
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

Speaker Recognition by Hidden Markov Models and Neural Speaker Recognition by Hidden Markov Models and Neural

Networks Networks

Erik J. Zeek

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zeek, Erik J., "Speaker Recognition by Hidden Markov Models and Neural Networks" (1996). Theses and
Dissertations. 5887.
https://scholar.afit.edu/etd/5887

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5887?utm_source=scholar.afit.edu%2Fetd%2F5887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

4r

Speaker Recognition by Hidden Markov Models

and Neural Networks

THESIS
Eric J. Zeek

Captain, USAF

AFIT/GCS/ENG/96D-31 c

Iff ATZ3Ax A

I IA I '

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DTIC QUAn=I spE=CTED I

AFIT/GOS/ENG/96D-31

Speaker Recognition by Hidden Markov Models

and Neural Networks

THESIS
Eric J. Zeek

Captain, USAF

AFIT/GCS/ENG/96D-31

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/96D-31

Speaker Recognition by Hidden Markov Models and Neural Networks

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Eric J. Zeek, B.S.E.E.

Captain, USAF

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

I would like to dedicate this work to my wife Leslie and my son Eli. Leslie's loving

support and understanding was vital to sustaining my efforts at AFIT. Eli's arrival, in the

middle of the program, was the highlight of my time at AFIT.

Special thanks to Dr. John Colombi whose assistance helped make this thesis a

success. He was crucial to my understanding of speaker recognition techniques and hidden

Markov models. He was also instrumental in the effort to submit an article to IEEE

Transactions on Neural Networks midway through my program.

Finally, I would like to thank the members of my committee, Dr. Martin DeSimio, Dr.

Timothy Anderson, and my advisor, Dr. Steven Rogers. Their involvement throughout

the thesis process was invaluable. Thank you for all your time and effort.

Eric J. Zeek

ii

Table of Contents

Page

Acknowledgements

List of Figures. vi

List of Tables. vii

Abstract viii

I. Introduction 1

1.1 Background. 1

1.2 Problem Statement 2

1.3 Scope. 2

1.4 Approach 3

1.5 Thesis Organization. 3

II. Background. 4

2.1 Introduction 4

2.2 YOHO Database. 4

2.3 Mel-Frequency Cepstral Coefficients 5

2.4 Hidden Markov Models. 5

2.4.1 Hidden Markov Model Parameters 6

2.5 Hidden Markov Model Building Blocks 6

2.5.1 Forward Algorithm 7

2.5.2 Backward Algorithm. 8

2.5.3 Viterbi Algorithm 8

2.5.4 Baum-Welch Re-estimation. 10

2.6 Feature Space Trajectory. 11

iii

Page

2.6.1 What is a Trajectory?. 12

2.6.2 How do FSTs Work?7 . 12

2.6.3 Issues with regard to speech. 15

2.7 Neural Post-Processing. 17

2.8 Summary. 17

III. Approach 19

3.1 Introduction. 19

3.2 Hidden Markov Model 19

3.3 Speaker Identification 20

3.4 Speaker Verification. 20

3.4.1 Cohort Selection. 21

3.5 HMM with Single-Layer Perceptron Post-Processor. 22

3.6 Cohort Selection Using Neural Post-Processing. 24

3.7 Feature Space Trajectory 26

3.7.1 Trajectory Construction 27

3.7.2 Incorporating Ney's Algorithm 28

3.7.3 Template Generation 31

3.8 FST with SLP Post-Processor 33

3.9 Summary 33

IV. Results 35

4.1 Introduction. 35

4.2 Hidden Markov Model Speaker Identification 35

4.2.1 Neural Post-Processor. 37

4.3 Hidden Markov Model Speaker Verification 38

4.3.1 Cohort Selection Using Perceptron Outputs. 39

4.4 HMM/FST Comparative Test 40

iv

Page

4.5 Feature Space Trajectory Speaker Identification 41

4.5.1 FST Speaker Identification using Neural Post-Processing 42

4.6 Conclusions 43

V. Conclusions and Recommendations 44

5.1 Introduction 44

5.2 Hidden Markov Models with SLP Post-Processing 44

5.3 Feature Space Trajectories 44

5.4 Hidden Markov Models vs Feature Space Trajectories 45

5.5 Recommendations 45

Appendix A. Feature Space Trajectory Code 47

A.1 FSTNN Code 47

A.2 FST Testing Code 49

Bibliography 58

Vita 60

v

List of Figures

Figure Page

1. 3D Trajectory 12

2. FST Distance Calculations 13

3. 5 State Left-to-Right HMM 19

4. SLP Post-Processor 23

5. Ney Distance Matrix and Legal Predecessors 29

6. Cluster shapes provided by VQ distortion metrics 32

7. 5 State Ergodic HMM 36

vi

List of Tables

Table Page

1. SLP Individual Utterance Ranking. 25

2. SLP Cohort Ranking 26

3. HMM Speaker Identification. 36

4. SLP Post-Processor Speaker Identification 37

5. HMM Speaker Verification. 39

6. HMM/SLP Speaker Verification Equal Error Rates. 40

7. FST Single Template Results 42

vii

AFIT/GCS/ENG/96D-31

Abstract

As humans, we develop the ability to identify people by their voice at an early age.

Getting computers to perform the same task has proven to be an interesting problem.

Speaker recognition involves two applications, speaker identification and speaker verifica-

tion. Both applications are examined in this effort.

Two methods are employed to perform speaker recognition. The first is an en-

hancement of hidden Markov models. Rather than alter some part of the model itself, a

single-layer perceptron is added to perform neural post-processing. The second solution is

the novel application of an enhanced Feature Space Trajectory Neural Network to speaker

recognition. The Feature Space Trajectory was developed for image processing for tem-

poral recognition and has been demonstrated to outperform the hidden Markov model for

some image sequence applications.

Neural post-processing of hidden Markov models is shown to improve performance

of both aspects of speaker recognition by increasing the identification rate from 70.23% to

88.44% and reducing the Equal Error Rate from 3.38% to 1.56%. In addition, a new method

of cohort selection is implemented based on the structure of the single-layer percceptron.

Feasibility of using Feature Space Trajectory Neural Networks for speaker recognition

is demonstrated. Favorable identification results of 65.52% are obtained when using a

large training database. The FST configurations tested outperformed a comparable HMM

system by 12-24%.

viii

Speaker Recognition by Hidden Markov Models and Neural Networks

L Introduction

1.1 Background

As humans, we have developed the ability to identify people by merely hearing their

voices. We can do this if they are in the same room with us, down the hall, on the

telephone, or even talking through a personal address system.- What makes this possible?

What does our brain use to discriminate one person's voice from another?

It is easy to understand how to differentiate a male speaker from a female speaker

because in most cases, the male's voice has a lower pitch. The problem becomes more

difficult when trying to discriminate one particular male from a group of all male speakers.

Maybe we can use the fact that one speaker has a Southern accent while the others do

not. It could also be the case that the speaker pronounces certain words differently than

other speakers. We have developed this discriminative ability and use it without giving it

much thought. programming a computer or machine to perform the same task has been

difficult.

Speech has a temporal component in that when a given word is spoken, sounds must

be in a certain order. If these same sounds are produced in permuted order, they will

not produce the same word. This temporal information will be the basis of the methods

that are used in this thesis for speaker recognition. Similar to the analogy that sounds

must be ordered to represent a given word, the manner that a speaker produces that order

is also temporally based. A good illustration is people with a Southern accent. Their

pronunciation of certain words may be extended relative to that of New Englanders.

Speaker recognition research is divided into two applications. The first is speaker

identification where given a sample of speech, the system finds the closest match in the

database and reports it as the result. The second is speaker verification where someone

makes a claim about their identity, and the system determines if the claim is valid. This

thesis will address both areas.

1.2 Problem Statement

Develop and compare the performance of two temporally based speaker recognition

systems; hidden Markov models and Feature Space Trajectory (FST) Neural Networks,

each using neural post-processing.

1.3 Scope

The data used in this thesis is from the YOHO database. YOHO speech utterances

are from a real-world office environment collected using a high-quality telephone handset.

Each utterance consists of a combination lock phrase of the form "twenty-four, sixty-seven,

eighty-two" with 8 kHz sampling and 3.8 kHz bandwidth [1].

This database was developed by ITT and is the largest supervised database of its

type. YOHO has been configured to allow testing at the 75% confidence level for de-

termination of meeting the 0.1% false rejection and 1.0% false acceptance criteria. This

database contains 138 speakers (32 females and 106 males) from which data was collected

over 14 sessions for each speaker [1]. For the purposes of this thesis, only the 32 females

2

will be used. Time constraints drove the need to work on a subset of the database. The

entire set of females was chosen because it represents a much more complex problem than

performing speaker recognition on a database of 16 males and 16 females.

Speaker recognition performance will be reported in terms of Equal Error Rate

(EER). EER is defined as the point where the number of False Acceptances is equal to the

number of False Rejections to a system.

1.4 Approach

The first step is the development of a simple, word-based HMM speaker recognition

system. The single-layer perceptron (SLP) post-processor is also developed to determine

if it provides any enhancement. The second step is the development of a word-based

FST speaker recognition system. Once developed, the SLP post-processor is applied to

determine the improvement in performance.

1.5 Thesis Organization

Chapter II provides background information on the methods used in this thesis.

Chapter III contains a description of the methodology used in the accomplishment of this

research. Chapter IV contains the results, and Chapter V contains a discussion of the

results and suggestions for future work.

3

II. Background

2.1 Introduction

This chapter provides the necessary background information to understand the meth-

ods used in this thesis for the speaker recognition problem. To start, the YOHO database

will be described along with feature generation. Next, hidden Markov models (HMM)

will be discussed in detail as well as the Feature Space Trajectory (FST) Neural Network

developed by Neiberg and Casasent [2-7]. In addition, the single-layer perceptron will be

discussed due to its use as a post-processor following both the HMM and the FST.

