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Abstract

Complex real-world systems consist of collections of interacting processes/events.
These processes change over time in response to both internal and external stimuli as well
as to the passage of time. Many domains such as real-time systems diagnosis, (mechanized)
‘story understanding, planning and scheduling, and financial forecasting require the capa-
bility to model complex systems under a unified framework to deal with both time and
uncertainty. Existing uncertainty representations and existing temporal models already
provide rich languages for capturing uncertainty and temporal information, respectively.
Unfortunately, these partial solutions have made it extremely difficult to unify time and
uncertainty in a way that cleanly and adequately models the problem domains at hand.
This difficulty is compounded by the practical necessity for effective and efficient knowl-
edge engineering under such a unified framework. Existing approaches for integrating time
and uncertainty exhibit serious compromises in their representations of either time, uncer-
tainty, or both. This thesis investigates a new model, the Probabilistic Temporal Network,
that represents temporal information while fully embracing probabilistic semantics. The
model allows representation of time constrained causality, of when and if events occur, and

of the periodic and recurrent nature of processes.
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ON UNIFYING TIME AND UNCERTAINTY:

THE PROBABILISTIC TEMPORAL NETWORK

L. Introduction

The field of Artificial Intelligence is at a nexus in its progress in the modeling of
human cognition and in the performance of useful tasks!. The critical capability for passing
through the nexus is a single coherent structure unifying both time and uncertainty. This
thesis investigation advances the field of Artificial Intelligence by providing the requisite

unifying structure.
1.1 OQOwverview

In the evolution of expert systems, many techniques have been developed to represent
human knowledge. One of the earliest (and still used) techniques is to represent knowledge
as a logical system of if-then style rules (rule-based systems [5,11]). A more recent approach
is to represent knowledge (including uncertainty) of a situation, or “domain,” as a network

of states and probabilities (Bayesian Networks [22]).

Many domains, whether they are rule-based, probabilistic, or other, require a rep-
resentation of time and of the temporal relationships between events. Most systems rely
on a mechanism in which a date is associated with each piece of knowledge. Relationships
are then determined simply by the date ordering. In more complicated domains, such
as emergency room diagnosis, the date mechanism is not sufficient; one must be able to

represent situations with relative knowledge like “precedes” or “during.”

Real-world domains requiring a unified model of time and uncertainty include dealing
with real-time system diagnosis, (mechanized) story understanding, planning and schedul-
ing, logistics, resource management, as well as financial forecasting. For example, consider

the following scenario found in computer security analysis:

1At the recent Twelfth Conference on Uncertainty in Artificial Intelligence [14] (August 1996) held in
Portland, Oregon, a panel of experts on “UAI by 2005: Reflections on critical problems, directions, and
likely achievements for the next decade” identified the need for unifying time and uncertainty as among
the top priorities necessary for advancing the entire field of AL
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The computer operations center has a secure vault with a time-coded lock. This time-
lock allows the vault to be opened from 0900 hours to 0905 hours and from 2100 to
2105. The center has critical operations from 0855 to 1805. Access to the vault is
needed during the day and during critical operation making the vault likely to be open
at those times. However, if the vault is closed, it cannot be reopened until the time-lock
allows.

This scenario provides a detailed description of the causal and temporal relationships
necessary to properly model the secure vault. As part of the computer security analysis,
one must be able to translate this description and capture the knowledge in a form that

can be correctly processed and reasoned with.

Once the knowledge representation is captured, inferences can be made. Inferences
can be of several types including prediction and explanation. Prediction is concerned with
extending forward from the known past and present to the unknown future (statistical
syllogism [15]). Explanation involves the determination of causality by extending from

known data back to hypotheses (abduction) [15].

1.2 The Problem

Complex systems consist of collections of interacting processes. These processes
change over time in response to both internal and external stimuli as well as to the passage
of time itself. There is great variety in the behavior of processes. Some processes are simple
events such as opening a door or flipping a switch. Others are complex. For example,
consider a communication channel where errors may occur due to lightning strikes and
faults are more likely to occur given previous errors. Processes can also be recurrent or

periodic, such as the passing of day into night or shifts in a work schedule.

What is needed is a model capable of representing complex systems changing over
time. Given evidence about the past and present state of a system, one must be able to
predict the system’s future state. Also, given a future state, one must be able to determine
the most probable causes for that state. As knowledge about such systems is bound to be
incomplete and as the systems themselves may not be deterministic, the model must be

able to represent uncertainty. This uncertainty permeates all areas: the duration of events,
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the strength of causal influence, the precise temporal relationship between events, and so

forth.

1.8 Prior Work

Bayesian networks [22] provide a robust, probabilistic method of reasoning with un-
certainty. Bayesian networks, however, do not provide a direct mechanism for representing
temporal dependencies. For example, it is difficult to represent a situation such as the
variability of the time an employee arrives at work and the causal relationships between

the time of arrival and later events.

Prior temporal modeling techniques have made trade-offs in expressiveness between
semantics for time and semantics for uncertainty. Significant research has been done ex-
ploring time nets (also called time-slice Bayesian networks) [12,16,17]. These approaches
build on the strong probabilistic semantics of Bayesian networks for expressing uncer-
tainty. The discrete time net approach developed by Kanazawa models time as a series of
points [16]. Events are considered to occur at an instant of time while facts are considered
to occur over a series of time points. Both events and facts are represented by random
variables. If dependencies only connect between random variables at the same or consecu-
tive time points, then the net is said to be a Markov time net. In other words, the Markov
property holds for a model when the future is conditionally independent of the past, given

the present [17].

Hanks et al, [12] is especially interesting for this work due to the emphasis on both
endogenous and exogenous change [12]. Endogenous change is triggered by internal action,
such as the progression of disease, and exogenous change is triggered by external change
such as the administration of drugs. In the temporal model presented in this thesis,
individual processes within a system must be able to respond to both endogenous (internal)

and exogenous (external) stimuli.

The time-sliced approaches mentioned above are based on point models of time and,
as such, require that events occur instantaneously. Often it is more natural to consider

events as taking place over intervals of time. Also, the relationships between events that
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occur over intervals can be quite difficult to represent with only the three point relations

(precedes, follows, equals).

Santos’ Temporal Abduction Problem (TAP) [26] uses an interval representation of
time. In the TAP, each event has an associated interval during which the event occurs.
Relationships between events are expressed as directed edges from cause to effect within
a weighted and/or directed acyclic graph structure. Edges are qualified with the possible
interval relations. This allows great flexibility in expressing the relationship between events.
For example, if event A must occur either before or after event B then the relation is written
{<,>}. The TAP is an extension of cost based abduction [7] using a numeric cost to
indicate the uncertainty of an event’s occurrence. These costs are generally determined in
an ad hoc manner by the domain expert. The TAP trades strong semantics of uncertainty

for a powerful and flexible temporal representation.

1.4 Thesis Contribution

This thesis investigation presents a new model, the Probabilistic Temporal Network
(PTN), for representing temporal and atemporal information while remaining fully prob-
abilistic. The model allows representation of time constrained causality, of when and if
events occur, and of the periodic and recurrent nature of processes. Bayesian networks
lie at the foundation of the system and provide the probabilistic basis. Allen’s interval

system [2] and his thirteen relations provide the temporal basis.

PTNs focus on directly modeling processes and the interaction between them. The
state of a process is represented by a value at a given time interval. A process can be
defined over any number of such intervals. Random variables from traditional probability

theory are used to model a process’ value over each time interval.

The next chapter (Chapter II) discusses temporal reasoning and Bayesian networks.
From this foundation, the theoretical structure and probabilistic nature are developed
and proven in Chapter III. A linear constraint system for performing belief revision is
developed in Chapter IV as well as a polynomial solvable subclass. Chapter V develops

the process of extending an existing knowledge base into the temporal domain as well as
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recommendations for knowledge engineering with the probabilistic temporal network. The
investigation concludes, in Chapter VI, with recommendations for further research. Along
the way, several examples are developed including the secure vault scenario introduced

previously.

1-5




II. Background

To represent complex, dynamic systems, the probabilistic temporal network draws from
both temporal and Bayesian reasoning. This chapter introduces the foundations from
which the PTN is built. Section 2.1 briefly develops temporal reasoning, emphasizing the
aspects relevant to this thesis. Section 2.2 introduces Bayesian networks from which the

PTN draws probabilistic semantics for representing uncertainty.

2.1 Temporal Reasoning

Temporal reasoning has been defined as the ability to reason about the relationships
in time between events [11]. It is necessary to reason about time in many domains including
planning, simulation, natural language understanding, and diagnosis. Temporal reasoning
has been considered in philosophy and logic since Thales and Zeno [19]; however, it is only
in the last two decades that temporal reasoning has been explicitly considered in artificial
intelligence. McDermott and Allen, with their work in the early ﬁineteen-eighties [2-4,20],
brought temporal reasoning into the AI mainstream. Other models for temporal reasoning
include point algebras [32], semi-intervals [10], temporal constraint networks [9], and weak

representations of interval algebras [18].

McDermott provides one of the earliest temporal representations [20]. In his ap-
proach, time is divided into a series of states with each state having an associated date,

l.e., point in time. Facts are expressed as being true during particular states.

Allen introduced interval temporal reasoning to the Al community [2,4]. Allen’s
interval algebra is governed by 13 relations on the intervals. Each event has an associated
interval, denoted [a, b], where a is the starting time point and b is the termination point.
Temporal relationships between events are expressed as relations between their intervals.
The relations between intervals, denoted A, are {=, <,>,m,mi,d,di, s, si, f, fi,0,0i} [2]
(see Table 2.1). For example, event A = [a, b] preceding event B = [c,d] is denoted A < B
indicating that a < b < ¢ < d. These relations are mutually exclusive and exhaustive.
Note that, while there are thirteen relations between intervals, only three relations exist

between points: precedes, equals, and follows.
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Table 2.1  The thirteen possible interval-interval relations.

( Symbol:  Name: Relation: |
= = equals
< > precedes —
m mi  meets —_—
d di during —
s si starts _—
f fi finishes —
Lo oi overlaps pe——

N

Of special importance is Allen’s use of disjunctive sets to express uncertainty in the
exact relationship between intervals. For example, “interval A precedes or meets interval
B” is written as A{<,m}B. Some commonly used disjunctions are disjoint, written
{<,>,m,mi}, and contains, written {di, si, fi} [2]. These relationships between events
can be represented in a graphical form where nodes represent events and the arcs are
labeled with a disjunction of relations. The goal is to determine whether there exists an
interval assignment to all the events that satisfy the disjunctive relations. If such a solution

exists, then the given knowledge base is consistent.

While there is debate, in both philosophy and artificial intelligence, as to which
representation, points or intervals, is most appropriate; the expressive power of the two
methods is generally considered equivalent [2,16] as intervals can be represented with
beginning and end points in a point based approach. Allen points out, however, some
paradoxes that can occur when points are allowed as the fundamental unit of time [2].
The problems arise from the durationless nature of points. Durationless intervals are not
allowed, i.e., for any interval [ti,%3], t2 > t;. If t; = t3 is allowed then the thirteen
interval-interval relations are not mutually exclusive. For example [t1,t2] starts [t2,t3] is
indistinguishable from [t1,t2] meets [to,t3] when t; = t3. Mathematically, point relations

should be expressed as t;R[ty,t3] and as such, there is a different set of point-interval
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relations which would add unnecessary overhead if used in our model. Our model strictly
adheres to the philosophy that intervals are primitive and have non-zero duration.
Definition 1. A4 temporal interval is a closed interval [a,b] on the reals' such that a < b.

Axiom 1. The temporal interval is the primitive temporal individual.

