
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

Inference Algorithm Performance and Selection under Inference Algorithm Performance and Selection under

Constrained Resources Constrained Resources

Brett J. Borghetti

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Borghetti, Brett J., "Inference Algorithm Performance and Selection under Constrained Resources" (1996).
Theses and Dissertations. 5862.
https://scholar.afit.edu/etd/5862

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F5862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5862?utm_source=scholar.afit.edu%2Fetd%2F5862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

/AFIT/GCS/ENG/96D-05

INFERENCE ALGORITHM PERFORMANCE AND SELECTION UNDER

CONSTRAINED RESOURCES

THESIS
Brett Jason Borghetti

Captain, USAF

/AFIT/GCS/ENG/96D-05

19970108 068
Approved for public release; distribution unlimited

DTIC QUAL ISPEUTED 3

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U. S. Government.

/AFIT/GCS/ENG/96D-05

INFERENCE ALGORITHM PERFORMANCE AND SELECTION UNDER

CONSTRAINED RESOURCES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Brett Jason Borghetti, B.S.EE

Captain, USAF

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank the members of my committee: Doctor Eugene Santos, Jr., Major

Sheila Banks and Doctor Henry Potoczny. You have helped make this work possible with

your time and support. Also, thanks to Major Edward Williams who spent many hours

teaching me the finer points of software hackeneering with C++ and the OVERMIND

system.

To Scott, Bob, Louise and Dan: Thanks for putting so much time into the PESKI

project. And thanks for all of your support, ideas and philosophical discussions (argu-

ments?) about how to make a good software system... You guys have been good friends

throughout this experience. Thanks to OracleJoel, the man with all of the answers. You

have helped me in more ways than I know. I wish you all the best of luck in your careers.

To the Walleyball crew: James "Worf" Benslay, Todd "Spike" Kellet, Joe "Perot"

Moritz et al., You guys have helped me take out some stress on the infamous "Court

Number Three". For that, I thank thee.

To the GCS-96D class, and all those outliers who never made it into our email list:

Thanks for making the AFIT experience a good one. Live long and produce software: Your

country is counting on you...

And finally, thanks to Saralinda for providing me with constant support, encourage-

ment and motivation I needed to get here.

This work was supported in part by AFOSR Grant #94-0006.

Brett Jason Borghetti

ii

Table of Contents

Page

Acknowledgements. ii

List of Figures v

Abstract vii

I. Introduction. 1-1

Ii. Background 2-1

2.1 PESKI. 2-1

2.2 Baysian Knowledge Base. 2-1

2.3 Anytime Algorithms 2-6

III. Reasoning Algorithms 3-1

3.1 Why is reasoning hard?7 . 3-1

3.1.1 Belief revision for BKBs. 3-1

3.2 Algorithms for Belief Revision. 3-3

3.2.1 Genetic Algorithms 3-4

3.2.2 Best-First Algorithms. 3-8

IV. Algorithm Selection 4-1

4.1 Predicting Performance 4-4

4.2 Differentiating Characteristics. 4-6

4.2.1 RV Count 4-7

4.2.2 Completeness. 4-7

4.2.3 Cyclomatic Complexity. 4-9

4.2.4 Skewness 4-9

4.2.5 Extremeness. 4-11

iii

Page

4.3 Collecting Networks 4-12

4.4 Gathering Performance Data. 4-12

4.5 Creating a Relation 4-13

V. Experiments. 5-1

5.1 Extremeness 5-1

5.2 RV Count 5-7

5.3 Completeness 5-8

5.4 Cyclomatic Complexity. 5-11

5.5 Skewness.. 5-15

VI. Conclusions and Future Research. 6-i

6.1 Discussion of Results 6-i

6.2 Limitations of this approach 6-2

6.3 Future Research 6-3

Bibliography BIB-i

Vita. VITA-i

iv

List of Figures

Figure Page

2.1. PESKI 2-2

2.2. Bayesian Network and equivalent Bayesian Knowledge Base 2-3

2.3. Incomplete Bayesian Knowledge Base 2-5

4.1. The Transformation: Features to Performance 4-5

4.2. Non-Differentiating vs. Differentiating Characteristics 4-6

4.3. Conditional Performance Profile and Utility Curve 4-13

5.1. CPP: Effects of Extremeness on Performance of Algorithms 5-2

5.2. CPP: Effects of Extremeness on Performance of Algorithms (Closeup

View) 5-3

5.3. CPP: Effects of Extremeness on Performance of BFS (Closeup View) 5-4

5.4. CPP: Effects of Extremeness on Performance of GA (Closeup View) 5-4

5.5. UC: Effects of Extremeness on BFS and GA at SQ=-25 5-5

5.6. UC: Effects of Extremeness on BFS and GA at SQ=-25 (Closeup

View) 5-6

5.7. SS: Effects of Extremeness on BFS and GA at Time = 1000 seconds

(Closeup View) 5-6

5.8. CPP: Effects of Random Variable Count on Performance of Algo-

rithms 5-7

5.9. UC: Effects of Random Variable Count on Performance of Algorithms

at SQ = -10 5-8

5.10. CPP: Effects of Completeness on Performance of Algorithms . . . 5-9

5.11. CPP: Effects of Completeness on Performance of BFS (Closeup View) 5-10

5.12. CPP: Effects of Completeness on Performance of GA (Closeup View) 5-10

5.13. UC: Completeness vs. Time 5-11

5.14. CPP: Effects of Cyclomatic Complexity on Performance of Algorithms 5-12

v

Figure Page

5.15. CPP: Effects of Cyclomatic Complexity on Performance of BFS (closeup

view) 5-13

5.16. CPP: Effects of Cyclomatic Complexity on Performance of GA (closeup

view) 5-14

5.17. UC: Cyclomatic Complexity vs. Time 5-14

5.18. CPP: Effects of Skewness on Performance of Algorithms 5-16

5.19. CPP: Effects of Skewness on Performance of BFS 5-17

5.20. CPP: Effects of Skewness on Performance of GA 5-17

5.21. UC: Effects of Skewness on Performance of GA 5-18

vi

/AFIT/GCS/ENG/96D-05

Abstract

Knowing that reasoning over probabilistic networks is, in general, NP-hard, and that

most reasoning environments have limited resources, we need to select algorithms that can

solve a given problem as fast as possible. This thesis presents a method for predicting

the relative performance of reasoning algorithms based on the domain characteristics of

the target knowledge structure. Armed with this knowledge, the research shows how to

choose the best algorithm to solve the problem. The effects of incompleteness of the

knowledge base at the time of inference is explored, and requirements for reasoning over

incompleteness are defined. Two algorithms for reasoning over incomplete knowledge are

developed: a genetic algorithm and a best first search. Empirical results indicate that it

is possible to predict, based on domain characteristics, which of these algorithms will have

better performance on a given problem.

vii

INFERENCE ALGORITHM PERFORMANCE AND SELECTION UNDER

CONSTRAINED RESOURCES

L Introduction

The Air Force is automating many information intensive processes. Often, the Air

Force uses computers to assist or even replace personnel in extracting knowledge from large

volumes of data and process that knowledge. Artificial Intelligence (AI) experts have been

struggling with the problem of processing knowledge (information) for years. While AI

methods are usually more efficient than non-AI (brute force) methods, they still push the-

limitations of computing equipment.

While many advances in AI have reduced the time spent in knowledge processing,

many problems are still beyond the capabilities of today's computer hardware. One rea-

son why the advances in AI have failed to provide extensive improvements is inherent in

the nature of their techniques. Early knowledge manipulation routines utilized a single

algorithm on a single computer to perform a search for the optimal solution to a problem.

Experts in AI used many techniques to optimize the algorithm. Although these optimized

algorithms worked well in certain cases, they were seldom able to perform well in all cases.

In the last decade, however, researchers have developed a new tactic for knowledge process-

ing [2, 7, 8, 9, 11, 12]. Several different algorithms running concurrently are used to arrive

at a solution faster than any single algorithm working alone. Each different algorithm

has its strengths and weaknesses in the specific case, yet when combined, the strengths

of certain algorithms compensate for the weaknesses of others. When acting in concert,

multiple algorithms are better suited for solving a range of problems.

The algorithms working in a group combine their strengths by generating and sharing

partial solutions while they search for the final solution. When one algorithm makes a

breakthrough, it shares its partial findings with the other algorithms. Thus, all algorithms

advance towards a solution when any one advances.

1-1

Unfortunately, the more algorithms used in a working group, the more computational

power needed. Each algorithm added to the working group also requires more communi-

cation overhead. Since most people trying to process knowledge have limited resources

at their disposal, a decision must be made: Given that there are limited resources, which

algorithms should be executed to achieve the best performance?

