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Abstract

Due to the increasing complexity of emergency medical care, medical staffs require
increasingly sophisticated training systems. Virtual environments offer a low cost means to
achieve a widely usable yet sophisticated training capability. The Defense Advanced Research
Projects Agency (DARPA) has sponsored the Virtual Emergency Room (VER) project to
develop a simulation system that enables emergency department personnel within level I and II
emergency rooms to practice emergency medical procedures and protocols. The VER is a
simulation facility that uses a distributed virtual environment architecture to enable real-time,
multi-participant simulations. The potential advantages of this system include the ability to
evaluate and refine treatment skills, and the ability to provide scenario-specific training for
mobile military field hospital teams. These advantages will ultimately improve the readiness of
emergency department staffs for a wide variety of trauma situations. This thesis represents the

initial phase of a several-year research effort.
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DESIGN AND PROTOTYPE OF THE AFIT VIRTUAL EMERGENCY ROOM:
A DISTRIBUTED VIRTUAL ENVIRONMENT FOR EMERGENCY MEDICAL
SIMULATION

1. Introduction

1.1 Background

To meet the need to rapidly train emergency response staffs, medical personnel require
an environment where they can realistically practice the skills required to triage, diagnose, and
provide medical treatment. The typical civilian or military emergency room setting is one in
which time-critical triage and diagnosis must be performed rapidly (often due to trauma, myo-
cardial infarction, aneurysms, etc.) based on a continuing assessment of the patient’s ever-
changing physiological status. ‘

Unfortunately, professional training for emergency physicians has not matured at the
same rapid pace as that of pilot, air traffic control, field combat, and other professional training
[NILA93; SATA9S]. In fact, emergency medical teams such as those in mobile army surgical
hospital (MASH) units typically train as pilots did before the first aircraft trainer was developed.
Such training revolves around creating a mental picture in words of a situation for the physician
and medical staff, and then allowing them to work together to solve the problems indicated by
the word picture they receive [GODS95].

The absence of a collaborative training environment often reduces the effectiveness of
the training, because realistic emergency medical scenarios are often very difficult to conceptual-
ize. Because of the ensuing difficulty in training, it can take years for medical staff members to
acquire broad-based expertise in emergency medical skills. As a result, rapidly augmenting

emergency department staffs is currently impractical.

1.2 Research Objective

Physicians require many unique skills. In order to meet the need for a competent surge
capability in emergency medical care, emergency response teams require an environment where

they can realistically practice the skills required to triage, diagnose, and treat wounds. A
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possible solution to this problem is to develop a distributed virtual environment (DVE) capable
of supporting a multi-person emergency medical simulation in real time.

The Virtual Emergency Room (VER), under sponsorship of DARPA, is being developed
to permit emergency department personnel within level I and II Emergency Departments to
practice the procedural application of emergency medical treatments. The current work repre-
sents the initial phase of the VER project in which a single doctor trainee may diagnose, assess,
and treat a virtual patient in a fully distributed virtual environment. This initial capability will
lay the foundation for several years of follow-on research, to include development of a collabo-
rative team-treatment capability.

The primary beneficiaries of this research are the Emergency Departments in both the
military and civilian medical sectors. The potential advantages of the VER simulator include the
ability to provide faster and more effective trauma management, the ability to evaluate and refine
procedural treatment skills, and the ability to provide scenario-specific training for mobile
military field hospital teams. The flexibility of simulation provided by the VER will lead to a

training platform for emergency doctors and staffs that exceeds the capabilities of existing

training techniques.

1.3 Thesis Statement

Design an architecture for emergency medical triage and treatment training within a
distributed virtual environment, and demonstrate the feasibility of this architecture by imple-

menting a functional prototype.

1.4 Scope

The scope of this thesis is focused on investigating the initial research phase of the VER
project. This involves designing and implementing a distributed virtual environment (DVE)
framework capable of supporting interactions between a doctor participant and an independent
virtual patient. The design framework and associated prototype includes the design and imple-
mentation of a doctor station, a virtual patient monitoring and control station, and specialized
medical message formats and management software to support communication between the
stations.

Rather than attempt to model all of the characteristics of an actual Emergency Room, the

problem is limited to implementing an interaction capability between a doctor trainee station and

1-2



a virtual patient. Collaborative interaction between multiple doctor participants is not supported.
Furthermore, environmental characteristics such as gravity and inter-object collision detection
are not supported. Efficient algorithms for accomplishing these tasks may be added as follow-on
enhancements. Finally, a model of human physiology is not implemented in this effort. Rather,
a capability to integrate such a model, when one is available, is provided.

Several, but not all, apparatus and treatments available in an actual Level I/II ER are
integrated into this prototype. Representative apparatus and associated treatment capabilities are
implemented to demonstrate the architecture, but not necessarily to demonstrate a complete ER
capability. For instance, due to the computational complexity of surgical simulation, hands-on
interaction between doctor trainee and patient is not supported. Demonstration of the DVE
concepts upon which the VER is designed is limited to procedural, non-surgical and non-
invasive treatment interactions. To further minimize the modeling and computational complex-
ity of this effort, deformable geometry such as tubes, hoses, wires, and organs are not imple-

mented. This is due in large part to technical limitations, which are discussed in Chapter 2.

1.5 Research Goals and Assumptions

The goals of this effort include satisfying the following general statements:

¢ Create an immersive doctor station ER facility, complete with functional apparatus.

¢ Design and implement a mechanism to simulate the physiological state of a virtual patient.

e Establish a communication capability between the immersive ER facility and the virtual
patient.

Because this is the first of a multi-phase effort, this research project is conducted based on

several assumptions:

e Accurate human physiological models that determine how various medical treatments affect
vital signs are not required to demonstrate an initial VER capability.

¢ A typical rendition of a Level I/Il emergency room is achievable and the results are recog-
nizable by emergency medical staffs, despite variations in facility layouts and emergency
medical apparatus between facilities.

* Anemergency medical training facility is a useful and extensible training aid.

e Sheasby’s DIS-compliant Network Manager software is available and adaptable to the
medical simulation domain [SHEA96].
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¢ Information about emergency medical facilities and rudimentary treatment information is

available.

1.6 Approach

The research and development approach for this project incorporates elements of the
spiral software development model. Initially, general performance requirements are distilled
from the problem statement and guidance meetings. From general requirements, detailed
requirements are listed. A system-level design, based on these specific requirements, is devel-
oped. The design is then implemented as a rapid prototype and iteratively refined until the
behavior specified in the requirements is achieved.

The research for this project employs knowledge from four technical areas: distributed-
and non-distributed virtual environments research, human computer interface (HCI) désign,
software engineering, and emergency medical domain knowledge. Information pertinent to the
first three categories was obtained from graduate-level AFIT course notes, conference papers and
proceedings, professional and scholarly journals, and textbooks. Medical information was
initially found in medical library books and training manuals. Supplemental knowledge was
made available by Dr. Gayl M. Godsell-Stytz, an emergency physician. In addition, ER configu-
ration data and photographs were collected from site visits to Level I/Il emergency rooms in the

Dayton, Ohio metropolitan area.

1.7 Overview

This thesis describes the design and implementation of the VER prototype, to provide an
initial training capability for emergency medical simulation. Chapter 2 provides a background
on Emergency Medical Facilities, personnel and apparatus. In addition, a summary of the
current literature with respect to medical virtual environments is presented. Finally, a discussion
of key technologies relevant to this project are discussed, to include DIS, the AFIT Common
Object Database (CODB) Architecture, and the IRIS Performer library. Chapter 3 provides a
requirements analysis and definition for the VER prototype. Chapter 4 discusses the system-
level design of the VER prototype. The implementation details of the VER prototype are then
discussed in Chapter 5, followed by a description of the functional results in Chapter 6. Finally,

conclusions and recommendations for future work are outlined in Chapter 7.
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2. Background

2.1 Introduction

To understand the design approach taken for the Virtual Emergency Room, the reader
must have a basic understanding of the domain knowledge behind the simulation as well as the
current technologies and issues relevant to its development. This chapter provides a brief
background discussion of four topics. First, the personnel and apparatus of a typical hospital
Emergency Department are described. Second, useful concepts related to virtual environment
technologies are enumerated. Third, a survey of the literature is presented, which describes the
state of current research of emergency medical virtual environments. The survey also summa-
rizes the limitations common to most medical VEs. Fourth, the Silicon Graphics’ IRIS Per-
former graphics rendering library is discussed. The Performer library provides the software
building blocks necessary for development of immersive VE applications. Finally, supporting

research required for the VER prototype design is described.

2.2 Emergency Room Organization and Equipment

An Emergency Department (ED) is the department of a hospital in which emergency
cases are evaluated and treated [AHD85]. Emergency Rooms (ERs), which are maintained
within hospital emergency departments, are the hospital facilities that administer critical care to
patients who are seriously ill or injured. Emergency department staffs work in emergency rooms
to triage, diagnose, and treat cases that are commonly life-or-death situations. Emergency
Departments are required in military and civilian settings. The emergency medical services
provided by well-trained Emergency Departments are required for individual- and mass-casualty

care in times of both peace and war [SHEE92].

2.2.1 ED Certification.

While the lifesaving mission of emergency rooms is common to all emergency depart-
ments, not all emergency rooms are the same. Some emergency rooms are better equipped and
better prepared to treat a wider variety of cases. The Emergency Medical Services System Act

of 1973 requires a categorization of hospital facilities according to their emergency support
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capabilities. This categorization ideally indicates the preparedness of each facility to care for
critically ill or wounded patients.

Emergency Rooms nationwide are assigned one of three categories by the Joint Com-
mission on Accreditation of Healthcare Organizations. The certification is based on the capabil-
ity of each ED to rapidly treat major trauma, burns, spinal cord injuries, cardiac emergencies,
poisoning, neonatal emergencies, and psychiatric emergencies. A Level I emergency room
provides the most sophisticated care, and has a trauma surgeon, anesthesiologist, and medical
staff available for multi-specialty care 24 hours a day [SCHW89]. Level II emergency rooms
have most of the equipment required to treat the aforementioned emergencies, and have specialty
medical staffs on-call rather than on the premises. Level III emergency rooms are the least

sophisticated facilities, and offer only a subset of the aforementioned care.

2.2.2 Emergency Department Organization

Emergency Departments have a wide variety of personnel who are skilled in (or are
learning) emergency medical techniques. While the structure of Emergency Departments varies

with each hospital, a typical ED personnel structure resembles that shown in Figure 2-1.

Director

| I |

Emergency Residents
Physicians and Interns
I , I [ | , |
N}xfse Staff Nurses Nursing Assistants Phy_sman Clerks
Practitioners Assistants

Figure 2-1. Typical ED staff structure [SHEE92; JENK78].

Nurse Manager

Shift Charge
Nurse

All ED personnel depicted in Figure 2-1, except for management, cooperate to form
trauma teams that provide critical care services. The functions of the trauma team participants

include the following [SHEE92; JENK78]:
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Staff Nurses and Nurse Practitioners configure equipment, collect vital signs, perform
immediate assessments, undress patients, control bleeding, and perform other support func-
tions critical to providing timely emergency care.

Nursing Assistants perform peripheral duties, and assist nurses as directed.

Physician Assistants accomplish initial diagnoses, and assist emergency physicians with
surgical and diagnostic requirements.

Clerks document patient details, collect billing information, and maintain contact with
caregivers and patient relatives.

Shift Charge Nurses arrange for specimens, arrange for supplemental blood units, serve as
external liaisons, perform administrative coordination, and perform other support tasks as
required by physicians.

Emergency Physicians, Residents and Interns direct the trauma teams, perform patient
assessments, provide and direct patient care, perform surgical procedures, and determine di-

agnostic tests.

In addition to these personnel, Level I emergency rooms also employ orthopedic surgeons,

general surgeons, and neurologists available to augment the trauma team when required.

2.2.3 Emergency Room Apparatus.

Just as with emergency department staffing, the type and layout of emergency medical

apparatus depends on the hospital. However, most emergency rooms employ a common group

of critical care equipment. This apparatus group includes most of the following items

[CUMM94; NURS80]:

Defibrillator/Monitor, used to monitor patient heart rhythm, and provide defibrillation

treatment if required. Defibrillation helps reestablish normal contraction rhythms in a heart
that is not functioning properly by delivering an electric shock to the heart at different en-
ergy levels. Defibrillators are also used to externally pace weak hearts.
Ventilator/Respirator, used to ventilate the lungs in cases where breathing is obstructed,
decreased, or paralyzed. This device moves volumes of air to the lungs at various oxygen
levels to simulate the effects of breathing.

Vital Signs Monitor, provides graphical display of patient vital signs. These devices vary

across product lines, but normally provide pulse and blood pressure information.




* Rapid Infusion IV Pump, automatically dispenses IV fluid and blood therapy at controlled
flow rates and intervals.

¢ Pulse Oximeter, used to provide continuous, real time monitoring of patient oxygenation by

non-invasively monitoring the patient’s finger. Oxygenation monitoring is particularly im-
portant when administering anesthesia, which can deprive the body of oxygen and cause hy-
poxemia (a condition of low blood-oxygen).

e (Crash Cart, a movable cart that contains most ER equipment, to include: defibrillator with
paddles, electrode jelly, saline pads, CPR board, drugs for cardiac resuscitation, hand-held
resuscitators, assorted oral and nasal airways, assorted IV solutions, catheters and needles,
arm-boards, tourniquets, arterial blood sampling kit, assorted syringes and needles, scalpels,
sterile gauze, tape, swabs, sutures, gloves, and other equipment.

e Patient Gurney, a wheeled stretcher, used to transport patients.

o Utilities, receptacles and pumps capable of providing forced air, oxygen, and suction. These

facilities are required for a variety of emergency medical treatments.

e Patient Warmer, a device that provides external surface heating for patients, typically in the

form of a thermal blanket or other heat delivery medium.
e Other miscellaneous equipment, such equipment includes directional lighting, biomedical
waste “Sharps” container, x-ray back-lighting, shelving, cabinets, and other medical equip-

ment and supplies.

2.3 Virtual Environment Technologies

There are several virtual environment technologies that influenced the design of the
VER. This section describes virtual environments and distributed virtual environments. In
addition, this section describes a protocol for communication within distributed virtual environ-
ment applications known as Distributed Interactive Simulation. Finally, this section concludes
with a discussion of the Common Object Database architecture for distributed virtual environ-

ment design.

2.3.1 Virtual and Distributed Virtual Environments

Virtual environments (VEs) are synthetic worlds built using Virtual Reality (VR)
technology. Although it has been given many definitions, VR may be defined as “a computer-

generated technology which allows information to be displayed in a simulated, but life-like
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environment [ROSE96].” Virtual environments typically contain several subsystems, such as
those shown in Figure 2-2. Most VEs include the dynamic generation of graphics, and recent

innovations have introduced the capability for sound and force feedback [GREE96].

Modeliing Application-Specific
Programs Programming
Content Dynamic Renderers
» 3D Graphics Models o g * 3D Image
« Texture Maps Generator - Spaialized Sound

} } Y

Input Peripherals Output Peripherals
Graphics * DataGlove + HMD Video
Translators *» Head Tracker * HMD Audio
* Microphone * Motion Platforms
User Actions
*Tum
+ Grab
*» Speak

Figure 2-2. Elements of a typical virtual environment [GREE96].

A special type of Virtual Environment, called a Distributed Virtual Environment (DVE),

incorporates the technical elements presented in Figure 2-2. However, DVEs add the capability
to integrate multiple participants into a loosely coupled simulation framework. Simply stated, a
DVE is:

...a large-scale, networked, computer-based, virtual world wherein a large num-

ber of realistic entities, both human and computer controlled, can interact. Be-

cause of the computational scalability afforded by distributed computation, a

DVE affords a degree of realism and complexity that can not be achieved in a

standalone virtual environment [STYT97].
Thus, DVEs are different in that they rely heavily on communication between various partici-
pants. This communication is supported by a commonly understood message protocol that

defines the underlying architecture of the simulation.

2.3.2 The DIS Standard

Perhaps the best known standard for DVE communication is the Distributed Interactive

Simulation (DIS) Standard. DIS is an IEEE Standard, and a follow-on to the Distributed Simula-
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tor Networking (SIMNET) project. The primary purpose of DIS is to create a wide-scale,

synthetic virtual environment “through the real-time exchange of data units between distributed,

computationally autonomous simulation applications in the form of simulations, simulators, and
instrumented equipment interconnected through standard computer communicative services

[IST94].” The basic premises upon which the DIS protocol is based include the following

[IST94]:

e No central computer controls the entire simulation. Responsibility for simulating the state of
each entity rests with individual simulation applications residing in host computers con-
nected via a network.

e Autonomous simulation applications are responsible for maintaining the state of one or more
simulation entities. As users operate controls of simulated or actual equipment, the simula-
tion is responsible for sending messages to inform other applications of any and all observ-
able actions.

e A standard protocol is used for communication of simulation events.

e Changes in entity state are communicated by simulation applications.

e Perception of events or other entities is determined by receiving applications.

e Dead reckoning algorithms are used to reduce communications processing. This technique
employs extrapolation techniques to limit the rate at which simulations must issue state up-
dates for entities.

The DIS standard specifies 27 Protocol Data Unit (PDU) message formats, which are
used to pass information between the entities (human or computer) participating in a shared
simulation. The current DIS standard, and the PDU message format repertoire in particular,
provide simulation details that describe entity information and interaction, simulation manage-
ment and performance, radio communications, emissions, and field instrumentation. For a more

thorough discussion of the DIS protocol, the reader is referred to the IEEE Standard 1278-1993.

2.3.3 Common Object Database

The software architecture for any DVE must address several types of requirements, to
include the number and type of entities in the VE, network architecture and protocols, af-

fordability, deliverability, maintainability, fidelity, rendering frame rate and quality, user
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interface, support for automated analysis of the VE, support for decision making, and control of
computer-generated actors [STYT97].

There are many existing DVE architectures and paradigms, to include The Cognitive Co-
processor Architecture, The MR Toolkit, GIVEN, VERN, DIVE-VR, VEOS Toolkit, and The
Veridical User Environment (VUE) [ROSE96b; STYT97]. Unfortunately, there are no standard-
ized architectures that consolidate simulation state information in a widely accessible manner.
The absence of this capability led to the design and subsequent implementation of the AFIT
Common Object Database (CODB) architecture in the Spring of 1996 [STYT97]. This work
couples a distributed intercommunication capability (such as DIS) with a centralized data
repository to correctly manage the state of entities in large-scale distributed simulations. The
primary advantages of this work with respect to an emergency medical DVE are the availability
of specialized simulation support functions and the potential flexibility of using specialized
communication messages to drive multi-participant simulations.

The CODB architecture uses a double-buffering mechanism to permit multiple simula-
tion processes to concurrently read and write data stored in a shared data repository. Storage
areas are identified by a series of user defined enumerated types. Each storage area is accessed
by instantiating a C++ template class that references the storage location, and type-casts it to the
appropriate data (or class) type. The flexibility provided in the design allows different data
structures to be mixed in the same repository with relative ease. Concurrent access by way of
semaphores and shared memory preserves the integrity of data contained within the shared
repository. The internal structure of the CODB, to include the double-buffering mechanism, is
presented in Figure 2-3.

The effectiveness of the CODB was demonstrated in the AFIT Computer Graphics
Laboratory in the Spring of 1996. The demonstration incorporated the CODB architecture as the
foundation for a flight simulation application, and was subsequently presented by Adams,
Garcia, Zurita, and Wells. The successful results of this demonstration led to the migration of
several existing DIS-based projects to the CODB architecture, to include the Virtual Cockpit
[ADAMY96], The Solar System Modeler [WILL96], and the Synthetic Battle-Bridge [WELL96].
Each of these projects have been successfully ported to the CODB architecture.
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Figure 2-3. Internal structure of Common Object Database (CODB) repository.

2.4 Virtual Environments for Medical Simulation

Recently, a multitude of medical VEs have been developed to simulate the treatment of
medical cases. In essence, they represent a radical technology change that will enable physicians
to start practicing in a completely digital realm [SATA93a; SATA94; SATA96a]. The interest in
medical VE applications is primarily based on the benefits they offer the medical profession as a
whole: improved medical training, reduced patient risk, customized curriculums, and fewer
animal deaths [SATA93b; MERR94b]. In anticipation of these benefits, many doctors and
computer scientists are continually investigating VE technology in a variety of new medical
settings [GUPT95; MCGO96; MERR94a; SATA94; SATA96a].

Medical VE systems may be categorized according to five objectives [DUMA93;
GREE9S5; GREE96; SATA94; SATA96a; BREE96]:

1. Assistance before and during medical and surgical procedures

2. Medical education and training

3. Medical database visualization

4. Rehabilitation

5. Rapid design and test of advanced medical apparatus and facilities
Within the realm of education and training, VE technology may be used to provide emergency

medical training in civilian and military settings [DUMA93; SATA96a]. However, the literature
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does not contain much information of the subject of simulating emergency medicine using VE
technology.

The University of Massachusetts at Amherst is developing an intelligent training system
that may be used to teach the Advanced Cardiac Life Support (ACLS) protocols, as written by
the American Heart Association [ELIO95]. The primary emphasis of this project is to provide
elements of an emergency necessary to train a profession to lead cardiac resuscitation teams.
The simulator is a non-immersive, single user application developed to explore student centered
curriculum theory in an intelligent training system. The graphical presentation and user interface
are simplified for training purposes, and consequently do not present a realistic interface into an
ER setting.

Another project under investigation is the University of Washington’s “Virtual ER”
project. This simulator is being developed at University of Washington’s Human Interface
Technology Laboratory, and is intended “to explore the design space for medical interfaces of
the future, in order to determine how immersive augmented space might be used [CGW96].”
The project consists of a single user simulator that presents a replica of a local trauma center
using still images and textures mapped onto cylindrical geometry. The user participant remains
at a fixed position to view the scene, and may only interact with patient data records. Thus, this
environment makes extensive use of augmented reality concepts to provide a two-and-a-half
dimension environment. Unfortunately, an oversimplification of the interface of this simulator
leads to a “look, don’t touch” environment, which is not complex enough to accommodate
immersive training.

Yet another noteworthy project is an effort to simulate lower extremity battlefield
trauma. The research is being conducted by Musculographics Inc., under sponsorship of the
Defense Advanced Research Projects Agency (DARPA) Advanced Biomedical Technology
Program, and the U.S. Army Medical Research Acquisition Activity [EISL96; KAPL96;
SATA96a]. This project will produce a standalone medical VE that simulates surgical care for
wounds to lower body extremities. The results of this research are of particular interest in the
development of an emergency medical VE, but usable results are not expected until late 1997.

As evidenced by the literature, initial research of emergency medical VEs varies widely
in scope and purpose. Existing simulators are either too immature, or are focused on simulating

specific treatment protocols. This may be due, in part, to the focus of most current medical VR
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literature on the development of highly specialized surgical simulators and remote telepresence
medical delivery systems [HON96].

In addition, there has been no published research on the unique requirements of research-
ing a DVE specifically for emergency medical simulation. Only until recently has the medical
VR community considered the useful prospects of DVE technology for medical training. Dr.
Joseph Rosen, a medical VR researcher at the Dartmouth Medical School, has recently called
attention to the need for medical DVE research. He states:

In order to realize a multiple-player virtual reality system for medical purposes,
one needs a system which allows both distribution of the objects in the virtual
environment and concurrent interaction of the participants in a real-time fashion,
along with high security. Very few existing VR environments meet these re-
quirements [ROSE96b].

Some papers discuss the notion of applying DVE technology to develop medical VR systems

that may evolve into tele-medical applications. However, developments on this idea have not

been published [ROSE96b].

Despite the lack of prior published research on emergency medical DVEs, the notion of
an emergency medical VE is not new. Dr. Andrie Dumay of the TNO physics and electronics
laboratory has published several papers that survey the requirements for an emergency medical
triage simulator [DUMA93]. The idea of using medical VE technology to host medical training
programs for combat medical teams has also been suggested by Dr. Dumay, who suggests that “a
programme can be facilitated with computer-based training equipment and training in a Virtual
Environment to allow for flexible “on-demand” training focused to a military deployment [sic]
[DUMAS96].” This vision has recently been expanded to include the following profile for a
complete training facility:

The emergency room of a hospital is a theater that can only function properly
when medical staff are well prepared and fully informed on procedures and pro-
tocols. This requires specialist training, which may be facilitated with a VE
training and simulation system. In such a system, the real emergency room can
be modeled, including beds, patient tables, drawers, curtains, surgery facilities,
infusion pumps, etc. The drawers may contain bandages, clamps, and syringes.
In principle, a virtual patient can be exposed to any injury. In an interactive VE
training session, an injury can be treated following a selected protocol, giving
the subject the ability to cure the patient or to inflict even worse injuries. In
such a training session, the real atmosphere in an emergency-room can be ap-
proximated. Even a certain level of stress can be induced to the subject by tight-
ening time constraints and introducing computer-based models of physiology
that dynamically adopt to the medical interventions [DUMA96].
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Despite the vision, there are no published accounts of such a simulator having been built.
However, the basis for an architectural blueprint for a truly distributed emergency medical VE,
such as the one just described, is presented by Dr. Godsell-Stytz [GODS95]. The concepts
embodied in this vision document include many of the preceding concepts enumerated by Dr.
Dumay. In particular, this blueprint expands on the idea of developing an emergency medical
VE in which one or more medical participants work to treat a virtual patient in a distributed

setting.

2.4.1 Limitations of Existing Medical Virtual Environments

Although the body of knowledge pertaining to medical VE research is relatively small,
there have been many attempts to build working prototypes for a variety of medical training
purposes. The researchers of early projects, as well as visionaries for future research, have been
quick to identify several technical challenges facing medical VE research.

Many medical VE projects have struggled with complex design-related issues. The most
prominent of these issues, summarized by Merril, include locating expertise in educational
content preparation, conducting anatomic detail planning, preparing training and instructional
design, analyzing mechanical engineering requirements, and securing graphics programming
expertise [MERR94a). These issues face all medical VE projects, because each must be ad-
dressed in every design. Most projects ultimately cope with these issues, but technical chal-

lenges such as interaction, avatar fidelity, and hardware maturity remain.

2.4.1.1 Medical VE Interaction

In general, existing medical VE systems are immature with respect to their capabilities
for object interaction. The physical characteristics of cutting, touching, lifting, pushing and
pulling are computationally expensive and thus difficult to model in a synthetic environment
[SATA96b]. Nevertheless, they are extremely important aspects of most medical procedures.
The ability to render realistic patients and correctly model the physical aspects of interacting
with them is the focus of much research. Interaction challenges common to most medical VE
applications are widely discussed in the literature [COLE94; SATA93b; SATA94; SATA9S;
SATA96b; THAL94] and summarized in Table 2-1.
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Challenge I Description
Image Fidelity Do the images and objects in the VE appear real?
Object properties Do objects deform when grabbed and fall when dropped?
Object Interactivity | Do objects interact with other objects in a realistic manner?
Sensory Feedback Do interfaces provide force feedback and tactile response?
Reactivity Do objects react to manipulation correctly?

Table 2-1. Research targets for improved medical VE interaction [SATA96a].

Image fidelity is a problem due to requirements for realistic graphics and real-time
interactivity. This problem has eased with the development of high performance graphics
hardware and software, but is not yet fully resolved. Another problem is the modeling of the
various potential object properties within a medical VE. Correct object modeling should permit
virtual objects to “behave” correctly, so that they deform when grabbed and fall when dropped.
Thus, high fidelity deformation and kinematic models are still required. The physical simulation
problem also extends to how objects interact with other objects. Interactivity modeling defines
the how objects behave when they come into contact with one another, such as surgical instru-
ments and organs. The problem of limited sensory feedback capabilities impacts how the
medical VE approximates the feel of a medical simulation. Sensory feedback includes the
requirement for force feedback and tactile response hardware that permits instruments to “feel”
like they are cutting tissue, with various resistance to different virtual tissues. Finally, reactivity
modeling is required to simulate how objects react to manipulation. For example, bleeding
should result from a cut artery and bile leakage should result from a punctured gall bladder.

As stated by Satava, “As powerful as computers are today, they are still an enormous
distance away from being powerful enough to compute all the requirements for all five compo-
nents simultaneously; therefore, there must be tradeoffs [SATA96a).” The efficiency of the
image rendering and of kinematic object models are rapidly improving, but efficient solutions to

the remaining challenges are not yet available [SATA94].

