
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-17-1996

Student Modeling in an Intelligent Tutoring System Student Modeling in an Intelligent Tutoring System

Jeremy E. Thompson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Thompson, Jeremy E., "Student Modeling in an Intelligent Tutoring System" (1996). Theses and
Dissertations. 5883.
https://scholar.afit.edu/etd/5883

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5883?utm_source=scholar.afit.edu%2Fetd%2F5883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

STUDENT MODELING IN AN

INTELLIGENT TUTORING SYSTEM

THESIS
Jeremy E. Thompson

Captain, USAF

AFIT/GCS/ENG/96D-27

DIMTVMON* fCKAJWINT A
Appr"v*d t=i pubilr rhbacg

Dbwt-lbud= Unlralted iDIC QUAITY INSPECTED 3

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/96D-27

STUDENT MODELING IN AN

INTELLIGENT TUTORING SYSTEM

THESIS
Jeremy E. Thompson

Captain, USAF

AFIT/GCS/ENG/96D-27

19970317 027
[MeI QUALMT =IPE G-1ED 3

Approved for public release; distribution unlimited

AFIT/GCS/ENG/96D-27

STUDENT MODELING IN AN

INTELLIGENT TUTORING SYSTEM

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Jeremy E. Thompson, B.S.

Captain, USAF

December 17, 1996

Approved for public release; distribution unlimited

Table of Contents

Page

List of Figures. iv

List of Tables v

Acknowledgements vi

Abstract. vii

I. Introduction 1

1.1 Motivation. 1

1.2 Background 2

1.3 Current Knowledge 4

1.4 Assumptions. 5

1.5 Scope. 5

1.6 Approach/Methodology. 6

1.7 Organization of Thesis 6

HI. Literature Review 7

2.1 Introduction. 7

2.2 Artificial Intelligence. 7

2.3 Artificial Intelligence in Education. 7

2.3.1 Computer-Assisted Instruction. 8

2.3.2 Intelligent Tutoring Systems. 9

2.4 The Student Model. 10

2.5 Summary. 13

Page

III. Building the Intelligent Tutoring System (ITS) 14

3.1 Introduction 14

3.2 The Man Behind the Curtain Experiment 14

3.3 Modeling the Student 15

3.3.1 Overlay models 15

3.3.2 Multiple agents in student modeling 17

3.4 Learning From the Student 19

3.5 Identifying Student Knowledge 22

3.6 Student Models vs Instructor Modules 24

IV. Contributions and Recommendations 25

4.1 Contributions 25

4.2 Recommendations 26

4.3 Overall Conclusions 27

Appendix A. Curtain Driver C+ + and C Code 28

Appendix B. Curtain ITS CLIPS Code 38

Appendix C. Curtain Interface Tcl/Tk Code 85

Bibliography 100

Vita 102

iii

List of Figures

Figure Page

1. Bisected Parallel Lines 16

2. Expert Solution State Diagram 16

3. Alternative Expert Solution State Diagram 19

4. Student Solution State Diagram 21

5. Alternative Student Solution State Diagram 21

6. Lengthy Student Solution State Diagram 23

iv

List of Tables

Table Page

1. Sample Geometry Problem 15

2. Sample Geometry Proof 17

v

Acknowledgements

I thank my research advisor, Dr Steven K. Rogers, for his expert advice and assistance. His

patience and encouragement while I was working on my thesis made my research not only

educational, but also interesting and bearable. He is the ideal advisor for guiding a wayward

thesis student to a realizable goal. There is no better research advisor at AFIT. I also wish

to thank my readers, Dr Matthew Kabrisky and Dr Eugene Santos for their comments

and suggestions. Their comments helped me recognize shortcomings in my analysis, which

enabled me to build a stronger thesis. I also owe great thanks to Dan Zambon and Dave

Doak, the system operators for the Hawkeye computer laboratory. Without their help

and support, my days would have been consumed with installing and configuring software,

chasing down untraceable system errors, and pleading with the printers to actually print

my output, leaving me little time for research.

Finally, my wife, Colleen, and my sons, Christopher and Stephen, all deserve my

unending gratitude for suffering through my long education, which began with my under-

graduate studies in 1988. They have supported me throughout my six years of advanced

education.

Jeremy E. Thompson

vi

AFIT/GCS/ENG/96D-27

Abstract

This thesis explores a new approach to modeling the student in an intelligent tutoring

system (ITS), by providing a student model which learns new solutions from the student.

A prototype of the new approach to ITS is demonstrated in the Euclidean geometry do-

main. Complete C+ + , CLIPS, and Tcl/Tk code listings are included in the appendices

for reference. Adaptable multiple software agents were targeted for implementation, based

on current literature. However, the student model is found to be maintainable without

multiple software agents, while still allowing for tracking several possible solution paths

when monitoring student solutions. This capability contradicts previous research reported

in the literature. The student model is extended by providing a learning module, which

is capable of recognizing new solutions provided by the student. These new solutions may

then be included in the expert knowledge base. In addition to a learning student model,

other concepts from the current ITS literature are explored and implemented. Differential

modeling and expectation driven analysis are analyzed, as well as the use of production

rules and overlay models. Mastery levels are implemented to aid in cognitive diagnosis.

Several cognitive and pedagogical concepts, such as symbolic knowledge, procedural skill,

and conceptual knowledge, are explored and applied to the research. The student model

prototype is both a pedagogic-content model and a subject-matter model. Additionally, a

new division of labor between the student model and the instructor module in intelligent

tutoring systems is described. Particularly, the student model acts strictly as a pedagogic-

content model and subject-matter model, with no inferencing other than that expected

of the real student. The instructor module performs all inferencing about the student's

actions and knowledge.

vii

[This page intentionally left blank]

viii

STUDENT MODELING IN AN

INTELLIGENT TUTORING SYSTEM

. Introduction

1.1 Motivation

The computer world has been striving to emulate the intelligence of the human brain

for many years. These attempts at mimicking the reasoning ability of the brain are fre-

quently described as artificial intelligence (AI). One of the most promising, yet most elusive,

goals of AI is to create an intelligent tutoring system (ITS) with the human teacher's ability

to infer a pupil's level of understanding. An ITS is desirable because schools could better

afford individualized attention for students if that attention were provided by inexpensive

computer programs. Currently, all students axe required to do all problems because teach-

ers cannot provide individualized attention. Since not all students are the same, not all

students require the same amount of reinforcement in order to grasp a particular topic.

Ideally, with an ITS, the student can progress at a pace exactly corresponding to his un-

derstanding. Concepts the student does not understand well will be repeated, while others

may be presented only once, thus avoiding the workbook mentality of standard classrooms.

As stated by Anderson, Boyle, and Reiser, we want an ITS that "understands the student

and responds to the student's special needs." (1)

ITS research is also important to the Air Force and to the military in general. Train-

ing personnel is an expensive requirement. As equipment and weapons become more

technologically complex, training requirements for maintenance and operations increase.

Potentially, automated training and education could reduce the number of hours spent

training and retraining troops, while also freeing domain experts from training require-

ments for actual mission work. A robust ITS could serve the Air Force well: it would not

only allow automated training of troops, but could train them at the optimal rate for each

individual. Anderson (1) found a four-to-one advantage for tutored students over classroom

taught students, when measuring time required to reach proficiency in programming. If

ITSs successfully attain a similar success rate, all organizations requiring extensive training

of employees stand to benefit.

1.2 Background

Commonly, an ITS is composed of at least three modules: an expert (or domain)

model, a student model, and an instructor (or pedagogical) module (14). The expert model

represents information specific to the subject being taught, the student model portrays

the current student understanding or misunderstanding of the subject domain (9), and the

instructor module contains knowledge required of teachers to select meaningful lessons for

their students.

For example, if the educational topic of interest is a subset of Euclidean geometry such

as geometric proofs, the expert model might contain information such as the relationships

between angles in a triangle, e.g. the sum of the measures of the interior angles in a triangle

is 180 degrees. The student model would then contain a representation of the geometric

knowledge the student has grasped, possibly including any misconceptions the student

has apparently formed. In contrast, the instructor module should be wholly, or at least

primarily, independent of the domain. It would contain, for instance, generic information

about what criteria determine when a student needs to repeat a portion or all of a topic,

and an engine for generating or selecting relevant questions.

One of the most difficult problems when designing an ITS is effectively determining

and representing the student's current knowledge of the subject at hand. While important

progress has been made in ITS development, effectively modeling the student continues to

present the designer with significant challenges (9). These challenges arise primarily from

inconsistencies in student reasoning. Students sometimes change their minds, learn new

material, unlearn old material, and make careless mistakes (17, 7). Moreover, students do

not necessarily have the ability to completely search their knowledge (7). They may know

a concept but not recall it for an application.

In order to model the student's state of understanding, the program must attempt

to follow the student's reasoning. A common method for modeling the student is through

2

the use of state models. By providing expert solutions in the form of state models, an

overlay method can be used to track the student's progress towards expert solutions (20).

The overlay method treats student knowledge as a subset of expert knowledge. When the

student attempts a solution to a posed problem, an overlay student model tries to "overlay"

the student's solution onto the expert solution. This works fine when there is one expert

solution to the problem. In such a case, the student is either working on the expert

solution, or not. A problem arises when there are multiple solutions to the given problem

(14). Since the student could choose one of many solutions, or possibly try several before

settling on one, tracking these many approaches with a state model has been a problem.

Recalling the inconsistencies in student reasoning discussed in the previous paragraph, it

is evident that multiple expert solutions magnify the problem of the student changing his

mind.

One proposed solution is to use multiple agents to simultaneously represent states in

several different solution paths (14). Using independent agents allows representing several

possible states for the student. These states can then be used to help predict the next state

the student will enter. By using expectation driven analysis, the best student model can be

selected based on how well it's predicted state agrees with the student's actual behavior.

In most other student models, only one path for modeling the student is tracked, thus

restricting the expected next states to those that follow the selected line of reasoning.

Since it is not uncommon for a student to try multiple approaches to a problem before

settling on one, the multi-agent method allows for more flexibility in modeling student

behavior, and thus a better match with the student's real behavior.

A shortcoming of the multi-agent model, as presented by Leman, (14), is the inabil-

ity to learn from student solutions. The student model expects to have a complete set of

solutions for the problems presented. Any solutions not found in its knowledge base are

considered wrong. Acquiring knowledge from the student would avoid classifying poten-

tially correct student solutions as wrong, and would provide for a more robust, complete

domain model. This author is aware of only one ITS research effort that explores learning

from the student (16).

3

Problem Statement:

This research will explore the use of multiple software agents to model stu-

dent reasoning. Additionally, the multi-agent student model will be extended

to include adaptive agents capable of recognizing and learning new solutions

provided by the student.

1.3 Current Knowledge

The genesis of interest in AI in Education at the Air Force Institute of Technology

(AFIT) was a paper by Matthew Kabrisky (12). Kabrisky discussed the positive impact

an artificial tutor could have on education. As a hypothetical example of the potential

for AI, he provided a convincing excerpt of a child's interactive learning session with an

ITS. However, his emphasis was the treatment of human/computer interfacing problems,

leaving the actual tutoring aspects to other authors.

The basis of this research is the paper by Leman, (14). The authors implemented a

student model built on an existing ITS known as EDDI (15). EDDI's student model divided

knowledge into three levels: static knowledge (S), dynamic knowledge (D), and reasoning

knowledge (R). Static knowledge was defined as knowledge about the basic concepts of the

domain being studied, while dynamic knowledge concerned more functional aspects of the

domain. Reasoning knowledge was defined as knowledge about the student's reasoning.

Again using the geometry domain for an example, static knowledge would be general

concepts about geometry, such as geometrical figures and their configuration. Dynamic

knowledge would be geometric theorems, which could be used to generate specific static

knowledge. Finally, an example of reasoning knowledge is the observation that the student

consistently reasons incorrectly concerning equilateral triangles.

The authors devised several different types of agents to assist in modeling the student.

Spy agents were used to record local student actions which would be useful in determining

the pupil's reasoning method. Task agents were implemented to examine the student's

actions while considering the task to be attempted. Three different types of task agents

were employed: S-agents for storing the student's static knowledge, D-agents for handling

the student's dynamic knowledge, and R-agents for representing the student's reasoning.

4

D-agents could produce new static knowledge based on provided static and functional

knowledge.

Because of the method employed for modeling the student, EDDI had noticeable

difficulty in modeling a student's misconceptions. Leman (14) attributed this problem to

the model's inability to track multiple lines of reasoning, as well as the lack of knowledge

about a global solution before the student even began the problem. Their answer was

to seed the knowledge base with multiple solutions to the given problem, then track the

student's progress on all the solution paths, attempting to reconcile the student's actions

with those required in each solution. By processing the student's reasoning in parallel

through the use of multiple software agents, the student's progress along all of the known

solutions could be tracked simultaneously, and the student's final solution method would

be readily apparent. Simultaneous tracking of multiple solutions was used to justify the

introduction of software agents into the student model.

1.4 Assumptions

The support software for the student model, including user interfaces and an ITS,

will be fundamentally implemented with a high degree of human instructor guidance for

the instructor module. Without an existing ITS, the problem of modeling pedagogical

knowledge becomes as critical as modeling the student. By allowing a human instructor to

make course-work decisions based on information provided by the student model, modeling

the instructor can be circumvented. Since the thrust of this research is modeling the

student, designing an intelligent instructor module is not relevant.

1.5 Scope

The emphasis of this research is to implement a multi-agent student model similar to

that described by Leman, Giroux, and Marcenac (14). The student model will be extended

to credit the student for correct solutions not found in the knowledge base. Implementation

of support software, to include interfaces and the remainder of the ITS, will be minimized.

5

C Language Integrated Production System (CLIPS) will be used to implement the

ITS. CLIPS is an expert system tool developed by the Software Technology Branch of

NASA. Tcl/Tk will be used for the user interface, and C+ + will be used for the main

procedure.

1.6 Approach/Methodology

As discussed earlier, much of this research will include building a basic multi-agent

student model. Once this basic model is in place, modifications to the multi-agent system

will be accomplished, to allow the ITS to both realize when a student has produced a

solution unique to the ITS's knowledge base, and to incorporate that solution into its

knowledge base.

A problem domain must also be selected for the ITS. A subset of Euclidean geometry

has been identified as suitable. The area of geometric proofs allows for known (expert)

solutions, but additional (potentially less efficient) solutions may also be found. Multiple

solutions are necessary to test both the multiple agent student modeling and the learning

ability of the ITS.

1.7 Organization of Thesis

Chapter II contains a literature review of the history of AI in education, ITSs, and

student modeling. Chapter III describes building the ITS, and results from that experience.

Finally, Chapter IV identifies contributions and recommendations.

6

II. Literature Review

2.1 Introduction

In order to provide a comprehensive background on ITSs, the literature is reviewed

in order of increasing specificity. To begin with, a brief introduction to AI is provided.

A historical perspective on AI applied to education is furnished, including discussion of

computer-assisted instruction (CAI) and of ITSs. Finally, methods for modeling student

cognition in ITSs are discussed.

2.2 Artificial Intelligence

Many definitions have been attempted for AI, but defining the term continues to

present authors a challenge. Dean (6:1) effectively defines AI as ". . the design and study

of computer programs that behave intelligently." The idea is to construct programs which

behave in a manner similar to humans or other intelligent animals. Some idea of why AI

has been studied can be gained by examining the following two goals of AI: (22)

" the engineering goal, which is to solve real-world problems, and

" the scientific goal, that of determining which AI related ideas aid in explaining human

intelligence.

Some of the most interesting and challenging problems to explore are often interesting

because of the scientific goal, but the engineering goal actually drives most AI research.

2.3 Artificial Intelligence in Education

A paper by Matthew Kabrisky (12) initiated AFIT's research in the use of AI in edu-

cation. Kabrisky discussed the positive impact an artificial tutor could have on education.

As a hypothetical example of the potential for AI, he provided a convincing excerpt of a

child's interactive learning session with an ITS:

Imagine an elementary school child entering a small comfortably appointed
room, perhaps something like a cockpit with a video screen, some desk space
and perhaps a mouse or some sort of convenient mechanically driven input to

7

the data handling system. The child walks in, says, "Hi, It's me, Linda," and
sits down. The machine says "Hi, Linda, How are you?"? Linda says, "Gee, I
saw a neat program on bugs last night. I really wanted to watch cartoons but
daddy made me, I mean it was neat with all the pretty and squishy looking
things and there was a spider that hid in a trap door and grabed [sic] bugs
walking by." The machine says, "Yes, I saw it too, would you like to see the
part with the trap door spider? I'll play it for you if you want." Linda says,
"Oh yea, let me get Joey, he didn't believe me."