Also, since the algorithms are providing partial solutions during their execution, it

may be possible to transform the part of the problem that remains to a different problem

that can be solved easier with one of the other algorithms in the working group. The

decision can then be rephrased: Given that there are limited resources, and the solution

has reached a certain maturity, which algorithms should be executed to achieve the best

performance from here? In other words, given what we know right now about the problem,

what is the best strategy to solve the remainder of it.

In order to make this decision, it is necessary to predict the capability of a given

strategy1 (group of algorithms working together) to converge on a solution under the

current circumstances. Prediction of the performance of a strategy relies on prediction of

individual performance and prediction of interactive performance. This thesis focuses on

using prediction of individual algorithm performance to develop a strategy for problem

solving.

Since the performance of an algorithm varies from problem to problem, this thesis

proposes that in each problem instance, the input data manipulated (the domain) contains

characteristics that affect the performance of the algorithm, and if these features of the

data can be isolated, they can be used to predict the performance of algorithms on that

information.

The remainder of this work will expand on the concepts of feature based performance

prediction and selection of algorithm strategies from this prediction. Chapter II provides

the reader with the background for the topic in the domain that AFIT is working with,

and an explanation of the class of algorithms that can share partial solutions. Chapter III

explains why reasoning is hard, presents the challenges of working with the domain, and

1A strategy may contain one or more algorithms

1-2

discusses the specific algorithms used at AFIT. A method for selecting algorithms based

on the characteristics of the domain is developed in Chapter IV. Chapter V presents the

experimental results of this technique, and Chapter VI concludes the thesis and inspires

future research in the area.

1-3

II. Background

Traditionally, many organizations generated point solutions to solve only the task they

were working. In the interest of reuse, cost savings, and commonality, The Air Force

Institute of Technology (AFIT) is developing an environment for acquiring, maintaining,

and reasoning over a user-defined knowledge domain. This chapter presents a backround of

the system, the structure it uses to store knowledge, and the class of algorithms it employs

for reasoning.

2.1 PESKI

AFIT is developing the Probabilistic, Expert System Knowledge and Inference (PESKI)

environment, a domain-independent architecture for building expert systems [19, 20, 21].

Figure 2.1 shows an overview of PESKI. The system is designed to store domain knowledge

in the form of a probabilistic network model. It provides tools for knowledge acquisition

and validation to improve the quality of the representation. PESKI also provides tools for

reasoning over the stored probabilistic knowledge. The underlying structure that makes

PESKI a unique expert system development environment is its knowledge representation:

The Bayesian Knowledge Base (BKB).

2.2 Baysian Knowledge Base

Knowledge is continually in a state of change. Although we attempt to store knowl-

edge so that we may inference over it, at best, stored knowledge is an out-of-focus snapshot

of our universe. In most research fields, for example, researchers are continually adding

knowledge to a domain so fast that no single researcher could ever be aware of all the

advances in that field at any given time. By the time that new knowledge is added to a

knowledge base, it may be obsolete. Thus, it is extremely important to have a knowledge

base that is flexible enough to handle both unknowns (incomplete knowledge) and changes

in the domain over time.

2-1

Reasoning Mechanism

Knowledge Acquisition

Knowledge Organization & Validation

Figure 2.1 PESKI
PESKI is composed of a User Interface, a Knowledge Acquisition tool, a set of tools for

Knowledge Organization and Validation, and a Reasoning Mechanism.

2-2

In the AFIT PESKI system, this domain knowledge is probabilistic information

stored in a Bayesian Knowledge Base [1] format 1 . A BKB is similar to a Bayesian Network

(BN) [16]; it is a directed graph capable of representing uncertainty in knowledge through

a network of random variables (RV) and their probabilistic relationships. In fact, any

Bayesian Network can be represented as a Bayesian Knowledge Base. An example of a

Bayesian Network and the equivalent BKB is shown in figure 2.2.

B A-T A-F B-T B-F I

A

P(C-TIA-T,B-T)-s

P(C-TIA-F,B-F)-t

P(C-TIA-T,B-T)-
u

v
z

P(C-TIA-F,B-F)-v7P(C-FI,,111A-T,B-T)-w C-
P(C-FIA-F,B-T)-y

P(C-FIA-F,B-F)-z

Figure 2.2 Bayesian Network and equivalent Bayesian Knowledge Base

In a probabilistic network, each random variable (or component) can take on one of

a finite number of instantiations (or states). The relationships between the components

(and the states of the components) are presented as.conditional probabilities. Notice that

each random variable in the BN is equivalent to the composite states (dotted ovals) in

the BKB2 . The dark nodes, called supports, are the "rules" that capture the relationships

(conditional probabilities) between the tail condition (parents of the support) and the

supported state (child of the support). Thus, each of the supports in the BKB explicitly

represent one of the conditional probabilities in the conditional probability table (CPT) of

the BN.

'The BKB format was referred to as a Bayesian Forest by Darwin Banks [1]
2The RVs have been shown on the BKB as a dotted oval, however in the actual BKB there is no explicit

representation of components.

2-3

In a BKB, a support node with no parents is called a root support. A root node (or

root state) is a state with exactly one parent, a root support 3. We define the instantiations

with no children as leaf nodes. Thus, in Figure 2.2, A=T, A=F, B=T, B=F are all root

nodes and C=T, C=F are the leaf nodes.

The support nodes are key in the flexibility of the Bayesian Knowledge Base. They

enable the Bayesian Knowledge Base to represent incomplete knowledge (unknowns) easier

than a Bayesian Network. In a Bayesian Network, each random variable must have a fully

specified CPT containing all of the possible combinations of one state from its RV and one

state from each of its parent RVs, even if these relationships are unknown in the domain

being modeled. Thus, a Bayesian Network is required to either completely represent RV

relationships who's actual relationships are not completely known, or leave that RV out of

the model. Either choice may compromise the quality of the model.

Bayesian Knowledge Bases were designed to eliminate the compromises in quality

caused when a domain expert makes assumptions about unknown relationships between

RVs. When the expert is missing domain information about the relationships between

variables, the expert does not have to specify those relationships (arcs and supports) in

the BKB, yet the expert can still express the RVs in terms of their component states

without explicitly describing the relationships. When one or more of the relationships are

missing, we call the BKB incomplete. Now we develop language to express subsets of BKBs

so that incompleteness can be formally defined. First, we define a collection of states.

Definition 1. A collection of states is a set of states, no more than one from each random

variable in the BKB. A collection many contain fewer than one state for every RV in the

BKB.

Definition 2. A full collection is a collection that has exactly one state specified for every

RV in the BKB.

Then, completeness is formally defined.

Definition 3. A complete BKB is a BKB where for all arbitrary collections, every state

in the collection is either a root state or a child of at least one other state in the collection.

3The term "root node" may refer to either the instantiation nodes or their parent support node.

2-4

Incompleteness is the opposite of completeness.

Definition 4. An incomplete BKB is a BKB where there exists at least one collection

such that one or more of the states is neither a root node, nor a child of any other states

in the collection.

A B

A-T A=F B-T B=F

Figure 2.3 Incomplete Bayesian Knowledge Base

Figure 2.3 shows an example of an incomplete BKB. An arbitrary collection of states

A=F, B=T, and C=T, cannot meet the completeness condition because C=T is neither a

root node nor a child of A=F or B=T. Therefore, the BKB is incomplete. Interestingly,

because a BKB does not necessarily have to be complete, the transformation of a BKB

into a Bayesian Network may not always be possible.

For the remainder of this document, the words complete and incomplete refer to the

definitions of completeness of the BKB or a collection, while the words full and partial refer

to the cardinality of a collection. Thus, in Figure 2.3 A=F, B=T, C=T is a full incomplete

collection; A=T, B=T, C=T is a full complete collection; A=F, B=T is a partial complete

collection; and A-F, C=F is a partial incomplete collection.

2-5

2.3 Anytime Algorithms

The reason we develop a knowledge representation as a model of a domain is to fa-

cilitate reasoning about that domain. Reasoning is the method by which we gather new or

non-explicit information from the stored knowledge. Flexibility in reasoning algorithms is

important because reasoning is a time intensive process. This section discusses the differ-

ences in flexibility between traditional sequential algorithms and the anytime algorithms

used by PESKI for reasoning.