2.4.1.2 Patient Avatar Fidelity

A patient avatar is a representation of an actual patient within a medical VE. For any
medical VE to be deemed “mature,” a realistic patient avatar must be included in the simulation
[SATA96a). Simply stated, the quality of the patient avatar imposes an upper bound on the
degree of realism for any medical simulator. Accurate patient avatars are so important that

Satava suggests a taxonomy to classify the maturity of medical VEs with respect to the fidelity




of the patient avatar [SATA96a]. This taxonomy, which may be directly applied to most medical

VE simulation systems, is summarized in Table 2-2.

Patient Avatar

Properties
Geometric anatomy

Distinguishing
Characteristics

| 3-D physical shapes

Physical dynamics modeling

kinematics, deformations

Physiologic properties

bleeding, leaking

Microscopic anatomy

neurovascular, glandular

Biochemical systems

endocrine, immune, shock

Table 2-2. Medical VE taxonomy based on robustness of patient avatar [SATA96a].

Creating 3-D virtual humans has proven to be one of the biggest challenges of medical
VE research thus far. The extreme complexity of the human body, and the intricacies of the
different anatomical systems has proven to be a stumbling-block for rapid progress in human
avatar modeling research. As implied by the table, modeling the various biological systems of a
patient avatar is an arduous task--especially with respect to modeling the physical properties of
organs. An increase in Medical VE generations will lead not only to increased geometric fidelity
requirements, but also to more complex mathematical models defining the various system
responses under varied stimuli. Mathematically defining the characteristics of human biological
systems is a particularly challenging task because of the complex interrelationships between
physiological systems and the occasionally incomplete scientific knowledge pertaining to how
these systems actually function. This is particularly true with respect to modeling Microscopic
anatomy and Biochemical systems [SATA96a].

The quality of the patient avatar must also be evaluated in terms of graphical fidelity and
adaptability to VE applications. Anatomical data with which to generate high fidelity first-
generation patent avatar models is now widely available through many sources. For example,
the Visible Human project at the National Library of Medicine has introduced the Visible Human
data sets, which provide CT and MRI scans of complete male and female cadavers [LORE95].
In addition, the MAYO Clinic has developed a Virtual Reality Assisted Surgery Program
(VRASP) that includes the capability to develop patient-specific avatars from volumetric image
data. They are among the first to produce a fully-rendered avatar using the Visible Human

Dataset [ROBB96].
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The Visible Human and other volumetric data sets are complete enough to generate a
realistic representation of a male and female avatar. Unfortunately, the disadvantages with using
CT and MRI scans for avatar generation are apparent in the significant amount of segmentation
and pre-processing required to generate each model. The resulting size of models generated
using these techniques can exceed 150,000 polygons, which makes these models unlikely
candidates for use in real-time VE applications without considerable simplification [KERR96)].

Because of these limitations and the growing demand for patient avatar geometry, lower
fidelity anatomical models are now widely available through third-party sources. These
“commercial” models are pre-processed and contain fewer polygons. The lower fidelity models
are attractive choices for use in time-critical VE applications. However, they do not contain
support for physiological, microscopic, or biochemical modeling. In addition, most do not
contain internal details, such as skeletal and organ models.

The demand for high quality patient avatars will not decrease, however. Practitioners
eager to develop medical VR simulators are beginning to call for the development of patient-
specific avatars that may be used for practicing treatments (primarily scheduled surgery) a priori
[ROSE96b]. Thus, the technological demands associated with high-quality patient avatars will
likely persist. First- and second-generation patient avatars are now widely available. The
Engineering Animation Virtual Human is an excellent example of a second-generation avatar,
which incorporates texture maps, NURBS surfaces, skeletal joint interaction, joints, deformation

models, and biomechanical models [SELL95].

2.4.1.3 Hardware Limitations Facing Medical VEs

Usability problems caused by limitations in computer hardware are common to almost
all medical VE applications. This is primarily due to the special technology required for VE
simulations, such as head-mounted displays (HMDs), Liquid Crystal Displays (LCDs), and
infrared and magnetic position tracking devices. The following concerns are prevalent in the
literature:

e Display devices. Many computer displays lack the resolution required for medical applica-
tions. Displays found in HMD devices are typically LCD-based and offer less-than-optimal
clarity and resolution [DUMA93; PEUC95; SATA93b; SATA94]. HMD devices are also
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typically very heavy and uncomfortable to wear for extended periods of time [PEUC95;
POST96b].

e Tracking and input devices. Position tracking equipment and custom input devices are often
slow and sluggish [SATA93b; SATA94] In addition, the precision of many tracking devices
may be insufficient for some medical VE applications [PEUC95; POST96a].

e Physical actuators. There is a general lack of commercially-available actuators for tactile and

force feedback input. These devices are required to correctly simulate contact with patient
avatars and medical apparatus. Medical virtual objects must be manipulated with precision,
which is difficult without the feedback of real-time interaction [DUMA93; POST96a].

e Graphics rendering performance. Perhaps the most troublesome hardware problem is the
inability of current graphics hardware to support the enormous computing demand required
by photo-realistic medical simulations [DUMA93]. The state of computer technology has
not satisfied the processing requirements of a truly realistic surgical simulator. It is esti-
mated that a rendering throughput in excess of 500,000 polygons per second is required to
display a realistic reconstruction of a human abdomen, which is about five times more than
typical high-end graphics workstations (circa 1996) can support [SATA93b; SATA94;
POST96a].

2.4.2 Emergency Medical VE Requirements

A fully mature emergency medical VE will require a considerable amount of research.
The ideal system requirements of the ideal emergency medical VE are defined by Dumay, and
are summarized in Table 2-3 [DUMA96].

As shown in the table, the current maturity of anatomic geometry, triage protocols, and
texture models is high. All are well understood and currently available. The maturity level of
dynamic databases to mange geometry, 3-D visualization tools, and 3-D display devices is
adequate and improving. Research is progressing in these areas at a sufficient pace to deliver
capabilities in the next three to five years. Research areas that warrant considerable research are
the development of models to simulate physical structure and behavior of organs and other
objects, and the development of actuator and sensor technologies for force feedback. Thus,
many of the well-known medical VE challenges directly impact development of an emergency

medical VE.
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Requirement _ Description | Maturity
Anatomic models Definitions of outer- and inner-body physical surfaces High
Physiological models Descriptions of the structure of organs and muscles Low
Texture models Textures and geometry to portray wounds on the body High
Physical properties Mathematical model of the physics underlying rigid and | Low

soft body deformations and gravity
Triage protocols Procedures for emergency medical triage and treatment High
Dynamic databases Database to manage geometry, levels of detail, textures, | Moderate

and other graphical elements

3-D visualization tools | Hardware and software developed for 3-D rendering and | Moderate
visualization

3-D display devices Hardware for 3-D display of models and images Moderate

Actuators and sensors | Hardware developed to support high resolution, binocu- | Low
lar images and haptic force feedback

Table 2-3. Features of an advanced emergency medical VE [DUMAY6].

The computational cost of much of the functionality listed in Table 2-3 exceeds the
capabilities of current medical VE research. However, the recently explosive interest in medical
VR research has spawned many funded projects and motivated many commercial developers to
start working on some of these key features. Companies such as High Techsplantations, Inc.,
Musculographics, Inc., Engineering Animation, Inc., and Immersion Corp. are pioneering
hardware and software research to provide detailed physical property software models and new
actuators for force feedback and sensory response. This technology is new and very expensive,
and prototypes are just beginning to emerge. As discussed in much of the current literature, “the
innovators in medical VR will be called upon to refine technical efficiency and increase physical
and physiological comfort and capability while keeping an eye to reducing costs for health care.
The mandate is complex, but like VR technology itself, the possibilities are exciting and promis-

ing [GREE95].”

2.5 IRIS Performer

An important aspect of any graphics-intensive simulation system is the management of
time-critical rendering tasks. Because the VER is a graphical simulator, management of graphics
state is of paramount importance. The VER makes extensive use of Silicon Graphics® IRIS
Performer library, a commercial graphics library that provides an efficient framework for
developing visual simulations. In IRIS Performer, data structures and functions are organized to

streamline the graphics programming requirement by elevating system development to a level of
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abstraction above standard IRIX- and Open-GL programming. This section provides a brief
description of the Performer library; a more comprehensive discussion is provided in the IRIS
Performer Programmer’s Guide [IRIS95].

The Performer library contains a complete repertoire of C and C++ functions for graph-
ics programming. Internally, the Performer library is composed of several smaller component
libraries. The libpf library provides a layer of visual simulation functions, database traversal
routines, and general graphics state controls. Below /ibpf, and also directly accessible, is the
libpr library. This library provides low-level graphics functionality and highly optimized
rendering functions for groups of geometric primitives. The libpfdu, libpfui, libpfdb, and
libpfutil libraries use the functions in the libpf and libpr libraries to provide supplemental
database utility support, user interface support, database conversion management, and general
utility function support, respectively. The hierarchy of these libraries is depicted in Figure 2-4.
Applications developed using Performer are not restricted to exclusive use of the Performer
library. If required, IRIX- and/or Open-GL commands may be invoked within such applications

as well. Performer is itself based on GL routines and in many cases mimics GL calls that provide

similar functions.

_ IRX-REACT-Graphics

Figure 2-4. IRIS Performer library hierarchy [IRIS95].

If properly configured, Performer-based applications exhibit efficient scene rendering.
Performer library routines are optimized to take full advantage of the power of SGI hardware,
which may employ multiprocessing to improve performance. These multiprocessing capabilities

permit application processing for simulations to be performed in a dedicated “APP” processing
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thread. Graphics rendering may be processed in a separately dedicated “DRAW” processing
thread. Further, intersection testing and object visibility culling may be performed in a sepa-
rately dedicated “CULL” processing thread. Performer rendering functions ensure that all
available graphics processors are assigned tasks associated with each thread, to the extent that
the requisite hardware resources are available. This pipelining, if configured, improves perform-
ance and represents one of the key benefits to using the Performer library. If desired, single-

processing may also be configured. These processing modes are shown in Figure 2-5.

‘APP
A

Single Threaded
Execution

Multi-threaded CEOTAD
Execution AR

Start Frame O Frame 1 Frame 2 Frame 3

Time
Figure 2-5. IRIS Performer single- and multi-processing [IRIS95].

A particularly useful mechanism that permits the various threads to be programmed is
the pfNodeTravFuncs library call (libpf). This call permits a custom callback function to execute
during any of the Performer thread traversals (APP, CULL, or DRAW). A companion mecha-
nism, pfNodeTravData, permits accompanying data to be passed into the specified callback
function when the callback is invoked. The flexibility of the pfNodeTravFuncs mechanism
permits callbacks to be executed either before or after the node is processed in the specified
traversal thread.

Another beneficial aspect of the Performer library is its strong data-type support for

graphics operations. Performer-based simulations depend on the construction and configuration
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of an internally-maintained hierarchical database known as a Performer Scene Tree. The Scene
Tree is always traversed when the program enters the DRAW thread, and may be optionally
traversed during the APP and CULL processing threads. The Scene Tree defines the organiza-
tion of a VR scene, and may contain several types of nodes as shown in Figure 2-6. Internal
| nodes define spatial relationships and groupings, while leaf nodes contain geometry that is
| visible when rendered. Performer also maintains state information in the tree. These nodes,
| called geostates, manage details about materials, textures, transparency, lighting, and other
graphics state. The diverse group of specialized nodes is shown in the node inheritance hierar-

chy.

pfBillboard
pfScene pfPartition pflLayer pfLOD pfSCS piSwitch pfSequence pfMorph

Figure 2-6. Nodes in the IRIS Performer scene hierarchy [IRIS95].

Among the variety of nodes depicted in Figure 2-6, there are several important node
types that are fundamental to developing a Performer-based application. The pfScene node is a
parent node for Performer visual databases. The pfGroup node provides a mechanism to group

|
pfGroup | pﬂ.igﬁd’oim | pﬂ.ightéource
nodes under a common parent in the scene graph, and is primarily used to logically organize the




database. The pfSCS node is used to provide a static coordinate system that affects subordinate
child nodes. Similarly, pfDCS nodes are branch nodes that provide a dynamic coordinate system
to change subordinate nodes. Another important node type is the pfSwitch, which is a branch
node that may be used to select one, all, or none of the child nodes beneath it. The pfLightSource
node provides a mechanism for introducing lights and lighting effects into Performer simula-
tions. While other node types are useful in other applications, the aforementioned types are of
particular interest for developing the VER.

A final strength of the Performer library stems from the ability to utilize a wide variety
of geometry database formats. The file support capabilities of Performer are not restricted to a
single propriety data format. Routines provided in /ibpfdu can read most popular geometry
formats, to include the MultiGen (.flt) format, the Kinetix (.3ds) format, the Wavefont (.obj)
format, and the Autodesk (.dxf) format. In addition, several less-popular formats can be im-
ported, such as the Coryphaeus Designer’s Workbench (.dwb) format. This “open” approach

permits geometry databases in a variety of commercial formats to be easily used.

2.6 Supporting Research

The background information extracted from the literature is not sufficient to create a
complete VER design. Information about the emergency medical domain is required. In
addition, sources of additional technical information are required. This information was ob-
tained by conducting interviews and discussions with medical practitioners, and on-site visits to

emergency medical and technical research facilities.

2.6.1 Interviews and discussions

An important source of information was obtained by interviewing experts. Dr. Godsell-
Stytz, a practicing Emergency Room Physician, was available for interview when additional
information about the ER domain was required. Further, Dr. Godsell-Stytz directed research to
publications that contained supplemental medical information, and was available to critique
elements of the VER as they matured. This assistance provided the domain knowledge required
to develop the VER from a well-educated standpoint.

Another source of information by interview was a 1-day lecture and meeting with Dr.
Richard M. Satava, of the Walter Reed Army Medical Center, and the Defense Advanced
Research Projects Agency (DARPA). Dr. Satava is a military physician who oversees DARPA
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sponsorship of several medical VR research projects, to include the VER project. His visit to
AFIT in May 1996 provided information about how best to proceed with the development of the
VER project. He also provided information about other sponsored projects that are investigating

related research topics.

2.6.2 Site visits

To develop a complete design, domain-knowledge about the particular layout and
function of Level VIl Emergency Rooms is required. Information is also required about the
layout of the ER, how the equipment is integrated into the treatment process, and how treatments
are administered. This information was obtained from three site-visits to Emergency Rooms in
the Dayton area.

The first site visit, to St. Elizabeth’s Hospital in April 1996, provided an opportunity to
document facility layouts and obtain general information about the inter-communication required
within an emergency room. Another site visit, to the Miami Valley Hospital ER in July 1996,
provided a glimpse of a more modern, Level I emergency room. Information gleaned from this
visit included a more lucid picture of an effective ER layout, and additional information about
how emergency medical treatments are administered. A final site visit, to the Wright-Patterson
AFB Hospital ER in August 1996, provided information about what a military Level II emer-
gency room contains, and was useful to clarify questions about general ER procedures. Photo-
graphs were taken at all three facilities for the purpose of creating the 3-D models required for
the VER.

To obtain technical information, a site visit to MITRE’s Bedford MA Research Facility
in August 1996 was conducted at the recommendation of Dr. Satava. This trip provided insight
into how development of a medical facility visualization project is designed and implemented.
Not only did this on-site visit provide useful technical ideas, it also generated useful discussion
for some of the ideas envisioned for the VER design, and provided a glimpse of other medical

VE developments.

2.7 Conclusion

Emergency rooms are staffed with a variety of medical personnel and equipped with a
diverse array of medical apparatus. To develop a viable emergency medical simulator, back-

ground knowledge about the emergency departments and requisite equipment is essential. The
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broad range of cases that must be treated at Level I emergency departments, coupled with the
functional complexity of the medical apparatus makes for a VR research topic brimming with
research opportunity.

The literature discusses the general notion of developing an emergency medical simula-
tor. However, the literature does not contain detailed research on the subject. In addition, very
little work is currently available on existing medical DVE simulation projects. Despite the lack
of direct information on emergency medical DVEs, the literature does contain useful design-
related information and lessons-learned enumerated by medical VE research teams. These
lessons, design criteria, and architectural details are all appropriate for the design and implemen-
tation of the Virtual Emergency Room DVE.

The medical VE community is small, very new, and replete with technical challenges.
At first glance, it appears that designing and implementing a workable simulation system is an
impossible goal. However, as proven with the first Link trainer, “it is not necessary to have
ultra-realistic simulators to provide a valuable and meaningful training experience [SATA96a].”
Thus, despite technical limitations, the current state of medical VE and patient avatar technology
is already capable of supporting a satisfactory and meaningful emergency medical training

facility.
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3. Requirements

3.1 Introduction

This chapter defines the requirements of the Virtual Emergency Room design. To
successfully achieve the research objective, the VER must exhibit certain features and capabili-
ties. These capabilities, grouped as DVE, virtual patient, doctor station, geometry, and support

requirements, will lead to the development of a flexible and extensible VER prototype.

3.2 Requirements

The functional requirements for the VER project are categorized into 3 system-level
requirements. First, the system must provide an immersive facility in which trainees may
practice triage and treatment protocols for administering critical medical care in emergency
situations. An immersive training VE permits trainees to see and interact with patients and
equipment, thus improving the quality of the intended training. Second, the system must provide
a capability to configure and monitor an independent virtual patient process. The virtual patient
process must be configurable so that patient information and vital signs are defined prior to each
simulation, and are visible throughout the simulation. The capability to monitor the physiologi-
cal status of the virtual patient is useful in evaluating the effectiveness of simulated treatments.
Third, the system must incorporate distributed virtual environment (DVE) technology to provide
connectivity between the doctor training VE and the virtual patient process. The addition of a
networking capability is fundamental to the notion of using a DVE, and extends system func-
tionality by permitting independent control of the doctor station and the virtual patient process.

After identifying these general system requirements, specific system capabilities and
associated design priorities are defined. These requirements incorporate information obtained
from discussions with emergency medical physicians and site visits to emergency room facili-

ties. Table 3-1 summarizes the final list of detailed requirements discussed in this section.

3.2.1 Distributed Virtual Environment Requirements

The use of distributed virtual environment (DVE) technology permits VE simulations to

support multiple entities. The VER shall exploit the advantages of DVE technology by support-
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ing two types of participants: a doctor station that permits trainees to practice emergency medical

protocols, and a virtual patient process that receives treatments administered by the trainee.

ID Detailed Requirement
L DVE Configuration -~ -
1.1 Employs suitable DVE architecture
1.2 Independent virtual patient process on network
1.3 Independent doctor station process on network
1.4 Protocol to record and communicate medical events based on DIS architecture
1.5 Strategy to manage communication requirements
g : , Virtual Patient Process
2.1 Interface to patient physiological model
2.2 Accept treatments from doctor station
23 Display current vital signs of virtual patient
24 Display simulation performance information
2.5 Dynamically load scenario scripts from external file
2.6 Interactively control simulation parameters
2.7 Interactively select patient avatar for simulation
L SR ¢ om0 - Doctor Station = :
3.1 Tramee immersed in ER setting that permits modifiable view and movement
3.2 Capability to identify and select scene elements
33 Capability to move and interact with scene elements during simulations
34 Implement functional capabilities of ER apparatus
3.5 Real-time, non-invasive treatments administered by trainee
3.6 Real-time updates of patient monitoring apparatus
3.7 Tramee optlonally confined to room and floor using CO]]ISIOI‘I detectlon
E B : 3-D Geometry '
4.1 Visually reallstlc representation of Level I/Il ER
4.2 First-generation patient avatar
43 Geometry models for ER facility and apparatus
44 Posmonmg and size of all objects is accurate and to scale
A “Support:
5.1 Accept geometry models in (.dwb) format
5.2 Process approximately 30,000 polygons at a minimum of 10 frames per second with a
target continuous rate of 20 frames per second
5.3 Supports input from magnetic position tracker, workstation mouse, and keyboard.
5.4 Operates on existing AFIT graphics lab resources.

the capability for storing, managing, and accessing doctor-to-patient simulation details.

Table 3-1. VER detailed requirements.

The choice of DVE architecture is an important consideration. The architecture requires

Addi-

tionally, the VER requires a means for communicating medical events between the virtual
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patient and the doctor station. The communication must be complete enough to clearly relay
patient information (such as vital signs data) to the doctor station. Similarly, treatment informa-

tion generated by the trainee’s actions must be communicated to the virtual patient process.

3.2.2 Virtual Patient Process Requirements

The virtual patient process must provide a simulated physiological state for each simula-
tion. Continuously updating this state in response to treatments rendered by the trainee is the
basis for VER simulations. Thus, the status of the virtual patient must be continuously available.

In order for the VER simulator to provide a meaningful training experience, instructors
and experienced practitioners require a capability to initiate, observe and potentially alter the
course of VER simulations. In response to this need, the virtual patient process must provide an
initialization and control mechanism for VER simulations. The user must be able to specify
patient physiological parameters, select the patient type, and activate the virtual patient process.
In addition, the virtual patient process must provide a capability to load patient settings from an
external file. Further, a capability to visualize the impact of treatments on the virtual patient is
required. A capability to monitor simulation performance information is needed to verify the
integrity of the networked environment. A similar diagnostic monitoring capability is also

necessary to evaluate the performance of the underlying graphics hardware.

3.2.3 Doctor Station Requirements

The interface of the medical doctor station must be an immersive interface that places
the trainee in a synthetic Level I/Il emergency room. The environment must contain apparatus
geometry models that provide comparable functionality to their real-world counterparts. That is,
the trainee must be able to use the instruments to evaluate patient status and render medical
treatment using the same mental skills as would be required in an actual ER setting.

Because of the many technological limitations facing “high-end” Medical VE develop-
ments discussed in Chapter 2, the VER will not provide a truly hands-on simulation. The many
modeling problems associated with object properties and object interaction make modeling of
hands-on treatments computationally too expensive. Thus, to develop a workable simulation
with existing technology, the doctor station must provide an immersive environment to teach

treatment skills at a procedural level. Therefore, interaction with objects must occur at a level of



abstraction higher than that required to operate in an actual emergency room. Surgical simula-
tion is not a requirement for the prototype.

The doctor station is a key element of the VER. As a result, a primary requirement is to
provide a well-planned human-computer interface [NILA93; NIEL93]. In order for a medical
treatment simulation to be useful, it is important that the trainee not be forced into a user inter-
face that complicates use of the application. Rather, trainees should be able to focus on the
simulation, without excess concern for how to use the simulator.

Interaction with objects in the VER must be possible insofar as equipment is usable
during simulations. Simplifications to the usability of equipment will only be made as a short-
term measure to demonstrate interim research capability. In addition, the immersive interface
must not include artificial, or “toy-like” capabilities, because such interfaces provide “future
reality rather than a useful tool for current procedures [HON96].” Thus, the doctor station
interface must not provide information or capabilities not typically available in an actual ER

setting.

3.2.4 Geometry Requirements

The graphical fidelity of the VER is another important issue. The VER shall contain 3-
D geometric models of a Level I/l Emergency Room facility and most major apparatus.
Because realism is an important concern, the geometry databases used in the VER contain
texture-maps and materials, to provide an easily recognizable representation of respective
emergency room objects. Further, all models must be appropriately scaled and positioned as
they would be seen in an actual emergency room. This requirement emphasizes the need for a
complete rendition of an actual ER setting.

Due to the limitations of patient avatar development and the associated complexity of
physical models discussed in Chapter 2, the VER will employ a first-generation patient avatar
consisting of surface geometry only. A first-generation avatar provides a simple initial capabil-

ity, and is sufficient for demonstrating the feasibility of the VER design.

3.2.5 Support Requirements

The support capabilities required for the VER must be sufficient to support medical staff
interactions, patient physiological changes, inbound and outbound messages, and drawing

functions in near-real time. That is, system performance must be acceptable in all phases of a
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VER simulation. A target average frame rate for the VER is 10 frames per second, and a
performance goal of 20 frames per second is desired to support fluid, real-time movement.
Based on the geometry requirements, the peak rendering load of the doctor station is estimated at

30,000 polygons per frame.

3.3 Conclusion

The VER must include a doctor station and a virtual patient process as simulation
participants. In addition, the DVE design must address the communication mechanism for the
underlying DVE architecture. The doctor station must include an immersive interface that
permits trainees to view and interact with scene elements as part of the simulation. The virtual
patient process must permit control of patient and simulation parameters. High quality, 3-D
geometry and adequate support requirements are additional design requirements. The VER

design addresses these requirements in Chapter 4.




4. Design

4.1 Introduction

This chapter discusses the VER design developed to satisfy the requirements enumerated
in Chapter 3. The design includes a discussion of the DVE architecture used for the VER, and
the principal design components, to include a Medical Staff Station, a Patient Control Station,

and specialized communication datagrams called MediGrams.

4.2 System Design

The state of current research described in Chapter 2 and the system requirements
presented in Chapter 3 represent a functional baseline for the VER system design. This section
provides a brief overview of the system-level design. A detailed presentation of the key design

features is presented for each main VER design element in subsequent sections.

4.2.1 Design Methodology

The VER system design is based on the Object-Oriented Design (OOD) methodology.
The decision to use OOD is based on its many strengths, which include support for data abstrac-
tion and sharing of code through inheritance [RUMB91). Additionally, the OOD methodology
emphasizes encapsulation of object properties, leading to a modular design that is both extensi-
ble and maintainable. Finally, the OOD methodology provides.a natural way to design a system
with many real-world components, since each component may be modeled as an independent
object. Thus, using object oriented principles to specify the VER design makes the description

of the various components easier to understand.

4.2.2 VER Principal Design Components

The VER design consists of three design components, as identified in the requirements:
1. The VER MediGram design, that specifies the format and content of communications
between VER simulation participants.
2. The VER Medical Staff Station (MSS) design, that elaborates on the immersive user inter-

face used to train medical staff members.




3. The VER Patient Control Station (PCS) design, that describes how the control station for the

virtual patient process is designed.

The VER prototype incorporates more than just these design components. Other
required resources include a high-bandwidth local area network capable of supporting at least 10
Mbits per second, and the Medical Network Manager software that permits communications
within a DVE to occur at a level of abstraction higher than at the network daemon level
[SHEA96].

The motivation behind the design of the VER prototype is to create a DVE that provides
a virtual communication channel between MSS and PCS using MediGram messages. The

general VER design configuration is depicted in Figure 4-1.

MediGrams

B D

Network
Jageuey
A0MJAN

I,

Virtual Patient

Doctor Trainee

Figure 4-1. VER prototype overview.

4.2.3 DVE Architecture Analysis

An appropriate DVE architecture is required to support the unique simulation require-
ments of the VER. As discussed in Chapter 2, there are several candidate DVE architectures
available. However, two are readily available within the AFIT Graphics Lab that merit consid-

eration: ObjectSim and the Common Object Database (CODB).

4.2.3.1 ObjectSim

ObjectSim is an object framework that supports development and execution of distrib-
uted applications. The capabilities of ObjectSim include tight integration with Performer, and
several pre-built objects for IO management and graphics rendering. These features, coupled
with an installed base of current applications, make ObjectSim a candidate architecture to

support the VER design.
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There are drawbacks that detract from the usefulness of ObjectSim, however. First, the
emphasis of ObjectSim is simulation objects. As a result, the storage and management of
simulation data is not emphasized. This is important, because medical applications may be data-
driven. Second, the ObjectSim framework is complex. The data structures incorporated into
ObjectSim, which are mired in a vast array of Performer library calls, result in a complicated
framework. Finally, ObjectSim is designed with aerospace simulations in mind. ObjectSim
contains objects that employ aircraft and flight simulation metaphors, which do not apply to
other non-aviation simulations. If ObjectSim is modified to remove these features, the object-

level integrity of the architecture may be jeopardized.

4.2.3.2 Common Object Database

Another candidate architecture is the Common Object Database (CODB) described in
Chapter 2. The advantages of the CODB include direct management of all simulation state in a
shared data repository, and a simple but powerful double buffering mechanism that permits
simultaneous reads and writes in the database. The emphasis of the CODB is to provide man-
agement for a potentially large number of continuously changing simulation parameters. In
addition, the CODB provides an unbiased interface that does not presume use of objects devel-
oped for a particular purpose. '

The drawbacks to using the CODB, instead of a more complete architecture like Ob-
jectSim, are primarily due to the lack of additional support functionality. The CODB architec-
ture is supported by two objects that create and control a shared database. The CODB does not
include other support objects such as a renderer and 10 managers. However, support functions
were developed to demonstrate the capabilities of the CODB and are thus available outside of the

CODB architecture.