After a while, Joey and Linda are through with the nature program, Joey runs
outside, and the machine says, "I have a really neat math game. Would you like
to play it"? Linda says, "OK, what's it like"? They do math for a while. Note
that Linda never has to take tests because the machine always knows where
she is in the curriculum and how well she's doing. When Linda's through with
math, the computer plays a game tying together geography, bugs, and natural
history. The machine knows from its experience with Linda that she now needs
a break and sends her out to play.

Though Kabrisky identified the desirability of the machine being able to evaluate the

student's progress, his emphasis was on human/computer interfacing problems, identifying

three components necessary for a friendly machine:

1. a speech recognizer for converting human speech into text;

2. a natural-language handler for analyzing the content of the text and for generating

intelligent responses; and

3. a speech synthesizer for reading back the responses in a near-human voice.

While much progress has been made in items one and three, the natural language

handler turns out to be a challenging application for AL. Hidden within this proposed

handler is the requirement for generating intelligent responses to whatever the topic of

conversation might be. For the hypothetical example, this response mechanism would in

fact need to be an ITS, or at least an intelligent CAI system.

2.3.1 Computer-Assisted Instruction. CAIs were an attempt to automate the

pedagogical method known as programmed instruction (PI) (20). PI was the structured,

goal oriented instruction technique popular in the early 1960's. It required the instructor

to determine inputs, the skills known upon entering the PI, and outputs, the behaviors

learned when finished with the PI. Learners were led through a PI curriculum in a lock-

8

step manner, with every incorrect response corrected immediately. Learners were always

informed of the accuracy of their solutions before they moved on. When PI is implemented

in a computer, CAI results.

CAI doesn't owe its entire origin to PI, though; it also evolved from stimulus-response

psychology. When stimulus response psychology is applied to CAI, the computer evaluates

a student's answers at every stage of instruction, then determines the next path of in-

struction. In a standard CAI, the path the computer chooses is already predetermined by

the programmer and by the student's success. Intelligent CAI (ICAI), on the other hand,

attempts to evaluate why a student missed a particular problem, then varies the curricu-

lum based on its evaluation. In standard CAI, if two students missed the same problem

(possibly even only the same number of problems in the same section), the two students

will invariably receive the same set of problems next. However, with ICAI, if student A

missed the problem because he miscarried the hundreds digit, while student B erred in

her addition of the nine and seven in the tens place, then the two students could receive

different problems to reinforce the particular concepts with which they were struggling.

The step from CAI to ICAI is not an abrupt step, but rather a gradual evolution from

a basic computer-interaction method to a refined computer evaluation of student progress.

At some point along this progression of refining ICAI, intelligent tutoring systems (ITSs)

result.

2.3.2 Intelligent Tutoring Systems. Commonly, an ITS is composed of three

modules (14):

1. an expert (or domain) model,

2. a student model, and

3. an instructor (or pedagogical) module.

The expert model represents information specific to the subject being taught, the student

model portrays the current student understanding or misunderstanding of the subject

domain (9), and the instructor module contains knowledge required of teachers to select

meaningful lessons for their students. Hartley and Sleeman (8) identified these same basic

9

requirements for an ITS in 1973. In fact, an ITS can be regarded as a distinct type of

ICAI, with these three components making the distinction (20). Some authors have even

come to regard ITSs as the ICAI of the 1980's (23), while ITSs have come much closer to

realizing their full potential in the 1990's. The prototype for this research makes use of

expert and student models, and the functionality of the instructor module is provided by

a human instructor. A graphical interface module is also included in the implementation.

Despite numerous examples of ITSs employing many different approaches to intelli-

gence in tutoring, there are two terms most often associated with them (20):

1. cognitive diagnosis, and

2. adaptive remediation.

Cognitive diagnosis entails forming an idea of the student's cognition or knowledge, usually

in the form of student modeling. Cognitive diagnosis is addressed again in Chapter III,

where it is applied to reasoning about student knowledge. Adaptive remediation is the

dynamic application of tutoring based on specific difficulties encountered by the student.

Adaptive remediation is typically included in the instructor (or pedagogical) module.

2.4 The Student Model

One of the most difficult problems when designing an ITS is effectively determining

and representing the student's current knowledge of the subject at hand (2). Modeling the

student remains difficult because students are capable of inconsistent reasoning. Students

may be distracted while working on a problem and produce sub-optimal work. They may

also learn new material, unlearn known material, or simply not recall a known item at

the particular moment it is required (17, 7). An optimal student model would include all

information about the student, both relevant and seemingly irrelevant (9). The source of a

student inconsistency or misunderstanding cannot be perfectly derived without a complete

history of the student. Obviously, such a complete model is both impossible and imprac-

tical. An effective student model is possible, however, by including key elements in the

model.

Student modeling is characterized by two principal activities (10):

10

1. behavior analysis, and

2. model management.

Behavior analysis is a cornerstone of student modeling, and is present throughout the

prototype. Cognitive diagnosis (20) and behavior analysis are very similar terms, and are

applied in roughly the same circumstances in a student model. Behavior analysis describes

the entire process of examining student actions, while cognitive diagnosis includes behavior

analysis, with the specific objective of diagnosing the student's state of understanding and

misunderstanding.

Although most systems inevitably deal extensively with behavior analysis, few apply

anything but ad hoc techniques to the model management (7). A concerted effort at model

management has been explored by Giangrandi and Tasso (7) through the use of truth main-

tenance techniques. Interestingly, this effort includes the use of multiple student models to

reflect multiple hypotheses about the student's reasoning. Although their research appears

both relevant and useful, the application of their described model management methods

must be recommended for further research.

Several different approaches to behavior analysis have been attempted, including the

following (9):

1. production rules,

2. logic programming,

3. machine learning,

4. Bayesian networks (4, 21, 13),

5. artificial neural networks (ANNs), and

6. overlay models.

Production rules provide the opportunity to represent both ideal (expert) rules and mal-

rules (rules defining incorrect beliefs or logic). For a simpler approach, logic programming

offers the ability to implement inferencing and knowledge representation easily, while ma-

chine learning eases representing the changing knowledge of the student. Bayesian network

11

models provide a probabilistic method for handling the uncertainties in student reasoning

(4, 21, 13). ANNs allow the student model to adjust tutoring strategies to the student, and

even allow initial training of the ANN by an expert, rather than explicitly coding domain

knowledge (24). Finally, overlay models incorporate a model of expert knowledge, where

known solutions are mapped onto the expert model, and student knowledge is always rep-

resented as a subset of the expert knowledge. Overlay models are readily implemented in

multi-agent form, thus allowing for tracking multiple solutions to problems. Both overlay

models and production rules are used in this research.

Shute (19) identified three categories of knowledge to be learned by the student and

to be represented by the student model. Symbolic knowledge is familiarity with symbols

and equations. Procedural skill concerns the application of rules (i.e. knowledge) to

problem solving. Procedural skill is easily represented as a series of concept and equation

applications. Finally, conceptual knowledge corresponds to knowledge about relationships

between concepts, schemas, and rules. It represents a higher-level of understanding.

Not all tutoring systems apply, or even require, all three types of learning. For ex-

ample, intelligent training systems frequently require only procedural skill and symbolic

knowledge. Training systems are used to train individuals in skills requisite for a particular

job, and often do not require conceptual knowledge, and only a limited amount of sym-

bolic knowledge. All three concepts will be discussed in the context of the implemented

prototype in the next chapter.

Ragnemalm (18) describes two types of student models:

1. a pedagogic-content model, and

2. a subject-matter model.

A pedagogic-content student model contains pedagogical measurements of the student's

progress, and therefore requires specific pedagogical goals for the student to attain. A

subject-matter model is closely tied to the domain model, and is typically runnable. In a

runnable student model, the model may be executed with the student's (perceived) knowl-

edge and misunderstandings determining the model's actions. A subject-matter model al-

12

lows for differential modeling (3) and expectation driven analysis, which will be described

in Chapter III. The ITS prototype is both a pedagogic-content and a subject-matter model.

2.5 Summary

Coaxing computers into becoming effective, personal tutors has developed into an

ambitious and elusive goal. The problem began as a question of how best to integrate the

computer's abilities into pedagogical uses, but has evolved into a search for the holy grail

of computer programming: artificial intelligence. Evolving from simple computer-assisted

instruction (CAI), to intelligent CAI (ICAI), and eventually to intelligent tutoring systems

(ITSs), implementing computer-assisted education has become increasingly more complex.

Fortunately, the added complexity has increased the effectiveness of computer-assisted

education. As we discover new tools for increasing the power and utility of computers,

these tools are applied to producing more effective artificially intelligent tutors. The latest

of these tools, software agents, have had some success already (14, 5). The goal of this

thesis effort is to further explore the use of software agents in modeling student reasoning.

The next chapter begins that effort with a description of the ITS implemented, focusing

primarily on the student model.

13

III. Building the Intelligent Tutoring System (ITS)

3.1 Introduction

Our intent was to build a student model, and a minimal amount of support software

to go with that model. In order to accomplish this goal, the manageable domain of high

school geometry, specifically parallel bisected lines proofs, was selected as the test domain.

Additionally, the instructor module was not coded, but its functionality is provided by

a human instructor. The method for accomplishing this task is described, followed by

a discussion of the student model used. Next, the addition of adaptable software agents

to student modeling is discussed, and the problem of identifying student knowledge is

examined. Finally, the roles of the student model and the instructor module are redefined,

based on insights gained during this research effort.

3.2 The Man Behind the Curtain Experiment

The vision for an artificially intelligent tutor described by Kabrisky (12) includes a

natural language interface to allow the student more natural communication with the ITS.

While a natural language processor is currently unavailable, it can be simulated using the

"man behind the curtain" methodology. By placing a student at a workstation, within

earshot (but not eyesight) of a human instructor at another workstation, the student can

communicate audibly to the instructor, while the instructor communicates to the student

through a remote terminal session. The student is told she is orally communicating with

the ITS. The instructor provides educational material to the student by typing text and

displaying images on the student's monitor.

The instructor is responsible for receiving the student's answers, relaying them to

the domain model, and monitoring the student model's analysis of the student's responses.

The instructor then acts on behalf of the instructor module in deciding what material

would best be presented next. Thus, the human instructor is acting both as a natural

language processor, and as the instructor module of the ITS. In this way, a student model

can be developed without building a complete ITS. Hereafter, this implementation of an

14

ITS will be referred to as the Curtain ITS. The Curtain interface was implemented using

Tcl/Tk. For reference, Appendix C includes the complete Tcl/Tk source listings.

3.3 Modeling the Student

The basis of this research is the paper by Leman, Marcenac, and Giroux (14). The

authors implemented a student model built on an existing ITS known as EDDI (15).

EDDI's student model divided knowledge into three levels: static knowledge, dynamic

knowledge, and reasoning knowledge. Static knowledge was defined as knowledge about

the basic concepts of the domain being studied, while dynamic knowledge concerned more

functional aspects of the domain. Reasoning knowledge was defined as knowledge about

the student's reasoning.

Using the vocabulary described by Shute (19), static knowledge falls into the sym-

bolic knowledge category, while dynamic knowledge could be either symbolic knowledge or

conceptual knowledge. Reasoning knowledge is obtained by tracking a student's procedu-

ral skill, but inferences about the student's symbolic knowledge or conceptual knowledge

are possible using cognitive diagnosis (20).

The Curtain prototype makes use of the concepts just discussed, as well as others,

yet to be presented. The C++ and CLIPS source listings for Curtain are included in

Appendices A and B, respectively, for further reference.

Given: Measure of angle 1 = 120 degrees
Find: Measure of angle 6 = ?
Solution: Relate angle 1 to angle 5

Relate angle 5 to angle 6

Table 1 Sample Geometry Problem (see Figure 1)

3.3.1 Overlay models. Leman (14) made use of an overlay model in their research.

Likewise, in the Curtain ITS, an overlay model is employed for comparing the student

solution to a library of expert solutions. A concrete example from the Curtain ITS may

help illuminate the use of overlay models.

15

Line A 1/ 4 2

56

7 8 Line B

Figure 1 Bisected Parallel Lines

Consider the problem posed in Table 1. The solution provided in Table 1 is only

one of many. The actual proof for this solution contains much more detail (see Table 2),

but the provided detail is all that is required for matching solution strategies. Figure 2

displays a state model representation of the solution.

relate(1,5) relate(5,6)

Ill = 120 151 = 120 161 = 60

Ill = 120 151 = 120

Ill = 120

Figure 2 Expert Solution State Diagram

The provided solution is relatively straightforward:

1. define the relationship between angles 1 and 5 in order to determine the measure of

angle 5,

2. then define the relationship between angles 5 and 6, thus yielding the desired answer,

the measure of angle 6.

16

Given: Lines A and B are parallel
Lines A and B are bisected by Line C
Measure of angle 1 = 120 degrees

Prove: Measure of angle 6 = 60 degrees

PROOF Statement Reason
1 Measure of angle 1 = 120 given
2 Angles 1 and 5 are corresponding angles observation and definition of corresponding angles
3 Angles 1 and 5 are congruent (2) and definition of corresponding angles
4 Measure of angle 5 = 120 (1), (3), and definition of congruent angles
5 Angles 5 and 6 are adjacent angles observation and definition of adjacent angles
6 Angles 5 and 6 are supplementary angles (5) and definition of adjacent angles
7 Measure of angle 6 = 180 - 120 = 60 (4),(6), and definition of supplementary angles
8 Done

Table 2 Sample Geometry Proof (see Figure 1)

With the overlay method, the student model can check the student's actions against

the provided expert solution, applying what has been called a differential modeling tech-

nique (3). The state model in Figure 2 demonstrates the ease with which solution strategies

can be compared. The nodes represent states (known information), and the arcs represent

actions required in order to reach the next state.

One of the weaknesses of overlay models is that they do not allow for student knowl-

edge or information outside of the expert's knowledge. Also, by using state models for

representing the expert knowledge, overlay models can represent multiple solutions to a

proposed problem, but they struggle with tracking the student's line of reasoning when

the student makes multiple attempts at the problem. Since the student could possibly try

several solution paths before settling on one, representing these many approaches with a

state model has been difficult (14).

3.3.2 Multiple agents in student modeling. Because of the overlay method em-

ployed for modeling the student, EDDI had noticeable difficulty in modeling a student's

misconceptions. Leman (14) attributed this problem to the model's inability to track mul-

tiple lines of reasoning, as well as the lack of knowledge about a global solution before the

student even began the problem. Their answer was to seed the knowledge base with mul-

17

tiple solutions to the given problem, then track the student's progress on all the solution

paths, attempting to reconcile the student's actions with those required in each solution.

By processing the student's reasoning in parallel, the student's progress along all of the

known solutions could be tracked simultaneously, and the student's final solution method

would be readily apparent.

Using independent agents allows representing several possible states for the student.

These states represent distinct steps along a solution path, and can be used to help predict

the next state the student will enter. Predicting the next state is important because,

through the use of differential modeling (3) and expectation driven analysis, the student

model's predictions can be compared to the student's actual actions. The student model

is validated if the actions match, while corrections may be made to the student model if

they do not. In most other models, only one path for modeling the student is tracked,

thus restricting the expected next states to those that follow the selected line of reasoning.

Since it is not uncommon for a student to try multiple approaches on a problem before

settling on one, the multi-agent method allows for more flexibility in modeling student

behavior by allowing the selection of the model which produces a predicted action most

closely matching that of the student's.

In order to accommodate expectation driven analysis, Curtain's student model was

implemented with production rules, thus allowing mal-rules to represent student miscon-

ceptions. Ideal rules in the expert model fire to demonstrate correct actions, while ideal

rules and mal-rules fire in the student model in an attempt to accurately predict student

actions, and thus validate the student model. During the course of this research, it was

discovered that implementing software agents to allow for multiple solution paths was un-

necessary. By comparing solutions as sets of solutions steps, it was possible to distinguish

when a student's solution was identical to one of the expert's, a superset of one of the

expert's, or completely unrelated to all of the expert's solutions.

Figure 3 shows an alternative solution to the problem in Table 1. This new solution is

both correct and equal in efficiency to the previous solution. If only one of these solutions

was selected for tracking the student's reasoning based on how the student first attempted

a solution, while the student first attempted one solution strategy, but settled on another,

18

relate(l,3) relate(3,6)
Boo- ->a

Ill - 120 131 = 60 161 = 60

Ill - 120 131 = 60
Ill = 120

Figure 3 Alternative Expert Solution State Diagram

a standard overlay model would not be able to credit the student with a correct solution.