In a traditional algorithm, input is provided, the algorithm computes for some time,

and an output is generated. In an algorithm such as the Best First Search (BFS) algorithm,

there is no meaningful solution until the final node is expanded. Once the final node is

expanded, the solution is generated and takes on meaning. If time expires before the BFS

has completed its search, there is no solution. With computational resources (especially cpu

time) restricted in some systems, the need arose for algorithms that could generate partial

solutions in the time they were alloted [7, 8, 9, 11, 12]. Boddy and Dean labled algorithms

that produce partial solutions of non-decreasing quality over time anytime algorithms [2].

The trait of producing interim solutions over the course of execution makes anytime

algorithms extremely flexible. For example, if the computer was turned off just before a

traditional algorithm completed, the algorithm would provide no useful information. An

anytime algorithm, however, could have possibly produced many partial solutions before

the computer was shut down. A user could interrupt the algorithm when a solution is

desired, and the algorithm would produce at least a partial solution. Some algorithms can

even use the partial solutions as starting points for further calculations. These flexibilities

enhance the reasoning capabilities of PESKL In the next chapter, we shall see why it is

vitally important to have flexibility when inferencing over probabilistic knowledge.

2-6

III. Reasoning Algorithms

In this chapter, we discuss several of the algorithms used for reasoning and the

adaptations required to make them valid for reasoning over Bayesian Knowledge Bases.

Before we begin this discussion it is necessary to explain why reasoning in general is hard

and stipulate the specific challenges of reasoning with BKBs

3.1 Why is reasoning hard?

One of the most perplexing problems in Artificial Intelligence is probabilistic rea-

soning [16]. There are many methods for reasoning over probabilistic domains, but most

methods use some form of approximation technique or exact search. Inference over proba-

bilistic knowledge in Bayesian Networks (BN) was proven to be NP-hard by Cooper [4, 5],

Dagum, Luby [6] and Shimony [22]. As we shall see, reasoning with BKBs is even more

computationally expensive than reasoning with Bayesian Networks.

3.1.1 Belief revision for BKBs.

Although Bayesian Knowledge Bases provide a means of representing incomplete

knowledge that Bayesian Networks cannot, the capability has its cost. As we shall see,

reasoning is hindered by the existence of the incompleteness, the very quality that makes

the BKB representation so flexible.

This thesis focuses on a subclass of reasoning, belief revision. In belief revision, our

goal is to seek the most likely "state of the world" given evidence about the world. In

a Bayesian Knowledge Base, a "state of the world" is the set of one instance (state) of

each random variable in the network. Essentially, a state of the world is a full collection

of states. The probability of this full collection occurring can be computed by taking the

joint probability (the product of all applicable conditional probabilities) (JP) of the random

variables. Thus, to find the most likely state of the world, the inference engine seeks the

maximal joint probability among all possible states of the world.

3-1

The joint probability of a given state of the world is calculated by multiplying the

conditional probabilities that represent the relationships between the random variables in

the chosen state of the world. In a BKB, the conditional probabilities are represented by

support nodes. To calculate the joint probability, take the product of the active support

nodes in a given state of the world. A support node is active when it's tail condition is

met, i.e. its only parents are a subset of the instances expressed in the given state of the

world. For example, in Figure 2.2 support node s is active when A=T, B=T and C=T.

Inference in a BKB involves selecting the state of the world such that the product of the

values of all active support nodes (the joint probability) is maximized.

Unfortunately, in a BKB, an incomplete collection of states has no calculable joint

probability because there is at least one state that is neither a root node or a child of any

other state in the collection (thus no active support nodes can exist for this state). Since

the JP for an incomplete solution cannot be computed, each algorithm PESKI employs for

reasoning must have a method to cope with incompleteness internally.

Reasoning over the BKB is very similar to reasoning over the Bayesian Network, with

one exception: handling incompleteness. We allow incompleteness in the representation

to give the knowledge acquisition process flexibility. When we reason over the BKB,

however, we generally want to find a complete solution because a complete solution is the

only type of solution that has a calculable joint probability'. In a Bayesian Network, we

are always guaranteed that given any states of th6 parent random variables we have a

way of activating a specific state of the child random variable, i.e. we have completeness.

In contrast, a Baysian Knowledge Base that has incompleteness may not allow a given

set of instances of the parent random variable to actuate a specific instance of the child

because one or more of the states are neither root nodes, nor children of any other states

in the collection (recall Definition 4). This means that during inferencing we must verify

that the state of the world we are examining does not contain any incompleteness. The

check for of incompleteness is inexpensive if we are only looking for the existence of it,

but finding the level of incompleteness in a given state of the world (finding the number of

'Complete solutions are also the only solutions explicit from the domain being modeled.

3-2

occurrences of incompleteness in the collection) is sometimes necessary and this process is

computationally expensive.

The ability of BKBs to represent incompleteness forces checking for incompleteness

in all of our BKB inference algorithms. Furthermore, techniques are required to minimize

the impact of the computational complexity of the completeness checks.

3.2 Algorithms for Belief Revision

PESKI's concept for an inference engine is to utilize the strengths of several different

algorithms in a joint effort to find a solution to an inference scenario. Every stock algorithm

used for this purpose must be adapted to handle the unique structure of the BKB as well

as the potential for incompleteness in the BKB. In the following sections, we discuss the

particular adaptations of Genetic Algorithms (GA) and Best First Search (BFS) used for

reasoning with incomplete knowledge in this research. Before we begin this discussion,

however, it is necessary to build a foundation of criteria that each algorithm must meet.

Definition 5. A solution is a collection created at inference time. Solutions are expressed

as a vector V of width N, where N is the number of random variables in the BKB. Position

i in the vector contains the state of the ith random variable. No more than one state from

random variable i can occupy the ith position in the vector.

1. The algorithm generates and reports solutions.

2. The algorithm may report both complete and incomplete solutions, however, com-

plete solutions are always better than incomplete solutions. The algorithm may be

forced to send incomplete solutions until it finds its first complete solution.

3. For each solution generated, the algorithm also generates a joint probability. Since

joint probabilities are only calculable for complete solutions, the algorithm must

have an internal mechanism for dealing with solutions that are incomplete. When

reporting an incomplete solution, the algorithm reports a joint probability of zero.

4. The algorithm is an anytime algorithm. Solutions are produced continuously, and

any time a higher quality solution is achieved, it is immediately broadcast to PESKI.

Note that only full solutions are sent.

3-3

5. The algorithm must terminate when either a best possible solution is found, or a user

specified time limit has expired.

Now that the foundation has been presented, we discuss the algorithms for reasoning over

BKBs.

3.2.1 Genetic Algorithms. GALGO [18] used GAs to perform belief revision

over Bayesian Networks; Genetic Algorithms can also be adapted for the belief revision on

BKBs [3].

Genetic algorithms [10, 15, 18] are a nondeterministic approach for global search.

The method, based on natural genetic evolution, allows the optimal solution to evolve

from a pool of solutions called the population.

Each solution is a full instantiation (full collection) from the BKB; this is mapped

into a chromosome by treating the solution vector V as an array of integers. Each random

variable has one position in the array, and the contents of that position represent the

state of that random variable. The GA works by using the chromosomes contained in

the population to generate the members of a new population. Each iteration is called a

generation, typically a three-stage process: chromosomes are selected for propagation to

the next generation, then a crossover operator is applied to the selected chromosomes and

finally a mutation operator is applied to the result of the crossover step. The result is a

new population that is used as the basis for the next generation.

The crossover operation can take many forms, but in a simple GA it typically ex-

changes one or more randomly chosen segments between two chromosomes. In our repre-

sentation, this is equivalent to exchanging the instantiation of small subgraphs within the

BKB. The goal of this operation is to find those segments of the chromosome that produce

good partial solutions and combine them to form a better full solution. The result is that

the population as a whole tends to have more of these better solutions and (hopefully)

eventually converges to the optimal solution. The mutation operator, on the other hand,

takes a chromosome and randomly makes a change to one or more of its states. This pro-

cess helps keep the population diverse so that the GA is not trapped into a local maxima

in the search space.

3-4

The most critical part of the GA is the evaluation function2. This evaluator is what

determines how good a solution actually is, which in turn determines which solutions

contain enough good components to make them worth keeping around. A good evaluator

function needs to provide enough resolution in its scoring to create smooth slopes for the

algorithm to climb. Less resolution in scoring causes step-like or spiked slopes with large

flat regions rather than continuous smooth inclines, resulting in poor performance for the

GA.

When applied to a BKB, the GA generates solutions, which assign a state to each of

the RVs. Once the solution is generated, it is up to us to evaluate or score it. If each of

the states has exactly one support active, the solution is complete. For example "A=T",

"B=T" and "C=T" is a complete solution in Figure 2.3. It is relatively easy to evaluate a

complete solution. Multiply all the probabilities of active support nodes together to get a

joint probability for that solution.