2.2 YOHO Database

The YOHO database [1] was developed by ITT and is available from the Linguistic

Data Consortium. It was created as a standard to be used in the development of speaker

verification systems. The database contains speech from 138 speakers (32 female and 106

male) in the form of combination lock phrases. Each phrase consists of three numbers

in the form: "ninety-seven, sixty-three, twenty-four." The vocabulary has been limited

such that no value under twenty is permitted, the number eight cannot be used, doublets

(twenty-two, thirty-three, etc.) are excluded, and the decade numbers (twenty, thirty, etc.)

are not allowed.

The data was collected over a 3-month period in a real-world office environment. A

telephone handset was used to collect the data with 8 kHz sampling and 3.8 kHz band-

width [1]. Each subject took part in 4 enrollment sessions with 24 phrases per session and

10 verification sessions with 4 phrases per session.

4

2.3 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) are used as features [8,9]. Coefficients

are obtained from analysis frames 20 msec in length at 10 msec intervals. Twenty-four

Mel frequency spectral coefficients (MFSC) are generated by twenty-four triangular filters.

The filters are spaced linearly below 1 kHz and logarithmic above. This results in twenty-

four MFSC which are reduced to twelve MFCC through application of a Discrete Cosine

Transform. Log energy is appended to the twelve MFCCs for a baseline feature set of

thirteen dimensions. The transitional coefficients delta and delta-delta are also appended

to provided a thirty-nine dimensional feature vector for each frame, as shown below.

Vl-[39 MFCC.-12 LogEnergy13 A14-26 AA 27- 39 1 (1)

2.4 Hidden Markov Models

The hidden Markov model (HMM) is a probabilistic technique for the modeling

of temporal data [10]. HMMs consist of states that can be interconnected in different

manners. Two ways that states may be connected include ergodic and left-to-right. The

ergodic model is fully interconnected, meaning a transition may occur to any other state.

The left-to-right, or Bakis, model has the constraint of starting in the first state, and

finishing in the final state without going backwards.

There also exist two subtypes of HMMs, discrete and continuous, that describe the

systems they are attempting to model. Discrete HMMs are characterized by a finite obser-

vation symbol alphabet and corresponding probability mass function. Continuous HMMs

5

are characterized by modeling the observations as continuous random variables with asso-

ciated probability density functions.

2.4.1 Hidden Markov Model Parameters. The number of states and structure

of the HMM are important characteristics, but there are additional parameters that are

required to define an HMM.

1. N - The number of states of the model.

2. M - The number of observation symbols in each state.

3. 7r - Initial state distribution. Each entry corresponds to the probability of being in

state q, for the initial observation.

4. A - Transition Matrix (N x N). Each entry (asj) corresponds to the probability of

transitioning from state qj to state qj.

5. B - Observation Symbol Distribution Matrix (N x M). Each entry (bik corresponds

to the probability of being in state qj and observing the symbol k.

Since the parameters N and M can be derived from the matrix dimensions, only

the parameters 7r, A, and B are required to completely define an HMM. This definition is

usually in the form of A = (7r, A, B) [11].

2.5 Hidden Markov Model Building Blocks

There are three basic problems which must be solved to apply HMMs to any task [11].

The first is that given an HMM, A, and an observation sequence, 0 = {o,02,... , OT},

what is the probability that the sequence came from this model, P(OIA)? For example, in a

6

speaker identification test, each speaker has a model and identification is accomplished by

finding the best fitting model, as determined by the highest probability. The second is to

find the optimal state sequence, q, given 0 & A. In our speaker identification example, this

corresponds to finding the path through a given speaker's model that results in the highest

probability. The third problem is to adapt the parameters of a given HMM, A = (7r, A, B),

to maximize P(OIA). This problem is often referred to as training the HMM. In speaker

identification, as with most other HMM applications, this is a crucial aspect. A poorly

trained system results in poor results. The following algorithms solve these three problems.

2.5.1 Forward Algorithm. One way to calculate P(OIA) is the Forward Algo-

rithm. In this procedure, given 0 and A you start with the first observation, ol, and work

"forward" through the data sequence until the end is reached. This produces a probability

which is the sum over all possible state sequences evaluated at o = ot. The algorithm is

shown below [11].

1. Initialization

al(i) = 7ribi(ol), 1 < i < N (2)

2. Induction

N= 1 <<T-N

3. Termination
N

P(OIA) = ZQT(i) (4)
7=1

4. NOTE: The forward variable is defined as at(i) = P(Ol, 02, ...ot, qt = i1A) which rep-

resents the probability of the observation sequence {0, 02, ... o } and state i at time

t for the given model A

2.5.2 Backward Algorithm. Instead of beginning with the first observation, we

can start with the final observation and work our way "backward". This procedure is

primarily used to produce the backward variable for use in training the HMM:

PAOi = P(Ot+10t+2 ... OTlqt -- i, A) (5)

The backward variable is defined as the probability of the observation sequence {Ot+1, Ot+2...OT}

given state qt = i and a model A. Calculation of the backward variable follows [11].

1. Initialization

T~i)---1, l<i<N (6)

2. Induction
N ti=T- 1,T- 2,...,l,(7

fIT(i) = ajbj(ot+)3t+(j), (7) <
j=1 1<

3. Termination
N

P(OIA) = brlb)(o)#jl)(i) (8)
i=1

2.5.3 Viterbi Algorithm. The Viterbi Algorithm is used to find the most likely

state sequence using an algorithm similar to that of the forward procedure. The difference

is that instead of keeping track of probabilities for every possible path; it is only concerned

8

with the best path. An array is used to store the state sequence that corresponds to the

optimal probability. The general procedure for the Viterbi Algorithm is found below [11]:

1. Initialization

b1(i) = 7i,b(ol) 1 < i < N (9)

01 (i)=0 (10)

NOTE: bt (i) represents the highest probability for the observations {Ol, 02... Ot I along

a single path at time t and ends in state i. Ot(i) is an array that holds the argument

which maximizes b for each t and qt.

2. Recursion

bt(J) = max [t - (i)aj lbj (ot) 2 < t < T (11)

=(J) arg max[- (i)a ij] 2 <:t < T (12)

3. Termination

P" = max [bT(i)] (13)

<<N
q = arg mx(14)

4. Path (state sequence) backtracking

qt= ¢,(q;+1) (15)

9

In most cases, HMMs are implemented using log values to avoid underflow of the host

machine. Underflow is caused by the extremely small probabilities that occur when dealing

with large models and large amounts of input data.

2.5.3.1 Forced Viterbi Alignment. The Viterbi alignment procedure de-

scribed above uses all possible state sequences to determine its score. A different approach

is to 'force' only certain allowed state sequences. For example, assume an HMM system

with word level models using the YOHO database. With the normal Viterbi procedure

described in Section 2.5.3, all possible combinations of word models will be examined to

determine the best match. In forced Viterbi alignment, only the words corresponding to

the utterance will be used to determine the score. This research will use forced Viterbi

alignment due to the constraint that the combination lock phrase being uttered is known

to the system.

2.5.4 Baum-Welch Re-estimation. The problem of adapting the model parame-

ters to maximize P(OIA) can be solved in many different ways. One of the most well-known

is the Baum-Welch Method. This procedure uses a, 0, and -y from the forward and back-

ward algorithms. -y is calculated from a and P using Equation 17, where it represents the

probability of being in state i at time t for a given observation sequence, 0, and model A.

The basic steps are to first determine t(ij), the probability of being in state i at

time t and state j at time t + 1. Taking the summation of Ct(ij) from t = 1 to t =

T - 1 yields the expected number of transitions from state i to state j in 0. A similar

10

summation of -yt(i) yields the expected number of transitions from state i in 0 [11].

a U (16)

t~i~j) = =j--1 at(i)ajjbj(°t+1)f#t+l(J)

All the parameters are now in place to perform the re-estimation. The goal is to optimize

the model for the given observation sequence. Therefore, 7r, A, and B must be recalculated.

The equations are given below [11]:

'(i) at A W~3~i (17)

~(18)

ET N

- i =1 at(i)

&jj = t i' (18)

.T,-, -if j)
FT~k 1 _T= t(j)

(19)

Application of these steps results in a new HMM, A. By replacing A with A this procedure

can be applied iteratively until there is a minimal difference between \ and A in successive

iterations.

2.6 Feature Space Trajectory

The Feature Space Trajectory Neural Network was developed by Neiberg and Casasent

[2] for application to the multi-class pattern recognition problem. To this point, it has only

been used on images [2-7]. This research has focused on extending the techniques that

allowed FSTs to work with images so that they could work with speech.

11

2.6.1 What is a Trajectory? The trajectory and what it represents is the heart

of the FST. A trajectory is simply a series of interconnected points in feature space, as

in Figure 1. These points are called vertices. Since these points are connected, there is

some relationship between them. In the case of speech, these points correspond to the

features from a given frame of speech. Therefore, by ordering the points according to their

occurrence in a speech utterance, a trajectory naturally encodes the temporal aspect of

the speech.

2...

0.5.

01.5

-1= 1

-1 0.5

-3 -1.5

Figure 1. Sample Trajectory in Three Dimensional Space

2.6.2 How do FSTs Work? The first step in constructing an FST system to

perform classification is to formulate a database of trajectories for each class of the problem.

To perform classification, an unknown trajectory is compared to the database, and the

trajectory that is the smallest distance from the unknown is classified as the winner. It is

important to note that instead of comparing vertex to vertex, as would happen in a nearest

12

neighbor classifier, the FST compares an unknown vertex with the closest trajectory from

the database [6].

2.6.2.1 Trajectory Creation. Each trajectory is constructed of multiple

segments that are defined by a length, li, and direction, vi [6]. In addition, the vector

inner products, ci,i+l are required for distance calculations to the test data. These values

are calculated based on the feature vectors from the training data, xi.

