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AFIT/GCS/ENG/96D- 16

Abstract

This thesis effort represents a continuation of the assessment of the Unified

Telerobotics Architecture Project (UTAP), a proposed Air Force standard. This

architecture was developed by the NASA Jet Propulsion Laboratory and the National

Institute of Standards under contract to the Air Force Materiel Command Robotics and

Automation Center of Excellence at Kelly AFB, Texas.

Due to operating system constraints, the only UTAP implementation to date has

required a separate software interface layer, adding complexity and overhead to the

overall system, while reducing portability. This thesis proposes a long term effort to

design and implement UTAP-compliant application software devoid of this interface

layer. Because the Ada programming language offers increased portability, and other

software engineering benefits, emphasis is placed on developing a run-time

infrastructure that will allow UTAP applications to be written in Ada. The first several

steps of building this infrastructure is performed, including implementation of an Ada

cross-compiler and real-time operating system.

Further UTAP research is recommended. The run-time infrastructure should be

completed and UTAP application software developed using the Ada95 tasking model.

Recommendations for UTAP specification improvements are also made.

vi



IMPLEMENTATION OF AN ADA95 CROSS-COMPILER FOR THE

REAL-TIME EXECUTIVE FOR MILITARY SYSTEMS (RTEMS)

1. Introduction

1.1 Background

According to Webster, a robot is "an automatic device that performs functions

normally ascribed to humans" [Web84]. There are several advantages in using a robot

to perform such tasks. A robot can be programmed to perform a series of predictable

or repetitive operations quickly and efficiently. Robots are capable of accomplishing

precise tasks with pinpoint accuracy. Perhaps most importantly, robots can be made to

operate in dangerous environments without risk of human injury [Tay90].

A telerobot is defined as a robot with a human "in the loop." The degree of

human involvement varies from system to system. Certain telerobots require complete

real-time control by a human operator using a joystick, trackball, or similar device.

Others allow only partial control of selected subsystems. In either case, telerobotics

combines the advantages of robots with the ability of humans to think and respond.

Telerobots are becoming increasingly prevalent in the Air Force today, used to perform

tasks such as ground support of the C-5A/B aircraft [Anc95].

Telerobotics and computer technology are very closely related. In a typical

configuration, one or more microprocessors interpret human input and produce the

signals needed to control the various parts of the robot. The framework by which these

communications occur is the telerobotic control architecture. This control architecture



is specified in the application software used to control the robot. The application

software, in turn, relies on the microprocessor's operating system software to provide

basic services and communications.

With software playing such a large role in robotics, there has been greater

emphasis on applying sound engineering principles to robotics software development.

Some important software engineering principles include:

a. Maintainability - "the ease with which software can be understood,
corrected, adapted, and/or enhanced" [Pre87]

b. Portability - the ability for software to be moved from one platform to
another with little or no change

c. Reusability - "the creation and reuse of software building blocks" [Pre87]

The Ada programming language was developed by the Department of Defense

to better embody these software engineering principles than previous languages.

According to Federal Aviation Administration and Carnegie Mellon Software

Engineering Institute studies, Ada is the language of choice for building reliable,

maintainable software systems [AF94]. Ada was designed to be used in embedded

real-time military applications, but has been successfully used in many other domains

as well, including rail, commercial aviation, biomedical, and communications [Ada96].

To date, Ada has yet to find a niche in the robotics community.

The Robotics and Automation Center for Excellence (RACE), at Kelly Air

Force Base, Texas, has defined an open telerobotics control architecture in an attempt

to standardize the interface between telerobotic subsystems. Ultimately, this Unified
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Telerobotic Architecture Project (UTAP) will allow all Air Force robotics application

software to be built from a library of hardware and software modules sharing the same

UTAP interface [UTA95]. A significant UTAP goal is to better incorporate the key

software engineering principles discussed earlier into the telerobotics domain.

1.2Probkin

To date, the UTAP architecture has been demonstrated to work, but only at a

single Air Force site. In 1995, the AFIT Robotics lab was redesigned to be compliant

with UTAP. However, in this implementation, the operating system was unable to

provide features needed to fully embrace the UTAP philosophy. Furthermore, the

operating system did not support the Ada programming language, and therefore, did

not allow the UTAP implementation to utilize Ada's many benefits [Anc95].

1.3 Purpose

The purposes of this research were to further the development of a standard

interface for robotics applications, and to bring the benefits of the Ada programming

language to bear on the robotics domain. In order to do this, the ramifications of

infusing Ada into the existing UTAP implementation needed to be explored.

Unfortunately, the infrastructure needed to write UTAP-compliant applications in Ada

did not exist. The goal of this research was to develop this infrastructure so that future
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research can focus on building UTAP-compliant routines in Ada, without worrying

about the underlying language and hardware support.

1.4 Approach/ Methodology

This research was conducted using the following general steps:

a. Conducted analysis of the UTAP specification and the work that had been
done to date. Determined whether the goal of this research could best be
accomplished by developing an Ada compiler for use with the current
operating system, or abandoning the current operating system altogether.

b. Conducted a critical review of existing real-time operating systems for
potential incorporation into the AFIT Robotics Laboratory. Selection
criteria are discussed later in this document.

c. Selected a compiler and real-time operating system (RTOS) that are
compatible with existing laboratory hardware and supports the Ada
programming language.

d. Implemented the new compiler and RTOS in the laboratory.

1.5 Assumptions and Constraints

The assumption was made at the outset that this research would utilize software

written in the Ada programming language to the fullest extent possible. This will allow

the research to more effectively determine the ease with which Ada could be

implemented on typical robotics hardware.

All necessary hardware for this research is available in the AFIT Robotics and

Automation Applications Group Lab B facility. Determining which software

components to use (such as compilers and operating systems) and from where they
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might be obtained was part of the research effort. The top-level hardware architecture can be seen

in Figure 1.

Download Operating
System and UTAP
Modules Two 68030 Boards eedback
(VME Bus)

Drive
Signals

Sun Workstation
(Source Code Modification) PUMA 560 Manipulator

Figure 1: Laboratory Hardware

1.6 Organization

This document is organized into five chapters. Chapter 1 provides basic information on

telerobotics and an overview of this effort. Chapter 2 contains a review of previous efforts.

Chapter 3 describes in detail, the analysis performed at the outset of this research. Chapter 4

contains research implementation, results and long term benefits. Chapter 5 provides the author's

conclusions and recommendations. This document contains several appendices as well. Appendix A

describes various pitfalls and lessons learned associated with building the GNU Ada Translator

(GNAT) cross-compiler. Appendix B contains the step-by-step procedure for building the GNAT

5



cross-compiler. Appendix C lists the steps needed to compile the Real-Time Executive

for Military Systems (RTEMS) under GNAT version 3.05. Appendix D contains a

listing of RTEMS source code changes needed for compilation.



2. Literature Review

2.1 Introduction

In this literature review, the following three questions will be answered:

" Are the goals of the Unified Telerobotic Architecture Project and the
Ada programming language compatible?

" Do proper tools exist to support using Ada in the field of robotics?

* What research has been done to date?

The answers to these questions were used to lay the foundation for this

research.

2.2 The Unified Telerobotic Architecture Prpject (UTAP)

The software engineering community has worked hard in recent years to better

implement the concepts of "reuse" and "portability." Software reuse allows

developers to build complex new systems without having to do so from scratch.

Portable software can be run on different hardware platforms and operating systems

with minimal modification. A good example of these concepts at work is the personal

computer industry. With personal computers, although customers buy software and

hardware products from thousands of different companies, the products all

communicate properly with one another despite differences in the target platforms.

This happens because the communication interfaces among the various subsystems are

standard and well-defined [RACE96].
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The field of robotics, on the other hand, is plagued by a lack of interface

standards. Although 80% of robotics software is common to all robotics applications,

vendors tend to start their development efforts with a blank sheet of paper. The result

is robots that cannot communicate with one another, and robotics software that cannot

be reused. This drives up both development and maintenance costs [RACE96].

The Air Force Robotics and Automation Center of Excellence (RACE) at Kelly

AFB, Texas has sponsored UTAP. The purpose of this effort is to define a standard

interface among hardware and software modules. These modules can be reused across

multiple platforms, thus reducing development and maintenance costs. The ultimate

goal of UTAP is for all Air Force telerobotics applications to be built from a single

library of compliant modules [UTA95].

The backbone of UTAP is the specification of modules and messages. UTAP

defines twenty software modules which can encompass the architecture of any

telerobotics system. Not every system will contain every module, and some systems

may even need multiple instances of certain modules. A key feature of UTAP is the

means by which these modules communicate with one another. Any communication

among modules occurs through the issuing of a "message." The UTAP specification

explicitly defines 339 messages which carry out all inter-module communication. The

specification also allows for the inclusion of unique, programmer-defined messages as

needed [UTA95].
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To date, the UTAP specification has only been implemented on a very small

scale. The first successful implementation is described in [Anc95]. Lt Kevin Anchor

redesigned the AFIT Robotics and Automation Application Group (RAAG) Lab B

facility to comply with the UTAP specification. His implementation included three

modules and fifteen messages. Because the operating system did not allow the passing

of messages between modules, his implementation also included a separate interface

layer, which was necessary to keep the UTAP-compliant modules from being operating

system-dependent. The overhead added by this interface layer seemed to have

contributed to a degradation in overall system performance. Lt Anchor recommended

eliminating this interface layer by implementing UTAP-compliant software under an

operating system that supported generic message passing. Furthermore, he

recommended that future UTAP applications be written in a different programming

language to demonstrate that the specification was programming language-independent.

Ada was the suggested programming language for demonstrating this capability

[Anc95].

UTAP has been implemented in two other instances as well. In late 1994 and

early 1995, Advanced Cybernetics Group, Inc. (ACG) implemented a small scale

UTAP-compatible environment using the commercial Adept V + programming

language [ACG95]. A separate implementation using V + on an Adept 550

manipulator was designed by Capt Matthew June in a thesis effort conducted in parallel

with the effort described in this document [June96].
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2.3 The Ada Programming Language

The U.S. Air Force, in its Guidelines for Successful Acquisition and

Management of Software Intensive Systems, calls Ada the "enabling technology" for

software engineering. It cites a 1991 study in which Ada was chosen over C and C + +

by a group of industry experts as the language of choice for developing well-engineered

software. In a separate Federal Aviation Administration study, Ada outperformed C,

Pascal, Jovial, and Fortran in capability, efficiency, reliability, and maintainability. A

1991 Software Engineering Institute study drew similar conclusions in comparing Ada

to C+ + [AF94].