Joint probability can be calculated as follows:

Let JP = 1.0
For each state in the solution do
1. find S, the active support node for the given state
2. JP = JP x Value(S)

Recall that in order to find an active support node, all of its parent instance nodes must

also be in the solution. Unfortunately for many solutions, we cannot find all of the parents

for any of the supports supporting a state. When no support nodes are active for a given

state in the solution, we do not have a factor for this portion of the joint probability

calculation. This causes our joint probability to become undefined.

We can easily calculate a joint probability for a complete solution and therefore score

it. Unfortunately, when a solution is incomplete, this scoring method no longer applies.

For a real world BKB, there are likely to be many incomplete solutions (potentially there

could be more incomplete solutions than complete ones). Yet there may be subsets of states

in the solution that are members in the optimal solution for the network. If we threw away

2The evaluation function has also been referred to as a fitness function: it determines how fit the

chromosome is for survival in the next generation

3-5

an incomplete solution, we could possibly loose the only chromosome that contained that

portion of the solution. Therefore, we must keep certain chromosomes in our gene pool.

If we kept all incomplete solutions, however, our gene pool would soon become cluttered

with bad chromosomes. Thus, we develop a way of evaluating the incomplete chromosomes

even though they have no defined joint probability.

Our goal is to be able to evaluate a particular solution even when that solution is

incomplete. We want the score for an incomplete solution to be lower than the lowest

possible joint probability for any complete solution. The score must be lower because we

want the GA to have a lower likelihood of selecting an incomplete solution than a complete

one for the next generation.

Knowing the incomplete solution must have a score lower than the lowest possible

complete solution, we estimate a bound on the lowest possible complete solution as follows:

For each component in the BKB, there exist a number of states, each having its own set

of support nodes that could potentially activate it. We take the product of the minimum

valued support nodes, one from each component to compute the minimum possible joint

probability for the BKB 3 . Formally, we say

E = fT Si,min (3.1)
j=1

where n is the number of random variables and Sj,mtn is the lowest valued support for the

random variable j.

Using this lower bound, incomplete solutions are scored in accordance with the re-

quirements stated above:

score(V) < E (3.2)

Exactly which method used to compute score(V) is unimportant, however, because

the computation is a critical step in the evaluation function, and one that is iterated

over many times in each generation, it should be computationally efficient. There is one

3This estimate may not represent the complete solution with the lowest joint probability, but it is
guaranteed to be as low or lower than the minimum possible joint probability for any complete solution

3-6

other factor involved in choosing an implementation: Should a solution that is "more

incomplete" score lower than one that is "less incomplete?" A solution is more incomplete

when it has more random variables without active support nodes (it has a higher level of

incompleteness). Such a solution is less likely to be transformed into a complete solution

in the next generation via the mutation and crossover functions of the GA.

When scoring a given solution based on the existence of any incompleteness, we could

simply return a score that is less than E as soon as we find our first incompleteness. If

we choose to score on the level of incompleteness rather than the existence of incomplete-

ness in a solution, however, we must step through every state in the solution V to find

all incompletenesses. This takes linear time, O(n), where n is the number of supports.

Typically in a real world BKB, there are many more possible incomplete solutions than

complete ones due to the sparse population of supports. Therefore, the GA working on this

knowledge will tend to select solutions that contain many incompletenesses. By choosing

to only find the first incompleteness, i.e. the existence of incompleteness, we can reduce

the time it would have taken to go through all of the knowledge by a factor X, where X

is the average number of incompletenesses in a solution.

The problem with finding only the existence of incompleteness, is that the variance

of scores in a population is severely limited. With scoring based on existence of incom-

pleteness, the scores for all incomplete solutions must be the same4 . The GA then has a

harder time discerning which solutions to select for the next generation. This will make it

difficult to reach the optimal solution. In the implementation, used for this research, we

chose to search for all incompletenesses and score according to the level of incompleteness

in the solution. The method is justified because a solution that has a higher level of in-

completeness is less likely to be complete on the next generation than one that has a lower

level of incompleteness. The equation we use is

n
score(V) = fl(value(Sj,cmplete) V k) (3.3)

j=1

4Since all incomplete solutions are by definition impossible, it would be unfair to place any variance in
the scoring routine such that one incomplete solution seemed more likely than another.

3-7

where Sj,complete is the value of an active S-node supporting state j and k is a penalty

factor k < E. That is, for each random variable, if we find an active support for the state,

use that support's probability in the product; otherwise, use the penalty in the product.

Given a BKB, replacing any one element of the joint probability calculation with

the penalty factor k will cause the score to be less than E since k < E by definition. If

more than one incompleteness exists, the penalty factor becomes kX where x is the number

of incompletenesses; if k > 0, this produces the desired ordering based on the level of

incompleteness. Since kX < k < E, the score for multiple incompletenesses also meets the

requirement of equation (3.2), which can now be restated as

score(V) E (0, E) (3.4)

Now we summarize the computation of the fitness (score) of the solution for the GA.

1. Find the lowest valued support for each random variable, Sj,mnin. This only needs to

be done once (when the BKB is loaded).

2. Calculate score(V), using formula (3.3) with k E (0, E)

With this fitness function defined, we can build a Genetic Algorithm that can handle

reasoning over an incomplete Bayesian Knowledge Base.

3.2.2 Best-First Algorithms. Our topological search algorithm uses best-first

search as a backbone. With BFS, we are guaranteed that if we find a solution, it is

the optimal one. However, an unmodified textbook best-first search could not meet the

requirements of inference over a BKB. Specifically, we have added the requirements that

the reported solutions are complete and that implicit exclusivities (only one state per

random variable is chosen) have been maintained in the BKB5 . Therefore, we developed

an algorithm that only visited parts of the search space that contained valid solutions

(solutions that are complete and meet the mutual exclusive criteria). In the next few

5Even though all of the states of a random variable are present in the directed graph of a BKB, we can
only select one state per random variable to be present in our solution. Thus, all states of a given random
variable are mutually exclusive, and our search space must represent this mutual exclusivity.

3-8

paragraphs, we prove that the algorithm searches for the solution in a search tree that

contains only valid solutions. The overview of the proof is as follows:

1. We describe the search space (graph) S1 that contains all solutions both
full and partial.

2. We develop an algorithm C that visits a subset of this search space which
contains only complete solutions (both full and partial). The subset of S
visited by this algorithm is called S2

3. We develop an algorithm T that traverses S3, a subset of S that con-
tains members with only one state per component in any given solution.
Furthermore, this algorithm T only visits each member of S3 once (no
duplication). The algorithm effectively orders the members of S 3 into a
tree instead of a graph.

4. Finally, we combine the actions of both algorithms such that the final
search space is the intersection of S2 and S3. The result is a search tree
S 4 that allows us to reach any and only valid solutions from the root
without ever generating any duplicates.

First, we develop the notion of a search space containing the universe of possible

combinations of states in the BKB:

Let S1 be the search space (directed graph) that contains all possible combi-
nations of states in the graph. The search space includes the null solution and
contains paths from the null solution to every possible combination of one or
more states in the BKB. This search space contains both valid (A=T, B=T,
C=T) and invalid (A=T, A=F, B=F, C=T, C=F) combinations of states.

Now we present a rule that we use to generate a subset of S1 that contains only complete

solutions.

Rule 1. The selection criteria for which node to choose when expanding a solution in

algorithm C requires that if we add a node to an expansion, that node must be either a root

node, or have all of its parents already in the current solution6 . Furthermore, we restrict

C such that it only can generate solutions with at most one state per random variable.

Lemma 1. Only complete solutions are generated by the selection criteria.

6The parental constraint is an efficient means for guaranteeing completeness, but prevents the algo-
rithm's use on cyclic graphs. Generally, the knowledge acquisition process will not allow cyclic graphs [1],
however, if the problem domain includes cyclic graphs, other measures must be taken to ensure the solutions
are complete.

3-9

Proof. When expanding a partial solution, the selection criteria requires that the nodes it

considers to add to the solution are either root nodes or nodes that have all of their parents

already in the partial solution. Since the definition of an incomplete solution is that it is

a solution that contains at least one state that is not a root node and does not have all

of its parents specified in the solution, the selection criteria cannot generate incomplete

solutions. E

Now we describe a restricted search space that only contains complete solutions.

Let S2 be the search space (directed graph) of all complete solutions, both
partial and full. This space is a subset of Si that can be generated in algorithm
C by Lemma 1

The problem with a textbook best-first search is that its search space 82 is a graph. Since

there may be more than one path from the root node to a given partial solution, we may

traverse an entire path only to discover that it terminates in a partial solution that we

have already found through some other path. To eliminate this duplication, we develop

a search tree that guarantees no two paths will ever arrive at the same partial (or full)

solution.

