
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

A Test-Case Based Approach to Bayesian Knowledge Base A Test-Case Based Approach to Bayesian Knowledge Base

Incompleteness Detection and Correction Incompleteness Detection and Correction

Louise J. Lyle

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lyle, Louise J., "A Test-Case Based Approach to Bayesian Knowledge Base Incompleteness Detection and
Correction" (1996). Theses and Dissertations. 5874.
https://scholar.afit.edu/etd/5874

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5874?utm_source=scholar.afit.edu%2Fetd%2F5874&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A Test-Case Based Approach

to Bayesian Knowledge Base

Incompleteness Detection and Correction

THESIS
Louise J. Lyle

Captain

AFIT/GCS/ENG/96D-17

Apptoved kn pm-Ak mj
Dbftibutic Uiikmhftd

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DTIC QUALIT UNSPEC=D I

AFIT/GCS/ENG/96D-17

A Test-Case Based Approach

to Bayesian Knowledge Base

Incompleteness Detection and Correction

THESIS
Louise J. Lyle

Captain

AFIT/GCS/ENG/96D-17

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/96D-17

A Test-Case Based Approach

to Bayesian Knowledge Base

Incompleteness Detection and Correction

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Louise J. Lyle, B.S., M.A.

Captain

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

This has been an interesting, no doubt character building experience, that I'll probably look back

on with humor.

Thanks to all the individuals who contributed to my time here at AFIT - the teachers who

filled my life with stress and knowledge, and the classmates who did their best to help me remember

the knowledge and forget the stress.

I particularly want to thank my advisor Dr. Santos for the direction and motivation for

producing this research effort, and to the rest of my committee, Maj. Banks and Dr. Hartrum, for

ploughing through it and giving me suggestions on improvements.

As to the PESKI group ... good wonder twin Dan, GUI (gooey?) Bob, and QuickBKBrett

... gee guys, it was fun while it lasted. Thanks for the support and encouragement - from now on,

every time I get a seg fault, this wonder twin'll think of you. :)

Louise J. Lyle

Table of Contents

Page

Acknowledgements.......

List of Figures vi

List of Tables vii

Abstract. viii

I. Introduction. 1-1

I. Background. 2-1

2.1 Knowledge Acquisition - Elicitation 2-1

2.1.1 Missing Data 2-1

2.1.2 Unavailable Data. 2-2

2.1.3 Unreliable Data 2-2

2.1.4 Invalid Data 2-3

2.2 Knowledge Acquisition - Representation. 2-3

2.2.1 Bayesian Knowledge Base (BKB) 2-4

2.3 Verification & Validation 2-6

2.3.1 BVAL. 2-6

III. Incompleteness Methods 3-1

3.1 Definitions 3-1

3.1.1 Direct Dependence 3-1

3.1.2 Indirect Dependence. 3-1

3.1.3 Test-Case 3-2

3.2 Test-Cases 3-2

3.3 Incompleteness Paths 3-4

Page

3.3.1 Straight Paths - Case 1. 3-5

3.3.2 "V" Paths - Case 2. 3-15

IV. Results 4-1

4.1 Case 1 - High Straight Path 4-1

4.2 Case 1 - Low Straight Path 4-4

4.2.1 Mutual Exclusion Problems 4-5

4.3 Case 2 - High "V" Path 4-7

4.3.1 Mutual Exclusion Problems 4-9

4.4 Case 2 - Low "V" Path. 4-9

4.4.1 Mutual Exclusion Problems 4-9

V. Conclusions. 5-1

VI. Recommendations. 6-1

6.1 Test-Case Suite 6-1

6.2 Data-Mining Tie-In. 6-1

6.3 Knowledge Acquisition. 6-1

6.4 PESKI Incorporation 6-2

Bibliography. BIB-i

Appendix A. PESKI A-1

A-1 Current Status A-2

Appendix B. MUTUAL EXCLUSION AND CYCLIC KNOWLEDGE. B-1

B.1 Mutual Exclusion B-i

B.1.1 Effects on KA and Validation B-2

B.2 Cyclic Knowledge B-3

B.2.1 Effects on KA and Validation B-3

iv

Page

Appendix C. Incompleteness Runs C-i

CAi Case 1 - High Path. C-i

0.2 Case 1 - Low Path- 2

C.3 Case 2 - High "V" Path- 4

0.4 Case 2 - Low "V" Path.- 6

Vita. VITA-i

V

List of Figures

Figure Page

2.1. Simple Bayesian Knowledge base 2-5

3.1. Direct Dependency Region 3-3

3.2. Case 1 Straight Paths 3-6

3.3. Case 1 High - Before Fix 3-7

3.4. Case 1 High - After Fix 3-8

3.5. Case 1 Low "Special Case" 3-9

3.6. Case 1 Low - Before Fix 3-11

3.7. Case 1 Low - After Fix 3-12

3.8. Case 1 Low - Mutex Problems and Corrections 3-14

3.9. Case 2 High "V" Paths 3-16

3.10. Case 2 Low "V" Path 3-17

4.1. Case 1 High - BKB Structure Before Change 4-2

4.2. Case 1 High - BKB Structure After Change 4-3

4.3. Case 1 Low - BKB Structure Before Change 4-5

4.4. Case 1 Low - BKB Structure After Change 4-6

4.5. Case 2 High - BKB Structure Before Change 4-7

4.6. Case 2 High - BKB Structure After Change 4-8

4.7. Case 2 Low - BKB Structure Before and After Change 4-10

A.1. The PESKI architecture A-1

vi

List of Tables

Table Page

4.1. Data source for healthy and unhealthy goldfish and conditions 4-1

vii

AFIT/GCS/ENG/96D-17

Abstract

This work develops tools and techniques to identify particular Bayesian Knowledge Base

(BKB) incompletenesses, and to modify the existing knowledge-base (KB) structure to correct

these problems. The methodology performs manually or automatically, informing the user of either

problems causing the incompleteness, or of details resulting from the automatic knowledge-base cor-

rection. The proposed methodology is designed for integration with BVAL[9], to augment BVAL's

validation techniques.

viii

A Test-Case Based Approach to Bayesian Knowledge Base Incompleteness

Detection and Correction

L Introduction

An important focus within artificial intelligence (AI) is the idea of knowledge-based systems

(KBSs). Such systems could assist in decision making and reasoning, freeing human counterparts

to focus attention on other areas. In addition, such systems could potentially offer new insights into

heretofore unsolved, possibly intractable, problems. The origin of KBSs can be traced back to the

1960s, with the creation of DENDRAL in 1965. DENDRAL was the first AI program to emphasize

the power of specialized knowledge over generalized problem- solving methods[3]. The development

of DENDRAL opened the door for subsequent KBSs to build on its vision. Possibly the best known

of these successors were MYCIN[3] (a blood disease diagnosis tool), PROSPECTOR[7] (a geologic

mineral exploration tool), and XCON/RI[15] (a computer system configuration tool).

While the goal of KBSs may be easy to enunciate, problems in design and implementation

continue. Two such problems are the areas of uncertainty and knowledge acquisition (KA). Both

seem inextricably linked; even if we could solve the problem of uncertainty, the problem of getting

the desired knowledge into the system would be no easier to attain[21]. With disagreements among

experts, as well as the existence of unknown knowledge 1, it is possible that KA would be no easier

to attain with consistency methods in place. Assuming, however, knowledge could be elicited, the

knowledge itself must then be validated and verified to ensure the reliability of the system.

Much work has been done to address some of the issues of KA and knowledge-base (KB)

verification and validation (V & V) within the AI community. However, there seems to be no

consensus on the "best" way to proceed, since each method, whether in the realm of KA, V & V,

'Neither human nor machine can really claim to know everything since nothing can know of something that will
be learned/created at a future time. Hence, unknown knowledge may exist.

1-1

representation, etc., appears to have benefits and limitations in its use. This research focuses on

a single aspect of the entire KBS process, V & V, with direct applications to the probabilistic

representation scheme of Bayesian Knowledge Bases (BKBs). Within V & V, the main concern

is ensuring acceptable system performance-specifically, that the system will provide acceptable

responses to every query. Thus the system must be able to verify the KB, ensuring it is collected

and structured correctly; and the system should be equipped to validate the KB, to ensure the

knowledge produces correct results. While the validation tool BVAL[9] was developed to address

both these issues, it does not further tools to handle incompleteness discovered during operation.

This research addresses the incompleteness problem.

Chapter II presents background on KA elicitation, KA representation, and V & V. Incom-

pleteness methods developed are the focus of Chapter III, the application of these methods to

specific test-case examples form Chapter IV, and Chapter V offers conclusions drawn from this

research. Suggestions for future research in this field are offered in Chapter VI.

1-2

II. Background

Central to the development of any KBS is the idea of knowledge acquisition (KA), a two-part

procedure consisting of eliciting knowledge from an expert source (knowledge elicitation), and

representing the knowledge in a formal way (knowledge representation). Because of problems in

the area of knowledge elicitation (KE) and knowledge representation (KR), KA has often been

termed the "bottleneck" of KBS or expert system development[8].

2.1 Knowledge Acquisition - Elicitation

Automated techniques have been developed, such as the use of inductive tools and data-mining

(automatic knowledge extraction from databases), to formalize the process of KE as the construction

of a more concrete model of problem solving behavior[6].The intelligent tool MORE[13], for example,

looks for inconsistencies in user input and successfully uses models to structure the KE process.

Although such automated techniques are effective, and may be used in conjunction with

more established procedures of direct interaction between human knowledge engineers and human

experts, problems with the bottleneck remain. Many problems continue to be shared by machine-

based and human-based approaches, and these contribute to the incompleteness factor (IF) of the

knowledge base. Some of these problems are as follows:

1. Missing data.

2. Unavailable data.

3. Unreliable data.

4. Invalid data.

2.1.1 Missing Data. While automated techniques are designed to be thorough in their

elicitation from human domain experts, it is still possible that the expert will "forget" crucial

factors for which the system will not prompt. Oftentimes, human experts have difficulty expressing

2-1

implicit knowledge', leading to missing facts in the KB. In addition, even apparent non-human

sources (like large databases) were often initially created from human expertise and thus may also

contain knowledge gaps of this type that are then passed on to the developing KBS.