According to Leman (14), a multi-agent student model would be able to track student

progress on both expert solutions, and thus correctly deduce which of the strategies the

student eventually employed. However, the Curtain prototype successfully tracked the

student's strategy without the use of software agents.

Tracking multiple solutions was made possible with the use of set functions in CLIPS.

If each solution, both expert and student, is treated as a set, it is possible to examine the

student solution's relationship to the expert solution(s) with standard subset operations.

If the student solution is a subset to the expert solution, then the student hasn't completed

a solution. However, if a particular expert solution is a subset of the student solution, then

the student has completed an expert solution, but has included more steps than necessary,

possibly because the student has wandered through other solution attempts. These extra

steps can be readily compared to other expert solutions to determine if the student has

attempted, but abandoned, another strategy. If the student solution is a subset of a

particular expert solution, and that expert solution is a subset of the student solution, then

the student has exactly applied that expert solution. Of course, these comparisons may be

made after each student action to maintain a current model of the student's strategy.

3.4 Learning From the Student

A shortcoming of Leman's (14) multi-agent model is the inability to learn from

student solutions. The student model expects to have a complete set of solutions for the

problems presented. Any solutions not found in its knowledge base are considered wrong.

It vould be useful if the model could recognize and adopt new solutions when presented

19

with them. Moreover, the ability to recognize a solution which seems unique, but is really

just a combination of existing solutions, would also be of great benefit.

An extension to Leman's current model is to provide a learning agent (L-agent)

which checks for unique student solutions. This agent need only be invoked if a match is

not found in the expert solution library. If no match is found, then the solution must be

evaluated to determine its correctness. If it is indeed a correct solution, the student must

be given credit for it. If it is also as efficient as the expert solution(s), the student model

must be updated accordingly, and the expert solution library may be updated as well.

Based on the discovery that software agents were not required for processing multiple

solutions, the L-agent wasn't required to be an agent at all, and so is described as an agent

only in the weakest sense. Here, as in the multiple solution processing, a module is all that

is required.

In order for the L-module to determine if a student solution is correct, the domain

model must have a complete set of rules governing legal transitions in the solution space,

and the student model must be a subject-matter model. The complete set of rules is

required to ensure the assertions made by the student are valid. The subject-matter model

is necessary so that the model may be executed to determine if the goal was actually

achieved. Without a subject-matter model, it would be necessary to search the student's

solution space to determine if any of the possibly many solution paths leads to the goal.

The solution space in Curtain was completely specifiable because of the procedural

solutions required for geometrical proofs. Implementing learning modules such as this is

possible in any domain where procedural knowledge dominates. Training environments

favor procedural skills (11), as do other types of ITSs.

Some examples from Curtain may help to illustrate the points just discussed. Con-

sider the proposed student solution in Figure 4. This solution is a correct solution. It is

also a completely unique solution. The L-module should evaluate the solution as valid, and

add it to the knowledge base. In fact, the prototype's L-module did update the student

model with the fact that the student satisfactorily solved the problem.

20

relate(1,2) relate(2,6)

Ill 120 121 = 60 161 = 60

Ill = 120 121 = 60

Ill = 120

Figure 4 Student Solution State Diagram

In contrast, the solution in Figure 5 is a valid solution, but takes a longer approach.

In this case, the solution should not be added to the solution library. The L-module updates

the student model with the knowledge that the student solved the problem correctly, but

solved it less efficiently, avoiding the use of corresponding angles.

relate(1,4) relate(4,5) relate(5,6)

Ill = 120 141 = 120 151 =120 161 = 60
Ill- =120 141 =120 151 = 120

Ill =120 141 = 120

Ill = 120

Figure 5 Alternative Student Solution State Diagram

The idea that the student may have avoided the use of corresponding angles inten-

tionally is an important one. If she has not already demonstrated mastery of the concept

of corresponding angles, she may be avoiding them out of ignorance. In this case, an ap-

propriate next problem would be one which forces the use of corresponding angles, or asks

specifically about them. It is also possible, however, that she avoided them out of bore-

dom, having already solved several problems using corresponding angles, in which case the

omission is not critical. Identifying the avoidance of a particular theorem requires more

information than that provided in the state diagrams, which is the subject of the next

section.

21

3.5 Identifying Student Knowledge

Though the meta-steps displayed in Figures 2, 3, 4, and 5 are sufficient for comparing

solution strategies, they are insufficient for determining the correct application of concepts.

By breaking each solution step into sub-steps, student error detection is facilitated (17),

through the use of cognitive diagnosis (20) and behavior analysis (10). In interactive

tutoring environments, subquestions can be posed to aid in student error detection, but this

can be intrusive and distracting for the student (3). In situations where subquestions are

impossible, or merely undesirable, the problem of determining student knowledge becomes

even more difficult.

In the geometric proof domain, these sub-steps are an inherent requirement for prob-

lem completion, and therefore easily obtained. Consider, for example, the problem pre-

sented in Table 1. The key concepts the student is required to master in order to prove

the solution are: (see Table 2)

1. congruent angles,

2. adjacent angles, and

3. supplementary angles.

If the student does not successfully apply these three concepts, then the student

cannot have a correct solution. However, the student has a multitude of correct solutions

to choose from, as demonstrated in Figures 2, 3, 4, and 5. Furthermore, the student may

choose from several correct and efficient solutions, as shown in Figures 2, 3, and 4. There-

fore, making inferences about knowledge the student is avoiding is not as straightforward

as one might think; yet, it is not exceptionally difficult either.

The key symptom which lends insight into the student's motivations is the obser-

vation that the student takes multiple steps to transition between two nodes that have a

direct link. This is the case in Figure 5. As mentioned in Section 3.4, the solution seems to

avoid the use of corresponding angles. The formula for discovering such a circumvention

makes the nonuse of corresponding angles more apparent, but does not aid in establishing

the student's motive. Additional clues to the student's motive can be obtained from the

student model.

22

The most helpful information to be gained from the student model is some form

of performance history with respect to the avoided concept, in this case corresponding

angles. The most direct information is an actual record of all the student's applications

and misapplications of the concept.

While a complete history is possible in small domains, and is available for Curtain,

it could certainly become unwieldy as the number of concepts and students increases.

Shute (19) suggests mastery levels be defined to assist in determining amount and level

of remediation, but they may also be applied to aid decisions regarding student motiva-

tions. Curtain was implemented with a binary mastery threshold for exactly this purpose.

Enhancing the mastery levels to approach that described by Shute would ease student

motivation determinations.

Even with knowledge on how well the student has (apparently) mastered a concept,

inferring the student avoids a mastered concept because she is bored, or avoids an untried

or misunderstood concept because she doesn't know or understand that concept, is still

a leap of faith. To make an even more effective estimation, a truth maintenance system,

such as that outlined by Giangrandi and Tasso (7), would be beneficial.

relate(l,5) relate(5,7) relate(7,6)

Ill - 120 151 = 120 171 = 60 161 = 60
Ill - 120 151 = 120 171 = 60

Ill- =120 151= 120
Ill = 120

Figure 6 Lengthy Student Solution State Diagram

Although the lengthy but correct solution in Figure 5 has proved useful for cognitive

analysis, this is not always the case. Consider, for example, the solution in Figure 6. Like

Figure 5, Figure 6 has one more step than the expert solutions in Figures 2 and 3. Unlike

Figure 5, Figure 6 makes use of all the essential relations identified earlier in this section:

congruent angles, adjacent angles, and supplementary angles. Recognizing this fact is not

difficult; flagging the essential components may seem more difficult, but it is only a matter

of identifying the intersection of all the concepts applied by all of the expert solutions.

23

Knowing Figure 6 contains all of the essential relations, it follows that the student has

merely included unnecessary steps in her solution. These extra steps, then, can be expected

to be a result of distraction, inferior reasoning, etc., but not a deficiency in geometry.

3.6 Student Models vs Instructor Modules

While performing the research for this thesis, the definition for a student model

seemed to become more blurred and indefinite, rather than more distinct, as one would

hope. The cause for the haziness seems to lie in the preponderance of new functions and

capabilities being added to the student model. Many authors (19, 18, 3, 4, 7, 16) are includ-

ing processing in the student model which seems more in place in the instructor module.

The student model should contain the student's actions and any inferred understandings

or misunderstandings.

In contrast, the instructor (or pedagogical) module should contain any functions

which reason about the student's actions, or reason about the student's reasoning. The

only reasoning the student model should perform is any reasoning the student might be

expected to make, and only then if the student model is a subject-matter model.

Thus, the student model would be primarily a container for information about the

student, including inferences made by the instructor module, with a secondary task of being

able to reason in a manner similar to the actual student, if it is a subject-matter model.

The instructor module would be responsible for all type of pedagogical matters, including

the inferencing a human instructor might do about the student's state of understanding or

misunderstanding. With this new division of labor, the instructor module is responsible

for all behavior analysis and cognitive diagnosis, while the student model stores the results

from the instructor module, acting as a pedagogic-content model /citeragnemalm.

The final chapter discusses author contributions and recommendations.

24

IV. Contributions and Recommendations

4.1 Contributions

In this thesis, a new method for incorporating learning into the student model of an

ITS has been presented. This method was demonstrated effectively with a prototype ITS.

The usefulness of subject-matter models for learning was emphasized. Software agents

were shown to be unnecessary for processing multiple solutions in the student model, and

likewise not required for adding learning to the student model.

While it is recognized that the learning module relies on having a complete set of

rules for the domain model, it has also been argued that the main requirement for a domain

model with this capability is a domain which relies heavily on procedural knowledge. Many

tutoring domains meet this criteria. More importantly, nearly all training domains rely

primarily on procedural skill (11). Since the Air Force's chief concern is more efficient

training, the application of learning to Air Force ITSs is quite feasible.

Even though a learning student model was the initial focus of this thesis, several other

useful concepts emerged during the research. First among these was the identification and

resolution of some inconsistencies in the division of labor between the student model and

the instructor module. Effectively, the student model is a container of information about

the student, while the instructor module performs all reasoning or inferencing expected of

the human instructor.

Additionally, an alternate use for Shute's (19) mastery levels was demonstrated. As

discussed in section 3.5, mastery levels can not only be used for determining remediation

as suggested by Shute, but can also be used to gain insight into student motivations.

Also identified in this thesis were appropriate uses for meta-steps and sub-steps

in solution analysis. Meta-steps frequently can lead to information about correct and

incorrect solution strategies, but sub-step analysis aids making inferences about student

thought processes. Sub-steps are particularly effective for cognitive diagnosis. Again, it

is recognized that many domains do not have a natural requirement for explicit student

identification of sub-steps, unlike geometric proofs, but in these cases a special effort at

25

deducing these sub-steps can frequently be effective (3). In other cases, explicitly querying

the student for solution sub-steps may prove necessary.

Differential modeling (3) and expectation driven analysis were concretely demon-

strated as useful for validating student models. These techniques are particularly applica-

ble to overlay methods, which were employed in the Curtain prototype, and lend themselves

to intelligent training systems.

Finally, the cognitive terms identified by Shute (19) were successfully applied to

Curtain. In section 3.3, the relationships between Leman's (14) static, dynamic, and

reasoning knowledge and Shute's symbolic, conceptual, and procedural knowledge were

outlined. These relationships are important because new terms are continually being in-

vented for very similar concepts in ITSs, and the relations between these concepts are not

always obvious, but remain, nevertheless, important.

4.2 Recommendations

There remains much that can be further explored with respect to this research effort,

both in concept and in application. The principal area for further research is the application

of the new division of labor between the student and instructor modules. A demonstration

of the proposed student and instructor module responsibilities would provide evidence that

the division is both logical and practical.

Additionally, the inclusion of a truth maintenance system to the student model would

be a significant contribution. As discussed briefly in section 2.4 and in detail by Gian-

grandi (7), a truth maintenance system aids deconflicting student model inconsistencies

generated by student learning, student unlearning, student misconceptions, and others.

The mastery levels in the student model could also be improved. The current binary

threshold is serviceable, but a more robust system, similar to that described by Shute (19),

could provide more insight into student motivations, as well as aid remediation.

Beyond student modeling, there is the entire realm of the instructor module, which

includes topics such as remediation, problem selection, and tutoring strategies. Incorpo-

26

rating an instructor module with these capabilities can then require enhancements to the

student model, such as inclusion of a student's preferred learning strategy.

4.3 Overall Conclusions

This research has proposed and demonstrated a method for expanding the solution

library in the expert module through the use of a learning student model. The method

demonstrated has application in a wide variety of tutoring domains, including most training

scenarios.

27

Appendix A. Curtain Driver C"+ and C Code

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fstream.h>

#include <unistd.h>

//#include <vfork.h>

#include "curtain.h"

#define MAXSTRING 100

10

extern "C" {

#include "clips.h"

/*** ** **** *** * **** * *** *** ***** ** *** ***/

/* Define C functions to CLIPS */

/** *** *** **** ** *** * **** ** *** * **** ****

// This function may be called from CLIPS, and passes a Tel command

// and a string of parms to Tcl, thus invoking that Tel function. 20

char* TclFunc()

{
DATA-OBJECT msg,pipe;

FILE *write-pipe;

VOID *MainPtr, *InstPtr;

if (ArgCountCheck("TclFunc", EXACTLY,I) == -1)

{
fprintf(stderr,"Wrong number of arguments! \n");

return "FALSE";

} 30

if (! ArgTypeCheck("TclFunc",l,STRING,&msg))

{

fprintf(stderr,"Wrong type of argument: msg! \n");

return "FALSE";

28

MainPtr = FindDefmodule("MAIN");

InstPtr = Findlnstance(MainPtr, "pipe-ptr ",CLIPS- FALSE);

DirectGet Slot (InstPtr, "pipe ",&pipe); 40

write-pipe = (FILE *) DOToPointer(pipe);

fprintf (write-.pipe,"%s\n" ,DOToString(msg));

return DOToString(msg);

;;return "TRUE";

I

extern VOID TclFunco;

50

DefineFunction2("TclFunc", 'u',PTIF TclFunc, "TclFunc", "11 s");

/* Initialize CLIPS

void G-InitClips(FILE *pipe-ptr, char *student, char *path) 60

char tempBuffer(MAXSTRING];

char temppath [strlen (path)+2 51;

int threshold;

DATA-OBJECT rtn,vPtr,pipe;

VOID *MainPtr, *StudentPtr, *ExpertPtr, *InstPtr;

InitializeCLIPSO;

SetDynamnic~onstraint Checking (TRUE);

SetStaticConstraint Checking (TRUE); 70

strcpy(temppath,path);

strcat (temppath, " /clips /main. clp");

29

Load(temppath);

MainPtr = FindDefmodule("MAIN");

ExpertPtr =FindDefmodule(" EXPERT");

StudentPtr =FindDefmodule(" STUDENT");

Set CurrentModule(ExpertPtr);

strcpy(temppath,path); 80

strcat(temppath," /clips/both. clp");

Load(temppath);

strcpy(temppath,path);

strcat(temppath, " /clips/ expert. clp");

Load(temppath);

Set Current Module (Student Ptr);

strcpy(temppath,path);

strcat(temppath, "/clips /both. clp");

Load(temppath);

strcpy(temppath,path); 90

strcat (temppath, " /clips/ student. cip");

Load(temppath);

Set CurrentModule(MainPtr);

CLIP SFunctionCall(" "mt ",student ,&rtn);

// Insert pointer to pipe to Tcll 72k into CLIPS object

InstPtr = Findlnstance(MainPtr, "pipe-ptr ",CLIPS- FALSE);

SetpType(&pipe,EXTERNAL-ADDRESS);

SetpValue(&pipe,pipe-ptr);

Direct Put Slot (Inst Ptr, "pipe ",&pipe); 100

CLIPSFunctionCall("CLIPS-get-threshold" ,NULL,&rtn);

} 1end function C-Init Clips

/* Exec the named cmd as a child process, returning two pipes to *

/* communicate with the process, and the child's process ID

int start-child(char *cmd, FILE **readpipe, FILE **writepipe)

30

int childpid, pipel[2J, pipe2[2]; 110

if ((pipe(pipel) < 0)1 (pipe(pipe2) < 0))

f
perror(' pipe");

exit(-1);

if ((childpid = vforko) < 0)

perror("f ork"); 120

exit(-1);

else if (childpid > 0) //Parent

close(pipel [01);

close(pipe2[11);

// Write to child is pipelfi], read from child is pipe2/OJ

*readpipe =fdopen(pipe2[0j ,"r");

*writepipe =fdopen(pipel [11,"v"); 130

if (setvbuf(*writepipe,NULL,-IOLBF,100) !0)

perror('lno line buffering");

exit(- 1);

return childpid;

I

close(pipe2[01);

// Read from parent is pipelftj], write to parent is pipe2/1J

dup2 (pipel [0J ,0);

dup2(pipe2[11,1);

close(pipel [01);

31

close(pipe211]);

if (execlp(cmd,cmd,NULL) < 0)

perror("execlp"); 150

//Never returns

}

// end of procedure start-child

/* ** **** ** *** *** * *** ** *** * ****** *** ** ***** ****** ***** ***** ***** *******

/* Man behind the curtain program to simulate an ITS.