Although originally developed by the U.S. Department of Defense, Ada has

been used in a number of critical, non-DOD real-time applications as well. For

instance, the Ada language was chosen for use in the automatic piloting system on the

new Paris underground train, METEOR. The system automatically controls train

traffic, regulates speed, manages alarm devices, and maintains control of both

automatic and non-automatic trains on the same line. Reliability, security, and long-

term software lifecycle costs were all factors considered in choosing Ada over other

languages. Ada has also been used in several airborne applications, such as the Airbus

340 and Boeing 777 commercial aircraft [Ada96].
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2.3.1 Ada Tasks for UTAP Messages

A key feature of Ada that is useful in the development of real-time software is

its tasking model. Ada tasks allow programmers to consider concurrency when

developing real-time systems. The allocation of concurrent modules to one or more

processors is handled completely by the compiler and run-time environment.

Communication among various concurrent modules is performed through rendezvous.

Rendezvous can be made more flexible using selective acceptance, delay alternatives,

timed entry calls, conditional entry calls, and families of entries [Coh96].

If the appropriate operating system and compiler are in place for the target

hardware, Ada tasking can be used to implement UTAP modules and messages. Each

module can be declared as an Ada task, and messages implemented as rendezvous. A

module would be characterized by the messages that it is capable of sending and

receiving. If a module were capable of sending a message, it would make an entry call

somewhere within its source code, containing the appropriate data, to the appropriate

task capable of receiving it. Modules capable of receiving a message would have an

accept statement for each message it could receive.

In the following Ada source code example, a Robot Servo Control (RSC) task

sends a USOKMODIFY message to the Object Knowledgebase (OK). These

modules and messages are from the UTAP specification.

11



task body RSC is
begin

OK.USOKMODIFY (msgid = > 1805,
objid = > X,
size = > Y,
data = > Z);

end RSC;

task type OK is
entry USOKMODIFY (msgid, objid, size, data);

end OK;

task body OK is
begin

accept USOKMODIFY (msgid, obj_id, size, data) do
-- Perform USOKMODIFY algorithm

end USOKMODIFY;

end OK;

For an Ada tasking UTAP implementation to be successful, the UTAP

specification must more clearly define what modules can send and receive different

messages. The message algorithms must also be fully defined. Specific UTAP

specification improvements are recommended in Chapter 5.
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2.4 Previous Work with Ada and Robotics

Despite the obvious advantages of using Ada in real-time applications, Ada has

yet to find a strong niche in the robotics community. Some work was done at Texas

A&M University nearly a decade ago, but the researchers had difficulty obtaining Ada

device drivers for their laboratory [Volz96]. Device drivers are critical because they

provide the means by which the microprocessor communicates with both the telerobot

operator and the telerobot itself.

Much of the previous work done with Ada and robotics underscores the need

for UTAP. As early as 1984, researchers were able to identify what Ada might bring

to the robotics industry. Dr. Richard Volz (at the time on the faculty at the University

of Michigan, now the head of the Computer Science Department at Texas A&M)

writes,

... designing new robot languages for nearly every new robot may satisfy the
particular programming needs of each robot, but it is counterproductive from
the standpoint of developing integrated manufacturing cell technology.
Standardization is clearly needed."

Volz goes on to describe an effort where Ada was used to specify interfaces among

several manufacturing cell components, including robots. While he stopped short of

suggesting that Ada is a panacea for standardization within the robotics industry, he

does conclude that the data abstraction, strong type checking, expressive power, and

portability of Ada are promising, and that further investigation is warranted [Volz84].
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In future research, Dr. Volz and Dr. Arch Naylor published papers introducing

the concept of "software/ hardware components" to be used as building blocks in

developing integrated manufacturing systems. This object-oriented philosophy involves

decomposing manufacturing cell systems into various components and defining the

interfaces using Ada package specifications. If the Ada package specifications of the

components are standardized, different vendors' Ada package bodies can be linked in

and used in a true "plug and play" fashion [Volz87, Volz88].

The similarity between the way robotics interface problems were described in

the Volz papers and the UTAP documentation is remarkable. Both describe the

robotics industry as being rooted in the practice of developing non-portable, stand

alone, proprietary systems with little regard for compatibility or reuse. The result is

expensive, unmaintainable, single-use robotics software that cannot communicate with

anything other than itself. A widely-used standard interface using the benefits of the

Ada programming language would go a long way toward solving many of these

problems.

2.5 Candidate Operating Systems

In order to develop Ada applications in the AFIT Robotics Lab, either a new

operating system had to be installed, or an Ada compiler had to be written for the

existing operating system. Because the existing operating system was such a poor

match with UTAP (i.e. it does not support generic message passing), the first option

14



was chosen for the purpose of this research effort. The search for a real-time operating

system for use in this research focused on several key criteria, including Ada support,

hardware compatibility, technical support availability, technical support cost, and

product cost. The application of these criteria is discussed in Chapter Four.

2.5.1 Real-Time Executive for Military Systems (RTEMS)

RTEMS is an object-oriented, real-time executive designed to be used in

embedded applications. It was developed by On-Line Applications Research

Corporation under contract to the U.S. Army Missile Command at Redstone Arsenal,

Alabama.

As seen in Figure 2, RTEMS is a software platform which provides

features and services to an application program. RTEMS features include multitasking,

Application
Dependent

S/W

Standard

SComponents

ERTEMS

Figure 2: RTEMS Framework [RTE95]
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a variety of task scheduling options, and generic message passing among multiple

processes. Messages queues can be created and deleted dynamically, and are allowed

to operate either in first in/first out, or priority modes. Other RTEMS features can be

seen in Figure 3.

RTEMS versions written in both C and Ada are available to the public via the

World Wide Web [RTE96]. Applications can be developed in Ada, C, and assembly

language [Acu94]. To date, RTEMS has been used in a number of diverse

applications, including the U. S. Army's Avenger missile system [Acu96].

F gtal E 3:or TMCo sto Clo9 k

.. .. . . .......... ...

",-.° .......... i. ,,rr

M e.. ........ ............ ........................... A

Semaphore... .............. . Core Ported Memry

Figure 3: RTEMS Composition [RTE96]
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2.5.2 Ada Avionics Real-Time Software (AARTS)

Another candidate was the Ada Avionics Real Time Software (AARTS)

operating system, developed by TRW and American Computational under contract to

Wright Laboratories. As the name suggests, it has been used primarily in airborne

applications. Figure 4 shows how AARTS typically fits into an avionics application,

providing the interface between the CPU and the application software.

DEV ICES

AARTS OPERATING SYSTEM

INTERFACE TO APPLICATION

APPLICATION
SOFTWARE

Figure 4: AARTS Framework [AART95]

The key feature of AARTS is its portability. The vendor is currently in the

process of commercializing AARTS as a fully portable, host-independent operating

system. AARTS includes most standard operating system features, including generic

17



message passing between applications through its Message I/O package. The source

code for this product is available through Wright Laboratories [Mie95].

2.LL ynxOS

LynxOS is an operating system developed by Lynx Real-Time Systems of Los

Gatos, California. It is designed to look and feel like UNIX from an application

developers perspective, and has been used previously to implement robotics systems.

Versions are available for the AFIT laboratory hardware in both self-hosted and cross-

hosted modes. Ada support is not available directly from Lynx, but can be purchased

from one of two third party vendors, OC Systems, or Rational Software Corporation

[Lyn96].

2.5.4 VxWorks

Like LynxOS, VxWorks is a commercial product. It is marketed by Wind

River Systems as a complete development and execution environment for all types of

embedded, real-time applications. It consists of a scaleable run-time system consisting

of microkernel, operating system, I/O, networking, and development tools. Figure 5

shows the various pieces of the VxWorks development environment. Supported host
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I4- Sulable Rw'time System

Figure 5: VxWorks Integrated Development Environment ["RS96]

platforms include UNIX workstations, while targets include the entire 68000 family of

processors, among others. VxWorks comes only with C and C + + development tools,

but Ada support is once again available from third party vendors [WRS96].

2.6Smmary

The beginning of this chapter posed three questions to be answered by this

literature review:

Are the goals of the Unified Telerobotic Architecture Project and the Ada

programming language compatible?

Answer: Yes. Both encourage standardization, and both were designed for

embedded real-time systems.
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0 Do proper tools exist to support using Ada in the field of robotics?

Answer: There are several operating systems available to support such an

effort. Device drivers will likely need to be developed by the researcher.

* What research has been done to date?

Answer: Not much. The UTAP specification has been demonstrated to

work, but its portability remains unproven. Ada has yet to be used much in

the robotics community.

In short, the field of robotics will be well served by the software engineering

goals embodied by the Ada programming language. This is an area which is ripe for

research. The next chapter describes the analysis performed at the outset of this effort.

20



3. Analysis

This chapter describes the analysis portion of this research. Since [Anc95] was

the first attempt to implement the UTAP specification, it seemed necessary to first

analyze how successful it was in doing so. This chapter describes how some of the

problems in [Anc95] could be alleviated by removing obstacles brought about by the

operating system and programming language used. A research effort that removes

these obstacles is then proposed.

3.1 Anchor's Research: A Good First Step?

Lt Kevin Anchor was the first person to actually implement the UTAP

specification and test it on real hardware. In doing so, he encountered many obstacles,

some of which he managed to overcome, some of which he did not. The difficulties

fell into two main categories. First, several constraints were brought about due to the

lack of required detail in the UTAP specification itself. The second category of

difficulties were those brought about by inherent constraints in the operating system

used in the effort.

3.1.1 Lack of Detail in UTAP

The developers of UTAP stated that their ultimate goal was for modules

developed in accordance with the UTAP specification to be capable of being used in a
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portable, "plug and play" atmosphere. The specification, as it stood at the beginning

of this thesis effort, was a good first step, but it fell significantly short in containing the

required amount of detail to achieve this goal.

Figure 6 depicts the UTAP-defined modules, as well as the permitted interfaces

between them. The most serious problem with the UTAP specification was its failure

to adequately describe the responsibilities of these modules. For example, Lt Anchor

Ii. & Spervion

Suhsytcm ACoarrl (e~. nDiaugnosis Si ulation jn

& (eg.trupxt (sg sraer

Rolot Robsyte B usse u~m
Seso A TolA evo SevSeqenso Beuncn TSeluBncing

i : Remote

SenuorA ~ RO ToA btA RobtB Sno ol
Sensing To AECI SMV0 sr m BMool Sens cogMoro

Figure 6: UTAP Architecture RJTA95]
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had difficulty determining the functions and responsibilities of the Object

Knowledgebase (OK) module. According to the specification, the OK "stores

information about objects in the task environment including geometry and task

information" [UTA95]. Lt Anchor interpreted this to mean that the OK could be a

repository for position values from the various joints of the PUMA 560 manipulator --

a fair assumption if one were to consider the robot joints to be objects in the

environment. However, if another designer were to interpret this to mean that the OK

should contain only positional information about objects to be manipulated by the

robot, an obvious discrepancy would exist. The overall UTAP goal of module

portability would be severely hindered. The short description of OK responsibility

quoted above was the only such description contained within the UTAP specification.