2.1.2 Unavailable Data. Very few domains are completely enumerated. The medical field,

for example, is in a constant state of flux. New drugs are discovered, new techniques perfected, all

of which affect the state of knowledge in the field; medical expertise is constantly being expanded

with new expertise. Therefore, to build an expert system for medical use, regardless of methods

used to elicit knowledge, information will be missing. In addition, some cures, diseases, and side

effects are simply not yet known and thus their incorporation into a KB not possible. But these

cures, diseases, and side effects, if they were known, would have a place in the KB. Since this

knowledge cannot be incorporated, the KB is incomplete, since KB interaction with the missing

fragments of knowledge is not known.

2.1.3 Unreliable Data. Experts disagree. Given a collection of "experts" in any domain,

it is unlikely they will come to concrete agreement on all topics of concern to the knowledge

engineer[5, 10]. Thus decisions must be made as to what is included in the KB, and as to the

reliability of the included data. If the data is represented, an incorrect determination of the effects

of the data on the KB in general could make the data unreliable. If the KB is unreliable, it is

incomplete - it is missing the "right" meaning. Consider the simple example where we want to

determine if it is day or night based on whether the sun is shining. We have two represented rules:

1. Sun is shining = It is day (with probability 0.0)

2. Sun is shining = It is night (with probability 1.0)

The relationships of the sun shining and whether it is day or night is represented in Rules 1 and

2; however the probabilities are incorrect. Thus, given the sun is shining, the correct implication

'Knowledge known at a subconscious level, "second nature" type information that is often difficult to enunciate[5].

2-2

should be that it is day; however, the KB responds that it is night. Thus the data stored is

unreliable and incomplete.

2.1.4 Invalid Data. Invalid data can result from input error, specification error, or a

knowledge error2 . If KB data is invalid, the KB is incomplete, since the valid form of the data

is missing from the KB. For example, if the KB should contain the information "THE SKY IS

BLUE", but actually contains the information "THE SKY IS RED", the KB is invalid since the

information "THE SKY IS RED" is wrong. In addition, the correct instantiation of "THE SKY IS

BLUE" is not represented so the KB does not contain a complete specification of SKY.

2.2 Knowledge Acquisition - Representation

Another aspect of the KA process is knowledge representation (KR), the mechanism whereby

expert knowledge is stored in the target system. The choice of a KR is the responsibility of the

knowledge engineer, one of whose major considerations is the handling of uncertainty - uncertainty

about the knowledge represented, about the validity of the knowledge, and about the translation

of the knowledge[23]. Most things cannot be categorized as either true or false. In many cases it is

more a degree of correctness that must be represented. While there is often a notion of cause and

effect between events, our understanding of the exact nature of what is going on is incomplete[4.

Hence uncertainty leads to incompleteness and the argument for a method to attach semantic

meanings of likelihood to the represented knowledge. Popular methods use probability, making

use of the strong theoretical foundation of probability theory. Bayesian networks[4, 19, 171 are

a method of KR where probabilistic information is incorporated into the knowledge represented.

Specifically, an intuitive "if-then" type rule structure, linked to the reasoning model employed by

experts[3, contains attached probabilistic data related to the likelihood that specific events occur.

2It is possible for knowledge to be thought correct, and yet be proved false at a later time. For example, the drug

thalidomide was once thought a safe sedative, only to be later discovered to have serious side-effects for the unborn
fetus of pregnant women[14].

2-3

2.2.1 Bayesian Knowledge Base (BKB). An extension of the Bayesian Network repre-

sentation, used in the development of PESKI (see Appendix A), is the Bayesian Knowledge Base

(BKB)[2, 23, 9, 22]. Components or random variables (rvs) represent events and/or objects, and

each of these may assume one or more states or instances. Thus, if the object "SKY" is an rv,

its instantiations could include "SKY = clear blue", "SKY = grey", or "SKY = black". It is also

important to note certain objects may be independent of others (e.g. "SKY = grey" has nothing to

do with "CAR - fiat"). Independence,however, cannot be universally applied else meaning is lost

("SKY = grey" is not independent of "RAINING = true"). Bayesian approaches avoid oversimpli-

fication by couching their independence assumptions in terms of conditional dependencies3 [22].

The BKB representation is a directed graph consisting of s-nodes, i-nodes, and arcs that

connect the two node types4. I-nodes, or instance nodes, correspond to individual rv instantiations

(rv states). I-nodes must have at least one inbound arc from an s-node to establish their probability,

and may have zero or more outbound arcs[22]. S-nodes, or support nodes, contain probabilistic

values. They have exactly one outbound connector, leading to an i-node, and zero or more inbound

arcs. Intuitively, each i-node has one or more parent s-nodes, and one or more child s-nodes.

S-nodes have exactly one child i-node, and zero or more parent i-nodes (Figure 2.1).

I-nodes with an outbound connection to a specific s-node form a support condition for the

i-node at the terminus of the s-node's outbound arc. Each i-node so attached to the s-node is

referred to as a tail condition for the support. A support condition contains those rv-instances

(tails) that must be active for the supported i-node (the child of the s-node) to be active. Thus if

"Cough" and "Well" are rvs, and if "Cough = true" implies "Well = false", "Cough = true" forms

a support condition with one tail (namely "Cough = true") for "Well = false". The probability for

3 For a discussion of Bayes theorem, P(A I B) = P(B) , see [4, 19, 17, 1].
4Arcs may not connect nodes of the same type. Thus, arcs only connect individual s-nodes to individual i-nodes,

not s-node to s-node or i-node to i-node.

2-4

0.3 0.2

0.2

Sky blue Clouds none

Coug true

0.3

Rain = none 0.7

0.1 0.1

Path - dry Day = nice Well fals

Figure 2.1 Simple Bayesian Knowledge base. The solid circles are support nodes (s-
nodes) and ovals are instance nodes (i-nodes). Interior text represents instance
information, and is of the form "m name = state name"

the event "Well = false" given "Cough = true" is stored in the s-node linking the two instantiations

(see Figure 2.1).

Certain constraints of the representation are of particular interest:

1. Only one instance of an rv may be active at any one time.

2. Support conditions for a particular rv instantiation must be mutually exclusive to ensure

BKB consistency.

3. Cyclic knowledge is not acceptable.

(See Appendix B for discussion of items 2 and 3. For a complete discussion on all BKB constraints,

see Banks[2].)

2-5

2.3 Verification & Validation

An important stage in the development process of a KBS is knowledge-base verification and

validation (V & V). This procedure ensures system reliability for specific tasks, and that minimal

levels of performance are guaranteed. These latter measures of performance must be assured before

widespread system use[10]. Generally verification is building the system right whereas validation

refers to building the right system[18]. This research addresses the area of validation. Expert

system validation, testing systems to ascertain whether they achieve acceptable performance levels,

has (with few exceptions) been ad hoc, informal, and of dubious value[18]. In fact, much of the

focus in V & V has been on verification, and the identification and correction of certain rule

inconsistencies(redundant rules, conflicting rules, missing rules, etc.[16]). In terms of validation,

and the need to check for correct system performance, a host of strategies have been devised; but

there are many problems associated with validation, including what, when, and how to validate a

system. However, typically, expert system validation consists of running a sequence of test cases

through the system and comparing system results[18, 20].

The determination of what constitutes a good test case, how many test cases are needed to

validate the system, and how to measure acceptable performance continues to be of concern[18].

However, given an acceptable suite of test cases, through the validation process, inconsistencies and

errors in the KB can be identified and repaired.

2.3.1 BVAL. BVAL[9] is designed to directly compare the KB against its requirements.

The requirements of the KB are a set of test cases, where each test case has evidence and an

expected answer[9]. BVAL assumes the KB over which validation is performed is complete5 . During

operation, BVAL performs negative and positive reinforcement learning 6 of probabilities for a given

5If BVAL encounters an incompleteness problem, it will either make assumptions or disregard information and
continue.6 1f the correct solution does not return as the highest probability, all s-nodes in the connected region[9], not in the

correct solution path, are multiplied by a reduction factor. This process ensures the best probability, after reduction
(negative reinforcement) belongs to the solution path. Afterwards upscaling is performed (positive reinforcement),
which maintains probabilistic relationships while maximizing probability values.

2-6

evidence and answer set. This method ensures that if the system is later queried with the same

evidence, the highest solution probability contains the answer.

One of the limitations of BVAL is incompleteness. When BVAL is invoked with a test-

case, it has no mechanism to automatically handle incompleteness problems. Central to BVAL's

methods are dependency regions, which are similar to the direct dependency regions discussed in

Chapter III. If problems are encountered with the test-case, in some instances BVAL arbitrarily

removes test-case data (either evidence or answer items), in others it makes assumptions about

certain test-case items. Specifically, if BVAL determines that an evidence element has no direct

bearing on an answer element, it simply removes the troublesome item from the test-case and

continues. This "modification" of the test-case is a severe limitation to BVAL's performance in

that the noted problems between evidence and answer items illustrate incompleteness problems

within the BKB that should be corrected. Similarly problematic is BVAL's tendancy to circumvent

incompleteness problems by making assumptions. In this case, if BVAL cannot find causal links

between evidence and answer, it will often "assume" the answer, despite the fact that the current

state of the knowledge base and the full test-case specified does not back up the assumption. Of

more concern in BVAL's performance is the actual view of the test-case itself. Key regions are

computed, taking evidence items as individual elements as opposed to a unified group within a

test-case. The idea of test-case dependency is discussed fully in the next section, but in general

terms, all evidence items affect all answer items. However, BVAL computes regions containing

elements that may hold for all evidence (or answer) items, or may hold for just some evidence (or

answer) items. Thus conclusions drawn from these regions may not take into account all test-case

relationship information, wherein lies the problem.