1, = llxi+i - XII (20)

Xi+1 - X(21)
Vi =(21

Ci,i+l = Xi ,i+l (22)

X 1
V1 X

, U

V2

X3

Figure 2. Illustration of Distance Calculation Geometry

13

2.6.2.2 Distance Calculations. When a test trajectory is tested against

the training data, distances are calculated from the unknown vertices, pi, to the closest

segment of the training trajectory. In order to calculate the distance, some intermediate

values must be calculated in order to project pi onto the known trajectory, see Figure 2.

The variable a is used to denote the position p' where p projects onto the segment v. In

the equation below, u is defined as the distance from x to p.

a=u v (23)

There are three possible values for a [6]:

1. a is negative - the point does not fall on the segment. The distance is calculated

to the segment start point.

d = IIz, - pII (24)

2. a is positive and less than I - the point is on the segment and distance calculated

fromp to p'. Let a=1- b=5.

d2 =p"p-2ap" x -2bp.X 2 +a 2c 1,1 + 2abcl,2 + b2 c2,2 (25)

3. a is positive and larger than I - the point does not fall on the segment and since

the closest point is the endpoint, it is considered with the next segment.

For each of the vertices Pi, the minimum distances to the training trajectory are summed

to get on overall distortion measure between trajectories [2]. The training trajectory which

14

has the minimal distortion value indicates class membership of the test trajectory. This

implementation allows any vertex from the test trajectory to be mapped to any segment

on the training trajectory.

2.6.3 Issues with regard to speech. There are two main problems that exist for

applying FSTs to speech. In its original form, the FST is very effective when comparing

trajectories that contain an equal number of vertices and segments. This makes the sum-

mation of minimum distances an acceptable metric. However, if the trajectories differ in

size, the sum is no longer a valid distortion measure. The FST in its present form, allows

for any point of the unknown trajectory to map to any segment on the training trajectory.

That is, the first point may map to the third segment and the second point may map to an

earlier segment. Since a speech signal is a temporal process, an order must be established

where vertices cannot be mapped to earlier segments. The following sections address these

issues.

2.6.3.1 Distortion Metric. The summation of minimum distances is not

valid when comparing trajectories of different lengths; however, the mean of the minimum

distances corrects this problem. The mean is a valid solution because it normalizes the dis-

tortion metric and provides a basis for comparison among trajectories of differing lengths.

Consider the mean distance,

N

(i=2)1 (
N

where di represents the distance from vertex pi of the test trajectory to the closest point on

the training trajectory. The distance is calculated for all N vertices of the test trajectory.

15

2.6.3.2 Dynamic Time Warping. Dynamic Time Warping (DTW) has been

used to compare speech utterances of different lengths for many years. However, DTW is

another technique where vertices are compared to vertices. Therefore the FST must be

adapted to provide DTW where an unknown vertex is compared to the closest trajectory.

An elegant way of performing DTW 'on-the-fly' is by using Ney's algorithm [12]. This is a

one-stage algorithm that has been applied to the problem of connected word recognition.

It provides the advantages of word boundary detection and nonlinear time-alignment to

enhance recognition performance. The advantage of performing this in the context of the

FST algorithm is that errors which may be introduced by missed word boundary detection

and improper time alignment are removed [12].

2.6.3.3 Template Generation. It is impossible for a person to say an utter-

ance exactly the same way more than once. This leads to differences in the feature space

vertices and therefore differences in trajectories. One approach for template generation

may be to construct a database of every utterance for every person in the database. This

procedure leads to a training database that is difficult to test against. For example, assume

that trajectories will be constructed for each word and that each word will be spoken ten

times in training. If we are trying to recognize just two combinations of words, the FST

would need to check each of the ten trajectories of the first word with each of the ten trajec-

tories of the second word resulting in 100 comparisons. If you factor in multiple speakers,

say 10, the result is 1000 comparisons in order to determine the result. In contrast, if one

template per word per speaker could be developed, the number of comparisons drops to

10; two orders of magnitude difference.

16

The problem is how to effectively reduce multiple utterances of one word into a

trajectory that is representative of them all and still allows for discrimination from other

speakers. One method for accomplishing this could be to apply Vector Quantization (VQ)

to the training data to establish a codebook that represents the trajectory [11]. The

codebook is easily generated by standard VQ techniques; however, due to the structure

of the FST, the temporal information of the codewords must be maintained. Maintaining

temporal information in an FST classifier will be a large focus in this effort and at present

is the largest hurdle to overcome in applying FSTs to speech.

2.7 Neural Post-Processing

The optimal Bayes classifier makes use of the maximum a posteriori probability.

Baum-Welch re-estimation only provides maximum likelihoods while FSTs produce mini-

mum distance based decisions. Since perceptrons can provide outputs which approximate

the maximum a posteriori probability [13], their use as a post-processor will be investi-

gated. Benson and Bernander investigated this option in their work on speech recognition

and achieved favorable results [14]. The single-layer perceptrons will accept the outputs

from the HMMs or FSTs as inputs. Thirty-two output nodes will be used with one node

for each speaker. In the identification experiment, the output node with the maximum

value will be chosen as the identified speaker.

2.8 Summary

This chapter provided background material on the methods that will be used to

implement the speaker recognition systems. The HMM was detailed and will be used as

17

a baseline system for comparison against the newly developed FST system. In addition,

enhancement of the methods by adding an SLP post-processor to utilize the maximum a

posteriori probability will be examined in Chapters III and IV.

18

III. Approach

3.1 Introduction

This chapter discusses the application of HMMs and FSTs to the speaker recognition

problem as well as how these methods can be compared to one another.

3.2 Hidden Markov Model

In order to accomplish speaker recognition using HMMs, all of the basic blocks de-

fined in Chapter II must be used. The Hidden Markov Model Toolkit (HTK) is used to

accomplish this task. HTK was developed by Entropic Research Laboratory, Inc and a

complete description can be found in [15].

b(2,i)
a(1,1)(,) a(2,3)

b(i,i) 1 3 b(3,i)

54 b(4,i)

a(ij) f transition probability from state i to state j
b(k,1) = probability of observing 1 in state k

Figure 3. Five State Left-to-Right HMM

19

The HMM speaker recognition system consists of word models for each speaker. Five-

state left-to-right models are created using HTK. All of the training data for the 32 females

in YOHO are used to train the models and they were tested against the entire set of test

data. Each speaker has 96 combination-lock phrases of training data and 40 combination-

lock phrases of test data. A test consisted of running an utterance through each speaker's

model and obtaining a log-likelihood score. This score is the basis of classification.

3.3 Speaker Identification

The speaker identification phase is the first step in a speaker verification system.

The models that produce the maximum Viterbi log-likelihood value identify the unknown

speaker. This corresponds to the basic Bayesian classifier (assuming equal priors) where

speaker model i chosen to represent the speaker of a given utterance U [8].

i = argmax { logp(UlAk) }, 1 < k < 32 (27)

3.4 Speaker Verification

Speaker verification utilizes the results from the speaker identification phase for se-

lecting reference speakers. Reference speakers, also known as cohorts, are used to normalize

the log likelihood ratio of the test utterance using the claimed speaker's model [16-18].

The log-likelihood ratio L is derived from the Bayes optimal decision rule for classifying

true speakers against impostors. Classification is made by comparing C to a threshold.

Define the log-likelihood ratio of an utterance U, with a reference "cohort" set size denoted

20

by ICI, as the following approximation[19,

1

L(U) = logp(UIkio) - logp(UlA) (28)

where Aciatm is the claimed speaker's model and Aj is one model from the claimed speaker's

cohort set. This has recently been called the Geometric Mean normalization [18].

3.4.1 Cohort Selection. The set of cohorts C will be selected as "close" speakers

based on log-likelihood Viterbi scores using all enrollment data. Cohorts are selected for

each speaker based on the smallest distortion metric using the three methods listed below.

1. Difference of Means [17] or (DOM) sorts by mean difference of log-likelihoods enroll-

ment scores.

dDoM(A), Aj) log P(UlAi)
p(UIAj)

- logp(UlA,) - logp(UlAj) (29)

2. Reynold's [20] Symmetric method sorts on pairwise log-likelihood ratio enrollment

information (If speaker i is "close" to speaker j then the reverse must be true).

dsyM(Ai, Aj) - logp(U1 IA) +o p(UjIA,) (30)

21

3. Second order Bhattacharyya measure [21] sorts cohorts using the variance of the

enrollment likelihoods, as well.

(M, 2 j) 2

dAiA' 4(o2 +;2) + log oOJ) (31)

where mi represents the enrollment likelihood mean and a? represents the enrollment

likelihood variance. Fielding [221 has shown how the use of second-order statistics

can be useful for HMM model comparisons.

3.5 HMM with Single-Layer Perceptron Post-Processor

This approach takes advantage of the discriminative power of perceptrons. HMMs

are very effective at modeling the temporal characteristics of speech; however, since they

rely on maximum likelihood estimation (MLE), they are not necessarily discriminative.

This approach employs a SLP as a post-processor to improve classification performance.

The SLP accepts as inputs the log likelihoods produced by the HMMs and selects a speaker

with the highest probability of having spoken the utterance under test.

In order for the SLP to be effective as a post-processor, the log likelihoods from the

HMMs must be normalized. In general, these values are within a specific range without a

large degree of separation. For the females from YOHO, the entire set of log likelihoods

range from -80 to -61. In terms of probabilities, these values are different by nineteen orders

of magnitude, but the log values decrease this distance measure. In order for perceptrons

to train effectively, these value must be normalized.