4.2.3.3 Design Decision

The CODB provides ample freedom to develop data structures and support objects that
meet the unique needs of the VER, without forcing medical requirements into aerospace con-
structs. Thus, the CODB architecture will be used as the basis for the VER design. Support
functions developed with the CODB will be adapted for use in the VER design to the largest

extent possible.
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4.3 VER MediGram Design

Simulation entities in a complete DVE require a capability to communicate events and
status to one another. Thus, one design consideration that must be addressed is how the format
of the messages should be obtained, and what information they should contain. This section

presents the analysis and decisions fundamental to the current MediGram design.

4.3.1 MediGram Format Analysis

The structure and format of the VER MediGrams is a key design decision for the VER
system, because the MSS and PCS applications depend on MediGrams to communicate. The
concepts upon which DIS communications are based are adopted for MediGrams. However, the
format of the messages, which contain medical information, requires additional consideration.
There are two alternatives for selecting the format of VER MediGrams: using DIS PDU formats,

or developing customized formats.

4.3.1.1 DIS PDUs

One possibility for providing communications in the VER environment is to fully adopt
existing DIS PDU formats for different purposes. For example, a DIS Entity-State PDU might
be used to pass information about the status of the patient, or the treatment rendered by a trainee.
A DIS Detonation PDU might be re-mapped to communicate a patient trauma situation.

The advantage of this alternative is general compatibility with the DIS environment.
Although DIS is intended for military simulation, adopting new meanings for existing PDU
formats avoids the issue of developing new message formats altogether. This also permits the
use of DIS, with the idea that a new special interest group for medical applications might
eventually be founded to develop specialized medical PDUs.

However, using DIS PDUs for medical purposes will not permit inter-operability,
because PDUs would be interpreted in a non-standard way. In addition, DIS is a protocol that
evolves slowly. It could take years before a special interest group for medical DIS applications
is organized and agrees on medical PDU formats. Thus, it makes little sense to base VER
development on a protoco! that does not support the needs of the simulation. It would be
difficult, if not impossible, to retrofit the semantics of all possible medical events into the syntax

of a military simulation.




4.3.1.2 Customized Datagrams

Another option is to use the strengths of DIS in a DVE communication strategy that
directly supports the unique needs of the VER. That is, borrow the architectural concepts from
DIS, but create customized datagrams to replace the use of DIS PDUs for communication. In
this strategy, the only departure from DIS is the format of the messages.

The use of a special collection of medical datagrams provides ample flexibility for
evolving the capabilities of the VER. Special requirements may be supported by tailoring
datagram formats. Additionally, changing or adding new medical datagrams is not contingent on
approval by special interest groups. Another advantage of this approach is that it does not
attempt to force the medical domain on an inherently combat-oriented message repertoire.

However, with this benefit comes two drawbacks. First, the message repertoire will be
limited. A completely new definition of required data must be provided, which will take time to
evolve. Second, the customized nature of the medical datagrams prevents the VER from
communicating with non-VER simulation entities unless the VER additionally adopts support for

DIS communication PDUs.

4.3.1.3 Design Decision

Based on this analysis, the VER MediGrams are customized datagrams based on the DIS
protocol communication profile. This approach provides the most flexibility for expanding the
capabilities of the VER prototype. Intra-VER communication using DIS format PDUs is not a
requirement, which provides latitude for developing specialized message formats without undue
concern for communication with other DIS entities. The VER MediGrams are focused on
medical requirements, but may be expanded to also include useful DIS PDU formats that are not

specifically related to military simulations.

4.3.2 High Level Architecture (HLA) Considerations.

The Defense Modeling and Simulation Office (DMSO) is developing a High Level
Architecture (HLA) in accordance with objective 1-1 of the DoD Modeling and Simulation
Master Plan (DoD 5000.59-P), which was adopted by the DoD in October 1995. According to

this master plan, the objective of HLA is “to establish a common high-level simulation architec-
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ture to facilitate the inter-operability of all types of models and simulations among themselves
and with C41 systems, as well as to facilitate the reuse of M&S components [DMS096}.”

The HLA architecture may be suitable for future VER development because it is not
military domain specific. HLA specifies the use of federations to define various types of
simulations. Federations contain federate member applications, a Runtime Infrastructure (RTI),
and an interface specification between federates and the RTI. The specification of the HLA
federation is via a Federation Object Model (FOM), which identifies the essential objects, object
attributes, and object interactions that are supported by the federation. The FOM is documented
according to an HLA standard Object Model Template (OMT).

According to this arrangement, the customized VER MediGrams may be used in the
HLA architecture when it is approved. The definition of MediGrams and specification of the
MSS and PCS functionality may be integrated into a Federation Object Model (FOM) for
emergency medical simulation. The HLA architecture is evolving closely with the new “DIS++”
capabilities, but does not require explicit use of DIS protocols. Thus, the decision to use custom-

ized MediGrams does not preclude a near-term migration to HLA.

4.3.3 VER MediGram Design

The contents and format of the customized MediGrams are particularly importz{nt. The
basic transactions between a trainee consist of three types of information:

1. Time sensitive information about the physiology of the virtual patient, communicated from
the virtual patient to the doctor station. This information includes patient vital signs data
that are continuously changing over time.

2. Static information about the patient, communicated from the virtual patient to the doctor
station. This information includes data such as the age, gender, and blood type of the virtual
patient.

3. Time sensitive information about medical treatments, communicated from the doctor station
to the virtual patient.

In response to these communication needs, the VER MediGram repertoire includes a

Patient Vitals MediGram for communicating the physiological status of the virtual patient; a

Doctor_Treatment MediGram for communicating treatments administered to the virtual patient

by a trainee; and a Patient Record MediGram to communicate information about the virtual

4-6




patient and provide startup parameters to initialize simulations. The field definitions of the
Patient_Record, Patient_Vitals, and Doctor_Treatment MediGram formats are summarized in

Table 4-2, Table 4-3, Table 4-4 respectively. In all applicable cases, enumerations begin with

the number 1.

Patient Record -

type size Sield range
unsigned short 1 message_id <RESTRICTED>
short 1 type_id 1 .. 7 [enumerated]
char 52 name n/a
unsigned short 1 age 0..120
unsigned short 1 gender 1 .. 2 [enumerated]
short 1 blood_type 1 .. 8 [enumerated]

Table 4-2. Patient_Record MediGram format.
. “Patient Vitals~ .

type size field range
unsigned short 1 message id <RESTRICTED>
float 1 heart_rate 0.0 ..300.0
float 1 blood_pressure_systolic 0.0..250.0
float 1 blood_pressure_diastolic | 0.0 .. 150.0
float 1 temperature 90.0..110.0
unsigned short 1 pulse_waveform I .. 3 [enumerated]
float 1 consciousness 00..1.0
float 1 arterial_pressure n/a
float 1 blood_oxygen n/a

Table 4-3. Patient_Vitals MediGram format.
: Doctor_Treatment :

type size field range
unsigned short 1 message id <RESTRICTED>
float 1 defibrillate 0.0 ... 800.0
float 1 heat 70.0 .. 120.0
float 1 anesthesia_quantity 00.10
unsigned short 1 anesthesia_id 1 [enumerated]
char 1 anesthesia_name n/a
float 100 [ IV_guantity 0.0..1.0
unsigned short 1 IV_id 1 .. 3 [enumerated]
char 100 | IV_name n/a

Table 4-4. Doctor_Treatment MediGram format.
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4.3.3.1 Patient Record MediGram

The Patient_Record MediGram is designed to specify information about the virtual
patient that does not need to be communicated more than a few times during a simulation. This
information, summarized in Table 4-2, includes the following attributes:
1) message id. The message identification number. Reserved for use by the PCS and MSS
MediGram Managers (as described in appropriate sections).
2) type_id. The avatar type of the virtual patient. The values of this field start at 1, and
currently range to 7, based on the current patient avatar inventory of the VER. Additional
type definitions may be added as additional avatar geometry becomes available.
1: geometry of the ideal male patient
2: geometry of the ideal female patient
3: geometry of the ideal infant avatar
4: geometry of the obese male avatar
5: geometry of the muscular male avatar
6: geometry of the stylized male avatar
7: geometry of the stylized female avatar
3) name. The name of the virtual patient, represented by an alphabetical string.
4) age. The approximate age of the virtual patient, given to nearest year from 0 to 120.
5) gender. The gender of the virtual patient. Value assignments are:
1: Male
2: Female

6) blood_type. The blood type classification of the virtual patient. Value assignments are:
1: O Positive blood type

: O Negative blood type

: A Positive blood type

: A Negative blood type

: B Positive blood type

: B Negative blood type

: AB Positive blood type

0 3 N A WN

: AB Negative blood type
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4.3.3.2 Patient Vitals MediGram

The Patient_Vitals MediGram is designed to specify information about the virtual
patient that continuously changes. The primary purpose of this MediGram is to demonstrate a
rapidly changing aspect of the virtual patient: the vital signs. The information contained in the
Patient_Vitals MediGram, summarized in Table 4-3, includes the following fields:
1) message_id. The message identification number. Reserved for use by the PCS and MSS
MediGram Managers (as described in appropriate sections).
2) heart_rate. Specifies the pulse of the virtual patient, on the interval of 0.0 to 300.0 beats per
minute.

3) blood pressure_systolic. Specifies the systolic blood pressure of the virtual patient, on the

interval of 0.0 to 250.0 millimeters Mercury.
4) blood_pressure_diastolic. Specifies the diastolic blood pressure of the virtual patient, on the
interval of 0.0 to 150.0 millimeters Mercury.
5) temperature. Specifies the temperature of the virtual patient, on the interval of 90.0 to 110.0
degrees Fahrenheit.
6) pulse_waveform. Specifies the shape and pattern .of the current heart rhythm wave form
exhibited by the virtual patient. The value assignments are defined as follows:
1: Normal heart sinus rhythm
2: Traumatic heart sinus rhythm (arrhythmia)
3: Cardiac failure/inactivity
7) consciousness. The degree of consciousness of the virtual patient, subjectively normalized
on the interval 0.0 to 1.0. This value provides an indication of the alertness the virtual pa-
tient is, with 0.0 unconscious and 1.0 fully alert.
8) arterial _pressure. Specifies the arterial blood pressure of the virtual patient.
9) blood_oxygen. Specifies the blood oxygen level (SaO») for the virtual patient.

4.3.3.3 Doctor_Treatment MediGram

The Doctor_Treatment MediGram is designed to communicate treatment details from
the doctor trainee running the MSS to the virtual patient maintained at the PCS. This MediGram
demonstrates the capability to render non-invasive treatments from the ER that may affect the

physiology of the virtual patient. The Doctor_Treatment MediGram represents a sample of the
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treatments possible from within an actual ER. The treatment information, summarized in Table

4-4, includes the following fields:

1Y)

2)
3)

4

5)

6)
7

8)

9)

message id. The message identification number. Reserved for use by the PCS and MSS
MediGram Managers (as described in appropriate sections).

defibrillate. Specifies a defibrillation treatment, on the interval of 0.0 to 800.0 Joules.

heat. Specifies an external heating treatment, on the interval of 70.0 to 120.0 degrees
Fahrenheit.

anesthesia_quantity. Specifies an anesthesia treatment amount, normalized on the interval
0.0to 1.0.

anesthesia_id. Specifies an anesthesia treatment substance. There are currently no anes-

thesia treatment substances listed for this enumerated field.
anesthesia_name. Specifies the name of the current anesthesia, in alphabetic string format.
IV_quantity. Specifies an intravenous infusion treatment quantity, normalized in the
interval 0.0 to 1.0.
IV_id. Specifies an intravenous infusion treatment substance. The values are enumerated
as follows:

1: Placebo

2: Sodium Chloride 5%

3: Sodium Chloride 10%
IV_name. Specifies the name of the current intravenous infusion treatment substance, in

alphabetic string format.

4.4 VER Medical Staff Station (MSS) Design

4.4.1 Design Overview

The purpose of the VER Medical Staff Station (MSS) is to provide an immersive

training experience for ED medical staffs. The MSS is a key element of the VER design. At the

simplest level, the MSS accepts inputs from the doctor-trainee, receives MediGram inputs from

other simulation entities, and updates the logical and graphical state of the simulation.

4-10




4.4.2 MSS Context Diagram

Figure 4-2 shows a context diagram of the MSS component. The trainee inputs, accord-
ing to the requirements, are from standard workstation mouse and keyboard devices. The
MediGram inputs are limited to those generated by the virtual patient (discussed later in this
chapter). The Patient_Vitals MediGram is used by the MSS to update the apparatus within the
VER environment. The Patient_Record MediGram is used to initialize the simulation and set
initial states of VER apparatus.

In the simplest terms, the MSS converts inputs received from MediGrams and the doctor
trainee into new MediGrams and scene updates. The Doctor_Treatment MediGram is generated
as a result of the trainee’s actions in the immersive MSS environment. Beyond communication
with other entities, the MSS must continuously update the status of the graphics hardware on the
host workstation. Thus, rendering and display outputs to graphics hardware are shown as

efferent control flows.

Trainee
Inputs
Doctor_Treatment
Patient_Vitals MediGram -
MediGram YER
> Meg:::iloitaff Rendering and
Patient_Record Display
MediGtamo | " — — — 7 = o
-

Figure 4-2. VER MSS context diagram.

4.4.3 MSS Block Diagram

A block diagram that shows the primary design components of the MSS is presented in
Figure 4-3. The Medical Staff Station uses the AFIT CODB architecture to manage all simula-
tion state. As previously mentioned, the CODB consolidates simulation state information that

must be shared with other components of the MSS.
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Apparatus | Medical Staff
Objects: . Station

Figure 4-3. VER MSS block diagram.

The MediGram Manager component provides an interface to the Medical Network
Manager. The MSS relies on the MediGram Manager to accept inbound Patient Vitals and
Patient_Record MediGrams from the PCS. In addition, outbound Doctor_Treatment MediGrams
are queued by the MediGram Manager inside the CODB until they are broadcast by the Medical
Network Manager.

The Geometry and Textures component represents the 3-D models and texture maps
designed for the synthetic ER scene, to include facility layout and medical apparatus geometry.
The Renderer component configures the Performer graphics subsystem, provides an initial
workspace with which to develop a Performer-based application, and renders the geometry and
other graphical elements of the MSS.

The functional characteristics of each of the 3-D apparatus models is provided by one or
more specialized apparatus objects. Apparatus objects provide a means to control the 3-D

geometry, automate apparatus control panels, and create Doctor_Treatment MediGrams. The
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apparatus objects are also used to access the CODB for the most current Patient Vitals and
Patient_Record MediGrams, so that the apparatus displays in the ER are updated.

Interaction with the immersive ER is made possible by IO Managers that collectively
provide the capability to read keyboard, mouse, and magnetic sensor inputs. Inputs received by
the IO Managers are interpreted as input events that are stored in the CODB and used to control
the simulation. A consumer of input events is the Interaction Support component, which
provides the capability to use input events stored in the CODB to select and manipulate objects
in the scene. Similarly, the Interaction Support Component uses input events to change the

location and orientation of the trainee’s view in the ER, and to update simulation parameters.

4.4.4 MSS OOD Object Model

The block diagram of Figure 4-3 may be decomposed into an object design for the MSS
architecture. The object model for the VER MSS is presented in Figure 4-4 and Figure 4-5. The
object model shows the design of the system as an integration of individual objects. The
connections show the object relationships, to include inheritance and aggregation properties.
Many of the objects are carried over from the block diagram discussed in Figure 4-3. The
portion of the object model shown in Figure 4-4 shows all objects in the design, except for the
apparatus objects. Figure 4-5 shows how the apparatus objects are integrated into the design.

The object model diagrams illustrate the extensive use of the Common Object Database.
Data structures for each element are supported by the CODB, permitting the state of various
objects to be shared as needed. A brief description of the functions performed by each object

follows.

4.4.4.1 VER Medical Staff Station Object

As shown in the object model diagram description of Figure 4-4, the MSS process is the
primary MSS object. The MSS simulation starts and terminates with the VER MSS object.

4.4.4.2 Medical Network Manager Object

The Medical Network Manager is a VER-specific version of Sheasby’s DIS-compliant
Network Manager. The purpose of the Medical Network Manager is to provide a black-box

interface to commonly used datagram multicast send and receive functions. The Medical
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Network Manager uses the CODB as a staging area for managing in-bound and out-bound

MediGrams.

Collision 8 ‘ Medical
Manager Renderer Staff
Station
Medical MSS
Network —8 MediGram
Manager Manager
MiniPOD
10 Keyboard
Common Object ER Manager
Database "
F 10 Mouse ?
10 Fastrak

Figure 4-4. VER MSS object model, part 1 of 2.

4.4.4.3 Medical Staff Station MediGram Manager Object

The Medical Staff Station MediGram Manager provides an interface for controlling
MSS network communication. This object specifically encapsulates functionality provided by
the Medical Network Manager object. Inbound MediGrams from the PCS are received and
stored in the CODB by the Medical Staff Station MediGram Manager object. These updates are
continuously accessed by apparatus objects that require constant updates. Additionally, the
Medical Staff Station MediGram Manager queues Doctor Treatment MediGrams to broadcast to

the PCS.
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Figure 4-5. VER MSS object model, part 2 of 2.

4.4.4.4 Selection Manager Object

The Selection Manager provides a mechanism for identifying the element in the scene
with which to interact. The primary goals of the Selection Manager are to interpret scene
element selection commands received from the user, process those commands to identify scene

elements, and provide feedback to the user by visually highlighting the designated element.

4.4.4.5 Motion Manager Object

The Motion Manager provides a basic capability to translate and rotate scene elements
within the MSS. The Motion Manager is a shared facility used to update the Performer pfDCS
nodes of the currently selected scene element. Inputs accepted by the Motion Manager object

will be mouse-based, because keyboard inputs do not provide information fast enough to permit
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smooth motion performance. The Motion Manager includes the capability to accept inputs from

a collision detection evaluation mechanism, when such % capability is available.

4.4.4.6 Renderer Object

The Renderer object permits graphical elements in the scene to be drawn on the appro-
priate display output device. The Renderer configures the Performer graphics pipeline, channels,
and windows. In addition, the Renderer manages the state of the user view during the simula-
tion. Thus, all movements within the immersive ER are processed by the Renderer object. A
final responsibility is evaluation of user inputs stored in the CODB, to determine what simula-

tion-control actions to perform.

4.4.4.7 Collision Manager Object

The Collision Manager provides a mechanism for integrating a basic collision detection
algorithm into the MSS. The collision detection capability provided by the Collision Manager
object serves three functions:

1. Ensures trainee’s view in the immersive ER is confined to a fixed height above the floor.

2. Provides rudimentary collision detection to prevent trainee’s view from moving through
objects in the immersive ER.

3. Provides a starting point from which to implement additional collision detection support,

such as collision detection between objects in the immersive ER.

4.4.4.8 10 Manager Objects

The 10 Managers provide the support necessary to read inputs from various devices and
write them to the appropriate CODB structure. In particular, the I0 Keyboard object writes
keyboard events to the CODB. The 10 Mouse object write mouse events to the CODB. The 10
Fastrak object writes position data read from the Polhemus Fastrak magnetic sensors to the
CODB. All IO Manager objects originally designed to support the AFIT CODB feasibility

demonstration in 1996 are adopted for use in the VER.

4.4.4.9 ER Manager Object

The various apparatus objects, as well as the manager objects, must be integrated into a

coherent structure. The ER Manager accomplishes this by initializing all apparatus objects,
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activating apparatus objects that have been selected by the Selection Manager, and coordinating

use of the Motion Manager to move selected objects.

4.4.4.10 Model Object

An important design decision is how to manage external geometry databases in a non-
combative, medical simulator. The original option considered was to reuse the model manage-
ment objects developed for other applications, such as the AFIT Virtual Cockpit. However, after
testing these objects, several problems were identified.

First, the model manager object (“fltmodel”) only provides the capability to import
databases in the MultiGen (.flt) format, which is not a requirement in the VER. In addition, the
object contains several unnecessary methods associated with level of detail (LOD) switching and
multiple-model instance support. Finally, the model manager object lacks many of the addi-
tional support features needed for general model management in a non-combat simulation.
Useful features that are not supported include the ability to dynamically change the Performer
sub-tree structure for models with articulations, the ability to display information about the status
of each model, and other ancillary capabilities (such as geometry highlighting).

As a result of these shortcomings, a new model management object is incorporated into
the VER design. This “Model” object is designed based on the general principleé of the
“fitmodel” object. However, “Model” omits LOD and model-array support methods, and
supports the more general model management requirements of the VER. The Model object
provides a robust mechanism to load external geometry files and import them into a Performer-
readable tree. This object provides the configuration parameters necessary to support all trans-
formers, and provides other ancillary capabilities, such as highlighting.

Besides serving as a base object for apparatus objects, it is also possible to use Model to
manage geometry that does not require additional functionality, such as a wall or a shelf geome-
try database. This capability permits the Model object to be a recurring aggregate member of the
ER Manager. A list of the static geometry envisioned for the VER MSS is shown in Table 4-5.
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Apparatus and associated objects

Static Geometry using Model object

Scene Element VER Object Scene Element VER Object

Crash Cart Crash_Cart Biowaste "Sharps" Container | Model
Curtain Curtain Ceiling/Roof Model
Dinamap Dinamap Doorway Model
Directional Light BeamLite Floor Model
Gurney Gurney Patient Avatar Model
Patient Warmer Patient_Warmer | Patient Monitor Model
Pulse Oximeter Oximeter Sink Model
Rapid Infusion Pump Infusion_Pump Storage Cabinet Model
Xray Viewing Backlight Xraylite Storage Shelves Model
Primary Monitor Monitor Utility Panels Model

Walls Model

Table 4-5. VER MSS geometry and respective support objects.

4.4.4.11 Apparatus Objects

The group of objects named after apparatus in the object model diagram of Figure 4-5

are collectively called the apparatus objects. These objects are designed to inherit attributes

from the Model base object. The Apparatus objects expand on these basic capabilities by adding

capabilities that are needed for the apparatus they represent. The specific objects are also listed

in the left side of Table 4-5, and include the following:

1. Beamlite Object. The Beamlite object manages the geometry for the directional overhead

lighting fixtures. The Beamlite object includes methods that permit the light to be turned on

and off.

2. Gurney Object. The Gurney object manages the geometry for the patient gurney. The

Gurney object includes methods that permit the wheels to rotate in the direction of motion

when the gurney is moved.

3. Crash_Cart Object. The Crash_Cart object manages the geometry for the crash cart. The

Crash_Cart object includes methods that permit the wheels to rotate in the direction of mo-

tion when the crash cart is moved. In addition, methods are included to permit each drawer

to be opened and closed.

4. Curtain Object. The Curtain object manages the geometry for the ER privacy curtain. The

Curtain object includes methods that permit the curtain to be opened and closed.
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10.

Dinamap Object. The Dinamap object manages the geometry for the patient vital signs
monitor. The Dinamap object includes methods that permit buttons on the front panel to be
toggled. In addition, the Dinamap object includes methods that continuously display the pa-
tient’s vital signs, to include heart rate, systolic blood pressure, diastolic blood pressure, and
arterial pressure.

Infusion Pump Object. The Infusion_Pump object manages the geometry for the rapid
infusion pump. The Infusion_Pump object includes methods that permit buttons on the con-
trol panel to be used to control infusion treatments. This object also includes methods that
display current instrument settings on the control panel. Finally, the Infusion_Pump object
includes methods that permit the wheels to rotate in the direction of motion when the infu-
sion pump is moved.

Oximeter Object. The Oximeter object manages the geometry for the pulse oximeter. The
Oximeter object includes methods that permit buttons on the front panel to be toggled. In
addition, the Oximeter object includes methods that continuously display the patient’s heart
rate and blood oxygen (Sa0O»).

Patient Warmer Object. The Patient_Warmer object manages the geometry for the patient

warming system. The Patient Warmer object includes methods that permit buttons on the
control panel to be used to control patient warmth treatments. This object also includes
methods that display current instrument settings on the control panel.

Xraylite Object. The Xraylite object manages the geometry for the x-ray viewing light
panels. The Xraylite object includes methods that permit buttons on the front panel to be
toggled. In addition, the Xraylite object includes methods that cause the appropriate light
panel to change visual state, based on the respective toggle value of the control button.
Defibrillator Object. The Defibrillator object manages the geometry for the integrated
defibrillator monitor. The Defibrillator object includes methods that permit buttons on the
front panel to be toggled. In addition, the Defibrillator uses information from the control
panel to control patient defibrillation treatments. The Defibrillator also provides a dynamic
display of the patient’s current heart sinus rhythm on an electrocardiogram (ECG) display.
The Pulse object is used to drive the ECG display, and may also be used to drive other ECG
displays. The Pulse object inherits functionality from the GL_Canvas object, which provides
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a general capability for providing a two-dimensional GL graphics display in a 3-D environ-
ment.

11. Monitor Object. The Monitor object manages the geometry for the primary patient monitor.
The Monitor object includes methods that permit buttons on the front panel to be toggled.
The Monitor provides a dynamic display of the patient’s current heart sinus rhythm on an
electrocardiogram (ECG) display, the patient’s current heart rate, systolic and diastolic blood
pressures, temperature, and other non-dynamic information such as name, gender, and blood
type. As with the Defibrillator, the Pulse object is used to drive the ECG display.

All Apparatus objects are aggregate members of the ER Manager object, which provides
updates to each object every frame. In addition, many of the apparatus objects must also access
the CODB, in order to store information about treatments administered by the trainee or to

update monitors from an updated Patient_Vitals MediGram.

4.4.4.12 LineFont Library

This library provides an IRIS GL-based font mechanism that is shared by all apparatus
objects requiring GL text displays. This particularly includes those apparatus objects with
integrated control panels. The LineFont library is a C library developed by Wright Laboratory
and adapted for use in the VER design. '

4.4.5 MSS OOD Dynamic Model

The dynamic model is presented in the State Transition Diagram in Figure 4-6. This
model shows the various states that the MSS application assumes during the course of a simula-
tion. The simulation states are depicted as a main simulation loop, which is how Performer
requires simulations to be structured.

When the MSS is activated, the processing is performed on one or more processors (and
corresponding processing threads), as fast as permissible by the underlying hardware. If multi-
threaded execution is enabled, the processing associated with some states may be pipelined
across thread boundaries to increase the speed of execution. The processing threads that handle'
each state in the main processing cycle are annotated adjacent to the state boxes in Figure 4-6.

Initially, the MSS is activated and enters the “Initialize Simulation” state, in which all
object instances are created and all simulation state initialized. In addition, a networked simula-

tion requires an initial Patient_Record MediGram be received to synchronize the MSS applica-
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tion with the virtual patient (PCS). Thus, the MSS may be in the “Initialize Simulation” state for

an indefinite period of time.

i I APP/DRAW/CULL APP
Initialize Retrieve Terminate
. . Inbound Update Renderer . .
Simulation Simulation
MediGrams
____J _._____/
APP/DRAW/ CULL
APP/DRAW
r‘——'———\
Send
Outbound MSS Main Simulation Cycle Update Interface
MediGrams
APP T
‘ Poll Selection . Update
Poll IO Managers Manager Update Equipment Motion Manager
e U —
APP APP/ CULL APP/DRAW APP

Figure 4-6. VER MSS dynamic model.

The first states to be reached in the iterative portion of the main simulation cycle are the
“Retrieve Inbound MediGrams” and “Send Outbound MediGrams” states. These states handle
activation of the Medical Staff Station MediGram Manager object for each processing cycle. In
the “Retrieve Inbound MediGrams” state, the CODB is checked for new MediGram updates
from the PCS. -In the “Send Outbound MediGrams” state, the time since the last Doc-
tor_Treatment MediGram multicast send is evaluated. If the time is greater than a specified time
threshold, the Doctor_Treatment MediGram queued in the CODB is sent.

After processing MediGram updates, all input devices registered with the MSS are
polled in the “Poll IO Managers” state. Events are written to the CODB by the appropriate IO
Manager. Interpretation of these events is the focus of the rest of the states. The “Poll Selection
Manager” state causes the Selection Manager to be polled to determine if any scene elements are
selected. A selected object is identified to the ER Manager in the “Update Equipment” state,
which causes the ER Manager to activate and highlight the object.

Control then passes to the “Update Motion Manager” state. When an object is already
selected, the Motion Manager reads mouse input events from the CODB and uses them to
compute changes in the selected object’s position and orientation. Otherwise, the Motion

Manager has no effect on scene elements. After processing motion, control passes to the
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“Update Interface™ state to update the MSS interface. In this state, the CODB is checked for
input events that originated in the user interface. If an interface event is detected, that event is
processed.

Following this processing, control of the simulation cycle reaches the “Update Renderer”
state. The Renderer is invoked to update the scene with the results of the processing accom-
plished in the current simulation cycle. In the Renderer, the CODB is again used to change the
trainee’s view position and orientation. In addition, view-level collision detection is performed.