The descriptions for the other nineteen modules were similar in their lack of detail.

The means by which the various modules are to communicate with one another

are called UTAP messages. A message is defined by the specification as "an instance

(or program) written in the interface language" [UTA95]. Unfortunately, the UTAP

specification defines messages in even less detail than it does modules. According to

the UTAP specification:

"The exact semantic meaning of many of the UTAP messages has not been
explicitly spelled out in English. For now, the intent and meaning of UTAP
Application Programming Interface messages should be apparent from the
message name" [UTA95].

A few of the 339 messages listed in the UTAP specification were

USTLCNURBSFEED, USTDSLOADORIGIN, and USPOSTLIST. The first
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two letters of a UTAP message were always 'US'. The next group of letters was the

name of the module issuing the message. For instance, the first message listed above

contained the letters TLC, meaning Task Level Control. Each message also had an

"interface description" in Appendix H of the UTAP specification. The interface

description was written in C + + and provided a description of what the message data

structure should look like. For example, here is the interface definition for

USTLCNURBSFEED:

#define US TLC NURBS FEED 677
struct us tlc nurbsfeed msg t {

int msgid;
double sStart;
double sEnd;

The interface definition provided merely a cursory listing of what should be

included in the message. After that, it was up to the programmer to decide what the

message was actually supposed to do. The algorithms to perform the three messages

above may be clear to some robotics experts, but the mere names will not provide

enough information to ensure portability among modules built by different designers.

Furthermore, the specification indicates what modules issue which messages, but not

how the different modules should respond to messages. A final issue was raised by Lt

Anchor: the UTAP specification said nothing about how these messages were to be

passed. If one designer were to pass messages by value, and another by reference, the

resulting products would not be able to communicate. In short, a significant amount of

detail must be added to the UTAP specification if it is to achieve its ultimate goal.
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3.1.2 Operating System Constraints

The operating system used in [Anc95] was a Carnegie Mellon product called

Chimera. This operating system was used in the AFIT Robotics lab prior to the onset

of UTAP research in 1995. It was chosen for use in [Anc95] for a variety of reasons,

including the fact that it was already in use, well understood, and free. It made sense

for the first UTAP research to be performed using an operating system that the

researchers were familiar with.

Unfortunately, there were many constraints levied on the effort due to the use of

Chimera. To begin with, Chimera required each module to follow a very specific

format. All modules were executed cyclically and were forced to contain certain

functions that were executed at predetermined times in the execution cycle.

Furthermore, modules were not permitted to communicate with one another directly.

Rather, all inter-module communication occurred via the Chimera Global State

Variable Table. Finally, the only existing language support was for an operating

system-dependent version of C/C + + using a modified GNU C compiler known as

GICC.

Since the goal of UTAP is the development of system-independent, portable

robotics software, Lt Anchor had difficulty implementing the UTAP philosophy within

the rigid confines of Chimera. Any software developed according to the precise

Chimera function naming scheme immediately violated UTAP, and would be incapable
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of running under any other operating system. Software written for Chimera, and

compiled using GICC, needed extensive modification just to be compilable by any

other compiler. The entire UTAP philosophy was predicated on the ability for the

various modules to communicate directly with one another via messages. This was

impossible under Chimera as well, due to the forced communication through the Global

State Variable Table. In short, Chimera and UTAP were a very poor match.

Lt Anchor did manage, however, to device a scheme where UTAP modules

could be written to run under Chimera. An interface layer was designed within the

Chimera framework. The overall software structure, as well as all hooks to the

operating system, were built within the interface layer. After performing basic

Chimera initialization, the interface layer would pass the thread of control off to a

UTAP-compliant function. These functions performed the UTAP module algorithms

and issued UTAP messages when appropriate. When a UTAP message was issued, a

call would be made back into the interface layer, and the interface layer would

implement the message by updating the Global State Variable Table. This Global State

Variable Table was considered to be the implementation of the UTAP Object

Knowledgbase.

The basic flow of control can be seen in Figure 7. This figure shows the

software in three distinct pieces - the UTAP-compliant modules, the Chimera operating

system, and the interface layer. Data would be read from the trackball device by an

interface layer routine called intjtrackball. Since Lt Anchor's intent was for the
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Figure 7: UJTAP/ Interface Flow Control

software to be UTAP-compliant, intjtrackball would do little more than pass control

off to the UTAP-compliant Operator Interface (UTAP_01) module. UTAP_01 would

interpret the trackball data and send an appropriate message to the UTAP Object

Knowledgebase (UTAPOK). The entire messaging scheme was predicated on giving

UTAPOK direct visibility into the Chimera Global State Variable Table. Not only did

this violate the UTAP goal of portability, it required UTAPOK to actually be located

within the interface layer. The UTAP-compliant Robot Servo Control (UTAPRSC)

routine was responsible for sending commands to the robot itself. It would periodically
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send a message to the UTAPOK for trackball generated data. It could then

communicate with the robot through an interface routine called intRSC.

The work performed in [Anc95] was tremendously useful in that it was able to

demonstrate proof of concept. However, the rigid nature of the operating system made

it difficult to envision any long-term UTAP solution using Chimera. Clearly, a better

long term solution would involve the implementation of a much more flexible

programming environment.

3.2 Research Direction

After conducting the above analysis, a decision had to be made as to the

direction of this research effort. While the UTAP specification was not sufficient in

detail to achieve its ultimate goal of allowing for the development of portable,

independently-developed modules, a significant amount of additional research was

possible. Therefore, the remainder of this effort was to concentrate on improving upon

the research described in [Anc95]. This would be done by removing those obstacles

brought about by the Chimera Operating System, while ignoring those brought about

by inadequacies in the UTAP specification itself. Recommendations for UTAP

specification improvements can be found in Chapter 5.

The spirit of the UTAP specification was for the various UTAP modules to

communicate with one another using language- and operating system-independent

constructs. Unfortunately, constraints levied by the existing Chimera operating system
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made it necessary to develop UTAP source code that was incapable of running under

any operating system other than Chimera.

The decision was made for this effort to focus on replacing Chimera with an

real-time operating system (RTOS) that was much more flexible and allowed generic

message passing for inter-module communication. Due to the potential software

engineering benefits of using Ada, as described in Chapter 2, this research would focus

on those operating systems that could support applications written in that particular

programming language.

The ultimate long-term goal of this research evolved into a plan to rewrite the

current UTAP implementation using Ada tasks. A scheme was envisioned where

UTAP processes would be implemented as Ada tasks, and UTAP messages

implemented either as Ada rendezvous or operating system function calls. However,

before any UTAP-compliant application code could be developed, both a new operating

system and the means by which to cross-compile Ada source code needed to be found

and installed (regardless of the operating system chosen). Once these were found, the

operating system could be installed on the target hardware. Ideally, the chosen

operating system would already have a board support package, containing necessary

device drivers to operate peripherals on the specific 68030 board in the AFIT Robotics

Lab. If not, these device drivers would need to be developed and integrated with the

operating system. Finally, there would likely be functionality from the existing UTAP

application that would need to be invoked by RTEMS. Specifically, a means by which
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to download executable files from the host to the target board would be needed (the

Chimera operating system's chim program should be adequate). Also, RTEMS must

be made able to perform robot calibration (these scripts already exist under Chimera,

and may need to be translated). Once a complete operating system and compiler

package are in place, the UTAP source code found in [Anc95] can be reengineered into

Ada tasks, compiled, and tested on the target hardware. This turned out to be a

tremendously aggressive set of tasks for a single thesis; therefore, not all steps could be

accomplished within the scope of this effort. Section 4.1 describes the specific steps

that were accomplished.

3.3 Summary

This chapter described several problems previously encountered in

implementing the UTAP specification. Two main problems are discussed: lack of

needed detail in the specification itself, and operating system constraints. A research

direction is then proposed. It is suggested that replacing the operating system, and

concentrating on a long-term UTAP solution using Ada tasks will ultimately alleviate

many of the problems encountered in [Anc95]. The next chapter describes the

successes and difficulties encountered in performing the first several steps of this long-

term effort.
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4. Results

This chapter describes how the first several steps of the research proposed in

the previous chapter were performed. The key software products and documentation

that resulted from this effort are then described.

4.1 Completing the First Steps

4.1.1 Choose an RTOS

The initial step in this effort was to choose a new RTOS to implement in the

robotics lab. Several factors were used in making this decision, including Ada support,

hardware compatibility, technical support availability, technical support cost, and

product cost. Using these criteria, the options were narrowed to the two commercial

and two government-owned products discussed in Chapter Two.

The two commercial products, VXWorks and LynxOS, both seemed to be

workable, albeit expensive, choices. Both would be able to support Ada (using

software purchased from third party vendors), and both had versions which ran on a

68030 platform. However, neither had off-the-shelf device drivers available for the

specific 68030 board in the robotics lab. In the case of VxWorks, these drivers would

have had to be developed from scratch. Lynx suggested either replacing the hardware,

or purchasing a porting kit, both expensive propositions. In the end, fiscal constraints

precluded the use of either of these alternatives.
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AARTS was also a promising alternative. Being government-owned, the source

code was available to AFIT free of charge. AARTS was written in Ada and fully

supported the Ada tasking model. A version existed for use on the 68030 processor,

but again, device drivers were not immediately available. The vendor strongly

discouraged attempting to develop these drivers at AFIT, but did propose developing

them for a fee. Again, this fee proved too high, and AARTS was eliminated from

further consideration.

RTEMS, another government-owned operating system, seemed to be a sound

choice. It was written in Ada, and had been used in a number of real-time applications

around the world. Although, once again, device drivers were not immediately

available, the vendor was confident they would not be difficult to write. Technical

support was offered at an affordable price. The one drawback with RTEMS was that it

did, not yet fully support the Ada95 tasking model. With the available version of

RTEMS, concurrent tasks were implemented as calls to low-level RTEMS library

routines. These routines were not likely to be included in the next version of RTEMS,

scheduled to be released in late 1996. The full Ada95 tasking model was supposed to

have been supported under this new version of RTEMS; however, the timing of the

release of this new version precluded its use in this research. Any tasking applications

written for this effort would have needed to be modified extensively to run under the

new RTEMS, once available.
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Ultimately, RTEMS was selected, and the choice was made for this thesis effort

to concentrate on installing the operating system, developing the necessary drivers,

and, time permitting, writing non-tasking applications. Tasking applications can be

added as a follow-on effort to this thesis under the next version of RTEMS.