22

spkl

:HMM

Utterance

spiN

Figure 4. Configuration of Neural Network as Post-Processor

A widely accepted method of normalizing SLP input data is statistical normalization

[23]. In this method, each feature, j, (log likelihood from a specific speaker) is normalized

such that it has zero mean and unity variance, see Equation 32. This attempts to balance

the discriminant nature of each feature with respect to all others.

a!. =- aij - jj (32)

Although statistical normalization is the method used in this thesis, two others were in-

vestigated. The first is energy normalization. In this technique, each element, aij of the

feature vector is divided by the vector magnitude such that the resulting vector is of unit

magnitude, see Equation 33. Energy normalization attempts to capture discriminant in-

formation between elements of a single feature vector. The problem is that the relative

23

distance relationship with other samples is lost.

a a= j (33)

The second, compliment coding is a normalization technique which seeks a middle ground

between the two techniques mentioned above. The first step is to energy normalize the

features to obtain vectors of unit magnitude, as in Equation 33. Next, the compliment

of each element is taken and appended to the vector as shown in Equations 34 and 35.

This doubles the amount of features, but has the advantage of retaining relative distance

information among samples.

af. = 1 - aij (34)

I = [aac] (35)

3.6 Cohort Selection Using Neural Post-Processing

Since the outputs of the SLP can approximate the a posteriori probabilities [13] and

cohort selection attempts to find the speakers that are "close" to one another, it is possible

to use the SLP outputs as criteria for selecting the cohort speakers. The SLP outputs

are able to represent higher order relationships better than the raw log likelihoods. Since

the HMM relies on determining the maximum likelihood, it can only capture a first order

relationship. Therefore, the SLP has the advantage of using more information to make a

decision.

In order to select cohorts using the SLP, each utterance is run through the HMMs

with the resulting log likelihoods used as inputs to the SLP. Each output of the SLP is

24

associated with one of the speakers. These outputs of the SLP are ranked from highest

to lowest, with the highest representing the speaker with the highest probability of saying

the utterance [13], see Table 1. This process is performed on each test utterance. Once

all utterances for a particular speaker are complete, the individual rankings are summed

to get on overall ranking. This final ranking is used as the basis for cohort selection, see

Table 2.

Table 1. Ranking of output node values for one utterance

Output Node Output Value Rank
1 0.9789 1
32 0.0679 2
29 0.0398 3
26 0.0305 4
20 0.0200 5
9 0.0094 6
4 0.0089 7
24 0.0079 8
6 0.0074 9
12 0.0065 10
8 0.0044 11
5 0.0044 12
27 0.0032 13
22 0.0030 14
7 0.0026 15
17 0.0025 16
2 0.0021 17
10 0.0018 18
3 0.0016 19
11 0.0015 20
19 0.0013 21
16 0.0007 22
23 0.0006 23
15 0.0005 24
14 0.0005 25
13 0.0004 26
30 0.0004 27
28 0.0002 28
25 0.0000 29
21 0.0000 30
28 0.0000 31
31 0.0000 32

25

3.7 Feature Space Trajectory

Prior to this effort, the Feature Space Trajectory (FST) Neural Network had not been

applied to speech. Therefore, development of such a system must be undertaken in gradual

steps. The first step necessary is to determine how speech signals can be transformed into

trajectories.

Table 2. Ranking of output node values for all training utterances for speaker 1

Cohorts Sum of Ranks Rank
1 96 1
5 762 2
24 961 3
9 965 4
32 987 5
17 1081 6
20 1094 7
22 1174 8
26 1273 9
3 1284 10
23 1309 11
15 1368 12
12 1433 13
2 1504 14
7 1593 15
29 1659 16
16 1696 17
4 1702 18
10 1773 19
8 1784 20
25 1809 21
27 1833 22
6 1845 23
18 1884 24
28 1908 25
19 2061 26
13 2171 27
21 2187 28
31 2262 29
14 2290 30
30 2293 31
11 2467 32

26

3.7.1 Trajectory Construction. In the original FSTs used in image recognition,

series of images are used to characterize an object and create a trajectory [2-7]. Concep-

tually, the trajectory is created by connecting sequential points in feature space via line

segments. Adjacent points represent images that have a temporal order. An analogy can

be drawn to speech signals in that features from consecutive frames of sampled speech can

be used to create a trajectory.

The next question is at what level of speech should trajectories be constructed. It is

possible to create trajectories that represent an entire utterance from YOHO. The problem

is that every utterance is different in that one may be "Ninety-three, Fifty-seven, Thirty-

two" while another may be "Twenty-four, Forty-six, Eighty-one." Even if the same person

spoke both utterances, the trajectories are vastly different due to the difference in words

that comprise them. To remedy this problem, word level trajectories have been chosen.

By constructing trajectories at the word level, individual words can be concatenated to

make every possible utterance in YOHO. If one trajectory is created for each speaker per

word, the result is sixteen trajectories for each speaker. In contrast, creating trajectories

for every possible utterance would require more than 350,000 trajectories per speaker. In

addition to an abundance of storage space required, the training time for each speaker

would be a limiting factor.

The next step is determining how to test the trajectories. One solution is to use every

instance of each word as a training trajectory. For the word 'ONE' alone this results in 42

trajectories for each speaker in the database. When attempting to test an entire utterance,

the number of combinations resulting from concatenating multiple word instances pushes

the number of test runs to be large. However, using every instance is useful for development

27

of the basic techniques for applying FSTs to speech when limiting the testing to only one

word from an utterance.

Using this idea for a proof of concept, the initial FST for speech could be developed.

However, a second problem is produced. All instances of the word 'ONE' are of different

lengths, resulting in different numbers of frames and therefore different length trajectories.

The original FST for image recognition is designed to work on a single point or trajectories

of equal lengths. In order to overcome this obstacle, a method of comparing utterances of

different lengths must be developed.

3.7.2 Incorporating Ney's Algorithm. Ney's algorithm is an efficient way of

performing Dynamic Time Warping (DTW) in a one-step process using Dynamic Pro-

gramming [12]. By using DTW, two signals of different lengths can be compared to one

another with one either being stretched or compressed to best match the template. The

result from this is a distortion metric which indicates the distance between the two signals.

In Dynamic Time Warping (DTW), a matrix is created containing distances between

points of two signals, see Figure 5(a). In the case of speech signals, the points represent

feature space locations corresponding to individual frames from an utterance.

The idea is to find the minimum distance path through the matrix while applying

certain constraints. The constraints determine the path that can be created. Figure 5(b)

shows acceptable transitions and the weights associated with each move.

The idea is to reward transitions that keep the path on the upward diagonal while

penalizing those moves that get away from the diagonal. The legal predecessors establish

which moves are allowed and the cost of making each one. For example, a move on the

28

amp D-28

6 142.

51L 25 2.0
4 On D- 25

1.0

1 2 3 4 5 6 7 8 Dcnm . ," D22.5

Test Utteance (frames)

(a) (b)

Figure 5. (a) is a representative DTW Distance Matrix and (b) represents the legal moves
and their weights

diagonal is good and will not receive a penalty (weight = 1); however, to stay in the same

frame or skip a frame ahead will receive a penalty. In Figure 5(b) staying in the same

training frame has a weight of 1.5 and skipping a training frame has a weight of 2.0. The

weights are important when determining which transition to make. Figure 5(b) shows

the detailed distance measurements for movement from frame 4 to frame 5 of the test

utterance, the area in the bold box of Figure 5(a). Without the weights, the transition

chosen would be to skip one frame due to its distance of 14 which is lower than the values

for moving one frame ahead or staying in the same frame. However, when the weights

are considered, the transition chosen is to remain in the same frame. Staying in the same

frame has a distance of 22.5, moving one frame forward has a distance of 25, and skipping

one frame has a distance of 28; thus, the minimum distance of 22.5 forces the transition to

remain in the same frame. The values shown in Figure 5 (b) result from multiplying the

original distances (Figure 5(a)) by the associated weight.

29

The original FST finds the nearest point on the training trajectory to a test point.

This is done without regard for where the closest point lies on the training trajectory. For

speech, since temporal data is involved, it is important to consider whether a point from

the end of one trajectory maps to the beginning of another or vice versa. In the same

manner, once we have reached a given point in the speech data, we do not want to allow

the point to map to an earlier segment of the trajectory. That violates the temporal nature

of speech.

Toward this end, Ney's algorithm is incorporated to improve the FST so as to produce

a Ney-based FST. In this version of the FST, comparison starts at the beginning of the

training trajectory and moves forward just as in the left-to-right HMM. The only moves

allowed are to stay on the same segment, move one segment ahead, or move two segments

ahead, see Figure 5(b). Staying on the same segment corresponds to a test trajectory

needing to be compressed. Moving ahead one segment is the desired result meaning that

the test and training trajectories are proceeding at the same rate. Moving two segments

ahead means that the test trajectory needs to be expanded to provide a better match to

the training trajectory.

Using the proposed Ney FST, a proof of concept test is constructed where each of the

first speaker's test instances of the word 'ONE' would be tested against every speaker's

training instances of the word 'ONE.' This shows the ability to use FSTs with speech.

However, it is unrealistic to use all training utterances as discussed previously. For the

word 'ONE,' each speaker had 42 instances in training data. Therefore, to perform speaker

identification requires testing 1344 trajectories. A method for reducing the size of the

training set while maintaining performance is the next area of interest

30

3.7.3 Template Generation. In order to reduce the amount of training templates

in the database, it is desirable to find a way of determining one trajectory which is rep-

resentative of how a given speaker says each word of the YOHO vocabulary. This would

result in 16 templates per speaker, one for each word, as opposed to the 576 trajectories

resulting from using each instance of the word 'ONE'. Two methods of determining the

optimum template are developed.

The first is to pick the instance which minimizes the distance to all other training

instances of the word. This process involves using the Ney FST to obtain a distance

measure from each training instance to every other training distance. The one that results

in the minimum sum of distances to all trajectories is picked as the optimum template.

The second is to Vector Quantize (VQ) all of the training data for a given word from

each speaker to produce a codebook. Here, VQ is performed two different ways. One

uses a Euclidean distance measure while the other uses a Mahalanobis distance measure.