Finally, the “Update Renderer” state includes a check of CODB input events for a
terminate simulation event. If a termination event is detected, the simulation exits the main
simulation loop and enters the “Terminate Simulation” state to shut down the MSS. If no
termination event is received, the Renderer passes control back to the top of the simulation cycle,

which then restarts at the “Retrieve Inbound MediGrams” state.

4.4.6 MSS Usability Design

The usability of the MSS environment is an important aspect of the MSS design. Design
considerations specifically address three important usability issues:
1. Selection Manager. A mechanism for selecting and identifying scene objects.
2. Motion Manager. A mechanism for moving scene objects.

3. Apparatus Usability. A conceptual approach for interacting with apparatus objects.

4.4.6.1 Selection Manager Design Alternatives

The ability to designate and interact with objects is crucial to the usability of most
immersive virtual environments. As a result, it is imperative that the MSS design include an
efficient mechanism for selecting objects. The principle objective of the Selection Manager is to
permit dynamic selection of objects within the VER, so that selected objects may be interacted
with, moved, and otherwise used. The strategies considered to provide this functionality include

an interactive menu strategy, a cycling arrow strategy, and a direct channel picking strategy.

4.4.6.1.1 Menu selection strategy

A simple approach for Selection Manager design is to rely on text-based menus to select

objects in the scene. In this strategy, a list of selectable objects is constructed and maintained by
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the Selection Manager. This list is used to generate a GL or XForms menu that is displayed as
an overlay on the scene, which is used to choose an object by name.

The primary advantage of this approach is the direct-selection capability it provides.
Users may directly designate objects using the mouse. Another advantage is the simplicity of the
interface, which mimics many workstation applications by providing a familiar “pop-up and
choose” capability. Another advantage is the simplicity with which this strategy may be imple-
mented. Because this strategy does not require graphics, and because the selection is performed
outside of the scene, there is no requirement for additional rendering or graphical pre-processing.
Selection is accurate, as long as the name of the desired object is known.

Unfortunately, there are many limitations to the approach. One drawback is the exces-
sively structured means of selection imposed by using a menu. The Selection Manager must be
activated and a menu selection must be made to select an object. This strategy leads to an
awkward interface, because these steps must be performed every time an object is selected.
Empirical tests show this strategy to be distracting, because attention is constantly shifting

between the application and the interface.

4.4.6.1.2 Cycling arrow strategy

The cycling arrow strategy permits object selection by cycling a graphical key arrow
over the scene elements until the arrow identifies the selected object. The key arrow is posi-
tioned using a key-press or mouse-click, and rotates to remain visible regardless of the user’s
vantage point.

The advantage of this strategy is the discrete number of objects that may be designated.
Objects registered with the Selection Manager are included in the selection list that the key arrow
cycles through. Objects that are not included are not eligible for selection and are thus ignored
by the Selection Manager. An additional advantage is the intuitiveness of this approach, which
is graphically more appealing than a simple menu interface. This approach also makes use of
entirely graphical elements that are more appropriate for a graphical simulator.

Disadvantages of this approach make it much less desirable. First, the rendering and
dynamic orientation of the key arrow requires considerable overhead, because the trainee’s view
orientation must be used to ensure that the arrow remains visible at all times. This requires
excessive computation when other objects obstruct the view of the key arrow. Another problem

with this approach is the awkward interface it presents to the user. The Selection Manager must

4-23




first be activated, and successfully selecting the intended object may require that the key arrow

be advanced several times.

4.4.6.1.3 Direct channel picking strategy

A final strategy for the Selection Manager design involves using the mouse to directly
click on the desired object in the visible part of the scene. This requires that a ray be cast from
the user’s current viewpoint, through the current mouse position on the near clipping plane, and
into the current channel viewing frustum. The first intersection of this ray is returned as the
selected object.

There are several advantages of this strategy. First, the usability of this strategy is good,
because the operation is easily learned and remembered. This strategy also permits direct access
to select objects, and the selection process is vantage point independent. Another advantage is
the relative simplicity with which this strategy may be implemented. It is a simple matter to cast
a ray from the eye through the mouse. Intersection tests involving a single ray are well sup-
ported features of the Performer libraries. Finally, the selection of objects is accurate enough to
permit very small objects to be selected.

There are also disadvantages to this approach. One problem is the restrictions imposed
by the viewing frustum itself. This strategy permits the user to select visible objects only.
Because objects that lie outside of the viewing frustum are culled, they are not eligible for
selection. This limitation may lead to limited interaction during complicated simulations.
Another drawback is the heavy dependency placed on using the mouse. The other alternatives
are feasible with other input devices, whereas this strategy exclusively requires the mouse cursor.
If other devices must be used for input instead of a mouse, a cursor must be managed and
rendered in software. This will lead to somewhat slower results, due to the additional processing

requirements added to the APP and DRAW threads.

4.4.6.1.4 Design Decision

Based on the alternatives discussed, the Selection Manager incorporates the direct
channel picking strategy. This provides a straightforward and efficient capability for object

selection.
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4.4.6.2 Motion Manager Design Alternatives

An interface mechanism that permits object movement is another important aspect of
usability. Object movement includes rotation about its internal heading and pitch axes, and
movement in the X, y, and z world space planes. Two basic mechanisms for providing user-
controlled motion are considered for the VER MSS: use of existing Performer functions and

customized motion control.

4.4.6.2.1 Performer pfiXformer

One possible mechanism for moving objects is to use the existing pfiXformer functions
provided in the Performer libpfui library. This library contains functions called “transformers”
that mimic the motions of driving, flying, and trackball movement. The first two of these
transformers are designed to propagate user’s view throughout the scene. The trackball trans-
former, by contrast, is designed to keep the user’s view stationary and transform scene elements.

Although the pfiXformer provides efficient motion performance, it suffers from a key
usability limitation: the pfiXformer permits manipulation of objects from a fixed-view only. An
observer at the origin gazing along the negative-y axis will find all transformations to be smooth
and natural. The mouse events generated to rotate and translate an object are intuitive, because
the view is aligned correctly with respect to the pfiXformer. However, changes to the user’s
view diminish the intuitiveness of using the trackball pfiXformer. The act of rotating and
translating objects is not intuitive, because updates to the top pfDCS node of the object are not
processed relative to the viewer’s position. For example, pushing an object always moves it in
the positive-y axis direction, regardless of the viewer’s position. This is awkward when the
direction of gaze in the scene is in the negative y-axis direction, because a virtual “push” causes
objects to come closer, rather than move away.

This limitation is compounded by the fact that the trackball pfiXformer does not support
collision detection. Further, the pfiXformers retain strict control of the pfDCS nodes of trans-
formed objects, so it is difficult to override the pfiXformers in cases where additional features

need to be added. Such features, such as collision detection, are desirable future enhancements

4.4.6.2.2 Customized Motion Control

An alternative approach to transforming objects is to design a customized capability to

manage simple object movements. A new motion management mechanism would provide less-
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restrictive access to the internal node structure of an object to be moved. By mimicking the node
requirements of the pfiXformer, a new motion control object provides the ability to introduce
collision detection with all ranges of motion provided by the trackball, as soon as good collision
detection algorithms are available. In addition, viewer relative features may be added, such as
the ability to rotate and translate objects based on the current view position and orientation.
With a custom controller, a mouse-generated push may cause objects to intuitively “go yonder,”
and a mouse-generated pull may cause objects to “come hither.” The primary drawback to using
a custom controller is the additional complexity added to the design as a result of developing the

motion algorithms.

4.4.6.2.3 Design Decision

Based on the analysis of choices, the VER design will include a customized Motion
Manager. The Motion Manager will provide simple translation and rotation capabilities by using
mouse inputs. The Motion Manager will also permit future collision detection capabilities to be

added, which increase the credibility of the motion.

4.4.6.3 User Interaction with ER objects

Another important design consideration is how objects will be controlled, configured,
and used during simulations. Four strategies for interacting with ER objects are evaluated:
dynamic POD panels, floating control menus, integrated control panels, and XForms pop-up

windows.

4.4.6.3.1 Dynamic POD Panels

An initial design possibility is the use of the AFIT POD interface mechanism, which
provides a collection of panel and sub-panel objects to develop an integrated interface that
“surrounds” the user. The POD interface is used in several AFIT Lab applications, such as the
Synthetic Battle Bridge [WELL96], the Satellite Modeler [WILL96], and to a smaller extent, the
Virtual Cockpit [ADAM96]. A possible way to adapt the POD to the VER is to develop a front
panel that follows the motion and orientation of the trainee’s view. On this panel, sub-panels are
then added for each object interface requirement. For example, there is a sub-panel for a light
and a separate sub-panel for a monitoring device. The sub-panel for the currently selected object

is visible, if a sub-panel exists, and that sub-panel provides all of the controls for the object.
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The advantages of this approach are straightforward. All of the controls are neatly
integrated into a single interface mechanism that is always available to the trainee. In addition,
the interface provides a controlled way to interact with the environment by simplifying the
number and type of interactions possible—if something cannot be done via the control sub-
panel, it cannot be done.

There are several drawbacks to this design approach. First, object interaction typically
involves more than merely interacting with control panels. The sub-panel mechanism is, in
many cases, an oversimplification of the interaction required in a medical VE. Another similar
drawback is the means by which objects are controlled. This interface permits remote control of
objects, which introduces an artificial capability not possible in an actual situation. Although
this is a procedural simulator, it is important not to resign to over-simplifications of the interface.

Yet another disadvantage of using the POD is the way in which it would be used. Other
applications that use the POD rely on it as an observation deck interface for wide-area environ-
ments. For example, the Satellite Modeler uses the POD to change views and simulation speeds
while navigating through space. Because there are no objects to directly control in space (yet),
and the primary goal of the simulation is observation, the POD is a natural fit. However the
immersive VER emergency room, unlike the current Satellite Modeler, is an environment that
necessitates interaction. A doctor trainee is an active participant, which suggests that a different
interface strategy should be used.

A fourth problem with this approach is the mechanism used by the POD to create the
interface. POD panels and sub-panels incorporate extensive use of GL, which is not part of the
scene, and a model-based panel which is part of the scene. This leads to the requirement for a
separate mouse driver to interact with the POD panels and sub-panels. By using the mouse
driver, additional overhead to resolve mouse contention is required.

A final disadvantage of this approach is the overhead imposed by using the POD
architecture. The POD objects are quite large and require a considerable amount of APP thread
processing. By avoiding use of the POD architecture, the overall design for the VER MSS may

be less complex.

4.4.6.3.2 Floating Menus
Another design possibility involves dynamically creating floating pop-up menus in space

adjacent to objects in the scene. That is, the act of selecting a particular object generates an
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event to display a pop-up control menu for that object. This control menu is part of the scene,
and is directly interacted with to control the selected object. The control menus are based on a
simplified POD panel object, called the MINIPOD, which provides a standalone sub-panel.

There are some noteworthy advantages to this approach. First, as with the dynamic POD
approach, all of the controls are neatly integrated into a single interface mechanism that is
always available to the trainee. In addition, the interface provides a controlled way to interact
with the environment by simplifying the number and type of interactions possible. Another
advantage is the intuitive nature of this strategy, because control menus are located above or
adjacent to the selected object. The menu is visible until the object is no longer selected.
Finally, this strategy spatially distributes the user interface according to where the objects are
located in the scene. This strategy limits remote control of objects from afar. Users must at least
be spatially near the objects in order to see and use the interfaces for them, which more closely
mimics actual usability.

There are drawbacks to this approach as well. First, this interface is also artificial. User
interaction is still limited to use of the MINIPOD panels which are not integrated into the actual
apparatus. The MINIPOD panels are derivatives of POD panels and as a result, are included in
the scene. Thus, when MINIPOD panels are used to render menus, they appear to hover,
presenting an artificial effect. Another disadvantage is the computational overhead required to
selectively render each menu panel, and orient it so that it constantly remains visible to the
trainee. This overhead is in addition to that required to drive the MINIPOD architecture.
Finally, the POD/Performer mouse conflict is a carry-over problem from the POD design

alternative.

4.4.6.3.3 Integrated Control Panels

A third design approach involves integrating object control panels into the actual objects
for which they belong. Rather on relying on the POD architecture or a new architecture for
floating control panels, the interfaces are built into the object models themselves and are always
available for use. In this approach, complete object models are constructed with all visual
elements integrated into a single geometry database. The integrated control panel is then
“extracted” by isolating buttons and other geometry, which are animated to provide a workable

interface. GL calls are used to display readouts and other interface details as required.
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This approach offers the most flexibility. First, integrated control panels permit the
control of objects in a particularly intuitive manner. The best usability approach for the emer-
gency room, as discussed in Chapter 2, is one that most closely emulates real interaction capa-
bilities. This strategy represents a good approximation, because selected objects are accurately
controlled only when the trainee is spatially close to the appropriate object.

Another advantage is the integrated nature of the controllable objected. All components
are 3-D models, and as a result, all are part of the scene. Unlike a POD-based strategy, there is
no problem with simultaneously selecting GL buttons and scene elements. Yet another advan-
tage is the simple overall design that results. There are no requirements to dynamically orient or
display panels or sub-panels. All control features, because they are part of the scene, remain
visible. The resulting software is also much cleaner, because object objects only incorporate the
control functionality needed. There is no inheritance of functions that are not needed.

While this design approach is the most intuitive, there are drawbacks that must also be
considered. First, the less restrictive nature of this type of interface does not provide a complete
interaction solution. Control panels may be interacted with, but orienting and moving objects is
not supported by this strategy. In addition, objects that do not have control panels must also be
supported by an alternate interaction strategy.

Another drawback is the more complicated nature of integrating models into the scene.
Because the control panels are part of the object, objects must be decomposed into buttons,
panels, and other components. This leads to two versions for every model: the complete model
as originally designed, and the disassembled version of that model that is actually used in the
simulation. For example, the defibrillator was originally modeled as a single entity. With this
strategy, all of the buttons must be separated from the frame of the defibrillator so that they may
be independently pressed. This decomposition of models complicates configuration manage-

ment of VER objects and the Performer scene tree.

4.4.6.3.4 XForms Pop-up Windows

A final design possibility involves using the XForms GUI development library to create
pop-up control menus. The XForms library is based solely on the Xlib library, and is intended to
provide an efficient, easy to use GUI capability with minimal resource requirements [ZHOU96].
Because the interface is X-based, all XForms windows are displayed outside of the Performer

scene. Thus, the act of selecting a particular object generates an event to display a pop-up
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XForm window in the overlay plane above the scene. The window is then either dismissed by
the user explicitly, or is implicitly dismissed when the current object is no longer selected.

There are some noteworthy advantages to this approach. First, as with the MINIPOD
approach, controls are integrated into a single interface mechanism. In addition, the interface
provides a controlled way to interact with the environment by simplifying the number and type
of interactions possible. There are no display conflicts with this approach, because focus on
either the simulation or the pop-up control window is controlled with the mouse cursor. Finally,
this mechanism provides an intuitive way to interact with objects that would not otherwise have
an interface mechanism.

The disadvantage of this approach is the non-immersive interface, which shifts attention
between the GUI and the scene. Another drawback is the overhead required to design and
integrate XForms into the system, and the requirement to manage system performance as a result
of driving the XForms interface. Finally, XForms requires additional work to design and
configure the form widgets and callback functions to perform the intended simulation functions

within the Performer framework.

4.4.6.3.5 Design Decision

Based on this analysis, the VER incorporates a hybrid approach for object usability.
Integrated control panels are used to the largest extent possible, despite the added expense of
developing the underlying geometry and support objects. This decision decentralizes the
interface to the correct locations in the ER, and minimizes the artificial interface wherever
possible. In cases where an artificial interface is absolutely required, such as configuration of
objects that do not have controls panels (IV Bags, for instance), an XForms-based interface is

used.

4.4.7 MSS Design Summary

To summarize, the MSS design includes the following decisions from the preceding
design sections:
e Interface. The interface is both graphical and immersive.
e Selection Manager design. Incorporates the Direct Channel Picking strategy to streamline

object selection and interaction.
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e Motion Manager design. Incorporates custom control of selected objects, to overcome the

limitations of the Performer pfiXformer.
e Apparatus usability. Relies on designing apparatus objects with built-in control panels when
possible, and relies on XForms pop-up windows for objects that cannot host a control panel.
e CODB environment. All support classes will use the CODB to manage state information.

e Synthetic ER. The MSS hosts the synthetic ER facility for training.

4.5 VER Patient Control Station (PCS) Design

4.5.1 Design Overview

The PCS is the other key element of the VER. The purpose of the PCS is to provide: a
process for generating MediGrams that describe the medical status of the virtual patient; and an
interface for evaluators and instructors to configure, monitor, and adjust the status of the virtual
patient during VER simulations. At the simplest level, the PCS accepts inputs from the user, and
receives MediGram inputs from the MSS application. The PCS generates a Patient Record
MediGram to initialize a VER simulation, and regularly generates Patient_Vitals MediGrams to

apprise the MSS of the status of the virtual patient.

4.5.2 Graphical User Interface

A preliminary design issue that impacts the PCS is the type of human-computer interface
to provide. A preliminary design decision for the PCS is to make the interface graphical, rather
than text-based. The rationale for this decision is based on usability concerns. A text-based
interface is graphically simple, but may become unwieldy if the number of simulation parame-
ters is large. Similarly, interfaces based on the Curses library or command-line arguments are
restricted in their display capabilities. In addition, text-based interfaces lack visual appeal. The
wide acceptance of graphical user interfaces has increased general expectation about what a good

human-computer interface should include [NIEL93].

4.5.3 PCS Context Diagram

Figure 4-7 shows a context diagram for the PCS component. The Evaluator inputs, like

those of the trainee in the MSS, are from standard workstation mouse and keyboard devices.
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Scripted input is used to initiate VER simulations from external data files. Inputs are also
received in the form of Doctor_Treatment MediGrams generated by the MSS.

The essential processing task of the PCS is to convert user and MediGram inputs into
new MediGrams and control display updates. Beyond communication with other entities, the
PCS must continuously update the status of the graphics hardware on the host workstation.
Thus, rendering and display outputs to control this hardware are shown as an efferent control

flow.

Evaluator / Console Patient_Vitals
Inputs> MediGram
Scripted VER Patient_R.ecord
Inputs» Patient Control Meleram>
Doctor_Treatment Station Rendering and
MediGram o | Display >

Figure 4-7. VER PCS context diagram.

4.5.4 PCS Block Diagram

A block diagram that shows the components of the PCS is presented in Figure 4-8. The
block diagram for the PCS is similar to that of the MSS. The Patient Control Station, like the
MSS, is based on the AFIT CODB architecture. All simulation state is maintained within the
CODB, which permits sharing between functional PCS components.

Reuse is a key design decision for the PCS. Because the MSS provides many functions
that are not specific to the immersive ER requirement, the PCS reuses MSS objects whenever
possible. This minimizes the complexity of the design, and permits rapid prototyping. Referring
to the figure, the capabilities of the Renderer, IO Managers, Geometry support, and portions of
the interface are reused and thus, do not require additional design consideration. In addition, the
MediGram Manager is conceptually the same design, but differs in the type of MediGrams that
are sent and received. The PCS sends Patient Vitals and Patient_Record MediGrams, and

receives Doctor_Treatment MediGrams.
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Figure 4-8. VER PCS block diagram.

The PCS also differs from the MSS in the extent to which geometry is integrated into the
application. The design requires configuration of the virtual patient avatars. No apparatus
geometry or associated support objects are displayed.

The Evaluator’s Interface component provides a non-immersive, graphical view of the
patient avatar and a control panel with which to adjust patient physiological and simulation
control parameters. VER medical scenarios are initiated by specifying the condition of the
virtual patient, and then allowing the trainee at the MSS to react to provide required care.
Scenario scripts are designed to specify information and initial condition parameters for the
virtual patient as a training aid. Information contained in the scripts includes vital signs, text-
descriptions of symptoms, background information pertinent to treatment, and other information
as required by the simulation. The objective is to provide a flexible means to communicate the

initial patient state and the overall treatment objectives for each simulation.
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4.5.5 PCS OOD Object Model

The Object Model and Dynamic Model for the PCS application are presented in this
section. The object model for the VER PCS is provided in Figure 4-9. Object reuse is made
apparent in the object model by annotating reused objects with a star. A brief description of each

PCS-specific object follows.

Renderer
Medical 8 Patient Control Station
Network Manager MediGram Manager
X
10 Keyboard
Common Object ﬂ L VER
Database Patient Control Station
*
10 Mouse
Selection
Manager
Model 4 Script Manager
¥ = Reused from MSS Object Model "

Figure 4-9. VER PCS object model.

4.5.5.1 VER Patient Control Station Object

The VER Patient Control Station Object is the main process for the PCS application. The

PCS application starts and terminates within this object.
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4.5.5.2 Script Manager Object

The Script Manager object permits the initial physiology of a patient to be loaded from
an external script file. In addition, patient information is read from the script file that is used to
create a Patient_Record MediGram. Text-based symptom descriptions may also be extracted
from the script file in order to provide additional cues for the simulations.

Another important aspect of the script manager is the ability to support a human physio-
logical model, when one becomes available. The object provides an interface into the PCS
CODB that permits patient physiology to be modified to would permit the virtual patient to

respond to Doctor_Treatment MediGrams.

4.5.5.3 Patient Control Station MediGram Manager Object

The Patient Control Station MediGram Manager object provides network management
functionality for the PCS by encapsulating the functions of the Medical Network Manager.
Inbound Doctor_Treatment MediGrams from the MSS application are received and stored by the
Patient Control Station MediGram Manager. In addition, the Patient Control Station MediGram
Manager sends Patient_Record and updated Patient_Vitals MediGrams to the MSS application.

4.5.5.4 Selection Manager

The Selection Manager object is integrated into the PCS application to provide a
mechanism for interacting with the patient avatar geometry. Use of the Selection Manager

permits the current avatar to be selected and moved for visualization purposes.

4.5.5.5 Evaluator’s Interface

The PCS interface is a non-immersive view of the patient avatar and the controls
required to initialize the simulation, select a patient avatar, and configure the physiology of the

virtual patient.

4.5.6 PCS OOD Dynamic Model

The PCS dynamic model is presented in Figure 4-10. This model shows the various
states that the VER PCS object cycles through during the course of a simulation. As with the

MSS dynamic model, many of the states in the PCS model are concurrently processed when
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executing in a multi-threaded mode. The threads that participate in processing each state are
listed by each state in the Figure.

Initially, the PCS is activated and enters the “Initialize Simulation” state, during which
object instances are created and initialized. In addition, a networked simulation causes an initial
Patient_Record MediGram to be sent to initialize the MSS application. However, unlike with the
MSS, the PCS does not enter a hold state to accept an acknowledgment from the MSS.

After initialization, the PCS enters its main simulation loop. Within the main simulation
cycle, the “Retrieve Inbound MediGrams” and “Send Outbound MediGrams” states represent
calls to the Patient Control Station MediGram Manager object. In the “Retrieve Inbound
MediGrams” state, the CODB is checked for new MediGram updates from MSS participants. In
the “Send Outbound MediGrams” state, the time since the last Patient Vitals or Patient_Record

MediGram send multicast is used to determine when the next multicast occurs.

APP /DRAW /CULL APP APP/CULL /DRAW APP
l e o Retrieve .
Initialize Inbound Update Renderer Terminate

Simulation Simulation

MediGrams

PCS Main Simulation Cycle

Send
Outbound Poll 10 Managers
MediGrams

Poll Selection
Manager

Update GUI

APP APP APP/CULL APP/DRAW

Figure 4-10. VER PCS dynamic model.

After processing MediGram updates, all input devices registered with the PCS are polled
in the “Poll IO Managers” state. Input events are written to the CODB by the appropriate 10
Manager, and are limited to those received from the IO Mouse and IO Keyboard Managers. The
“Poll Selection Manager” state causes the Selection Manager to be polled to determine if any
scene elements are selected based on the recently received input events.

The “Update Interface” state is used to check the CODB for input events taken from the
user interface. If an interface event is detected, that event is processed. After processing
interface events, control of the simulation cycle reaches the “Update Renderer” state. The

Renderer is invoked to update the scene with all of the processing accomplished in the current
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simulation cycle. The “Update Renderer” state uses the CODB to check for terminate simulation
events. The simulation continues processing the main simulation loop until a terminate simula-

tion event breaks the main simulation loop and terminates the PCS.

4.5.7 PCS Usability Design

The PCS usability design is based on analysis of (1) the graphical user interface, for
controlling the virtual patient and VER simulation parameters, and (2) simulation control

functions and operations that control synchronization between the PCS and MSS applications.

4.5.7.1 Graphical User Interface Design Alternatives

The Patient Control Station interface must permit the PCS application as well as the
virtual patient to be controlled and monitored. Three mechanisms for designing the PCS
interface are considered: the POD interface, X/MOTIF interface tools, and the Performer libpfui

interface widgets.

4.5.7.1.1 POD Interface

The POD interface provides a capability to present an interface on one or more panels in
a graphical format. The POD employs the rendering requirements of Performer and could
provide a basic, immersive PCS interface. This would provide a usability advantage, because
features relating to the status of the patient may be drawn or otherwise rendered with relative
ease.

A problem with using the POD is that it requires moving within a Performer scene. This
adds unnecessary complexity to the design. In addition, there is not a well developed collection
of interface tools with which to customize POD panels. Buttons and pull-down lists are possible,

but other user interface features (widgets) require additional innovation.

4.5.7.1.2 X Interface Tools

Yet another approach is to use Motif widgets to generate an interface. Interface proto-
typing tools such as RapidApp could be used to develop a flexible control console for the PCS.
An advantage to this approach is the widespread familiarity with Motif, consistent and pleasing

interface appearance, and the flexibility to modify the interface without considerable innovation.
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The problem with Motif is the difficulty of integrating it with Performer. Motif applica-
tions may be used to control Performer, but the interface is complex and in many cases difficult
to understand. For this reason, Motif is not considered as a viable interface option.

Another possibility for the PCS interface is the XForms library, as described in the MSS
design. Although simple and efficient, the XForms interface does not provide enough flexibility
to surround Performer scenes in the same window. Rather, XForms are intended to be pop-up
interfaces in their own dedicated windows. XForms are therefore not considered, because

multiple pop-up windows create a fragmented interface.

4.5.7.1.3 Performer libpfui GUI

A final alternative is to incorporate user interface functions from the Performer libpfui
library. These library calls permit a user interface to be built around Performer applications. A
collection of interface widgets is available with which to integrate the interface.

An advantage to this approach is the capability to create a graphical interface for the
PCS that is similar in appearance to many Motif-based interfaces. A single, stationary view is
permissible with the /ibpfui widgets. Another advantage of this approach is that the interface is
not part of the scene. Thus, there is a distinction between interacting with the scene and interact-
ing with the interface. Moreover, the libpfui widgets are developed to work well with Performer
applications, so integration difficulties are minimized. A final advantage is the clean appearance
of interfaces built with the libpfui widgets. The widgets are small, scaleable, and designed to
integrate several controls into a relatively small screen area. Thus, it is possible to construct a
potentially complex interface without a significant loss of screen area.

The primary disadvantage to this approach is a general lack of flexibility in customizing
the attributes of libpfui widgets, and the limited number of available widgets with which to

construct an interface.

4.5.7.1.4 Design Decision

The PCS design incorporates the libpfui GUI interface, due primarily to streamlined
integration with Performer. This interface mechanism also permits the PCS to reuse the Ren-

derer object and other Performer based objects from the MSS without modification.
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4.5.7.2 Simulation Control Decisions

The control requirements of the PCS extend beyond merely activating a virtual patient

process. As the less-complex of the two applications, the PCS is designed to satisfy the added

requirements of controlling and synchronizing the overall VER simulation for both applications.

In addition, the PCS must provide local performance information to keep the user apprised of

underlying simulation details. Thus, the simulation control features will include the following

capabilities:

1.

Performer performance statistics. Generates an on-screen overlay display of graphics
performance for the PCS application.

MediGram traffic display. Generates an on-screen overlay display of MediGram traffic that
is sent and received, to include current values of the MediGram fields when appropriate.
Patient vital signs controls. Permits vital signs to be adjusted over their permissible range.
Used to modify vital signs for initialization purposes, as well as during run-time.

Patient avatar selection. Permits patieht avatar type to be selected before starting the
simulation, so that the MSS may pre-load the avatar.

Start Simulation control. Permits starting the simulation from the PCS, so that both PCS and
MSS applications start in unison.

Terminate PCS control. Permits termination of the PCS application.