Since all intervals must have non-zero duration, how can point intervals be expressed?
The standard approach is to use [tg,tp + €] where € is arbitrarily close, but not equal, to
zero. Note that e can either be added to the end or subtracted from the beginning or both.
This approach is adopted in the PTN. To facilitate specifying the relationships between
intervals, € is deemed constant across an entire model. Thus [to, to + €]{m}[to, 1] does not

hold while [to, 2o + €]{m}[to + €, 1] does.

Aside from the temporal domain, neither Allent’s nor McDermott’s method can ex-
plicitly model uncertainty. Uncertainty arises from many sources including missing or
unavailable data as well as over generalization of rules [11]. For example if we have the
rule “Birds Fly” and “Ostriches are birds” we conclude that “Ostriches fly.” To prevent
such a conclusion, additional rules must be added such as “Some birds fly” or “Ostriches
don’t fly” to cover each exception. These additional rules can add significant complexity

to a knowledge base.

2.2 Bayesian Networks (BNs)

Approaches to dealing with uncertainty include fuzzy logic [34], cost based tech-
niques {7], certainty factors [29,30], Dempster-Shafer theory [27], and probabilistic meth-
ods [22]. These approaches can be used both extensionally and intensionally. Extensional
systems, such as rule-based systems, attach some sort of truth value to each rule or for-
mula. The truth-value for formulae are calculated functionally from the truth-value of
sub-formulae. Intensional systems, such as model-based systems, attach uncertainty to the
possible states of the system itself [22]. Extensional systems are generally computationally
efficient but their uncertainty measures are semantically weak. Intensional systems, on

the other hand, are generally computationally expensive and semantically strong [22]. By

! Temporal intervals can be defined over the rational numbers if countability is an issue, perhaps in
proving some property of the model.
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carefully restricting which parts of an intensional system are relevant to the other parts,

the computational limitations can, to some degree, be overcome.

In probabilistic reasoning, random variables (RVs) are used to represent events
and/or objects in the world. By assigning various values to these RVs, we can model

the current state of the world and weight the states according to the joint probabilities.

P(fo)=0.15 P(bp)=0.01

family-out(fo) bowel-problem(bp)
light-on(lo)

P(lolfo) = 0.6
P(lol~fo) = 0.05

dog-out(do)

P(dolfo bp) = 0.99
P(dolfo ~bp) = 0.90
P(dol~fo bp) = 0.97
P(dol~fo ~bp) = 0.30

P(hbldo) = 0.7 '

P(hbl~do) = 0.01 hear-bark(hb)

Figure 2.1  “Suppose when I go home at night, I want to know if my family is home
before I try the doors. Now often when my wife leaves the house, she turns
on an outdoor light. However, she sometimes turns on this light if she is
expecting a guest. Also, we have a dog. When nobody is home, the dog is
put in the back yard. The same is true if the dog has bowel troubles. Finally,
if the dog is in the backyard, I will probably hear her barking.” [6]

Bayesian networks are probabilistic intensional systems in which independence as-
sumptions are used to restrict relevance. A Bayesian network is a directed acyclic graph
(DAG) of random variable (RV) relationships. Directed arcs between RVs represent condi-
tional dependencies. When all the parents of a given RV are instantiated, that RV is said
to be conditionally independent of the remaining, non-descendent RVs given knowledge
of its parents. For a more formal description of the independence semantics in Bayesian
networks, see d-separation and I-maps in Charniak [6] and Pearl [22]. Figure 2.1 presents
a simple example of a Bayesian network which demonstrates the nomenclature used in the

following paragraphs.
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In general, we are searching for the world state with highest likelihood. This is called
belief revision [22]. Belief revision is best used for modeling explanatory/diagnostic tasks.
Basically, some evidence or observation is given to us, and our task is to come up with a
set of hypotheses that together constitute the most satisfactory explanation/interpretation
of the evidence at hand. Belief revision is a form of abductive reasoning [7,13,23]. More
formally, if W is the set of all RVs in our given Bayesian network and e is our given
evidence?, any complete instantiation to all the RVs in W that is consistent with e is
called an ezplanation or interpretation of e. The problem, then, is to find an explanation
w* such that

P(w*|e) = mgxP(w|e). (2.1)

w* is known as the most-probable ezplanation. The joint probability of any explanation w,
w=Xi=z)AXo=2) A .. N (Xpp = Trn) (2.2)

(where X1 ...X;... Xy, is an arbitrary ordering of random variables in W, and z; is some

assignment to random variable X;) is found using the chain rule [22]:

P(w) = P(zpm|Ttm—1,-..,%1) - P(Tm-1]|Tm=2,...,21) - - - P(22]21) - P(z1) (2.3)

Bayesian networks take the chain rule one step further by making the important
observation that certain RV pairs may become uncorrelated once information concerning

other RV(s) is known. More precisely, we may have the following independence condition:
P(A|Xy,...,X,,U) = P(A|Xy,...,Xy) (2.4)

for some collection of RVs U. Intuitively, we can interpret this as saying that given knowl-

edge of X1,..., X, knowledge of U is irrelevant to the state of A.

Combined with the chain rule, these conditional independencies allow us to replace
the terms in the chain rule with smaller conditionals. Thus, instead of explicitly keeping
the joint probabilities, all we need are smaller conditional probability tables, from which

the joint probabilities can then be calculated.

2That is, e represents a set of instantiations made on a subset of W.

2-5




For example, an application of the chain rule for computing the probability of an

explanation for the Bayesian network in Figure 2.1 is

P(hb,do,lo, fo,bp) = P(hb|do,lo, fo,bp) - P(dollo, fo,bp)-

(2.5)
P(lo|fo,bp) - P(folbp) - P(bp)

Using the dependencies, we can simplify this to
P(hb,do,lo, fo,bp) = P(hb|do) - P(do|fo,bp) - P(lo|fo) - P(fo)- P(bp) (2.6)

Since these conditional probabilities needed for the simplified chain rule are exactly those
provided for each random variable in the Bayesian network, computation of joint proba-

bilities is straightforward.

Bayesian networks [22] are an intuitive method fo\r representing uncertainty. Bayesian
networks, however, do not provide a direct mechanism for representing temporal depen-
dencies. For example, it is difficult to represent a situation such as the variability of the
time of an employee’s arrival at work and the causal relationships between the time of

arrival and later events.
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III. Theoretical Structure

This chapter, in Section 3.1, defines the formal structure of the probabilistic temporal
network. The PTN’s ability to model periodic and recurrent processes is presented in
Section 3.2. Section 3.2 also proves the probabilistic nature of the PTN. The chapter
concludes with a discussion of a closely related temporal model which has appeared very

recently in the literature.

3.1 Combining Time and Probability

As previously discussed in Chapter I, the time-sliced approaches provide strong prob-
abilistic semantics for representing uncertainty; however, they are constrained in their
temporal expressiveness. The temporal abduction problem, on the other hand, has strong

interval-based temporal semantics, but lacks strong probabilistic semantics.

What is needed, then, is a combined approach integrating strong probabilistic and
temporal semantics. While much research has been done on point-based probabilistic
temporal network models, little or no research has been identified using interval meth-
ods, specifically Allen’s interval relations, for intensional probabilistic reasoning [22]. As
mentioned earlier, the interval representation of time is important for the expressive set of
relations available. The closest research is the temporal abduction problem discussed above
which does not have strict probabilistic semantics. Recent work by Young and Santos [33]*

does present a starting point, defining the network structure for a new model.

The nodes of the probabilistic temporal network are temporal aggregates and the
edges are the causal/temporal relationships between aggregates. Each aggregate represents
a process changing over time. A temporal aggregate contains every interval of interest for
the process. Each interval has an associated random variable giving the state of the
process over that interval. Figure 3.1 depicts an example temporal aggregate modeling
when a “vault” is open. The ‘Vault-Open’ TA is dependent on itself (VO) and two other

processes (TU and CO). This example is expanded into a full network next.

'In which Probabilistic Temporal Networks (PTNs) are termed Temporal Bayesian Networks (TBNs)
and Temporal Aggregates (TAs) are termed Temporal Random Variables (TRVs)
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Vault-Open = {([0000,0900],01), ([0900,1200],02),
([1200,2100},03), ([2100,2400],04)}

P(oxIVO,CO,TU) = 0.95 P(0xI=-VO,CO,TU) = 0.98
P(0xIVO,CO,-TU) = 0.80 Vault-Open P(oxI-VO,CO,-TU) = 0.0
P(oxIVO,-CO,TU) = 0.4 P P(oxI-VO,-CO,TU) = 0.6

P(0oxIVO,-CO,-TU) = 0.4 P(0x|-VO,-CO,~TU) = 0.0

Figure 3.1 A simple temporal aggregate, ‘Vault-Open,’ defined over four intervals. The
conditional probability tables show ‘Vault-Open’ to be dependent on itself
through some temporal causal relationship.

As is the case in the real world, the apparent state of a process is dependent on the
temporal perspective of observation. An observation made in the middle of the night as to
whether or not someone is at work may return different results than if the observation is
made during the day. A switch can be turned on only if, at some previous time, the switch

was turned off; the light can be on only when the switch is on.

To model the effects of different perspectives on the apparent state of a process,
edges in the network consist of a disjunctive set of interval relations and a schema to map
the random variables of the intervals to a single value. This allows the precise selection of

those intervals during which the state of one process affects another.

Vault-Open = {([0000,0900],01), ([0900,1200],02),
([1200,2100],03), ([2100,2400],04)}

P(oxIVO,CO,TU) = 0.95 P(oxI-VO,CO,TU) = 0.98

P(0xIVO,CO,~TU) = 0.80 Vault-Onen P(0xI-VO,CO,~TU) = 0.0
P(oxIVO,~CO,TU) = 0.4 P P(0xI~VO,~CO,TU) = 0.6

P(oxIVO,~CO,-TU) = 0.4 P(0oxI-VO,-CO,-TU) = 0.0

({s},OR) ({di},OR)

Critical-Operations

Time-UnLock = {([0900,0905],11), Critical-Operations = {([0855,18051,c1)}
P(x) = 1.0 ([2100,2105],12)} P(ex) = 1.0

Figure 3.2 A probabilistic temporal network modeling a secure vault. This example
extends the ‘Vault-Open’ temporal aggregate in Figure 3.2. Note that ‘ox,’
‘Ix,” and ‘cx’ above are instantiated with o1 ...04, 1 ..., and ¢; respectively.
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Figure 3.2 shows a probabilistic temporal network modeling our secure vault scenario
detailing the various components and their interactions. These network components are

discussed and defined in the following paragraphs.

3.1.1 Temporal Aggregates. A process, such as ‘Vault-Open’ in Figure 3.2, is
represented in the PTN by a temporal aggregate. Intuitively, a temporal aggregate consists
of the set of states, e.g., {true, false}, {1,2,3}, or {false} U {Red, Blue}, that the process
can take on, and a set of temporal intervals each having an associated random variable.
Each such RV has a conditional probability table defined over the states of the process.
Definition 2. A temporal aggregate (TA) is an ordered pair (T,X) in which ¥ is a set
of states and T (pronounced Tau) is a set of ordered pairs (i,7) where i is a temporal
interval and 7 is a random variable defined over X. For all pairs (i1,m1) and (ig,73) in T,
r1 =19 iff iy = iy. The dependencies for each random variable in the TA are defined only

by temporal causal relationships between TAs.

In the authors prior work [33], temporal aggregates (there termed temporal random
variables) were allowed to have internal dependencies to model endogenous change. This
was found to be a source of temporal inconsistency and better represented through self
loops as demonstrated in Figure 3.2. Endogenous change is explicitly modeled in the PTN
with cyclic temporal causal relationships. Endogenous change can be seen in the ‘Vault-
Open’ process in Figure 3.2 in which the vault is more likely to stay open, given that it is
open. Also note that this definition allows T to contain a potentially infinite number of

interval-RV pairs. It is assumed that temporal aggregates are finite, both in T and in X.