These distances provide different results when creating the codebook, see Figure 6. The

Euclidean distance measure assumes the clusters are spherical. Mahalanobis distance, on

the other hand, makes no such assumption and uses the mean and variance of the data to

determine the shape of the clusters and distances normalized relative to ellipse size and

orientation [24].

Codebook generation follows the basic LBG VQ algorithm [11]. However, because

the system seeks to take advantage of the temporal nature of the speech signal, a method of

recovering the temporal ordering of the codewords is necessary. By applying an utterance to

the codebook, it is possible to determine which codeword each frame of speech data mapped

31

(a) (b)

Figure 6. Illustrations of the cluster shapes as a result of (a) Euclidean distance distortion
measure and (b) Mahalanobis distance distortion measure

to. If only one utterance is used, the solution could be obtained quickly by applying the

mapping of that utterance to the codebook. However, since multiple utterances exist in

the training data, a way of combining each of their mappings into one overall temporal

ordering is required.

Two methods are employed to determine the codeword ordering from the mappings

of each utterance to the codebook. When the mappings are obtained, it is known which

codeword each frame of speech is mapped to. The idea is to determine which codewords

are mapped to by frames from the beginning, the middle, and end of the utterance. By

analyzing the mappings, it is possible to create the desired order. The first method used

was to determine the mean of the frames which map to each codeword. The codeword

with the lowest mean is placed first, and the codeword with the highest mean is placed

last. In. a similar manner, the median of the mapped frame values is also used. This can

remove errors in the mean that may surface due to a few unreasonably high or low values.

Once again, the codeword with the lowest median is placed first in the ordering and the

highest median is placed last.

32

Therefore, based on Vector Quantization, four different methods of template gener-

ation are examined.

1. Euclidean distance with mean ordering.

2. Euclidean distance with median ordering.

3. Mahalanobis distance with mean ordering.

4. Mahalanobis distance with median ordering.

For comparison, the templates from each of the five template generation techniques are

tested in the proof of concept experiment.

3.8 FST with SLP Post-Processor

The post-processor used with the FST is the same configuration as that used with

the HMM. A single-layer perceptron is used that accepts 32 inputs and provides 32 out-

puts. The 32 inputs represents the distance scores from the test trajectory to the training

trajectory for each speaker. This facilitates comparison to determine the performance

enhancement provided.

3.9 Summary

This chapter defined two systems for accomplishing speaker recognition. Multiple

cohort selection techniques were introduced including the newly developed SLP technique.

This technique takes advantage of the probabilistic properties of perceptron outputs to

provide an improved basis for cohort selection. A Ney-based FST was introduced which

capitalizes on the temporal structure of trajectories by incorporating the time alignment

33

techniques of Ney's Dynamic Time Warping Algorithm. In addition, a manner for com-

bining both the HMM and FST with an SLP post-processor was described. The SLP

post-processor is used to improve the identification and verification performance of these

systems.

34

IV. Results

4.1 Introduction

This chapter provides results of the speaker recognition techniques described in Chap-

ters II and III. The first technique is the HMM applied to speaker identification. The second

technique expands upon the first by using the speaker identification results from the HMM

to perform speaker verification. The third technique demonstrates the FST in performing

speaker identification. The chapter concludes with a direct comparison of the HMM and

FST.

4.2 Hidden Markov Model Speaker Identification

In order to perform speaker identification, word level HMMs are constructed for each

speaker. A test phrase is obtained from the YOHO database and the corresponding word

models are arranged to set up for forced Viterbi alignment. The resulting scores from each

speaker's model are then used to make the identification. The model with the highest

Viterbi score is chosen as the identified speaker.

For baseline purposes, speaker level HMMs are also constructed. Similarly, these

models consist of 5 states but are ergodic, see Figure 7. The key difference is that there

is only 1 model per speaker; but with word level HMMs, there are 16 models per speaker

to represent each of the 16 words from the YOHO vocabulary. This results in a large

reduction in the number of free parameters. Testing is conducted in the same manner as

with word level HMMs.

35

b(2,i)

a(1,a(5 4)

a(ij) = transition probability from state i to state j

b(k,l) = probability of observing 1 in state k

Figure 7. Five State Ergodic HMM - Not all connections shown

Table 3. Closed-set speaker identification Rates(%) for 1, 2, and 4 combination lock
phrases using Equation 27.

Method 1 2 4
Speaker Models 70.23 80.16 86.25
Word Models 80.55 91.94 96.88

Speaker level models are very simple representations of the speakers in the database.

Using only 5 states, they attempt to model every test utterance in YOHO. This leads to

low system performance as shown in the first line of Table 3. Using one combination-lock

phrase the speaker model identification rate was 70.23%. Although the rate increased to

80.16% and 86.25% when two and four combination-lock phrases were used, there is still

more than 13% error in the system that can be eliminated.

To improve performance, one possible solution is to divide the larger problem into a

series of smaller problems. This division is represented by creating HMMs at the word level.

36

In this manner, there are 5 states used to represent each word. Word level HMMs use a total

of 80 states among the required 16 models compared to the 5 states of the speaker models.

By providing more states, the performance of the system shows a substantial improvement

in Table 3. There is a tradeoff that occurs between desired level of performance and

number of free parameters. The word level models perform better but also require more

calculations due the increased number of free parameters.

4.2.1 Neural Post-Processor. One way of enhancing the performance of simple

HMM systems is to add neural network post-processing to the back-end of the system.

In this thesis, single-layer perceptrons (SLP) are used. They are configured to accept 32

inputs and provide 32 outputs. The 32 inputs correspond to the Viterbi score provided by

each of the HMMs.

Table 4. Closed-set speaker identification Rates(%) for 1, 2, and 4 combination lock
phrases using SLP Post-processor.

Method 1 2 4
Speaker Models 88.44 94.22 96.88
Word Models 93.52 97.97 99.06

The SLP provides improved speaker identification in all cases, see Table 4. These re-

suits were obtained using statistical normalization. All normalization techniques discussed

in Chapter III were examined, but statistical normalization outperformed them all.

An interesting note is that speaker level models with SLP post-processing perform

as well as or better than word level models alone. The simple speaker representation

results in lower template storage requirements and in the ability for the system to process

the information more rapidly. The addition of the SLP post-processor does add some

37

overhead; but this is primarily during training. When testing, the results from HMMs are

fed directly to the SLP and the calculations are basically instantaneous.

4.3 Hidden Markov Model Speaker Verification

The same HMMs used in the speaker identification experiment are used for speaker

verification. The first part of the process is identical to the speaker identification described

above. The difference is that during training, the training scores are used to create the

"cohort" sets. These cohort sets represent the N speakers that are closest to a given

speaker. That is, the system is likely to confuse one of the cohorts as the true speaker. By

identifying these cohorts, we are able to remove them from the testing and provide better

results as is standard in the speaker recognition community. Three methods of cohort

selection are implemented with respect to the HMM outputs:

1. Difference of Means (dDoM)

2. Bhattacharyya (dB)

3. Symmetric (dsyM)

The same methods are applied to word level and speaker level HMMs with the results

shown in Table 5. Similar to the results from speaker identification, speaker verification

performance improves through the use of word models. In all cases, the Equal Error Rate

(EER) is reduced by using the word level models. The type of model does not effect the

relationship of the results among the cohort selection techniques. For example, in Table 5

Bhattacharyya provided the lowest EER for five cohorts and one combination-lock phrase.

This is true for both word and speaker models.

38

Table 5. Equal Error Rates for Speaker Verification using HMM

Method lel Speaker Models (Word Models)
1 2 4

dDOM 1 19.92 (16.09) 17.50 (11.09) 15.94 (6.25)
2 15.55 (11.95) 12.97 (8.12) 10.62 (5.31)
3 12.73 (10.46) 10.16 (6.25) 8.12 (4.69)
4 11.88 (9.90) 8.89 (5.91) 7.83 (4.06)
5 11.42 (9.77) 8.90 (5.77) 7.19 (3.47)

dB 1 21.56 (16.48) 19.53 (10.97) 17.80 (6.25)
2 15.16 (12.97) 12.50 (8.47) 11.22 (5.00)
3 14.37 (11.10) 11.43 (7.19) 9.63 (4.69)
4 11.88 (10.23) 8.93 (5.78) 8.44 (3.75)
5 11.17 (9.52) 8.27 (5.65) 6.92 (3.38)

dsYM 1 22.34 (15.32) 20.64 (11.41) 18.73 (7.45)
2 17.19 (12.81) 14.81 (8.26) 13.12 (5.37)
3 15.30 (11.80) 12.66 (7.22) 10.62 (4.31)
4 12.59 (10.63) 9.84 (6.56) 8.75 (4.38)
5 11.95 (9.77) 9.34 (6.54) 7.23 (4.38)

4.3.1 Cohort Selection Using Perceptron Outputs. The neural post-processor

provides another means of determining the cohort speakers. Under certain conditions,

outputs of SLPs approximate a posteriori probabilities and therefore provide an enhanced

basis for classification [13]. The three methods of cohort selection applied to the stand

alone HMM systems are again employed. In addition, a new method of cohort selection

based on the SLP outputs is used. The new method ranks the values of the output layer

to provide a cohort list for each utterance. It then combines all test utterance rankings for

each speaker to form an overall cohort set.

The results in Table 6 show for small cohort set size, speaker verification performance

is degraded by the SLP outputs. However, as the cohort set increases in size, the perfor-

mance improves past that of the systems without the SLP for the Difference of Means and

Symmetric methods. The Bhattacharyya method experiences a reduction in performance.

