *RAD_TO_DEG
;; Author(s): Capt Vincent Brian Zurita GCS 96-D

H 1Lt James L Benslay GCS 96-D
;: Revision History:

; 17 Sep 96, VBZ: Initial write.
;; 08 Oct 96, VBZ: Changed from (-90 to 90) to (0 180), reversed order of terms.
s 24 Oct 96, VBZ: Went back to asin, -90.0 90.0 degrees.

(deftemplate Relatively2
-90.0 90.0 degrees
(

(above_, (z -12.5 -2.5))
(even_with (PI 5.0 0.0))
(below_ (s 2.5 12.5))
)
)
;; Term Set: Roll
;; Category: Measurement Term Set
Semantic: Wingman is
Functionality: Measures absolute roll in AeroModel coordinate system.
Assertion: Wingman's roll (phi) value in degrees.

; Author(s): Capt Vincent Brian Zurita GCS 96-D
; 1Lt James L Benslay GCS 96-D
; Revision History:
; 30 Oct 96, VBZ: Initial write.
(deftemplate Roll
-180.0 180.0 degrees
(
(rolled_left (z -180 =-5))

(level (PI 10 0))
(rolled_right (S 5 180))
)
)
;; Term Set: RelativelyHeading
;; Category: Measurement Term Set
;; Semantic: Target is heading Wingman
.. Functionality: Measures relative heading in NED coordinate system in angular
fashion.
Assertion: Point->HPR.h

;: Author(s): Capt Vincent Brian Zurita GCS 96-D
i 1Lt James L Benslay GCS 96-D
;; Revision History:
;; 17 Sep 96, VBZ: Initial write.
(deftemplate RelativelyHeading
-180.0 180.0 degrees
(

(against (z -180 -125))
(to_the_left (PI 55 -90))
(with (PI 55 0))

(to_the_right (PI 55 90))
(against_the (S 125 180))

;; Term Set: RelativelyPitching

;; Category: Measurement Term Set

;; Semantic: Target is pitching Wingman

.; Functionality: Measures relative pitch in NED coordinate system in angular
P fashion.

;; Assertion: Point->HPR.p

;; Author(s): Capt Vincent Brian Zurita GCS 96-D

HH 1Lt James L Benslay GCS 96-D
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;; Revision History:
;; 17 Sep 96, VBZ: Initial write.

(deftemplate RelativelyPitching
-90.0 90.0 degrees
(
(down_to (z -20 -10))
(even_with (PI 15 0))

1Lt James L Benslay GCS 96-D
Revision History:
17 Sep 96, VBZ: Initial write.

(up_to (s 10 20))

)
)
;; Term Set: RelativelyDist
;; Category: Measurement Term Set
;; Semantic: Target is Wingman
;; Functionality: Measures relative distance in NED coordinate system in angular
¥ fashion.
;; Assertion: Distance {Point->Coord)
; Author(s): Capt Vincent Brian Zurita GCS 96-D

(deftemplate RelativelyDist
0.0 1000000.0 feet
(
(on_top_of (2 0 125))
(near (PI 200 300))
(far_from (S 475 600))

;:; Term Set: StickLat
; ; Category: Control Term Set

:; Functionality: Provides stick latitude settings. Stick latitude is the

;; Semantic: on the stick
i movement from side to side that controls the roll of the

i aircraft.
;; Assertion: TAS_n rule firings.
;; Author(s): Capt Vincent Brian Zurita GCS 96-D

i 1Lt James L Benslay GCS 96-D

;; Revision History:

;: .17 Sep 96, VBZ: Initial write.

;: 30 Oct 96, JLB: Reworked to narrow ranges. After doing
i some real-time analysis of the algorithm
H run times, have decided on an initial

I adjustment of 1/2 of present value.

; 30 Oct 96, JLB: Still needs to be narrowed. Go 1/2 more.
: 30 Oct 96, JLB: Still needs to be narrowed. Go 1/2 more.

(deftemplate StickLat
-0.5 0.5 setting
(

(hard_left (2 -0.50 -0.25))
(left (PI 0.20 -0.25))
(nudge_left (PI 0.04 -0.06))
(nil (PI 0.04 0.00))
(nudge_right (PI 0.04 0.06))
(right (PI 0.20 0.25))
(hard_right (S 0.25 0.50))
)

)

;; Term Set: StickLong

;; Category: Control Term Set

Functionality: Provides stick longitude settings. Stick longitude is the
movement from front to back that controls the pitch of the
aircraft.