4.5.8 PCS Design Summary

To summarize, the PCS design includes the following decisions from the preceding

design sections:

Graphical interface. Provides flexible and extensible interface that is visually interesting.
Script manager. Permits scenario data to be loaded consistently for each simulation.

GUI interface (libpfui). Provides streamlined GUI interface capability that integrates well
with Performer. The interface is non-immersive.

Reused components from MSS. Provides consistent capabilities across the VER design.
This minimizes redundant workload.

Multi-purpose simulation control. Provides interface capabilities necessary to operate the

simulation and control the virtual patient.
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4.6 VER Geometry Design Decisions
Quality 3-D geometry is a key design ingredient of the VER MSS and PCS components.

To provide consistently designed geometry, design decisions about level of detail switching and

geometry database formats are required.

4.6.1 Level Of Detail

In many VE applications, judicious use of Level-of-Detail (LOD) switching permits
good performance when the viewing frustum contains many scene elements. The goal of LOD
switching is to substitute high fidelity geometry with lower fidelity geometry when the viewing
distance exceeds one or more distance thresholds. Thus, the overall polygon count contributed
by each object in the simulation is adjusted as a function of the user’s viewing distance
[VINC95]. Using this technique, graphics performance is preserved because at long distances,
otherwise invisible geometric features are not rendered. Geometry files that incorporate LOD
support contain several detail levels integrated into a single geometry database file.

LOD switching is particularly well suited to simulations that encompass a wide virtual
area, such as space and combat simulations. The viewing distances in such applications can
easily encompass hundreds of miles, which makes discernment of geometric details difficult
from afar. However, the usefulness of LOD switching is diminished in simulations that are
confined to relatively small areas, because details may be discerned at all times [IRIS96]. In
fact, LOD switching can adversely impact the rendering performance of close-quarters simula-
tions, because viewing distances vary by considerably smaller amounts. In the context of an
emergency room setting, LOD switching may obscure visual details that are needed during
simulations. Thus, it is possible that if LOD switching is activated, a view of one or more
objects may be incomplete.

Another problem is the ease with which LOD switching is typically noticed. Over long
distances, geometry switching is barely noticeable and thus provides a visually acceptable
solution. However over short distances, the geometry switching may be stark and potentially
distracting [VINC95]. While fading or blending detail levels is possible, the process is still
apparent and may incur a performance penalty. This penalty arises from the manipulation and
alpha-blending of multiple versions of the geometry required to smooth the switching [VINC95].
Finally, LOD switching complicates the design of the Selection Manager and the simplicity of
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the integrated control-panel strategy. The problem lies in knowing which LOD is active at any
instant so that it may be correctly processed by other application elements. Based on this

analysis, the VER does not incorporate LOD switching geometry.

4.6.2 Geometry Database Formats

The database format of VER geometry is another design issue. Wire frame models are
readily available from many sources, some of which are free or very low cost. Performer has a
well-rounded capability for importing most common database formats. Unfortunately, the AFIT
Graphics Lab does not have a modeling tool capable of editing models in many formats.
Coryphaeus’ Designer’s Workbench supports just 5 formats, including the native (.dwb) format.
Thus, a limitation is imposed on the ability to edit non-native geometry obtained from other
sources in other formats.

Another concern is the functional limitation of some Performer database loaders. The
pfLoad_dwb loader is equipped to translate advanced modeling details such as instancing and
transparency. However, not all loaders are capable of translating these features. Use of other
model formats may not provide expected results within the Performer environment.

Because of these issues, the VER geometry is designed according to the following
strategy:

1. Design geometry using Coryphaeus’ DWB, and save as (.dwb) format to maintain a consis-
tent level of geometric fidelity, and to ensure Performer compatibility.

2. If the above is not possible or too work intensive, then import external geometry into
Coryphaeus’ DWB, edit and save as (.dwb) format to ensure compatibility.

This strategy ensures that all geometry may be modified, and dependency on database interpre-

tation by Performer loaders is limited exclusively to the (.dwb) file format loader.

4.7 Conclusion

The primary objective of this chapter is to present the design of the VER prototype. The
VER design is influenced by research of not only the current literature, but also medical facilities
and other VE applications. In addition, a general philosophy of technical reuse is applied
whenever possible.

The designs of the MSS and PCS applications address the functional requirements

established in the beginning of this chapter. These applications are designed to operate within a
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DVE framework that is directly supported by the Medical Network Manager, and the Common
Object Database architecture. The design of the MediGrams, which facilitate communication
between VER applications, is based on the strengths of the DIS protocol and compliance with
HLA standards. In addition, the applications are designed to use the Performer libraries.

The structure of the design for the VER is not complex, once it has been decomposed
into distinct design elements. The manager-driven approach to performing most tasks is easy to
work with, and lends itself well to object-oriented constructs. Further, the design is succinct
enough to provide flexibility in implementation. A discussion of how this design is imple-

mented, and what implementation-level tradeoffs were made, is presented in Chapter 5.
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5. Implementation

5.1 Introduction

This chapter describes the implementation of the VER prototype, based on the design
outlined in Chapter 4. An overview of the implementation is first described, followed by a
description of classes that are shared in the MSS and PCS implementations. Next, the Medical
Staff Station (MSS) implementation is presented. Afterwards, the implementation details of the
Patient Control Station (PCS) are presented, followed by a discussion of the processes used to

implement the 3-D geometry for the prototype.

5.2 Implementation Overview

The VER implementation, as with the design, describes the MSS and PCS applications.
However, classes that provide functionality common to both applications are consolidated into a
third element group called the VER “shared classes.” Figure 5-1 shows this grouping.

The shared classes include the implementation of general performer rendering capabili-
ties, the CODB classes (the implementation of which will not be discussed, see Stytz for addi-
tional information [STYT97]), the IO Manager classes, and the Model geometry management
class. Implementation of this functionality is discussed in Section 5.3.

MSS Implementation details are discussed in Section 5.4. The MSS application is
controlled by the VER_MSS executive. As depicted in Figure 5-1, the VER_MSS function
directly owns and controls the MSS_Renderer class, instances of the I0 Managers from the
shared class group, and the MSS_Medigram_Manager class. Each of these classes perform a
service that supports the simulation in general, without directly affecting the appearance or
management of the synthetic ER facility. Therefore, these classes are grouped as “MSS Sup-
port” classes. The ER_Manager, also controlled by the VER_MSS, manages the ER scene and
the interaction capabilities permitted within the scene. The ER_Manager directs all processing
within the synthetic ER environment. This processing includes initializing and updating appara-
tus, maintaining the ER Performer scene tree, and processing manipulations of scene elements.
The classes that support ER interaction are described under the heading of “Interaction Control.”

PCS Implementation details are discussed in Section 5.5. The PCS application is
controlled by the VER_PCS main. The VER_PCS main directly owns and controls the
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PCS_Medigram_Manager class and the Script_Manager class. In addition, the VER_PCS main
uses an instance of the Selection_Manager class to assist with controlling the GUI interface. All
other functionality is reused from the shared class group.

Geometry is another important ingredient, common to MSS and PCS implementation. A
discussion of the processes taken to implement apparatus and patient avatar geometry is provided

in Section 5.6.
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Figure 5-1. MSS implementation overview.

5.3 VER Shared Classes
The VER shared classes are implemented to facilitate reuse to the largest extent possible.
Because both applications are implemented using the Performer libraries, common Performer-

based functionality is implemented as a separate group of classes shared by both applications.




5.3.1 Common_Renderer

The Common_Renderer implements Performer configuration requirements common to
all Performer-based simulations. These requirements include configuring the pfChannel,
pfPipeWindow, and all scene traversal functions for the CULL and DRAW threads. In addition,
this class configures general environmental settings such as earth-sky attributes, clipping plane
parameters, and Performer rendering modes. Thus, this class is predominantly composed of

Performer library calls.

5.3.2 10 Managers

The 10_Keyboard class is implemented to store keyboard and window events in the
CODB. The IO_Keyboard class relies on the pfuGetEvents in libpfutil to perform these tasks.
The I0_Mouse class relies on the pfuGetMouse to obtain all mouse update events. This infor-
mation is also stored in the CODB for use by other objects. In addition to basic mouse event
processing, the IO_Mouse class also contains a method that generates a software cursor using
IRIS GL. The I0O_Fastrak class is used to configure and manage position updates received from
the Polhemus Fastrak sensors. The class contains the source for a library of routines that manage
access to the Fastrak server process. The Fastrak server process accesses the serial port and
retrieves position data.

The IO_Keyboard and IO_Mouse Classes rely on X device input processing. According
to the Performer Programmer’s Reference, X device input is the best configuration option
because “GL does not contain efficient device input routines; collecting GL device input in the
draw process can reduce rendering throughput; and collecting X device input in an asynchronous
process can improve real-time characteristics [IRIS96].” Tests of input strategies confirm these

statements.

5.3.3 Model class

Management of geometry databases within the Performer environment is crucial to the
success of the project. All of the visual scene elements in the VER are external geometry
databases—files containing 3-D modeling information not created specifically by Performer
functions. The Model class is implemented to provide support functions common to all external

geometry databases. The primary capabilities of this class include the following:
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Standardized Performer sub-tree for each Model object. The Model object imports geome-
try databases using one or more libpfdb file readers. The basic structure of each model in-
stance includes pfSCS, pfDCS, and pfGeoSet nodes. This configuration supports static ge-
ometry requirements, because objects may be positioned and optionally re-oriented. For
objects that move within the scene, an alternate structure configuration is also supported. In
this configuration, an additional pfDCS parent node is attached as the root node of the Per-
former sub-tree. This permits objects to be moved and rotated by motion support functions,
such as the pfiXformers in libpfutil and the VER Motion_Manager object. This flexible Per-

former tree structure is shown in Figure 5-2.

Figure 5-2. Performer tree structure created by the Model class.

Node Initialization. The Model object initializes pfNodes in the Performer tree structure
with simulation-specific information. In particular, the properties of each object are defined
in a static pfSCS matrix, which contains scaling information and initial translation and rota-
tion values as offsets from the world-space origin. In addition, the node name of each object
is assigned to the appropriate p/fDCS parent node, and the lighting characteristics of the
pfGeoSet nodes are initialized.

Performer pfDCS Matrix Updates. The Model object permits rotation and translation of
geometry using world-space coordinates. Movement of objects is supported by methods that
perform absolute or position-relative translations and rotations. These methods operate on
the pfDCS nodes in the Performer sub-tree hierarchy. The functionality supports Model
configurations with and without the optional parent pfDCS node.

Model State Information. Information about the status of any database object is retained by

the Model object and may be displayed. Information about the status of each sub-tree is
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available through methods in the Model object that print the state of all matrices and file-
name details. This information is particularly useful when initializing the simulation, as well
as for troubleshooting enhancements to geometry or motion-related capabilities.

o Augmented Graphics. The capability to highlight the geometry and associated bounding
volumes is implemented using the pfHighlight function. The Model class manages the state
information necessary to configure and selectively activate the pfHighlight mechanism.

o Inter-operability. The Model class includes support attributes and functions that support
inter-operability with other classes. The most apparent case of this is the built-in support for
the Selection_Manager (described in later section).

The class methods that provide these capabilities are shown in Figure 5-3. The Read-

Model and Model constructor build the Performer sub-tree from imported geometry database

elements. The SetRot, SetTrn, GetRot, and GetTrn methods define and evaluate the Model

pfDCS nodes for rotation and translation, respectively. The SetRotDelta and SetTrnDelta permit

relative pfDCS node updates using incremental adjustments.

Model

Model

~Model
ReadModel

SetRot
SetRotDelta
GetRot

SetTrn
SetTrnDelta
GetTrn
ResetCoord
Get_Hilite
Highlite_Disable
Highlite Enable
Toggle Highlite Object
Set_Hilite Format
SetKeystring
GetKeystring
GetModelPath
Show_Position

Figure 5-3. Model class methods.
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Also provided are methods to get and set the keystring used by the Selection_Manager to
identify scene elements. A collection of geometry highlighting support methods are imple-
mented to define, activate, and control the pfHighlight configuration. Finally, the Show_Position

method displays position and other information about the Model object.

5.4 MSS Implementation

5.4.1 VER MSS Main

As the executive process of the MSS application, the VER_MSS main initializes the
application, controls the main simulation loop, and generates a minimal collection of interface

displays.

5.4.1.1 MSS Initialization

The VER_MSS Main function provides primary control of the simulation and all
Performer functionality. An important aspect of the VER_MSS main is the initialization of
Performer and respective shared memory structures. The VER_MSS main defines and creates
internal data structures and shared memory structures to manage data across multiple processing
threads. The VER_MSS also initializes Performer and all local and shared memory variables.

After Performer is initialized, the VER_MSS creates and initializes all support class
instances. Instances are created for the VER_Renderer, I0_Mouse, I0_Keyboard, ER_Manager,
and MSS_Medigram_Manager. These classes perform the rendering, IO management, local
entity management, and communication functions for the VER MSS application. As part of
initializing the MSS_Renderer, the VER_MSS defines callbacks for CULL and DRAW thread
processing.

Also performed by the VER_MSS is synchronization with the PCS. The VER_MSS
decodes command-line parameters to control the initial mode of execution of the MSS applica-
tion. The MSS may operate on or off the network. The on-network mode causes the MSS to
synchronize with the PCS during startup, which sets the MSS simulation clock and directs the
ER_Manager to load the avatar specified by the first Patient_Record MediGram received. Off-
network execution causes the MSS application to operate without accepting MediGrams from the

PCS application, and does not load a patient avatar.
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5.4.1.2 Simulation Control

MSS Processing is controlled from a main simulation loop. The simulation loop in the
VER MSS application delegates most of the immersive simulation processing to the
ER_Manager, the MSS_Medigram_Manager, and the VER_Renderer classes. However, the
main simulation loop of the VER MSS still controls the overall application by accomplishing the

tasks shown in Figure 5-4.

while (ldone)
Process Panic Requests, to reset view and position
If on network:
MSS_Medigram_Manager retrieves PR and/or PV MediGrams
If time interval since last DT MediGram multicast exceeds threshold:
MSS Medigram Manager sends current DT MediGram
Update ER_Manager :
Initiate Cull and Draw traversals
Poll Mouse
Poll Keyboard
Update View in VER_Renderer
Update GUI bar
end loop

Figure 5-4. MSS main simulation loop.

Within the main loop, the VER_MSS continually checks for and processes panic
requests to reset the current view. Immediately thereafter, the VER_MSS calls the
MSS_Medigram_Manager to retrieve new MediGrams and send outbound MediGrams. Then,
the VER_MSS calls the ER_Manager to update the ER scene. The CULL and DRAW threads
are then updated. Next, the VER_MSS calls the 10 Managers to retrieve device input events and
store them into the CODB. Finally, the VER_MSS calls the Renderer to update the scene. The
GUI is updated using the current input events at the end of each frame cycle.

Upon exiting the main loop, a final aspect of the VER_MSS main is support for graceful
termination. The VER_MSS function calls the pfuExitGUI, pfuExitInput, and pfuExitUtil clean-
up functions to remove Performer data pool files created during processing. In addition, the
VER_MSS executes all non-null destructors of subordinate classes, and ultimately calls pfExit to

terminate Performer processing.
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5.4.1.3 MSS Interface

The VER_MSS provides the only visible interface to the doctor trainee. As such, the
VER_MSS implements a minimal interface to provide on-screen information for performance
monitoring, and a GUI for useful functions. The performance monitoring is implemented as an
on-screen display of the current MediGram statistics. Using a GL-overlay, this information is
displayed over the scene, and is updated every simulation cycle by the DRAW thread. The
display shows the current Patient Vitals MediGram received, and the most recent Doctor Treat-
ment MediGram sent. In addition, the display contains MediGram indicators that flash to
graphically indicate MediGram network activity. The standard Performer statistics display may
also be rendered when required.

The VER MSS also implements a GUI bar along the bottom 4 percent of the screen, as
shown in Figure 5-5. This optional panel integrates /ibpfui widgets to permit control of MSS
application parameters. The GUI bar includes controls to toggle the GUI panel, terminate the
MSS application, display Performer statistics, display MediGram status overlay, continuously
display the currently selected object, and release the current object. The GUI is intended to
provide a simple capability to control the MSS with minimal intrusion into the visible screen
area. The GUI bar is implemented using the /ibpfui interface tools, and the viewing channel is

partitioned and scaled to preserve scene visibility when the GUI is enabled.

Figure 5-5. VER_MSS GUI bar.

The GUI bar may not be visible when low-resolution (less than 1280 x 1024 pixel) head-
mounted display devices are used. The limitations of the /ibpfui widgets do not permit widget
text to be scaled. Thus, a supplemental GUI capability using a small POD panel is provided for
the MSS. This POD control panel is implemented to replace the GUI bar in low-resolution
configurations. The POD panel contains buttons that perform all of the primary GUI bar
functions, and may be positioned and locked at any time. When locked, the POD panel follows
movement of the view. The POD, unlike the /ibpfui GUI, is an in-scene element. As a result, the

POD is tethered to the view at a close distance (1 centimeter).
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5.4.2 MSS Support Classes
The MSS Support Classes include the MSS_Renderer and the MSS_Medigram_Manager

classes. Both of these are described in this section.

5.4.2.1 MSS _Renderer

The rendering functions of the VER_MSS are divided into two class implementations:
(1) General Performer configuration accomplished by the Common_Renderer, and (2) Simula-
tion specific rendering functionality accomplished by the MSS_Renderer. Figure 5-6 shows the

implemented structure of the Renderer.

“Renderer”

Common_
Renderer

MSS_Renderer

Figure 5-6. MSS_Renderer class structure.

The MSS_Renderer class inherits from the Common_Renderer class, and adds rendering
functionality unique to the VER MSS. This functionality includes initialization of the view in
the scene, configuring and controlling view-based collision detection, processing panic events to
reset the view, controlling the view mode, and updating the view with data from the mouse or
other input device.

The view is closely tied to the rendering functions accomplished by Performer. As a
result, the MSS_Renderer contains algorithms for modifying and controlling the user view. The
MSS_Renderer also includes motion models that permit the trainee to change the view in one of
two modes. For strict simulation purposes, a “walking” mode that supports ground following
and collision detection is available, using a basic terrain following algorithm. The walking mode

restricts view motion to the lateral X-Y plane of the ER floor. For rapid exploration of the scene,
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a “flying” mode is also available that permits the view to be modified without physical con-

straint.

5.4.2.2 MSS_MediGram_Manager

The MSS_MediGram_Manager class encapsulates the functions of Sheasby’s Medical
Network Manager class. This encapsulation approach insulates the interface to the VER_MSS
from potential changes to the Medical Network Manager Interface. The functional interface is
based on methods that perform the following MSS-specific functions:

1. Read the local MSS CODB.

2. Package information into correctly formatted MediGrams.

3. Broadcast the MediGram package to the PCS MediGram Manager.

4. Receive inbound MediGrams from the PCS.

5. Store formatted MediGrams in the MSS CODB.

MSS_Medigram_Manager

MSS Medigram_Manager
~MSS_Medigram_Manager
Initialize_Inbound
Initialize_Outbound
Initialize_PatientRec
Update_Outbound
Retrieve Inbound

Enable

Disable

Show_Patient Vitals
Show_Doctor_Treatment
Show_Patient Record
Get_Patient Vitals
Get_Doctor_Treatment
Get_Patient_InitRec

Figure 5-7. MSS_Medigram_Manager class methods.

As shown in Figure 5-7, the MSS_MediGram_Manager contains methods to initialize,
send, retrieve, and control how MediGrams are managed on behalf of the MSS. Three CODB
pointers are created and maintained in the MediGram Manager: one for assembling Doc-
tor_Treatment MediGrams, one for accepting Patient_Vitals MediGrams, and one for accepting

Patient_Record MediGrams. The MSS_Medigram_Manager class sends Doctor Treatment
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MediGrams, and checks for the receipt of new Patient_Vitals and Patient Record MediGrams
using the CODB pointers. As shown, the MSS_Medigram_Manager class includes other
methods to get and display MediGrams in the CODB.

5.4.3 ER_Manager class

The ER_Manager is the executive class for the synthetic ER environment. The ER
layout managed by the ER_Manager is shown in Figure 5-8. The trainee is inserted into the
synthetic ER, which contains static geometry objects such as walls, shelves, and the floor. Also
contained within the synthetic ER are dynamic geometry objects with continuous processing

requirements, such as monitors and lights.
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Figure 5-8. ER_Manager Implementation overview.

The ER_Manager creates and maintains the Performer scene for the synthetic ER using
both object types. In addition, the ER_Manager regulates interaction with the scene by manag-
ing calls to the Selection_Manager and the Motion Manager. This functional interaction
augments the GUI generated by the VER_MSS main and provides a complete interface capabil-

ity for the trainee.




The functions performed by the ER_Manager are categorized into 5 areas:

Initialization of Apparatus Sub-tree. All dynamic and static objects are instantiated in the
ER_Manager class. Thus, all apparatus and other scene elements are aggregate members of
the ER_Manager class. All scene objects are grouped in an apparatus pfGroup structure,
which is used to pass the geometry to other classes. The pfNodeTravMask is set to activate
intersection testing on the entire apparatus group and all descendants. Instantiation of ge-
ometry is performed by calling the Model constructor for static scene objects, or the appro-
priate apparatus class constructor for dynamic scene objects.

Avatar Insertion. The ER_Manager provides a mechanism to load the geometry database of
a specified patient avatar. The Performer tree structure created for the avatar includes a
pfSwitch that parents two individual Model instances: one for a dressed avatar, and one for
the undressed counterpart. All geometry is loaded and stored during initialization of the
MSS application, so that geometry switching does not delay the application during runtime.

Object Selection. As part of the Scene Tree initialization, the ER_Manager creates an

instance of the Selection_Manager to designate scene elements. During normal processing,
the Selection_Manager is polled by the ER_Manager, so that a “current object” may be
identified as required. The numeric identifier of the current object, as returned by the Selec-
tion_Manager, is stored by the ER_Manager for further processing.

Object Movement. The ER_Manager also instantiates the Motion_Manager during initiali-

zation. During normal processing, the Motion_Manager accepts the address of the currently
selected class (always a Model class). The Motion_Manager then reads mouse input from
the CODB to change the position and orientation of the selected object. The ER_Manager
controls operation of the Motion_Manager by setting motion flags to direct the type of mo-
tion for each apparatus object.

Object Updates. The ER_Manager triggers updates to all apparatus objects that require per-
frame updates. In addition, when the Selection_Manager identifies a current object, the state
of the object is modified by the ER_Manager. The Selection_Manager results are evaluated
at the lowest level pfNode for each object that contains component geometry. If component
geometry (such as a Button) is selected, the button is toggled by calling the appropriate
method in the current object. Otherwise, the state of the current geometry is evaluated. If

parent geometry is selected by the Selection_Manager, the pfHighlight state of thé complete
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object is toggled. Objects that are selected are highlighted and passed to the Mo-
tion_Manager with the appropriate motion flags. Objects that are de-selected are un-
highlighted, and motion control by the Motion_Manager is terminated. Beyond generating
events from the Selection_Manager, the ER_Manager updates all dynamic objects every
frame. Most dynamic objects support movement of geometry, process patient information
retrieved from MediGrams in the CODB, or write treatment values into the CODB.

The sequence of ER_Manager processing is shown in Figure 5-9. Processing in the
ER_Manager begins with initialization routines, which are invoked prior to executing the main
simulation loop in the VER_MSS main function. When the VER_MSS enters the main simula-
tion loop, the ER_Manager executes during each frame. Within each cycle, the ER_Manager
polls the Selection_Manager for a current object, and processes the current object if one is
identified. Processing the current object involves object identification, highlighting the geome-

try, and preparing the Motion_Manager to process the object for user-controlled movement.

Initialize MSS_Geometry Group
Initialize Selection_Manager and Motion_Manager
Insert Patient Avatar

// in main simulation loop...
Poll Selection_Manager
if object X is selected
Get index level in Selection_Manager
if component object
generate event for component object in current object class

else

current object =X

highlight current object

configure Motion_Manager for current object
end if

update Motion_Manager
update dynamic objects

Figure 5-9. ER_Manager processing.

The ER_Manager class methods that provide these functions are shown in Figure 5-10.
The Initialize method prepares the Performer scene tree by loading all geometry databases into
an apparatus group. Similarly, the Load_Patient method populates the tree with two specified

patient avatar Model instances--one for the dressed avatar, and a corresponding Model for the
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undressed avatar. The Update method performs the aforementioned update functions, and
Get_Ground identifies the ground Model instance for floor following requirements. Finally,
Toggle_Selected_Object activates or deactivates geometry highlighting for the current object,
and sets the current object to an appropriate new value. The Deselect method eliminates high-

lighting on the current object and forces the current object to be NULL.

ER Manager

ER Manager
~ER_Manager

Initialize

Load_Patient

Update

Get_Ground

Toggle Selected Object
Deselect

Figure 5-10. ER_Manager class methods.

5.4.4 Apparatus Classes

All geometry databases are imported into Performer using, as a minimum, the Model
support class to translate the database into the appropriate tree structure. The Model shared class
provides a core capability for converting geometry databases into performer sub-trees, and
managing the sub-trees based on the requirements of the simulation. However, if the geometry
database contains articulated features that must be animated in the Performer scene, this func-
tionality must be programmed into a special apparatus class. As discussed in the design, the
specialized class must properly structure and manipulate the Performer tree according to the
desired functionality.

For instance, a defibrillator may be imported into the Performer scene as a static model
instance using the Model class. While simple, this does not permit features of the defibrillator,
such as the buttons, to move when pressed. To implement this functionality, a class to support
the defibrillator is needed to properly structure the Performer tree, and provide an abstract
interface that implements the motion and underlying functionality of the buttons.

As discussed in Chapter 2, information was gathered from a variety of sources, to

include pictures of actual ER facilities and equipment. Beyond its usefulness for creating the 3-
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D geometry databases, this information was also helpful for determining some of the functional
aspects of the apparatus. This section describes the implementation of the MSS apparatus
classes. As an aid in following the discussion, the Performer tree structure for the Beamlite class
shows the representative Performer tree structure of an apparatus class. For brevity, Performer

tree diagrams of all other apparatus classes are grouped in Appendix A.

5.4.4.1 Beamlite class

The Beamlite class simulates the functionality of overhead directional lighting, and is
derived from the Model class. The Beamlite parent contains the geometry of the Beamlite
housing. Attached to the parent’s lower pfDCS node is a pfSCS node that hosts a pfLightSource
node, and a pfSwitch node. The pfSwitch node, in turn, parents two additional Model instances:
one for a transparent “unlit” glass panel, and one for an illuminated glass panel. Also attached to
the lower pfDCS node is a toggle button Model object. Figure 5-11 shows the Performer tree

structure for the Beamlite. Each bordered group represents an instance of the Model class.

Beamlite :
parent pfDCS

pfSCS

1

pfDCS

: I :
:| pfGeoSet | :

pfSCS

I |

pfLSource pfSwitch

| ptscs | | prscs | i| pfscs
] B I 8 I

pfDCS | ‘| pfDCS |- i| pfDCS

pfGeoSet | | pfGeoSet | | pfGeoSet |-

transparent
glass glass

Figure S-11. Performer tree structure for Beamlite class (others in Appendix A).
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The methods provided by the Beamlite class are shown in Figure 5-12. The Config-
ure_Light method is called from the constructor of the Beamlite object to build the aforemen-
tioned Performer scene tree. During an MSS simulation, the button activates and deactivates the
Beamlite object via the Toggle Power Event. The pfDCS for the button is updated to translate
the button according to whether or not it is pressed via the Update_Button method. In addition,
the state of the button is used to activate the pfSwitch in the sub-tree using the Update method. If
the button is in the “on” position, the pfLightSource is activated and the illuminated glass Model
is displayed on the light fixture. This causes the Beamlite object to generate the effects of local.
lighting. If the button is in the “off” position, the pfLightSource is deactivated and the transpar-

ent glass Model is displayed on the light fixture.

Beamlite

Beamlite

~Beamlite

Configure Light
Update_Button
Toggle Power Event
Update

Figure 5-12. Beamlite class methods.

Because local lighting is an expensive operation in Performer, the Beamlite object is the
only MSS component to use it. The pfLightSource node is configured to be a directional light
source with a conic light dispersion. All other lighting requirements are based on infinite light
sources. Local lighting produces the best results when the geometric complexity of the scene is
relatively high (contains many polygons), and the materials associated with geometry are
reflective [IRIS96]. Thus, the center of the MSS scene, directly over the patient avatar is an

ideal location to generate local lighting effects.