The new SLP cohort selection method provides the best EER in 63.3% of the cases exam-

39

Table 6. SLP Post-Processor Speaker Verification Equal Error Rates

Method JCJ Speaker Models (Word Models)
1 2 4

dDOM 1 20.41 (18.20) 17.37 (13.15) 15.24 (9.12)
2 15.78 (13.68) 13.27 (9.04) 10.63 (5.31)
3 13.13 (10.23) 10.32 (5.94) 9.06 (3.39)
4 10.70 (9.05) 8.13 (5.16) 6.52 (3.12)
5 9.84 (7.34) 7.19 (4.22) 5.94 (1.88)

dB 1 27.56 (19.92) 25.61 (15.16) 23.48 (11.28)
2 20.15 (14.61) 17.54 (9.86) 15.37 (5.70)
3 17.02 (10.72) 14.72 (6.41) 11.94 (3.07)
4 14.46 (9.53) 11.91 (5.78) 10.60 (2.57)
5 11.56 (7.89) 9.67 (4.53) 8.12 (1.59)

dsYM 1 21.87 (19.84) 18.92 (15.30) 17.43 (10.62)
2 17.73 (14.77) 15.19 (9.53) 12.81 (5.31)
3 13.91 (10.94) 11.09 (6.70) 9.96 (4.06)
4 11.58 (9.06) 8.94 (5.03) 7.52 (2.19)
5 9.84 (7.97) 7.46 (4.36) 6.56 (1.56)

dsLP 1 19.46 (18.58) 16.10 (13.91) 14.39 (9.98)
2 15.14 (13.58) 12.50 (8.63) 10.25 (4.98)
3 12.67 (10.00) 10.03 (5.47) 9.05 (3.15)
4 11.39 (8.66) 8.75 (5.00) 7.20 (3.10)
5 9.84 (7.50) 7.31 (4.19) 5.62 (1.88)

ined. This is significant not only in obtaining an improvement in EER, but also in the fact

that cohort selection is made much simpler. Instead of relying on calculations of means

and/or variances, it is simple a series of rankings which can be computed quickly.

4.4 HMM/FST Comparative Test

In order to compare HMMs with FSTs, an HMM speaker identification system is

developed that uses the 5 state, left-to-right, word models. This type of HMM structure is

closely related to the trajectories used in the FST because both force movement from the

beginning to the end. In the HMM, you must start in the first state and can either stay

in the same state or transition to the next. For the FST, the similar case is true in that

when comparing trajectories, the mapping may stay at the same segment, move one ahead,

40

or move two segments ahead. The HMM was limited to only moving one state because

with only five states, a two state skip represents a large movement through the HMM

structure. To facilitate comparison with the FST systems developed, test data consists

only of utterances of the word 'ONE' from each of thirty-two female speakers. The HMM

system was able to obtain a speaker identification rate of 9.90%. This rate is extremely

low, but it performs three times better than chance (1/32 = 3.13%). This rate will be

compared against the FST speaker identification systems.

.4.5 Feature Space Trajectory Speaker Identification

The first test uses all instances of the word 'ONE' from the training data as individual

trajectories. Each speaker has forty-two such instances. Speaker identification is performed

by comparing each instance of the word 'ONE' from the test data against each of the forty-

two training trajectories from all thirty-two speakers. This results in 1344 comparisons

for each test utterance. This method performs speaker identification at the rate of 65.52%

correct.

The second test uses a single utterance from each speaker's training data as the

template. This instance is chosen by calculating the cumulative Ney-based FST distance

to all other training instances and identifying the minimum. This method performs best

of all single template techniques, see Table 7.

The other FST speaker identification tests use all of the training data from a speaker

to establish a sixteen word codebook. This codebook attempts to represent all training

data in the form of one sixteen vertex trajectory. The advantage to this technique is that

the number of comparison per test utterance is reduced from 1344 to 32. A reduction of

41

more than one order of magnitude. The four methods described in Chapter IV are used.

The results are shown in Table 7

Table 7. Speaker identification accuracy for various single template generation techniques

Method Stand Alone(%) SLP Post-Processor
Ney-FST Min Distance 'Raj 33.71 53.90
Mahalanobis/Median 25.71 54.48
Mahalanobis/Mean 24.95 49.71
Euclidean/Mean 25.14 37.33
Euclidean/Median 21.12 35.81

4.5.1 FST Speaker Identification using Neural Post-Processing. A SLP percep-

tron is implemented as a post-processor to enhance the performance of the FST speaker

identification system. The SLP accepts the 32 distance measures as inputs and provides 32

outputs. The output node with the maximum value is chosen as the node which represents

the identified speaker. The results are shown in the last column of Table 7.

These results are much improved over the stand alone FST system and once again

demonstrate the enhancement provided by neural post-processing. In all cases, the percep-

tron post-processor was able to improve the identification rate. The Mahalanobis based

distance templates provided the largest improvement with their scores doubling. The tem-

plate created by determining the training trajectory that minimizes the distance to all

other training trajectories showed the next best improvement of over 20%. The Euclidean

based templates showed minimal improvement. These results show that the Mahalanobis

based templates provide greater discriminative ability. Such templates are able to produce

distance measures which the SLP can exploit more effectively than the Euclidean based

42

templates. In other words, as far as the SLP is concerned, the Mahalanobis based distance

metrics are better features than the distance metrics produced by the other templates.

4.6 Conclusions

This chapter has provided the results of the various tests performed during this

effort. A new Ney-based FST speaker identification was developed. The performance

is poor when compared with other speaker identification systems; however, this system

had severe constraints. The FST system is only using single word test utterances. A

comparable HMM system using only single word test data was developed and performed

much worse than the FST. This result is important because although performance is not

at the desired level, it is outperforming an established speaker identification method with

only small amounts of data.

43

V. Conclusions and Recommendations

5.1 Introduction

This chapter provides the conclusions and recommendations based on the results de-

tailed in the previous chapter. Discussion of the HMM with SLP post-processing is given

first. Next, the results of applying the FST to speaker recognition is accomplished. The

third section analyzes the comparative test between HMMs and FSTs. Finally, recommen-

dations for follow-on research is provided.

5.2 Hidden Markov Models with SLP Post-Processing

SLP post-processing provides a definite enhancement of speaker recognition perfor-

mance for the HMM based systems developed. These results were consistent for both

ergodic and left-to-right HMM systems. The speaker based model accuracy went from

86.25% to 96.88% for speaker identification, and equal error rates dropped from 6.92% to

5.62%. The word based model accuracy went from 96.88% to 99.06% identification, and

equal error rates dropped from 3.38% to 1.56%. These results show the utility of using

SLP post-processing of simple HMM systems. It permits simpler HMMs with less free

parameters to obtain performance similar to that of more complex HMM systems.

5.3 Feature Space Trajectories

This research has produced the first speaker recognition system using FSTs. Thus,

the feasibility of applying FSTs to speaker recognition has been proven. They can be

implemented in a stand alone manner or incorporated with neural post-processing. The

44

key issue regarding the use of FSTs in speech was found to be template generation. The

goal will be to keep the level of performance, but reduce the size of the training database.

The ultimate solution would be to have one template per word for every speaker. New

systems were developed toward this goal and showed favorable results because they were

able to double the performance of a similar HMM based system. These were the first such

FST systems ever developed and have laid valuable groundwork for further research in this

area.

5.4 Hidden Markov Models vs Feature Space Trajectories

In order to make a direct comparison between HMMs and FSTs and their application

to speaker recognition, a test was devised based on the limited performance of the FST. The

HMM system used 5 state left-to-right word models and was tested using all test instances

of the word 'ONE.' The HMM speaker identification was 9.90%. All of the FST speaker

identification methods more than doubled this result with the best method obtaining a

rate of 65.52%. This shows the ability of the FST to outperform the HMM on limited

amounts of test data and justifies the need for further research.

5.5 Recommendations

Application of FSTs to speaker recognition had not been accomplished prior to this

effort. This thesis provides a solid foundation to show that FSTs offer a promising area for

research. The primary concern for follow-on research should be template generation. The

test conducted that used each individual training utterance provided outstanding results

45

that exceed HMM performance. This suggests that an effective method of reducing the

number of templates could also outperform a similar HMM.

This research focused on a feature set consisting of Mel-Frequency Cepstral Coeffi-

cients (MFCC). These features provide good performance in HMM based system; but, a

detailed investigation into the proper feature set for FSTs may prove valuable.

46

Appendix A. Feature Space Trajectory Code

A.1 FSTNN Code

The FSTNN was implemented using code developed in Matlab. The training code
was developed by Gary Brandstrom during his thesis and was not altered [6]. Brandstrom's
test code was used as a starting point for the incorporation of Ney's algorithm and was
used with minor modifications.

% Filename: fst-tstNEY.m
% Developed by minimal changes to code developed
% by Gary Brandstrom (fst.tst.m). Changes developed
% by Eric Zeek and Neal Bruegger

% c = Vector Inner Products

% v = matrix where each row represents a segment between
% points on a trajectory
S.

% len- length of segment between points on a trajectory
S.

% T - a matrix where each row represents a feature vector
% from a known image sequence.

% P - a matrix where each row represents a feature vector
% from a unknown image sequence.
S.

S-----variables out------------------

% D = vector representing distance from each point of P to
% the trajectory
S.