/**/* 160

it main(int argc, char **argv)

{

DATA-OBJECT rtn;

char *buf, *path;

// Set up pipe for Tcl process

FILE *read-from, *write.to;

char result [MAXSTRING], textBuf[MAXSTRING], cmd[MAXSTRING];

int childpid;

170

path = getenv("CURTAIN_-PATH"); */get path from env var

if (path == NULL) // if no CURTAIN-PATH env var...

{
cout << "You need to set an environment variable CURTAIN-PATH

<< "with the path to curtain directory. Continuing with

<< "current directory." << endl;

path = getenv("PWD"); I/assign path to current directory

I
if (path == NULL) exit(O); // if no current dir, exit program

childpid = start -child("wish",&read.from,&write.to); 180

// Tell wish to read the init script

fprintf (write-to," source %s/TCL/curtain. t cl\n",path);

32

while(1)

I // Blocks on read from w~ish

if (fgets(result,80,read-from) <= 0) exit(0); // Exrit if wish dies

// Scan the string from wish

if ((sscanf (result," Y.s %I. VT',crnd,text13uf)) <= 2)

{// sort out which procedure must be called 190

//C-nit Clips

if (strcmp (cmd, "C nit Clips") == 0)

G-InitClips(write-.to,textBuf,path); // Call C-Init Clips

// CLIPS-quit

if (strcmp(cmd,"CLIPS-quit") == 0)

CLIP S~unctionCall(" quit" 1,NULL,&rtn);

// CLIPS-get-student- concept function 200

if (strcmp (cmd, "CLIPS -get -student -concept")= 0)

I // Call get-student- concept CLIPS function

char tmp[MAXSTRING];

if ((sscauf(textBuf,"%s",tmp)) == 1)

CLIP SFunction~all(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

sscanf(buf,"/.s" ,cmd);

if (strcmp(cmnd,"TRUE")!=0)

cerr << "CLIPS -get -student -concept returned illegal \210

value: " << cmd << endi;

free(buf);

I
else

cerr << "Bad change -threshold command:

<< cmd << textBuf << endi;

IICLIPS-get- threshold function

if (strcmp(cmd, "CLIPS -get -threshold") == 0) 220

33

I // Call get-threshold CLIPS function after getting parms

CLIPSFunctionCall(cmd,NULL,&rtn);

buf = strdup(DOToString(rtn));

sscanf(buf,",%s" ,cmd);

if (strcmp(cmd,"TRUE")!=O)

cerr << "CLIPS -get -threshold returned illegal value:

<« cmd < < endi;

free(buf);

230

IICLIPS- change- threshold function

if (strcmp(cmd, "CLIPS -change-thre shold") == 0)

I // Call change- threshold CLIPS function after getting parms

char tmp[MAXSTRING];

if ((sscanf(textBuf,,"Xs" ,tmp)) == 1)

CLIPSFunctionCall(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

sscanf(buf,"%a" ,cmd);

if (strcmp(cmd, "TRUE ")!=0) 240

cerr << " CLIPS- change-thre shold returned illegal value:

<< cmd << endl;

free(buf);

else

cerr << "Bad change-threshold command:

<< cmd << textBuf << endi;

IICLIPS-get- definition function 250

if (strcmp(cmd, "CLIPS -get -def inition") ==0)

I // Call the get-definition CLIPS function after getting parms

char tmp[MAXSTRING];

if ((sscanf(textBuf,"1%s" ,tmp))=)

I
CLIP S~unctionCall(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

34

sscanf (buf," %s" ,cmd);

if (strcmp(cmd,"TRUE")!=O)

cerr << "CLIPS-get-definition returned illegal value: "260

<< cmd << endi;

free(buf);

else

cerr << "Bad get-defintition command:

<< cmd << textBuf << endi;

IICLIPS- define-problem function

if (strcmp (cmd, "CLIPS -def ine-problem") == 0) 270

{ // Call the define-problem CLIPS function after getting parms

int tmp;

if ((sscanf(textluf,"Yi %i %i",&tmp,&tmp,&tmp)) ==3)

f
CLIPSFunctionCall(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

free(buf);

else

cerr << "Bad define-problem command: "280

<< cmd << textBuf << endi;

IICLIPS-relate function

if (strcmp(cmd, "CLIPS -relate") == 0)

f // Call the relate CLIPS function after getting parms

imt tmp;

char tBuf[MAXSTRING];

if ((sscanf(textluf,"%i %i %s %s11,&tmp,&tmp,t13uftluf)) ==4)

{ 290

CLIP SFunction~all(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

sscanf(buf,"% %[-XVT] ,cmd,text13uf);

if (strcmp(cmd,"TRUE")!=0)

35

cerr << "CLIPS-relate returned illegal value:

<< cmd << endi;

free (buf);

else

cerr << "Bad relate command: " << cmd << textBuf << endi; 300

IICLIPS-solution function

if (stremp(cmad, "CLIPS- solution") == 0)

f // Call the CLIPS-a olution function after getting parms

int tmp;

if ((sscanf (text Buf, "% i ",& tmp)) == 1)

I
CLIPSFunctionCall(cmd,textBuf,&rtn);

buf = strdup(DOTbString(rtn)); 310

sscanf(buf,"/.s" ,cmd);

if (strcmp (cmd, "TRUE ")!=0)

cerr << "CLIPS- solution returned illegal value:

<< cmd << endi;

free(buf);

else

cerr << "Bad solution command: " << cmd << textBuf << endi;

320

IICLIPS-get-mag function

if (strcmp(cmd, "CLIPS -get -mag")= 0)

f // Call the CLIPS-get-mag function after getting parms

int tmp;

if ((sscanf(textluf,"%i",&tmp)) ==1)

I
CLIPSFunctionCall(cmd,textBuf,&rtn);

buf = strdup(DOToString(rtn));

sscanf(buf," ?.s 'I V 1",cmd,textluf);

if (strcmp(crnd,"tcl-IEOmsg")==0) 330

fprintf(write.to,,"tcl_IEOmsg \ "%s\ "\n" ,textBuf);

36

else if (strcmp (cmd, "NULL ")!=0)

cerr <<C "CLIPS-get-mag returned illegal value:

<< cmd << endi;

free(buf);

else

cert << "Bad get-mag command: " << crud << textBuf << endi;

1 340

else

cerr << "Bad command: <<C crud << textBuf << endi;

/* Clean up before exiting...

return 0; 350

37

Appendix B. Curtain ITS CLIPS Code

MAIN CONSTRUCTS

These are constructs which are defined once, and are exported

to both EXPERT and STUDENT.

(defmodule MAIN (export ?ALL))

(defglobal ?*result* = NULL)

(defglobal ?*student* = NULL)

(defglobal ?*given-angle-nbr* = NULL)

(defglobal ?*find-angle-nbr* = NULL) 10

(defglobal ?*given-angle* = NULL)

(defglobal ?*find-angle* = NULL)

(defglobal ?*given-mag* = NULL)

CLASSES

(defclass MAIN-SOLUTION "object specifying a solution to a problem"

(is-a USER) 20

(slot given-angle

(create- accessor read-write)

(type INSTANCE-NAME)

(default ?NONE)

(visibility public)

)

(slot find-angle

(create-accessor read-write)

(type INSTANCE-NAME)

(default ?NONE) 30

(visibility public)

(defclass WORK-SOLUTION "list multiple solutions to a problem"

38

(is-a MAIN-SOLUTION)

(multislot solution-track

(create- accessor read-write)

(type LEXEME))

40

(defclass EXPERT-SOLUTION "list multiple solutions to a problem"

(is-a WORK-SOLUTION)

(role concrete)

(defclass STUDENT-SOLUTION "list multiple solutions to a problem"

(is-a WORK-SOLUTION)

(role concrete)

) 50

(defclass PIPE-ADDRESS

(is-a USER)

(role concrete)

(slot pipe

(create-accessor read-write)

(type EXTERNAL-ADDRESS))

(defclass STUDENT-MODEL 60

(is-a USER)

(role concrete)

(pattern-match reactive)

;; slot to record number of correct responses required for mastery

(slot mastery-threshold

(create-accessor read-write)

(type INTEGER)

(pattern-match reactive)

(default 3)

(range 1 ?VARIABLE)) 70

(multislot student-misconceptions

(create-accessor read-write)

39

(type SYMBOL)

(pattern-match non-reactive)

(allowed-values supplementary congruent adjacent vertical

alternate-interior corresponding)

assume new student knows nothing <grin>

(default supplementary congruent adjacent vertical

alternate-interior corresponding))

(multislot supplementary 80

(create- accessor read-write)

(type SYMBOL)

(allowed-values correct incorrect))

(multislot congruent

(create- accessor read-write)

(type SYMBOL)

(allowed-values correct incorrect))

(multislot adjacent

(create- accessor read-write)

(type SYMBOL) 90

(allowed-values correct incorrect))

(multislot vertical

(create-accessor read-write)

(type SYMBOL)

(allowed-values correct incorrect))

(multislot alternate-interior

(create-accessor read-write)

(type SYMBOL)

(allowed-values correct incorrect))

(multislot corresponding 100

(create-accessor read-write)

(type SYMBOL)

(allowed-values correct incorrect))

(defclass CONCEPT

(is-a USER)

(role concrete)

(slot defn

40

(create-accessor read-write) 110

(access initialize-only)

(type STRING)

(default ?NONE))

(definstances CONCEPTS

(supplementary of CONCEPT

(defn (str-cat "Two angles are supplementary angles if and only if"

the sum of their magnitudes is 180 degrees."

e.g. Anglel and Angle2 are supplementary."))) 120

(congruent of CONCEPT

(defn (str-cat "Two angles which have the same measure are"

" congruent. e.g. Angle2 and Angle3 are congruent.")))

(adjacent of CONCEPT

(defn (str-cat "Two angles are adjacent if and only if they are in"

" the same plane and share a common side so that their non-common"

" sides lie in different half-planes determined by the line"

" containing the common ray. e.g. Anglel and Angle2 are adjacent"

" angles.")))

(vertical of CONCEPT 130

(defn (str-cat "If the sides of two angles form two pairs of"

" opposite rays, then the angles are vertical angles. e.g. Anglel"

" and Angle3 are vertical angles.")))

(alternate-interior of CONCEPT

(defn (str-cat "Two angles are alternate interior angles"

"if and only if they lie on opposite sides of the traversal, but"

between the two lines traversed. e.g. Angle3 and Angle6 are"

alternate interior angles.")))

(corresponding of CONCEPT

(defn (str-cat "Two angles are corresponding angles if and" 140

" only if they lie on the same side of the traversal, and there"

exists an angle which is vertical to one of the angles, and"

alternate interior to the other. e.g. Angle2 and Angle6 are"

corresponding angles.")))

41

(definstances PIPES (pipe-ptr of PIPE-ADDRESS))

FUNCTIONS 150

Convenience function for testing the equality of strings

(deffunction str-eq (?strl ?str2)

(= 0 (str-compare ?strl ?str2))

)

Convenience function for returning the last member in a multislot

(deffunction lasts ($?ms)

(progn$ (?generic $?ms) (bind ?result ?generic)) 160

(return ?result)

)

Convenience function for returning the last word in a string

(deffunction last (?str)

(return (lasts (explodes ?str)))

)

Convenience function for returning the first word in a string

(deffunction first (?str) 170

(return (nth$ 1 (explodes ?str)))

)

Convenience function for appending member to multislot

(deffunction appends (?ms ?append)

(return (inserts ?ms (+ 1 (lengths ?ms)) ?append))

)

Convenience function for switching the first member in a multislot

to be the last member 180

(deffunction front-to-backS (?ms)

(return (creates (rests ?ms) (firsts ?ms)))

)

42

;; Shortcut for front-to-backS

(deffunction ftbs (?ms)

(front-to-backS ?ms)

Convenience function for switching the first word in a string 190

to be the last word

(deffunction front-to-back (?str)

(return (implodes (front-to-backS (explodes ?str))))

)

Shortcut for front-to-back

(deffunction ftb (?ms)

(front-to-back ?ms)

)

200

Function to reverse the elements in multi-slot, and quantify

correct as -1 and incorrect as +1

(deffunction quantify-modelS (?ms)

(bind Sresult (createS))

(progn$ (?quality ?ms)

(if (str-eq ?quality correct)

then (bind ?quantity -1)

else (bind ?quantity 1)

)

(bind Sresult (inserts ?result 1 ?quantity)) 210

(return ?result)

This function initializes the CLIPS environment and sets up

the geometry domain

(deffunction init (?student)

(unwatch all)

;;(dribble-on debug.txt)

;;(watch facts) 220

43

;;(watch rules)

;;(watch deffunctions)

;;(watch statistics)

;;(watch activations)

;;(watch instances)

;;(watch focus)

(reset)

(close)

(set-static-constraint-checking TRUE) 230

(set-dynamic-constraint-checking TRUE)

(bind ?*student* ?student)

(make-instance ?*student* of STUDENT-MODEL)

(if (open (str-cat ?*student* ".model") tempFile "r")

then

(close tempFile)

(load-instances (str-cat ?*student* ".model"))

)

(open (str-cat ?*student* "log") log "w")

(printout log 240

"Logfile to store student approaches to problem solving." crlf crlf)

(run)

This function displays the message included in the parameters

of the function call to the STUDENT. The message is

NOT enclosed by quotes. NOTE: avoid the use of single and

double quotes.

- textstring: a multivalue variable which is converted to a string

(deffunction stu-msg ($?text) 250

(if (not (str-eq nil (nth$ 1 $?text)))

then (bind ?message (str-cat "tcl-student-msg " (implode$ $?text)))

(TclFunc ?message)

(return)

)

44

This function displays the message included in the parameters

of the function call to the INSTRUCTOR only. The message is

NOT enclosed by quotes. NOTE: avoid the use of single and 260

double quotes.

- textstring: a multivalue variable which is converted to a string

(deffunction IEOmsg ($?text)

(if (not (str-eq nil (nth$ 1 $?text)))

then (bind ?message (str-cat "tclIEOmsg " (implodes $?text)))

)

(TclFunc ?message)

(return)

)

270

This function binds results from rules for use in the original

calling function.

(deffunction bindresult ($?textstring)

(if (= 0 (lengths $?textstring))

;; empty parmlist -> NULLify result global

then (bind ?*result* NULL)

;; bind parms to current result global

else

(bind ?result (implodes $?textstring))

(if (str-eq ?*result* NULL) 280

then (bind ?*result* ?result)

else (bind ?*result* (str-cat ?*result* ?result))

)

)

This is a function to get the definition of a geometric term

- term: the term which needs defined

(deffunction get-definition (?term)

(send (instance-name ?term) get-defn) 290

Shortcut for get-definition

(deffunction gd (?term)

45

(get-definition ?term)

)

quit saves the current student model before exiting CLIPS

(deffunction quit 0
(save-instances (str-cat ?*student* model) local STUDENT-MODEL) 300

(exit)

This function prints out the specified student-model

(deffunction printstudent (?student)

(send (instance-name ?student) print)

Shortcut for printstudent

(deffunction ps 0 310

(printstudent ?*student*)

)

Function to compare two solutions

- if the first solution track is a subset of the second,

then the second solution is a valid one.

- if the first solution matches the second,

then the second is the exact same solution.