“Vault-Open’ is formally written, according to Definition 2, as VO = {T, X} where
Tvo = {([0000,0900}, 01 ), (0900, 1200], 05 ), ([1200, 2100], 03), (2100, 2400], 04)}  (3.1)

and

Yyo = {true, false} (3.2)
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with the conditional probability table being

P(0g|VO,CO,TU) = 095 P(og|-VO,CO,TU) = 0.80
P(0y[VO,CO,~TU) = 080 P(og|~V0,CO,~TU) = 0.0 53)
P(0y[VO,-CO,TU) = 04  P(og|-V0,~CO,TU) = 0.6
P(05]VO,~CO,~TU) = 04  P(og|-V0,-CO,~TU) = 0.0

for all RVs o, where o, € {01,02,03,04}. The = symbol (as in =TU above) indicates that
the RV is assigned false, a non-negated RV (as in TU) indicates that the RV is assigned

true.

Since ¥ = {true, false}, P(—0;|VO,CO,TU) =1 — P(0,|VO,CO,TU). This condi-
tion holds for the other probabilities as well. In general, the probabilities are not explicitly
shown when the probability of the true case is zero,‘e.g., P(0z|=VO,-CO,-TU) = 0.0
would not be shown. Symbols used for temporal aggregates are uppercase letters from the
end of the alphabet, e.g., X or Y, or uppercase abbreviations from the text name of the
process being modeled, e.g., process ‘Vault-Open’ has a temporal aggregate denoted VO.
Random variables within temporal aggregates are denoted with lowercase letters, e.g., a,
b, and ¢ or y; and yy. Since the possible states of the aggregate are often evident from the
conditional probability tables, ¥ is often not explicitly shown. To differentiate between
components of different temporal aggregates, the symbol of the component can contain the

subscripted symbol of the associated TA, e.g., 3y or o01,,,.

An assignment to a temporal aggregate consists of an assignment to each interval-RV
pair.
Definition 3. A is an aggregate assignment (AA) iff A is a set of ordered pairs (1,0)
where 7 € T and 0 € ¥ such that VT € T, there exists an unique o € ¥ such that (7,0) € A.

In other words, an aggregate assignment is a function from T into X.

For example,

o = { (0000, 0900], false), ([0900, 1200, true), } 3.4

([1200, 2100], true), ([2100, 2400], false)

is an AA for the temporal aggregate VO from Figure 3.1. Ayo might be read “The vault
was closed from 0000 hours to 0900 hours, open from 0900 hours to 2100 hours, and closed




from 2100 hours to 2400 hours.” The use of past tense here is arbitrary, is closed or will
be closed would be equally appropriate. Aggregate assignments are denoted by uppercase
letters from the beginning of the alphabet, e.g., A or B, subscripted if necessary by the

symbol for the associated temporal aggregate.

Sometimes the entire state of a TA is not known. For example, we may only know
that the vault was closed from 0000 to 0900. A partial aggregate assignment, which is
simply a subset of an aggregate assignment, expresses this.

Definition 4. P is a partial aggregate assignment (PAA) for some temporal aggregate,
X, iff there ezists an A such that P C A where A is an aggregate assignment for X. In

other words, a partial aggregate assignment is a partial function from T into X.

Our example, where the vault is only known to be closed over one interval is thus

written:

Pyo = {([0000,0900], false)} (3.5)

Note that Py is a subset of aggregate assignment Ay o above. PAAs are usually denoted
by capital letters from the middle of the alphabet; however, since, by definition an aggregate
assignment is also a PAA, some uppercase letters from the beginning of the alphabet may

sometimes be used for PAAs.

Line-Open =

{([0900,0910],101), P(lo11-LO) = 1/3
([0905,0915],102), P(102-LO) = 1/2
([0910,0920],103) } P(lo3-LO) =1

Figure 3.3 A simple, one-process probabilistic temporal network enforcing a mutual ex-
clusion relationship. A communication line can only be opened given that it
has not previously been opened.

3.1.2 Temporal Causal Relationships. How are the aggregates interconnected?
The example network in Figure 3.3 shows a directed edge from ‘Line-Open’ to itself labeled
({m, o}, OR). The edge combined with the conditional probability tables enforce a mutual

exclusion constraint on ‘Line-Open,’ i.e., the communication line can only be opened over
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one of the three possible intervals. Mutual exclusion in time is an important characteristic
of many processes which can occur over only one of several different intervals. Edges in

the probabilistic temporal network are temporal causal relationships or TCRs.

[0900,0910] [0910,0920]

Figure 3.4 The probabilistic temporal network from Figure 3.3 decomposed to explicitly
show the intervals (small circles) and the temporal relationships between

intervals (dotted lines).

’ 1 -

~
~

~
~
~
_—
- 1
1

Figure 3.5 The network in Figure 3.4 with the temporal causal relationship replaced
with the TCR induced random variables. The induced random variables are
labeled with the name of the corresponding RV-schema, in this case, OR.

While portrayed graphically as a labeled edge between temporal aggregates, the
TCR is actually shorthand for a set of induced random variables that enforce the temporal
constraints. These random variables combine the intervals selected by a disjunctive set of
interval relations (see Table 2.1), e.g., {m, o}, using the probability distribution specified
by a schema, e.g., OR, XOR, PASSTHROUGH. Figure 3.4 shows the example network




from Figure 3.3 with the intervals and temporal relations explicitly shown. For example,

the dotted line from interval lo; to interval lo; shows that lo; overlaps los.

Figur'e 3.5 shows the network with the TCR replaced by the appropriate induced RVs.
The figure shows that the probability of the line being open over [0910, 0920} is dependent
on the probability of the line being open over [0900,0910] and [0905,0915], mediated by
the induced OR random variable. Likewise, the probability of the line being open over
interval [0905,0915] is dependent on the line being open over [0900,0910] again mediated
by OR. The probability of the line being open over [0900,0910] is independent of the other

probabilities.

What are the semantics behind the temporal causal relationship? The probability
of some TA Y taking on some particular state over each interval is dependent on TA X
taking on some state over interval(s) fitting the temporal relation, e.g., “no interval in Y
can have state true unless that interval follows some interval in X having state true.” This
is written X ({<}, OR)Y with every (i,7) € T(Y) having conditional probabilities of the
form P(r|...,=X) = 0.0. Schemas in general and the OR schema in particular are further
discussed below.
Definition 5. A temporal causal relationship (TCR) describes a relationship between two
temporal aggregates X = (Tx,Xx) and Y = (Ty,Ly) where X is considered the “cause”
and Y the “effect.” Textually, the TCR is written X (R, M)Y where R is a nonempty set
of interval relations and M is a schema for describing random variables. Graphically, the

TCR 1is presented as a directed edge from the node for X to the node for Y, labeled with
(R, M). Formally, the relationship is written as the four-tuple (R, M, X,Y).

The TCR induces, for each interval-RV pair, (iy,7ry) in Ty, a random variable M,,

defined over Xx, such that

1. ry 1s directly dependent on M,.

2. for each (ix,7x) € Tx where ixRiy, M, is directly dependent on rx.

3. for each random wvariable x such that M, is directly dependent z, there exists an ix
such that (ix,z) € Tx.

4. the conditional probability table for M, is defined by the schema M.




Temporal causal relationships are rarely given explicit names. Notationally, the
random variables in the interval-RV pairs in the effect TA are usually written, in the
conditional probability tables, as being dependent simply on the cause TA. This can be
seen in the tables for the ‘Vault-Open’ temporal aggregate in Figure 3.2. In cases where
there is more than one TCR between two TAs, some appropriate name or symbol can be
associated with the TCR and the dependencies in the effect TA can be written as the name
of the cause TA subscripted with the name of the TCR.

The random variable schema algorithmically defines the conditional probability tables
for the random variables induced by the temporal causal relationship.
Definition 6. A random variable schema M takes as parameters a set of states ¥, a set
of interval-RV pairs T with RVs defined over X, a single interval-RV pair (i,7), and an
algorithm A which together define the conditional probability table for a random variable
M, with states © such that for each (i1,r1) € T, M, is directly dependent on rt. M, is
directly dependent on nothing else. The conditional probability table for M, s constructed

with an algorithm, A. A can be either declarative or procedural.

For many models, these schemas are extremely simple, e.g.,
T,
¥ = {true, false},
(%7),

Aor

OR: — OR, (3.6)

where Aor is defined as
Algorithm 1: (Aor)

1. Let (i1,,71,) ... (4T,,7T,) be an arbitrary ordering of the elements of T
2. Create random variable OR, such that for each assignment A to {rr,,...,r1,}

(a) If there exists an r € A such that r = true
P(OR, =true|]A) = 1

Let
P(OR, = false|]A) = 0
(b) else
P(OR, =true|ld) = 0
.., P(OR, =truel4)

P(OR, = false|A) = 1




Exclusive-or, XOR, can be defined by changing “there exists an 7 € A” in step 2a

above to “there exists a unique 7 € A.” The other logical operations are also easily defined.

The schema PASSTHROUGH, defined:

T= (iT,TT)a

>
PASSTHROUGH : ’ ’) — PASSTHROUGH, (3.7)
Z, T )

APASSTHROUGH

with ApassTHrROUGH defined as

Algorithm 2: (ApASSTHROUGH)
1. Create random variable PASSTHROUGH, sz\tch that for each 0 € X
P(PASSTHROUGH, =o|rr=0) = 1
P(PASSTHROUGH, #o|rr=0) = 0
produces a random variable for a causal relationship from a singleton TA (only one interval-

RV pair in T). The temporal causal relationship
X(A,PASSTHROUGH)Y, (3.8)

read “X exerts direct causal influence on Y under all temporal relationships” is analogous
to the causal relation in Bayesian networks. This type of relationship is useful when

‘temporalizing’ existing Bayesian networks.

8.1.83 Probabilistic Temporal Networks. A probabilistic temporal network is a
directed graph in which the nodes are TAs and the edges are temporal causal relationships.
Definition 7. A probabilistic temporal network (PTN) is an ordered pair (R, E) where
R is a set of temporal aggregates and E is set of temporal causal relationships such that,
for each TCR in E from some temporal aggregate, X, to some temporal aggregate, Y, both
X andY are in R.

If each temporal aggregate in a probabilistic temporal network is assigned, then that
PTN is said to be completely assigned. The set of all of the assignments and associated

temporal aggregates forms a complete assignment.




Definition 8. The set € containing (temporal aggregate, aggregate assignment) pairs is

a complete assignment (CA) of some PTN (R, E) iff

1. V(X,A) € ¢, X € R and A is an aggregate assignment of X.
2. V(X,A),(Y,B)e¥, X =Y = A=B.
3. VX € R3(Y,A) € € such that X =Y.

Complete assignments are denoted by uppercase script letters from the beginning of

the alphabet, e.g., &, %, or €.