This research applies to test-cases before BVAL is invoked, determining if the KB is suf-

ficiently complete that BVAL will successfully function on a full test-case without encountering

incompleteness problems. This research identifies specific test-case anomalies and proposes tech-

2-7

niques to modify the KB to correct such problems. Alternatively, non-automatic methods are

included wherein relevant information regarding test-case inconsistencies are presented to the user.

2-8

III. Incompleteness Methods

3.1 Definitions

3.1.1 Direct Dependence. RV instances exhibiting direct dependence on each other are

connected by a strict parent or child relationship. Thus, instance A is directly dependent on

instance B if there is a either a sequence of parent nodes, or a sequence of child nodes, between A

and B that connect the two nodes. Formally,

Definition 1 An rv instance A is directly dependent on an rv instance B, if and only if there

exists a sequence of n rv instances {A, X 2 , ..., Xn- 1 , B}, where n is positive integer, and

1. Each element Si in the sequence of rv instances is an element of a support condition of Si-1,

for all i, 2 < i < n,

or

2. Each element Si in the sequence of rv instances is an element of a support condition of Si+l,

for all i, 1 i < n-1.

3.1.2 Indirect Dependence. RV instances exhibit indirect dependence on each other if

there is a connection between them, consisting of parent and child nodes. Formally,

Definition 2 An rv instance A is indirectly dependent on an rv instance B, if and only if there

exists a sequence of n rv instances {A, X 2 , ..., X,- 1, B}, where n is a positive integer, and

1. Each element Sj+j in the sequence of rv instances is an element of a support condition of Si,

or

2. Each element Si in the sequence of rv instances is an element of a support condition of Sj+i,

for all i, 1 < i < n-1.

3-1

3.1.3 Test-Case. A test-case is a collection of rv instances separated into evidence and

answer sets. The test-case is limited by the fact that neither set contains more than one instance

of a particular rv; and no rv is present in both the answer and evidence sets. Formally,

Definition 3 Let A be the set of all rv instances specific to the test-case as answers.

Let E be the set of all rv instances specific to the test-case as evidence.

Let rv(Ai) be the random variable of the ith element of A.

Let rv(Ej) be the random variable of the jth element of E.

" For all elements Ai in A, there does not exist an element Aj in A, i 0 j, such that the

rv(Ai) = rv(Aj).

* For all elements Ei in E, there does not exist an element Ej in E, i $ j, such that the

rv(E) = rv(Ej).

" For all elements Ai in A, there does not exist an element Ej in E such that the rv(Ai) =

rv(Ej).

" For all elements Ej in E, there does not exist an element Aj in A such that the rv(Ei) =

rv(A).

3.2 Test-Cases

As previously mentioned, test-cases are an acceptable and widely used method to validate

KBSs[18, 20]. For the purpose of this research, certain assumptions about test-case design were

made. By definition, a test-case consists of a set of evidence items and a set of answer items (see

above). A further constraint is the nature of the evidence and answer items. For the purpose of

the automatic portion of this research, it is assumed that the entered case is correct in its entirety.

A correct test-case, while in essence a query of the system, is also a statement of fact: Given the

specified evidence, the specified answers are true. In addition, each evidence item contributes to

3-2

each answer item, and vice versa. If this were not the case, the test-case could be as easily specified

without the non-contributor. Consider the following example: Suppose a test-case consists of three

pieces of evidence - "A = 1", "B = 1", and "C = 1"; and two answers - "X = 1" and "Y = 1".

Given the evidence, the answers should be true. If, however, "B = 1" has no direct influence on the

answers, the test-case could be better expressed without "B = 1" in the evidence set (the answers

are independent of "B = 1"). Thus, assuming the correctness of the test-case as specified, each

evidence item should directly affect each answer item. In essence the evidence items should have

an overlap in the instances they affect in the KB, and each answer should reside in this area. More

C--1

S1 I

S I

Figure 3.1 Direct Dependency Region. Region within dotted line is direct dependency
region of evidence item "D = 1".

formally, this additional test-case constraint is as follows:

* For each item Ej in the evidence set, every item Aj in the answer set is directly dependent

on Ei. Thus all answer items are in the direct dependency region' of every evidence item(see

'The direct dependency region of any rv instance, X, is the set of all rv instances in the BKB directly dependent
on X.

3-3

Figure 3.1). Since all answers are in each evidence item's dependency region, the intersection

of all the evidence dependency regions should be non-empty and contain, at a minimum, all

answer instances.

NOTE: This final constraint is key to the determination of incompleteness paths discussed in the

next section.

3.3 Incompleteness Paths

As mentioned, correct test-cases hinge on the notion of direct dependence. If such a de-

pendence cannot be established with the test-case (i.e. an answer instance is not in the direct

dependency region of some evidence element), it indicates incompleteness. Incompleteness results

from any combination of the following:

1. Missing rvs.

2. Missing instantiations.

3. Missing links.

4. Incorrect links.

Incompletenesses resulting from items 1 and 2 is not addressed in this research; therefore it is

assumed that all the needed rvs and states are present in the BKB. The current focus is on the

incompleteness caused by linking problems, since the test-case format specifies a direct link between

evidence and answer items. If there is no connection between the particular evidence and answer

instances, there is no information to guide potential connections between the two to resolve the

incompleteness other than the fact that the two are somehow dependent on each other since they

belong to the same test-case. To allow the test-case to be submitted to BVAL, direct dependencies

must exist, and therefore links must be corrected or created to facilitate this. There are many

possible "fixes" that will put an answer instance, not previously in an evidence's dependency region,

3-4

into a dependency region of an evidence item. The goal is to determine a "fix" that is better than

an arbitrary placement. Thus, information about connections between the evidence and answer

items is gathered and used to direct the fixing mechanisms.

Connections between i-nodes can be complex, but the simpler the connection, the more direct

the information relating two i-nodes2 . Connections between i-nodes are formed from a combination

of straight links between interior i-nodes. In the simplest case, there is a straight link between

i-nodes, either a strict parental or child link; however, in the complex case, there is a combination

of child and parent links between interim nodes, with the source and destination nodes forming

the end-points of a complicated "zig-zag" type path. As mentioned, the simpler the connection

between nodes, the more the direct the relationship between them. For this reason, only four

"simple" connections were used, composing two distinct path types: Straight , and "V". Further

variations on the path types (i.e. increasing the "zig-zag"), make i-nodes more removed from each

other, and thus their relationship to each other weaker and less clear. Thus paths more complex

than the simple "V" are not examined since it is difficult to determine what useful information (if

any) they could offer to the system.

3.3.1 Straight Paths - Case 1. Case 1 involves paths that consist strictly of a child link3

between an element in the upper evidence dependency region and the answer item (Case 1 High),

or strictly of a parental link4 between an element in the lower evidence dependency region and the

answer item (Case 1 Low). Case 1 paths are shown in Figure 3.2.

Because of the provisions of a test-case, the answer is directly dependent on the evidence.

However, in the high case, the answer is directly dependent on an item in the upper dependency

region of the evidence (see Figure 3.2 (a)). While simply moving the answer to an arbitrary

position within the dependency region would correct the incompleteness problem, it does not use

2Connections can be thought of as familial relationships. A tie, such as a grandparent or a great-grandchild, is a
stronger, more direct causal link than, say, a great aunt or a step-sister.3 Successive elements in the path are some child i-node of the preceding path item.

4Successive elements in the path are some parent i-node of the preceding path item.

3-5

Evidence

Answer

Evidence

."

(a) (b)

Figure 3.2 Case 1 Straight Paths. Dotted lines show direct dependency region of evidence
items. (a) High case - path originates at instance in parent portion of evidence
dependency region. (b) Low case - path originates at instance in child portion of
evidence dependency region.

the information stored in the BKB representation to make an intelligent placement. When moving

the answer, most links are kept intact to maintain as much of the relationship information as

possible between the answer and other i-nodes. The correction removes all instances of the next

to last item in the path from the supports of the answer. The evidence instance is then added to

each support, and duplicate supports removed (see Figures 3.3, 3.4). Formally, this procedure is

as follows:

* Let dr(E) be the dependency region of evidence E, such that an answer A is not in this region.

* Let P be a path of length n, from an element X in the upper dr(E) to A, such that

P = {PlP2,P3, ...,Pn-i,pn}, where pi = X and Pn = A, and Pi+i is a child of Pi for

1<i < n -1.

9 Let rv(pn-) be the rv of path element P,,-1.

3-6

" Remove all arcs between states of rv(pni-) and the support s-nodes of A.

" Add E as a support tail for each support of A, by adding arcs from E to each s-node support

of A.

* Remove duplicate supports of A.

I.

II C=I D=-1 C-2 D=2

I !

E=1

I I

Figure 3.3 Case 1 High - Before Fix. Dotted line shows direct dependency region of evidence
item before fix is made. Evidence is "E = 1', answer is "A = 1".

If the BKB was consistent before the change, it remains so afterwards as well. Of concern, however,

is whether the movement will cause other evidence/answer problems - will moving the answer so

it is in the dependency region of one evidence item cause it to move out of the dependency region

of another? Suppose the answer is moved to be in the dependency region of evidence "E = 1", and

all instances of rv "C" were removed as part of the move (see Figures 3.3, 3.4). If the answer

was in the upper part of the dependency region of another evidence item, say "E = 2", it would

still be there after the change, since no changes are made to the child connections of the answer.

If the lower dependency region of "E = 2" contained an i-node in the support of the answer (not

3-7

//

I

Figure 3.4 Case 1 High - After Fix. Dotted lines show direct dependency region of evidence
item after fix is made. Evidence is "E = 1", answer is "A = 1".

an instance of rv "C"), it still contains that i-node after the change and, therefore, the answer is

still in the dependency region of "E = 2". Thus, the only way the move will cause the answer to

move into one dependency region and out of another, is if the only connection between "E -- 2"

and the answer was a child link through one of the instances of "C" removed from the supports of

the answer. But some, if not all, of the removed instances are connected through parental links to

an element in the upper dependency region of "E = 1", and to an element in the lower dependency

region of "E =2". In this instance, after the move, the answer still remains in the dependency

region of "E =2". Thus, while it is possible that moving the answer will correct one problem and

cause another, it occurs in a relatively few number of cases, and was never actually encountered in

the process of this research.