;; Assertion: TAS_n rule firings.

;
;
;
; Semantic: on the stick
;
i
;




;; Author(s): Capt Vincent Brian Zurita GCS 96-D

P 1Lt James L Benslay GCS 96-D

;; Revision History:

.: 17 Sep 96, VBZ: Initial write.

;; 30 Oct 96, JLB: Reworked to narrow ranges. After doing

i some real-time analysis of the algorithm

i run times, have decided on an initial

i adjustment of 1/2 of present value.

;; 30 Oct 96, JLB: By observation, seems to be working acceptably.

(deftemplate StickLong
-1.0 1.0 setting
(

(hard_forward (Z -1.00 -0.60))
(forward (PI 0.32 -0.40))
(nudge_forward (PI 0.04 -0.06))
(nil (PI 0.04 0.00))
(nudge_back (PI 0.04 0.06))
(back (PT 0.32 0.40))
(hard_back (S 0.60 1.00))
)
)
; Term Set: Rudder
; Category: Control Term Set
Semantic: on the rudder

;; Functionality: Provides rudder settings. Rudder controls the yaw (heading)
i of the aircraft.

;; Assertion: TAS_n rule firings.

;; Author(s): Capt Vincent Brian Zurita GCS 96-D

i 1Lt James L Benslay GCS 96-D

;; Revision History:

;: 17 Sep 96, VBZ: Initial write.

(deftemplate Rudder
-1.0 1.0 setting
(

;; Author(s): Capt Vincent Brian Zurita GCS 96-D
; 1Lt James L Benslay GCS 96-D
; Revision History:

23 Sep 96, VBZ: Initial write.

(hard_left (z -1.00 -0.60))
(left (PI 0.32 -0.40))
(nudge_left (PI 0.04 -0.06))
(nil “(PI 0.04 0.00))
(nudge_right (PI 0.04 0.06))
(right (PI 0.32 0.40))
(hard_right (S 0.60 1.00))
)

)

;; Rule Set: pefuzzStickLat

;: Category: Defuzzification Rule

;; Functionality: Defuzzifies the StickLat value.

;; Assertion: None (implicit).

(defrule DefuzzStickLat
(declare (salience -10))
»controls <- (object (is-a FLIGHTCONTROLS))
?stick_lat <- (StickLat ?)
=>
(bind ?value (moment-defuzzify ?stick_lat)}
(send (instance-name ?controls) put-Stick-Lat-Safe ?value)

;; Rule Set: DefuzzStickLong

;; Category: Defuzzification Rule

;; Functionality: Defuzzifies the StickLong value.
;; Assertion: None (implicit).

;; Author(s): Capt Vincent Brian Zurita GCS 96-D
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] 1Lt James L Benslay GCS 96-D
;; Revision History:
.:; 23 Sep 96, VBZ: Initial write.

(defrule DefuzzStickLong
(declare (salience -10})
2controls <- (object (is-a FLIGHTCONTROLS))
2stick_long <- (StickLong ?)
=>
(bind ?value (moment-defuzzify ?stick_long))
(send (instance-name 2controls) put-Stick-Long-Safe ?value)

; Rule Set: DefuzzThrottle

; Category: Defuzzification Rule

; Functionality: Defuzzifies the Throttle value.

; Assertion: None (implicit).

; Author(s): Capt Vincent Brian Zurita GCS 96-D

: 1Lt James L Benslay GCS 96-D
; Revision History:
; 23 Sep 96, VBZ: Initial write.

(defrule DefuzzThrottle
(declare (salience -10})
2controls <- (object (is-a FLIGHTCONTROLS))
?2throt <- (Throttle ?)
=>
(bind ?value (moment-defuzzify ?throt))
(send (instance-name ?controls) put-Throttle-Safe ?value)

Rule Set: DefuzzRudder
Category: Defuzzification Rule
Functionality: Defuzzifies the Rudder value.