When inferencing over a probabilistic temporal network, incomplete evidence as to
the state of the network may be held. Such evidence is represented with a partial assign-
ment. In the simplest form, any subset of a complete assignment is a partial assignment.
A more complicated case arises when only a partial\ aggregate assignment is known for
some temporal aggregate. Since a PAA is a subset (possibly improper) of an aggregate
assignment, a partial assignment to a PTN consists of a subset of the variables of the PTN
and associated partial aggregate assignments for the TAs. More formally:

Definition 9. The set & containing (temporal aggregate, aggregate assignment) pairs is

a partial assignment (PA) of some PTN (R, E) iff

1. V(X,P) € #, X € R and P is a partial aggregate assignment of X.
2. ¥(X,P),(V,Q e 2, X=Y =P=Q.

PAs are usually denoted with uppercase script letters from the middle of the alphabet,
e.g., P or 2. As a complete assignment is a subset of itself, by definition any complete
assignment is also a partial assignment.
Notation. A partial assignment, &, is said to be a subset of another partial assignment,
2, (denoted P T 2) if every (X, P) in & (exzcept those having P = () has a corresponding
(Y,Q) in 2 such that X =Y and P C Q. A complete assignment, say €, is said to be
compatible with a partial assignment, P, if T €, otherwise € is said to be incompatible
with @. If € is incompatible with &, then at least one temporal aggregate in € has a
different assignment than that in &.

The goal of belief revision is to find the most probable state of the world given some

evidence. This is the most probable ezplanation.
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Definition 10. Let B be a PTN, let & be partial assignment (evidence) of B, and let
€ be some complete assignment (explanation) of B. € is a most probable explanation
(MPE) given 2 iff for all & where each & is a complete assignment of B compatible with
P, P(¥|P) > P(L|P).

Since P(#|P) = P(«, #)/P(2) and an incompatible complete assignment can not
be a MPE (unless the evidence & is itself contradictory in which case all CAs are MPEs),
we only need to consider as candidates those complete assignments for which & C A.
Thus since & C &, we derive P(o/|P) = P(«)/P(&). Furthermore, since 1/P(%) is
a factor in the conditional probability of each explanation &/, to find the MPE, we need
only compute the probability of each complete assignment, i.e., P(&/). P(&/) is calculated

with the chain rule. .

8.2 Cuycles and Temporal Ordering

Now that the basic definitions and properties have been introduced, this section
briefly explores the probabilistic temporal network in Figure 3.3 and considers a potential
alternate representation. Figure 3.3 shows a network using a cyclic dependency to represent
the internal dependencies in process ‘Line-Open,’ i.e., a cyclic TCR has been used to
explicitly model the endogenous temporal relationships. For ‘Line-Open’ to be true over

some interval, ‘Line-Open’ must not be true over any earlier intervals.

Examining the intervals, “earlier” turns out to be either meets or overlaps. This
is represented with a disjunctive set containing meets and overlaps: {m,o}. The condi-
tional dependencies are represented using the OR. schema. The TCR, LO({m, o}, OR)LO,

describes the random variable ORy,, such that
P(OR[Osl—llol,—\ZOQ) =0 and P(ﬂORl%l—lel,—‘lOz) = 1. (3.9)

OR,,, replaces LO in P(lo3|~LO) = 1 to yield P(lo3|-ORy,,) = 1. By using cyclic TCRs
to explicitly represent the temporal relationships within a process, the knowledge engineer

can more clearly “see” the nature of the system being modeled.

Figure 3.6 shows an attempt to simplify the conditional dependencies in process

‘Line-Open.” The conditional probability tables for each random variable in process LO
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Line-Open =

{({0900,0910},l01), P(lol1-LO) =1
([0905,0915],102), P(102I-LO) =1
([0910,0920],103) } P(103!-LO) =1

Figure 3.6 The network in Figure 3.3 rewritten using a cyclic dependency such that
the conditional probability table for each RV can be written with the same
probability 1 instead of the dependent probabilities 1/3, 1/2, and 1 (not
well-formed).

are identical. This simplification is accomplished using the TCR LO(A — {=}, OR)LO?,
which states that the random variable in each interval-RV pair is dependent on the ran-
dom variables in all the other interval-RV pairs. While visually similar to the network in

Figure 3.3, this network has a serious problem.

Figure 3.7 Process ‘Line-Open’ from Figure 3.6 drawn with the temporal causal rela-
tionship expanded. The loop shows a cycle in the dependencies.

The problem is exposed in Figure 3.7 which shows process ‘Line-Open’ with the TCR
expanded into the induced random variables. Notice that this expanded structure reveals
violations of the conditional independence assumptions discussed in the presentation of
Bayesian networks. Random variable lo; is dependent on ORy,, which is dependent on

lo; which is dependent on ORy,, which is dependent on lo; which is .... lo; is separated

2The set, A — {=}, consists of all thirteen interval relations sans equals
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from itself by random variables ORy,,, lo;, and OR;,, indicating that given knowledge of

each of these variables that los is independent of itself which is clearly contradictory.

Figure 3.3 demonstrates an example in which a cycle in the PTN provided a useful
representation of the internal dependencies within a process. Figure 3.6, on the other hand,
shows a case in which the cycle, while intuitively satisfying, violates the requirements of
conditional independence. This raises the question: “Under what circumstances are cycles
appropriate in probabilistic temporal networks?”

Definition 11. An expanded probabilistic temporal network (EPTN) is the directed graph

created by expanding all temporal causal relationships in some PTN.

Vault-Open
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Figure 3.8  Expanded Probabilistic Temporal Network for PTN in Figure 3.2. Labels on
arcs indicate temporal relation; during inverse, starts, meets.

Figure 3.8 shows the expanded probabilistic temporal network for the PTN from
Figure 3.2. The OR node for o; is not shown as it has no parents and does not affect
the probability distribution, i.e., P(OR,, = false) = 1.0. Note that a given EPTN is not
necessarily a Bayesian network. Cycles can exist or extraneous arcs can be present, i.e.,
not a minimal I-map. Redundant induced RVs may also be present. Figure 3.9 presents
an optimized network with an equivalent joint distribution as that of Figure 3.8. This

optimization process is an avenue of further research.
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Figure 3.9 Optimized network for EPTN in Figure 3.8.

Definition 12. A probabilistic temporal network is said to be well-formed iff the cor-
responding ezpanded probabilistic temporal network contains no directed cycles, i.e., the

EPTN of a well-formed PTN is a directed acyclic graph.

Figure 3.7, shown previously, gives an example EPTN with cycles. As discussed,
cycles in the expanded structure are problematic. A well-formed probabilistic temporal
network does not contain any such directed cycles.

Lemma 1 ( [22]). For any DAG D there ezists a probability distribution P such that
D is a perfect map of P relative to d-separation, i.e., P embodies all the independencies

portrayed in D, and no others.

This lemma, combined with Definition 12, leads directly to
Theorem 1. For each well-formed, finite PTN (R, E) there ezists a probability distribu-
tion P such that P embodies all the independencies in (R, E), and no others.

Theorem 1 indicates that if we have a well-formed, finite PTN, then we have an
associated probability distribution. How can we guarantee that a given PTN is well-
formed and finite? If there are a finite number of temporal aggregates in the PTN and
each aggregate contains only a finite number of interval-RV pairs, then the PTN is finite. As
mentioned earlier, finite PTNs are assumed. Clearly if the PTN structure itself contains no

cycles then there can be no cycles in the EPTN and our PTN is well-formed. The problem
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with this restriction is that we lose significant expressive power. Networks such as that in

Figure 3.2 would not be allowed.

Cycles in the EPTN occur when an interval-RV pair becomes self-dependent. If
only temporal relations which are strictly one directional are used, an interval-RV pair
can not possibly be self-dependent. For example, if only {<} is used in a PTN, no cycles
are possible. Santos, in the development of the temporal abduction problem, defined the
concept of monotonicity [25] as applied to temporal relations.

Definition 13. A set R of temporal relations is said to be monotonic if and only if for
al Rin R, R°N(R°)™! = 0 where R = Ugpcr R and R° is the transitive closure of R and

R is the inverse of the transitive closure of R.

In the same work [25], Santos introduced the following monotonic set:
Proposition 1. The subset of relations C = {<,0,s, fi,di,m} from the original thirteen

s @ monotonic set.

Intuitively, a monotonic set, such as C above, can be said to temporally ‘point in
only one direction.” This is compatible with Suppes’ probabilistic theory of causality [31]
and Shoham’s criteria for causation [28] (both point based approaches) in which causation
can only extend forward in time. For this reason, C is said to be the causal set of temporal
relations. The network in Figure 3.3 holds to C.
Theorem 2. If, for probabilistic temporal network (R, E), there exists a monotonic set,
Q, of temporal relations such that for each (R,M,X,Y) € R, R C Q; then the PTN
(R, E) is well-formed.

Proof. Since the only temporal relations used in the PTN are drawn from Q and Q is
monotonic, no interval-RV pair can ever relate to itself temporally (otherwise QCO(QC)_l #
0) and as there can be no cycles within the TAs themselves, there can be no cycles in the

EPTN; thus the PTN is well-formed. O

Combining Theorem 2 and the causal set C from Proposition 1 leads us to the

following definition:
Definition 14. A causal probabilistic temporal network (CPTN) is a PTN for which The-
orem 2 holds with R =C.
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The causal PTN model enforces the constraint that causality flows forward in time.
Each link in the network advances in time. When following a cycle from a temporal
aggregate back to itself, one always returns to a different interval-RV pair. The CPTN

model enforces, through local constraints, a consistent theory of time.

B = {([Ti,Ti+1],Bi) | (O<=i<n)}
P(BilT,A)=0.95  (O<=i<n)
P(Bil~T,A) =0.85 (0O<=i<n)
P(BilT,~A)=0.20 (0O<=i<n)
P(Bil~T,~A) = 0.05 (O<=i<n)

S = {([2*Ti-e,2*Ti],Si) |
(O<=i<ceil(n/2))}
PSi)=0.2  (0<=i<n/2)

Person B. Talking

Trigger ({m},PT) ({m,=},PT)

A = {([Ti,Ti+1},Ai) | (O<=i<n)}
P(AIlT,B)=0.95  (0O<=i<n)
P(Ail~T,B)=0.85 (O<=i<n)
P(AilT,~B)=0.20 (0<=i<n)
P(Ail~T,~B) =0.05 (O<=i<n)

Person A Talking

Figure 3.10 PTN modeling two people chatting with an an occasional conversational
trigger. Note the use of set-builder notation.

The equals relation, ‘=,’ is not a member of C, and cannot be a member of any
monotonic set of relations as ‘=’ is its own inverse. Equals is, however, useful for expressing
simultaneity. Figure 3.10 shows an example in which two people are chatting. Talker A
tends to ‘talk over’ Talker B. To model this example, the TCR from B to A includes

equals as well as meets. Figure 3.11 shows the EPTN for Figure 3.10.

To insure that a CPTN extended to use equals is well-formed, each directed cycle
must have at least one TCR in which equals is not used. This guarantees ‘temporal
progression’ in each cycle. A probabilistic temporal network limited to C U {=} with this

broken cycle property is said to be S-Causal (SCPTN) (‘S’ for simultaneity).

3.3 A Related Model

In addition to the other temporal representations mentioned in Chapter II of this
thesis, Aliferis and Cooper [1] have developed, in parallel with the work presented in
this thesis, a preliminary temporally extended Bayesian network formulation termed the

Modifiable Temporal Bayesian Network-Single Granularity (MTBN-SG). Their research,
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Figure 3.11 EPTN for PTN in Figure 3.10 with n = 4.

\

published shortly after the author’s initial results [33], is discussed in some detail here as
they also introduce the idea of representing state over several points in time as a single
node in a network structure with arcs between nodes representing temporally qualified

causation.

A MTBN-SG is primarily an extended time-sliced Bayesian network defined over a
range of time points. Each ordinary node in a MTBN-SG is indexed over this entire range.
Edges between nodes are represented by mechani.;m variables. A mechanism variable is
a Boolean true/false random variable indicating whether the link is active, i.e., whether a
dependency exists between the connected variables. Each such mechanism has an associ-
ated lag random variable (Delta TAs in the PTN) defined over the range of time points
indicating the delay between the “cause” and the “effect.” Atemporal or abstract random
variable nodes are supported and are not instantiated for each time point. The resultant
graph can have cycles to allow expressions of recurrence and feedback. As long as all
cycles in the underlying joint distribution have zero probability, the graph is said to be
well-defined.