Let S3 be the search tree of all possible full and partial assignments of the BKB
that have no more than one state selected from each random variable. This
tree is a subset of Si, but is not a subset of S 2. Now suppose that there is a
hypothetical algorithm T that can generate 83.

Now we develop the hypothetical tree generating algorithm T. A BKB is a directed

graph (DG). A map Mo is an arbitrary ordering of instantiation nodes in the DG. The

underlying concept of the algorithm T is to grow a tree by pulling a partial solution out of

a container ' Q, expand that solution by filling in one member of the solution vector, and

put the new expansion back in the container. It continues this process until no solution

vectors remain in the container. We formally define T as an algorithm that generates a

search tree. The definitions and steps for the algorithm follow, along with a set of rules

that govern its execution.

7 This container is not the equivalent to the open queue on in the best first routine. It is a conceptual

device that contains no ordering of its members.

3-10

Definition 6. The null solution is a vector where for all i, Vi has not been instantiated.

Definition 7. A partial solution is a vector where there exists an i such that Vi has not

been instantiated.

Definition 8. A full solution is a vector where for all i, Vi has been instantiated.

1. Attach M0 to the null solution. Put the null solution in the container Q.

2. Pull a partial solution V and its attached map M from the container Q.

3. Remove Mtp from the top of M. The remainder of the map is M'

4. Create a new solution vector V' by inserting of Mtop into a copy of V.

5. Attach a one copy8 of M' to VI, and one copy to V. Place both V' and V back in

the container Q.

6. Repeat Steps 2 through 5 until the container is empty.

Rule 2. [No Conflicting Instantiations] We can only expand a branch from a given solu-

tion by adding nodes that do not already have their random variable instantiated (i.e. if

A=T already exists in solution V, we cannot use node A=F also). If we cannot use the

top node on the map, we remove it and try the next node.

Rule 3. [No Further Expansions] If we remove a partial solution vector V from the con-

tainer Q and we cannot expand V any further, because there are no more members of the

map, we throw V away.

Rule 4. [Leaves] A branch is terminated by a leaf. Each leaf is a full solution vector (one

state for each random variable). When we arrive at the leaf, we don't have to put the leaf

in the container because we will not be expanding it any further.

Now we prove that the algorithm T produces a search tree that

* Contains no more than one state per random variable in any solution.

'In the actual algorithm, we use an indexing scheme on a global map rather than pass copies of the map
every time, but here we use the concept of passing copies for conceptual ease.

3-11

* Is capable of achieving all possible full solutions (both complete and incomplete)

Lemma 2. Algorithm T only generates solutions that contain no more than one state per

random variable in any solution.

Proof. Rule 2 forces any solution to contain no more than one state for every position in

the vector. Thus, our the property holds. El

The proof that the search tree is capable of achieving all possible full solutions follows.

It is comprised of several Lemmas and a culminating Theorem.

Lemma 3. Given a partial solution V and a map M, all expansions that extend V with

a single non-conflicting member of M will be generated as immediate descendants of V.

Proof. By Steps 2 through 6 and Rules 2 and 3, we are forced to make one expansion for

every member of the map that does not conflict. Thus, given a solution V with map M,

we will generate n =1 M I -c new child solutions where I M I is the number of members in

the map and c is the number of members of M that conflict with members already present

in V.

Lemma 4. The root will be expanded once for every node in the map.

Proof. Lemma 3 showed that given a solution V and map M, we will generate n =1 M I -c

expansions of the solution, where c is the number of nodes in the map that conflict with

V. When expanding the root, we are starting with V, the vector that has no members,

and thus no conflicts. c = 0 and n =1 M 1, the size of the map. Therefore, every node in

the map becomes a member of a immediate child solution of the root. El

Lemma 5. If a solution V is not instantiated in position i, and any node that could fill

i is present in the map M , all nodes that can fill the position i will be in the immediate

descendants of V.

Proof. By Lemma 3, every member of the map that does not conflict will be generated as

an immediate descendant of V. Since position i is currently empty, there are no conflicts

to prevent us from using each node that could fill position i in a separate immediate

descendant from V. []

3-12

Lemma 6. If a node is removed from map M' because it caused a conflict with solution

V', that node is already a member of a partial solution expanded by an ancestor of V'.

Proof. If a node on map M' conflicts with position i in V', we know that the node in

position i must have been added during an expansion in an ancestor of V. Let us call

the solution that was a parent of this expansion V. V was uninstantiated in position i.

By Lemma 5 all other nodes that could fill this position (i.e. conflicting nodes) became

members of the direct descendants of V. El

Lemma 7. If a node is a member of a solution V, that node does not need to be in the

map for future expansions of V or any expansions of the descendants of V.

Proof. By Rule 2 No Conflicting Instantiations, once a solution vector V' is generated

by expanding solution V with a node from M, all of the descendants of V' will also contain

that node. Therefore the node can safely be removed from the map M for future expansions

of V and future expansions of V' without eliminating any potential leaf solutions that

include the node. 0

Lemma 8. If a node conflicts with V, that node does not need to be in the map for future

expansions of V or any expansions of the descendants of V.

Proof. By Rule 2 No Conflicting Instantiations, if a node has already been removed

from a map M because it conflicted with an ancestors' solution vector, it will still conflict

with this solution vector and every descendant of this solution vector. Thus, the node

is not needed in this map M or the map of any descendant of this solution to reach all

potential leaf nodes. []

Lemma 9. If a node was removed from map M by a previous step, we are guaranteed that

all leafs containing this node have been or will be visited.

Proof. The proof for this Lemma is composed of two parts: one for the case that the node

was removed because it conflicted with a member of the solution and the other for the case

if it was removed during execution of Step 3.

3-13

Part 1: If a node was deleted because it was a conflict with a previous solution, then

Lemma 6 shows that this node will be a member of another branch.

Part 2: If a node is not present in a given solution's map, and that node is not in

conflict with any member of the solution, then it must have been removed using Steps 2

through 6 in an expansion that has already occurred in another branch of the search tree.

As such, we are guaranteed that either there is at least one partial solution in the container

that has this node as a member or that all of the leaf vectors that contained that node

have been expanded by Rules 3 No Further Expansions and 4 Leaf Nodes. We need

not concern ourselves with this node because Lemmas 3 and 7 ensure that partial solutions

containing the node will be expanded to leaf nodes if they have not been already. 0

Lemma 10. There can never be more than one path from a vector V to a descendant V'

of that vector that contains a node used to expand vector V.

Proof. Once a solution vector V is expanded, the expanding node Mtop is removed from

the map and no future expansions of the vector V or any expansions of its descendants

can possibly generate descendants that use Mtp. Thus, there can never be more than one

path from a vector V to a unique leaf node that contains Mtp. El

Theorem 1. The algorithm T, guarantees to develop a tree that contains every full so-

lution (leaf) composed of the members in the map. (Algorithm T generates a search tree

S3.)

Proof. The algorithm does not cease until the container is empty (Step 6). The container

can only be empty when the single step expansion function pulls the last solution from

the container and does not produce any descendants to place in the container. There are

only two occasions when Steps 2 through 6 do not put new solutions back in the container-

when the expansion uses the last node on the map and creates a leaf or when the expansion

removes the last node on the map because it is a conflict. In either case, the entire map

M0 is exhausted, and we know from Lemma 9 that all leaves containing each node of the

original map must have been visited. We know that this search space is a tree because for

any solution, Lemma 10 states that there is only one path from the root node V0 to it. El

3-14

Let S 4 be S 2 n $3. This is a search tree of all possible full and partial complete

assignments of the BKB that meet the mutual exclusivity requirement. As a
tree, it guarantees that no two paths will arrive at the same partial solution.

Because of the intersection with S 2 it guarantees that there are only complete
solutions in the tree.

Theorem 2. The intersection of S2 and S3 is a search tree S4 that contains only complete

solutions.

Proof. Since S3 is a tree containing all solutions, and S2 is a graph that contains only

complete solutions, their intersection produces a tree (because a tree is a subset of a

graph) that contains only complete solutions (because complete solutions are a subset of

all solutions). 11

3-15

IV. Algorithm Selection

This chapter stresses the importance of generating a strategy for inference and

presents the key research topics that inspired this thesis' method of inference strategy

development.