(deffunction compare-solutions (?expert-soln ?student-soln)

(bind ?expert-track (send ?expert-soln get-solution-track)) 320

(bind ?student-track (send ?student-soln get-solution-track))

(bind ?result NULL)

(progn$ (?pair ?expert-track)

(if (not (member$?pair ?student-track))

;; student solution completely different from expert

then

(bind ?result NO-MATCH)

(break)

) 330

(if (str-eq ?result NULL)

46

then

(progn$ (?pair ?student-track)

(if (not (member$?pair ?expert-track))

student solution -contains- the expert solution, but also

contains unnecessary steps

then

(bind ?result MATCH)

(break)

) 340

(if (str-eq ?result NULL)

;; student solution is -exactly- the same as the expert solution

then

(bind ?result PERFECT-MATCH)

(return ?result)

350

Shortcut for compare- solutions

(deffunction c-s ()
(compare-solutions [expert-soln] [student-soln])

)

Function to copy all the EXPERT solutions for the current problem

into the MAIN module

(deffunction get-expert-solutions 0

(assert (get -expert -solutions ?*given-angle* ?*find-angle*))

(run) 360

(return TRUE)

Shortcut for get-expert-solutions

(deffunction g-e-s 0
(get -expert -solutions)

47

Function to copy the STUDENT solution for the current problem

into the MAIN module 370

(deffunction get-student-solution 0

(assert (get -student-solution ?*given-angle* ?*find-angle*))

(run)

(return TRUE)

Shortcut for get -student -solution

(deffunction g-s-s ()

(get -student -solution)

) 380

Function to copy all the EXPERT and STUDENT solutions for the

current problem into the MAIN module

(deffunction get-all-solutions 0

(g-s-s)

(g-e-s)

Shortcut for get-all-solutions

(deffunction g-a-s 0 390

(get-all-solutions)

Function to remove all the solutions from MAIN

(deffunction delete-all-solutions 0

(do-for-all-instances ((?soln EXPERT-SOLUTION)) TRUE

(send ?soln delete)

(do-for-all-instances ((?soln STUDENT-SOLUTION)) TRUE

(send ?soln delete) 400

)

Shortcut for delete-all-solutions

(deffunction d-a-s 0

48

(delete-all-solutions)

function to get all expert magnitudes

(deffunction expert-gma 0 410

(assert (expert-gma))

(run)

)

shortcut for function expert-gma

(deffunction egma 0

(expert -gma)

)

function to get an expert magnitude 420

(deffunction expert-gm (?angle)

(assert (expert-gm ?angle))

(run)

(bind ?result ?*result*)

(bindresult)

(return ?result)

)

shortcut for function expert-gm

(deffunction egm (?nbr) 430

(return (expert-gm (sym-cat Angle ?nbr)))

function to get a student magnitude

(deffunction student-gm (?angle)

(assert (student-gm ?angle))

(run)

(bind ?result ?*result*)

(bindresult)

(return ?result) 440

)

49

;; shortcut for function student-gm

(deffunction sgm (?nbr)

(return (student-gm (sym-cat Angle ?nbr)))

)

function to get all student magnitudes

(deffunction student-gma 0

(assert (student-gma)) 450

(run)

shortcut for function student-gma

(deffunction sgma 0

(student-gma)

function to change the mastery threshold in the current student

(deffunction change-threshold (?threshold) 460

(send (instance-name ?*student*) put-mastery-threshold ?threshold)

)

shortcut for function change-threshold

(deffunction c-t (?threshold)

(change-threshold ?threshold)

)

Function to get the relation between two angles as defined by

the EXPERT module 470

(deffunction expert-relate (?angl ?ang2)

(assert (expert-relate ?angl ?ang2))

(run)

(bind $?result (explodes ?*result*))

(bindresult)

(return $?result)

)

Shortcut for function expert-relate

50

(deffunction e-r (?nbrl ?nbr2) 480

(bind ?angl (sym-cat Angle ?nbrl))

(bind ?ang2 (sym-cat Angle ?nbr2))

(expert-relate ?angl ?ang2)

Function to get the expert magnitude relation for a specified angle

relation

(deffunction expert-mag-relation (?relation)

(assert (expert-mag-relate ?relation))

(run) 490

(bind ?result (sym-cat ?*result*))

(bindresult)

(return ?result)

Shortcut for function expert-mag-relation

(deffunction emr (?relation)

(expert-mag-relation ?relation)

500

The following functions are support functions designed to be

called from outside of the CLIPS environment.

This is a function to get a definition for a geometric term.

Designed to be called from outside the CLIPS environment.

(deffunction CLIPS-get-definition (?term)

(bind ?message (get-definition ?term))

(stu-msg ?message) 510

(return TRUE)

)

Shortcut for function CLIPS-get-definition

(deffunction C-gd (?term)

(CLIPS-get-definition ?term)

51

(return TRUE)

)

Function to display the magnitude of a STUDENT angle. Designed to 520

be called from outside the CLIPS environment.

- nbr: the number of the angle whose magnitude you wish to know

(deffunction CLIPS -stu-get-mag (?angle)

(bind ?message (str-cat ?angle " = "(student-gm ?angle)))

(IEOmsg ?message)

(return TRUE)

)

Shortcut for function CLIPS-stu-get-mag

(deffunction C-sgm (?nbr) 530

(return (CLIPS -stu-get-mag (sym-cat Angle ?nbr)))

)

Function to display the magnitude of an EXPERT angle. Designed to

be called from outside the CLIPS environment.

- nbr: the number of the angle whose magnitude you wish to know

(deffunction CLIPS-exp-get-mag (?angle)

(bind ?message (str-cat ?angle " = (expert-gm ?angle)))

(IEOmsg ?message)

(return TRUE) 540

)

Shortcut for function CLIPS-exp-get-mag

(deffunction C-egm (?nbr)

(return (CLIPS -exp-get-mag (sym-cat Angle ?nbr)))

This is a function to build parallel, bisected line problems.

Designed to be called from outside of the CLIPS environment.

- given: the angle number of the given angle magnitude 550

- mag: the magnitude of the given angle

- find: the angle whose magnitude the student is to find

(deffunction CLIPS-define-problem (?given ?mag ?find)

52

(bind ?*given-angle-nbr* ?given)

(bind ?*find-angle-nbr* ?find)

(bind ?*given-angle* (sym-cat Angle ?given))

(bind ?*find-angle* (sym-cat Angle ?find))

(bind ?*given-mag* ?mag)

(printout log crlf

"Given: Magnitude of angle " ?given " = " ?mag crlf) 560

(printout log "Find: Magnitude of angle " ?find " =? " crlf)

(assert (define-problem ?given ?mag ?find))

(run)

(return TRUE)

Shortcut for function CLIPS-define-problem

(deffunction C-dp (?given ?mag ?find)

(CLIPS-define-problem ?given ?mag ?find)

(return TRUE) 570

)

This is a function to compare the student provided solution

to the expert derived solution. Designed to be called from

outside the CLIPS environment.

(deffunction CLIPS-solution (?mag)

(bind ?expert-mag (expert-gm ?*find-angle*))

;; check solution tracks

(get-all-solutions)

(do-for-instance ((?stu-soln STUDENT-SOLUTION)) TRUE 580

(bind ?student-solution ?stu-soln)

(progn$ (?exp-soln

(find-all-instances ((?exp-soln EXPERT-SOLUTION)) TRUE)

(bind ?result (compare-solutions ?exp-soln ?student-solution))

(if (or (str-eq ?result "MATCH") (str-eq ?result "PERFECT-MATCH"))

then

(bind ?expert-solution ?exp-soln)

(break) 590

53

)

(bind ?student-track (send ?student -solution get -solution-track))

(if (str-eq ?result "NO-MATCH")

then

(bind ?message (str-cat "The student solution strategy does

"not match the expert."))

Check to see if student solution strategy is a valid approach

(bind ?valid TRUE)

(progn$ (?angle-pair ?student-track) 600

(bind ?angl (sym-cat (sub-string 2 7 ?angle-pair)))

(bind ?ang2 (sym-cat (sub-string 9 14 ?angle-pair)))

(bind ?related (implode$ (expert-relate ?angl ?ang2)))

(if (str-eq "UNRELATED UNRELATED" ?related)

then (bind ?valid FALSE)

)

(if (str-eq ?valid FALSE)

then

(bind ?message 610

(str-cat ?message

"\\n The student's solution path is NOT valid.")

else check for path from given angle to goal

by executing student model get-magnitude

;;for the find angle. if it has the solution

magnitude, then there is a correct path from

given to find

(bind ?student-mag (student-gm ?*find-angle*))

(if (str-eq ?expert-mag ?student-mag) 620

then ;; new valid solution

(bind ?message (str-cat ?message

"\\n However, the student solution path IS valid."))

else ;; not a valid solution

(bind ?message (str-cat ?message

"\\n And, the student solution path IS NOT valid."))

54

)

else

(if (str-eq ?result "MATCH") 630

then

(bind ?message "The student solution strategy matches the expert,\

\\n but the student has more steps than necessary:")

else

(if (str-eq ?result "PERFECT-MATCH")

then

(bind ?message (str-cat "The student solution strategy

"exactly matches the expert: "))

else

(bind ?message "ERROR in CLIPS-solution!") 640

)
)

(bind ?expert-track (send ?expert-solution get-solution-track))

(bind ?message

(str-cat ?message

"\\n\\tStudent relate pairs: " (implode$?student-track)

"\\n\\tExpert relate pairs: " (implode$?expert-track)

"\\n")
)

) 650

(IEOmsg ?message)

(delete- all- solutions)

;; check resulting magnitude found

(bind ?message (str-cat "Expert magnitude - " ?expert-mag

"\\nStudent magnitude = "?mag "\\n"))

(IEOmsg ?message)

(bindresult)

(return TRUE) 660

Shortcut for function CLIPS-solution

(deffunction C-s (?mag)

55

(CLIPS-solution ?mag)

(return TRUE)

Function to define relationship between two angles, as defined by

the student. Designed to be called from outside of the 670

CLIPS environment.

- nbrl: the angle number of first angle to relate

- nbr2: the angle number of second angle to relate

- relation: the geometric relation specified by the student

- relation-defn: specifies whether the student believes the

relation indicates congruent or supplementary angles.

(deffunction CLIPS-relate (?nbrl ?nbr2 ?relation ?relation-defn)

(assert (relate ?nbrl ?nbr2 ?relation ?relation-defn))

(run)

;; add to student model 680

(set-current-module MAIN)

(bind $?expert-relations (e-r ?nbrl ?nbr2))

(bind ?expert-relation (nth$ 1 $?expert-relations))

(bind ?expert-relation-defn (nth$ 2 $?expert-relations))

(bind ?message

(str-cat "Relate Angle" ?nbrl " to Angle" ?nbr2))

(if (str-eq ?relation ?expert-relation)

then

(bind ?message (str-cat ?message "\\n\\t" ?relation ": correct"))

(slot-insert$ (instance-name ?*student*) ?expert-relation 1 correct) 690

else

(bind ?message (str-cat ?message "\\n\\t" ?relation ": incorrect"))

(if (str-eq "UNRELATED" ?expert-relation)

then

(slot-insert$ (instance-name ?*student*) ?relation 1 incorrect)

else

(slot-insertS (instance-name ?*student*) ?expert-relation 1

incorrect)

) end if

end if 700

(run)

56

(if (str-eq ?relation-defn ?expert-relation-defn)

then

(bind ?message

(str-cat ?message "\\n\\t" ?relation-defn ": correct"))

(slot-insertS (instance-name ?*student*) ?expert -relation-defn

1 correct)

else

(bind ?message 710

(str-cat ?message "\\n\\t" ?relation-defn ": incorrect"))

(if (not (str-eq "UNRELATED" ?expert-relation-defn))

then

(slot-insertS (instance-name ?*student*) ?expert-relation-defn 1

incorrect)

else do nothing because no data on cong vs suppl

) end if

) end if

(run)

(IEOmsg ?message) 720

;; save results to the student log

(printout log "relating Angle" ?nbrl "to Angle" ?nbr2 ": " crlf)

(printout log " student: " ?relation " " ?relation-defn crlf)

(printout log ' expert: " ?expert-relation ".".?expert-relation-defn

crlf)

(return TRUE)

;; end of functions CLIPS-relate

Shortcut for function CLIPS-relate 730

(deffunction C-r (?nbrl ?nbr2 ?relation ?relation-defn)

(CLIPS-relate ?nbrl ?nbr2 ?relation ?relation-defn)

(return TRUE)

)

Function to print all EXPERT solutions to the specified problem

(deffunction CLIPS-expert-solutions (?given ?find)

(assert (expert-solutions ?given ?find))

57

(run)

) 740

Shortcut for function CLIPS-expert-solutions

(deffunction C-es (?given ?find)

(CLIPS-expert-solutions ?given ?find)

Function to print all STUDENT solutions to the specified problem

(deffunction CLIPS-student-solutions (?given ?find)

(assert (student-solutions ?given ?find))

(run) 750

Shortcut for function CLIPS-student-solutions

(deffunction C-ss (?given ?find)

(CLIPS-student-solutions ?given ?find)

Function to change mastery threshold from outside CLIPS

(deffunction CLIPS -change-threshold (?threshold)

(change-threshold ?threshold) 760

(return TRUE)

Function to get the mastery threshold from outside CLIPS

(deffunction CLIPS-get-threshold 0

(bind ?threshold

(send (instance-name ?*student*) get-mastery-threshold))

(TclFunc (str-cat "set curtain-threshold " ?threshold))

(return TRUE)

770

Function to get concept count in STUDENT-MODEL from outside CLIPS

(deffunction CLIPS -get-student-concept (?concept)

(bind $?temp (send (instance-name ?*student*)

(sym-cat get- ?concept)))

58

(bind $?quantitylist (quantify-model$?temp))

(TclFunc

(str-cat "set curtainilist(" ?concept ") {" (implodes

$?quantityilist) "}")

) 780

(return TRUE)

RULES

(defrule update-supplementary-misconceptions "checks misconception list"

(declare (auto-focus TRUE))

?inst <- (object (is-a STUDENT-MODEL) 790

(supplementary $?correct&:(> (lengths Scorrect) 0))

(assert

(update-generic-misconception supplementary ?inst ?correct))

(run)

(defrule update-congruent-misconceptions "checks misconception list"

(declare (auto-focus TRUE)) 800

?inst <- (object (is-a STUDENT-MODEL)

(congruent $?correct&:(> (lengths S?correct) 0))

(assert

(update-generic-misconception congruent ?inst ?correct))

(run)

(defrule update-alternate-interior-misconceptions "misconception list" 810

(declare (auto-focus TRUE))

?inst <- (object (is-a STUDENT-MODEL)

59

(alternate-interior $?correct&:(> (length$ $?correct) 0))

)
=>

(assert

(update-generic-misconception alternate-interior ?inst ?correct))

(run)

820

(defrule update- corresponding -misconceptions "checks misconception list"

(declare (auto-focus TRUE))

?inst <- (object (is-a STUDENT-MODEL)

(corresponding $?correct&:(> (lengths $?correct) 0))

(assert

(update-generic-misconception corresponding ?inst ?correct))

(run)

830

(defrule update-vertical-misconceptions "checks misconception list"

(declare (auto-focus TRUE))

?inst <- (object (is-a STUDENT-MODEL)

(vertical $?correct&:(> (lengths $?correct) 0))

(assert

(update-generic-misconception vertical ?inst ?correct))

(run) 840

(defrule update-adjacent-misconceptions "checks misconception list"

(declare (auto-focus TRUE))

?inst <- (object (is-a STUDENT-MODEL)

(adjacent $?correct&:(> (lengths $?correct) 0))

(assert

60

(update-generic-misconception adjacent ?inst ?correct)) 850

(run)

(defrule update-generic-misconceptions "generalize update process"

?temp <- (update-generic-misconception ?concept ?stu-model $?correct)

(retract ?temp)

(bind ?mastery (send ?stu-model get-mastery-threshold))

(if (< (lengths ?correct) ?mastery)

then (bind ?check ?correct) 860

else (bind ?check (subseq$?correct 1 ?mastery))

(bind ?stu-misc (send ?stu-model get-student-misconceptions))

(bind ?position (members ?concept ?stu-misc))

(if (members incorrect ?check)

;; student has misapplied concept in last attempts

then

(if (not (integerp ?position))

;; concept is not already in the misconception list

then ;; add concept to misconception list 870

(send ?stu-model put -student -misconceptions

(appends ?stu-misc ?concept))

(IEOmsg

(str-cat ?*student* " has not mastered " ?concept " angles."))

)

else ;; student may have demonstrated mastery over last attempts

(if (and (integerp ?position) (= ?mastery (lengths ?check)))

concept is already in the misconception list AND

student has successfully (and repeatedly) applied concept

then ;; delete concept from misconception list 880

(send ?stu-model put-student-misconceptions

(deletes ?stu-misc ?position ?position))

(IEOmsg (str-cat ?*student* " has apparently mastered

?concept " angles."))