; Author(s): Capt Vincent Brian 2Zurita GCS 96-D

;; Assertion: None (implicit).
;; 1Lt James L Benslay GCS 96-D
;; Revision History:
;; 23 Sep 96, VBZ: Imitial write.
(defrule DefuzzRudder
(declare (salience -10))
2controls <- (object (is-a FLIGHTCONTROLS) )
2rudder <- (Rudder ?)
=>
(bind ?value (moment-defuzzify ?rudder) )
(send (instance-name ?controls) put-Rudder-sSafe ?value)
)
)
(defrule TAS_1
(RelativelyX behind)

(RelativelyY left_of) (defrule TAS_3
(RelativelyZ below_) (RelativelyX behind)
(RelativelyDist on_top_of) (RelativelyY left_of)
=> (RelativelyZ below_)
(assert (StickLat nil)) (RelativelyDist far_from)
(assert (StickLong nudge_forward) ) =>
(assert (Rudder nil)) (assert (StickLat hard_left))
(assert (SPEED_BRAKE out)) (assert (StickLong nil))

) (assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_2
(RelativelyX behind)

(RelativelyY left_of) (defrule TAS_4

(RelativelyZ below_) (RelativelyX behind)
(RelativelyDist near) (RelativelyY left_of)

=> (RelativelyZ even_with)
(assert (StickLat hard_left)) (RelativelyDist on_top_of)
(assert (StickLong nil)) =>

(assert (Rudder nil)) (assert (StickLat nudge_left)
(assert (SPEED_BRAKE in)) (assert (StickLong nil)




(assert (Rudder nil)
(assert (SPEED_BRAKE out))

(defrule TAS_S
(RelativelyX behind)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist near)
=>
(assert (StickLat left})
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_6
(RelativelyX behind)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist far_from)
=>
(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_7
(RelativelyX behind)
(RelativelyY left of)
(RelativelyZ above_)
(RelativelyDist on_top_of)
=>
(assert (StickLat nil))
(assert (StickLong nudge_back))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_8
(RelativelyX behind)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist near)
=>
(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_9
(RelativelyX behind)
(RelativelyY left_of}
{RelativelyZ above_)
(RelativelyDist far_from)
=>
(assert (StickLat left))
(assert (StickLong nil})
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

{defrule TAS_10
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ below_ )
(RelativelyDist on_top_of)
=>

(assert (StickLat nil)}

(assert (Rudder nil))
(assert (SPEED_BRAKE out))

(defrule TAS_11
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ below_)
{RelativelyDist near)
=>
(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

{defrule TAS_12
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist far_from)
=>
(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_13
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ even_with)
(ROLL rolled_left)
=>
(assert (StickLat nudge_right))
(assert (StickLong nil))
{assert (Rudder nil))
(assert (SPEED_BRAKE out))

{(defrule TAS_14
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ even_with)
(ROLL level)
=>
(assert (StickLat nil))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

{defrule TAS_15
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ even_with)
(ROLL rolled_right)
=>
(assert (StickLat nudge_left}))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_16
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ above_)
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(assert (StickLong nudge_forward))




(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert {StickLong nudge_back})
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_17
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist near)
=>
(assert (StickLat nil))
(assert (SticklLong back})
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_18
(RelativelyX behind)
(RelativelyY even_with)
(RelativelyZ above_ )
(RelativelyDist far_from)
=>
(assert (StickLat nil))
(assert (StickLong hard_back))
(assert {(Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_19
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist on_top_of)
=>
(assert (StickLat nil))

(assert (StickLong nudge_forward))

(assert (Rudder nil))
(assert (SPEED_BRAKE out))

(defrule TAS_20
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist near)
=>
(assert (StickLat hard_right))
(assert (StickLong nil))
(assert ({(Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_21
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist far_from)
=>
(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))
) '

(defrule TAS_22
(RelativelyX behind)

(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist on_top_of)

=>

(assert {StickLat nudge_right))
(assert {(StickLong nil))
(assert (Rudder nil)

(assert (SPEED_BRAKE out))

(defrule TAS_23
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist near)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_24
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist far_from)
=>
(assert (StickLat right))
(assert (StickLong nil})
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_25
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist on_top_of)
=2
(assert (StickLat nil))
(assert (StickLong nudge_back))
(assert (Rudder nil)
(assert (SPEED_BRAKE in))