In the last chapter, we developed algorithms for reasoning over Bayesian Knowledge

Bases. If one of these algorithms could be shown to always outperform the others, we

would keep it and discard the rest. Unfortunately, Wolpert and Macready showed "that

all algorithms that search for an extremum of a cost function perform exactly the same"

and that "In particular, if algorithm A outperforms algorithm B on some cost functions,

then loosely speaking there must exist exactly as many other functions where B outper-

forms A" [23]. Thus, given that we don't know anything about the data we are searching

over, finding a search algorithm that would out-perform all other algorithms under all cir-

cumstances is impossible. Without the possibility of finding the perfect algorithm, these

authors suggest that researchers adopt special case algorithms to handle inference over

specific classes of problems. The special case algorithms should be chosen depending on

the nature of the problem to be solved.

The decision of which algorithm to choose in a single algorithm system for a special

case is simple: choose the one that has the best performance in that special case. Deter-

mining a priori which algorithm will have the best performance in the special case is the

inspiration for this thesis. Given the NP-hardness of reasoning over probabilistic networks,

and the limited resources available, our only hope is to choose the algorithm that has the

best chance of achieving a high solution quality quickly.

Similarly, if the inference system is using multiple algorithms to solve a problem, we

must be sure to choose the algorithm mix that has the best expected performance. Wolpert

and Macready's work on performance of two algorithms [23] can intuitively be extended:

running a mix of algorithms A,B, and C over a many instances of data will have an average

performance no better than algorithm mix D, E, and F. Therefore, if we wish to achieve

4-1

a better than average performance, we must choose a custom algorithm mix that is suited

for the particular case we are inferencing over.

The choice of which algorithms to run on a given problem is constrained. We have

limited computing resources and limited time, yet we desire an answer as soon as possible.

Common sense tells us that the longer we are willing to wait, or the more computational

power we use to solve a problem, the better the answer will be. In most cases, over the

course of one inference problem, our set of computing resources will be fixed; it is unlikely

that a new computer will be purchased and incorporated into the reasoning process before

the system has provided a solution. The two variables that remain, time and solution

quality, are traits that are inversely proportional when regarding the inference process [24]

If we examine the solution quality of a given algorithm over the time it took to produce

that solution, we would be looking at a performance profile of that algorithm (solution

quality vs. time curve). If we had a way of knowing a priori what the performance profiles

of algorithms A through F were for a given instance of a problem, we could determine

which algorithms we would use in our mix. One task required of choosing the appropriate

set of algorithms is to predict their performance profiles.

An exact algorithm with the anytime property, an algorithm that can produce re-

sults of monotonic increasing quality at successive interruptions to their processing, will

have a consistent performance profile every time it is run on the same problem. Yet the

performance profile of an exact anytime algorithm may vary from one problem instance

to another. This phenomenon implies that there are characteristics inherent within the

problem that affect the performance profile of the algorithm. If these characteristics can be

isolated, the performance of an exact anytime algorithm can be predicted. Zilberstein and

Russell [24] have classified performance profiles of anytime algorithms into several cate-

gories: Performance Distribution Profiles(PDP), Expected Performance Profiles(EPP) and

Conditional Performance Profiles(CPP). PDPs and EPPs depend on the overall average

response of algorithms. CPPs, however, describe performance of an algorithm in response

to a specific characteristics of the input. Discovering domain characteristics in the input

that effect variance in performance improves the accuracy of our CPP. Preliminary work

in this area performed by Jitnah and Nicholson shows that domain characterization may

4-2

be useful for predicting inference algorithm performance on a belief network for a new

application domain using Likelihood Weighting, Logic Sampling and Jensen's algorithms

over belief networks [13].

An anytime approximation algorithm such as a genetic algorithm will rarely exhibit

the same performance each time it is run on a specific problem. In fact, Zilberstein states

that performance profiles in the strict sense can only be defined for deterministic algo-

rithms [24]. Because the approximation algorithm doesn't have to "build" a solution by

taking incremental steps through some search space (as does an exact algorithm), it may

discover the optimal solution at any time in its execution. In fact, the optimal solution

may actually be a member of the first population. On the other hand, the approximation

algorithm may never find the optimal solution because of its semi-random solution gener-

ation process. At first, this may seem to inhibit our ability to predict performance. But

as we shall see, the average performance of an approximation algorithm does tend to vary

from one problem to the next.

The performance of an algorithm is based on two factors: the characteristics of its

input domain and the reaction of the algorithm to the input. In this work, each algorithm

is treated as a black box- If we assume that an algorithm will perform exactly the same

with a given input (or with some average performance, in the case of an approximation

algorithm), we can abstract the behavior of the algorithm from its performance. By doing

this, we shift the responsibility of the performance of an algorithm to its input. If we

can create a model of the input that captures features that affect the performance of

the algorithm, we can predict the performance profile of the algorithm without knowing

anything about the algorithm itself.

In the process of characterizing the input, we must keep in mind the following criteria

when choosing the domain characteristics we wish to examine:

" Each feature must be measurable and representable as a single numerical value.

" Preferably, each feature should be mutually exclusive from all other features (such

that each feature can be varied independently from the others).

4-3

* The time needed to calculate the features (or characteristics) of the input must be

small relative to the time required for inference.

In the PESKI environment, the input to the inference algorithm is the knowledge

stored in a Bayesian Knowledge Base. Since a BKB is essentially a graph that stores costs,

it can be modeled in terms of various topological and probabilistic characteristics.

Topological characteristics range from basic countable features of the graph such as

number of nodes and number of arcs, to computable features such as cyclomatic complex-

ity [14] (the number of independent paths through a network). Cost characteristics range

from the simply calculated cost-range metric to the more complex measure of extreme-

ness [17]. This research uses a subset of these characteristics to predict the performance

profile of an anytime algorithm.

Since each class of algorithm is different, and each requires its own set of character-

istics for performance prediction, our complete set of characteristics must be the union of

the individual sets that affect each algorithm we are examining. Once the set of charac-

teristics has been chosen, we can begin to correlate the effects the characteristics have on

the performance of the algorithms.

4.1 Predicting Performance

This section extends the usage of Zilberstein and Russell's concept of conditional

performance profiles [24]. Originally, the CPPs were used to show how a characteristic

of the input affected the performance of an algorithm. Here we present a method for

using performance data gathered off line to predict future performance of algorithms on

new problems. Ultimately, the predicted performance of algorithms allow us to select the

algorithm that is most likely' to have the best performance on that problem.

Figure 4.1 shows a method for estimating future performance. A knowledge base is

analyzed into a set of characteristics. Each algorithm is executed individually on a single

knowledge base and provides a set of solutions. These solutions are analyzed and the per-

formance profiles for each algorithm are generated. A mapping relation is created between

1Based on statistical analysis of the collected data.

4-4

~C=:))+ w= __

ALGORITHM LIBRARY SOLUTIONS
KNOWLEDGE BASE

S I
SETMapping Relation .ll

FEATURES

PERFORMANCE PROFILE

Figure 4.1 The Transformation: Features to Performance

the characteristics and the performance profile for each algorithm. The mapping relation

is used to predict the performance of algorithms based on the domain characteristics of

the knowledge structure.

Now we examine the mapping relation formally.

A conditional performance profile is a set 11 of tuples < r, o > where -r is the time

from the start of execution and o is a solution quality at that time. Typically 0 < 0- < 1.

Formally, the mapping relation A can be defined in terms of the set of characteristics F,

the algorithms A and the performance tuples [I:

A: IF x A --+ (4.1)

To predict the performance of an algorithm, we must develop the A relation. Devel-

opment of this mapping relation is composed of five steps:

1. Find a set of characteristics of the network that are differentiating characteris-

tics (DC).

4-5

2. Collect networks that exhibit a variety of values over all of the selected DCs. This

collection is called the test suite.

3. Gather data on the performance of algorithms when the DCs are varied.

4. Generate the relation that can be used to predict performance of the algorithms.

5. Test the relation.

Now we examine the steps to achieve this goal in detail.

4.2 Differentiating Characteristics

To be a differentiating characteristic, a feature must possess the quality that varying

it causes different performance responses on each algorithms. For example, let us suppose

their is some hypothetical characteristic 7 that we wish to examine.

Non-Differentiating Characteristic Differentiating Characteristic

B 2

Value of Characteristic - Value of Characteristic

Figure 4.2 Non-Differentiating vs. Differentiating Characteristics

Figure 4.2 shows how the value of 7 might affect two hypothetical algorithms A and

B2. On the left side of the figure we see that as 7 increased, it took longer to reach a

desired solution quality for both algorithms. Even though they both have different curve

constants, the two curves never intersect once they leave the origin. Thus, we would alwaiys

select algorithm B for inference because regardless of the value of 7, algorithm B always

2 The hypothetical performance graphs shown assume that all other performance-affecting characteristics

except for - were held constant. In reality, it is nearly impossible to hold all other characteristics constant
while varying only one. These graphs present an idealistic situation.