61

ADDITIONAL MODULES 890"

(defmodule EXPERT (import MAIN ?ALL))

(defmodule STUDENT (import MAIN ?ALL))

EXPERT and STUDENT CONSTRUCTS

These are constructs which must be defined for EXPERT and STUDENT;;

separately.

CLASSES

10

(defclass ANGLE

(is-a USER)

(role concrete)

(pattern-match reactive)

(slot magnitude

(pattern-match reactive)

(create-accessor read-write)

(type INTEGER)

(range -1 180)

(default -1) 20

)

(definstances ANGLE-INSTANCES

(Anglel of ANGLE)

(Angle2 of ANGLE)

(Angle3 of ANGLE)

(Angle4 of ANGLE)

(Angle5 of ANGLE)

62

(Angle6 of ANGLE) 30

(Angle7 of ANGLE)

(Angle8 of ANGLE)

field relate-angle-pairs points to instances of RELATION

(defclass SOLUTION "object specifying a solution to a problem"

(is-a MAIN-SOLUTION)

(role concrete)

(pattern-match reactive)

(multislot relate-angle-pairs 40

(create-accessor read-write)

(type INSTANCE-NAME)

(defclass RELATION "container class for angle relations"

(is-a USER)

(role concrete)

(pattern-match reactive)

(slot angle-relation 50

(pattern-match reactive)

(create-accessor read-write)

(type SYMBOL)

(allowed-values adjacent vertical corresponding alternate-interior)

(default ?NONE)

)

(slot magnitude-relation

(pattern-match reactive)

(create-accessor read-write)

(type SYMBOL) 60

(allowed-values congruent supplementary)

(default ?NONE)

(multislot angles

(pattern-match reactive)

(create-accessor read-write)

63

(type INSTANCE-NAME)

(default ?NONE)

70

Message-handlers for objects

set-mag sets the magnitude for an ANGLE object

(defmessage-handler ANGLE set-mag primary (?mag)

(if (= ?self:magnitude -1) then

(bind ?self:magnitude ?mag)

else (printout werror (instance-name ?self) " already has a " 80

"magnitude!" crlf)

)

myget-relate-angle-pairs goes out to the RELATION instances

pointed to by the multislot, and retrieves the angle pairs related

(defmessage-handler SOLUTION myget -relate-angle-pairs 0

(bind $?angle-pairs ?self:relate-angle-pairs)

(bind $?result (createS))

(if (progn$ (?angle-pair $?angle-pairs) 90

(bind ?inst (instance-name ?angle-pair))

(bind ?pair (implodes (send ?inst get-angles)))

(bind ?new-pair (sym-cat < (first ?pair) , (last ?pair) >))

(bind $?result (appends ?result ?new-pair))

then (return ?result)

else (return NONE)

100

pp pretty prints an instance of a SOLUTION object

(defmessage-handler SOLUTION pp primary ()
;;(bind Sangle-pairs ?self:relate-angle-pairs)

64

(printout t (instance-name ?self) " of "

(get -current -module)::(class ?self) crlf)

(printout t " (given-angle " ?self:given-angle ")" crlf)

(printout t " (find-angle " ?self:find-angle ")" crlf)

(printout t " (Solution track:")

(progn$ (?pair (send ?self myget -relate-angle-pairs))

(printout t crlf " (relate " ?pair ")") 110

(printout t ")" crlf)

)

FUNCTIONS

The following functions are user interface functions for use by 120

the instuctor.

Function to set the magnitude of an angle.

- angle: the angle to set

- mag: the magnitude to assign to the angle

(deffunction set-mag (?angle ?mag)

(send (instance-name ?angle) set-mag ?mag)

(run)

)

130

shortcut for set-mag

- nbr: the number of the angle to set

(deffunction sm (?nbr ?mag)

(set-mag (sym-cat Angle ?nbr) ?mag)

Function to display the magnitude of an angle.

- angle: the angle whose magnitude is required

(deffunction get-mag (?angle)

(bind ?mag (send (instance-name ?angle) get-magnitude)) 140

65

(run)

(return ?mag)

)

shortcut for get-mag

- nbr: the number of the angle whose magnitude you wish to know

(deffunction gm (?nbr)

(return (get-mag (sym-cat Angle ?nbr)))

)

150

Function to get ALL the angles' magnitudes.

(deffunction get-mag-all ()

(loop-for-count (?nbr 1 8) do

(printout t "Angle" ?nbr " " (gin ?nbr) crlf)

)

(return)

shortcut for get-mag-all

(deffunction gma 0 160

(get-mag-all)

This is a function to build parallel, bisected line problems

- given: the angle number of the given angle magnitude

- mag: the magnitude of the given angle

- find: the angle number whose magnitude the student is to find

(deffunction define-problem (?given ?mag ?find)

(sin ?given ?mag)

) 170

Shortcut for function define-problem

- given: the angle number of the given angle magnitude

- mag: the magnitude of the given angle

- find: the angle whose magnitude the student is to find

(deffunction dp (?given ?mag ?find)

(define-problem ?given ?mag ?find)

66

Function to print ALL solutions 180

(deffunction print-solutions-all ()

(do-for-all-instances ((?soln SOLUTION)) TRUE

(send ?soln pp)

)

Shortcut for function print-solutions-all

(deffunction p-s-a ()

(print -solutions-all)

) 190

Function to print all solutions for the specified problem

(deffunction print-solutions (?given ?find)

(do-for-all-instances ((?soln SOLUTION))

(and (str-eq ?given (send ?soln get-given-angle))

(str-eq ?find (send ?soln get-find-angle))

)

(send ?soln pp)

)

200

Shortcut for function print-solutions

(deffunction p-s (?given ?find)

(print-solutions (str-cat Angle ?given) (str-cat Angle ?find))

Function to copy solution to MAIN

(deffunction copy-solution (?old-soln)

(bind ?soln-instance (instance-name ?old-soln))

(make-instance of (sym-cat (get-current-module) -SOLUTION) 210

(given-angle (send ?soln-instance get-given-angle))

(find-angle (send ?soln-instance get-find-angle))

(solution-track (send ?soln-instance myget -relate-angle-pairs))

)

67

Function to make copies of all solutions for the specified problem

(deffunction copy-all-solutions (?given ?find)

(do-for-all-instances ((?soln SOLUTION))

(and (str-eq ?given (send ?soln get-given-angle)) 220

(str-eq ?find (send ?soln get-find-angle))

)

(copy-solution ?soln)

)

)

RULES

230

(defrule congruent-angle "set magnitude on congruent angles"

(declare (auto-focus TRUE))

(object (is-a RELATION) (magnitude-relation congruent)

(angles ?al ?a2))

(object (is-a ANGLE) (name ?al) (magnitude ?magl))

(object (is-a ANGLE) (name ?a2) (magnitude ?mag2))

(test (or (= ?magi -1) (= ?mag2 -1)))

(test (!= ?magl ?mag2))

(if (= ?magl -1) then (set-mag ?al ?mag2) 240

else (set-mag ?a2 ?magl))

(defrule supplementary -angle "set magnitude of supplementary angles"

(declare (auto-focus TRUE))

(object (is-a RELATION) (magnitude-relation supplementary)

(angles ?al ?a2))

(object (is-a ANGLE) (name ?al) (magnitude ?magl))

(object (is-a ANGLE) (name ?a2) (magnitude ?mag2))

(test (or (= ?magl -1) (= ?mag2 -1))) 250

(test (!= ?magl ?mag2))

68

(if (= ?magl -1) then (set-mag ?al (- 180 ?mag2))

else (set-mag ?a2 (- 180 ?magl)))

EXPERT CONSTRUCTS

These are constructs which must be defined for EXPERT module

RELATION INSTANCES

(definstances ALTERNATE-INTERIOR-RELATIONS

(Relate3-6 of RELATION (angle-relation alternate-interior)

(magnitude-relation congruent)

(angles [Angle3] [Angle6])) 10

(Relate4-5 of RELATION (angle-relation alternate-interior)

(magnitude-relation congruent)

(angles [Angle4] [Angle5]))

(definstances CORRESPONDING-RELATIONS

(Relatel-5 of RELATION (angle-relation corresponding)

(magnitude-relation congruent)

(angles [Anglel] [Angle5]))

(Relate2-6 of RELATION (angle-relation corresponding) 20

(magnitude-relation congruent)

(angles [Angle2] [Angle6]))

(Relate3-7 of RELATION (angle-relation corresponding)

(magnitude-relation congruent)

(angles [Angle3] [Angle7]))

(Relate4-8 of RELATION (angle-relation corresponding)

(magnitude-relation congruent)

(angles [Angle4] [AngleSi))

30

(definstances VERTICAL-RELATIONS

69

(Relatel-4 of RELATION (angle-relation vertical)

(magnitude-relation congruent)

(angles [Anglel] [Angle4]))

(Relate2-3 of RELATION (angle-relation vertical)

(magnitude-relation congruent)

(angles [Angle2] [Angle3]))

(Relate5-8 of RELATION (angle-relation vertical)

(magnitude-relation congruent)

(angles [Angle5] [Angle8])) 40

(Relate6-7 of RELATION (angle-relation vertical)

(magnitude-relation congruent)

(angles [Angle6] [Angle7]))

(definstances ADJACENT-RELATIONS

(Relatel-2 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary)

(angles [Anglel] [Angle2]))

(Relatel-3 of RELATION (angle-relation adjacent) 50

(magnitude-relation supplementary)

(angles [Anglel] [Angle3]))

(Relate2-4 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary)

(angles [Angle2] [Angle4]))

(Relate3-4 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary)

(angles [Angle3 [Angle4]))

(Relate5-6 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary) 60

(angles [Angle5] [Angle6]))

(Relate5-7 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary)

(angles [Angle5] [Angle7]))

(Relate6-8 of RELATION (angle-relation adjacent)

(magnitude-relation supplementary)

(angles [Angle6] [Angle8]))

(Relate7-8 of RELATION (angle-relation adjacent)

70

(magnitude-relation supplementary)

(angles [Angle7] [Angle8])) 70

)

SOLUTION INSTANCES

(definstances EXPERT-SOLUTIONS

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relatel-2])

) 80

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relatel-2])

)

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relatel-3])

) 90

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relatel-3])

)

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relatel-4])

) 100

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relatel-4])

)

71

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relatel-5])

) 110

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relatel-5])

)

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relatel-5] [Relate5-6])

) 120

here is one multiple solution for testing...

(of' SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relatel-3] [Relate3-6])

)

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relate2-6] [Relatel-2]) 130

)

(of SOLUTION

(given-angle (instance-name Anglel))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relatel-5] [Relate5-7])

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relate5-7] [Relatel-5]) 140

)

(of SOLUTION

72

(given-angle (instance-name Anglel))

(find-angle (instance-name AngleS))

(relate-angle-pairs [Relatel-4] [Relate4-8])

)

(of SOLUTION

(given-angle (instance-name Angle8))

(find-angle (instance-name Anglel))

(relate-angle-pairs [Relate4-8] [Relatel-4]) 150

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate2-3])

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relate2-3]) 160

)

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate2-4])

)

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relate2-4]) 170

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate2-4] [Relate4-5])

)

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle2))

73

(relate-angle-pairs [Relate4-5] [Relate2-4]) 180

)

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate2-6])

)

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relate2-6]) 190

)

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate2-6] [Relate6-7])

)

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relate6-71 [Relate2-6]) 200

(of SOLUTION

(given-angle (instance-name Angle2))

(find-angle (instance-name AngleS))

(relate-angle-pairs [Relate2-4] [Relate4-81)

)

(of SOLUTION

(given-angle (instance-name Angle8))

(find-angle (instance-name Angle2))

(relate-angle-pairs [Relate4-8] [Relate2-4]) 210

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate3-4])

74

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate3-41) 220

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate3-4] [Relate4-5])

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate4-5] [Relate3-4]) 230

)

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate3-6])

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate3-6]) 240

)

(of SOLUTION

(given-angle (instance-name Angle3))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate3-7])

)

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate3-7]) 250

)

(of SOLUTION

(given-angle (instance-name Angle3))

75

(find-angle (instance-name Angle8))

(relate-angle-pairs [Relate3-4] [Relate4-8])

)

(of SOLUTION

(given-angle (instance-name AngleS))

(find-angle (instance-name Angle3))

(relate-angle-pairs [Relate4-8] [Relate3-4]) 260

)

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate4-5])

)

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate4-5]) 270

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate4-5] [Relate5-6])

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate5-6] [Relate4-5]) 280

)

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate4-5] [Relate5-7])

)

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate5-7] [Relate4-5]) 290

76

)

(of SOLUTION

(given-angle (instance-name Angle4))

(find-angle (instance-name Angle8))

(relate-angle-pairs [Relate4-8])

)

(of SOLUTION

(given-angle (instance-name Angle8))

(find-angle (instance-name Angle4))

(relate-angle-pairs [Relate4-8]) 300

)

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate5-6])

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate5-61) 310

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate5-7])

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate5-7]) 320

(of SOLUTION

(given-angle (instance-name Angle5))

(find-angle (instance-name Angle8))

(relate-angle-pairs [Relate5-8])

(of SOLUTION

77

(given-angle (instance-name Angle8))

(find-angle (instance-name Angle5))

(relate-angle-pairs [Relate5-8]) 330

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate6-7])

)

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate6-7]) 340

)

(of SOLUTION

(given-angle (instance-name Angle6))

(find-angle (instance-name Angle8))

(relate-angle-pairs [Relate6-81)

)

(of SOLUTION

(given-angle (instance-name AngleS))

(find-angle (instance-name Angle6))

(relate-angle-pairs [Relate6-8]) 350

(of SOLUTION

(given-angle (instance-name Angle7))

(find-angle (instance-name AngleS))

(relate-angle-pairs [Relate7-8])

(of SOLUTION

(given-angle (instance-name Angle8))

(find-angle (instance-name Angle7))

(relate-angle-pairs [Relate7-8]) 360

)

78

RULES

(defrule expert-solutions "rule to call the EXPERT print-solutions"

(declare (auto-focus TRUE))

?temp <- (expert-solutions ?given ?find) 370

(retract ?temp)

(p-s ?given ?find)

(defrule get-expert-solutions "rule to get all the EXPERT solutions"

(declare (auto-focus TRUE))

?temp <- (get-expert-solutions ?given ?find)

(retract ?temp) 380

(copy-all-solutions ?given ?find)

(defrule expert-get-mag "rule to call the EXPERT get-mag"

(declare (auto-focus TRUE))

?temp <- (expert-gn ?angle)

(retract ?temp)

(bindresult (get-mag ?angle))

) 390

(defrule expert-define-prob "rule reacts and then focuses STUDENT"

(declare (auto-focus TRUE))

(define-problem ?given ?mag ?find)

change all angle mags back to -1

(do-for-all-instances ((?angle ANGLE))

(!= -1 (send ?angle get-magnitude))

(send ?angle put-magnitude -1)

) 400

(dp ?given ?mag ?find)

79

(focus STUDENT)

)

(defrule expert-gma "get all magnitudes in EXPERT module"

(declare (auto-focus TRUE))

?temp <- (expert-gma)

(retract ?temp)

(gma) 410

)

(defrule expert-relate "get relations between two angles"

(declare (auto-focus TRUE))

?temp <- (expert-relate ?angl ?ang2)

(retract ?temp)

(if (not

(do-for-instance ((?rel RELATION))

(and (members (instance-name ?angl) ?rel:angles) 420

(members (instance-name ?ang2) ?rel:angles))

(bindresult (send ?rel get-angle-relation)

(send ?rel get-magnitude-relation))

then (bindresult UNRELATED UNRELATED)

)

(defrule expert-mag-relate "get expert magnitude relation"

(declare (auto-focus TRUE)) 430

?temp <- (expert-mag-relate ?angle-rel)

(retract ?temp)

(do-for-instance ((?rel RELATION))

(str-eq ?rel:angle-relation ?angle-rel)

(bindresult (send ?rel get-magnitude-relation))

)

80

STUDENT CONSTRUCTS

These are constructs which must be defined for STUDENT module

FUNCTIONS

Function to define relationship between two angles, 10

- al: the first angle to relate

- a2: the second angle to relate

(deffunction relate (?al ?a2 ?ang-rel ?mag-rel)

(if (do-for-instance ((?inst RELATION))

(or (and (str-eq ?al (nth$ 1 ?inst:angles))

(str-eq ?a2 (nth$ 2 ?inst:angles)))

(and (str-eq ?a2 (nth$ 1 ?inst:angles))