By moving the answer as previously described, little meaning was lost and the correct de-

pendency established. The answer still depends on the first element in the path (via the evidence

3-8

item); and the specific i-node tail within the path can still be active while the answer is on since it

depends only on the first path item. For the test-cases examined in this research, this fix corrected

support problems, reinforcing and creating more intuitive causal relationships (see Appendix C.1).

B ,
/ a

A2 A- - A2

(a) (b)

Figure 3.5 Case 1 Low I'Special Case". Dotted lines show direct dependency region of
evidence item. (a) Before change. Answer, "A = 1", is outside of dependency region.
Note other instance of answer (namely "A = 2"), is in dependency region. (b) After
change. Answer is now in dependency region, supported by "B = I". Note "B = 2"
supports alternate instance of answer rv, (namely "A = 2").

Like the high case, in the low case the answer is directly dependent on an element in the

dependency region of the evidence. However, this element is in the lower dependency region as

opposed to the upper region (see Figure 3.2 (b)). Key to the corrections made in this case is the

relationship between i-nodes. In Bayesian Networks, all required connections between nodes are

present; however in BKBs, part of the strength of the representation is that complete connections

are not necessary. In a sense, it is understood that all nodes may influence all other nodes, but

3-9

only certain relationships are actually enumerated. Within this case, this implicit relationship is

exploited - the idea that whether or not the relationship is explicit in the BKB, rv states affect

other rv states with certain probabilities (which could be zero). Before the general low case fix is

discussed, a "special case" is examined that draws heavily on the previously mentioned implicit

relationship between rv states.

The presence of an alternate state of the answer in the lower dependency region of the evidence

item is considered the "special case". For example, given "A = 1" is the answer, and "A = 2" is

in the dependency region of the evidence, the special case looks at the supports of the alternate

instance "A = 2" and checks to see if support tails in the evidence dependency region have a sibling

also in the region. If so, this sibling is added as a support for the answer (See Figure 3.5 (a)). This

can be done for the following reasons:

" "B = 2" implies "A = 2" (given).

" "B = 1" implies "A = 2" (probability could be zero).

* "B = 1" implies "A = 1" (probability could be zero).

These relationships would be present if the knowledge base were fully connected like a Bayesian

network. The connection, therefore, makes sense and the new/modified answer support probability,

initially set to a default value, should be corrected during validation.

The general low case also uses the implicit relationship between i-nodes as mentioned. The

fix works upward through the dependency region of the evidence, from the support of the item in

the dependency region leading to the answer. As the procedure works its way upward, for each

i-node encountered, it checks its supports to see if sibling instances5 of the i-node's supporting tails

are in the dependency region of the evidence. If so, the procedure checks if these other instances

appear as tail conditions for some support of the i-node. If they do not, instances of the rv found

5Sibling instances of an i-node, say "I = 1", are those i-nodes who share the same rv as "I = 1", but are different
states. Thus if rv "I" had three states, "1", "2", and "3", the sibling instances of "I = 1" would be "I = 2" and "I
33-.

3-10

S -.

evidencevbegins

B B 1 B-2 B-3

- r Answer

C - I

within the dependency region are added as supports for the answer (see Figures 3.6 and 3.7). If a

point is reached where further traversal upward within the dependency region is not possible, or

the evidence item is reached, the default fix is applied6 . Formally, the procedure for the general fix

is as follows:

* Let dr(E) be the dependency region of evidence E, such that an answer A is not in this region.

6 The default fix simply adds the evidence as a direct support for the answer.

3-11

* /

~Evidence-

B-1I B-2 B-3

, Answer I

Figure 3.7 Case 1 Low - After Fix. Dotted lines show direct dependency region of evidence
item.

" Let P be a path of length n, from an element X in the lower dr(E) to A, such that

P = {P1,P2,P3,...,Pn-lPn}, where P1 = X and pn = A, and Pi+j is a parent of pi for

1< i < n-1.

" Let S be the s-node supporting pi, one of whose tails is P2.

" For each tail of S, T, inside the lower dr(E),

1. for any support tail of Ts, Taili, in the lower dr(E), is there a sibling instance of Taili,

Siblingi, in the lower dr(E).

2. if Siblingi is in the lower dr(E), and Siblingi is not a tail in any of the supports of T,

add Tail and all Siblingi in the lower dr(E) as supports for the answer Pn-

3-12

3. if no change is made, repeat steps 1 thru 3 with T, equal to S.

o If no changes are made, add evidence E as support for answer A.

It is important to note the basic difference in the high and low fixes of this case. Case 1

Low places the answer in the dependency region of the evidence simply through the addition of

supporting answer links. Thus existing dependencies between i-nodes are unaltered, only the direct

dependency known to exist between the evidence and answer (see Section 3.2) is added to the KB.

In short, Case 1 Low adds links previously missing in the KB.

Case 1 High, however, does not simply add missing links; rather it corrects links. Again the

relationship between answer and evidence mandated by their inclusion in the test-case is the driving

factor. Before the fix is made, the relationship between key i-nodes is as follows (see Figure 3.3):

1. The evidence, "E = 1", is directly dependent on "B = 1".

2. The answer, "A = 1,, is directly dependent on "B = 1".

3. "A = 1" is directly dependent on "D = 1" and "D = 2".

4. "A = 1, is directly dependent on "C = I" and "C = 2".

5. "A = 1," is indirectly dependent on "E = 1,,.

The correction results in the following relationships (see Figure 3.4):

1. The evidence, "E = 1", is directly dependent on "B = 1".

2. The answer, "A = 1, is directly dependent on "B = 1,,.

3. "A = 1 is directly dependent on "D = 1" and "D = 2".

4. "A = 1" is indirectly dependent on "C = 1'.

5. "A = 1" is directly dependent on "E = 1"'.

3-13

Thus the decision is to switch the dependency relationship between the evidence-answer pair and

the item-answer pair 7 (compare relationships #4 and #5). This is performed since the evidence-

answer direct dependency is judged more important than the other direct dependency because of

the nature of test-cases (see Section 4.1 for a specific application of the high path fix).

IY-1 Y-1 Z-1 Y-1 Z-2 Z-1 Y-1 Z-1

(a) (b) (c) (d)

Figure 3.8 Case 1 Low - Mutex Problems and Corrections.. (a) Before a change is
made, "X = 1" has a single support, "Y = I". (b) As part of the Case 1 Low fix,
"Z = 1" is added as a new support for "X = 1". The two supports are not mutually
exclusive, since "Y = 1" and "Z = 1" can both be active at the same time. (c) A
correction to the mutex problem that adds an alternate instance of "Z", namely "Z
= 2" as another tail of the "Y = 1" support. (d) Another mutex correction joins the
two supports into one.

Another key difference between the high and low fix is the idea of mutual exclusion (mutex).

As previously mentioned, the high fix maintains BKB consistency; however the low fix, as it adds

supporting answer links, often causes mutex problems (see Section B.1 for a more complete discus-

sion of mutual exclusion). These problems arise when the answer item already has a non-empty

support'. If an i-node, say "X = 1", is supported by a single s-node with no tails, the addition

of a support tail (from the low case) to this s-node clearly does not cause mutex problems. If,

7 The item in this pair is the next to last element in the Case 1 High path, and its associated siblings. In this
example, this item is "C = 1", along with "C = 2".

8A non-empty support is a support that has at least one tail condition.

3-14

however, "X = 1" has a non-empty support of "Y = 1" (see Figure 3.8(a)), and the low fix resulted

in making "Z = 1" another support for "X = 1" (Figure 3.8(b)), mutex problems result between

"Y = 1" and "Z = 1", since both can be true simultaneously. There are a number of corrections

that can be made to resolve the mutex problems, from combining supports to the addition of new

tail conditions (see Figure 3.8(c) and (d)). Since there are so many possible resolutions to the mu-

tex problem (see Section B.1), optimal resolution depends on the availability of further information

that can either eliminate poor mutex corrections, or indicate correct ones. Thus current methods,

which do not utilize outside resources, do not attempt to automatically resolve mutex disputes;

however, such methods would be invaluable (see Section 6.2 and Chapter V). Section 4.2 details a

specific application of the low path fix and the resulting mutex problems.

3.3.2 "V" Paths - Case 2. Case 2 paths involve connections between an i-node in the

dependency region of the evidence, and the answer, where the path consists of a combination of a

strict parent edge and a strict child edge meeting at a pivot point (which can be either an i-node or

an s-node). Like Case 1, there is a high and a low path. In the high path, the first element in the

path is in the upper dependency region of the evidence, hence the "V" shape is right-side-up (see

Figure 3.9). Unlike the high path, the first element in the low case path is in the lower dependency

region, hence the path has an inverted "V" shape (see Figure 3.10). Note that in the high case

there are two possible pivot points in the "V", either at an i-node9 (Figure 3.9 (a)), or at an s-node

(Figure 3.9 (b)). However, there is only a single low case, namely an i-node pivot'0 .

Whether high or low, each "V" consists of two "straight" edges, one from the dependency

region item to the pivot, and one from the pivot to the answer. By breaking each "V" path into two

straight cases and performing Case 1 fixes, the answer will end up in the dependency region of the

9 While only one s-node can be on at any time for a given i-node, it is possible for both supports tails to be active
(if the s-node probabilities are equal). Thus, this is a valid path.

10 1f the pivot point in the low case were an s-node, it would mandate two outbound arcs from the s-node for each
arm of the inverted "V" path. This would contradict the representation convention that each s-node has only a
single originating arc.