4-6

takes less time than algorithm A to reach a given solution quality. Therefore, -Y is not a

differentiating characteristic between algorithms A and B. If we look at the right side of the

figure, we notice that the performance curve for hypothetical algorithm C intersects the

performances of both the other algorithms. Thus, when - is greater than the critical point

(the projection of the intersection of curves B and C on to the x axis), we would choose to

execute algorithm C, but when it is below the critical point, we would run algorithm B.

A secondary requirement of a DC is that it must be easily computable. If the time

to compute a characteristic takes as long as actually executing the inference algorithm, it

would be unwise to invest the time to compute it.

Now each of the characteristics examined in this research is discussed.

4.2.1 RV Count. RV count is one of the easiest metrics to compute for a BKB.

RV count is the number of random variables in the BKB. RV count is a potential DC for

differentiating performance of Genetic Algorithms and Best First Search because it is a

topological characteristic of the network. A GA should be affected less by the variance of

RV Count than BFS.

4.2.2 Completeness. Completeness is a measure of how fully stipulated our

knowledge is, and is related to the number of support nodes 3. Hence, completeness is a

topological characteristic of our graph. Completeness is a key element that differentiates

BKBs from Bayesian Networks.

Every Bayesian Network can be converted into a BKB. Bayesian Networks, by def-

inition contain fully specified (complete) knowledge, therefore an equivalent BKB is also

complete4 . We define the upper bound of our completeness metric as the number of rules

(support nodes) in this fully specified network (Smax). If we removed several support nodes

and their adjacent arcs from the BKB it would become less than fully specified. Our lower

bound for the completeness metric is defined by the minimum possible number of rules

3The number of support nodes is equivalent to the number of conditional probabilities: essentially this
is how many "rules" we have in our knowledge. Therefore, the more support nodes we have, the more rules
we have and the more complete our knowledge.4To be more precise, a complete network is one that has a computable joint probability for every
combination of instances of each component.

4-7

in a BKB. Banks' Constraint 1 [1] for BKBs forces every instantiation node to have as

a minimum one support in its tail. Thus, there must be at least as many supports in a

BKB as their are instances of all its random variables. The lower bound of completeness

(Sm i) is equal to the number of instances (states) in the BKB. With these upper and

lower bounds established, our metric for completeness is defined as the relationship of the

number of support nodes (supports) in a BKB relative to the upper and lower bounds for

that BKB.

completeness -supports I - (4.2)
Smax - Smin

Note that we defined the maximum number of supports (Smax) with reference to a

Bayesian Network. This value can also be calculated by figuring how many supports would

be necessary to make a given BKB complete. This number is equivalent to the product

of the number of states for every parent random variable having an arc to a child random

variable multiplied by the number of states of the child's RV. For example if our BKB from

Figure 2.3 had only supports s and x present (the minimum number of supports required

by Constraint 1), we could calculate the number of supports required to make it complete

by taking the product of the number of states of each parent random variable (2 x 2) and

the number of states of the child random variable (2). Thus, Smax = 2 x 2 x 2 = 8 the

number of support nodes to make this network complete.

Completeness is predicted to be a DC between the GA and the BFS because each

algorithm has a different method for dealing with incompleteness. Our BFS, for example,

does not expand a path to a solution if it contains any incompleteness. If there are

many incompletenesses, the BFS may have to search for a long time before finding a path

that doesn't contain incompletenesses. A GA, on the other hand, is not prevented from

generating incomplete solutions, but it must evaluate each one it generates. Therefore, the

level of completeness of the BKB should have a different effect on the performance of the

GA than on the BFS.

4-8

4.2.3 Cyclomatic Complexity. McCabe's Cyclomatic Complexity [14] (CC) is

traditionally used as a software engineering metric to determine if a section of source

code is too complex to maintainable. Cyclomatic Complexity is effectively the number of

independent paths through the code5.

Formally, CC is

e - n + 2 (4.3)

where e is the number of edges in the BKB and n is the number of nodes (both state

nodes and support nodes). Note when CC is computed in the software arena, a virtual

"Start Node" and "Finish Node" are added to the network. All root nodes in the network

are then connected via arcs to the "Start Node", and all leaf nodes are connected via arcs

to the "Finish Node". Thus, we effectively have 2 extra nodes in our computation and

Ileafnodesl + Irootnodesl extra edges.

We adopt this metric because it has potential to be a DC between GAs and BFSs. A

Best First Search can potentially travel down every independent path in the BKB before

it finds a solution. In contrast, Genetic Algorithm is not concerned with the topological

arrangement of nodes in the BKB, except in verification of completeness. Therefore, we

assume that all else equal, varying the cyclomatic complexity would cause a Best First

Search to demonstrate variances in performance, while the GA was unaffected.

4.2.4 Skewness. Skewness is a metric proposed by Jitnah and Nicholson [13] in

their work on domain characterization. The equation they used is

skv(v) =I Vi (-.4)
i 1 (4.4)1-+ ET =2

Skewness is computed for each random variable, where v = (V, .., Vm) is the condi-

tional probability table6 for that RV. The top of the skv(v) fraction essentially computes

5McCabe's metric describes the maximum number of independent paths, and thus, the number of test
cases required to show that a piece of code works properly

6Although a conditional probability table is only formally defined for BNs, an equivalent structure can
be defined for a BKB: it is a table composed of the supports that are parents of each of the states in a
random variable. Thus, in Figure 2.2, the table is composed of supports s through z

4-9

the variance of the conditional probability table, and the bottom is a scaling factor that

scales skv(v) between 0 and 1.

In this work, we used the equation

s-= I1 - vii (45)sky(v) =+(4

no

where no represents the number of states of the random variable being examined. The

difference between the equation 4.4 and 4.5 is in the denominator. The denominator of

equation 4.4 allowed the skewness to exceed 1.0, while equation 4.5 guarantees the skewness

to be no greater than 1.0.

Given a conditional probability table, the maximum skewness occurs when all mem-

bers of the table are either 0.0 or 1.0. In a probability table for a R, a no state random

variable, there exists t possible entries containing a probability of 1.0.

k

t = Ilni (4.6)
i=1

where k is the number of parent random variables of R and ni is the number of states of the

ith parent. Thus, using the numerator of Equation 4.4, our maximum possible skewness is

rn-i 1
t x M + t x (n,-1) x- (4.7)

m m

which is reduceable to
m-2 +1 (4.8)

no

Hence, we use Equation 4.8 as the denominator for our calculation of skewness.

Skewness is selected as a DC because it is a probabilistic characteristic, and therefore

is more likely to affect the GA than the BFS algorithm. We expect that a BKB that has a

large average skewness across all of the random variables is more likely to have a larger set of

possible unique joint probabilities. With a larger set of joint probabilities, the gaps between

possible joint probabilities become smaller. Hence there are smoother probabilistic slopes

for the GA to climb. The BFS should not be affected by the smoothness of the probabilistic

4-10

slopes because it makes low level decisions about which path to take by selecting the path

with the higher probability, and is not concerned how much higher the probability of that

path is. Thus, skewness should differentiate the performance the GA from the BFS.

4.2.5 Extremeness. In a "normal" diagnostic network [17] each random variable

has a most likely state (instantiation node). That is, the highest joint probability in the

network is obtained by inferencing over the path containing the most likely states for each

random variable. When evidence is obtained that does correspond to the most likely states

of the random variables, we are said to have a fault, or problem condition. For example,

the "normal" state of the human body is good health. If we could create a ideal network

that represented the state of the human body, the most likely state of the network, given

no symptoms of ailment would describe a condition of good health. When we introduce

evidence of a symptom (a fault state) to the network, them most likely state of the network

would change to reflect the condition of the body with the related health problem(s).

From a probabilistic viewpoint, in order to make an inference algorithm find the

"normal" state of the network, the normal instantiation nodes must be much more likely

(be supported by much higher probability support nodes) than the other instances of their

respective random variables. Poole has shown that in such an "extreme" network [17],

certain algorithms perform better (converge on a solution faster) than in non-extreme

networks.

Poole [17] has indicated that to be "extreme", a network must exhibit the property

that given n as the total number of non-normal instantiation nodes (fault states) in the

network, there exists an upper bound f =-1 such that none of the fault instantiations can

have a conditional probability greater than f. We extend this notion to define the level of

extremeness of a network by replacing the previous equation with f = . Hence, givenex"

that we know the highest non-normal probability in a network is f and the number of fault

nodes is n we can calculate the extremeness of the network by

e =(4.9)
fxn

4-11

With this equation, we get a network that Poole would consider extreme whenever e > 1.