(str-eq ?al (nth$ 2 ?inst:angles))))

(bind ?reln ?inst)

) 20

then ;; this relation already exists, so just modify it

;;(send (instance-name ?reln) put -angle-relation ?ang-rel)

;;(send (instance-name ?reln) put -magnitude-relation ?mag-rel)

(modify-instance (instance-name ?reln)

(angle-relation ?ang-rel)

(magnitude-relation ?mag-rel)

)

else ;; this relation DNE, so create it

(bind ?reln (make-instance of RELATION

(angle-relation ?ang-rel) 30

(magnitude-relation ?mag-rel)

(angles (instance-name ?al) (instance-name ?a2))

)

) ;;endif

81

(if (do-for-instance ((?inst SOLUTION))

(and (str-eq ?*find-angle* ?inst:find-angle)

(str-eq ?*given-angle* ?inst:given-angle)

(bind ?soln ?inst) 40

then ;; modify existing SOLUTION, else no problem defined

(if (not (members ?reln (send ?soln get-relate-angle-pairs)))

then ;; this exact relation DNE in SOLUTION, so add it

(bind $?old-angles (send ?soln get-relate-angle-pairs))

(send ?soln put-relate-angle-pairs (appends ?old-angles ?reln))

)

(run)

50

shortcut for relate

- nbrl: the angle number of first angle to relate

- nbr2: the angle number of second angle to relate

(deffunction r (?nbrl ?nbr2 ?ang-rel ?mag-rel)

(relate (sym-cat "Angle" ?nbrl)

(sym-cat "Angle" ?nbr2)

?ang-rel ?mag-rel)

60

RULES

(defrule student-solutions "rule to call the STUDENT print-solutions"

(declare (auto-focus TRUE))

?temp <- (student-solutions ?given ?find)

(retract ?terp)

(p-s ?given ?find) 70

)

82

(defrule get-student-solution "rule to get the STUDENT solution"

(declare (auto-focus TRUE))

?temp <- (get-student-solution ?given ?find)

(retract ?temp)

(copy-all-solutions ?given ?find)

)

80

(defrule student-relate-angles "rule to call STUDENT relate"

(declare (auto-focus TRUE))

?temp <- (relate ?al ?a2 ?ang-rel ?mag-rel)

(retract ?temp)

(r ?al ?a2 ?ang-rel ?mag-rel)

(defrule student-get-mag "rule to call the STUDENT get-mag"

(declare (auto-focus TRUE)) 90

?temp <- (student-gmn ?angle)

(retract ?temp)

(bindresult (get-mag ?angle))

(defrule student-define-prob "rule reacts to focus by EXPERT"

?temp <- (define-problem ?given ?mag ?find)

(retract ?temp) 100

;; change all angle mags back to -1

(do-for-all-instances ((?angle ANGLE))

(!- -1 (send ?angle get-magnitude))

(send ?angle put-magnitude -1)

(dp ?given ?mag ?find)

(bind ?given-angle (sym-cat Angle ?given))

(bind ?find-angle (sym-cat Angle ?find))

(if (not (do-for-instance

83

((?soln SOLUTION)) 110

(and (str-eq ?given-angle ?soln:given-angle)

(str-eq ?find-angle ?soln:find-angle))

(send ?soln put-relate-angle-pairs (create$)))

)

then

(make-instance of SOLUTION

(given-angle (instance-name ?given-angle))

(find-angle (instance-name ?find-angle))

) 120

(defrule student-gma "get all magnitudes in STUDENt module"

(declare (auto-focus TRUE))

?temp <- (student-gma)

(retract ?temp)

(gma)

)

130

84

Appendix C. Curtain Interface Tcl/Tk Code

#procedure to force a variable to an integer angle between 0 and 180

proc tcl-forceAng {name element op} {

upvar $name x ${name}_old x.old

if { ($x < 0) 11 ($x > 180) } {

tclIEOmsg "Invalid angle magnitude! Must be between 0 and \

180 degrees. Changing $x to previous value of $x-old."

set x $x-old

}

set x-old $x

} ;* end of procedure tcl-forceAng 10

procedure to display a message for the instructor to read

proc tclIEOmsg {msg} {

set index 0

while {[winfo exists .instructor$index]} { incr index }

toplevel .instructor$index

wm title instructor$index "Instructor"

frame .instructor$index.f -relief raised -borderwidth 4

pack .instructor$index.f

message .instructor$index.m -width 6i -justify left -text Smsg \ 20

-relief sunken -borderwidth 4

pack instructor$i ndex. m -in .instructor$index.f -fill both

button .instructor$index.b -text "Go away" -command "destroy \

.instructor$index"

pack .instructor$i ndex. b -in .instructor$i n d ex.f

I

procedure to display a message for the student to read

proc tcl-student-msg {msg) {

global curtain-remote curtain-local curtain -remote-display 30

global curtain-student

set mindex 0

set sindex 0

while {[winfo exists .message$mindex]} { incr mindex }

while {[winfo exists .student$sindex]} { incr sindex }

85

toplevel message$mindex -screen $curtain-remote-display

toplevel .student$sindex

wn title messageSmindex $curtain-student

wm title .student$sindex "Student'

frame .student$sindex.f -relief raised -borderwidth 4 40

pack .student$sindex.f

frame .message$mindex.f -relief raised -borderwidth 4

pack .message$mindex.f

message .message$mindex.m -width 6i -justify left -text $msg \

-relief sunken

message .student$sindex.m -width 6i -justify left -text $msg \

-relief sunken

pack .message$mindex.m -in .message$mindex.f

pack .student$sindex.m -in .student$sindex.f

button .messageSmindex.b -text "Go away" -command "destroy \ 50

.messageSmindex"

button .student$sindex.b -text "Go away" -command "destroy \

.student$sindex"

pack .message$mindex. b -in .messagesmi ndex.f

pack .student$sindex.b -in .student$sindex.f

}

proc tcl-type-message {} {

toplevel .typemsg

wm title .typemsg "Enter Message" 60

wm iconname .typemsg "Message"

frame .typemsg.top

frame .typemsg.bottom

label .typemsg.1 -text \

"Please enter the message for the student:

entry .typemsg.e -width 100 -relief sunken \

-textvariable curtain-stu-msg

.typemsg.e icursor 0 ;# position insertion cursor at beginning

.typemsg.e selection range 0 end ;# highlight text for easy deletion

pack .typemsg.top -side top -padx 3m -pady lm 70

pack .typemsg.bottom -side bottom -padx 3m -pady lm

pack .typemsg.1 .typemsg.e -side top -in .typemsg.top

86

button .typemsg.ok -text OK -command{

tcl-student-.msg $curtain-.stu-msg

destroy .typemsg

button .typemsg.c -text Cancel -command {destroy .typemsg}

pack .typemsg.ok .typemsg.c -side left -in .typemsg.bottom

bind .typemsg.e <Return> {focus .typemsg.ok}

focus .typemsg.e 80

procedure to build a prompt to select an angle

proc tcl-create-angle-prompt {name title label} I

global curtain-angle

toplevel .$name

wm title .$name Stitfe

frame .$name.top

frame .$name.bottom

pack S$nametop -side top -padx 3m -pady 1m 90

pack .$name.bottom -side bottom -padx 3m -pady lm

label .$name.e -text $Aabel

pack .Sname.1 -in .$name.top

for {set i 1} {$i < 9} fincr i} I

radiobutton .$name.b$i -text 'Angle $i" -variable curtain-angle\

-value $i

pack .$namebi -side left -in .$name.top

} ;# end of for loop

button .$name.ok -text OK -command " destroy .$name

button .$name.can -text Cancel -command 100

set curtain-.angle \\

destroy Iname

pack .$name.ok .$name.can -side left -in .$name.bottom

focus .$name.ok

tkwait window Sname

return $curtain-.angle

};# end of procedure tcl-create-angle-prompt

87

procedure to prompt for solution, and call CLIPS-solution 110

proc tcl-solution {} {

global curtain-find curtain-mag

trace variable mag w tcl-forceAng

if { $curtain-find != 0 } {

* create prompt for student solution

set mag $curtain.mag

toplevel .get-magnitude

wm title get-magnitude "Get Magnitude"

label .get-magnitude.1 -text \

"Please enter the magnitude of Angle$curtain -find:" 120

entry .get-magnitude.e -relief sunken -textvariable curtain-mag

.get-magnitude.e icursor 0 ;# pos insertion cursor at beginning

.get-magnitude.e selection range 0 end ;# highlight text

pack .get-magnitude.1 .get-magnitude.e -side left

bind .get-magnitude.e <Return> { destroy .get-magnitude }

focus .get-magnitude.e

tkwait window get-magnitude

set mag $curtain-mag

set curtain-mag $mag ;# mag is traced, so set c-mag to valid mag

if { $mag != "" } { 130

puts "CLIPS-solution Smag"

flush stdout

}

} else {
tcl_IEOmsg "No problem to solve! Define a problem first."

} ;# end of if curtain-find

} ;# end of procedure tcl-solution

procedure to actually make the CLIPS-get-mag call

proc tcl-get-mag {} { 140

set angle [tcl-create-angle-prompt get-magnitude "Get Magnitude"\

"Please select the angle whose magnitude you require:"]

if { $angle = ""ll } {
puts "CLIPS-get-mag $angle"

flush stdout

}

88

} ;* end of procedure tcl-get-mag

procedure to prompt for the definition of a relation

proc tcl-get-rel-defn {relatel relate2} { 150

global curtain-defn

toplevel .tgrd

wm title .tgrd "Define Relations"

frame .tgrd.top

frame .tgrd.bottom

pack .tgrd.top -side top -padx 3m -pady 1m

pack .tgrd.bottom -side bottom -padx 3m -pady lm

label .tgrd.1 -text "Angle~refatel and Angle$retate2 are:"

pack .tgrd.1 -in .tgrd.top

foreach i {congruent supplementary} { 160

radiobutton .tgrd.b$i -text $i -variable curtain-defn -value $i

pack .tgrd.b$i -side left -in .tgrd.top

} ;# end of for loop

button .tgrd.prompt -text "Prompt student" -command

tcl-student-msg \"Are Angle$reeatel and Angle$retate2 congruent \

or supplementary?\" "

button .tgrd.ok -text OK -command " destroy .tgrd

button .tgrd.can -text Cancel -command " set curtain-defn \"\"

destroy .tgrd

pack .tgrd.ok .tgrd.can .tgrd.prompt -side left -in .tgrd.bottom 170

tkwait window .tgrd

return $curtain.defn

} ;# end of procedure tcl-get-rel-defn

procedure to build a prompt to select a relation

proc tcl-get-relation {relatel relate2} {

global curtain-relation

toplevel .tgr

wm title .tgr "Select Relation"

frame .tgr.top 180

frame .tgr.bottom

pack .tgr.top -side top -padx 3m -pady 1m

pack .tgr.bottom -side bottom -padx 3m -pady 1m

89

label .tgr.1 -text "Which defines the relation between \

AngleSretatel and Angle$retate2?"

pack .tgr.1 -in .tgr.top

foreach i {vertical adjacent alternate-interior corresponding} {

radiobutton .tgr.b$i -text $i -variable \

curtain-relation -value $i

pack .tgr.b$i -side left -in .tgr.top 190

} ;# end of for loop

button .tgr.prompt -text "Prompt student" -command

tcl-student-msg \"Define the relationship between Angle$refatel\

and AngleSrefate2. Are they vertical, adjacent,\

alternate-interior, or corresponding angles?\"

button .tgr.ok -text OK -command " destroy .tgr

button .tgr.can -text Cancel -command "

set curtain.relation \"\"

set curtaindefn \"\" 200

destroy .tgr "

pack .tgr.ok .tgr.can .tgr.prompt -side left -in .tgr.bottom

tkwait window .tgr

return $curtain.relation

} ;# end of procedure tcl-get-relation

procedure to get the angles to relate and call the CLIPS-relate

proc tcl-r.elate {} {

get the angles to relate

set relatel [tcl-create-angle-prompt relate-angles "Relate Angles"\ 210

"Please select the FIRST angle to relate:"]

if { $retatel _= "" } {

set relate2 [tcl-create-angle-prompt relate-angles "Relate Angles"\

"Please select the SECOND angle to relate:"]

define the relations between the selected angles

if { $re~ate2 '- "" } {

set relation [tcl-get-relation $retatel $retate2]

call CLIPS-relate function if parms present

if { $retation "" . {
set relation-defn [tcl-get-rel-defn Sretatel $retate2] 220

90

if { Sretation-defn _= "" } {

puts "CLIPS-relate $retatel $retate2 $reeation $retation-defn"

flush stdout

} ;# end of if relation-defn

} ;# end of if relation

} ;# end of if relate2

} ;# end of if relatel

;# end of procedure tcl-relate

procedure to call the CLIPS-get-definition 230

proc tcl-get-definition {} {

#get the term to define

toplevel .get-term

wm title .get-term "Which term?"

frame .get-term.fb

pack .get-term.fb -side bottom

label .get-term.1 -text \

"Please select the term to define:"

pack .get-term.1

foreach t {supplementary congruent vertical adjacent 240

alternate-interior corresponding} {

button .get-term.b$t -text $t -command

puts \"CLIPS-get-definition St\"

destroy .get-term
11

pack .get-term.b$t -side left

} ;# end of for loop

button .get-term.bc -text Cancel -command { destroy get-term }

pack .get-term.bc -in .get-term.fb

} ;# end of procedure tcl-get-definition 250

procedure to call the CLIPS-procedure define-problem after querying

instructor for the parms

proc tcl-define-problem {} {

global curtairnmag curtain-find

trace variable mag w tcl-forceAng

create prompt for given angle

91

set given [tcl-create-angle-prompt given-angle "Given Angle"\

"Please select the KNOWN angle for the problem:"]

if { $given _= "" } { 260

create prompt for given magnitude

set mag $curtain.mag

toplevel .get-magnitude

wm title .get-magnitude "Get Magnitude"

label .get-magnitude.1 -text \

"Please enter the magnitude of Angle$given:"

entry .get-magnitude.e -relief sunken -textvariable curtain-mag

.get-magnitude.e icursor 0 ;# pos insertion cursor at beginning

.get-magnitude.e selection range 0 end ;# highlight text

pack .get-magnitude.1 .get-magnitude.e -side left 270

bind .get-magnitude.e <Return> { destroy .get-magnitude }

focus .get-magnitude.e

tkwait window get-magnitude

set mag $curtain.mag

set curtain-mag $mag ;# mag is traced, so set c-mag to valid mag

if { $mag != "" } {

* create prompt for find angle

set find [tcl-create-angle-prompt find-angle "Find Angle"\

"Please select the angle whose magnitude must be \

found:"] 280

if { $find != "" } {

* actually call the CLIPS-function after sending message

* also bind global variable for use in tcl-solution

set curtain-find $find

set msg "Given: magnitude of Angle $given =

Snag, Find: magnitude of Angle $find."

tcl-student-msg $msg

puts "CLIPS-define-problem $given $mag $find"

flush stdout

} ;# end of if find 290

} ;# end of if mag

} ;# end of if given

} ;# end of procedure tcl-define-problem

92

procedure to display instructions to the student

proc tcl-display-instr {} {

global curtain-remote curtain-local curtainsremote-display

global curtain-path

toplevel .stu-instr -screen $curtain.remote.display

toplevel .instr-instr 300

foreach tl {stu-instr instrinstr} {

wm title .$ti "General Instructions"

wm iconname .$tI "Instructions"

wm iconbitmap .$ti C${curtain-path}/images/parallel.icon

wm geom .$tt +0+615

wm minsize ste 680 20

frame .bot

pack .$t.bot -side bottom -fill both

310

message .$tI.m -width 705 -justify left -text "You will be \

presented with some geometry problems related to the parallel \

lines figure above. Please answer the questions loudly and \

clearly, so the microphone can pick up your responses. The \

tutoring system will prompt you with additional instructions \

or requests. Good luck!"