3-15

- / ' "
'S /

I I

Answer Answer

I I

II

Evidence (a) (b) ' Evidence

Figure 3.9 Case 2 High "V" Paths. Dotted lines show direct dependency region of evidence
item. (a) Pivot point in "V" path is i-node. (b) Pivot point in "V" path is s-node.

evidence as desired by the test-case. For the high case, the portion of the "V" path to the pivot" is

submitted to the Case 1 High method, resulting in the pivot's placement in the lower dependency

region of the evidence. A subsequent Case 1 Low fix of the path from the pivot to the answer will

ensure the answer's place in the evidence dependency region. A similar strategy applies to the low

"V" case, except that the pivot is first included in the evidence dependency region using the Case

1 Low method. Once the pivot is placed in the lower dependency region of the evidence, per the

Case 1 Low fix, no further changes need to be made to get the answer in the evidence dependency

region 12.

11If the actual high case pivot is an s-node, the i-node supported by the s-node is considered the pivot.
12 Since the answer is in the lower dependency region of the pivot through a strict child connection, by definition

of direct dependency, it becomes part of the dependency region of the evidence once the pivot is moved.

3-16

Evidence

I Pivot

Answer

Figure 3.10 Case 2 Low "V" Path. Dotted lines show direct dependency region of evidence
item. Pivot point in "V" path is i-node.

3-17

IV. Results

RV Name Healthy Fish/Tank State] Unhealthy Fish/Tank State

Fin Position spread clamped to body
Breathing normal rapid; labored

Nitrite level 0 > 0
Appetite normal limited/none

Stress level none mild;moderate;major
Organ failure false true

Scales normal protruding; missing
Fish color normal yellowish; greyish; poor

Fish appearance healthy swollen/bloated; thin/weak
Fish behavior normal listless; darting; scratching; poor

Diseases false true
Clarity clear murky; powdery
Color clear yellow; green; yellow and green
Odor none decaying

Ammonia level 0 > 0
Cleanliness clean brown/green film or coating

Algae none present
Chloramine not present present

Nitrate not Present present
Fish waste not present present

Decaying food not present present
Water quality good poor

Table 4.1 Data source for healthy and unhealthy goldfish and conditions. Random
variable "Diseases" can represent any of a number of disease rvs represented in the
KB.

The previous chapter presented the methods used for resolving incompleteness problems within

test-cases. The following are selected evidence/answer mismatches which illustrate each path and

the effect of the corrections made. Table 4.1 includes some of the data used to create the test-

cases, and Appendix C contains more complete transcripts of the following examples, including

each example's full test-case description.

4.1 Case 1 - High Straight Path

This test-case addresses unhealthy tank conditions:

4-1

Evidence is:
[Objects] Cleanliness = Brown/Green film or coating

Answers are
W] Fish waste = Present

casel hi - item in upper portion of DR
w] pH Level = Less than 6.0
[W pH Level >= 7.2 = False
W) Fish waste Present

- *
/\

pH level
Slessthan6

Clr Water Conditio , pH-7.2 Ammonia 3lv1 Ammonia 31v1 pH>-7.2
reen alkaline fpLe H>ig2moderate

Algresn

Cleanliness Fish waste
B/Gfilm Present

Figure 4.1 Case 1 High - BKB Structure Before Change. Graphical depiction of selected
instances in dependency region of "Cleanliness = Brown/Green Film or coating",
path to answer "Fish waste = Present", and answer supports. Dotted line arrows
represent multiple i-node supports not pictured.

As illustrated in Figure 4.1, the answer depends on the random variables "pH >= 7.2" and "Am-

monia 3-lvl". However, because of test-case restrictions, the answer must be directly influenced by

the evidence "Cleanliness = Brown/Green film or coating". After the correction (see Figure 4.2),

4-2

- -,' pH level

less than 6SI
I W I

//

Color Water Conditio I pH>-7.2
-Green -alkaline,,' -as

Algae /

=Present/

Ammonia 31v1 ' Cleanliness I Ammonia 31v1
- moderat -B/G film -high

Fish waste ,

-Present- ,/

Figure 4.2 Case 1 High - BKB Structure After Change. Graphical depiction of selected
instances in dependency region of "Cleanliness = Brown/Green Film or coating".
Note answer "Fish waste = Present" is now in this region. Dotted line arrows repre-
sent multiple i-node supports not pictured.

this is indeed the case but the the answer's immediate supports no longer contain instances of

"ipH >= 7.2", which are replaced by the evidence instance. This fix corrected a weakness in the

BKB since pH level really has no direct bearing on the presence of fish waste in the tank. The

important tail of the answer supports is related to the ammonia present in the tank, which is a

direct consequence of waste material (whether fish waste or uneaten food) remaining in the water.

This condition remains as an immediate support, along with the evidence, which also intuitively

makes sense as being a probable result of the answer condition. In this case, both instances of the

rv "PH >= 7.2" can still be true, despite the severing of their links to the immediate supports of

4-3

the answer. This is because all instances of the rv "Water Condition" depend on all instances of

the "pH level" rv, which in turn affects all instances of "pH >= 7.2". Thus, no real meaning is

lost in the BKB as a result of this correction; rather the direct link between "pH >= 7.2" and the

answer is made an indirect link, and the indirect link between the evidence and the answer is made

direct. Thus, the correct dependency, based on the test-case, is established and the consistency of

the BKB is maintained.

4.2 Case 1 - Low Straight Path

This test-case addresses healthy tank conditions:

Evidence is:
[W] Nitrite Level = 0 ppm

Answers are
[W] Water Quality = Good

casel low - item in lower portion of DR
[F] Parasites = Present
[W] Water Quality = Good

As mentioned in Section 3.3, the low case does not move links like the high fix in an attempt to

correct incorrect dependencies; rather it create links to establish missing dependencies. Figure 4.3

shows the state of the BKB before the change is made. It is intuitive that for the quality of the

water to be considered good, no harmful chemicals or materials should be in the tank. However,

there is no direct connection between the evidence and answer; rather there is an indirect connection

through "Parasites = present". While it is possible for the water condition to be good and parasites

to be present, it seems more likely that if the water condition is good, fish will remain healthy and

so will not be infected with parasites. Figure 4.4 shows the state of the BKB after a change is

made. The addition of the support to the answer now makes it possible for the answer to be true:

1. based directly on the evidence.

2. with or without parasites being present.

4-4

- N.

/

Nitrite Ivi
-0

I I

I I

Nitrite 3lvA Water Temp.
-none/low -(32-451 F

..

Stress ,l thin/weak Water quality
-mild

N N
S

Figure 4.3 Case 1 Low - BKB Structure Before Change. Graphical depiction of selected
instances in dependency region of "Nitrite lvl = 0", path to answer "Water Quality =
good", and answer supports. Dotted line arrows represent multiple i-node supports
not pictured.Note answer has one support with six tail conditions.

4.2.1 Mutual Exclusion Problems. Before the change was made, the answer had one

support with six tails. These tails did not contain an instance of the evidence rv, and thus mutual

exclusion problems resulted from the addition of the new support (see Appendix C.2). With

knowledge of what good water quality is, it is simple to say that the evidence should not be added

as a separate support, but should become part of the existing support of the answer. However,

the system cannot be expected to "know" what "good" means, or to be able to apply "common

sense" to the resolution of mutual exclusion problems. While in this case the simple addition of

the evidence to the existing supports makes sense, in the next case it might not make sense; there

may be multiple existing supports from which to choose. In addition, as mentioned in Section 3.3,

and shown in Figure 3.8, there can be numerous fixes to any mutex problem, and the selection of

4-5

-0

Nitrite 31v1 Water temp

Water qult none/low -(32-45]

intace i dpedecyreioo"ititelvi Fi".Ntease "Fihp ase.

Present", with a new support, is now in this region. Dotted line arrows represent
multiple i-node supports not pictured.

which one is best is not possible without knowledge currently not contained in the representation.

Thus, the tool developed in this research does not attempt to correct mutex problems. Instead,

it alerts the user (who should have the required expertise to resolve the problem) of the mutex

violations (see Appendix C.2) in the hopes that they will resolve them. In the future, tools such as

data-mining should provide the system with the expertise to automatically resolve such problems

without user involvement (see Chapter V and Section 6.2).

4-6

4.3 Case 2 - High "V" Path

This test-case addresses unhealthy tank conditions:

Evidence is:
[W] Clarity = Murky

Answers are
[W] Water Quality = Poor

case2 ('V') hi - item in upper portion of DR
[W] Ammonia 3-Level = High
[F] Stress Level = Major
[F] Parasites = Present
[W] Water Quality = Poor

/

// Ammonia 31v1
=high

/I
/ /

7Fish Waste Stress lvi Fish ap. ater Quality
=present /major =thin eak =oo

muk pooren

Figure 4.5 Case 2 High - BKB Structure Before Change. Graphical depiction of selected
instances in dependency region of "Clarity = murky", path to answer "Water Quality
= poor", and answer supports. Dotted line arrows represent i-node supports not
pictured. Note pivot point is "Parasites = present".

As discussed in Section 3.3, this fix uses an incremental approach to getting the answer in the

dependency region of the evidence, breaking the "V" of the path into two distinct pieces: the

4-7

/
I S

/ /'\ /

Ainm 3vl :/Amm 3lvl
-high , -high

/,I /

h WFis Waste Stressl
present / major I present,, major

Clarit Clarityy tliinlwea ater Quality
murk thin/wea poor murky -poor

Fishsapp. ater QualityFitsp
\I \\

\ ,.

ater ualit(Paraites'i

prsn poor -present /

(a) (b)

Figure 4.6 Case 2 High - BKB Structure After Change. Graphical depiction of selected
instances in dependency region of "Clarity = murky". (a) Pivot "Parasites = present"
is first placed in dependency region with a Case 1 High fix. (b) The answer, "Water
Quality = poor", is placed in the region via a Case 1 Low fix. Dotted line arrows
represent i-node supports not pictured.

first from the dependency region path item to the pivot, the other from the pivot to the answer

(see Figures 4.5). Since the Case 1 High fix, applied to the path ending at the pivot of "Para-

sites = present", will result in the pivot element residing in the lower dependency region of the

evidence, it is clear that the answer will not be in this region after the first path correction (see

Figure 4.6 (a)). Furthermore, it is clear that the connection between the pivot and the answer

now meets the requirements for a Case 1 Low fix, which will result in a direct dependency between

evidence and answer (Figures 4.6 (a) and (b)).