(defrule TAS_26
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist near)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_27
(RelativelyX behind)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist far_from)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert {(Rudder nil))
(assert (SPEED_BRAKE in))




(defrule TAS_28
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ below_)
(RelativelyDist on_top_of)

=>

(assert
(assert
(assert
(assert

(StickLat nil))

(StickLong nudge_forward})
(Rudder nil))

(SPEED_BRAKE in))

(defrule TAS_29
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ below_)
(RelativelyDist near)

=>

(assert
(assert
(assert
(assert

(stickLat hard_left))
(StickLong nil))
(Rudder nil))
(SPEED_BRAKE 1in))

(defrule TAS_30
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ below_)
(RelativelyDist far_from)

=>

(assert
(assert
(assert
(assert

(stickLat hard_left))
(stickLong nil))
(Rudder nil))
(SPEED_BRAKE in))

(defrule TAS_31
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist on_top_of)

=>

(assert
(assert
(assert
(assert

(StickLat nudge_left))
(StickLong nil))
(Rudder nil))
(SPEED_BRAKE in))

(defrule TAS_32
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist near)

=>
(assert
(assert
(assert
(assert

(StickLat left))
(StickLong nil))
(Rudder nil))

(SPEED_BRAKE in))

(defrule TAS_33
(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist far_from)

=>

(assert
(assert
(assert
(assert

(StickLat left))
{StickLong nil))
(Rudder nil))

(SPEED_BRAKE in))
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(defrule TAS_34

(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_back))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_35

(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist near)

=>

(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert {(SPEED_BRAKE in))

(defrule TAS_36

(RelativelyX even_with)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist far_from)
=>

(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_37

)

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_forward))
(assert (Rudder nil))

{assert (SPEED_BRAKE in))

(defrule TAS_38

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist near)

=>

(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_39

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist far_from)

=>

(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil)




(assert (SPEED_BRAKE in))

(defrule TAS_40

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ even_with)

(ROLL rolled_left)

=> ’

(assert (StickLat nudge_right))
(assert (StickLong nil))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_41

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ even_with)
(ROLL level)

=>

(assert (StickLat nil))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in})

(defrule TAS_42

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ even_with)

(ROLL rolled_right)

=>

(assert (StickLat nudge_left))
(assert (StickLong nil))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_43

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_back))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_44

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist near)

=

(assert (StickLat nil))
(assert (StickLong back))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_45

(RelativelyX even_with)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist far_from)
=>

(assert (StickLat nil))

(assert
{assert
(assert

(StickLong hard_back))
(Rudder nil)
(SPEED_BRAKE in))

(defrule TAS_46
(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist on_top_of)

=>

(assert
(assert
(assert
(assert

(StickLat nil))

(StickLong nudge_forward)}
(Rudder nil)

(SPEED_BRAKE 1in))

(defrule TAS_47
(RelativelyX even_with)
{RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist near)

=>

(assert
(assert
(assert
(assert

(StickLat hard_right)}
(StickLong nil))
{Rudder nil))
(SPEED_BRAKE in))

(defrule TAS_48
(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist far_from)

=>

(assert
(assert
(assert
(assert

(StickLat hard_right))
(StickLong nil))
(Rudder nil)
(SPEED_BRAKE in))

(defrule TAS_49
{RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist on_top_of)

=>

(assert
(assert
(assert
(assert

(stickLat nudge_right))
(StickLong nil))
(Rudder nil))
(SPEED_BRAKE in))

(defrule TAS_S0
(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist near)

=>

(assert
(assert
(assert
(assert

(StickLat right))
(StickLong nil))
{Rudder nil))

(SPEED_BRAKE 1in))

(defrule TAS_51
(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist far_£from)




=>

(assert (Sticklat right))
(assert (StickLong nil))
(assert (Rudder nil)
(assert (SPEED_BRAKE in))

(defrule TAS_S2

(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_back))
(assert (Rudder nil))

(assert (SPEED_BRAKE in})

(defrule TAS_S3

(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist near)

=2

(assert (StickLat right))
(assert (SticklLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_54

(RelativelyX even_with)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist far_from)
=>