Since the edges, both mechanism and lag components, are represented by random
variables, the edges can be both dependent on and causal too other random variables in the
network. This representation allows the knowledge engineer to express conditions where a

relationship exists between variables only under certain circumstances. The problem with

3-17




this approach is that joint distributions can be described which are not compatible with
the Bayesian model. Maintaining consistency in the local probability tables across random

variables then becomes a concern.

As indicated in the name, the MTBN-SG model only supports a single granularity for
the size of the time step in any given network. Extending the model to support multiple
granularities appears problematic, especially in the case when the granularities are not
multiples, e.g., g is every 10 minutes and go is every 15 minutes. A perhaps more difficult
problem arises in the model if the start time for one granularity is not the same as that
for another as the granularities may be forever out of phase. This problem is not an issue
for our model. Individual processes or temporal aggregates can be modeled with arbitrary
sets of intervals. There is no requirement that the intervals in one TA match those in other

TAs as the temporal causal relationship describes the desired relationships.

Intervals can be modeled in the MTBN with abstract variables, INT_START and
INT_END, representing the start and end points of the interval respectively. INT_END
is dependent on INT_ST ART such that the end time will never be before the start time.
The duration of an interval can be acquired from a third variable, INT_DU R, dependent
on both INT_START and INT_END. One problem with this representation arises from
the need to use abstract instead of time indezed variables. If one needs to reason with both
a blend of time-sliced and interval data, then dependencies will exist between the abstract

variables and the time-indezed ones.

The semantics of such arcs and the deployment transformations (conversion to BN
form) are not clear. Presumably, if, in the MTBN, an abstract variable was dependent
on a time indered variable, then, in the deployed graph, the abstract variable would be
dependent on each copy of the time indezed variable for each time index. If the time
indered variable is dependent on the abstract variable, then the condition is similar in
that each copy of the time indered variable is dependent on the abstract variable. These
dependencies result in high degrees of fan-in and fan-out in the deployed graph leading to

excessive number of needed probabilities and high complexity.
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The MTBN-SG formulation, introduced by Aliferis and Cooper, is interesting in its
high-level similarity to the probabilistic temporal network. Their point based approach, se-
mantic difficulties arising from the abstract variables, and the single granularity restriction

are problems which the PTN does not have.
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IV. Reasoning

This chapter develops an approach for reasoning over probabilistic temporal networks.
The first section introduces the method of calculating the probability of some state of, or
explanation for, the system being modeled. Section 4.2 extends these calculations to find
the most probable state of the system. Unfortunately, finding the most probable state
is N'P-hard. Section 4.3 presents a subclass of the probabilistic temporal network with

polynomial time solvability.

4.1 Constructing a Partial Order and Using the Chain Rule

In Section 3.1, we discussed finding the most probable ezplanation. The most probable
explanation is the complete assignment with the greatest joint probability. As mentioned,
this joint probability is calculated using the chain rule. To efficiently use the chain rule, a
partial ordering (from effect to cause) of the random variables must exist. The ordering is
drawn from the expanded PTN and can only be found when the PTN is well-formed and
finite. The following algorithm finds a partial ordering for a well-formed and finite PTN:

Algorithm 3: (Partial Ordering)

1. First, find the EPTN of a well-formed and finite PTN.

2. From the EPTN, select all RVs with no children. Place these first in the ordering in
arbitrary order.

3. Find all RVs among all those not yet ordered such that all children thereof are ordered.
Place these next in the ordering, again in arbitrary order.

4. Repeat Step 3 until no unordered RVs remain.

For example, the PTN in Figure 3.3 expands to the EPTN in Figure 3.5. A partial

ordering of the RVs is found in the following steps:

Order: () RVs: {lo1,log,lo3, ORyp,, ORy, }
Order: (log) RVs: {loj,lo2, ORjp,, ORy,, }
Order: (loz, ORy,,) RVs: {lo1,lo2, ORyp, }
Order: (log, ORy,,,lo2) RVs: {lo;, ORy,, }
Order: (log, ORyo,,100, ORy,,) RVs: {lo1}

AR




6. Order: (los, ORyo,,l02, ORyy,,101) RVs: {}
yielding (lo3, ORyy,, lo2, ORyy,, lo1) as a partial ordering.

Since a partial ordering exists for the network, the chain rule can be used to find the
joint probability of each assignment. Table 4.1 shows the probability distribution defined

by the example in Figure 3.3. Only non-zero probability assignments are shown (but one).

Table 4.1  The possible complete assignments to the network in Figure 3.3 with associ-
ated probabilities. One ‘impossible’ assignment is also shown.

| JOINT PROBABILITY TABLE FOR FIGURE 3.3 |

Line-Open Assignment

[0910,0920] | OR,,, | [0905,0915] || OR,,, | [0900,0910] || Probability:
true false false false false

1 1 1/2 1 . 2/3 1/3 1)
false true true false false

1 1 1/2 1 2/3 1/3 (2)
false true false true true

1 1 1 1 1/3 1/3 (3)
true true false true true

0 1 1 1 1/3 0 (4)

|  Total: |1 |

Each joint probability in Table 4.1 is calculated using the chain rule [22]. For example,
the probability of the complete assignment
(([0900,0910), lo, ), true),

LO,{ (([0905,0915], loy), false), (4.1)
(([0910,0920],l03), false)

is calculated from

P(log = false]OR;,, = true) 1
P(OR,,, = true|lo; = true,loy = false) 1
1
P(log = false|ORy,, = true) = 1] =3 (4.2)
P(ORy,, = true|lo; = true) 1

P(lo; = true)

[
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4.2 Constraint Satisfaction

The previous section showed how to calculate the probability of a complete assign-
ment to a probabilistic temporal network. This section presents a method for finding
the most probable complete assignment, i.e., performing belief revision on probabilistic
temporal networks. A constraint satisfaction approach is used with mixed Boolean linear
programming. Constraint satisfaction has three main advantages; first, constraints can
be formed to take advantage of the inherent structure of the PTN; second, very efficient
algorithms developed by the operations research community are available; and finally, al-
ternate explanations, e.g., second or third best, can be found using techniques presented
in [24].

Definition 15. A constraint system is a 3-tuple (I',I,) where ' is a finite set of vari-
ables, I is a finite set of linear inequalities based on T, and ¢ is a cost function from
T x {true, false} to R.

Our probabilistic temporal network model can be considered to have a layered struc-
ture. The layers consist of temporal aggregates and temporal causal relationships. For this
reason, the system of constraints is presented in two parts, those for TCRs and those for
TAs. For some well-formed PTN P = (R, E), the following steps produce the constraints,
variables, and costs for the temporal causal relationships in E and those for the temporal
aggregates in R, i.e., the following steps produce L(P) = (T, I,).

1. For each TCR (R,M,(Tx,2x),(Ty,Zy)) in E,
(a) For each (iy,ry) € Ty construct variables ./\/i(r,‘)’(1 .. M?)’(n inI' whereox,...0x,

are states in ¥ x. Set costs for each variable as
PY(MEY | false) = (MY | true) = 0. (4.3)

a'xi) axi’

where 1 < 7 < n and add the following constraint to I:

n
YoM =1 (4.4)
=1

(b) For each (iy,ry) € Ty and each ox € Xx let (ix,,7x,)...(ix;,7x;) € Tx be

those pairs for which ix, Riy with 1 < h < j, then
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i. for each conditional probability of the form
PM,, =ox|rx, =0x,...Tx; = 0X;) (4.5)
as induced by schema M, construct a variable
gMry = ox|rx; = 0x,...Tx; = 0Xx;] (4.6)

(denoted ¢ in following steps) in I' such that
A.
¥(q, false) = 0, (@)
™, —0X;
(g, true) = —log | P| My,=0x (4.8)
TX; = 0X;

B. with the following constraint in I:
J X} » .
g2 Toxh + M —j (4.9)
h=1

(c) Let T M, be the set of all ¢ constructed in step (1b) for variable MY, . For

each such variable, add the following constraint to I:

ME = > a (4.10)

2. For each TA X = (Tx,Xx) in R
(a) For each (ix,7rx) € Tx construct variables ’Z;ijl .. I7¥ inT where oy, ...0x

n

are states in L x. Set costs for each variable as

(TTX , false) = (T X ,true) = 0. (4.11)

o’xi3 UX:-’

where 1 <7 < n and add the following constraint to I:

X =1 (4.12)




(b) For each (ix,7x) € Tx and each ox € Tx let M;... M; be those random
variables induced by TCRs (Ry, Mp, Yy, Z3) for which 1 <h < j and Z, = X.
Then

i. for each conditional probability of the form
P(rx = ox|Mi =0y, ... M; = oy;), (4.13)
construct a variable
gfrx = ox|M1 =0y, ... M; = ay;] (4.14)

(denoted g in following steps) in I such that
A.
(g, false) = 0, (4.15)

M =0y
P(g,true) = —log | P| rx=0x (4.16)

B. with the following constraint in I:

UYh

J
g2 Y MFZ +TX -] (4.17)
h=1

(c) Let T’J}r,’f be the set of all ¢ constructed in step (1b) for variable 77X . For each
such variable, add the following constraint to I:

T7X= Y g (4.18)

qETTUT))([

In this construction, constraints (4.4) and (4.12) ensures that each random variable,
either induced or in a TA, can take on one and only one value. Constraints (4.9) and
(4.10) guarantee that each of the probabilities for TCR induced variables is computed in
concordance with the appropriate temporal relations and schema. Constraints (4.17) and
(4.18) guarantee that the probability of a temporal assignment to a TA is computed with

the appropriate set of conditional probabilities. Variables of the form ¢[rx = ox|M; =

oy, ... M; = ij] are called conditional variables in that they explicitly represent the
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dependencies between RVs and are the mechanism for computing the probability of any
complete assignment.
For example, consider again the simple probabilistic temporal network in Figure 3.3.

Section 4.1 showed how to calculate the probability of an assignment to this network using

the chain rule (see Table 4.1 and Equation 4.2). Now, if we take the complete assignment

(([0900, 0910], 10y ), true),
LO,< (([0905,0915],log), false), (4.19)
(([0910, 0920}, l03), false)

we expect our variable assignments to be

LOW, = gllo; = true|OR,,, = false]

Log, = glloy = false|ORy,, = true]

LO%:,“Se gllog = false|OR,, = true] _, (020
ORg, = q[OR,, = false]

OR{Z, = q[ORy,, = truello; = true]

OR!%, = ¢[ORy, = true|lo; = true,loy = true]

with all other variables being zero. Since the only variables which encrue costs are the g]. . ]
variables, the cost of the assignment is — log(1/3)—log(1)—log(1) —log(1)—log(1)—log(1l) =
—log(1/3) and thus the probability of the assignment is 1/3 as expected. As informally
demonstrated in this example, the cost of a variable assignment is found by summing the
product of each variable in I and its corresponding cost in ).

Definition 16. A variable assignment for a constraint system L = (I',1,) is a function

s from T to R. Furthermore,

1. If the range of s is {0,1}, then s is a 0-1 assignment.

2. If s satisfies all of the constraints in I, then s is a solution for L.

3. If s is a solution for L and is also a 0-1 assignment, then s is a 0-1 solution for L.
Definition 17. Given a constraint system L = (T',1,), we construct a function ©, from
variable assignments to R as follows:

Or(s) = Z; (VY7 true) + (1 = s(7))9(7, false) (4.21)
e

O is called the objective function of L.