% Pp = nearest point on trajectory where each point P projects

% S - vector representing sequence of line segment projections

-...............-------------

function [S,D,Pp,d] fst-tstNEY (cv,lenT,P)

[sdim]-sizeCT); % s number of vertices in training trajectory,
% dim - length of feature vector
ss - size(P,1); 7 ss = number fo vertices in test trajectory
Pptemp=zeros(s,dim); % initialize

47

ind = 1;

for n7-i:ss, % loop once for each test point
u=T(i, :)-P(n,:);
d~nil)=sqrt(u*u');
Pptemp(i,:)=T(I,:); % Pptemp is P prime

%now find distance of nth test point to each segment

ef=T*P'; %e is .(i,n) and f is Ci+I,n)
for i=i:s-i; % for each segment
u=P~n, :)-T(i,:);
alpha-u*v(i,:)';

if alpha<0O, % closest point is start of segment
temp=p(n, :)-T(i,:);
d(n,i+i)=sqrt(temp*temp');
Pptemp(i+i, :)=T(i,:);

elseif alpha>len(i), % closest point is next segment
temp-P(n, :)-T(i+1,:);

Pptemp~i+1, :)aT(i+i,:);
else, %. closest point is on segment
a1I-alpha/len(i);
balpha/len(i);

d~ni~i-P~,:)P~n:)'- 2*a*ef(i,n) - 2*b*ef(i+i,n)

+ 2*a*b*c(i,i+i) + a*a*c(i,i) + b*b*c(i+i,i+i);
d(n,i+i)=sqrt(d(n,i+i));
Pptemp(i+1, :)=a*T(i, :)+b*T~i+i,:);

end
end

% Addition of weights to movement in distance matrix
if ind < s-i,
d(n,ind+2) -2*d(n,ind+2);
d(n,ind) - .5*d(n,ind);
[D(n) ,ind2)'min(d(n,ind:ind+2));

else
d(n,ind) - 1.5*d(n,ind);
[D(n) ,ind2J=min(d(n,ind:s));

end;

ind = nd. + ind2 - 1;

Pp(n,:)-Pptemp(ind,:); % point on traj corresp to min dist
S(n)-ind; % segment where Pp projects
end

48

A.2 FST Testing Code

% Filename: zfstnnNEY.m
% Tests all test data against every training trajectory
% for all speakers. Results are placed in confmatNEY.mat

% Set up array of words in the vocabulary
format = I sl;

fid - fopen('/home/bachl/ezeek/YOHO/Scripts/yohowords. list' , r);
for i = 1:16,

eval (['word' int2str(i) ' = fscanf(fid,format,1); ')
end;

%. Initialize necessary data structures
load /home/bachl/ezeek/YOHO/SID/females.list
results = zeros(4,32);
Dist - zeros(100,32);
count = 0;

for j - 1:32, % which speakers to use in verification test
for k - 1:1, 7 which words to verify against

eval(['cd /home/bachl/ezeek/YOHO/verify/' int2str (females (j)) '/word'])
eval('word - word' int2str(k) ';'])
eval('load ' word '.num;'))
eval('frames - ' word ';'])
eval('load ' word '.dat;'])
eval('raw - ' word ';'])
nSeq - size(frames,1);
cum - cumsum(frames);
for 11:nSeq, % number of word instances
for p - 1:4,

data(p,:) - raw(l+((p-1)*nSeq),:);
end;
if 1 > 1,
eframe - (nSeq*4+1)+cum(l-1)-(4*(l-1));

else
eframe = (nSeq*4+1);

end;
sframe = eframe + frames(l) - 4;

for q -5:frames(l),
sframe = sframe - 1;

data(q,:) - raw(sframe,:);
end;

49

P = data(I:frames(l),:);

% Now test this utterance against all training utterances
count = count + 1;

for m = 1:32,

% Only test word of test utterance
eval(['cd /home/bachl/ezeek/YOHO/enroll/'

int2str(females(m)) '/word')

eval(['load ' word '.num;'J)

eval(['tframes = ' word ';'])
ntSeq = size(tframes,1);

cd /home/bachl/ezeek/YOHO/FST/Training
best = Inf;
for o = i:ntSeq,

eval(['load ' int2str(females(m)) word int2str(o) J)
[S,D,Pp,d] = fst-tstNEY(c,vlen,T,P);

temp = mean(D);

if temp < best

Dist(count,m) = temp;
best = temp;

end;

end;

end;

end;

raw - [;
end;

end;

save confmatNEY results Dist count;

%--
% Filename: zfstnnNEYbest.m
% Tests all test data against each speaker's
% "best" template. Results placed in BESTall.mat

%--

format - s
fid = fopen('/home/bachl/ezeek/YOHO/Scripts/yohowords.list',r,);
for i = 1:16,

eval (['word' int2str(i) ' = fscanf(fid,format,1);'])
end;

load /home/bachl/ezeek/YOHO/SID/females.list
Dist - zeros(1000,32);

50

count = 0;

for j = 1:32, % which speakers to use in verification test
for k = 1:1, % which words to verify against

eval ([' cd /home/bachl/ezeek/YOHO/verify/' int2str (females (j)) '/word')
eval(['word = word' int2str(k) ';'])
eval(['load ' word '.num;'])
eval(E'frames = ' word ';'])
eval(['load ' word '.dat;'])
eval(['raw = ' word ';')
nSeq = size(frames,1);

cum = cumsum(frames);

for l=1:nSeq, % number of word instances
for p = 1:4,

data(p,:) = raw(l+((p-i)*nSeq),:);

end;

if 1 > 1,
eframe = (nSeq*4+1)+cum(l-1)-(4*(1-1));

else

eframe - (nSeq*4+1);

end;
sframe = eframe + frames(l) - 4;

for q 5:frames(l),
sframe = aframe - 1;
data(q,:) - raw(sframe,:);

end;
P - data(l:frames(l),:);

7. Now test this utterance against all training utterances
count = count + 1;
cd /home/bachl/ezeek/YOHO/FST/Training
for m - 1:32,

% Only test word of test utterance
eval(['load ' int2str(females(m)) word)
[S,D,Pp,d] - fst-tstNEY(c,v,len,T,P);

Dist(count,m) - mean(D);

end;

end;

raw - [;
end;

end;

save BESTall Dist count;

% Filename: zfstnnNEYmahl.m

51

% Tests all test data against each speaker's
% Mahalanobis distance median ordered template.
% Results placed in mahMEDall.mat

% Get test utterances

format = 7s ;
fid = fopen('/home/bachl/ezeek/YOHO/Scripts/yohowords.list , 'r');

for i - 1:16,
eval (['word' int2str(i) ' = fscanf(fid,format,1);'])

end;

load /home/bachl/ezeek/YOHO/SID/females. list

Dist = zeros(1000,32);
count 0;

for j 1:32, % which speakers to use in verification test
for k = 1:1, % which words to verify against

eval(['cd /home/bachl/ezeek/YOHO/verify/' int2str(females (j)) '/word')
eval('word - word' int2str(k) ';')
eval('load ' word '.num;'])
eval(['frames - ' word ';'])
eval(['load ' word '.dat;'])

eval(E'raw - ' word ';'])
nSeq = size(frames,1);

cum = cumsum(frames);
for l=1:nSeq, % number of word instances

for p - 1:4,
data(p,:) = raw(l+((p-1)*nSeq),:);

end;

if 1 > 1,
eframe = (nSeq*4+1)+cum(l-j)-(4*(l-i));

else
eframe = (nSeq*4+1);

end;

sframe = eframe + frames(l) - 4;
for q S:frames(l),

sframe = sframe - 1;

data(q,:) = raw(sframe,:);

end;
P = data(:frames(l),:);

% Now test this utterance against all training utterances
count = count + 1;

52

cd /home/bachl/ezeek/YHO/FST/Training/MAHmed16

for m - 1:32,

% Only test word of test utterance
eval(['load ' int2str(females(m)) word*])

[S,D,Pp,d] = fst-tstNEY(c,v,len,T,P);
Dist(count,m) = mean(D);

end;

end;

raw = [;
end;

end;

save mahMEDall Dist count;

% Filename: zfstnnNEYmah2.m
% Tests all test data against each speaker's
% Mahalanobis distance mean ordered template.

% Results placed in mahMEANall.mat

% --
7. Get test utterances

format - I7s ;

fid - fopen('/home/bachl/ezeek/YOHO/Scripts/yohowords. list' , r);

for i = 1:16,

eval (['word' int2str(i) ' - fscanf(fid,format,1);'])

end;

load /home/bachl/ezeek/YOHO/SID/females.list
Dist - zeros(1000,32);
count - 0;

for j - 1:32, % which speakers to use in verification test
for k = 1:1, % which words to verify against

eval([' cd /home/bachl/ezeek/YOHO/verify/' int2str(females (j)) '/word'))
eval('word word' int2str(k) ';')

eval('load ' word '.num;'])

eval(['frames - ' word ';'])
eval(['load ' word '.dat;'])

eval('raw - ' word ';'])
nSeq - size(frames,1);

cum - cumsum(frames);
for 11:nSeq, 7. number of word instances
for p - 1:4,

data(p,:) - raw(l+((p-1)*nSeq),:);

53

end;
if 1 > 1,
eframe = (nSeq*4+1)+cum(l-1)-(4*(l-1));

else

eframe = (nSeq*4+1);
end;
sframe - eframe + frames(l) - 4;

for q = S:frames(l),
sframe = sframe - 1;
data(q,:) = raw(sframe,:);

end;

P = data(l:frames(l),:);

% Now test this utterance against all training utterances
count = count + 1;
cd /home/bachl/ezeek/YOHO/FST/Training/MAHmeanl6
for m = 1:32,

% Only test word of test utterance
eval(['load ' int2str(females(m)) word)
[S,DPp,d] - fsttstNEY(c,v,len,T,P);

Dist(count,m) - mean(D);

end;

end;

raw - 0;
end;

end;
save mahMEANall Dist count;

% Filename: zfstnnNEYeuci.m

% Tests all test data against each speaker's
% template developed using Euclidean distance with

% median ordering. Results placed in eucMEDall.mat

%--

format - '7s ;
fid - fopen('/home/bachl/ezeek/YOHO/Scripts/yohowords.list , r);
for i - 1:16,
eval (['word' int2str(i) ' -fscanf(fid,format,1);'])

end;

load /home/bachl/ezeek/YOHO/SID/females. list

54

Dist = zeros(lO00,32);
count = 0;

for j = 1:32, % which speakers to use in verification test
for k = 1:1, % which words to verify against

eval (' cd /home/bachl/ezeek/YOHO/verify/' int2str(females (j)) '/word'])
eval('word = word' int2str(k) ';1')
eval(['load ' word '.num; ')
eval(['frames = ' word ';'])
eval(['load ' word '.dat;'])
eval(['raw = ' word ';'])
nSeq = size(frames,l);
cum = cumsum(frames);
for l=1:nSeq, % number of word instances

for p - 1:4,
data(p,:) = raw(l+((p-l)*nSeq),:);

end;
if 1> 1,
eframe = (nSeq*4+1)+cum(l-1)-(4*(l-1));

else
eframe = (nSeq*4+1);

end;
sframe - eframe + frames(l) - 4;

for q - 5:frames(l),
sframe - sframe - 1;

data(q,:) - raw(sframe,:);
end;
P - data(l:frames(l),:);