5.4.4.2 Crash_Cart class

The Crash_Cart class simulates the functionality of an emergency “crash cart,” and is
derived from the Model class. The parent Model contains the geometry of the cart housing,
without drawers or wheels. Attached to the parent’s lower pfDCS node is a pfGroup node that

hosts three drawer Model instances and four wheel Model instances.
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The methods provided by the Crash_Cart class are shown in Figure 5-13. The
Init_Crash_Cart method is called from the constructor of the Crash_Cart object to build the
Performer scene tree. During an MSS simulation, the Update method updates the p/DCS nodes
of each of the wheels to rotate them according to the specified direction of motion. This feature

is used to make movement of the Crash_Cart object appear natural.

Crash_Cart

Crash_Cart
~Crash_Cart

Init Crash_Cart
Toggle Drawer Event
Update

Figure 5-13. Crash_Cart class methods.

In addition, each of the drawer Models may be moved about their pfDCS nodes to
simulate opening and closing them. The motion of the drawers is controlled via the Tog-
gle Drawer_Event method. An internal event processor queues open- and close-drawer events,
so that events may be processed over several rendering frames in small incremental translations.
This produces a smooth drawer motion that is visually superior to an instantaneous drawer

update.

5.4.4.3 Curtain class

The Curtain class simulates the functionality of an emergency room curtain, and is
unique in that it is the only object class not derived from the Model class. The reason for this
implementation decision is based on the approach taken to implement the curtain. To provide an
open-and-close capability, a single section of curtain is cloned 15 times using the pfClone
operation. The cloned curtain segments are then added or removed from the Curtain object sub-
tree to simulate changes in curtain configuration.

The unique structure of the Curtain object is primarily based on creating a pfGroup node
to parent a Model of a single instance of the curtain segment geometry. This single segment
Model is referenced 15 times using pfClone nodes, which are also attached to the parent
pfGroup. The curtain segment geometry is modeled to permit the instances of the model to be

joined without a visible seam. The pfClone node permits existing geometry to be instanced
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without wasting memory. Because the curtain is repeated without visual penalty, use of the
pfClone reduces the curtain geometry from over 1500 polygons to about 100.

The methods of the Curtain class are shown in Figure 5-14. The Init_Curtain method is
called from the constructor of the Curtain object to build the Performer scene tree. During an
MSS simulation, the motion of the curtain is controlled via the Toggle_Curtain_Event method.
This method uses an internal event processor to extend the modification of the curtain sub-tree
over several frame updates. In this manner, the curtain geometry is modified over a definite time
interval that better approximates the motion of a curtain. The initial curtain segment is always
visible. Closing the curtain entails sequentially adding pfClone instances to the parent pfGroup
via the Enable_Segment method. Opening the curtain entails sequentially removing pfClone

instances of the curtain segment from the parent pfGroup with the Disable_Segment method.

Curtain

Curtain

~Curtain

Init_Curtain
Disable_Segment
Enable_Segment
Toggle Curtain_Event
Update

Figure 5-14. Curtain class methods.

5.4.4.4 Dinamap class

The Dinamap class simulates the functionality of a “Dinamap” dedicated patient vital
signs monitor, and is derived from the Model class. The parent Model contains the apparatus
housing, without buttons or face plate. Attached to the parent’s lower pfDCS node is a pfGroup
node that hosts a control backpanel Model object and ten button-switch Model objects, located
on the control backpanel.

The methods provided by the Dinamap class are shown in Figure 5-15. The
Init_Dinamap_Buttons method is called from the constructor of the Dinamap object to build the
Performer scene tree. During an MSS simulation, each button-switch is toggled on and off using
the Toggle_Button_Event method. This causes the Update_Button method to modify the pfDCS

for each pressed button-switch by a rotation of 60 degrees above or below the neutral centerline
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axis. The control back-panel does not move, and acts as a canvas upon which to draw display

updates.

Dinamap

Dinamap

~Dinamap
Init_Dinamap_Buttons
Update_Button
Update_Display
Toggle_Button_Event
Draw_Settings

Figure 5-15. Dinamap class methods.

Display updates are generated by a pfNodeTravFuncs method, Draw_Settings, which
draws the LCD readouts on the face of the monitor after the DRAW thread completes rendering
of the control back-panel. These values are updated by calling the Update_Display method to
access the CODB for current Patient_Vitals readings. The information displayed on the control
back-panel includes arterial pressure, systolic blood pressure, diastolic blood pressure, and heart
rate. The GL linefont library provides the drawing routines needed to display these values. The
data displayed on the control back-panel is obtained by reading the most current Patient Vitals

record from the CODB, formatting it, and generating GL commands to render it each frame.

5.4.4.5 Gurney class

The Gurney is almost a completely static class, derived from the Model class. The
parent Model contains the geometry of the mattress and supporting structure without wheels.
Attached to the parent’s lower pfDCS is a pfGroup that parents four wheel Model instances. The

methods provided by the Gurney class are shown in Figure 5-16.

Gurney

Gurney
~Gurney
Init_Gurney
Update

Figure 5-16. Gurney class methods.
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The Init_Gurney method is called from the constructor of the Gurney object to build the
Performer scene tree. During an MSS simulation, the Update method causes each of the wheels
may be rotated about their respective pfDCS nodes according to a specified orientation. This

feature is used to make movement of the Gurney object appear natural.

5.4.4.6 Infusion_Pump class

The Infusion_Pump class simulates the functionality of a rapid infusion pump, and is
derived from the Model class. The parent Model contains the apparatus geometry housing
without the wheels or control panel instrumentation. Attached to the parent’s lower pfDCS node
is a pfGroup node that hosts a control back-panel Model, four wheel Models, and eight button
Models.

The methods provided by the Infusion Pump class are shown in Figure 5-17. The
Init_Infusion_Pump method is called from the constructor of the Infusion_Pump object to build
the Performer scene tree. During an MSS simulation, each of the wheel Model objects is rotated
about their respective pfDCS nodes via the Update_ Wheels method. This feature makes move-
ment of the Infusion_Pump object appear natural. The control back-panel acts as a canvas upon
which to draw the buttons and current configuration settings of the Infusion_ Pump. The flow
rate value is rendered by a pfNodeTravFuncs method, Draw_Settings, that draws the current flow
rate value on the control back-panel after the DRAW thread finishes rendering the control back-

panel geometry.

Infusion_Pump

Infusion_Pump
~Infusion_Pump
Init_Infusion_Pump
Update_Button
Update
Update_Wheels
Toggle Button Event
Draw_Settings

Figure 5-17. Infusion_Pump class methods.

The Infusion_Pump object has a functional control panel, and any of the button Models

may be pressed. A button press event generated by the Toggle Button_Event method causes the
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Update_Button method to translate the appropriate button geometry by updating the respective
pfDCS matrix. Of the eight button Models, four are radio button Models that represent substance
categories, two are toggle buttons for activating pump power and patient connection, and two are
stateless push-buttons that permit the pump flow rate to be increased and decreased.

The Update method regularly updates the CODB, even when no IV treatment is being
administered. However, when a specified Power toggle button, Connect toggle button, and
substance radio button are pressed, the Doctor Treatment MediGrams generated from the MSS
include Infusion_Pump treatment data. The Update method restricts the minimum and maxi-

mum flow rates permissible, so treatments will always be subject to a finite flow rate.

5.4.4.7 Oximeter class

The Oximeter class simulates the functionality of a pulse oximeter monitor, and is
derived from the Model class. The parent Model contains the apparatus geometry housing
without control panel objects. Attached to the parent’s lower pfDCS node is a pfGroup node that
hosts a control back-panel Model object and two button Model objects, located on the control
back-panel.

The methods provided by the Oximeter class are shown in Figure 5-18. The
Init_Oximeter_Buttons method is called from the constructor of the Oximeter object to build the
Performer scene tree. During an MSS simulation, each button may be toggled on and off using
the Toggle Button_Event method. This causes the Update_Button method to modify the pfDCS
node for each pressed button by a rotation of 40 degrees above or below the centerline. The
control back-panel does not move, and acts as a canvas upon which to draw digital readout

updates.

Oximeter

Oximeter

~Oximeter
Init_Oximeter_Buttons
Update_Button
Update_Display
Toggle Button Event
Draw_Settings

Figure 5-18. Oximeter class methods.
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Instrument updates are generated by a pfNodeTravFuncs method, Draw_Settings, that
draws the LCD readouts on the control back-panel face after the DRAW thread finishes render-
ing the control back-panel geometry. These values are updated by calling the Update_Display
method to access the CODB for current Patient_Vitals readings. The information displayed on
the control back-panel includes patient blood oxygen and heart rate. These values are drawn
using GL linefont library calls. The data that is displayed on the control back-panel is obtained

from the most current Patient_Vitals MediGram in the CODB.

5.4.4.8 Patient_ Warmer class

The Patient Warmer class simulates the functionality of a patient warming system, and
is derived from the Model class. The parent Model contains the complete warmer housing
without control panel instrumentation. Attached to the parent’s lower pfDCS node is a pfGroup
node that hosts a control back-panel Model and four button Models.

The methods provided by the Patient_Warmer class are shown in Figure 5-19. The
Init_Patient_Warmer method is called from the constructor of the Patient Warmer object to
build the Performer scene tree. The Patient_Warmer has a functional control panel. Any of the
button Models may be pressed. A button press generates a call to the Toggle Button Event
method, which in turn activates the Update_Button method. This method translates the appro-
priate button by updating the corresponding pfDCS matrix. Of the four button Models, two are
toggle buttons for activating power and patient connection, and two are stateless push-buttons

that permit the temperature to be increased and decreased.

Patient Warmer

Patient_Warmer
~Patient_Warmer
Init_Patient Warmer
Update_Button
Update

Toggle Button_Event
Draw_Settings

Figure 5-19. Patient_Warmer class methods.

The control back-panel is used as a canvas upon which to draw the buttons and current

configuration settings of the Patient Warmer. The temperature value is rendered by a
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pfNodeTravFuncs method, Draw_Settings, that draws the current temperature value on the
control back-panel after the DRAW thread renders the control back-panel geometry. The push
buttons may be used to modify the value displayed on the control back-panel.

The Update method regularly updates the CODB, even when no heat treatment is being
administered. However, when the specified Power toggle button and Connect toggle button are
pressed, Doctor Treatment MediGrams generated from the MSS include Patient_ Warmer
treatment inputs. Thus, the Update method uses current state information to control how the
CODB is updated for patient warmth treatments. In addition, the Update method restricts the
minimum and maximum temperature permissible, so treatments will always be within a finite

range.

5.4.4.9 Xraylite class

The Xraylite class simulates the functionality of an x-ray viewing back light, and is
derived from the Model class. The parent Model contains the geometry of the unit housing, with
none of the lighting panel or control panel geometry. Attached to the parent’s lower pfDCS node
is a pfGroup node that hosts four pfSwitch nodes, and four button Models. Attached to each
pfSwitch node is a lit panel Model and an unlit panel Model.

The methods provided by the Xraylite class are shown in Figure 5-20. The Init_Xraylite
method is called from the constructor of the Xraylite object to build the Performer sub-tree.
During an MSS simulation, each of the back light panels may be turned on and off by pressing a
corresponding button. This causes a call to Toggle Lite Event, to display the correct light

geometry.

Xraylite

Xraylite

~Xraylite

Init Xraylite
Update Button
Toggle Lite Event

Figure 5-20. Xraylite class methods.

Pressing a button also generates a call to the Update_Button method update the pfDCS

matrix of the button. Each button corresponds to the control of an individual panel. When the
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button for a panel is pressed, the state of the button is used to activate the appropriate child of the
corresponding pfSwitch node. Thus, when a power-on event is detected, the pfSwitch activates
the lit panel child Model. Similarly, when a power-off event is detected, the pfSwitch activates
the unlit panel child Model.

Although the Scene-tree complexity of the Xraylite is relatively high when compared to
the other geometry classes, the underlying processing requirements are simple. There are no

pfTravNodeFuncs calls to execute, and no CODB access requirements.

5.4.4.10 Defibrillator class

The Defibrillator class simulates the functionality of a combined defibrillator and patient
monitor, and is derived from the Model class. The parent Model contains the apparatus housing
without control panel geometry. Attached to the parent’s lower pfDCS node is a pfGroup node
that hosts a control back-panel Model and ten button Models, located on the control back-panel.

The methods provided by the Defibrillator class are shown in Figure 5-21. The
Init_Defibrillator_Buttons method is called from the constructor of the Defibrillator object to
build the Performer scene tree. During an MSS simulation, each button-switch is toggled on and
off via the Toggle Button_Event method. This causes the Update_Button method to modify the
pfDCS matrix for each pressed button-switch, to translate the geometry in or out relative to the
control back-panel. All buttons retain their state, except for those assigned to modify the energy
level. The control back-panel does not move, and is used as a canvas upon which to draw

display updates.

Defibrillator

Defibrillator
~Defibrillator
Init_Defibrillator Buttons
Update_Button
Update_Display

Toggle Button FEvent
Draw_Settings

Figure 5-21. Defibrillator class methods.

Display updates are generated by a pfNodeTravFuncs method, Draw_Settings, that draws
the LCD readouts on the face of the monitor after the DRAW thread renders the control back-
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panel. These values are updated by calling the Update_Display method to access the CODB for
current Patient_Vitals readings, and by reading interval state variables modified by the button
control panel. The information displayed on the control back-panel includes patient heart rate
and a dynamic wave form that corresponds to the cardiac electrical rhythm of the virtual patient.
In addition, the current energy level selected for defibrillation treatment is also displayed. All
front-face displays are rendered using the GL linefont library and the Pulse class (discussed
next). The heart rate and wave form data displayed on the control back-panel is obtained by
reading the most current Patient Vitals record from the CODB.

The Update method regularly updates the CODB, even when no defibrillation treatment
is being administered. However, when the Power toggle button and Charge toggle button are
pressed, the Doctor Treatment MediGrams generated from the MSS include Defibrillation
treatment data. Thus, the Update method uses current state information to control how the
CODB is updated for defibrillation treatments. In addition, the Update method restricts the
minimum and maximum defibrillation energy levels permissible, so treatments will always be

subject to a finite energy level rate.

5.4.4.10.1 Pulse and GL_Canvas classes

The Electrocardiogram (ECG) monitor integrated into the defibrillator displays a wave
form that corresponds to the electrical signals of the patient’s cardiac sinus rhythm. Because the
activity of the patient’s heart is dynamic, so is the ECG display. Both the tempo and shape of the
wave form can vary in response to the patient’s physiological status.

The implementation of the wave form is an important consideration in the implementa-
tion of the Defibrillator class. In particular, the mechanism to display a dynamic wave form
pattern must be carefully balanced to accommodate (1) the speed at which the data display may
be rendered, (2) the fidelity of the data display, and (3) the subjective degree to which the data
display will vary over time.

A first attempt to implement cardiac sinus wave forms was to derive a mathematical
formula that permits direct computation of the electrical amplitude for any time interval in a
typical wave form pattern. However, this ultimately proved to be too difficult due to the time
and complexity associated with computing a formula in every frame. Thus, a lookup table
approach is implemented to define a representative wave form over discrete time intervals. An

approximation of a continuous wave form is generated by stepping through a lookup table to
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trace the representative wave form according to the required frequency of the display. This
approach eliminates the need for a precise mathematical definition of the cardiac rhythms,
thereby minimizing computational overhead in the DRAW thread.

The Pulse class supports the dynamic display requirements of the Defibrillator by
providing a collection of operations for dynamically displaying wave form patterns using the
lookup table strategy. The Pulse class is based on the GL_Canvas virtual class, which provides
the functionality necessary to establish a definable GL display area. The GL_Canvas uses IRIS
GL calls, and gets called from within a pfNodeTravFuncs call.

The Pulse class is used to update a display buffer with signal information taken from one
or more wave form definitions (stored as an array of triples). The Pulse class is always in one of
two modes: cycling or idle. These states affect how the contents of the active display buffer are
modified. During frames between pulse events (or cardiac failure situations), the Pulse class is
idle and a zero “flat-line” value is stored at the head of a continuously updated display buffer.
However, when a signal must be rendered, the display buffer is updated by tracing through the
current wave form pattern. The updates involve traversing the pattern in step with the next pixel
location in the displayable area, and copying the coordinates of the wave form into the display
buffer. The signal trail is “constructed” every frame by walking through the signal pattern. As

depicted in Figure 5-22, a continuous signal display alternates between “idle” and “cycle” states.

XU I R /R X R X
ldle | Cycle | Cycle | Cycle | Cycle | Idle

Figure 5-22. Dynamic wave form construction in the Pulse class.

The Pulse class provides real-time wave form updates, using system time produced by
pfGetTime. The heart rate is specified in beats per minute by the Defibrillator class. This value
is then converted into a pulse time interval in Hertz using Equation 5-1. Calls to pfGetTime are
used each frame to determine if the computed time interval has passed, and if so, the Pulse class

begins another cycle.
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To provide a graphically correct display, the high-persistence effect common to CRT
monitors is simulated by the Pulse class. Thus, the signal is brightest near the leading edge, and
weakens progressively in the tail section. This effect is achieved using a color ramp that con-
tains various intensities of a primary color (such as green) in discrete intervals over 8 bits (in the
range 0 to 255). The size of the color ramp is directly proportional to the length of the signal
tail, so the longer tails have smoother color ramps. The color ramp is stored in an array such that
the highest signal color intensity (255) is stored at the initial array address and zero-intensity
(black) is stored at the final array address. To obtain the desired effect, the signal must be
displayed over a black background.

The Pulse class also provides signalv wrapping within the display area defined in the
GL_Canvas class. This is implemented by using an internal double buffer to store the current
signal trail. When the signal wraps around the screen, a secondary buffer is temporarily used to
write an updated pulse on the left edge of the displayable area while the previous trail from the
primary buffer on the right edge fades. When the trail remnant has fully propagated beyond the
edge of the display area, the contents of the secondary buffer are copied into the primary buffer

and the process starts anew.

5.4.4.10.2 Pulse Wave form Implementation

To provide useful cardiac rhythm displays, a wave form for normal cardiac rhythm was
originally sampled over 40 points to capture the essential traits of the curve, as shown in Figure
5-23.

This approach provided an immediate solution for the Pulse class with acceptable visual
results. However, the solution produced a noticeable rendering lag, caused by a wave form
definition too big to render quickly. The display of a heart beating at 150 beats per minute could
not be generated, because approximately 30 percent of each wave form was truncated by the next

wave form cycle.
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Figure 5-23. Original wave form definition.

A modification to this strategy minimizes the size of the wave form to permit faster
rendering. The typical cardiac rhythm curve used in the original approach was sampled at about
half of the frequency to produce a smaller pattern. Wave form patterns for a regular and trau-
matic heart rhythm are shown in Figure 5-24 and Figure 5-25 respectively. This modified
strategy provides acceptable results at higher rendering speeds, because minimal burden is
placed on the DRAW thread every frame. Based on empirical testing results, the MSS_Renderer
is capable of generating a continuous wave form that exceeds 200 beats per minute for wave
forms that are defined with no more than 20 sample points, and still faster for smaller wave
forms. An important feature of rendering the wave forms is to switch wave forms to accommo-
date the heart rate. Using this strategy, new wave forms may be defined for a variety of cardiac

stress situations in a short time.
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Figure 5-24. Final wave form definition for normal heart rhythm.
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Figure 5-25. Final wave form definition for cardiac arrhythmia.
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5.4.4.11 Primary Monitor

The Monitor class simulates the functionality of a dedicated ER patient monitor, and is
derived from the Model class. The parent Model contains the apparatus housing without control
panel geometry. Attached to the parent’s lower pfDCS node is a pfGroup node that hosts a
control back-panel Model and twelve button Models, located on the control back-panel.

The methods provided by the Monitor class are shown in Figure 5-26. The
Init_Monitor_Buttons method is called from the constructor of the Monitor object to build the
Performer scene tree. During an MSS simulation, each button-switch is toggled on and off via
the Toggle_Button_Event method. This causes the Update_Button method to modify the pfDCS
matrix for each pressed button-switch, to translate the geometry in or out relative to the control
back-panel. All buttons retain their state. The control back-panel does not move, and is used as

a canvas upon which to draw display updates.

Monitor

Monitor

~Monitor
Init_Monitor_Buttons
Update Button
Update_Display
Toggle Button_Event
Draw_Settings

Figure 5-26. Monitor class methods.

Display updates are generated by a pfNodeTravFuncs method, Draw_Settings, that draws
the LCD readouts on the face of the Monitor after the DRAW thread renders the control back-
panel. These values are updated by calling the Update_Display method to access the CODB for
current Patient_Vitals readings, and by reading interval state variables modified by the button
control panel. The information displayed on the control back-panel includes patient heart rate,
the ECG wave form displayed on the Defibrillator object, the patient’s name, gender, age, blood
type, temperature, systolic and diastolic pressures, and other ancillary details. Dynamic wave

form updates are accomplished with the same mechanisms discussed for the Defibrillator.
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5.4.5 Interaction Control

The human-computer interface of the MSS is largely based on the implementation of the
Selection_Manager class to select objects, and the Motion_Manager class to move selected

objects. The implementation details of these classes are discussed in this section.

5.4.5.1 Selection_Manager

Picking is a particularly useful mechanism for interacting with virtual worlds, because
the notion of picking objects with the mouse is intuitive and natural [VINC95]. The purpose of
the Selection_Manager is to automate the use of the Performer pfChanPick function to “choose”
elements of the visible part of the scene in the current viewing frustum. This is done by identify-
ing specially named nodes in the Performer Scene Tree so that they can later be identified using
an in-scene picking mechanism. The picking mechanism accepts a mouse event to direct an
interrogation segment into the visible scene, and returns the unique identifier of the first scene
element encountered by the segment. The methods included in the Selection_Manager class to

accomplish this are shown in Figure 5-27.

Selection_Manager

Selection_Manager
~Selection_Manager
Set_Mouse_Pick_Buttons
Get_Buttons_Used To Pick
Set_Selection_Level
Get_Level Index
Get_Normalized Mouse_Coords
Make_Path_String

Poll

Process_Pick

Set_Toggle Key

Figure 5-27. Selection_Manager class methods.

5.4.5.1.1 Configuration

Configuration of the Selection_Manager requires that the Performer Scene Tree be

properly organized. The specific configuration requirements include assigning a key-string to
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each pfNode to be identified, defining intersection masks on pickable nodes, and configuring the
mouse.

The Selection_Manager functions properly only if it can uniquely identify pickable
nodes. In order to use the Selection_Manager, the Performer Scene Tree is organized according
to the following rules:

e A unique 5-digit identifier is assigned to each “pickable” element of the scene. This number
identifies a selected object.

* A special, predetermined key-string is used to name all pickable nodes. For every pfNode,
there is a corresponding pfNodeName composed of the concatenation of the key-string and

the unique identifier:

KEYSTRINGNNNNN

The KEYSTRING identifier is consistently used as a prefix to the name of all pickable
nodes, and NNNNN are the decimal digits that uniquely identify the pfNode scene element. The
key-string is provided to the Selection_Manager by the requesting agent as a parameter to the
Selection_Manager constructor.

In addition to uniquely naming each pickable node in the Performer tree, each pfNode in
the Performer tree must have intersection testing activated. This is done by setting the
pfNodeTravMask for pickable nodes in the pickable sub-tree to a predetermined non-zero
intersection mask value. Although the value of the masks vary between applications, the masks
must be set for the Selection_Manager to function properly.

A final configuration requirement is defining the mouse events to activate the Selec-
tion_Manager. The Selection_Manager includes the Set Mouse_Pick_Buttons method to define
the mouse control buttons. The mouse buttons may include one or combinations of several
buttons, and are queried using the Get_Buttons_Used To_Pick method. A toggle key for
activating the Selection_Manager mouse events may also be defined using the Set_Toggle Key

method.

5.4.5.1.2 Selection_Manager Processing

Once configured, the Selection_Manager is polled using the Poll method to identify
scene elements designated by the mouse. The polling mechanism consists of two processing

components: eye-to-scene intersection testing, and results interpretation.

5-32




The Selection_Manager initiates processing by mapping normalized mouse coordinates
on the screen into directed intersection rays represented by pfSegs. The normalized coordinates
are computed using the Get_Normalized Mouse_Coords method. When polled, the Selec-
tion_Manager determines if in-scene picking is activated. If activated, a mouse click event is
captured to process an in-scene picking operation. Additionally, an interrogation segment
(pfSeg) is created to form a ray from the eye, through the mouse coordinates, and into the scene.
The Selection_Manager may optionally use interrogation segments defined by other interface
elements. This overloaded capability was added to the Selection_Manager by Capt Terry Adams
to support pfSegs already created for use in POD-based applications, such as the AFIT Virtual
Cockpit [ADAM96].

When the interrogation pfSeg is defined, the picking operation employs the pfChanPick
function to intersect the visible portion of the Performer Scene tree with the interrogation pfSeg.
The pfChanPick call generates a pfNodelsectSegs call, that attempts to intersect the interrogation
segment with the scene. If any scene elements are intersected by the interrogation segment, the
results of the intersection are stored in a special pfHits data structure. Figure 5-28 illustrates the

general process.

Screen & _
Near Clipping -
Plane l -7

Mouse Scene T~
Cursor , Interrogation
Segment

Figure 5-28. Picking using the Selection_Manager.

The extent of intersection testing may be implicitly controlled. The Selection_Manager
accepts the root node of the portion of the Performer Scene Tree from which to evaluate picking

requests. Thus, intersection testing is only performed from the root of the specified parent
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pfNode in the Performer Scene Tree down through the descendant nodes. This permits picking
interrogations to be ignored for portions of the Performer Scene Tree that should not be checked
(such as the walls and floor). The benefits of limiting the search are dependent on the organiza-
tion of the Performer scene tree.

After the pfChanPick operation completes, the Poll method evaluates the pfHits data
structure. The path name of an intersected pfNode, if one exists, is stored in the pfHits structure.
If no intersections occurred, processing the poll request terminates. A positive intersection,
however, requires that the object intersected by the interrogation segment be identified using the
Process_Pick method. Using a call to pfQueryHits, Process_Pick extracts the path name of the
intersected node from the data structure. Additional processing is performed to convert the
pfNodeName into a character string, using a call to the Make Path_String method. The final
processing requirement is to extract the unique 5-digit number for the picked element, if the node
is a pickable element. Process_Pick searches the intersected node from left to right for the key-
string initially provided to the Selection_Manager. The left to right search causes the key-string
search to progress so that parent node names are encountered before child node names.

If the key-string is not found in the scene tree path name, Process_Pick returns a -1 result
to indicate that a pickable object is not selected. If the key-string is found, however, the digits
immediately following the key-string are extracted from the path name, converted' into an
integer, and returned as the identifier of the selected object.

An important feature of the Selection_Manager is the ability to interrogate the Performer
Scene tree for several instances of the key string. A controlled search capability is provided by
specifying the desired selection level in Set_Selection_Level method. This is particularly useful
for identifying individual components on a selectable object, such as the buttons of a defibrilla-
tor. The ability to search for various levels of the key-string provides a corresponding capability
to discern the selection of articulated features from their parent nodes. The current selection
level is available through a call to the Get_Level Index method.

Figure 5-29 shows how various levels of search are processed by the Selection_Manager.
The same lefi-to-right traversal of the Scene Tree used to check for the initial key string may
thus be reused for an arbitrary number of selection levels in the search. In cases when a Selec-

tion_Manager poll generates an intersection with a scene element at the desired level, the
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numeric identifier of the object (a short integer) is returned as a result. Otherwise, if the key
string at a desired level is not found, a -1 result is returned.

The Selection_Manager permits efficient selection of scene objects within a specified
Performer scene sub-tree. The results are primarily attributed to the use of the CULL thread by
Performer to process intersection tests of the pfChanPick and underlying pfNodelsectSegs calls.

Thus, in a multi-threaded environment, the intersection overhead is negligible even in complex

scenes.
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Figure 5-29. Interpreting Selection_Manager results.

5.4.5.2 Motion_Manager

The Motion_Manager is a customized motion control class, developed to meet the basic
needs of the VER MSS. The Motion_Manager controls a Model class object, so the address of

the currently selected object is passed to the Motion_Manager.
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The methods provided by the Motion_Manager class are shown in Figure 5-30. The
interface is intended to provide a basic capability for movement in five degrees of freedom. The
Motion_Manager is activated for a specific Model instance using the Set_Selected Model
method. When the Motion_Manager class controls an object, the mouse structure in the CODB
is evaluated every frame using calls to the Update and Get_Mouse methods. When a mouse
button press event is detected, the event is recorded by the Motion_Manager. Motion is then
activated if the mouse is “dragged” across the screen. The button pressed dictates the type of
translation or rotation. The movement of the mouse from the original button-press event

controls acceleration of motion.