Definition 18. An optimal 0-1 solution for a constraint system L = (I',1,%) is a 0-1

solution which minimizes Op.

By finding an optimal 0-1 solution for a constraint system, we find the most probable
explanation for the corresponding PTN. Santos [24] presents a customized algorithm using
the cutting plane method [21] for finding the optimal 0-1 solution. Since any Bayesian
network can be represented as a PTN!, we know that, in general, belief revision over

PTNs is N'P-hard [8,22].

4.8 Polynomial Time Belief Revision—The Generalized Temporal Polytree

The previous section presented a method for performing belief revision on probabilis-
tic temporal networks. In general, this problem is N’P-hard. However, for singly-connected
PTNs (polytrees), belief revision can be done in polynomial time. A polytree is a directed
acyclic graph in which no more than one path exists between any two nodes. The lack of
undirected cycles in the graph structure allows for efficient local decisions. This section
presents the generalized temporal polytree (GTP); a PTN model with a restricted graph
and temporal structure. The EPTN for a GTP is guaranteed to be a polytree.

First, a pair of additional restrictions on the probabilistic temporal network are
introduced. These two restrictions force the expanded PTN to be a causal tree, i.e., all
nodes (except root nodes) have one and only one incoming edge (cause)?. A causal tree
structure allows for very easy belief updating and revision. The first requirement is that
the only interval-interval relation allowed is meets. Meets enforces a strictly monotonic
progress in time and, unlike precedes, does not allow “temporally remote causation [31].”
The second requirement is that all intervals across the network have different end-points.
Together, these two requirements impose a causal tree structure on the expanded network.
A probabilistic temporal network holding to these two requirements is termed a Generalized

Causal Temporal Tree.

!Treat each RV in the BN as a TA with a single interval-RV pair, using the ({=}, PASSTHROUGH)
TCR, and make all intervals in the TAs equivalent.
2Note that by this definition, the model actually allows a collection of such unconnected trees.
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Definition 19. A generalized causal temporal tree (GCTT) is a probabilistic temporal

network in which

1. R = {m} for each (R,M,X,Y) € E, i.e., meets is the only temporal relation
allowed.
2. All intervals in all temporal aggregates must have unique end-points.
Theorem 3. The ezpanded probabilistic temporal network of any generalized causal tem-

poral tree is a causal tree.

Proof. By Contradiction. Let P = (R, F) be some generalized causal temporal tree. Let
N be the EPTN of P. Assuming that N is not a tree, we know by the definition that there
exists a node, a, such that at least two different directed edges enter a from two different
causal nodes (ignoring intervening induced RVs), say b and c. Each of these nodes (a,b,c)
have associated intervals, say, ([as, @e), [bs, be), [Cs, Ce]) respectively. Since, by the definition
of generalized causal temporal tree, [bs,be/meets[as,a.] and [cs, ce|meets|as, ac]; be = as
and ¢, = a; and thus b, = c.. However, again from the definition of generalized causal
temporal tree, all end-points are unique and thus be # ce. O

Corollary 1. The EPTN of a GCTT in which constraint 2 in Definition 19 is changed to

start-points instead of end-points, has an inverted tree structure.

By connecting together regions with varying end-points (out-regions) with regions of
varying start-points (in-regions) a PTN with polytree structure is formed. A region, then,
is a collection of TAs in which all interval end or start points are different. Regions join
together at a set of TAs referred to as a join-region. All TAs in a join-region are members
of both regions being joined. For example, if an in-region and an out-region are joined,
then all end-points in the join-region must be different from all end-points in the out-region
and all start-points in the join-region must differ from all start-points in the in-region.

Definition 20. A set of temporal aggregates, R, forms an out-region if for each

(sr,ear)e |J T (4.22)
(T,)ER
there does not exist another
(Is2,eslr)e | T (4.23)
(T,Z)ER
4-8




such that r1 # r9 and e; = ey, i.e., all intervals in all temporal aggregates have unique

end-points.

Definition 21. A set of temporal aggregates, R, forms an in-region if for each

([s1,€1],71) € U T (4.24)
(T,£)eR
there does not exist another
([s2,e2],m)e |J T (4.25)
(T,Z)ER

such that r1 # ro and s; = s, i.e., all intervals in all temporal aggregates have unique
start-points.
Definition 22. A set of temporal aggregates, R, forms a join-region for two in- or out-

regions, Ry and Ry if R= Ri N Ry )

To prevent undirected cycles (directed cycles are prevented by the meets restriction),
out-regions are not permitted to join to out-regions. In-regions can join with both in-
regions and out-regions. No temporal causal relationships can extend, however, from
a join-region back into an in-region. This prevents undirected cycles by enforcing the
constraint that all inverted trees in an in-region must end in the join-region (or not enter
the join-region). )

Definition 23. A generalized temporal polytree (GTP) is a probabilistic temporal network
P = (R, E) for which there ezist sets I (in-regions), O (out-regions), and J (join-regions)
such that

1. R = {m} for each (R,M,X,Y) € E, i.e.,, meets is the only temporal relation
allowed.
2. Each TA in the PTN is in some in- or out-region and vice versa.
3. Each join-region in J connects two in-regions or connects an in-region with an out-
region. Qut-regions can not join with other out-regions.
4. For each TCR, (R, M, X,Y) € E, exactly one of the following must hold:
(a) there ezists one and only one r € IU O such that X,Y € r, or
(b) there ezists a 7 € J such that X,Y € j, or
(c) there exists a j € J and an o € O such that X € j and Y € o.




In no case can X be in a join-region and Y be in an in-region outside of the join.
Theorem 4. The ezpanded probabilistic temporal network of any generalized temporal

polytree is a polytree.

Proof. By Contradiction. Let P = (R, E) be some generalized temporal polytree. Let
N be the EPTN of P. Assuming that N is not a polytree, we know by definition that
there exists at least two nodes such that two unique undirected paths exist between them.
These two paths form an undirected cycle. Based on Theorem 3 and Corollary 1, there
can not exist more than one unique path between any two nodes within any give in- or
out-region. Also, different regions can only connect together in join-regions. Thus at least
two nodes on the undirected cycle must be in the join-region. Let these two nodes be a
and b. Since all nodes in the join-region belong to both in- or out- regions and no cycles
can exist within any single in- or out- regions, at least one node on the cycle, say ¢, must
exist outside of the join-region. This leads to two cases: either ¢ is in an in-region or ¢
is in an out-region. Either way if ¢ is in one region and a and b in the join-region, there
must be a fourth node, d, in the other region from ¢, otherwise the cycle would lie entirely

within one in- or out-region.

Figure 4.1 (Im)possible shape of an undirected cycle in a generalized temporal polytree.

This gives us four nodes on our cycle, a, b, ¢, and d. We know that a and b are both
in the join-region and we know that both c and d are outside of the join-region and each in
different regions. This gives us a structure as in Figure 4.1. Since out-regions can not join
to out-regions, either node d or node ¢ must lie in an in-region. Let us assume that this
is node d. Since a TCR can not extend from the join-region out into an in-region, a TCR
must extend from the TA containing d into the join-region. This TCR must be such that

the interval associated with d meets two nodes in the join-region, however since all nodes
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in the join-region are also in the same in-region as d, no two nodes in the join-region can
have the same start point and thus d can not meet these two nodes and thus an undirected

cycle can not exist. O

Although not stated in the formal definition of the generalized temporal polytree,
interval start-points in evidence TAs and end-points in leaf TAs do not need to be different
from other start- or end-points as evidence nodes are not dependent on anything and

nothing is dependent on leaf nodes.

((ablash), " Join-Region C {muae),
({d.e),as2)} : (emlal) ([px],ae2)}
; (£pla2)}
{(bclbsD), - {([uv].be),
e e,
) In-Region : Qut-Region
{ahmlcst), - f f  {nolcen),
Giples2)y . \ ProgmmCsun )= ; (l911.ce)}
B g e B .
([palitb2)}

Figure 4.2 A Generalized Temporal Polytree depicting a program execution scenario.

Figure 4.2 shows a GTP modeling a program execution scenario. Program-A exe-
cutes Program-B to complete Task-A. Program-C must complete Task-B. Task-B, how-
ever, requires that Task-A complete immediately prior. The start and task TAs form an
in-region and the task and end TAs form an out-region. Task-A and Task-B together form

a join-region. Figure 4.3 shows the expanded probabilistic temporal network for this GTP.

Figure 4.3 The EPTN for the GTP in Figure 4.2.

4-11




V. Knowledge Engineering

The probabilistic tempbral network provides the knowledge engineer with a powerful tool.
This chapter discusses techniques for applying the PTN to particular problems. The first
section is focused on extending an existing knowledge base into the temporal domain.
In the second section, further techniques appropriate for completely temporal models are

discussed.

5.1 Egztending a Bayesian Network with Time

Probabilistic temporal networks provide an easy migration from a timeless Bayesian
representation to a fully temporal representation. For example, consider the Bayesian
network in Figure 5.1 representing the following scenario:

Tech support is only available if the phones are working and the support technician
has arrived at work. The probability that the phones are working is 0.95 and that the
support technician has arrived is 0.875.

This scenario is easily and adequately modeled with a Bayesian network. Suppose that we

also have the following additional requirement:

The support tech has a fifty percent chance of starting work between 7:15am and
7:45am, 25 percent chance between 7:45am and 8:15am, and a 12.5 percent chance
between 8:15am and 8:45am. If the tech is not in by 8:45am, she is not coming in at
all.

To reflect this change, the Bayesian network in Figure 5.1 would have to be modified to
explicitly contain each of the above three intervals with support-available being dependent

on all three. The probabilistic temporal network approach provides a cleaner alternative.

support-available
phones-working

Figure 5.1 A Bayesian network for a simple tech support scenario.

P(salpw, ta) = 0.95
P(sal-pw, ta) = 0.0

P(salpw,~ta) = 0.0
P(sal-pw,-ta) = 0.0

P(pw)=0.95 P(ta)=0.875
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SA={([-00,00},sa)}

P(salPW, TA) = 0.95
P(sal-PW, TA) = 0.0 :
-availab
P(salPW,~TA) = 0.0
P(sal-PW,-TA) = 0.0
({=}PT) ({d}.0R)

phones-working

TA = {([0715,0745],2), P(al-TA) =0.5
([0745,0815},b), P(bI=TA)=0.5
([0815,0845},c)}  P(cI-TA) = 0.5

PWw{([-00,00},pW)}
P(pw)=0.95

Figure 5.2  Tech-support Probabilistic Temporal Network. The probabilities used in the
figure are the dependent probabilities rather then the break-out used in the
text description, e.g., (0.5,0.25,0.125) becomes (0.5,0.5,0.5). PT is short-
hand for PASSTHROUGH.

N

5.1.1 Temporalizing a Bayesian Network. First, however, a technique must be
found to provide a temporal binding for the nodes in the Bayesian network. Since BNs
usually do not contain explicit temporal information, we represent the nodes in Bayesian
networks as temporal aggregates defined over a single interval from negative infinity to
positive infinity!. Thus each RV X with states ¥ from a BN becomes the TA X =
({([-o0, 00],%)}, ). Then, under the assumption that [—oc, 00] = [—00, o0], the temporal
relationship between TAs X and Y, where an edge exists from X to Y in the BN, is simply
X({=},PASSTHROUGH)Y.

Then, if random variable z in temporal aggregate X holds state o, we can interpret
this to mean that X holds state o for all time? (or at least for the time of discourse). If
TA X represents a boolean proposition, then we could instead interpret x = true to mean
that at some time our boolean proposition holds and if z = false then at no time does the
proposition hold. This is the interpretation used in our examples here.