4.1.2 Find and Implement Ada Cross-Compiler

RTEMS was not available in an immediately-executable format. Instead, the

RTEMS source code had to be downloaded and compiled for the target platform.

Therefore, a cross-compiler was needed not only to compile application code, but also

to compile the operating system itself. Since the AFIT Robotics Laboratory did not yet

have a compiler to cross-compile Ada source code from the host platform to the target,

the next step was to find and implement this functionality. On-Line Applications

Research Corporation, the RTEMS support vendor, strongly recommended the GNU

Ada Translator (GNAT) to perform the cross-compilation from the Sparc workstation

to the embedded 68030 platform. GNAT was freeware and was very closely related to

the popular GNU C Compiler (GCC). In fact, to build GNAT executable from source

code, the entire GCC source code directory was also needed. The source code for

GCC and other needed accessories were readily available from several FTP sites. As a

rule, GCC must be recompiled to include cross-compilation functionality, at which

point cross-compilation can be performed using flags on the GCC command line.
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Figure 8 shows the general flow of Ada source code through the GNAT family

of products. The GNU Ada Run-time Library (GNARL) provides the interface to the

8.0
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Figure 8: The GNAT System [GNAT94]

run-time environment. The GNAT compiler generates object code which is linked

using the GNAT binder. The assembler and loader then produce the executable

product.

The GNAT compiler itself is further decomposed in Figure 9. The Ada source

code is structured into an abstract syntax tree (AST) and expanded. The Gigi phase is

responsible for translating the Ada AST into a corresponding C AST. This AST is

then provided to GCC to build the object code.
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Installing GNAT as a cross-compiler took much longer than expected.

Appendix A enumerates the many lessons learned in accomplishing this part of the

effort. Appendix B lists the step-by-step procedure that was eventually developed to

build the GNAT cross-compiler.

4.1.3 Use Cross-Compiler to Compile RTEMS Source Code

Once the cross-compiler was compiled and installed, the next step was to

compile RTEMS. Since the device drivers for the specific 68030 board being used had
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not yet been developed, the decision was made to first compile RTEMS with a

collection of device drivers that was known to successfully compile on a different

platform. The resulting executable version of the operating system could then be sent

to the vendor to see if would run correctly on the target board, in this case a Motorola

MVME136 (68020-based). The first step was to modify the RTEMS compilation

configuration files within the source code directory tree to include the necessary device

drivers (see Appendix C for specifics). Upon compilation, a new problem was

discovered. The last time the RTEMS source code was compiled under GNAT, the

most current version of the compiler was GNAT 2.02, a version no longer supported

or maintained by the GNAT support vendor. Attempting to compile RTEMS with

GNAT 3.05 resulted in many coding errors being found that GNAT 2.02 had missed.

Unfortunately, with each compilation of the many files that make up the RTEMS

source code, only an error or two would be found before the compilation would halt.

After each attempt, the error or two that was found would need to be investigated to

determine the best fix. In some cases, the solutions were fairly simple, and took little

time to implement. In other cases, finding the solution required a more detailed

understanding how the source code was designed. Once the source code compiled

correctly, many linking errors were encountered due to changes in the GNAT 3.05

libraries, as compared to the previous libraries. A complete list of RTEMS source

code and makefile modifications needed for compilation can be found in Appendix D of

this document.
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Ultimately, RTEMS version 3.2.1 was successfully compiled and linked for the

MVME-136 board using GNAT 3.05. Because the AFIT Robotics lab did not have the

proper hardware for testing, several executable products were sent to the vendor for

testing on their hardware. Although running the "hello.exe" executable provided with

the RTEMS source code on the target platform did result in a "Program Error" being

raised, the mere fact that the operating system and device drivers were capable of

writing this message to the screen is encouraging. This demonstrates that the cross-

compiler, as well as the device drivers, do, in fact, work. The source of the run-time

error may be the product of a GNAT error that has since been solved for GNAT 3.07.

GNAT 3.07 was not available for this particular effort.

Two key products that will eventually make up the run-time infrastructure of a

UTAP-compliant system are provided as the result of this thesis effort. First, a

working cross-compiler, capable of compiling Ada code for the AFIT Robotics

Laboratory, has been developed and installed. This compiler can be found in the AFIT

Hawkeye Laboratory and is available for future UTAP research. The second software

product is a fully compiled version of RTEMS and it's source code. This product was

also built in the AFIT Hawkeye Laboratory. This version has been compiled with the

Motorola MVME136, 68020-based board support package. Although this is not the

exact board that is located in the AFIT Robotics Laboratory, the device driver and
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board support package source code can be studied and modified for use in the future

research.

4.3 Documentation

This thesis effort has also resulted in the development of several important

pieces of documentation. Although it was known that the GNU Ada Translator was

capable of being configured to perform cross-compilation, there was no written

documentation on how to do so. A detailed, 97-step procedure now exists and can be

found in Appendix B of this document.

Since RTEMS had not yet been compiled using the latest version of GNAT,

several hurdles were cleared in fixing coding errors that remained in the RTEMS

software itself. A document containing a complete list of corrections needed to

compile the latest version of RTEMS using GNAT 3.05 now exists and can be found in

Appendix D of this document.

Finally, this thesis documents a viable idea for making future UTAP

implementations less system-dependent. By developing UTAP modules using Ada

tasks, and implementing messages using Ada rendezvous, future UTAP

implementations will not need to rely on operating system constructs to provide these

services. Now that most of the RTEMS infrastructure is in place, the potential exists

for UTAP to be implemented within the software engineering-friendly confines of Ada,

rather than the rigid constraints of Chimera.
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4.4 Long Term Benefits

The potential long term benefits of this research are numerous. As with most

computers, a significant portion of the cost of telerobotics systems resides in software

development. If a means by which to decrease the cost of software through reuse can

be made widely available, the cost of telerobotics systems can be brought down

significantly. Even if the RTEMS-GNAT solution proposed in this thesis proves not to

be a satisfactory long term solution for implementing UTAP, it does at least address

the question of UTAP portability. If UTAP is to become a standard under which

telerobotics systems are built, its portability must be established. This thesis represents

an important first step toward accomplishing this.

4,5 Summary

This chapter has described the specific steps performed for this effort and

enumerated the results. The two main software products were GNAT and RTEMS.

The three key documentation results were a procedure for building cross-GNAT, a plan

for developing UTAP in Ada, and a listing of RTEMS source code corrections for

compilation under the latest version of GNAT. The final chapter will discuss the

overall conclusions and recommendations for further research.
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5. Conclusions and Recommendations

5.1 Conclusions

There are several conclusions that can be drawn from the work described in the

previous chapters. First, the UTAP specification is an admirable attempt to address the

need for a standard interface for telerobotics applications. However, the specification,

as it stands today, lacks the level of detail needed to achieve its ultimate goal. Specific

recommendations for improvement are found in the next section.

A second conclusion that can be drawn is that validating portability of the

UTAP specification is a non-trivial exercise. In order to verify that applications

developed under UTAP are truly portable, a researcher must not only develop

compliant code, but also develop and/ or install different environments for the

application code to be tested in. Although developing robotics code using unique or

proprietary languages and operating system constructs may significantly simplify the

research, this approach violates the underlying philosophy of UTAP. Also, developing

the compilation and run-time environments in which to test UTAP applications takes a

great deal of effort - effort that is seemingly unrelated to the research of UTAP itself.

Yet, research of this type is crucial if the ultimate goals of UTAP are to someday be

realized.
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5.2 Recommendations for Further Research

5.2.1 UTAP Specification Recommended Improvements

The intent of this section is to recommend specific improvements to the UTAP

specification. At this time, the specification is in its infancy, so problems are to be

expected. Chapter 3 of this thesis lists some of the problems encountered from an

application developers perspective. The UTAP specification developers deliberately

left out many details describing the various UTAP constructs. This was probably done

to reduce the number of constraints a developer would encounter. However,

application developers need a certain amount of detail if they are to design compliant

software that is truly portable.

First, an effort should be made to more precisely define the module

responsibilities. At this time, all that exists in the UTAP specification is Annex B,

Section 1, a five page description of all twenty modules. Each module has a one

sentence description of its responsibilities. This is not sufficient to ensure portability of

modules designed by different engineers in different environments. This section would

be enhanced significantly if simple algorithms were included to better describe what the

modules are actually supposed to do. Therefore, the addition of module algorithms and

detailed descriptions to Annex B is strongly recommended.
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Secondly, the UTAP specification lists several hundred standard message types

that are supposed to define how all the modules communicate with one another. Once

again, the UTAP specification lacks sufficient detail to fully define these interfaces.

Annex H lists each message and the data which is supposed to be sent along with it.

The specification does not specify what actions a module is to take upon receiving a

specific message. Although it would add a certain amount of bulk to the specification,

the inclusion of message definition is necessary if the ultimate goals of UTAP are to be

achieved. Therefore, adding message algorithms and definitions to Annex H is also

strongly recommended.

5.2.2 Follow-on Efforts

In this research, an initial effort was made toward developing an environment

that could accommodate UTAP applications written in standard Ada, void of operating

system-dependencies that would violate the UTAP goal of portability. Unfortunately,

developing this environment took more time than available in a single thesis effort.

Therefore, extensive follow-on research is recommended.

The most important next step will be to reassess the assumptions made at the

beginning of this effort and determine if Ada/ GNAT/ RTEMS is the best environment

in which to pursue long term UTAP research. Since most of the infrastructure is

already in place, it may be prudent to continue this effort and begin to develop the

necessary device drivers for use in the AFIT Robotics Lab. A second option might be

42



to acquire the C version of RTEMS and determine if Ada UTAP application code can

be developed using it. A third option is to abandon the RTEMS/ GNAT line of

research altogether, and purchase a commercial operating system and cross-compiler.

If the decision is made to continue the GNAT/ RTEMS effort described in

Chapters 3 and 4 of this document, the next step will be to develop device drivers for

the AFIT laboratory hardware. First, the researcher should determine what can be

learned from the existing MVME136 drivers, and make the necessary changes. Once

working device drivers exist, the system can be tested to ensure that application source

code can effectively communicate with the PUMA 560 robot. As stated in Chapter 3,

before writing any application code, it will be necessary to convert some of the

Chimera robotics infrastructure (such as calibration, etc ... ) to be able to be invoked

by RTEMS. This research has hypothesized that the chim program supplied by

Chimera will be sufficient for downloading compiled binaries to the 68030 boards.

This must be verified. Finally, the UTAP application code developed for [Anc95]

needs to be redesigned into Ada tasks, compiled, run under RTEMS, and tested on the

laboratory hardware. Since both Ada and C cross-compilers have been installed as part

of this effort, mixed language UTAP applications can be studied as well.