(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_SS

(RelativelyX in_front_of)
(RelativelyY left_of)

(RelativelyZ below_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_forward))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_56

(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ below_)
(RelativelyDist near)

=>

(assert (StickLat hard_left))
(assert (StickLong nil))
{assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_57

(RelativelyX in_front_of)
(RelativelyY left_of)

(RelativelyZ below_)
(RelativelyDist far_from)

=>

(assert (StickLat hard_left))
(assert (StickLong nil)
{assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_S8
(RelativelyX in_front_of)
{(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist on_top_of)
=>
(assert (StickLat nil))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_59
(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist near)
=>
(assert (StickLat left))
(assert (StickLong nil})
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_60
(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ even_with)
(RelativelyDist far_from)
=>
(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_61
(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist on_top_of)
=>
(assert (StickLat nil))
(assert (StickLong nudge_back))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_62
(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist near)
=>
(assert (StickLat left))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_63
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(RelativelyX in_front_of)
(RelativelyY left_of)
(RelativelyZ above_)
(RelativelyDist far_from)

=>

(assert (StickLat left)}
(assert {(StickLong nil))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_64
(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist on_top_of)
=>

(assert (StickLat nil))

(assert (StickLong nudge_forward))

(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_65
(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist near)
=>

(assert (StickLat hard_right))

(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_66
(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ below_)
(RelativelyDist far_from)
=>

(assert (StickLat hard_right))

(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_67
(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ even_with)
(RelativelyDist on_top_of)
=>

(assert (StickLat nudge_right))

(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_68
(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ even_with)
(RelativelyDist near)
=>
(assert (StickLat nil))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_69

(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ even_with)
(RelativelyDist far_from)

=>

(assert (StickLat nudge_left))
(assert (StickLong nil))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_70

(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist on_top_of)

=>

(assert (StickLat nil))

(assert (StickLong nudge_back))
(assert (Rudder nil))

(assert (SPEED_BRAKE in))

(defrule TAS_71

(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist near)

=>

{assert (StickLat nil))
{assert (StickLong back))
(assert (Rudder nil)
(assert (SPEED_BRAKE in))

(defrule TAS_72

(RelativelyX in_front_of)
(RelativelyY even_with)
(RelativelyZ above_)
(RelativelyDist far_ from)

=>

(assert (StickLat nil)

(assert (StickLong hard_back))
(assert (Rudder nil)

(assert (SPEED_BRAKE in))

(defrule TAS_73

(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist on_top_of)
=>

(assert (StickLat nil))

(assert (StickLong nudge_forward))

(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_74

(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist near)

=>

(assert (StickLat hard_right))
(assert (StickLong nil))
(assert (Rudder nil)

(assert (SPEED_BRAKE in))




(defrule TAS_75
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ below_)
(RelativelyDist far_from)
=>

(assert (Sticklat hard_right))

(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_76
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist on_top_of)
=>
(assert (SticklLat nil))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_77
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist near)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_78
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ even_with)
(RelativelyDist far_from)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in})

(defrule TAS_79
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist on_top_of)
=>
(assert (StickLat nil))

(assert (StickLong nudge_back))

(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_80
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist near)
=>
(assert (StickLat right))
(assert (StickLong nil))

(assert (Rudder nil))
(assert (SPEED_BRAKE in))

(defrule TAS_81
(RelativelyX in_front_of)
(RelativelyY right_of)
(RelativelyZ above_)
(RelativelyDist far_from)
=>
(assert (StickLat right))
(assert (StickLong nil))
(assert (Rudder nil))
(assert (SPEED_BRAKE in))




| Appendix D
| Point To Point Data Outputs

.ini file particulars for all runs:
initial x: 65000

initial y: 20000

initial z: -40000

initial heading: 90

initial mach: 0.7S

This set of runs was to test the effect of scaling RelativelyDist by 1/10.
(deftemplate RelativelyX
-90.0 90.0 degrees
(
(behind (z -12.5 =-2.5))
{even_with (PI 5.0 0.0))
(in_front_of (S 2.5 12.5))
)

)
(deftemplate RelativelyY
-90.0 90.0 degrees
(
(left_of (Z -12.5 -2.5
(even_with (PI 5.0 0.0
(right_of (8 2.5 12.5