% Now test this utterance against all training utterances
count - count + 1;
cd /home/bachl/ezeek/YOHO/FST/Training/VQmed16
for m - 1:32,

% Only test word of test utterance
eval(['load ' int2str(females(m)) word])
[S,D,Pp,d] = fsttstNEY(c,v,len,T,P);
Dist(count,m) - mean(D);

end;

end;

raw = 0];

end;

end;

save eucMEDall Dist count;

% Filename: zfstnnNEYeuc2.m

55

7 Tests all test data against each speaker's
% Euclidean distance mean ordering template.
%h Results placed in eucMEANall.mat

% Get test utterances

format = '.s';
lid = fopen ('/home/bachl/ezeek/YOHO/Scripts/yohowords. list' , 'r');
for i = 1:16,
eval (['word' int2str(i) ' = fscanf(fid,format,1);'])

end;

load /home/bachl/ezeek/YOHO/SID/females. list
Dist = zeros(1000,32);
count = 0;

for j = 1:32, % which speakers to use in verification test
for k = i:1, % which words to verify against
eval (['cd /home/bachl/ezeek/YOHO/verify/' int2str (females (j)) '/word')
eval(['word = word' int2str(k) ';')
eval(['load ' word '.num;'])
eval(['frames = ' word ';'J)
eval(['load ' word '.dat;'))
eval(['raw = ' word ';'])
nSeq = size(frames,I);
cum - cumsum(frames);
for lnl:nSeq, % number of word instances

for p = 1:4,
data(p,:) - raw(l+((p-1)*nSeq),:);

end;

if 1 > 1,
eframe = (nSeq*4+1)+cum(l-1)-(4* l-1));

else
eframe - (nSeq*4+1);

end;

sframe = eframe + frames(l) - 4;
for q = 5:frames(l),

sframe = sframe - 1;
data(q,:) - raw(sframe,:);

end;
P = data(1:frames(l),:);

% Now test this utterance against all training utterances

56

count = count + 1;

cd /home/bachl/ezeek/YOHO/FST/Training/VQmeanl6
for m = 1:32,

% Only test word of test utterance
eval(['load ' int2str(females(m)) word])
[S,D,Pp,d] = fsttstNEY(c,v,len,T,P);
Dist(count,m) = mean(D);

end;
end;
raw 0;

end;
end;
save eucMEANall Dist count;

57

Bibliography

1. Joseph P. Campbell, Jr., "Testing with the YOHO CD-ROM voice verification cor-
pus", in Proc. of the 1995 ICASSP, 1995, pp. 541-545.

2. Leonard Neiberg and David P. Casasent, "Feature space trajectory (FST) classifier
neural network", in SPIE, 1994, vol. 2353, pp. 276-292.

3. Leonard Neiberg and David P. Casasent, "Feature space trajectory neural net classi-
fier", in SPIE, 1995, vol. 2492, pp. 361-372.

4. Leonard Neiberg et al., "Feature space trajectory neural net classifer: 8-class distor-
tion invariant tests", in SPIE, 1995, vol. 2588, pp. 540-555.

5. Leonard Neiberg and David P. Casasent, "Feature space trajectory neural net classi-
fier: confidences and thresholds for clutter and low contrast objects", in SPIE, 1996,
vol. 2760, pp. 435-446.

6. Gary Brandstrom et al., "Space object identification using spatio-temporal pattern
recognition", in SPIE, 1996, vol. 2760, pp. 475-486.

7. David P. Casasent and Leonard M. Neiberg, "Classifier and shift-invariant automatic
target recognition neural networks", Neural Networks, vol. 8, no. 7/8, pp. 1117-1129,
1995.

8. Captain John M. Colombi, Generalized Hidden Filter Markov Models Applied to
Speaker Recognition, PhD thesis, Air Force Institute of Technology, March 1996.

9. Thomas W. Parsons, Voice and Speech Processing, McGraw-Hill Book Company,
1987.

10. Alan B. Poritz, "Hidden Markov models: A guided tour", in Proc. of the 1988
ICASSP. IEEE, 1988, vol. 1, pp. 7-13.

11. Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of Speech Recognition,
Prentice Hall, 1993.

12. Hermann Ney, "The use of a one-stage dynamic programming algorithm for connected
word recognition", IEEE Trans. on Speech and Audio Processing, vol. ASSP-32, no.
2, pp. 263-271, April 1984.

13. Dennis W. Ruck, Steven K. Rogers, et al., "The multilayer perceptron as an approx-
imation to a Bayes optimal discriminant function", IEEE Trans on Neural Networks,
vol. 1, no. 4, Dec. 1990.

14. Ronald Benson and Ojvind Bernander, "Enhanced Algorithms for Cockpit Voice
Recognition Systems", Tech. Rep., Tanner Research, Inc, 1995, SBIR Contract
F33615-95-C3602.

15. Entropic Research Laboratory, HTK: Hidden Markov Model Toolkit, 1993.

16. A. Higgins, L. Bahler, and J. Porter, "Speaker verification using randomized phrase
prompting", Digital Signal Processing, vol. 1, pp. 89-106, 1991.

17. Sadaoki Furui, "An overview of speaker recognition technology", in Proc. of the 1994
ECSA Workshop on Speaker Recog. Ident. and Ver., 1994.

58

18. C.S. Liu, H.C. Wang, and C.H. Lee, "Speaker verification using normalized log-
likelihood score", IEEE Trans. on Speech and Audio Processing, vol. 4, no. 1, pp.
56-60, January 1996.

19. Tomoko Matsui and Sadaoki Furui, "Similarity normalization method for speaker
verification based on a posteriori probability", in Proc. of the 1994 ECSA Workshop
on Speaker Recog. Ident. and Ver., 1994.

20. Douglas A. Reynolds, "Speaker identification and verification using Gaussian mixture
speaker models", Speech Communication, vol. 17, no. 1-2, pp. 91-108, 1995.

21. Kenneth H. Fielding, Spatio-temporal Pattern Recognition using Hidden Markov
Models, PhD Dissertation, Air Force Institute of Technology, June 1994,
AFIT/DS/ENG/94J-02.

22. Kenneth H. Fielding et al., "An application of embedology to spatio-temporal pattern
recognition", IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no.
2, pp. 768-774, April 1996.

23. Steven K. Rogers and Matthew Kabrisky, An Introduction to Biological and Artificial
Neural Networks for Pattern Recognition, SPIE, 1991.

24. Jianchang Mao and Anil K. Jain, "A self-organizing network for hyperellipsoidal
clustering (HEC)", IEEE Trans on Neural Networks, vol. 7, no. 1, pp. 16-29, January
1996.

59

Vita

Captain Eric Joseph Zeek l - . Reentered

the United States Air Force Academy in June 1987. He was awarded a Bachelor of Science

in Electrical Engineering degree as well u a com-ilmon upon graduation in May 1991. His

first assinment was as an Intelligene Collection Requirements Manar in the National

Air Intelligence Center (NAIC) at Wright-Patterson Air Force Base, Ohio, In April 1993,

he moved to the Foreign Materiel Exploitation Branch of NAIC to become the Chief

Engineer. In this capacity, Captain Zeek was responsible for all in-house foreign materiel

exploitation projects. This included scheduling, budget, and personnel allocations. In May

1995, Captain Zeek entered the Computer Systems program at the Air Force Institute of

Technoloy.

60

Form Approved
REPORT DOCUMENTATION PAGE [OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directoratetor Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704.0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SPEAKER RECOGNITION BY HIDDEN MARKOV MODELS AND
NEURAL NETWORKS

6. AUTHOR(S)

Eric J. Zeek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GCS/ENG/96D-31

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Dr. Timothy Anderson AGENCY REPORT NUMBER

AL/CFBA
Wright-Patterson AFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

As humans, we develop the ability to identify people by their voice at an early age. Getting computers to
perform the same task has proven to be an interesting problem. Speaker recognition involves two applications,
speaker identification and speaker verification. Both applications are examined in this effort. Two methods are
employed to perform speaker recognition. The first is an enhancement of hidden Markov models. Rather than
alter some part of the model itself, a single-layer perceptron is added to perform neural post-processing. The
second solution is the novel application of an enhanced Feature Space Trajectory Neural Network to speaker
recognition. The Feature Space Trajectory was developed for image processing for temporal recognition and
has been demonstrated to outperform the hidden Markov model for some image sequence applications. Neural
post-processing of hidden Markov models is shown to improve performance of both aspects of speaker recognition
by increasing the identification rate from 70.23% to 88.44% and reducing the Equal Error Rate from 3.38% to
1.56%. In addition, a new method of cohort selection is implemented based on the structure of the single-
layer percceptron. Feasibility of using Feature Space Trajectory Neural Networks for speaker recognition is
demonstrated. Favorable identification results of 65.52% are obtained when using a large training database. The
FST configurations tested outperformed a comparable HMM system by 12-24%.

14. SUBJECT TERMS 15. NUMBER OF PAGES

hidden Markov model, feature space trajectory, neural network, speaker recognition, 70
speaker identification, speaker verification, dynamic time warping, Ney's algorithm 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. I limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If Statements on Technical
applicable, enter inclusive report dates (e.g. 10 Documents."
Jun 87- 30 Jun 88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in parentheses. DOE -Enter DOE distribution categories

from the Standard Distribution for
Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subject Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enterthe total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report. Blocks 17. - 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in
Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO: 1993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	Speaker Recognition by Hidden Markov Models and Neural Networks
	Recommended Citation

	tmp.1691168383.pdf._Dvkm