Eventually, it will be necessary to develop other environments in which to test

the UTAP application software. While RTEMS may prove to be a good environment

to develop long-term UTAP solutions, it will still be important to demonstrate
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portability by using different operating systems, hardware platforms, and even

languages.

It will also be necessary to devote some time toward keeping up with the pace

of the GNAT and RTEMS technology. In the next few months, it is likely that a new

version of RTEMS will be released that will fully embrace the Ada95 tasking model.

This will be an important step because it should allow UTAP researchers to develop

Ada application code that is completely independent of the operating system. The

GNAT compiler has new releases every several months, and it is possible that with

these new products, cross-compilation support will be better addressed. Since detailed

instructions now exist to build the GNAT cross-compiler, future attempts to update this

functionality will be significantly easier. The findings of this research will be made

available to both the RTEMS and GNAT vendors for inclusion in future products.

5.3Summary

This chapter has summarized the conclusions and recommendations of this

thesis effort. The UTAP specification represents a good first attempt to standardize

telerobotics interfaces, but suffers a few shortcomings. Adding detail to the definitions

of UTAP's modules and messages is recommended. Developing suitable environments

in which to test UTAP applications is not a trivial exercise, but an important one if the

goals of UTAP are to someday be realized.
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Several recommendations for further research are made. The assumptions made

at the beginning of this effort should be reassessed and a decision made if the

integration of RTEMS and UTAP should continue. If not, other environments should

be developed or purchased to continue Ada-UTAP research. The task communication

constructs featured in the Ada programming language will eventually help in solving

the need to look to the operating system for inter-module communication. Effort

should be made to keep up with the pace of GNAT and RTEMS technology, as these

products may result in a good long term UTAP solution.
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Appendix A

Lessons Learned and Pitfalls In Building Cross-GNAT

A. 1 Immaturity of Cross-GNAT

When GNAT was chosen to perform cross-compilation for this thesis effort, it's

level of maturity in this area was not known. Upon investigating how to set up GNAT

to provide cross-compilation, it became clear that its use for this purpose is a very

immature technology. Ideally, one might hope that cross-compilation could be

accomplished simply by changing the configuration of a binary GNAT distribution.

Unfortunately, this is not the case. One must first insure that the latest version of the

native GNAT compiler is installed, then use that compiler to recompile GNAT source

code with the configuration set to build a cross-compiler. The specific steps for

building the cross-compiler are found in Appendix B of this document.

There is not yet any documentation, either published or on the World Wide

Web, on how to build cross-GNAT. There is plenty on how to build cross-GCC, and

plenty on how to build native GNAT; however, there are several source code changes

that are needed before one can combine the two procedures to build cross-GNAT. At

this time, to build cross-GNAT, one must either become intimately familiar with the

over 300,000 lines of GNAT source code and makefiles, or find someone who has

done it before, and get a list of source code and makefile changes needed. Given a
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UNIX diff output, one can modify existing GNAT source code using the GNU patch

utility.

Finding someone who has built cross-GNAT before is not easy. Posting

inquiries to applicable mailing lists and newsgroups (discussed later in this section)

resulted in very few responses. The first response confirmed that the first step was to

build cross-GCC and a Cygnus product called Newlib for the target. However, it was

very vague about what specific source code and makefile changes would be needed for

the GNAT source code. Apparently, if these changes are not made, the cross-compiler

begins to be compiled by partially-compiled pieces of itself, and will not work. The

second response was much more detailed, but it assumed that permanent storage and

certain GNU tools were available on the target platform. Unfortunately, this is not the

case in the laboratory being used for this research. In this case, the target machine did

not have any permanent storage capability, so all executable programs must be

downloaded from the host. This capability will ultimately be provided by a

downloading utility called chim, which runs on the host machine.

Fortunately, the RTEMS vendor, On-line Applications Research Corporation

(OAR), was able to provide support in building cross-GNAT. They had already built

cross-GNAT (albeit an earlier version), and had originally recommended it for use in

compiling their operating system. With their help, the procedure found in Appendix B

was developed.
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The bottom line is that, at this time, cross-GNAT is very immature. Finding

someone who can help is difficult, and finding documentation on how to build it is

impossible. This document is the first known effort to annotate the steps and pitfalls

associated with building cross-GNAT. In time, as OAR continues to recommend cross-

GNAT for compiling RTEMS, and work on incorporating the needed patches into the

GNAT public releases, this process will improve.

A.2 Lack of Available Support

When Ada Core (the support provider for GNAT) was contacted about trying to

build cross-GNAT, the following response was received:

"Please note that our support under this customer number does NOT include
support for cross-compilation. It is definitely possible to do the kind of cross-
compilation you are interested in, but this requires a quite different level of
support (cross-compilation is much more complex than native compilation)."

It turns out that Ada Core does not provide any support for cross-GNAT

whatsoever. Cygnus provides support for cross-GCC via the Internet, but does not

support cross-GNAT either. They are however, interested in at least incorporating the

basic steps of building cross-GNAT in their Frequently Asked Questions (FAQ) listing.

At this time, OAR does not officially provide cross-GNAT support, although they seem

to have the capability and are negotiating with Ada Core to be able to do so.
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A.3 Problems with the Cygnus One-Tree FAO

Building the cross-GCC compiler and Cygnus Newlib C library are

prerequisites for building cross-GNAT. The Cygnus cross-GCC FAQ listing is the

best source for accomplishing these important steps. The FAQ is readily available at

the Cygnus FTP site (ftp.cygnus.com). It describes a procedure for building cross-

GCC from a single source code tree. For this research, the single tree procedure was

abandoned after the first several compilation attempts, so that the precise location of

compilation errors could be more easily discovered. However, after developing the

procedure found in Appendix B of this document, the single tree procedure was rerun

to see if it would work. For reasons unknown, it did not. For anyone attempting to

build cross-GCC, the Appendix B procedure is strongly recommended.

A.4 Native GNU Tools

The single biggest problem currently with the cross-GCC FAQ is its failure to

mention what native GNU tools are needed to properly complete the procedure. Based

on experience with building cross-GNAT with a sparc-sun-solaris2.5 host targeted to

m68k-coff, the following native tools are needed to even begin executing the FAQ

procedure:

GNAT (includes GCC)
GNU BINUTILS
GNU MAKE
GNU PATCH
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Furthermore, it is best to build these tools from the readily available source

code, rather than simply download and install a binary executable. The reasons are

that first, it gives the user confidence that the tool will actually work on the machine on

which it compiles. Second, it gives the user practice building tools from source code,

an important aspect of setting up a cross-compiler. Instructions for building all needed

native tools from source code can be found in the cross-GNAT procedure in Appendix

B. Instructions for installation of GNU Patch are not included in this document, as this

tool was already available on the host platform used in this research. It is critical,

however, to ensure that the GNU version of Patch is installed rather than the UNIX

version (the GNU version works on both Solaris and SunOS, whereas the UNIX

version works only sporadically on SunOS).

A.5 Build Directories vs. Source Directories

The Cygnus One-Tree FAQ also recommends performing all compilation in

directories separate from the directories containing the source code. The reason for

this is to prevent compilation attempts that go awry from contaminating the source

directories with partially or improperly compiled files. However, the cause of several

early errors in this research were more easily found by compiling in the actual source

code directories. Therefore, the procedure for building cross-GCC found in this

document deviates from the FAQ in this regard. If a compilation attempt does result in
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an error, it is easy to restore the directory to its initial state using the make distclean

command.

A.6 Native and Cross Tools in the Same Installation Directory

For cross-GCC, it is apparently acceptable to install the cross-compiler in the

exact same directory as the native compiler. One can then invoke the cross-compiler

with the same "gcc" command by including the appropriate flags in the GCC command

line ("gcc -bm68k-coff -m68030 foo.c" would be used to compile foo.c for a 68030

board). Unfortunately, cross-GNAT cannot currently be installed in the same directory

as its native counterpart. Many of the native tools and libraries get overwritten and

neither compiler will work. This problem was solved by installing all native tools in

one sub-directory, and cross tools in another.

A.7 Amount of Memory/ Compile Times Needed

In order to build cross-GNAT a significant amount of memory and compilation

time are needed. For example, compiling Cygnus newlib-1.7.0 takes three to five

hours on a Sun Sparc-5 machine and creates a directory tree that occupies about 63

megabytes of memory. By the time cross-GNAT was completely built, the gnu

directory took up nearly 350 megabytes of disk space. One must ensure that a

significant amount of disk space is available before attempting to build cross-GNAT.
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The lengthy compile times tend to magnify the effects of errors. For example,

two files were missing in newlib-1.7.0 directory structure (the solution is discussed

later). However, newlib had to be compiled approximately eight times before the error

was diagnosed and the solution found. The nature of the error was such that the

compilation process had to be repeated from scratch each time a different solution was

attempted. At four hours per compilation attempt on average, the better part of a week

was spent to solve this seemingly simple error.

A.8 Testing the Cross-Compiler

As was mentioned before, the cross-compiler is very immature. For example,

using m68k-coff-gcc with the -c flag generates the .o and .ali files, as expected.

However, gnatmake and gnatbind do not yet work for cross. When compiling a simple

native Ada program, one usually can just type "gnatmake xxx.adb", and the compiler

will generate not only the object files, but link in all necessary libraries and generate

the executable as well. To do the same thing for cross, one must figure out which

libraries are needed and manually link them using GNU and UNIX tools. This is a

fairly complicated process, especially given the need to navigate the maze of libraries

created in building the cross-compiler. Fortunately, the details of doing so are hidden

within the RTEMS makefiles.

Fully testing the newly installed cross-compiler was not trivial. Since an

operating system was not yet running on the target, any test programs developed could
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not be run until RTEMS was compiled. Furthermore, nothing useful could be done

until board support packages and device drivers were created for our specific board,

since output to the user is dependent on being able to communicate with a terminal.

All in all, this created a very frustrating catch-22. One could not tell for sure that the

cross-compiler was working until RTEMS was compiled, yet RTEMS could not be

successfully compiled without a working cross-compiler. The best that could be done

was to cross-compile simple Ada programs using no 10, and see that they compiled

without error. Until RTEMS was compiled, they could not be run on the target

platform.

A.9 Determining the Host and Target Platforms

Two options were available for use as a host platform: Sun Sparc Workstations

running either the SunOS 4.1.3, or Solaris 2.5 operating systems. Although the target

platform was connected directly to a SunOS machine, the Solaris host was chosen to be

used instead. The reasoning was twofold. First, most of the early success for this

effort in building and installing GNU tools came using Solaris machines. Second, the

laboratory being used in this effort was in the process of having SunOS replaced with

Solaris on nearly all machines. Although, the machine connected directly to the robot

was not slated to receive Solaris, this may well happen in the future. Furthermore, as

long as the directly connected host remains SunOS, files can easily be compiled on a
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Solaris machine, uploaded to the SunOS machine, and then downloaded to the robotics

platform.