Motion_Manager

Motion_Manager
~Motion_Manager
Get_Mouse
View_Relative XY Translate
Update

Set_Selected Model

Figure 5-30. Motion_Manager class methods.

The range of motion supported by the Motion_Manager includes movement about the X,
Y, and Z axes, and rotation about the heading and pitch axes of the object. Motion is controlled

using the mouse to move a selected object, using the button assignments shown in Figure 5-31.

Go Move
Yonder Pitch Up Up
Move Move Rotate Rotate
Left Right Left Right
Come Pitch Down Move
Hither Down

Figure 5-31. Motion_Manager mouse button assignments.
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Motion is implemented relative to the current view perspective, so intuitive control of
scene elements is possible from any vantage point. The computation for viewer-relative lateral
movement in the X-Y plane is performed by the View Relative XY Translate method, and
requires that the a progression of transformation matrices be computed to perform the following
steps:

1. Move object to origin with respect to the current view position and orientation.

2. Update the transformation matrix of object with updated movement data.

3. Move object from view-relative origin back to original orientation.

Thus, the calculation is of the form shown in Equation 5-2.
[ Object_ Matrix']=[ Object_ Matrix ][ Current _View ]—1 [Axy ] [ Current_View  (5-2)

Rotation for heading and pitch movement, and movement along the z-axis are performed
directly on the pfDCS node of the current object. These movements are not processed as viewer

relative, and are less expensive to compute as shown in Equations 5-3, 5-4, and 5-5.

h'=h+Ah , where Ah = (curr_mouse - last_mouse) * rotation_speed,, (5-3)
p'=p+Ap,where Ap = (curr_mouse - last_mouse) * rotation_speed, (5-4)
z'=z+ Az, where Az = (curr_mouse - last_mouse) * rotation_speed, (5-5)

To control the motion properties of various scene elements, the Motion_Manager

- permits certain motion types to be selectively enabled and disabled via motion control flags. The

first flag, designated as mmm_XYH, permits lateral motion in the X-Y plane, and rotation about
the heading axis of the object. The other motion mode is designated as mmm_ZP, and permits
motion along the Z-axis and rotation about the pitch axis of the object. Modes may be bit-wise
OR-ed together. Thus, an object may have no motion mode (making it immovable), the
mmm_XYH motion mode for simple ground following motion, or the bit-wise OR of
mmm_XYH and mmm_ZP, which permits a full range of motion in 5 degrees of freedom.

A useful feature of the Motion_Manger is the computation of the direction of motion.
This value, which is computed between position updates, is made available so that articulations
(such as wheels) of the selected object may be updated. The direction of travel in the X-Y plane

is used as the basis for the computation shown in Equation 5-6.

Direction of Travel = ArcTan(%) (5-6)
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Another important implementation feature of the Motion_Manager is the limited control
it places on the Performer sub-trees of the object that it moves. The Motion Manager is a shared
resource in the VER MSS. As such, it does not take control of a single scene element. Rather, it
relies heavily on the data structure and methods of the individual Model class to accomplish the
work associated with updating pfDCS matrices. In this same way, additional functionality such

as a collision detection mechanism may be added to prevent scene elements from overlapping.

5.5 PCS Implementation

The PCS implementation takes advantage of extensive reuse. The PCS relies on the
Common_Renderer, I0_Mouse, I0_Keyboard, CODB, Model, and Selection_Manager classes.
These classes do not require further explanation. Components unique to the PCS include the
VER_PCS main function, the PCS_Medigram_Manager, and the Script_Manager. This section

describes how these classes are implemented and integrated into the PCS.

5.5.1 VER_PCS Main

As the executive process of the PCS application, the VER_PCS main initializes the
application, controls the main simulation loop, and generates a GUI and on-screen displays with

which to control the application.

5.5.1.1 PCS Initialization

The VER_PCS Main function provides primary control of the simulation and all Per-
former functionality. An important aspect of the VER_PCS main is the initialization of Per-
former and respective shared memory structures. The VER_PCS main defines and creates
internal data structures and shared memory structures to manage data across multiple threads.
The VER_PCS main also initializes Performer and all local and shared memory variables.

After Performer is initialized, the VER_PCS main creates and initializes all support class
instances. Instances are created for the Common_Renderer, IO_Mouse, 10_Keyboard, Selec-
tion_Manager, and PCS_Medigram_Manager. These classes perform the rendering, IO man-
agement, geometry selection, and communication functions for the VER PCS main, respectively.

The VER_PCS main handles loading all of the patient avatars used for the simulation.
Dressed and undressed versions of each avatar are loaded into a Performer sub-tree that permits

the current avatar to be interactively selected. This implementation decision extends memory
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requirements and start-up time for the PCS application, but provides better run-time performance
because loading geometry databases on demand is not required.

Also controlled by the VER_PCS main is task synchronization with the MSS. The
VER_PCS main initially decodes command-line parameters to control the initial mode of
execution of the PCS application. The PCS operates on or off the network. The on-network
mode causes the PCS to broadcast MediGrams when the simulation is activated by the user. Off-
network execution causes the PCS application to operate without sending or receiving Medi-

Grams.

5.5.1.2 PCS Simulation Control

PCS processing is controlled from a main simulation loop. The simulation loop in the
VER_PCS main is almost completely focused on processing user interface events. as shown in
Figure 5-32. The loop completes initialization, and waits for a start simulation event from the
user. When received, the VER_PCS main loop processes inbound and outbound MediGrams,
triggers the Performer CULL and DRAW threads, polls for input events from the mouse and
keyboard, updates the Renderer and GUI settings, and changes the virtual patient if required.

The VER_PCS main simulation loop exits when a terminate simulation event is received
from the user. After exiting the main simulation loop, the VER_PCS main issues calls to
PpfuExitGUI, pfuExitlnput, and pfuExitUtil to gracefully terminate and remove Performer data
pool files created during processing. In addition, the VER_PCS main calls all non-null destruc-

tors for subordinate classes, and finally invokes pfExit to terminate Performer processing.

5.5.1.3 PCS Interface

The PCS rendering channel is divided into a GUI and a display area. The display area of
the interface shows the current patient avatar. Using the libpfui trackball pfiXformers, the avatar
may be moved and visualized from any vantage point under constant lighting. In addition, the
PCS employs the Selection_Manager to permit selection and manipulation of patient avatars.
This provides a capability to highlight the geometry of the avatar, which provides information
about its complexity and surface geometry details. This also provides an interface capability for

improved interaction with the avatars.
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Create virtual patient avatar sub-tree
Read Start Simulation event
PCS Medigram_Manager sends initial PR MediGram
while (!done) loop
If on network:
If time interval since last DT MediGram multicast exceeds threshold:
PCS Medigram_Manager sends PV/PR MediGrams
PCS_Medigram_Manager retrieves current DT MediGram
Initiate Cull and Draw traversals
Poll Mouse
Poll Keyboard
Update View in Common_Renderer
Update GUI
end loop

Figure 5-32. VER_PCS main simulation loop.

A layout of the PCS GUI is provided in Figure 5-33. Because the PCS interface is not
immersive, the GUI occupies 30 percent of the total PCS screen space. The intent is to provide
two types of functionality: simulation control that affects how the PCS executes, and virtual
patient control that permits patient physiological data to be viewed and modified. The simula-
tion control widgets are used to terminate the application, hide the GUI, reset the visual display,
display Performer statistics, display MediGram statistics, display simulation clock, and start and
stop the VER simulation. The virtual patient controls include widgets to select a virtual patient,
clothe and de-clothe the current patient avatar, and provide sliders to change and view the

current vital signs of the virtual patient before and during the simulation.

Figure 5-33. PCS GUI implementation.

The entire interface of the PCS application is implemented in the VER_PCS main. This
implementation decision is made because (1) consolidating the GUI with a central view of the

application make programming the interface easier, because the GUI has visibility to all classes,
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(2) the GUI must be updated by the DRAW thread and would require considerable effort to
package in a separate control class, and (3) the geometry management of switching patient
avatars is minimal, and does not require a separate class. The GUI panel contains additional

space for adding future capabilities as they are identified.

5.5.2 Seript Manager

The Script Manager automates the task of configuring the virtual patient before each
simulation. Configuration data is written to an external file that is read-in to load initial patient
information and data. The Script_Manager class provides the methods necessary to read the
external file, parse the fields, and write the data to the CODB where it is used to create Pa-
tient_Record and Patient_Vitals MediGrams. Functionality is limited to accessing external data

files and storing values in appropriate fields of the PCS CODB.

5.5.3 PCS_Medigram_Manager

The PCS_Medigram_Manager class, like the MSS _MediGram_Manager class, is
implemented to encapsulate the functions of Sheasby’s Medical Network Manager class. Using
this encapsulation approach, the interface to the VER_PCS main is insulated from potential
changes to the Medical Network Manager Interface. The interface provides methods that
perform the following PCS-specific functions:

1. Read the local PCS CODB.

2. Package information into correctly formatted MediGrams.

3. Broadcast the MediGram package to the MSS MediGram Manager.

4. Receive inbound MediGrams from the MSS.

5. Store formatted MediGrams in the PCS CODB.

The PCS_Medigram_Manager creates and maintains three CODB pointers: one for
assembling Doctor_Treatment MediGrams, one for accepting Patient_Vitals MediGrams, and
one for accepting Patient_Record MediGrams. The PCS_Medigram Manager includes methods
to send the Doctor_Treatment MediGram, and check for the receipt of new Patient_Vitals and
Patient Record MediGrams using the CODB pointers.

The methods provided in the PCS_Medigram_Manager class are shown in Figure 5-34,
and paraliel those created for the MSS_Medigram_Manager class. However, the definition of

each method is defined based on MediGram operations relative to the PCS. Thus, the Initial-
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ize_Outbound methods clear the Patient_Record and Patient_Vitals MediGram areas in the local
PCS CODB, and the Initialize_Inbound method clears the Doctor_Treatment area in the local
PCS CODB. The PCS_Medigram_Manager also includes methods to enable and disable the
PCS_Medigram_Manager, and to get and show all of the MediGram data in the CODB.

PCS_Medigram_Manager

PCS_Medigram_Manager
~PCS_Medigram_Manager
Initialize_Inbound
Initialize_Qutbound
Initialize_PatientRec
Update_Outbound_Automatic
Update_Outbound_Console
Retrieve_Inbound

Enable

Disable

Show_Patient Vitals
Show_Doctor_Treatment
Show_Patient_Record
Show_Last PV _Sent
Get_Patient Vitals
Get_Doctor_Treatment
Get_Patient_InitRec
Get_Last PV _Sent

_ Figure 5-34. PCS_Medigram_Manager class methods.

A unique capability of the PCS_Medigram_Manager is the ability to update the out-
bound Patient_Vitals MediGrams two different ways. The Update_Outbound_Console method
updates the Patient_Vitals record from the GUI directly, thus permitting the evaluator/user to
change the patient vitals data manually. The Update_Outbound_Automatic method automati-

cally updates the Patient_Vitals data from a non-GUI source, such as a patient physiology model.

5.6 Geometry and Texture Maps

To implement an immersive training VE, the doctor trainee must be able to see and
interact with a 3-D representation of the ER facility. As a result, 3-D geometry is required to
generate a visible room and associated emergency medical apparatus. Texture maps are used to
improve the realism of the ER scene. There are two important implementation details that

impact building a synthetic ER: building geometry databases that define the ER and associated
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contents, and procuring geometry databases to represent the virtual patient avatar. The imple-

mentation details associated with each are discussed in this section.

5.6.1.1 Apparatus Geometry Databases

Geometry databases for the VER facility and apparatus are created according to two
processes. The “Initial Modeling” process is used to create complete, texture-mapped models
from pictures, photographs, and other information sources. The “Articulated Features” process
is then used to extract articulations from the complete models so that they may be rendered in the

Performer environment as articulated features. Both processes are discussed in this section.

5.6.1.1.1 Initial Modeling Process

The Initial Modeling process provides a consistent geometry database construction
template for constructing all VER geometry. This process, as depicted in Figure 5-35, extends
beyond mere construction of wire-frame geometry. Rather, the goal is to develop a database that
integrates wire-frame geometry with correct colors, materials, texture maps, and internal struc-
ture.

The first step in the Initial Modeling process is to obtain information about the objects to
be modeled. All geometry databases created for the VER MSS are based on information and
measurements taken from actual objects. This information is compiled from three sources:

1. Photographs and measurements recorded during the hospital site visits.

2. Medical apparatus brochures and advertisements from current medical publications.

3. Drawings and illustrations.

This visual information provides a basis for developing the MSS geometry databases, and is
useful to obtain general proportions of objects, relative dimensions, and unique physical charac-
teristics.

The next step is to create wire-frame geometry of the target object, using the measure-
ments and photographs. This task uses the measurements from the preceding step to generate
polygon groups that represent the exterior of the object. The model wire-frame is systematically
developed using this data. Color is then applied to polygon groups, and materials are added to
simulate the physical surface properties. While coloring polygons is a straightforward, applica-
tion of materials is a process of trial and error. For example, materials may be used to control

the diffuse, ambient, and specular lighting properties of selected geometry, and may also be used
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to make geometry emissive or transparent (transparent geometry must be defined last in the
DWB hierarchy). In DWB, materials are applied per face, and when smooth surfaces are
required, material illumination is based on vertex-average lighting. This permits shading
functions to be blended, resulting in a less faceted surface. Such techniques are particularly

useful for rendering smooth surfaces, such as rubber and skin.

Y
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Geometry
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Orient Model
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Save Formatted
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Figure 5-35. “Initial Modeling” process for creating VER geometry databases.
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A parallel process to developing the wire-frame geometry is developing texture maps
from the photographs or other image sources available. Images are scanned or imported into an
image processing program, and retouched to improve image quality. The retouched image is
then saved, transferred to the SGI environment, and converted to an (.rgb) or (.rgba) file. The
resulting texture map file is imported into DWB, where it is applied to geometry as required. All
texture maps that require use of the scanner are processed in the Macintosh environment using
Adobe Photoshop, and converted using the from* utilities available in the SGI environment.
Texture maps that are generated manually (not from a photographic source), such as lettering,
are created using GIMP v1.0 in the SGI environment.

A variety of texture map techniques are possible. A simple approach that consistently
yields acceptable results is applying detailed texture maps (such as mappings with words or
lettering) onto separate polygons that are raised no more than 0.5 mm over the geometry to be
texture mapped. Thus, detailed texture maps are applied as decals. Raised polygon surfaces
prevent the “flimmering” anomalies associated with coplanar 3-D geometry [IRIS96]. If
surrounding geometry must blend with decal mappings, a separate texture map with just the
background color is also created and modulated onto the surrounding geometry. Texture maps
that contain a repeating pattern are applied to geometry on a per-plane basis, to control the
degree of pattern repetition.

Texture memory is a limited resource in the SGI environment. Performer 2.0 allocates
texture memory in even powers of 2, so texture map files must be cropped to minimize wasted
memory. A technique widely used in the VER geometry is combining different texture maps
into a single texture file. For example, all of the lettering decals for an object are taken from
different regions of the same texture file. This is accomplished by creating a master decal
polygon and selectively cutting it to size to create the texture decal geometry. This technique
dramatically reduces wasted texture memory, simplifies configuration management of texture
map files, and minimizes Performer load times.

The settings used with GIMP to create textures with lettering follow a common format,
which is effective in both DWB in Performer. The format shown in Table 5-1 shows the settings
used to create the texture maps for the Defibrillator, and are representative of the settings used to

create all other maps.
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Defib ator Te ap Se p : P |

Text Detail Value Text Detail Value
Font “Helvetica 16-25” | Slant “r”
Anti-alias “10” Width x
foundry “adobe” Spacing “x”
Weight “bold and semi” | Plug-in Format “SGI”

Table 5-1. Representative texture map settings in GIMP.

After texture maps are applied, the 3-D geometry is grouped into structures that are
easier to manipulate. Structuring is not performed until texture maps are applied, because
texture mapping often requires the construction of additional geometry. Creating structure
groups also requires assigning names to the individual groups. The naming is an easy way to
document the model, and because the names are often visible within the Performer sub-tree,
appropriate names helps to understand and troubleshoot construction of Performer sub-trees.

After geometry is grouped and named, opportunities to instance redundant groups are
usually apparent. Instancing minimizes geometry (and hence database size), and it also propa-
gates the attributes of the reference object throughout the database automatically [VINC95].
Thus, instancing is a common feature of the VER geometry. An apparent instancing bug in the
(.dwb) loader may be circumvented by saving the geometry in Z-up orientation (which is native
to Performer) instead of the Y-up orientation (which is native to DWB). This orientation makes
positioning the geometry easier, because the axes in DWB and Performer are correctly aligned.
Another nuance in DWB is the need to define reference groups above instance groups in the
DWB database hierarchy. Failure to do this causes errors with Performer (.dwb) database loader.

The next step in the development process is to orient the model on its own local coordi-
nate origin. This is accomplished by translating the object center to the origin (using the DWB
grid), and orienting it for proper alignment with a major axis. The local coordinate origin is thus
the centroid of the model. This important step is required to ensure that Performer correctly
orients the model; off-center models do not rotate correctly in Performer applications.

The final development step is saving the geometry database with the correct settings.
The (.dwb) geometry databases are written with the current visual settings of DWB, so settings
must be applied to the current DWB session to be correctly written to the geometry database file.
Most VER geometry is saved with back-facing on, so that only front-facing polygons are visible.

In addition, Z-buffering is always used, and all geometry shading is illuminated. These proper-
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ties are important to achieve the proper visual appearance within Performer. Additional configu-
ration requirements include orientating the model as Z-up (as previously described), and setting
the units of measurement to meters. Finally, texture mapping must be enabled. The file save

format is the common (.dwb) file format. These options are summarized in Table 5-2.

Attribute Value
Z-Buffer Enabled
Backface Enabled
Shading Illuminated
Orientation Z-Up
Units Meters
Textures Enabled
Illumination Enabled
Material Binding Per-Face /Vertex-Averaged

Table 5-2. Geometry database save options in DWB.

After a geometry database is fully developed, it is evaluated for quality and appearance.
This subjective step is performed using the IRIS Performer perfly application to visualize the
geometry from various orientations and lighting conditions. The perfly application verifies that
the geometry is readable by the Performer (.dwb) loader; ensures that all materials, colors, and
texture maps are correctly applied; and is useful for visually checking that all geometry is
correctly defined. If discrepancies are found with any aspect of the model, the process reverts to
the appropriate development stage to resolve the problem. When the database is acceptable, it is
released for use by the VER MSS application.

Construction of individual models alone does not satisfy the scene integration require-
ments of the VER MSS. The placement of each object in the final Performer scene requires
information about where the objects are to be located, how they are to be scaled, and how they
are to be oriented. Unfortunately, Performer does not provide a capability to interactively define
the structure of graphical scenes. The approach adopted for the VER is to generate a scene
layout model using DWB. This model file integrates several individual models into a single file,
so that relative placements may be defined. By orienting the layout about a common origin,
coordinates of individual models are extracted for use as world coordinates in Performer. These

coordinates are recorded in a central header file that defines properties for all MSS geometry.
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5.6.1.1.2 Articulated Features Process

After the world coordinates of the geometry database are known, the geometry database
is immediately integrated into the scene using the Model class. For static geometry with no
articulations or moving parts, the development work is complete. However, many objects
contain elements that require motion. For example, buttons must be moved relative to the object
to which they belong. In these cases, the movable geometry must be separated into distinct
databases that may each be independently moved. Thus, the work performed to create a com-
plete geometry database must, in a sense, be “undone” so that all moveable objects are unique
geometry databases. The “Articulated Features” process shown in Figure 5-36 is used to

consistently process geometry databases that contain movable parts.
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Figure 5-36. “Articulated Features” process for partitioning VER geometry databases.

The process for partitioning a model revolves around the idea of maintaining the model-
ing coordinate origin of the complete object. The complete object is decomposed into a frame
(the main housing) and the articulated feature components (such as a button, or a wheel). Each

articulated component is saved to a separate file and centered on its own coordinate origin. The
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frame object is saved without any of the component objects, but is not re-centered on its local
origin.

Using the complete model as a guide, the component objects are imported into the file
containing the frame object. The component objects appear at the origin (usually somewhere
inside the frame object). The last step is to compute the translation and orientation necessary to
align the component object to its previous position, relative to the frame. This is done using the
same process for computing world space coordinates. These “frame relative” coordinates are
recorded for each component, and recorded for use by Performer.

When all component objects are isolated, and all frame-relative coordinates are com-
puted, the geometry will no longer be usable in the Performer environment. An apparatus object
class must be written to construct the Performer Sub-tree required to view the integrated object.
Because the coordinates of the component objects are relative to the frame object, they should be
child nodes of the frame object so that proper spatial relationships are maintained.

The collection of dynamic geometry databases with articulated features is presented in

Appendix A. Static geometry databases developed for the VER are presented in Appendix B.

5.6.1.2 Patient Avatar Geometry Databases

In addition to the equipment, the patient avatar represents another modeling challenge.
To develop a real-time simulator, the tradeoff between rendering speed and geometric fidelity
must be negotiated. Empirical tests show that avatar models with greater that 18,000 polygons
(total) degrade performance to the extent that movement and other functions are no longer easily
accomplished.

Avatars from a variety of sources were investigated for use within the VER applications.
Initial attempts to locate medium-fidelity patient avatars at various internet sites were unsuccess-
ful. Avatar geometry typically found at most geometry repositories was low-fidelity and
difficult to edit. Another source for avatar geometry, the visible human data set, is too complex
and only provides one patient choice. Thus, additional work to generate a visible human was
terminated.

Patient avatars were ultimately purchased from the Zygote Media Group. The avatars
are first generation wire-frame models generated from full 3-D body scans. Each model is

retouched, simplified, and provided in the common (.obj) and (.dxf) formats. The model
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inventory includes undressed avatars for a male of “ideal” proportions, a female of “ideal”
proportions, an infant, an obese male, and a muscular male. In addition, the inventory includes
fully dressed ideal male and female avatars, and two additional models representing lower
fidelity, “stylized” male and female avatars. Each avatar is moderately complex, with polygon
counts ranging from 5,000 to 14,000 polygons. Thus, this collection improves the capability for
varied simulations by: (1) increasing the realism of the avatars; (2) adding the capability to triage
and treat emergencies on both genders; (3) permitting simulations involving emergency pediatric
care; and (4) facilitating acceptable rendering performance.

This solution also allowed research on other aspects of the VER to continue. However,
additional work was required to configure the avatars in the collection for use in the VER
applications. Because the patient models are not available in the (.dwb) format, a considerable
amount of post processing was required to prepare and maintain the models i?Vorld—space
coordinates for all avatars are computed and stored in an independent avatar_defs header file, for
use by the MSS and PCS applications. The collection of patient avatar geometry databases
incorporated into the VER prototype is presented in Appendix C.

5.7 Conclusion

This chapter discusses the implementation of the MSS and PCS applications of the VER
prototype, and the construction processes used to develop the synthetic ER geometry. The
implementation is guided by the requirements and the design specified in Chapters 3 and 4. The
focus of this effort with respect to MSS implementation is visual realism and intuitive user
interaction. The focus with respect to PCS implementation is an intuitive and flexible applica-
tion to control the virtual patient. In the next chapter, the results of this effort are presented with

respect to the original design objectives.
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6. Results

6.1 Overview

This chapter presents the results of the PCS and MSS system implementation. The
capabilities of the MSS and PCS applications are described, followed by a summary of the
performance characteristics of each application. Finally, the system requirements specified in

Chapter 3 are revisited to verify the functional capabilities of the VER prototype.

6.2 MSS Capabilities

The MSS, when activated, starts the simulation with the trainee in the ER away from the
apparatus. The trainee immediately has a wide-area view of the synthetic ER, as shown in
Figure 6-1. The view consists of one or more of the dynamic apparatus scene elements described
in Chapter 4. In addition, static geometry such as walls, floor, ceiling, and cabinets are included
to complete the ER scene. The patient avatar is dynamically loaded, based on the avatar selected
from the PCS application.

As shown in Figure 6-1, the geometry is arranged and properly scaled. Texture maps
and materials are used extensively to provide a realistic environment. Lighting effects are
limited to an infinite light source in the ceiling, and a directional local light source in each of the
two overhead directional lights.

The trainee is free to move about in the ER. All movement is controlled by the mouse.
Forward movement in the direction of view is accelerated with the left mouse, and reverse
acceleration is controlled with the right mouse button. The center mouse button serves two
functions: stop movement, and activate the Selection Manager on the object designated by the
mouse. If an object is selected, these mouse functions overlap with those defined for the Motion
Manager. To minimize problems, the ‘M’ keyboard key is used to selectively pause view
motion. )

The minimal GUI interface provided for the trainee is shown in Figure 6-2. This
interface bar permits performance information overlays to be displayed, such as graphics
performance and current MediGram information. Another useful aspect of the interface is the

ability to see and reset the object last selected by the Selection_Manager.
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Figure 6-1. Wide-area view of synthet
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These minimal interface capabilities are augmented only by the ability to hide the GUI and
terminate the simulation. The GUI does not support triage, diagnosis, or treatment tasks. The
objective is to deliberately minimize the interface.

A significant feature of the synthetic ER is the functional apparatus. As shown in Figure
6-2 and Figure 6-3, the directional lights may be used during the simulation to illuminate the
patient and the x-ray backlights may be illuminated. The curtain may be drawn, and the cart
drawers may be opened and closed. All functionality discussed in Chapters 4 and 5 is provided
in the simulation. In addition, all of the digital monitors are functional, and may be used to assist
with triage and diagnosis of simulated cases. Each monitor displays information true to its

corresponding real-world counterpart.

Figure 6-3. Close proximity view of patient.

Considerable emphasis is placed on developing the geometry and apparatus classes for
the digital components, so that it closely matches that used in actual ER settings. Some of the
digital apparatus is shown in Figure 6-4. The displays of each device are updated using Medi-
Grams received from the PCS. The control panels of the apparatus are functional and, at a
minimum, permit each device to be turned-on and off. Connection wires and electrodes are

omitted from the scene to minimize computational and rendering complexity.
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Figure 6-4. Digital apparatus updates via MediGrams.

Part of the capability of using the apparatus is the ability to move it into the proper
position to render treatment. As shown in Figure 6-5, the Infusion Pump is relocated near the
patient using the Motion_Manager. The control panel of the Infusion Pump is then accessible to
the trainee. Motion is selectively enabled for the apparatus. Static geometry is not moveable,
small apparatus may be lifted and oriented in all but the roll (Y) axis, and larger apparatus may
be moved laterally and rotated about the heading (Z) axis.

Gravitational effects and inter-object collision are not implemented. Inertia is simulated
using a “rests-on” dependency that causes moving objects to “carry” other objects resting upon
them. Thus, in the case of the equipment in Figure 6-4, moving the right Crash Cart will “carry”
the Dinamap, which in turn carries the Pulse Oximeter. These objects may be freely moved, but
are linked hierarchically linked until a gravitational model is implemented.

Also missing are wires, tubes, and support mechanisms for moveable objects, such as the
directional lights and the main patient monitor. The support geometry for these objects is
omitted due to the limited implementation schedule of this project, the computational expense of
rendering them in real time, and the small marginal improvement in realism that they would

provide to the simulation.
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Figure 6-5. Apparatus relocated to administer treatments.

Movement of objects requires that they be selected using the Selection_Manager.
Selected objects are circumscribed with highlight lines about their constituent bounding boxes.
This highlighting provides a means by which the current object is visually determined. The
Infusion Pump in Figure 6-6 is selected as an example.

The most important aspect of the synthetic ER is the ability to render treatments.
Treatments are administered by interacting with apparatus in the ER. Each apparatus capable of
producing a treatment contains a control panel. Most of these apparatus, such as the Defibrillator
and Infusion Pump have control panels built into the object. The control panels are used to
configure and activate treatments. Treatments are consolidated into an outbound Doctor Treat-
ment MediGram, and then relayed to the PCS to update the virtual patient.

Not all apparatus have control panels. Control of non-electronic elements requires a
pop-up window that permits the object to be configured. As shown in Figure 6-6, the [V Bag for
the Infusion Pump is configured using a pop-up configuration window. With exception of their
non-immersive nature, these windows provide a capability to rapidly expand the treatment
capability of the MSS by abstracting away the details of manually preparing medical objects like
IV Bags.
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Figure 6-6. Selected apparatus and associated XForm control window.