Notation. For convenience, a temporal aggregate so adapted from a Bayesian network is

termed an adapted temporal aggregate (ATA).

While an open interval may be more proper, the closed interval [—oo, 0] is used for consistency of
notation. Practically, [—00, o] could be replaced by any interval containing the time of discourse.

2Keep in mind that the temporal interval is the primitive temporal individual and thus when we talk
about a ‘time’ we are talking about an interval and not a point. If we say 11 AM, an interval such as
[1100,1101] is implied.
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Figure 5.2 shows the PTN modeling the above scenario. Since explicit temporal
information is provided, ‘tech-arrived’ is represented by a temporal aggregate defined over
three intervals. The edge between ‘tech-arrived (T'A)’ and ‘support-available (SA)’ is
replaced with ({d}, OR) indicating that “Support is available if the tech arrives.” TA
is also dependent on itself with the TCR TA({<,m},OR)T A constraining T'A, when

combined with the conditional probability tables, to be true over only one interval.

Using this technique, any Bayesian network can be represented with a probabilistic
temporal network! As additional temporal information is gathered, temporal aggregates
can be modified to contain the actual times rather than [—oo,o0]. Semantically, the trans-
formation can be awkward since the direction of causality within BNs can raise implicit
temporal constraints. It remains the task of the knowledge engineer to complete the ‘tem-

poralization’ of the model.

5.1.2 The time of reference. ~ Something is still missing. The network in Figure 5.2
can tell us if tech support is available but we can’t tell when. In other words, Figure 5.2
can answer the question “Is tech-support ever available?” but not the question “It is 12pm.

Is tech-support available now?” A time of reference is needed.

As mentioned previously, each TA X, adapted from the original Bayesian network,
can be interpreted as indicating if the proposition associated with X holds at some time.
We need a mechanism to determine what that time is. Consider ‘support-available’ and
‘phones-working’ in Figure 5.2. We could change the interval from [—o0, 0] to something
like [¢,t + €] but then our reasoning algorithms and the structure of the network would

have to be changed to constrain t. Instead, we take a different approach.

Consider again the original Bayesian network in Figure 5.1. If one asks “At what
time is support availabie?” Intuitively, we answer “When the phones are working and
the tech has arrived.” If one then asks “It is between 0715 and 0745 and the phones are
working. Is support now available?”, ‘support-available’ is only dependent on ‘phones-
working’ and ‘tech-arrived’ during the interval specified even though this interval is not

expressed anywhere in the network.
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Now consider the PTN in Figure 5.2. If one again asks “It is between 0715 and 0745
and the phones are working. Is support now available?”, we can’t answer the questions
as ‘support-available’ is not dependent on only ‘tech-arrived’ during [0715,0745] but also
for [0745,0815] and [0815,0845]. Tech support is available some time. If, however, ‘tech-
arrived’ is forced to be false after [0745,0815] (zero probability), then ‘support-available’
is effectively no longer dependent on ‘tech-arrived’ after [0745,0815]. The following calcu-

lations show this:

Let & be the partial assignment for our query.
P = {(PW,{([—o0, 0], true)}), (T A4, {([0745, 0815], false), ([0815, 0845], false)})}. (5.1)

Let € be some complete assignment compatible with 4. Using the chain rule, we derive

P(¥|P)
P(TA) = P(ORylc,b,a)- P(c|b,a)- P(bla) - P(a) (5.3)

P(salpw,TA) - P(pw) - P(TA) (5.2)

Since we know b = false, ¢ = false, and pw = true we can simplify the calculation to

P(®) = P(salpw,TA)- P(TA) (5.4)
P(TA)

P(ORg,|c, b,a) - P(a) (5.5)

and since P(ORgq|c, b,a) = 1 if a = true and P(ORg,|c, b,a) = 0 if a = false, P(TA) =

P(a). We can now write
P(¥) = P(sa|lpw,a)- P(a) (5.6)

Thus ‘support-available’ is only dependent on ‘tech-arrived’ during [0715,0745].

The idea of forcing falseness for future propositions is compatible with our intuitions
about causality. If we are interested in the state of the world at present, it can not be

dependent on what hasn’t yet occurred.

This research does not, however, take the approach of simply clamping the future
states to false as that approach only allows forward reasoning. One also wants to reason
backwards, e.g., to find the most probable time for support to be available. So instead, a

different approach is taken—introducing a new temporal aggregate, Now, containing an
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P(salPW,TA,~GH)=0.95  P(sal-PW,TA,~GH) = 0.0
P(salPW,TA,GH) = 0.0 P(sal-PH,TA,GH) = 0.0
P(salPW,-TA,~GH) = 0.0  P(sal-PW,~TA,~GH) = 0.0

P(salPW,~TA,GH) =00  P(sa-PW,~TA,GH) = 0.0 GH = {([1630,1700).c),

TA = {{[0700,0730},a), ([1700,17301,d)}

([0730,08001,b)} ‘
P(al-TA,-Now)=0.5 support-available P(c-GH,TA ~Now)=0.5
P(bl~TA.~Now)=0.5 P(dI~GH.TA ~Now)=1.0

({m}.0R)

phones-working
tech-arrived gone-home
P(pw)=0.95
({<m}OR) ({<m}OR)

P(ml-Now) = 1/20  P(ql-Now) = 1/5
P(nl-Now) = 1/19  P(r~-Now) = 1/9
P(ol-Now) = 1/18  P(sl-Now) =1

P(pl-Now) = 6/17

Now = {([0000,0700),m), ([1630,1700],9)
([0700,0730),n), ([1700,1730],r)
([0730,0800},0), ([1730,2400},5)}
([0800,1630},p),

\

Figure 5.3  Probabilistic temporal network demonstrating time of reference. Empirical
evidence of the density of support calls is used to assign probabilities associ-
ated with intervals in Now.

interval for each time of interest. By making other {(non adapted) temporal aggregates
dependent on Now in such a way that a given TA can not be true over an interval unless
Now is false for all earlier intervals, we can use Now to block future events. If the time
of reference is known, Now can be clamped to true for that interval, preventing TAs from
being true at any time after the current time. Also, if some state of the world is clamped,

then belief updating can be used to determine what the most probable time is.
Figure 5.3 models the following scenario using the Now construct.

Tech support is only available if the phones are working and the support tech-
nician has arrived at work and is not at lunch. The phones almost always
work. The support tech has a fifty percent chance of arriving between 07:00
and 07:30 and a 25 percent chance between 07:30 and 08:00. If the tech is not
in by 8:00am, she is not coming in at all. The tech has a fifty percent chance of
going home between 16:30 and 17:00 and a fifty percent chance between 17:00
and 17:30, given that she comes in at all.

The Now temporal aggregate allows what-if queries where Now is unclamped to
predict at which time events are most likely to happen as well as queries where the time is
clamped to determine the most probable state of the system. Different strategies can be

used for the conditional probabilities in Now. The PTN in Figure 5.3 uses probabilities
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[0944,0945]
[0939,0940]
[0934,0935] [0940,1005] [1005,1105]
[0929,0930] [0935,1000] [1000,1100]

({<m},OR) ({m},0R)

Figure 5.4 A simple network using a delta TA. Event A can occur over many different
intervals, however B is only dependent on A if A occurs over at least 30
minutes.

for Now representing the density of support calls. Since Now is weighted by call density,
we can make queries such as “What is the most likely time for a client to call, but support
not be available?” It does not,however, allow meaningful predictive queries of the form
“Given that it is before 0700, when is the most likely time for the tech to go home?” since

if the time of reference is given, the future is clamped to false.

5.1.8 Temporally quantified causation. It is straightforward to model that cause
must precede effect. It is not, however, straightforward to model by how much the cause
must proceed the effect. With the thirteen basic interval-interval relations there is no direct
way to quantify the temporal distance between cause and effect. Should our representation
support temporally remote causation at all? Patrick Suppes, in his A probabilistic theory of
causality strongly rejects the concept: “There is almost a feeling of ludicrousness in the idea
of one body acting on another at a slow and leisurely pace from remote time and space. [31)”
In principle the author concurs with this philosophy, however, in practice holds that the
infinity of causes and effects lying between a remote cause and the resulting effect, can not
be represented efficiently in a computational model. These myriad underlying mechanisms

are merely another source of uncertainty.

In a probabilistic temporal network, to model that one process relates to another, an
edge is created from the causal TA to the effect TA with a temporal causal relationship
containing a set of temporal relations and a random variable schema. ®ne could create new
random variable schemas such as DELTA _OR such that the induced random variables are

independent of those intervals in the causal process that do not satisfy the additional quan-




P(salLD) = 0.0 P(sal-LD) = 1.0

GL = {([1100,11011,a), support-available BL = {([1130,1130].d),
([1115,1116],b), ([1145,1145}.¢),
([1130,1131],¢)} ([1200,12001.H}

P(al-GL,~Now)=1/3 : Edl'“gi'tg”g"w;:é-;

P(bl-GL,~Now)=1/2 1g={([1101,1130],g), | P(gIGL)=1.0 el~BL,LD,~Now)=0.

P(cl-GL,~Now)=1 ([1116,1145},h), | P(RIGL)=1.0 P(f-BL.LD,~Now)=0.95

([1131,12001,i)} | PGIGL)=~1.0

({<m}OR)

({<,m},OR)

back-from-lunch

P(t11-Now)=3/10 P(t4l-Now)=1/5
P(t2I-Now)=1/7 P(t5I-Now)=1/4
P(t3i-Now)=1/6 P(t6I-Now)=1

Now = {([1050,1051],t1), ([1140,1141},t4),
([1110,1111],t2), ([1150,11511,t5),
([1120,1121],t3), ([1210,1211],t6)}

({<m}OR) ({<m}OR

N

Figure 5.5 Probabilistic temporal network modeling a tech-support representative going
to lunch and maybe not returning to work.

tified constraints but do satisfy the temporal relations. The problem with this approach
is that many different RV schemas would be needed (for duration, overlap, precedes, etc.).
Instead of creating new schemas, simply introduce a new temporal aggregate between the

cause and effect to enforce the quantification.

The new temporal aggregate, termed a delta TA, lies between the the cause and effect
TAs. The delta TA contains a set of intervals enforcing the quantification. A TCR from
the cause TA to the delta TA selects the appropriate intervals in the cause TA. A TCR
from the delta TA to the effect TA passes on the causal information. Figure 5.4 shows a
simple example modeling an old car starting on a winter morning. The car must have been
started at least twenty-five minutes before it can start moving. In this simple example the
delta TA is named ‘Getting Warm’. Figure 5.5, modeling the following scenario, shows an
application of the delta TA to our tech support realm in which lunch is always 30 minutes.
The delta TA is a useful tool for designing probabilistic temporal networks in general; not

just for extending Bayesian networks.

Tech support is only available if the support technician is not at lunch. The tech
always goes to lunch with equal likelihood at 11:00am, 11:15am, or 11:30am.
Lunch lasts exactly one half-hour. Going to lunch later in the day slightly
increases the chances that the tech will not return to work. In particular we are
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interested in times 10:50am (or earlier), 11:10am, 11:20am, 11:40am, 11:50am,
and 12:10am (or later).

5.2 Some Guidelines for Building a Temporal Knowledge Base

Using PTNs to extend an existing knowledge base with explicit temporal information
is effective, however, the disadvantages of carrying along the atemporal semantics of BNs
are significant. These disadvantages include the necessity of constructs such as Now to
provide temporal reference. Ultimately, the knowledge base should be built ground up with
explicit temporal information. This section briefly presents a few guidelines for developing

probabilistic temporal networks.