A discussion of how to specify particular platforms can be found in the GNU

CC source code top level README file. Platforms are specified on the configure

command line using "--host= hostname" and "-- target= targetname". Generally, the

host machine need not be specified, as configure is usually able to figure it out on its

own. The target can either be specified using "CPU-company-OS" (example: vax-dec-

ultrix4.2 or sparc-sun-solaris2.4), or a recognized machine name (example: powerpc or

sun4). For any CPU's in the Motorola 68000 series, m68k-OS is used. Since an

operating system was not yet running on the target platform used in this effort (cross-

GNAT will be used to compile an operating system), m68k-coff was used as the target.

A. 10 Missing Files in Newlib-1.7.0

In order to compile Newlib-1.7.0, an error that was not yet documented in any

FAQ or README files needed to be solved. The first several times compilation of

Newlib-1.7.0 was attempted, the following error message was received:

configure: error: can not find install-sh or install.sh in ../.../..!..
configure: error: ./configure failed for m68k
*** Error code 1
make: Fatal error: Command failed for target "configure-target-libgloss'

Mr. Joel Sherrill at OAR provided the solution to this problem. It involved

merely linking the install.sh file from the newlib-1.7.0 directory into the m68k-coff
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sub-directory. The next error was similar, but took a post to the crossgcc mailing list

to find a solution:

configure: error: can not run ... /config.sub
configure: error: ./configure failed for m68k
gmake: *** [configure-target-libgloss] Error 1

This solution was sent by Mr. Franz Fischer, a professor of computer science

from Munich, Germany. The config.sub file in the newlib-1.7.0 directory needed to be

linked into m68k-coff as well. Both solutions to these previously undocumented errors

can be found in the procedure for building a GNAT cross-compiler (Appendix B).

A. 11 Needing Crossgcc and Newlib Installed to Build Cross-GNAT

In order to build native GNAT from source code, one does not need to compile

GCC from source first. The GNAT source code is copied into the GCC source code

directory, and both compilers are built with a single command. The same could not be

said for compiling cross-GNAT. To build cross-GNAT, cross-GCC and Newlib must

both already be compiled and installed. Not doing so results in the following error:

a-adaint.c:42: time.h: No such file or directory

Only after cross-GCC and Newlib are installed, can the GNAT source code be

copied into a clean GCC source code directory, compiled and installed.
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A. 12 Join the Following E-Mail Lists

Two E-mail lists were very beneficial in finding help throughout this research.

The first is operated by Cygnus and dedicated entirely to cross-GCC and embedded

issues. To subscribe, send E-mail to majordomo@cygnus. com with "subscribe crossgcc

your@email. address" in the body of the message.

Another important list to join is the GNAT-Chat list. This list is dedicated to

the discussion of Ada in general and GNAT in particular. To subscribe send E-mail to

chat-request@gnat. com with "subscribe your@email. address" in the subject line.

At this time, there is no list dedicated to cross-GNAT issues, although this may

change in the future. It is possible to find a small handful of people on the above two

lists that have built cross-GNAT and may have more information on any new mailing

lists.
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AppenixB

Instructions for Building the GNAT Cross-Compiler

The following instructions guide the reader through the process of setting up

GNAT to handle cross-compilation. These instructions were used to build a cross-

compiler between a host Sparc workstation running the Solaris 2.5 operating system,

and a generic Motorola m68000 series target processor. Once the cross-compiler is

built, Ada source code can be compiled for the 68030 board using m68k-coff-gcc -c -

m68030 foo.adb on the Solaris terminal command line. Boldface type is used

throughout this appendix to indicate exact keystrokes. Italics are used to designate

directory paths and file names.

B. 1 Native Tools

B. 1. 1 Install GNAT Binary Distribution

The first step toward building an Ada cross-compiler requires installation of a

native compiler so that the compiler source code can be recompiled. If GNAT is

already installed on the host system, this step may not be necessary. However, be

wary, because older versions of GNAT will not necessarily compile newer versions.

Installing the latest version of the native GNAT compiler is recommended to avoid

potential problems with compiling cross-GNAT.

1. Get the latest binary GNAT distribution from ftp site cs.nyu.edu:pub/gnat. Gnat-
3.05-sparc-sun-solaris2.4-bin. tar. gz was used for this research.
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2. Create a directory called gnat-bin.

3. Move the downloaded GNAT binary file to gnat-bin.

4. Type cd gnat-bin

5. Type gunzip gnat-3.05-sparc-sun-solaris2.4-bin.tar.gz to uncompress file

6. Type tar xf gnat-3.05-sparc-sun-solaris2.4-bin.tar to untar GNAT

7. Type cd gnat-3.05-sparc-sun-solaris2.4-bin

8. Type doconfig and follow directions. The third option is recommended to install
GNAT in the user's personal directory space.

9. When prompted for an installation point, - usernameignat-bin/install is
recommended. Note: The entire path name must be typed (i.e. do not use - username
nomenclature).

10. Type doinstall to install GNAT

11. The installation process will create a file called env-vals, the text of which must be
added to the user's .cshrc file (in the top level directory - username).

12. Add set path = (- usernameignat-bin/install/bin $path) to the end of the .cshrc
file.

13. Type source .cshrc for changes to take effect

14. At this point native GNU Ada and C compilers have been installed. Test the setup
by compiling simple programs. Using the -v option on the GCC compiler command
line will allow the user to ensure the newly installed compiler is the one being used.

B. 1.2 Install GNU Make

Having the latest version of GNU make is critical. Some of the later steps of

this process will work fine using UNIX make; however, many will not.
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1. Get the latest version of GNU make from the GNU ftp site (prep.ai.mit.edu).
Make-3.74.tar.gz was used in this research.

2. Create a directory called gnu.

3. In the new gnu directory, create a new directory called native-install. This is where
the rest of the native GNU tools that are needed to build a cross-compiler will be
installed.

4. In the gnu directory, gunzip and tar xf the file that was downloaded from the ftp
site.

5. Type cd make-3.74

6. Type configure --preffix= -username/gnu/native-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature). The --prefix flag tells the makefiles to install GNU make in the
specified directory.

7. Type make to build GNU make

8. Type make install to install GNU make in - usernamelgnulnative-install.

9. At this point, a working version of GNU make will be available. Change
directories to -usernamelgnulnative-install/bin and type In make gmake. This is
important because some of the scripts used later invoke gnu make by calling "gmake"
rather than "make".

10. Add set path = (-username/gnu/native-install/bin $path) to the end of the .cshrc
file.

11. Type source .cshrc for changes to take effect.

B. 1.3 Install GNU Utilities

Again, this step may not be necessary if all the latest GNU utilities are available

on the system being used. Most of the later steps of this process should work fine
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using UNIX utilities. However, for the sake of having a consistent set of GNU tools,

binutils was built and installed for this research.

1. Get the latest version of GNU binutils from the GNU ftp site (prep.ai.mit.mil).
Binutils-2.7.tar.gz was used for this research.

2. In the gnu directory, gunzip and tar xf the file that was downloaded from the ftp
site.

3. Type cd binutils-2.7

4. Type configure --prefix = - username/gnu/native-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature).

5. Type gmake all to build GNU binutils

6. Type gmake install to install GNU binutils in - username/gnulnative-install.

7. At this point, the native versions of all needed GNU compilation utilities are
available for use. Modifying the .cshrc file should not be necessary, as long as
- username/gnu/native-install/bin is already in the path (done in the last section). It is
recommended, however, that source .cshrc be typed before moving to the next section.

B. 1.4 Install GCC and GNAT Compilers

The next step was to build native GCC and GNAT compilers from source code.

This is probably not entirely necessary, given that binary executable versions were

already installed in section A. However, it is useful to ensure that a native compiler

can be built from source before proceeding to the more complicated task of building a

cross-compiler from source. If this step cannot be successfully accomplished, there is

no hope of successfully building the cross-compiler from source code, since the steps

are similar.
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1. Get the latest version of GCC source code from the GNU ftp site (prep.ai.mit.mil).
Gcc-2.7.2. tar. gz was used for this research.

2. Get the latest version of GNAT source code from the GNU ftp site
(prep.ai.mit.mil). Gnat-3.05-src.tar.gz was used for this research.

3. Get the GNAT source patches from the GNU ftp site (prep.ai.mit.mil). Gnat-3.05-
src-update. tar. gz was used for this research.

4. In the gnu directory, gunzip and tar xf the files that were downloaded from the ftp
site.

5. Type cd gnat-3.05-src-update. Depending on the current status of GNAT, there
may be a source code patch or two in here that are needed. In this research, a file
called sparc.dif was needed. To apply this patch type:

cd ../gnat-3.05-src/src/ada and then
patch -pO <../../../gnat-3.05-src-update/sparc.dif

Note: "Patch" is a program that takes as input a UNIX "diff" listing between two files
(or many files within a directory). Patch can then change a file to make it look like the
file with which the diff listing was made. Type man patch or man diff for more
details. It is important to note that the UNIX version of Patch does not work on
Solaris machines. If UNIX Patch is being used, the user will need to log into a
workstation with SunOS just long enough to apply patches, before going back to
Solaris to do configuring and compilation. The GNU version of patch should work as
advertised on both SunOS and Solaris.

6. After applying the patch, look at the screen output to make sure all "hunks" were
successfully applied. If there were any problems, further study of the patch file will be
necessary. It is possible to make source code changes by hand if the patch utility fails
to work on any particular hunks.

7. Type cd ../../../gcc-2.7.2

8. Type patch -pO <../gnat-3.05-src/src/gcc-272.dif
In this step, the C compiler source code is modified to allow Ada to be compiled as
well. Again, it may be necessary to log onto an SunOS machine to perform this step if
the UNIX version of patch is being used. Check to make sure all "hunks" were
successfully applied.
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9. Type cp -r .. /gnat-3.05-src/src/ada.
This will copy all GNAT source code into the GCC directory.

10. Type cd ada

11. Type touch treeprs.ads a-[es]info.h nmake.ad[bs]

12. Type cd ..

13. Type configure --prefix = - username/gnu/native-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature).

14. Type gmake CC=gcc CFLAGS="-02" LANGUAGES="c ada"

15. Type gmake CC = gcc CFLAGS = "-02" LANGUAGES = "c ada" bootstrap

16. Type gmake CC=gcc CFLAGS="-02" gnatlib and-tools

17. Type gmake install LANGUAGES= "c ada"

18. At this point, new GCC and gnatmake executables compiled from source code are
available. From now on, this version of the compiler will be used as long as the
GNAT environment variables are reset. To do this, open the .cshrc file and find the
GNAT environment variables pointing to the binary installation we did earlier (section
A). Change these variables to point to the new installation and type source .cshrc at
the command line prompt.