)

)

(deftemplate RelativelyZ
-90.0 90.0 degrees
(

(above_ (z -12.5 -2.5))
(even_with (PI 5.0 0.0))
(below_ (S 2.5 12.5))
)
)
(deftemplate RelativelyDist
0.0 1000000.0 feet
( .
(on_top_of (Z 0 125))
(near (PI 200 300))

(far_from (S 475 600))
)
)
bfm.DiamondTest:
60000.0 -30000.0
120000.0 30000.0
180000.0 -30000.0
240000.0 30000.0

OOOO0
[eNeNeNa]
[oNeNoNe]
OO oo
[oNeNeNa]
[eNoNoNe]
[eNoNeNo]
[oNoNoRe]

yielded:

FLTCntrl receiving points:

(95018,80805.3,-39976.7)

(35035.7,140823,-39976.7)

(95053.4,200805,-39976.7)

(35071.1,260823,-39976.7)
At (95252.3,80912.5,-39796.6),

Wingman has passed within 299 ft of (95018, 80805.3, -39976.7)
At (34942.6,141081,-39804.9),

Wingman has passed within 294 ft of (35035.7, 140823, -39976.7)
At (95303.1,200816,-39792.8),

Wingman has passed within 304 ft of (95053.4, 200805, -39976.7)
At (34962.3,261092,-39800.7),

Wingman has passed within 303 ft of (35071.1, 260823, -39976.7)

FLTCntrl receiving points:
(95018.7,83410.8,-39903.9)
(35036.4,143428,-395903.9)
(95054.1,203411,-39903.9)
(35071.8,263428,-39903.9)

At (95276.9,83506.6,-39743.5),
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Wingman has passed within 291 ft
At (35006.6,143651,-39699.3),
Wingman has passed within 299 ft
At (95304.9,203425,-39724.5),
Wingman has passed within 291 ft
At (34995,263676,-39718.3),
Wingman has passed within 299 ft

FLTCntrl receiving points:
(95018.4,82512.2,-39943)
(35036.1,142530,-39943)
(95053.8,202512,-35543)
(35071.6,262530,-39943)
At (95245.1,82570.2,-39757.8),
Wingman has passed within 287 ft
At (34909.5,142804,-39785.6),
Wingman has passed within 295 ft
At (95338.9,202568,-39782.7),
Wingman has passed within 292 ft
At (34954.1,262784,-39755.7),
Wingman has passed within 298 ft

FLTCntrl receiving points:
(95018.1,81318.1,-39982.3)
(35035.8,141336,-39982.3)
(95053.5,201318,-39982.3)
(35071.2,261336,-39982.3)
At (95268.1,81419,-39821.5),
Wingman has passed within 287 ft
At (34988.1,141569,-39791.2),
Wingman has passed within 294 ft
At (95277.9,201300,-39785.6},
Wingman has passed within 294 ft
At (34970,261599,-39804.7),
Wingman has passed within 302 ft

FLTCntrl receiving points:
(95018.7,83684.8,-39890.7)
(35036.5,143703,-39890.7)
(95054.2,203685,-39890.7)
(35071.9,263703,-39890.7)

At (95249.4,83763.4,-38713),
Wingman has passed within 285 ft
At (34873,143997,-39748.4),
Wingman has passed within 296 ft

At (95373.9,203781,-39749.7),
Wingman has passed within 294 ft
At (34908.2,263998,-39740),
Wingman has passed within 311 ft

(95018.

(35036

(95054.

(35071.

(95018

(35036.

(95053

(35071.

(95018.

(35035

(95053.

(35071.

(95018
(35036

(95054

(35071.

7, 83410.8, -39903.9)

.4, 143428, -39903.9)

1, 203411, -39903.9)

8, 263428, -39903.9)

.4, 82512.2, -39943)

1, 142530, -39943)

.8, 202512, -39943)

6, 262530, -39943)

1, 81318.1, -39982.3)

.8, 141336, -39982.3)

5, 201318, -39982.3)

2, 261336, -39982.3)

.7, 83684.8, -39890.7)
.5, 143703, -39890.7)

.2, 203685, -39890.7)

9, 263703, -39890.7)
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