5.2.1 General Guidelines. Unlike Bayesian\ networks, PTNs allow cycles. Cy-
cles are very important for representing recurrence, periodicity, and endogenous change,
however, they can be a two-edged sword as they introduce the need to avoid cycles in the
underlying probability structure. By only using a monotonic set of temporal relations,
the need to check for cycles can be avoided. Furthermore, by using using the causal set,
C = {<,o0,s, fi,di,m}, one gets the added benefit of temporal consistency, i.e., causality

only extends forwards in time. Networks restricted to just C are termed Causal PTNs.

While philosophically debatable, it is often necessary to represent simultaneity in
practical systems. In point based temporal models, simultaneity is represented with the
equals relation. This is also true for interval models. CPTNs, though, do not allow ‘="
Since cyclic dependencies arise when a TA becomes dependent on itself over some interval,
we can allow ‘=’ as long as for every cycle in the CPTN, at least one TCR on the cycle,
does not use ‘=.” Such a network is termed a S-Causal PTN. SCPTNs require that cycles
in the PTN must be checked; however, this check is much simpler then that required for

PTNs in general.

Inference over probabilistic temporal networks is N'P-hard [8,22]. This constrains
the size of networks that can be reasoned with. The generalized temporal polytree defines
a class of PTNs for which inference is polynomial. These types of networks are useful for

modeling systems in which can be grouped temporally by starting, working, and finishing.
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Figure 4.2 shows an example in which three concurrent programs are being executed to

complete two tasks.

5.2.2 Processes and Events.  Intervals can model both processes® and events [3].
Processes are generally described by ‘ing’ words such as walking and talking. If ([a,d], w)
is an interval-RV pair for a process such as ‘tech arriving at work,” then w is true implies
that ‘arriving at work’ holds for all intervals contained in [a, b] also. An event, on the other
hand, does not hold for all sub-intervals. Consider ‘tech arrived at work,” again represented
by ([a, ], w). Just because w is true, we can not assert that the tech arrived at work during
some subinterval of [a,b]. Our model does not explicitly differentiate between events and

processes. The knowledge engineer can represent either.

N

Often, the exact interval that an event occurs in is not known. In this case, the
interval-RV pairs in a temporal aggregate represent intervals during which the event may
take place. In other words the interval encapsulates small scale uncertainty that is not

important to the situation being modeled.

5.2.8 Mutual Ezclusion.  Many situations contain events that are not recurrent,
i.e., they either do not happen, or they happen exactly once. For example, consider a
light-bulb that may burn out sometime in the scenario. The bulb can burn out only once
(no replacement), and may not burn out at all. Such events are referred to as one-shots
and can easily be represented with a temporal aggregate with a single, self dependent,

temporal causal relationship.

To construct the temporal aggregate, we need to decide on £, the set of states, and
on T, the set of intervals we are interested in. Since we are modeling something that can
either happen or not, we have only two states. Let true indicate that the event happens
during the interval and false indicate that the event does not happen. How many intervals
are needed? This depends on the resolution needed to model the situation; we will use three

consecutive interval-RV pairs, {([e,b],71), ([b,c],72), ([c, d],73)}, representing the intervals

3Processes is not used here in the sense of what a temporal aggregate represents.
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Burmned-Out =
{([a,b],r1), P(r11-BO)=1/10

([b,c],r2), P(r2I~-BO)=1/9
([c,d],13)} P(31-BO)=1/8

Figure 5.6  Probabilistic temporal network modeling a light-bulb. Demonstrates mutual
exclusion relationship between intervals.

during which the light might burn-out. There is no requirement that these intervals be

consecutive, they can overlap (see Figure 3.3) or be disjoint.

How probable is it the bulb will burn out? If it is certain that the bulb will burn out
(during the scenario) then the sum of the independent probabilities must be one, in any
case P(r1) 4+ P(r3) + P(r3) < 1. However, since there is a mutual exclusion relationship
between the intervals, 71, r2, and 73 are not independent random variables. Instead we
must order the interval-RV pairs and make each pair dependent on all prior pairs. As
far as the probabilities are concerned, there is no preference for the ordering, however,
semantically, the ordering should be from ‘earliest’ to ‘latest’ where ‘earliest’ might be
defined by the causal set, C, of temporal relations (see Proposition 1 on Page 3-15). For
our problem, 73 is dependent on r2 and 71, r9 is dependent on 71, and r; is dependent on

nothing.

The next step is to convert our independent probabilities to conditional probabilities.
Let us assume that there is a 10% chance that the bulb will burn out during each of the
intervals, e.g., P(r;) = 0.10. Clearly, since r; is dependent on nothing, P(r;) = 1/10.
This leaves 90% left. 7, will take the next 10% or 10/90, so P(ry|r;) = 1/9. This leaves
80% for r3 so P(rs|r1,m9) = 10/80 = 1/8. If the bulb burning-out was certain, that is
P(r1)+ P(r9) + P(r3) = 1, then the conditional probability for the ‘latest’ RV would be 1.

We have now defined our temporal aggregate item BO = (T, L) such that

T= {([ai b]arl)’ ([ba 0]77°2)7 ([C, d]a"'3)} and ¥ = {true, false} (57)
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and computed our conditional probabilities. The next step is to define the temporal causal
relationship to capture the conditional dependencies. Since our three intervals are consec-
utive, only two temporal relations are needed, meets and precedes. Since the bulb can not
burn-out in an interval if it burned-out in any prior interval, we can use the OR schema.
This gives our TCR as

BO({<,m},OR)BO (5.8)

and our final conditional probability tables as

P(r1|-BO) = 1/10
P(r¢|-BO) = 1/9 (5.9)
P(r3|-BO) = 1/8.

N

Figure 5.6 shows the corresponding network.

5.2.4 Sure Events. A sure event is a fact that we want to explicitly model in the
PTN. An example of a sure event can be seen in Figure 3.2 in which ‘Critical-Operations’
is shown defined over only one interval, [0855,1805], with probability of one. We could,

instead, have changed our conditional probability tables for ‘Vault-Open’ instead of even

having the ‘Critical-Operations’ aggregate.

The reason ‘Critical-Operations’ is explicitly modeled is twofold. First, critical op-
erations has causal influence on ‘Vault-Open’ and, as such, should be explicitly modeled.
Secondly, by explicitly modeling ‘Critical-Operations’ we get the added benefit of hav- .
ing only one conditional probability distribution which applies to all interval-RV pairs in

‘Vault-Open’ rather than having a different one for each pair.

Why is only one interval needed in ‘Critical-Operations?’ Since when critical opera-
tions are not occurring, we would want the temporal aggregate to appear false, one would
expect the additional intervals [0000,0855] and [1805 — 2400] each having probability of
true set to zero. However, because the OR schema is designed such that if no interval exists
satisfying the temporal relation, the constructed random variable has a zero probability
of being true. This property gives us the advantage of minimizing the number of intervals

needed to express processes with true and false states.

5-11




VI. Recommendations and Conclusions

This chapter presents recommendations for several avenues of future research. None
of these recommendations are show stoppers—the probabilistic temporal network, as it
stands, is an excellent representation for complex, dynamic systems. However, since the
PTN is unproven, the most important step for further effort is to demonstrate this excel-
lence by implementing a real-world, large-scale model. Good domains for this large-scale

model include security analysis and medical diagnosis.

6.1 Recommendations for Future Research

The probabilistic temporal network can represent very complicated and tradition-
ally difficult domains. This research has focused on exploring recurrence and periodicity,
temporal spacing between cause and effect, and modeling the time-of-reference. These
are traditional problems for temporal models. Current and future efforts are focused on

exploring these and other knowledge engineering issues.

This thesis introduces a constraint satisfaction formulation for performing belief re-
vision (Section 4.2). This formulation needs to be extended to perform belief updating
(finding the most likely state of a given interval-RV pair or templiral aggregate). The
constraint set needs to be enhanced to take better advantage of the structure imposed ‘by

our network structure.

Performing belief revision is in general A"P-hard. To address this, the generalized
temporal polytree was introduced, which, because of the polytree structure of its depen-
dencies, allows polynomial time belief revision. We are currently investigating practical
domains for which the GTP is tenable. The question also remains as to what exactly the

maximal tractable class of PTNs is.

Overlapping intervals in a temporal aggregate are troublesome. The theory, as it
stands, allows overlapping intervals so that events happening over intervals can be ex-
pressed. For example, if a switch could be on from 1000 to 1030 or 1015 to 1045, this
condition could be represented as {([1000,1030],Sp), ([1015,1045}, S1)} where Sy and S;

are random variables for the switches position. S; would be conditioned on Sy to prevent
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the switch from being on over both intervals. The problem arises in that now the switch
could be considered both on and off in the interval [1015,1030]. Originally, this wasn’t
considered a problem as the temporal causal relation (T'CR) resolved any ambiguity from
the perspective of the caused process. One possibility is to make the interval itself ran-
dom. For example {([1000,1030}, Sp), ([1015,1045],S1)} might become {(I,0On)} where
P(I = [1000,1030)) = P(So|...) and P(I = [1015,1045]) = P(S;|...). This solution gets
us to only one interval; however, there are now two sorts of probabilities to deal with when

doing computation.

Most work to date has been within the discrete realm. Future research will focus
on modeling continuous domains. Using continuous, rather than discrete, sets of states
(2) in temporal aggregates is straightforward. For example, we might have a TA, Temp =
(Tr, 1) where T = {([0000,0100],¢;),...,([2300,2400],t24)} and £ = R. Temp models
changes in the peak temperature over the course of a day. We could have a second TA,
NitDay = (Tn,Xn) where Ty = {([0000,0700],n, ), ([0700 — 1900], n2), ({1900, 2400], n3)
and Xy = {night,day}. With these two TAs, we would like to model peak temperature
changing over the course of the day. Temperature during a given hour is dependent on
whether or not it is day or night, on the temperature during the previous hour, and on

the rate of change between the previous two hours. Constructing the network structure is

Delta_Temp

(m}PT) [ (Gm}PT) ((ypr)

trivial (see Figure 6.1).

Temperature

Previous_Temp

({di},PT)

Night_or_day

Figure 6.1 A probabilistic temporal network modeling peak temperature changing over
the course of a day.




The difficulty arises in developing appropriate continuous distribution functions for
the domain and representing the causal connection between processes (developing appropri-
ate random variable schema) as well as the conditional dependencies in the caused process.
Also, even with continuity in states, without continuity in time, continuous change can not
truly be represented. A potential approach is to use a structure similar to the one discussed
for dealing with overlapping intervals in which a continuous density function is used to give

the probability distribution over the temporal interval space.

Among the avenues for further research discussed here, modeling continuous change
is perhaps the most interesting. In a sense, being able to represent continuity would
“complete” the probabilistic temporal network model, allowing the model to fully represent

natural systems. .

6.2 Conclusion

The research, presented here, develops a new knowledge representation unique in its
ability to represent both time and uncertainty. The technique, the probabilistic tempo-
ral network, draws from the independence semantics of Bayesian networks and from the
temporal representation in the interval algebra. The proven probabilistic nature allows
knowledge engineers to drawn on previously developed statistical data as well as the entire
field of probability theory. This property is crucial for developing well defined, non ad hoc

models.

By directly representing processes as temporal aggregates and modeling the causal
relationships between the processes with temporal causal relationships, complex systems
of interacting processes can be modeled. Being able to model such systems is crucial to
successfully automating domains such as medical diagnosis, story understanding, planning
and scheduling, and financial forecasting. Mastery of these and related domains, such as
security analysis and combat modeling, is crucial for the continued success of the United
States Air Force. These domains all share in common the need to reason with both time

and uncertainty—the domain of the probabilistic temporal network.
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