4-8

4.3.1 Mutual Exclusion Problems. Since part of this fix involves utilization of the Case 1

Low fix, mutual exclusion can be a problem. In this particular example, however, no mutex problems

arise from the correction since the answer had no non-empty supports (see Section 3.3). Again,

if necessary, automatic correction would not be attempted; rather. information indicating which

supports were problematic would be presented to the user for their correction. (See Appendix C.3,

Chapter V, and Sections 4.2 and 6.2).

4.4 Case 2 - Low "V" Path

This test-case addresses unhealthy tank conditions:

Evidence is:
[W] Color = Yellow

Answers are
[W] Fish waste = Present

case2 ('V')low - item in lower portion of DR
[F] Appetite = Limited/None
[F] Stress Level = Major
[W] Ammonia 3-Level = High
[W] Fish waste = Present

Section 3.3 detailed this path's correction as a single use of the Case 1 Low fix, using the part of the

"V" path from the item in the evidence dependency region to the pivot point. Figure 4.7(a) shows

the state of the BKB before a change is made; the "V" path pivot is "Ammonia 3-lvl = high".

After the change is made it is clear to see why no further corrections are needed to the BKB, since

the answer is now in the dependency region of the evidence item (Figure 4.7 (b)).

4.4.1 Mutual Exclusion Problems. Since part of this fix involves utilization of the Case 1

Low fix, mutual exclusion is a problem. Again, automatic correction is not attempted; rather

information indicating which supports are problematic is presented to the user for correction. (See

Appendix C.4, Chapter V, and Sections 4.2 and 6.2).

4-9

Coo Colo

yelo yelo

Amoi 31v

/ AAmmonia 3l I

fr'~ -hghhigh"

Stress IAl Fish Waste

- maor reentStress lvi Fish Waste
-major -resent ,

Appetite '

limited/non,'Apte

limited/non --

(a) (b)

Figure 4.7 Case 2 Low - BKB Structure Before and After Change. Graphical depiction
of selected instances in dependency region of "Color = yellow", path to answer "Fish
Waste =present". Dotted line arrows represent i-node supports not pictured. (a)
Before changes is made. (b) After Case 1 Low fix placing pivot node, "Ammonia 31v1
= High", in evidence dependency region. Note after pivot so place, answer is now in
evidence dependency region.

4-10

V. Conclusions

The tool developed for this research incorporates manual and automatic processes to handle in-

completenesses within a test-case. In the manual case, manipulations on the evidence and answer

instances are performed and results returned to the user. These manipulations involve examination

of the dependency regions of sibling instances to determine if incompleteness problems are corrected

using an alternate instance. Answers not residing in an evidence dependency region but present

within a sibling dependency region may indicate an incorrectly specified evidence item. Regardless,

this information, along with specifics on which evidence item dependency regions do not contain

answer instances, is returned to the user for manual correction.

While manual results are available, of primary importance to this effort is the automatic case,

as outlined in Chapter III. Selected test-cases were drawn from the following areas:

1. Healthy and unhealthy fish.

2. Healthy and unhealthy tank/conditions.

Methods rely heavily on the direct dependency constraint levied on the evidence and answer items

within a test-case. When the test-case violates this constraint, the closest indirect connections,

comprising one of four paths, are examined and fixes made. While modifications to the KB are

made automatically, user involvement is still necessary when mutual exclusion (mutex) problems

arise. Since the tool attaches no meaning to the KB beyond structural data, and no external tools

(see Section 6.2) are currently available to provide meaning, resolution of mutex problems without

complete enumeration, or without arbitrary selection of supports satisfying mutex constraints is

not possible.

For the test-cases examined, the total number of evidence-answer dependency mismatches

after modifications made was always less than or equal to pre-change mismatches minus the number

of actual fixes made. Formally,

Nafter !5 (Nbejore - Amade)

5-1

" where Nafter is the number of mismatches between evidence and answer items after changes

were made;

• where Nbefore is the number of mismatches between evidence and answer items before changes

were made;

* where Amade is the number of actual corrections made.

This adds credence to the belief that corrections in one case do not cause mismatches between

evidence and answer pairs previously exhibiting correct dependence on each other. While incom-

pleteness remains an issue within BKBs, used in conjunction with knowledge acquisition methods

and BVAL, the methods outlined in this research facilitate "completing" the KB to the minimal

levels required by a test-case.

While the BKB modifications made corrected incompleteness problems within a BKB, limita-

tions remain to the approach. Of primary concern is the idea of "choice". With any choice, there is

the possibility that a different choice would have yielded better results. Thus, it is important that

choices made are as informed as possible, so that an arbitrary choice is replaced by an intelligent

one. While choices made by this research were not arbitrary, information that could be used to

guide corrections was limited by what was available in the BKB representation. In essence, for the

system to "know" one fix was better than another, the knowledge of the "better" fix would have

to be in the system, in which case the problem would not exist. In other words, to intelligently fix

a problem, the system has to know how to fix it, and if it knew how to fix it, since this informa-

tion can only be garnered from the representation itself, the information would already be present

in the KB so a fix would be unneccessary1 . If the system could automatically access an outside

source which had domain knowledge, this knowledge could be used to guide more intelligent system

choices. Simply, the system could recognize its own knowledge deficiency, query an outside source,

'This is the Catch-22 of intelligent choices.

5-2

and learn what it was missing. Incorporation with PESKI (see Appendix A) would provide such

an outside source via data-mining (see Section 6.2).

Another limitation of this research that PESKI incorporation would alleviate is the mutual

exclusion problem. Optimally, mutual exclusion problems should be corrected as they are encoun-

tered so that operations are always performed on a consistent BKB, and since during correction

other incompleteness problems may disappear. Currently, there is no mechanism to suspend the

incompleteness methods to rectify mutual exclusion problems. In PESKI, however, methods for

inter-tool communications are in place that would allow movement between the V & V and KA

tools. Thus, complete incorporation would provide the user with the mechanism to begin test-case

analysis, to suspend this analysis while accessing KA tools to correct mutual exclusion problems

caused by the test-case incompleteness methods, and to resume the analysis before invoking BVAL

with a complete test-case.

5-3

VI. Recommendations

6.1 Test-Case Suite

The current work operates on a single test-case at a time. The inherent problem with such a

scheme is that the corrections made to fix one test-case may contradict another. A method whereby

a collection of test-cases, or perhaps the entire validation suite of test-cases, could be used to guide

the incompleteness detection and correction would be a significant improvement. Using all the

dependency information from a collection of cases, it may be possible to automatically determine

a more optimal fix than that currently proposed based on limited information base of a solitary

test-case.

6.2 Data-Mining Tie-In

The more information available about the links between BKB items, the less arbitrary the

nature of the incompleteness fix may be. As mentioned in Section 3.3, incompleteness results

from missing rvs or instances, and missing or incorrect links between rv instances. Utilization of a

data-mining tool would greatly improve automated techniques to correct incompleteness. Theorized

relationships between nodes could be checked before corrections made, and relationships not initially

identified by the incompleteness method could be discovered through data-mining. Rather than the

path technique described in this research, the incorporation of the additional information provided

by a data-mining tool into the incompleteness correction methods could drive corrections. More

importantly, the data-mining tool could potentially remove the need for human approval of BKB

modifications, since the database itself would perform the role of expert.

6.3 Knowledge Acquisition

Since corrections sometimes cause mutual exclusion problems, a bridge between the incom-

pleteness tool and KA tool would be beneficial. In addition, methods within KA to automatically

6-1

generate mutually exclusive tail conditions would assist the user in returning a BKB to consistency.

Automatic support generation would also benefit from a data-mining assistant, so complete enu-

meration of all possible supports would not be generated. The resulting comprehensive subset of

all possible supports would therefore include only viable support conditions derived from database

knowledge.

6.4 PESKI Incorporation

Corrections or modifications to a BKB resulting from the incompleteness determined from a

test-case can have widespread ramifications. In addition, the computer currently has little semantic

understanding of the domain and, therefore, may not be able to discriminate between a sensical

and a non-sensical fix to an incompleteness problem. Thus, some level of human involvement

in the validation process would seem preferable over a completely automated system. Currently,

the PESKI interface is virtually entirely a point-and-click mouse-based environment. Interaction

between the user and a tool of the system (say BVAL) via a "command-line" type mechanism

is not implemented1 . For advanced features such as validation, such a capability is crucial since

interaction between multiple areas (particularly between validation and KA), where automated

tools may make corrections or suggestions that require user responses, is not uncommon.

1BVAL operates as a forked process. There is currently no facility in place to allow directly interaction between
a user and the running BVAL.

6-2

Bibliography

1. Allen, Arnold 0. Probability, Statistics, and Queueing Theory with Computer Science Appli-
cations, Second Edition. Academic Press, Inc., 1990.

2. Banks, Darwyn 0. Acquiring Consistent Knowledge for Bayesian Forests. MS thesis,
AFIT/GSO/ENG/95M-01. Graduate school of engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 1995.

3. Buchanan, Bruce G. and Edward H. Shortliffe, editors. Rule-Based Expert Systems. Addison-
Wesley Publishing Company, 1984.

4. Charniak, Eugene. "Bayesian Networks without Tears," AI Magazine, 50-63 (Winter 1991).

5. Cooke, Nancy J. "Varieties of knowledge elicitation techniques," International Journal of
Human-Computer Studies, 41(6):801-849 (1994).

6. de Velde, Walter Van and Guus Schreiber. "The Future of Knowledge Acquisition: a European
Perspective," IEEE Expert, 64-66 (April 1996).

7. Duda, R., et al. "Model Design in the PROSPECTOR Consultant System for Mineral Explo-
ration," 153-167 (1979).

8. Feigenbaum, E.A. "Themes and Case Studies of Knowledge Engineering," Expert Systems in
the Micro-Electronic Age, 3-25 (1995).