B.2 Cross Tools

Once all native tools are installed on the host platform, the Ada cross-compiler

can be built. In order to do this, however, several other cross utilities must first be

installed, including the C compiler and embedded libraries. For this research, the

directories used to build the native tools (gcc-2.7.2, and binutils-2.7) were chosen to be
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removed rather than reused to build the cross tools. Supposedly this can be avoided by

entering the directories and typing gmake distclean.

B.2.1 Install Cross-Binutils

1. In the gnu directory, create a new directory called cross-install. This is where the
rest of the cross-GNU tools will be installed.

2. In the gnu directory, remove the used binutils-2.7 directory. Do this by typing rm
-rf binutils-2.7

3. Untar a clean directory by typing tar xf binutils-2.7.tar

4. Type cd binutils-2.7

5. Type configure --target = m68k-coff --prefix = - username/gnu/cross-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature).

6. Type gmake all to build the cross version of GNU binutils

7. Type gmake install to install the cross version of GNU binutils in
- username/gnu/cross-install.

8. At this point, native versions of the GNU compilation utilities will be available for
use. Add set path = (- usernameignuicross-install/bin $path) to the end of the .cshrc
file.

9. Type source .cshrc for changes to take effect.

B.2.2 Install Cross-GCC

1. In the gnu directory, remove the used gcc-2.7.2 directory. Do this by typing rm -
rf gcc-2.7.2

2. Untar a clean directory by typing tar xf gcc-2.7.2.tar

3. A special patch is needed to configure GCC as a cross-compiler. This patch can be
downloaded from ftp.cygnus.com:/pub/embedded/crossgcc and is called crossgcc-gcc-
2.7.2.patch.
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4. Type cd gcc-2.7.2

5. Apply the crossgcc patch by typing patch -pl < .. /crossgcc-gcc-2.7.2.patch.
Remember, the patch utility may not work on Solaris machines. Logging in to a
SunOS machine may be necessary to do this step.

6. Type configure --target = m68k-coff --prefix = - username/gnu/cross-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature).

7. Type gmake CC = gcc all to build the cross version of GCC.

8. Type gmake install to install the cross version of GCC in - username/gnu/cross-
install.

9. At this point, the GNU C cross-compiler will be built and installed. However, it
will not be usable until the embedded C libraries are installed (next section).

B.2.3 Install Cygnus Newlib

1. Get the latest version of Newlib from the Cygnus ftp site (ftp.cygnus.com).
Newlib-1. 7. 0. tar. gz was used for this research.

2. In the gnu directory, gunzip and tar xf the file that was downloaded from the ftp
site.

3. Type cd newlib-1.7.0

4. Type configure --target = m68k-coff --prefix = username/gnu/cross-install
Note: The entire path name must be typed (i.e. do not use -username

nomenclature).

5. At this time, there are important files missing from the m68k-coff directory. The
next four steps alleviate this problem.

6. Type cd m68k-coff

7. Type In .. /config.sub

8. Type In .. /install.sh
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9. Type cd..

10. Type gmake all to build Newlib

11. Type gmake install to install Newlib in - username/gnu/cross-install.

12. At this point, all the necessary tools are available to build cross-GNAT.

B.2.4 Install GNAT Cross-Compiler

1. In the gnu directory, remove the used gcc-2.7.2 directory. Do this by typing rm -
rf gcc-2.7.2

2. Untar a clean directory by typing tar xf gcc-2.7.2.tar

3. Type cd gcc-2.7.2

4. Reapply the crossgcc patch by typing patch -pl < .. /crossgcc-gcc-2.7.2.patch.
Remember, the patch utility may not work on a Solaris machine. If the UNIX version
of patch is being used, it may be necessary to login to a machine with SunOS to do any
patch applications.

5. Apply the patch needed to compile GNAT by typing patch -p0 <../gnat-3.05-
src/src/gcc-272.dif

6. Assuming the sparc.dif patch was applied earlier, when the native version of GNAT
was built, type cp -r ../gnat-3.05-src/src/ada. , to copy all GNAT source code into
the GCC directory.

7. Mr. Joel Sherrill at On-Line Application Research Corporation has developed a
patch that is also needed to setup GNAT as a cross-compiler. This patch has not yet
been released to the public, but is available from Mr. Sherrill via electronic mail
(joel@merlin.gcs.redstone.army.mil). To apply this patch, assuming it has been saved
asjoel.patch in the gnu directory, type patch -p0 <../joel.patch. Make sure to
check to see that all "hunks" were successfully applied. For this research, several
hunks failed without explanation, and the source code changes had to be made
manually.

8. In the gcc-2.7.2 directory, edit Makefile. in, and find the following line:

install-common: native install-dir $(EXTRAPARTS) lang.install-common
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Remove the word "native" from this line, and save Makefile.in. It will be necessary to
override the file's write protection to perform this step.

9. Type cd ada

10. Type touch treeprs.ads a-[es]info.h nmake.ad[bs]

11. Type cd..

12. Type configure --target = m68k-coff --prefix= username/gnu/cross-install
Note: The entire path name must be typed (i.e. do not use - username

nomenclature).

13. Type gmake CC=gcc CFLAGS="-02" LANGUAGES="c ada"

14. Type gmake CC =gcc CFLAGS= "-02" LANGUAGES = "c ada" cross-
gnattools

15. Type gmake CC=gcc CFLAGS="-02" LANGUAGES="c ada" gnatlib

16. Type gmake CC = gcc CFLAGS ="-02" LANGUAGES ="c ada" install

17. At this point, the GNAT Ada cross-compiler has been compiled and installed.
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Appendix C

Setting Up RTEMS for Compilation

The following steps must be performed in order to configure RTEMS for

compilation. The target board, for testing purposes, was the Motorola MVME136

using the 68020 processor. This is not the same board that is found in the AFIT

Robotics Lab. A general description for what must be done to get RTEMS running on

the AFIT board can be found in Chapter 5, Recommendations for Further Research.

C. 1 Steps for Compiling RTEMS

1. Update the files ada/Modules/rtems/oar-mvme136 and Template. Here is what both
files should look like:

filename: oar-mvmel36

#%Module
# oar-mvmel36,v 1.9 1995/08/15 19:42:29 joel Exp
# Personal module file for RTEMS
# Must setenv:
# RTEMS BSP
# RTEMS ROOT
# RTEMSGNUTOOLS
# RTEMSCUSTOM
# before sourcing the Template file
setenv RTEMSVENDOR gnu
setenv RTEMS BSP mvme136
setenv RTEMSROOT /home/hawkeye 12/96d/klemley/Thesis/rtems-3.2.1
setenv RTEMSGNUTOOLS /home/hawkeye12/96d/klemley/Thesis/gnu/cross-install
setenv RTEMSHOST Solaris-2.3

# If using CYGNUS libc or GNU libc, then must set RTEMSLIBCDIR
setenv RTEMSLIBCDIR /home/hawkeye12/96d/klemley/Thesis/gnu/cross-install/m68k-coff
source /home/hawkeye 12/96d/klemley/Thesis/rtems-3.2. 1/ada/Modules/rtems/Template
#end oar-mvme 136
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filename: Template

# %Module

# Template,v 1.2 1995/05/11 19:21:17 joel Exp

# Base module for RTEMS
#I Should be sourced from your personal module; ref ./tbennett

setenv RTEMS_-CUSTOM /home/hawkeye 12/96d/klemley/Thesis/rtems-
3.2. 1 /ada/makelgnu/custom/mvmel136. cfg

#append-path MANPATH /home/hawkeye 12/96d/klemley/Thesis/gnu/cross-install/man

# For convenience only; makefiles try *never* to use $PATH
#append-path PATH /homelhawkeye 12/96d/klem-ley/Thesis/gnu/cross-install/bin

setenv r /home/hawkeye l2l96dlklemleylThesislrtems-3 .2.1l/ada
setenv rs /home/hawkeye 12/96d/klemley/Thesis/rtems-3 .2.1I /ada/src

# end Template

2. Change the following line in Iadalmakelgnulos/Solaris-2.3.cfg:

From: KSH = /usr/bin/bash
To: KSH = Iusrlbinlksh

3. Change the following line in /ada/make/gnu/os/Solaris-2 .3. cfg:

From: M4 = netappsl$ {APPLICATIONSERVERI /usr2/gnu/binlgm4
To: M4 = /usr/local/binlm4

4. In the gnu tools directory, perform the following steps:

cd - username/gnu/cross-install/Iib/gcc-Iib/m68k-coff/2.7.2/adalib
m68k-coff-ar cry Iibrest.a *.o

5. Once the above steps are completed, the following steps can be used at any time to
compile RTEMS:

cd - username/rtems-3 .2. 1/ada/Modules /rtems
source oar-mvmel36
cd $r
gmake install
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Appendix D

RTEMS Source Code Changes for Compilation Using GNAT 3.05

The following source code and makefile changes were implemented to make

RTEMS 3.2.1 compilable under GNAT 3.05:

1. The following function was added to /ada/src/exec/cpu/gnu/m68k/cpu-data.ads:

function ARE-PRIORITY BIT MAPSEQUAL (
LEFT : in CPUDATA.PRIORITYBITMAPCONTROL;
RIGHT: in CPUDATA.PRIORITYBITMAPCONTROL)
return BOOLEAN

renames CPUDATA."