The MSS is capable of providing infusion, defibrillation, and warming treatments to the
virtual patient. These treatments are representative capabilities that demonstrate the feasibility
generating Doctor_Treatment MediGrams from the MSS. As discussed in Chapter 7, support for
additional treatments may be added by expanding the MediGram repertoire to communicate the

necessary details.

6.3 PCS Capabilities

As presented in Chapter 5, the PCS is a graphical application. The interface is parti-
tioned into two areas: the top 70 percent shows a current patient avatar in a Performer channel,
and the lower 30 percent provides a control GUI in a separate channel below the avatar display.
Figure 6-7 shows the basic PCS interface, with the “Ideal Woman” patient avatar selected. This
view is typical of the PCS interface.

Above the GUI and superimposed on the overlay plane is the optional MediGram display
HUD. This display shows the current Patient_Vitals MediGram to be broadcast by the
PCS_Medigram_Manager, and the most recent Doctor_Treatment MediGram received by the
PCS_Medigram_Manager. In addition, dynamic update flags are displayed to verify network

activity during simulations.
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Figure 6-7. PCS Interface with MediGram view enabled.

As shown, the GUI itself is divided into two regions. The left side of the GUI is in-
tended to control the operation of the PCS, select patient avatar geometry, and manage the PCS
interface. The right side of the GUI is intended to monitor and control the vital signs of the
virtual patient. Another useful viewing capability of the PCS is the display of the surface
geometry of the patient avatar. Figure 6-8 illustrates the effects of highlighting surface geome-
try. Avatars may be selected using the GUI, and highlighted or un-highlighted by clicking on the
avatar with the mouse. In addition, avatars may be moved to inspect specific features by moving
the mouse. A close view of a different patient avatar is shown in Figure 6-9.

The narrow window in which the PCS executes may be expanded to include additional
controls for the interface or the virtual patient. Ideas for expansion of the PCS are discussed in

Chapter 6.
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Figure 6-9. Selective avatar visibility in PCS interface.




6.4 MediGram Transfer

The basic VER operation requires constant MediGram traffic. The processing steps are
fundamental to the functionality of the VER, and are summarized in Table 6-1. Initialization
begins with the PCS, which broadcasts a Patient_Record MediGram containing initial simulation
parameters. The MSS uses the initial MediGram to initialize the synthetic ER and trainee’s
interface. Doctor_Treatment MediGrams are then transmitted regularly to keep the PCS current.
Similarly, Patient_Vitals MediGrams are regularly broadcast from the PCS to keep the MSS
current. On a periodic basis, a Patient_Record MediGrams is also re-broadcast by the PCS to

keep the MSS synchronized, and to permit the MSS to re-join ongoing simulations. Figure 6-10

depicts the MediGram exchange between PCS and MSS processes.

Time PCS MSS

0 | PCS is activated on Host A MSS is activated on Host B

1 virtual patient is selected, and initial | MSS initializes
simulation settings are specified from
PCS interface.

2 Start Simulation event is generated MSS waiting for MediGram from
from PCS. Patient_Record and initial | PCS.

Patient_Vitals MediGrams created
from configuration settings

3 PCS activates virtual patient, updates | MSS receives Patient Record and
interface with run-time display Patient_Vitals MediGrams. Finishes

initialization using data contained in
MediGrams.

4 PCS checks for inbound Doc- MSS graphics configured. Simula-
tor_Treatment MediGrams every x tion active!
seconds.

5 PCS updates and sends outbound MSS checks for inbound Patient
Patient_Vitals MediGrams every x Vitals and Patient_Record Medi-
seconds Grams every w seconds

6 PCS updates and sends outbound MSS updates and sends outbound
Patient_Record MediGrams every y | Doctor_Treatment MediGrams every
seconds w seconds.

N | <process runs until termination event | <process runs until termination event
received> received>

Table 6-1. VER MediGram exchange.
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Figure 6-10. MediGram transfer during VER initialization and processing.

6.5 Performance

Performance of the VER applications is an important consideration, because the respon-
siveness of the applications is directly affected by the power of the underlying hardware. The
VER applications are tested on three workstations available in the AFIT Graphics Lab. These

include:

¢ Silicon Graphics 4 x 100 MHz R4400 CPU Onyx with Reality Engine 2 Graphics
* Silicon Graphics 2 x 100 MHz R4400 CPU Onyx with Reality Engine 2 Graphics
e Silicon Graphics 1 x 250 MHz R4400 CPU with High Impact Graphics

6.5.1 MSS Performance

The MSS application requires a substantial graphics rendering capability, due to two
characteristics of the synthetic ER:
1. The high geometric complexity of the patient avatar, which adds approximately 12,000

polygons (consisting of one or more triangles) to the ER scene.
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2. The dynamic elements of the scene (such as the apparatus) that require updates during each
rendering frame.

These factors limit the hardware platform upon which the MSS should be run to pre-
dominantly high-end workstations. Although the MSS may be executed on any lab host with
IRIX 6.2 and Performer 2.0, high performance workstations are best suited to the MSS applica-
tion because it is compute-bound. Figure 6-11 shows the start-up times of the MSS on various
hardware platforms available in the AFIT Graphics Lab. Figure 6-12 shows the maximum
sustained frame rate achieved by executing the VER MSS on each hardware platform type.
Figure 6-13 shows the maximum sustained DRAW thread times of the MSS on each hardware
platform type. Based on this analysis and empirical tests, the 4 CPU Onyx workstation is the
best choice for executing the MSS application. This platform is much more efficient at render-
ing the synthetic ER, as seen by the relatively high frame rate and the relatively low DRAW
thread times. The small additional time interval required by the 4 CPU Onyx to load the MSS is

not a serious performance concern.

6.5.2 PCS Performance

The PCS application requires less computation than the MSS, because there is no need to
render and maintain an immersive environment. However, the PCS requires sufficient memory,
to store all avatars in fhe VER inventory. Thus, the PCS is primarily a memory-bound applica-
tion. An important performance criterion for the PCS is a reasonable frame rate and fast loading
time of the avatar inventory. Like the MSS, the PCS may be executed on any lab host with IRIS
6.2 and Performer 2.0. Figure 6-11, Figure 6-12, and Figure 6-13 show the start-up, sustained
frame rate, and DRAW thread performance of the PCS on the hardware platforms in the AFIT
Graphics Lab, respectively. The PCS is less graphically intensive, in that steady frame-rate
performance is not as important as in the MSS. Given the availability of these resources, the
High Impact platform provides satisfactory rendering performance, and is the fastest at loading
the inventory. The 2-CPU Onyx provides better rendering performance, making the interface
more responsive, but requires more time to load the avatar inventory. Either host is sufficient for

the PCS.

6-11




Activation Time on Various Platforms

4-100MHz R4400 BRET
RE-2

RE-2 @PCS

aoMmss

1-250MHz R4400 %
High Impact

ot $ QR i AT e -
s i S i s ek S

0 20 40 60 8 100 120
Seconds

Figure 6-11. VER start-up times on various host platforms (shorter is better).
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Figure 6-12. VER sustained frame rates on various host platforms (longer is better).
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Figure 6-13. VER sustained draw times on various host platforms (shorter is better).
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6.6 Requirements Traceability

To verify that the VER prototype implements the functionality specified in the initial
requirements, this section re-visits the requirements and describes how they are satisfied. The
original requirements outlined in Chapter 3 are summarized in Table 6-2, and annotated with

how each is satisfied in the prototype.

6.6.1 DVE Configuration Requirements

The DVE requirements, established to ensure an extensible multi-entity simulation, were
among the easiest requirements to address. The CODB is used for the DVE support architecture
of this prototype. The participants of the simulation are the Patient Control Station (PCS) and
the Medical Staff Station (MSS). Communication between these entities is supported by the
exchange of MediGram messages. The MediGrams are queued, sent, and received by the

specialized MediGram_Managers developed for each application type.

6.6.2 Virtual Patient Process Requirements

The Virtual Patient Process is implemented as the Patient Control Station (PCS). Most
of the requirements are satisfied by integrating the appropriate controls into the PCS interface.
Specifically, this includes the capability to monitor external patient vital signs, monitor simula-
tion performance, select the virtual patient avatar, and control general simulation parameters. In
addition, the PCS satisfies the requirement for accepting treatments using the
PCS_Medigram_Manager to receive Doctor_Treatment MediGrams. Simulation scripts may be
loaded at startup to initialize the patient settings. The PCS does not implement a patient
physiological model, but provides a concise interface for integrating such a model when one is

available.

6.6.3 Doctor Station Requirements

The Medical Staff Station is implemented to satisfy the requirements of the Doctor
Station. The synthetic ER generated by the MSS is immersive, and permits the participant to
view, move, and operate scene elements. The environment provides a representative apparatus
capability for real-time monitoring and treatment of the virtual patient. Treatments are non-
invasive. Implementation of interaction support tools, such as the Selection Manager and

Motion_Manager permit the trainee to interact with the scene elements as part of the training.
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Requirement Synopsis

DVE Configuration

Solution

Select patient avatar

1.1 | DVE architecture Employ CODB DVE Architecture
1.2 | Virtual patient process Patient Control Station (PCS)
1.3 | Doctor station process Medical Staff Station (MSS)
1.4 | Medical DVE protocol Designed MediGram formats based on DIS
1.5 | Message Strategy MediGram Managers at PCS and MSS

R - Virtual Patient. Process -
2.1 | Physiological updates Interface to physiological model provided
2.2 | Accept treatments PCS_MediGram_Manager polling
2.3 | External patient vitals monitoring Controls to monitor, change patient vitals
2.4 | Simulation performance monitoring | Controls for performance, MediGram data
2.5 | Scenario scripts Script_Manager in PCS reads external files
2.6 | Control simulation parameters Controls to configure, start, stop simulations
2.7 Control to select and view patxent avatars

Doctor Station

3.1 | Trainee immersed

Synthetic ER created by MSS, ER_Manager

3.2 | Identify and select scene elements

Selection_Manager permits on-screen picking

3.3 | Move objects in all ranges of motion | Motion_Manager, motion up to 5 DOF

3.4 | Functional ER apparatus Apparatus classes in MSS, ER_Manager
3.5 | Real-time, non-invasive treatments MediGrams generated by Apparatus classes
3.6 | Real-time patient monitoring PV, PR MediGrams used by Apparatus

classes to update apparatus in synthetic ER

3.7 | Trainee in-room and following floor | Collision detection and ground following

‘ +3-D Geometry- -
4.1 Realistic Level I/ ER Layout, equipment based on actual facilities
4.2 | First-generation patient avatars Implemented in (.dwb) format
4.3 | Geometry for ER and apparatus Created using process discussed in Chapter 4
4.4 Posmomng and sizes accurate Position, sizes based on actual fac111t1es

~Support -+ -

5.1 | Support (. dwb) format

Support implemented, (. dwb) is sole format

5.2 | 30K polygons at 10 Hz, target 20 Hz

Sustained performance is 22K at 15 Hz

5.3 | Support for Mouse, Keyboard, and

Tracker input devices

All devices supported in MSS, Mouse and
Keyboard supported in PCS

5.4 | Uses existing Lab resources

Lab resources used for VER prototype

Table 6-2. VER requirements traceability table.

6.6.4 Geometry Requirements

Development of geometry for the VER represents a significant portion of the implemen-

tation effort. The empbhasis is to provide a realistic and consistent geometry inventory for both
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apparatus and patient avatars. All geometry databases include colors and materials, and most
contain texture maps. Geometry is implemented to-scale and is properly oriented in the syn-
thetic ER. The processes developed to create the basic geometry as well as that of dynamic
apparatus includes steps to meet the geometry requirements. The patient avatar inventory

consists of first generation avatars converted into the (.dwb) format.

6.6.5 Support Requirements

The VER prototype is implemented and tested using existing AFIT Lab resources, which
includes Silicon Graphics workstations, Coryphaeus’ Designer’s WorkBench modeling software,
and other ancillary software tools. Thus, the VER prototype supports (.dwb) geometry data-
bases. Interaction with the VER applications is supported by the workstation keyboard and
mouse. The MSS also support input from Polhemus position tracking equipment. As discussed
in the previous section, the performance requirements of the VER applications are satisfied by

the processing capabilities of existing Lab hardware.

6.7 Conclusion

As described in this chapter, the VER prototype provides a successful implementation of
the original VER design. The MSS provides a synthetic Level I ER, complete with functional 3-
D medical apparatus models. An emergency medical trainee operating from a dedicated Medical
Staff Station (MSS) process participates in VER simulations with a remotely managed virtual
patient. The trainee may interact with the VER, and all ER apparatus is functional in real time.
Specifically, the trainee may view the vital signs of a virtual patient using the vital signs moni-
tors, and may render rudimentary treatments to affect the medical status of the patient.

The virtual patient, which is controlled and monitored from an external Patient Control
Station (PCS) console, may be initialized and continuously monitored as another participant.
Patient vital signs and other physiological attributes may also be adjusted from the PCS console
at any time. This makes the PCS console an ideal platform for evaluating the effectiveness of
trainees in arbitrarily configured scenarios.

The results of this effort meet the original design requirements. While the capabilities of
the design are far from complete, they demonstrate an initial capability that may be expended to
provide a more mature training capability. Recommendations for improvement, and a discussion

of the conclusions drawn from this work are discussed in Chapter 7.
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7. Conclusions and Recommendations

7.1 Introduction

\ In this chapter, the primary accomplishments of the VER design and prototype are
described. In addition, a description of the VER construction process is provided. Next, a
summary of the success of the VER project, as measured against the thesis statement and the
requirements enumerated in Chapter 3, is presented. Recommendations for future effort and
research are then discussed, followed by a discussion of the relevance of the VER project to the

Air Force and DoD mission.

7.2 Accomplishments

This research is the first effort of a several year project. As such, the starting point was
entirely at the conceptual stage. The results. of this phase include many tangible accomplish-
ments that provide a solid foundation upon which future research phases can build. The signifi-
cant accomplishments of this thesis effort specifically include the following:

e Designed the initial VER architecture, which include a virtual patient and a doctor station.
| This design is based on technical descriptions presented by Dr. Dumay and Dr. Godsell-Stytz
in separate papers [DUMA96; GODS95].

e Researched and designed MediGram formats necessary to communicate emergency medical
events within the VER DVE architecture.

¢ Implemented the VER MSS design to satisfy the doctor station requirements.

e Implemented the VER PCS design to satisfy the virtual patient process requirements.

e Designed and Implemented user interaction support objects for the VER applications, to
include the Selection_Manager, Motion_Manager, Collision_Manager, Model class, and user
interface designs.

e Developed a 3-D geometry database inventory for the immersive MSS ER, and an “Initial
Modeling” process to consistently create additional VER geometry databases.

| e Developed an “Articulated Features” process for isolating dynamic features of models for
|
use in the Performer environment.




7.3 VER Construction Process

The steps taken to create the VER prototype may be summarized in eight general phases.

These phases, shown in Figure 7-1, may be used to extend the functionality of the VER proto-

type.
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Figure 7-1. VER development stages.

The first phase was to survey the simulation requirements. This specifically addressed
documenting the objectives and goals of the simulation. Preliminary design analysis was also
useful at this early stage to determine which objectives were feasible. Requirements were stated

and system-level design decisions were made.




In the second phase, the MediGram formats used to communicate between VER partici-
pants were designed. Early emphasis on the communication aspects of the training simulation
helped identify how to develop the applications and geometry databases.

In the third phase, the geometry database inventory was created. Supplemental informa-
tion was required in this stage, because modeling required measurements and photographs from
the medical facilities. The development work was accomplished with the Initial Modeling and
Articulated Features processes described in Chapter 5.

In the fourth phase, apparatus classes were developed to support the articulated features
and additional processing requirements of the dynamic geometry databases. The apparatus
classes make extensive use of Performer library calls. All apparatus functionality was pro-
grammed as apparatus classes for the corresponding object type.

The fifth phase prepared the Common Object Database to support all apparatus classes
required for the simulation. CODB configuration involved creating unique CODB storage
identifiers for all objects affecting the simulation. In addition, CODB areas were created to
properly manage each MediGram type.

In the sixth phase, the VER MSS and PCS applications were updated to incorporated the
static and dynamic geometry and apparatus classes. This involved integrating the classes and
troubleshooting MediGram exchanges between the applications during testing. This stage also
included integrating user interface objects with new functional capabilities provided by the new
apparatus classes and MediGrams.

In the seventh phase, changes to the VER applications were evaluated for visual consis-
tency and correctness. All testing was accomplished in the Performer environment using the
corresponding apparatus classes and the perfly support application. Visual problems were
corrected at the appropriate phase in the development process, and re-evaluated until corrected.

The eighth and final phase evaluated the VER prototype for functional correctness. For
the MSS, the functionality is controlled by the apparatus classes and the ER_Manager. For the
PCS, the functionality is controlled by the PCS_Main. Functionality was verified by creating
and sending MediGrams between applications. Discrepancies were identified, corrected at the

appropriate development stage, and re-evaluated until corrected.




7.4 Thesis statement revisited

The original thesis statement, or goal, can be subdivided into two objectives. The VER
may be evaluated against these objectives to determine the overall success of the project.

The first objective was to develop an architectural design that permits simulation of
emergency medical triage and treatment within a distributed virtual environment. This design,
presented in Chapter 4, specifies a distributed medical simulation environment that incorporates
most of the fundamental ideas originally discussed by Dumay and Godsell-Stytz [DUMA96;
GODS95]. The primary results of the design was the specification of a virtual patient monitor-
ing and control process (PCS), a separate and independent doctor trainee process (MSS), and a
communication protocol that permits the processes to interact (MediGram protocol).

The second objective was to implement a functional prototype that demonstrates the
feasibility of the designed architecture. The VER prototype was implemented according to the
design presented in Chapter 4. The prototype provides a synthetic ER environment at the MSS,
and a non-immersive control station for the virtual patient at the PCS. All communication
between applications are performed using MediGram formats specified in the design.

During simulations, a doctor trainee at the MSS may interact with the synthetic ER and
its contents. This specifically includes the ability to monitor patient vital signs and render non-
invasive treatments for the virtual patient. An evaluator at the PCS may configure, monitor and
change the physiqlogical status of the virtual patient. These capabilities demonstrate the ability
to communicate medical events within the VER prototype. Using dead reckoning and periodic
transmission of MediGrams, the VER prototype proves that emergency medical simulation using

DVE technology is possible and a feasible prospect for further research.

7.5 Recommendations for future work

While the features implemented in this version of the VER fulfill the established
requirements, many potentially useful features are not implemented due to time constraints,
resource limitations, or immaturity of existing technology. Where possible, interfaces for future
work are annotated in the source code of the VER applications. Suggestions for additional work
include (1) DVE Support enhancements, (2) improvements to the MSS human-computer inter-
face, (3) improvements to the synthetic ER, (4) improvements to the PCS application, and (5)

training and evaluation support. These categories are summarized in Table 7-1.
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7.5.1 DVE Support

The distributed architecture of the VER prototype is sufficient to demonstrate the
feasibility of the design. However, the functionality is limited to simulating the actions of one
doctor trainee. The next logical step is to add the capability for complete medical staffs to
collaboratively interact during training simulations. The PCS will not require additional modifi-
cation to support multiple participants, but additional work will be required to design and
implement this capability in the MSS. Each MSS must update doctor avatars and objects as they
are changed by other participants. The processing necessary to support these features is in
addition to that already required to drive the MSS. In addition, a capability for communication
between MS Stations is needed. To relay communication messages, additional MediGram
formats will be required to transmit messages. The MSS MediGram Manager must also be
configured to accept both PV and appropriately addressed communication MediGrams from

other MSS participants.

Functional Area Proposed Work
DVE Support Multiple MSS participants

Expand MediGram repertoire to include more treatment types,
inter-participant communication

Federation Object Model (FOM) for medical HLA Federation

MSS Human-Computer | Replace interactive XForms interface with immersive interface
Interface capability

On-line help for simulation functions

Force feedback interaction devices

Audio cues

Voice commands

Hands-on interaction

MSS synthetic ER Inter-object collision detection

Environmental physical effects

3rd Generation patient avatars and organ models

Geometry databases and associated support classes for additional
ER apparatus

Doctor and medical staff avatars

PCS application Patient physiological models

Patient medical response scripts

Capability for dynamic patient scarring

Patient database capability

Table 7-1. Proposed VER modifications.
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Figure 7-2 depicts the configuration of the proposed Phase 2 multi-participant VER,
which incorporates a single Virtual Patient and 3 MSS participants. The figure shows the more
complicated nature of communications in a next-generation VER, which includes the multicast
patient information from the PCS to all MSS participants (white MediGrams), the need for inter-
MSS communication messages (gray MediGrams), and potentially simultaneous Doctor Treat-
ment MediGram updates to the Virtual Patient (black MediGrams). Beyond adding support for
multiple participants, the existing MediGram repertoire should be expanded to include other
MediGram formats that contain more patient status parameters and an increased variety of doctor

treatments.

Network
‘A

Figure 7-2. Proposed multiple MSS participant configuration.

A final improvement with respect to the DVE architecture is the migration to the HLA
architecture. Using the existing MediGram formats, a federation for emergency medical simula-
tion should be defined, and a corresponding Federation Object Model should be created.
Compliance with HLA will permit the VER to evolve with changes in DoD modeling and
simulation policies, and presents an opportunity for large-scale inter-operability with other HLA-

based simulations.
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7.5.2 MSS Human-Cbmputer Interface

Additional improvements should be made to the human-computer interface of the MSS
station. First, research should be conducted to find an immersive replacement for the XForms
interface. This will simplify the interface by eliminating multiple pop-up form windows outside
of the ER. Another improvement is integrating an on-line help capability into the on-screen
portion of the MSS interface. This permits supplemental information about the interface to be
displayed when needed.

The capability to permit lower level, “hands-on” interaction is needed. The ability to
support this depends on identifying efficient collision detection algorithms, kinematics algo-
rithms, and object selection techniques. Moreover, the inability to naturally interact with virtual
objects has remained a long-standing problem, despite innovative work on the subject
[MOCH92; HUAN9YS]. However, new paradigms such as the Virtual Workbench appear to be
very promising in the medical VE domain [POST96a; POST96b].

The interface may also be improved by adding other sensory capabilities. Despite the
lackluster capabilities offered by current technology, the state of emerging force feedback
devices should be investigated. Devices such as the Phantom may be used to provide an initial
haptic capability. Audio Cues are another interface capability that should be implemented into
the VER MSS. This might include the capability to generate various sounds and noises such as
dialog between trauma team members, apparatus, and patients. Finally, a voice command
capability should be investigated. Voice commands may provide a natural interface that, if
developed to the appropriate level of sophistication, can provide a good alternative to the non-

immersive XForms interface previously discussed.

7.5.3 MSS Synthetic ER

Realism is a top priority in most medical VEs, because the more realistic the simulator,
the better the training. As suggested by Hon, “if physicians and surgeons practice on many
patients in a “realistic” simulator environment, they will definitely improve their performance on
their first human patients [HON96].” Thus, many recommendations are intended to improve the
level of realism of the synthetic ER.

For example, collision detection is required in the VER prototype. Similarly, other

environmental effects such as gravity, inertia, and momentum must be integrated. Adding these
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effects will increase the visual credibility of the ER, but so far have been computationally
prohibitive. Another recommended improvement is to introduce 3rd generation patient avatars.
As discussed in Chapter 2, third-generation patient avatars exhibit realistic appearance, correct
inverse-kinematics, and tissue deformation properties. Such avatars will dramatically improve
the usefulness of the VER, because the complex technical problems associated with hands-on
medical treatment will not be exacerbated by unresilient first generation avatars.

Yet another suggested improvement is adding more ER geometry. Many, but not all, of
the primary apparatus for emergency rooms are included in the VER prototype. Missing are the
patient respirator, several in-hand tools (such as scalpel and scissors), and treatment related
objects such as bandages. These models will become necessary as the VER matures. Compli-
cated models, such as hoses, tubes, and wires must also be modeled when graphics rendering
performance is improved.

Moreover, the synthetic ER layout should evolve as medical technology evolves.
Contemporary ED facility configurations are difficult to find. A potentially useful information
source is the Journal of Emergency Nursing. This professional bimonthly publication of the
Emergency Nurses Association includes a regularly-run section that profiles the general layout
and instrumentation of Emérgency Department facilities from around the country. From the
descriptions and many photographs provided, new directions in ED layouts and apparatus are
easily discernible. This information, in turn, can be used to keep the VER facility layout and
associated equipment models current.

Finally, an avatar for the doctor trainee should be implemented, so that a more believable
first-person perspective is achieved. That is, the trainee should see parts of his or her virtual
body during simulations. Later, as the capability of input devices improve, a mechanism may be

introduced to permit individual movement of arms and hands as part of the interaction.

7.5.4 PCS Application

One of the most important recommendations for future work is integrating a patient
physiological model into the PCS. As shown in Equation 7-1, the patient physiological model
must permit the patient physiology to be updated based on current physiological state and
medical treatments received.

Patient_Status,,,, = Physiological Model(Patient_Status .., Treatments) )]




This model could be used to update the interface of the PCS as well as the patient information
monitors in the MSS synthetic ER. A physiological model can be directly integrated into the
PCS station with no additional innovation. It will be many years before such a model is mature
enough to pass the “Turing Test,” whereby the physiological model cannot be distinguished from
an actual patient [HON96]. However, even a low fidelity initial capability should be imple-
mented as soon as possible. An interim capability that is potentially useful is scripting patient
responses to treatments received from the MSS. Response scripts provide a structured, but
useful simulation capability, because the virtual patient can be updated in real time automati-
cally.

Another recommended PCS improvement is to introduce a capability for adding surface
details to simulate scars and wounds on the current patient avatar. This capability will be
dramatically simplified if third generation patient avatars become available. The graphical PCS
interface permits adding this capability without major redesign of the interface.

A final recommendation for improving the PCS is the addition of a patient database. A
database would provide a way to store various patient records, which could be made available to
trainees when needed for diagnosis and treatment. Additionally, medical history and other
patient background information could also be included in the database. The database could be

implemented at the PCS and queried from the MSS using appropriately formatted MediGrams.

7.6 Ultility to the Air Force

This thesis has addressed many technical issues associated with the design and imple-
mentation of the VER prototype. An important question that must also be answered is “What
impact does the VER have on the mission of the Air Force?” According to Dr. Satava:

The military has a need to decrease combat casualties, and new advanced tech-

nologies are being utilized to reduce these casualties, including virtual environ-

ments as a planning and training tool. The saving of lives on the battlefield re-

quires training in remote diagnostics, triage, casualty evacuation, first aid,

patient stabilization, and specific combat trauma surgical procedures

[SATA96b].

DARPA has sponsored the VER project to better realize these training and readiness
goals. The Air Force is a beneficiary of the VER research, because the VER implements an
initial capability that will ultimately provide faster and more effective trauma management skills

training for mobile military field hospital teams.
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7.7 Conclusion

The Virtual Emergency Room provides a basic emergency room simulation capability.
The prototype is a workable system that demonstrates the effectiveness of the design. Both the
VER MSS and PCS applications are mature enough to support simulations at the procedural
level. In addition, the VER provides a flexible architecture for supporting specific emergency
room simulations. The VER MSS and PCS applications provide support for an open, easily
adaptable communication protocol that can be changed to meet specific medical training re-
quirements. Beyond the capabilities of the prototype, the VER provides a springboard for further
medical VR research. This initial environment provides a test-bed for emergency medical

simulation, and represents a first-ever capability for medical simulation using DVE technology.
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Appendix A. Dynamic Geometry

This appendix presents the Performer sub-tree diagrams for all dynamic apparatus objects.
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Figure A-1. Beamlite Class Performer sub-tree diagram.
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Appendix B. Static Geometry

This appendix presents pictures of the static (inanimate) geometry.




Figure B-1. Double-doors.

Figure B-2. Equipment cabinet.



Figure B-3. Sharps waste container.

Figure B-4. Glass-covered shelves.




Figure B-5. Sink and cabinets.

Figure B-6. Wall-mounted utilities.

B-4




Appendix C. Patient Avatar Geometry

This appendix presents the patient avatar geometry inventory adapted for the VER. The internal

structure for each avatar is shown in the following Performer diagram:

Patient Avatar pfSwitch

Figure C-1. Performer sub-tree diagram for patient avatar.
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Figure C-3. Ideal Male undressed.




Figure C-5. Ideal Female undressed
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Figure C-6. Muscular Male undressed.

Figure C-7. Obese Male undressed.
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Figure C-8. Stylized Male undressed.

Figure C-9. &tviized Female undressed.
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Figure C-10. Infant Male undressed.
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