pack .$tt.m -expand yes -fill both -padx 2m -pady 2m

}
button .stu-instr.bot.quit -text "Go Away" -command {destroy \

.stu.instr} 320

pack .stu-instr.bot.quit

button .instr-instr.bot.quit -text "Go Away" -command {

destroy .instr-instr

}
pack .instr-instr.bot.quit

procedure to display the current student model

proc tcl-display-model {} {

global curtain-list curtain-student curtain-path 330

93

set index 0

while {[winfo exists .student-model-$index]l I incr index I

set ti student-model-$index

toplevel .$tt

wm title .$ti "Model of $curtain-.student"

wm iconname .$tt $curtain-student

wm geom .$tt +0+0

wm minsize .$tt 40 60

340

frame .$tebot

pack .$tt.bot -side bottom -fill both

set maxx 600

set maxy 300

set minx 10

set miny 10

set basex 130

set basey 50

set deltax 20 350

set deltay 50

set concepts [array names curtain-list]

image create bitmap .$tetgtad \

-file ${1curtain-path} /images /glad.bmp\

-maskfile $ {curtain-path}/images/face.msk \

-background yellow -foreground black

image create bitmap .$ttsad \

-file ${curtain-path} /images/sad.bmp\

-maskfile ${1curtain-path} /images /face.msk \

-background red -foreground black 360

canvas .$tt.c -width $mnaxx -height Smnaxy -bd 2 -relief sunken

.$tt.c create text [expr ($maxx - $minx)/2] Smniny\

-text "Concept hits and misses"

foreach concept $concepts I

puts "CLIP S-get -student -concept $concept"

flush stdout

#set curtain-ist($concept) {-1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1}

tkwait variable curtain-ist ($concept)

94

.$tW~c create text $minx $basey -text $concept -anchor sw

set xleft $basex 370

foreach mod $curtain.list($concept) {

if {$mod > 0} { set face sad} else {set face glad}

.$ttc create image xteft $basey -image .$t~face -anchor sw

incr xleft $deltax

}
#set basey [expr $basey + $dettay]

incr basey $dettay

}

pack .$tt.c -expand yes -fill both -padx 2m -pady 2m

button .$ttbot.quit -text "Go Away" -command "destroy St' 380

pack .$t.bot.quit

procedure to update the mastery level required for the student

proc tcl-change-threshold {} {

global curtain-threshold

* create prompt for student solution

toplevel .getcthreshold 390

wm title .get-threshold "Get Threshold"

label .get-threshold.1 -text \

"Please enter the number of correct responses required for mastery:"

entry .get-threshold.e -relief sunken -textvariable curtain-threshold

.get-threshold.e icursor 0 ;# pos insertion cursor at beginning

.get-threshold.e selection range 0 end ;# highlight text

pack .get-threshold.1 .get-threshold.e -side left

bind .get-threshold.e <Return> { destroy .get-threshold }

focus .get-threshold.e

tkwait window .geLthreshold 400

set threshold $curtain-threshold

threshold is traced, so set curtain-threshold to valid threshold

set curtain.threshold $threshold

if { $threshotd != ""ll } {
puts "CLIPS-change-threshold $threshold"

95

flush stdout

}
}

procedure to display a GIF figure for the student 410

proc tcl-displaypic {} {

global curtain-remote curtain-local curtainsremote-display

global curtain-path

toplevel .stu-fig -screen $curtainremote-display

toplevel .instr-fig

foreach tl {stu.fig instr-fig} {

wm title .$t "Parellel Lines Diagram"

wm iconname .tt "Parallel"

wm iconbitmap .$tt ${curtain-path}/images/parallel.icon

wm geom .Stt +0+0 420

wm minsize .$tt 680 520

frame .ti.bot

pack .ti.bot -side bottom -fill both

image create photo .tt.cimage -format gif -file \

$ {curt ain-path} /images/parallel.gif

canvas .$tE.c -width 691 -height 531 -bd 2 -relief sunken

.$tt.c create image 10 10 -image .tf.cimage -anchor nw

pack .$tE.c -expand yes -fill both -padx 2m -pady 2m 430

I

button .stu-fig.bot.quit -text "Go Away" -command {destroy .stu-fig}

pack .stu-fig.bot.quit

button .instr-fig.bot.quit -text "Go Away" -command {

destroy .instr-fig

I

pack .instr-flg.bot.quit

I

procedure to display main selection menu for the instructor 440

proc tcl-menu {} {

global curtain-local curtain-local-display

96

global curtain-remote curtainremote-display

global curtain-student

exec rsh -n $curtain-remote "setenv DISPLAY :0.0; \

xhost +$curtain-local"

tcl-display-pic

tcl-display.instr

450

Send C function call to init CLIPS to stdout

(stdout is a pipe to Curtain)

puts "C-InitClips $curtain.student"

flush stdout

destroy .ok .c .e

.1 configure -text "Select an action:"

pack .1 -in bottom

menubutton .mbc -menu .mbc.m -text Commands

menubutton .mbs -menu .mbs.m -text System

menu ,mbc.m 460

menu mbs.m

.mbc.m add command -label "Display current student model" \

-command tcl-display-model

.mbc.m add command -label "Change student mastery threshold" \

-command tcl-change-threshold

.mbs.m add command -label "Save and quit" -command {

puts "CLIPS-quit"

flush stdout

exit

} 470

.mbs.m add command -label Quit -command exit

pack .mbs .mbc -in top -side left

button .gd -text "Display a definition to the student" \

-command {tcl-get-definition}

button .dp -text "Define a geometry problem" \

- command { tcldefine-problem}

button ra -text "Relate two angles" -command tcl-relate

button .ss -text "Suggest a solution" -command tcl-solution

button .msg -text "Type a message to the student" -command \

97

tcl-type-message 480

pack .gd .dp .ra .ss .msg -in .bottom -fill x

wm geom . -0+25

I

procedure to display prompt for student s machine

proc tcl-get-remote {} {
global curtain-remote

global env

set curtain-remote $env(HOST)

wm geom . -0+28 490

.1 configure -text \

"Please enter the machine the STUDENT will be working on:

.e configure -relief sunken -textvariable curtain-remote

.e icursor 0 ;# position insertion cursor at beginning of entry

.e selection range 0 end ;$ highlight text for easy deletion/mod

pack .top -side top -padx 3m -pady 1m -fill x

pack .bottom -side bottom -padx 3m -pady 1m

pack .1 .e -side top -in .top

.ok configure -text OK -command {

set curtain-local Senv(HOST) 500

set curtain-local-display $env(DISPLAY)

if {$curtain.remote == ""} { set curtain-remote $curtain-local }

set curtain-remote-display ${curtain-remote}:0

tcl-menu

I
pack .ok .c -side left -in .bottom

bind .e <Return> {focus .ok}

focus .e

}

510

main portion of Tcl/Tk; ask for remote machine and call tcl-menu

set curtain-mag 0

set curtain-find 0

set curtain-threshold 1

array set curtain-list {

congruent {0}

98

supplementary {0}

vertical {0}

corresponding {0}

alternate-interior {0} 520

adjacent {0}

}

set templist [array names env]

if [expr -1 < [lsearch -exact $temptist CURTAINPATH]] {

set curtain-path $env(CURTAINPATH)/TCL

} else {
if [expr -1 < [lsearch -exact Stemptist PWDI] {

set curtain-path $env(PWD)/TCL

} else {exit}

} 530

wm title . "Curtain ITS"

wm iconname . "Curtain"

wm geom. -10+0

wm minsize . 1 1

frame .top -relief sunken -borderwidth 4

frame bottom -relief sunken -borderwidth 6

label .1 -text \

"Please enter a unique identifier for the STUDENT:

entry .e -relief sunken -textvariable curtain-student 540

pack .top -side top -padx 3m -pady 1m

pack bottom -side bottom -padx 3m -pady 1m

pack .1 .e -side top -in .top

button .ok -text OK -command {

if {$curtain.student 1= ".. tclget-remote

}

button .c -text Cancel -command exit

pack .ok .c -side left -in bottom

bind .e <Return> {focus .ok}

focus .e 550

99

Bibliography

1. Anderson, John R., et al. "Intelligent Tutoring Systems," Science, 228:456-462 (1985).

2. Beller, Sieghard and H. Ulrich Hoppe. "Deductive Error Reconstruction and Classifi-
cation in a Logic Programming Framework." Artificial Intelligence in Education, 1993,
edited by Paul Brna, et al. 433 - 440. Association for the Advancement of Computing
in Education (AACE), aug 1993.

3. Burton, Richard R. and John Seely Brown. "An investigation of computer coaching
for informal learning activities." Intelligent Tutoring Systems, Computers and People,
edited by D. Sleeman and J. S. Brown. 79-98. Harcourt Brace Jovanich, 1982.

4. Carbonaro, A., et al. "Modelling the student in Pitagora 2.0," User Modeling and
User-Adapted Interaction, 4 (4):233-251 (1995).

5. de Barros Costa, Evandro, et al. "Mathema: A Learning Environment Based on
a Multi-Agent Architecture." Advances in Artificial Intelligence: Proceedings of the

12 th Brazilian Symposium on Aritificial Intelligence, edited by Jacques Wainer, et al.
Springer-Verlag Berlin Heidelberg, October 1995.

6. Dean, Thomas, et al. Artificial Intelligence Theory and Practice. The Ben-
jamin/Cummings Publishing Company, Inc., 1995.

7. Giangrandi, P. and C. Tasso. "Truth maintenance techniques for modelling student's
behaviour," Journal of Artificial Intelligence in Education, 6(2-3):153-202 (1995).

8. Hartley, J.R. and D.H. Sleeman. "Towards More Intelligent Teaching Systems," In-
ternational Journal of Man-Machine Studies, 2:215 - 236 (1973).

9. Holt, Peter, et al. "The State of Student Modelling." Student Modelling: The Key
to Individualized Knowledge-Based Instruction 125. NATO Special Programme on Ad-
vanced Educational Technology, edited by Jim E. Greer and Gordon I. McCalla. 3-35.
Springer-Verlag, 1994.

10. Huang, X., et al. "Revising deductive knowledge and stereotypical knowledge in a
student model," User Modeling and User-Adapted Interaction, 1:87-115 (1991).

11. Jr., Freeman A. Kilpatrick. A Generic Intelligent Architecture for Computer-Aided
Training of Procedural Knowledge. PhD dissertation, Air Force Institute of Technology,
1996.

12. Kabrisky, Matthew. "The Promise of an Artificial Intelligence Future." From IEEE
meeting in Dayton, OH, 1983.

13. Kambouri, M., et al. "Knowledge Assessment: tapping human expertise by the
QUERY routine," Int J. Humane Computer Studies, 40:119-151 (1994).

14. Leman, Stephane, et al. "A Multi-Agent Approach to Model Student Reasoning Pro-
cess." Proceedings of Al-ED 95 - 7 th World Conference on Artificial Intelligence in
Education, edited by Jim Greer. 258-265. Charlottesville, VA, USA: Association for
the Advancement of Computing in Education, August 1995.

100

15. Marcenac, Pierre. "An authoring system for ITS which is based on a generic level of
tutoring strategies." 4th International Conference on Computers and Learning. 1992.

16. McCormack, J. S. and J. E. Biegel. "A student model to acquire problem-solving
strategies." Proceedings of the Eighth Florida Artificial Intelligence Research Sympo-
slum. FLAIRS-95, edited by J. H. Stewman. 16-20. St. Petersburg, FL, USA: Florida
AI Res. Soc, April 1995.

17. Nour, M., et al. "A proposed student model algorithm for an intelligent tutoring
system." SICE '95. Proceedings of the 3 4th SICE Annual Conference.. 1327-1333.
Soc. Instrum. & Control Eng, 1995.

18. Ragnemalm, Eva L. "Student diagnosis in practice; bridging a gap," User Modeling
and User-Adapted Interaction, 5(2):93-116 (1995).

19. Shute, Valerie J. "SMART: Student modeling approach for responsive tutoring," User
Modeling and User-Adapted Interaction, 5(1):1-44 (1995).

20. Shute, Valerie J. and Josepf Psotka. Intelligent Tutoring Systems: Past, Present,
Future. Technical Report AL/HR-TP-1994-0005, USAF, Armstrong Laboratory, 1994.

21. Villano, M. "Probabilistic Student Models: Bayesian belief networks and knowledge
space theory." Second International Conference Intelligent Tutoring Systems. 491-498.
1992.

22. Winston, Patrick Henry. Artificial Intelligence. Addison-Wesley Publishing Company,
1992.

23. Yazdani, Masoud. "Intelligent Tutoring Systems: An Overview." Artificial Intelligence
and Education1, edited by Robert W. Lawler and Masoud Yazdani. 183 - 201. Ablex
Publishing Corporation, 1987.

24. Ziegler, U. M. "Use of a neural network to diagnose student errors in an intelligent
tutoring system." World Congress on Neural Netwroks-San Diego4. 459-464. Hillsdale,
NJ, USA: Lawrence Erlbaum Associates, June 1994.

101

Vit

Captain Jeremy E. Thompson

U raduaed from Lavina High School, Lavina,, Montana, in M;ay 1984. O.-Jue 18,

1I;, Jeremy enlisted in the L)6 Air Force, Upon eraduatiori f. urm Basic Miliary Traingi),

School, Jeremy wp,; sent to Lowry AFB, Colorado, where he completen L:gistirs Man-

•gernent training and wa, stationed for his first, assignment as an Inventory Management

Specialist at RAF Greenhamn Common, United Kingdom. While stationed at RAF Green-

ham Conumon, Jeremy was accepted into the Airman's Educdtion and CommissioNing

Proj/ram to complete his Bachelor of Science in Electrical Engineering at the University

of Missouri-Ro!la (,.MR). Graduation from UMR led Jeremy to Officer Training School.

Jeremy became Second Lieutenant Thompson on September 25, 1991 and moved to Keesler

AFEI to complete Basic Communication-Computer Officer Training (BCOT).

Upoi graduation fro1m 13COT in March, 1992, Lt Thompson was assigned to t.SSTRAT-

COM Nat Offutt AFB, Nebrx-ska. His duties th,:re included the ho3ting and testing of an

advanced radar model developed by scientists at the Massachusetts Institute of 'rechnol-

ogy Lincoln Laboratory. In May 1995, Lt Thompson entered the Air Force Institute of

Technology (AFIT) at Wright-Patterson AFB, Ohio, to pursue a Master of Science degree

with a concentration in Artificial Intelligence. Upon graduation from AFIT in December

1996, Captain Thompson was re-assigned to Air University, Maxwell AFB, Aabama.

102

REPORT DOCUMENTATION PAGE Form Approved
DOUMENTATION _PAGE[OMB No 0704-0188

PU hc 'eo - 'c - s , e i rm ation s est:saee c ajeereg " sor De, 'esocrse, n Iruai g e tine 'cr rev ew ,ng nst ruc sl .,earr. n e 5ng e x i ata so rces
gathering 3n main ta4 , g he eata needed, anc omoetmg re,,e Send comments -eardaig th1s burder estimate 3r 3nv tner asoect of m ns
coleC!on f iq rravc

n ,
ch.oirg s ugestons 'or ec icl-4 r s brle , !iasn~t ;ton -edau r-es Serces . rem ora e tor nformation Ooerators ano Reorls, 12 5 efferson

oais H gh,a,, 3,te 12C4 g 22202 2 a d e ire f f a'ag ee! Ar, 3,ael. . n-orvcrk Reducton Pr ect (0704-0188), -ashrton OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 19961 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM

6. AUTHOR(S)
Capt Jeremy E. Thompson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology REPORT NUMBER

2950 P Street
WPAFB OH 45433-6583

9. SPONSORING/IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AL/HRTI AGENCY REPORT NUMBER

7907 Lindbergh Drive
Brooks AFB TX 78235

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
This thesis explores a new approach to modeling the student in an intelligent tutoring system (ITS), by providing
a student model which learns new solutions from the student. A prototype of the new approach is demonstrated
in the Euclidean geometry domain. Complete C++, CLIPS, and Tcl/Tk code listings are included in the
appendices. Adaptable multiple software agents were targeted for implementation, based on current literature.
However, the student model is found to be maintainable without multiple software agents, while still allowing for
tracking several possible solution paths when monitoring student solutions, which contradicts previously reported
research. The student model provides a learning module capable of recognizing new solutions provided by the
student. These new solutions may then be included in the expert knowledge base. In addition to a learning
student model, other concepts from the current ITS literature are explored and implemented. Mastery levels
are implemented to aid in cognitive diagnosis. Symbolic knowledge, procedural skill, and conceptual knowledge,
are explored and applied to the research. The student model prototype is both a pedagogic-content model and
a subject-matter model. Additionally, a new division of labor between the student model and the instructor
module in ITSs is described.

14. SUBJECT TERMS 15. NUMBER OF PAGES

student modeling, intelligent tutoring systems, artificial intelligence 112
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 S ardarO ;or- 298 'Re, 2-89)

2'.
-
12

	Student Modeling in an Intelligent Tutoring System
	Recommended Citation

	tmp.1691168570.pdf.chNL0