9. Gleason, Howard T. Probabilistic Knowledge Base Validation. MS thesis,
AFIT/GSO/ENG/95D-04. Graduate school of engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, December 1995.

10. Gonzalez, Avelino J. and Douglas D. Dankel. The Engineering of Knowledge-based Systems.
Englewood Cliffs, NJ: Prentice Hall, 1993.

11. Harrington, Robert A., et al. "Development of an Intelligent User Interface for a Generic Expert
System." M. Gasser (Ed.), Online Proceedings of the 1996 Midwest Artificial Intelligence and
Cognitive Science Conference. 1996.

12. Harrington, Robert A., et al. "GESIA: Uncertainty-Based Reasoning for a Generic Expert
System Intelligent User Interface." To appear in the Proceedings of the 1996 International
Conference on AI Tools. 1996.

13. Kahn, Gary, et al. "MORE: An Intelligent Knowledge Acquisition Tool." Proceedings of the
Ninth International Joint Conference on Artificial Intelligence1. 581-584. August 1985.

14. Kazman, Sue. "The FDS's Deadly Approval Process," Consumers' Research Magazine,
74 (4):31-34 (April 1991).

15. McDermott, John and Judith Bachant. "R1 Revisited: Four Years in the Trenches," AI Mag-
azine, 5(3):21-32 (Fall 1984).

16. Nazareth, Derek L. "Issues in the verification of knowledge in rule-based systems," International
Journal of Man-Machine Studies, 30:255-271 (1989).

17. Ng, Keung-Chi and Bruce Abramson. "Uncertainty Management in Expert Systems," IEEE
Expert, 29-48 (April 1990).

18. O'Keefe, Robert M., et al. "Validating Expert System Performance," IEEE Expert, 81-89
(Winter 1987).

BIB-1

19. Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Mateo, CA, 1991. (Revised Second Printing).

20. Ram, Sudha and Sundaresan Ram. "Design and Validation of a Knowledge-Based System for
Screening Product Innovations," IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 26(2):213-221 (March 1996).

21. Santos, Jr., Eugene. "A Fully Integrated Probabilistic Framework for Expert Systems De-
velopment." Research proposal from Air Force Institute of Technology to Air Force Office of
Scientific Research. March 1993.

22. Santos, Jr., Eugene. "Verifying and Validating Uncertain Knowledge-Bases." Research proposal
from Air Force Institute of Technology. September 1995.

23. Santos, Jr., Eugene and Darwyn 0. Banks. "Acquiring Consistent Knowledge in the Face of
Uncertainty," IEEE Transactions on Knowledge and Data Engineering (1995). (Submitted to).

BIB-2

Appendix A. PESKI

The Bayesian Knowledge Base is a key element of the expert system architecture called PESKI

(Probabilities, Expert System, Knowledge and Inference)[21].

User Interim*e Reasoning Mechanism

Knowledge Organization & Vsldaton

Figure A.1 The PESKI architecture. The broken boarder components Knowledge
Engineer and KE Tools are considered optional.

As shown in Figure A.1, the PESKI architecture is composed of four main components:

I Natural Language Interface-provides for user-system communication by translating user

queries, and system responses, into English.

* Inference Engine-the mechanism responsible for the reasoning actions of the system,

controlling choice and application of information contained in the knowledge base.

• Explanation & Interpretation-monitors paths used by the inference engine in reaching

its conclusion.

A-i

EXER |V d I • Tol

* Knowledge Acquisition & Maintenance-provides the tools for incorporating new, or

modified, expert knowledge into the system.

There is some measure of overlap between these four components, hence PESKI facilitates the

combination of these components into three overlapping subsystems:

" User Interface-combines the Natural Language Interface and the Explanation & Interpre-

tation components.

" Knowledge Organization & Validation-combines the Explanation & Interpretation compo-

nent with the human expert, the optional knowledge engineer, and the methods for knowledge

engineering. Communication with the the Knowledge Acquisition & Maintenance component

facilitates organization, and then assists in Validation when coupled with feedback from the

Reasoning Mechanism through Explanation &Interpretation.

" Reasoning Mechanism-combines the Inference Engine and the Knowledge Acquisition &

Maintenance components. The merging of these two components stems from the belief that

in order for new knowledge to be placed in the knowledge base, some form of reasoning (and

possibly learning) must be involved. Additionally, the inclusion of the Knowledge Acquisition

& Maintenance component provides some degree of information hiding with respect to the

knowledge representation used with the knowledge base.

The PESKI architecture is sufficient for the construction of knowledge-based systems in nearly any

domain.

A. 1 Current Status

Initial work on the physical realization of the PESKI idea has begun. Currently, PESKI works

from an intelligent graphical user interface (IUI)[ll, 12], which combines Knowledge Acquisition,

Inference Engine, Verification & Validation, and Data-Mining tools. Each tool works from a main

A-2

window, with possible sub-windows'. The Knowledge Acquisition tool replaces command line KA,

performed previously with MACK[2] and MACKJr 2, and the Verification & Validation portion

incorporates a reengineered BVAL[9], altered to operate in the new environment.

'Knowledge Acquisition currently is the only tool with a sub-window, namely Edit Supports. Use of sub-windows
was necessary to reduce confusion in the main window.

2 MACKJr, written by Santos[22, 23, 21], was a refinement of MACK, which operated on Bayesian Forests.

A-3

Appendix B. MUTUAL EXCLUSION AND CYCLIC KNOWLEDGE

B.1 Mutual Exclusion

Mutual exclusion (mutex) mandates the support conditions of a target rv state must be

uniquely distinguishable from each other. So, if an rv instance is "on", only one of its supports can

be active. The following excerpt from GF21 illustrates this property. It shows the six supports for

a specific state, "Present", of the rv "Parasites". Each support has a probability of occurrence (the

number before "TAIL"), and three tall conditions comprising the support itself.

13 [F] Parasites

7 Present

SUPPORTS: 6
0.548703 TAIL: 3

16 [F] Stress Level 5 Major
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Poor

0.315973 TAIL: 3
16 [F] Stress Level 4 Mild
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.50959 TAIL: 3
16 [F] Stress Level 8 Moderate
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.533448 TAIL: 3
16 [F] Stress Level 5 Major
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.432017 TAIL: 3
16 [F] Stress Level 4 Mild
17 [W] Water Quality 4 Poor
19 [F] Fish Appearance 9 Thin/weak

0.385675 TAIL: 3
16 [F] Stress Level 8 Moderate

1GF2 is an augmented, MACKJr version of the MACK[2] BKB, Goldfish. Created by this author, it consists of
57 rvs, with each rv having between 1 and 17 states. Like Goldfish, GF2 contains information related to goldfish
and their tank surroundings.

B-1

19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Poor

B.1.1 Effects on KA and Validation. The difficulty the mutual exclusion property makes

during KA is there are no tools to automatically generate all combinations of specified supports2

to account for the mutex provision. In addition, there is sometimes a tendency to change the

dependency order to avoid complete enumeration of supports. Consider the following example:

Examining the supports for "Stress Level = Mild", taken from GF2.

16 [F] Stress Level

4 Mild

SUPPORTS: 3
0.62052 TAIL: 2

21 [W] Water Temperature 11 (32 - 45) F
19 [W] Nitrite 3-Level 8 Moderate

0.633951 TAIL: 2
21 [W] Water Temperature 11 (32 - 45) F
19 [W] Nitrite 3-Level 8 None/Low

0.675196 TAIL: 2
21 [W] Water Temperature 11 (32 - 45] F
19 [W] Nitrite 3-Level 4 High

It is intuitive that if a fish is suffering from a disease (such as Beta Finch Fin), it will experience

some stress. Assume that if a fish is so afflicted, it causes mild stress. Thus, "Beta Finch Fin = True"

causes "Stress Level = Mild", and so should be included among its supports. The simple addition

of a fourth support consisting of a single tail condition ("Beta Finch Fin = True"), violates the

mutex constraint, since it would be possible for the new support to be true in conjunction with

any of the three supports shown above. In addition, it is possible the fish may be mildly stressed

but not have Beta Finch Fin (it could have some other disease which is causing it to experience

stress). Incorporatation of the Beta Finch Fin data into the supports for "Stress Level = Mild"

2For a support with three tails, X, Y, and Z, where X, Y, and Z each have four possible states, there are 43
combinations of states of the three random variables which would result in a unique support condition.

B-2

would consist of modifying the existing supports and adding three new supports, thus accounting

for the case that the fish had Beta Finch Fin and the case when it did not.

So, support 1, would now be expressed as two supports with the following mutex tail condi-

tions:

Support la:
21 [W] Water Temperature 11 (32 - 45] F
19 [W] Nitrite 3-Level 8 Moderate
18 [D] Beta Finch Fin 4 True

Support ib:
21 [W] Water Temperature 11 (32 - 45] F
19 [W] Nitrite 3-Level 8 Moderate
18 [D) Beta Finch Fin 5 False

An alternative would be to place "Stress" as a support condition for Beta Finch Fin. If the latter

instance had fewer supports and/or fewer tails than the former, the incorporation of "Stress" into

the supports could entail significantly less time and effort on the part of the expert. Potentially,

however, this placement could be less than optimal.

B.2 Cyclic Knowledge

The cyclic knowledge constraint precludes an rv instance, A, from supporting and being

supported by the same rv instance, say X.

B.2. 1 Effects on KA and Validation. This constraint affects KA particularly in cases

where cause and effect between rv instances are not purely one directional. In GF2, for example,

a support condition for "Parasites = Present" contains "Stress Level = Moderate", since stress

makes goldfish more prone to parasitic attack. Yet, it is also true that if a goldfish has parasites,

so "Parasites = Present", the goldfish is stressed. In other words, stress may cause parasites, and

parasites may cause stress - a cyclic dependency. The problem faced during KA is where to place

the support, which location is best. This decision is often arbitrary, especially when one directional

implication is not significantly more likely than another.