2. The following line was added to /ada/src/exec/rtems/types.adb:

use SYSTEM;

3. The following line was added to /ada/src/exec/rtems/userextensions.adb:

use CONFIGURATION;

4. The keyword "aliased" was added to the following type in
/ada/src/exec/rtems/chain. ads:

type CONTROLARRAY is array (TYPES.UNSIGNED32
range 0 .. 65535 ) of aliased CHAIN.CONTROL;

5. The following line was added to /ada/src/exec/rtems/io.adb:

use CONFIGURATION;

6. The following line was added to /ada/src/exec/rtems/rtems tasks.adb:

use THREAD;
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7. The following line was added to /ada/src/exec/rtems/internal threads.adb:

use CPU;

8. The following line was added to /ada/src/exec/rtems/internal threads. ads:

with UNCHECKEDCONVERSION;

9. The following line was added to /ada/src/exec/rtems/mpci.adb:

use MPPACKET;

10. The following line was added to /ada/src/exec/rtems/multiprocessing.adb:

with INTERFACES; use INTERFACES;

11. The following line was added to /ada/src/exec/rtems/initialization.adb:

use CPU;

12. The key word "all" was changed to "constant" in the following lines of
/ada/src/exec/rtems/configuration. ads:

type EXTENSION TABLEPOINTER is access constant
CONFIGURATION. EXTENSIONTABLE;

type MULTIPROCESSINGTABLEPOINTER is
access constant CONFIGURATION.MULTIPROCESSINGTABLE;

type MPCITABLEPOINTER is access constant
CONFIGURATION. MPCITABLE;

13. The following line was added to
/ada/src/lib/libbsp/gnu/m68k/mvme 136/clock driver. adb:

use System. Storage-Elements;

14. The following line was added to
/ada/src/lib/libbsp/gnu/m68k/mvme 136/timer driver. adb:

use System. StorageElements;
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15. The following lines were added to
/ada/src/lib/libbsp/gnu/m68k/mvme 136/bsp. adb:

with System. StorageElements;
use System. StorageElements;

16. The following line was added to
/ada/src/lib/libbsp/gnu/m68k/mvme 136/interrupt_timetest support. adb:

use System. StorageElements;

17. The following line was added to
/ada/src/lib/libbsp/gnu/m68k/mvme 136/shm-support. adb:

use System. StorageElements;

18. In the /ada/src/tests/sptests directory, there are the following 24 subdirectories:
spO1 -sp09, sp 11-spl7, sp 19-sp25, spsize. Each of these directories contain a file called
sptest.ads. The following lines were added to each of these files:

with INTERFACES;
use INTERFACES;

Each of these directories also contain a file called main.adb. The keyword ACCESS
was changed to UNCHECKEDACCESS in each of the following two lines:

SPTEST. INITIALIZATION_ TASKS'UNCHECKEDACCESS,
SPTEST. DEVICEDRIVERS'UNCHECKEDACCESS,

19. The following lines were added to /ada/src/tests/sptests/spl4/sptest.adb:

with SYSTEM;
use SYSTEM;

20. The following changes were made in the /ada/src/tests/sptests/spfatal directory:

a. Change ACCESS in line 208 of sptest.adb to UNCHECKEDACCESS.

b. Changed ACCESS in line 34 of main.adb to UNCHECKEDACCESS.

c. The following lines were added to sptest.ads:

with INTERFACES;
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use INTERFACES;

21. In the /ada/src/tests/tmtests directory, there are the following 31 subdirectories:
tmOl-tm29, tmck, tmoverhd. Each of these directories contain a file called tmtest.ads.
The following lines were added to each of these files:

with INTERFACES;
use INTERFACES;

Each of these directories also contain a file called main.adb. The keyword ACCESS
was changed to UNCHECKEDACCESS in following line (except in tm2O):

TMTEST. INITIALIZATIONTASKS' UNCHECKEDACCESS,

22. In /ada/src/tests/tmtests/tm2O/main.adb, the keyword ACCESS was changed to
UNCHECKEDACCESS in the following two lines:

TMTEST. INITIALIZATIONTASKS'UNCHECKEDACCESS,
TMTEST.DEVICEDRIVERS'UNCHECKEDACCESS,

23. Changed ACCESS in line 167 of /ada/src/tests/tmtests/
tmoverhd/main.adb to UNCHECKEDACCESS.

24. In the /ada/src/tests/mptests directory, there are the following 14 subdirectories:
mp0l-mp14. Each of these directories contain a file called mptest.ads. The following
lines were added to each of these files:

with INTERFACES;
use INTERFACES;

Each of these directories also contain a file called main.adb. The keyword ACCESS
was changed to UNCHECKEDACCESS in each of the following two lines:

MPTEST. INITIALIZATIONTASKS'UNCHECKEDACCESS,
MPTEST.DEVICEDRIVERS'UNCHECKEDACCESS,

25. In the /ada/src/tests/samples directory, there are the following 4 subdirectories:
hello, ticker, base_sp, base_mp. Each of these directories contain a file called

sptest.ads. The following lines were added to each of these files:

with INTERFACES;
use INTERFACES;
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Each of these directories also contain a file called main. adb. The keyword ACCESS
was changed to UNCHECKEDACCESS in each of the following two lines:

MPTEST.INITIALIZATIONTASKS' UNCHECKEDACCESS,
MPTEST. DEVICEDRIVERS'UNCHECKEDACCESS,

26. Make the following changes to the file /ada/make/gnu/compilers/gcc-
mvmel36.cfg:

a. Add the -x flag to the gnatbind command.

b. Ensure that the line with the reference to the file generic.o is commented
out.

c. Ensure the line with the reference to the file mvme135.o is commented out.

d. Changed the line "$(GCC_LIB_HOME)/libgnat.a V' to
"$(GCC_LIBHOME)/adalib/libgnat.a V'.

e. The following line should appear three times in the LINK-FILES list:

$(PROJECTRELEASE)/lib/libbsp$(LIBSUFFIXVA) \

The first occurrence is after the line which reads "$(LDLIBS) V'
The second occurrence is after the first line reading "$(LIBCLOW)
$(LIBCLIBC)..."
The third occurrence is after the line which reads
"$(GCCLIBHOME)/adalib/librest.a V'

27. Changed "2.6.3" to "2.7.2" in two places within
/ada/make/gnu/custom/mvme 136.cfg.

28. Moved the file glue.c into /ada/src/lib/libbsp/gnu/m68k/mvmel36/glue.c.
Glue.c is missing from the RTEMS 3.2.1 directory structure entirely. The CPIECES
section of the Makefile in that directory must also be updated to include "glue". Here
is the complete source code for glue.c:

/*

* glue.c -- all the code to make GCC and the libraries run on
* a bare target board. These should work with any
* target if inbyteo and outbyteo exist.
*/

#include < sys/types.h >
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#include <sys/stat.h>
#include <errno.h>
#include < ansi.h>

#ifndef NULL
# define NULL 0
#endif

/* gnat runtime references these for now -- Capt Lemley */

char *getcwd( char * buf, size t size) { return 0;
int fork() { return 0;
int execv(const char *_path, char * const _argvo) { return 0;
int wait() { return 0;

/*

* support setting the errno array if it's there
*/

#ifdef errno
# define SETERRNO(x) errno = x
#else
# define SETERRNO(x)
#endif

#ifdef _NO UNDERSCORE
# define _end end
# define _exit exit
#endif

extern int EXFUN (outbyte, (char x));
extern char _DEFUN VOID (inbyte);
extern int _DEFUNVOID (havebyte);

/* just in case, most boards have at least some memory */
#ifndef RAMSIZE
# define RAMSIZE (caddrt)0xl00000
#endif

/*

* print -- do a raw print of a string
*/

int
DEFUN (print, (ptr),

char *ptr)

while (*ptr)
outbyte (*ptr+ +);

I
/* Line added by Capt Kendall Lemley , 22 Oct
*/

return 0;

/*

• read -- read bytes from the serial port. Ignore fd, since
* we only have stdin.
*/

int
DEFUN (read, (fd, buf, nbytes),

int fd AND
char *buf AND
int nbytes)
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int i = 0;

for (i = 0; i < nbytes; i+ +) {
*(buf + i) = inbyteo;
if ((*(buf + i) == '\n) (*(buf + i) == '\r')) {

(*(buf + i + 1)) = 0;
break;

return (i);
}

/*

* write -- write bytes to the serial port. Ignore fd, since
* stdout and stderr are the same. Since we have no filesystem,
* open will only return an error.
*/

int
DEFUN (write, (fd, buf, nbytes),

int fd AND
char *buf AND
int nbytes)

int i;

for(i = 0; i < nbytes; i++) {
if (*(buf + i) = = '\n') {

outbyte ('\r);
}
outbyte (*(buf + i));

return (nbytes);

/*

* open -- open a file descriptor. We don't have a filesystem, so
* we return an error,
*/

int
DEFUN (open, (buf, flags, mode),

const char *buf AND
int flags AND
int mode)

SET ERRNO (EIO);
return (-1);

/*

* close -- close a file descriptor. We don't need
* to do anything, but pretend we did.
*/

int
_DEFUN (close ,(fd),

int fd)

return (0);

/*

* sbrk -- changes heap size size. Get nbytes more
* RAM. We just increment a pointer in what's
* left of memory on the board.
*/
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caddr-t
DEFUN (sbrk, (nbytes),

int nbytes)
I

static caddrt heapptr = NULL;
caddr t base;
/* extern int _end; added by Capt Kendall Lemley, 22 Oct 96
*/

extern int _end;

if (heapptr = = NULL)
heapptr = (caddr 0&_end;

I

if ((RAMSIZE - heap_ptr -nbytes) > = 0)
base = heapptr;
heapptr + = nbytes;
return (base);
else I
SET ERRNO (ENOMEM);
return ((caddr t)-l);

/*

* isatty -- returns 1 if connected to a terminal device,
* returns 0 if not. Since we're hooked up to a
* serial port, we'll say yes _AND return a 1.
*/

int
DEFUN (isatty, (fd),

int fd)

return (1);

/*

* Iseek -- move read/write pointer. Since a serial port
* is non-seekable, we return an error.
*/

off-t
_DEFUN (Iseek, (fd, offset, whence),

int fd AND
off t offset AND
int whence)

SETERRNO (ESPIPE);
return ((offt)-1);

/*

* fstat -- get status of a file. Since we have no file
* system, we just return an error.
*/

int
DEFUN (fstat, (fd, but),

int fd AND
struct stat *buf)

SETERRNO (EIO);
return (-4);

/*

* getpid -- only one process, so just return 1.
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*/

#define _MYPID I
int
_DEFUN (getpid, 0,

return _MYPID;

/*

* kill -- go out via exit...
*/

int
_DEFUN (kill, (pid, sig),

int pid AND
int sig)

/* Added by Capt Kendall Lemley, 22 Oct 96
*/

int _exito;

if(pid = = MYPID)
_exit(sig);

return 0;

/*

* stat -- get status of a file. Since we have no file
* system, we just return an error.
*/

int
_DEFUN (stat, (path, buf),

const char *path _AND
struct stat *buf)

SETERRNO (EIO);
return (-1);

/*

* unlink -- since we have no file system,
* we just return an error.
*/

int
DEFUN (unlink, (path),

char * path)

SET ERRNO (ElO);
return (-1);

/*

* putnum -- print a 32 bit number in hex
*/

int
DEFUN (pumum, (num),

unsigned int num){
char buf[9];
int cnt;
char *ptr;
int digit;

ptr = buf;
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for (cmt = 7 ; cnt > = 0 cnt--)
digit = (num > > (cnt *4)) & Oxf:

if (digit < = 9)
*ptr + + = (char) CO0 + digit);

else
*ptr+ + = (char) ('a' - 1O + digit);

*ptr = (char) 0;
print (buf);
return 0;
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