B-3

Appendix C. Incompleteness Runs

C.1 Case 1 - High Path

The following partial transcript is for a test-case addressing unhealthy tank conditions:

Evidence is:
[W] Clarity = Murky
[W] Color = Yellow
[W] Odor = Decaying
[W] Ammonia Level = [.5 - 11 ppm
[Objects] Cleanliness = Brown/Green film or coating
[W] Algae = Present
[W] Nitrite Level = [.25 - .5) ppm
[F] Stress Level = Mild
[W] Chloromine = Present
[WI Nitrate = Present

Answers are
[W1 Fish waste = Present
[W] Decaying Food = Present
[W] Water Quality = Poor

TESTING EVIDENCE #4: [Objects] Cleanliness = Brown/Green film or coating
Answer #0, [W] Fish waste = Present, not dependent on evidence
Answer #1, [W] Decaying Food = Present, not dependent on evidence
Answer #2, [W] Water Quality = Poor, not dependent on evidence

Continue auto on evidence:
[Objects] Cleanliness = Brown/Green film or coating and answer #0? (Y/N) y

casel hi - item in upper portion of DR
num elements = 3
[W] pH Level = Less than 6.0
[WI pH Level >= 7.2 = False
[W] Fish waste = Present

BKB modified, BKB is consistent.

Supports of answer before Case I High Fix resulted in the inclusion of the answer in dependency

region of evidence.

14 [WI Fish waste

7 Present

C-i

SUPPORTS: 4
0.478348 TAIL: 2

19 [W] Ammonia 3-Level 8 Moderate
19 [W] pH Level >= 7.2 5 False

0.553183 TAIL: 2
19 [W] Ammonia 3-Level 4 High
19 [WI pH Level >= 7.2 5 False

0.37888 TAIL: 2
19 [W] Ammonia 3-Level 8 Moderate
19 [W] pH Level >= 7.2 4 True

0.447621 TAIL: 2
19 [W] Ammonia 3-Level 4 High
19 [W] pH Level >= 7.2 4 True

Answer supports after changes made

14 [WI Fish waste

7 Present

SUPPORTS: 2
0.3788800000 TAIL: 2

19 [W] Ammonia 3-Level 8 Moderate
21 [Objects] Cleanliness 27 Brown/Green film or coating

0.5531830000 TAIL: 2
19 [W] Ammonia 3-Level 4 High
21 [Objects] Cleanliness 27 Brown/Green film or coating

C.2 Case 1 - Low Path

The following transcript is for the regular low case.

Evidence is:
[W] Clarity = Clear

[W] Odor = None
[WI Ammonia Level = 0 ppm
[WI Algae = None
[W] Nitrite Level = 0 ppm
[WI Nitrate = Not Present

Answers are
[WI Fish waste = Not Present
[W] Water Quality = Good

C-2

TESTING EVIDENCE #4: [W] Nitrite Level = 0 ppm
Answer #0, [W] Fish waste = Not Present, not dependent on evidence
Answer #1, [W] Water Quality = Good, not dependent on evidence

Continue auto on evidence: [W] Nitrite Level = 0 ppm and answer #1? (Y/N) y

casel low - item in lower portion of DR

[F] Parasites = Present
[W] Water Quality = Good

not special low case
BKB modified, new SDU status is as follows
Two s-nodes are not mutually exclusive

Component/state: [W] Water Quality = Good
Supports are I and 0

Before changes were made, the BKB supports were as follows:

17 [W] Water Quality

4 Good

SUPPORTS: 1
0.673736 TAIL: 6

17 [W] Ammonia Level 5 0 ppm
11 [W] Clarity 5 Clear
9 [W] Color 5 Clear
8 [W] Odor 4 None
14 [W] Chloromine 11 Not Present
11 [W] Nitrate 11 Not Present

After the change, the supports reflect the addition of a fifth support, the cause of the mutual

exclusion problems, but the correction of the answer not belonging to the dependency region of the

evidence.

17 [W] Water Quality

4 Good

SUPPORTS: 2
0.6737360000 TAIL: 6

17 [W] Ammonia Level 5 0 ppm
11 [W] Clarity 5 Clear
9 [W] Color 5 Clear
8 [W] Odor 4 None

14 [W] Chloromine 11 Not Present

C-3

11 [W] Nitrate 11 Not Present

0.0500000000 TAIL: 1
17 [W] Nitrite Level 5 0 ppm

C.3 Case 2 - High "V" Path

The following transcript is for the high "V" case.

Evidence is:
[W] Clarity = Murky

[W1 Color = Yellow

[W] Odor Decaying
[W] Ammonia Level = [.5 - 11 ppm
[Objects] Cleanliness = Brown/Green film or coating
[W] Algae = Present
[W] Nitrite Level = [.25 - .5) ppm

[F] Stress Level = Mild
[W] Chloromine = Present
[W] Nitrate = Present

Answers are
[W] Fish waste = Present
[W] Decaying Food = Present
[W] Water Quality = Poor

TESTING EVIDENCE #0: [W] Clarity = Murky
Answer #2, [W3 Water Quality = Poor, not dependent on evidence

Number of mismatches = 1

Continue auto on evidence: [W] Clarity = Murky and answer #2? (YIN) y

case2 ('V') hi - item in upper portion of DR
num elements = 4

[W1 Ammonia 3-Level = High
[F] Stress Level = Major
[F] Parasites = Present
[W] Water Quality = Poor

BKB modified, BKB is consistent

Before changes were made, the BKB entries for the pivot element and for the answer instance were

as follows:

13 [Fl Parasites

C-4

7 Present

SUPPORTS: 6
0.548703 TAIL: 3

16 [F] Stress Level 5 Major
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Poor

0.315973 TAIL: 3
16 [F] Stress Level 4 Mild
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.50959 TAIL: 3
16 [F] Stress Level 8 Moderate
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.533448 TAIL: 3
16 [F] Stress Level 5 Major
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Good

0.432017 TAIL: 3
16 [F] Stress Level 4 Mild
17 [W] Water Quality 4 Poor
19 [F] Fish Appearance 9 Thin/weak

0.385675 TAIL: 3
16 [F] Stress Level 8 Moderate
19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Poor

17 [W] Water Quality

4 Poor

SUPPORTS: 1
0.326264 TAIL: 0

After changes were made, modified BKB supports for the pivot and answer were as follows:

13 [F] Parasites

7 Present

SUPPORTS: 2
0.4320170000 TAIL: 3

C-5

19 [F] Fish Appearance 9 Thin/weak
17 [W] Water Quality 4 Poor
11 [W) Clarity 5 Murky

0.5095900000 TAIL: 3
17 [W] Water Quality 4 Good
19 [F] Fish Appearance 9 Thin/weak
11 [W] Clarity 5 Murky

17 [W] Water Quality

4 Poor

SUPPORTS: 1
0.3262640000 TAIL: 1

11 [WI Clarity 5 Murky

C.4 Case 2 - Low "V" Path

The following transcript is for the low "V" case.

Evidence is:
[W] Clarity = Murky
[W] Color = Yellow
[W] Odor = Decaying
[W] Ammonia Level = [.5 - 11 ppm
[Objects] Cleanliness = Brown/Green film or coating
[W] Algae = Present

[W] Nitrite Level = [.25 - .5) ppm

[F] Stress Level = Mild
[W] Chloromine = Present
[W] Nitrate = Present

Answers are
[WI Fish waste = Present
[W] Decaying Food = Present
[WI Water Quality = Poor

TESTING EVIDENCE #1: [W] Color = Yellow
Answer #0, [WI Fish waste = Present, not dependent on evidence
Answer #1, [WI Decaying Food = Present, not dependent on evidence
Answer #2, [W1 Water Quality = Poor, not dependent on evidence

Continue auto on evidence: [WI Color = Yellow and answer #0? (Y/N) y

case2 ('V')low - item in lower portion of DR

C-6

num elements = 4

[F] Appetite = Limited/None
[F] Stress Level = Major
[W] Ammonia 3-Level = High
[W] Fish waste = Present

BKB modified, new SDU status is as follows
Component is [W] Ammonia 3-Level

Two s-nodes are not mutually exclusive
Component/state: [W] Ammonia 3-Level = High

Supports are 4 and 2

Two s-nodes are not mutually exclusive
Component/state: [W] Ammonia 3-Level = High

Supports are 4 and 1

Two s-nodes are not mutually exclusive
Component/state: [W] Ammonia 3-Level = High

Supports are 4 and 0

Before changes, supports were as follows:

19 [W] Ammonia 3-Level

4 High

SUPPORTS: 4
0.954622 TAIL: I

17 [W] Ammonia Level 11 [2 - 3] ppm

0.975635 TAIL: 1
17 [W] Ammonia Level 11 [4 - 5] ppm

0.932823 TAIL: 1
17 [W] Ammonia Level 11 [6 - 7] ppm

0 TAIL: 1
17 [W] Ammonia Level 5 0 ppm

After changes, modified supports are as follows:

19 [W] Ammonia 3-Level

4 High

SUPPORTS: 5
0.9546220000 TAIL: 1

17 [W] Ammonia Level 11 [2 - 3] ppm

C-7

0.9756350000 TAIL: 1
17 [W] Ammonia Level 11 [4 - 5] ppm

0.9328230000 TAIL: 1
17 [W] Ammonia Level 11 [6 - 7] ppm

0.0000000000 TAIL: 1
17 [W] Ammonia Level 5 0 ppm

0.0500000000 TAIL: 1
9 [W] Color 6 Yellow

C-8

vimA

Louise Lyle She was awarded aBachelor

of Science In Maheiuatics/Computer Sciesce fom Pepperdine Universty in 1967. She received

her commisin in 1992 from Offcer Training Schod, and was ssigned to Whiteman APB as a

missil launch ofier. While at Whiteman. she received a Muster of Arts doee In Management

frnom Webster University. She remained in MImeouri until May of 1995, when she began attending

the Air Pore Intitute of Technology.

VITA-i

	A Test-Case Based Approach to Bayesian Knowledge Base Incompleteness Detection and Correction
	Recommended Citation

	tmp.1691168752.pdf.i9tVX