In an extreme network, the solution space is a flat landscape of extremely low prob-

ability solutions with a handfull of very high probability spikes protruding from it. Since

a GA seems to perform better in a smoothly sloped solution space, and a BFS seems to be

able to quickly find the spiked joint probabilities, extremeness is a potential DC between

GAs and BFSs.

4.3 Collecting Networks

After identifying which features are likely to affect the performance of our algo-

rithms, the next step is to gather networks that exhibit a range of values for each network.

Considering that there are very few BKBs in existence currently, it became necessary to

generate networks. AFIT had a large number of randomly generated Bayesian Networks

in existence. By converting these networks into BKBs then modifying the BKBs through

several instances of each characteristic, we were able to generate a large sample space for

our algorithm tests.

4.4 Gathering Performance Data

The next phase collects performance data for each algorithm for each candidate

differentiating characteristic. Several networks were generated for each value of a charac-

teristic -yl . . . -yn in the previous phase. Each anytime algorithm in the set A is executed

on each network 7. Each run of a specific algorithm creates a performance curve of time

vs. solution quality. When all of these performance curves are combined on a graph, they

form a CPP, essentially a "contour" map (a way of representing a three-dimensional space

in two dimensions) of the algorithm's performance over various values of Y. By taking a

horizontal slice across the CPP and projecting the intersection of the performance curves

onto the x axis, we achieve a dataset of time to reach a given solution quality (the utility

7Approximation algorithms necessitate examining an average performance curve over several runs be-
cause of their non-deterministic nature. Exact algorithms, in contrast require only a single execution
because they are deterministic.

4-12

of the algorithm) vs. characteristic value. The subsequent plot of this data is a utility

curve that reveals the characteristic's effect on the algorithm.

Contour Map of Performance Utility Curve

I I

Time - Value of Characteristic

Figure 4.3 Conditional Performance Profile and Utility Curve

Figure 4.3 shows a hypothetical algorithm's CPP, and its corresponding x axis pro-

jection, the utility curve. When we plot utility curves from several algorithms, we achieve

a plot similar to the one in Figure 4.2. From these multi-curve plots, it is easy to locate

the critical points where two or more algorithms' utility curves intersect.

4.5 Creating a Relation

The next phase is to coalesce the critical points into a mathematical relation that

can be used in the decision process for selecting which algorithm to run under constrained

resources. The method this research uses is to examine the critical points. Whenever a

decision needs to be made, we simply determine whether or not the DCs for a network

are above or below the critical points. Then we choose an algorithm accordingly. The

Conclusions and Future Research chapter discusses the limitations of this method in greater

detail.

Once the relation has been created, we can use it to predict which algorithm will

perform better on the given BKB. The next chapter shows the experimental results that

allow a relation to be built.

4-13

V. Experiments

This chapter focuses on the effects of the distinguishing characteristics on the per-

formance profiles of the GA and the BFS. Empirical results show that there are critical

points in the utility graphs comparing these two algorithms.

Eighty-five networks were created, over a variety of values for characteristics. Metrics

for the characteristics were collected for each graph. For each metric, graphs were cate-

gorized into subgroups based on the value of the metric. Then the average performance

of each subgroup was taken. The resulting average performance curves were compared

between the GA and the BFS. In the conditional performance profiles (CPP) presented in

the next sections, the X axis represents time in seconds and the Y axis is the normalized

logarithm of the solution quality'. The snapshot graphs (SS) provide a view of the char-

acteristic (X axis) vs. the log solution quality at a given instant in time (Y axis). In the

utility curves, (UC) the X axis represents the value of the characteristic, while the Y axis

is the time to achieve a constant solution quality. Where two lines cross on a UC is the

critical point where both algorithms perform the same.

5.1 Extremeness

This section examines the effect of extremeness on the performance of the GA and

BFS algorithms. Figures 5.1 and 5.2 show the results of extremeness for the algorithms

in the three subgroups: extremeness = 0.00-0.05, 0.05-0.50, and 0.50+. Each contain

the average performance of both algorithms over several complete BKBs that fit into the

extremeness subgroup. The actual averages for the low, medium and high extremeness

metrics are 0.03832, 0.2724 and 20.53.

Figures 5.3 and 5.4 show zoom views of the effects of Extremeness on the BFS and the

GA. Notice how the BFS is affected by extremeness: when reasoning over a knowledge base

'The curve is normalized by taking dividing the actual solution quality at any point by the best solution
quality found by any algorithm in the system for that BKB. The graphs are presented on a log scale,
therefore a 0.0 represents the maximum solution quality achieved by any algorithm for that BKB.

5-1

A A

0 0

AI
iI,~I

II I.O

0 W)

OQQOAA-

AAAAm

I.

I

*I
* L

Fiur 5. :Efcso xrmnsso efrac fAgrtm

5-2

I

I - -
I I I

Figure 5.1 CPP: Effcts of Extremeness on Performance of Algorithms

5-2

0

• IA

- I5-
:1 I

II

I 66dd0

'I

II

00

I

- l

" I " II

Figre .2 PP Effct ofEteeeso efrac o loihs(lsu iw

5-

0

-10
.......

-20

-30

-40 '

BFS e >0.5

-50BFS 0.05 >e >0.5
BFS 0.05 >e

-60

-70
0 200 400 600 800 1000

Figure 5.3 CPP: Effects of Extremeness on Performance of BFS (Closeup View)

0 I---------- --- ---------------------------
............

............

-10

-20

-30

-40

-50-GA00>e

-60

-70
0 200 400 600 800 1000

Figure 5.4 GPP: Effects of Extremeness on Performance of GA (Closeup View)

5-4

with high extremeness, it performs very well, yet if the extremeness drops below 0.5, its

performance is sluggish. In contrast, the GA seems to do very well with low extremenesses,

and very poorly with high ones.

2500 I

BFS at SQ - -25
GA at SQ - -25

2000

1500

1000

500

0
0 5 10 15 20 25 30 35 40

Figure 5.5 UC: Effects of Extremeness on BFS and GA at SQ=-25

The next step in the method is to generate the utility curves for each algorithm. The

utility curves were plotted by taking a horizontal slice across the CPPs at a log solution

quality of -25. The intersections of the various performance curves with this slice were

projected onto the X axis to determine the value of the Y axis (time to reach log solution

quality -25) in the utility curves. Then the utility curves were plotted. Note that for

Figures 5.5 and 5.6, instead of using the average values for the subgroups of extremeness,

we plotted the actual values observed from each network's performance. The result is a

much more detailed utility curve.

Notice the critical point (crossing of the algorithms' utility curves) in Figure 5.6. At

extremeness of approximately 0.1075, this utility curve shows that both algorithms took

the same time to reach a normalized log solution quality of -25. Thus, if the extremeness of

a network was greater than 0.1075, our strategy choosing scheme should choose to execute

a BFS algorithm, yet if it was less than 0.1075, a GA gives a better performance.

5-5

2500 1 1

BFS at SQ--25-
GA at SQ--25.

2000

1500

1000 -Critical Point

500
..

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5.6 UC: Effects of Extremeness on BFS and GA at SQ=-25 (Closeup View)

0

..

-5

-10

-15 7 BFS SQ at 1000 seconds -

GA SQ at 1000 seconds.

-20 I

0 5 10 15 20 25

Figure 5.7 SS: Effects of Extremeness on BFS and GA at Time = 1000 seconds (Closeup
View)

5-6

Unfortunately, a log solution quality of -25 is far from optimal. If we wish to compare

the utility of algorithms as they approach the optimal solution, we need another indicator

for showing average performance after the algorithms performances have leveled off. From

Figure 5.1, we see the performance of the algorithms seem to level off at about 1000 seconds.

Figure 5.7 is a snapshot of extremeness versus log solution quality.

Notice that at very low extremenesses, the BFS outperforms the GA. Through the

midrange (1.0 < extremeness < 17.0) the GA performs the best, but above 17.0, the

BFS once again becomes the algorithm of choice. Thus, once a CPP has leveled off, a

snapshot graph can point out the relative performance of algorithms based on the value of

a characteristic from that time forward.

5.2 RV Count

The effect of RV count (the number of random variables in the BKB) on the perfor-

mance of the BFS and GA is examined in this section. Two groups of 20 BKBs each were

formed, one of 20 RV BKBs and one of 30 RV BKBs. Figure 5.8 shows the resultant CPP.

...

-10- -- -------------------------------------

-20

-30

BFS 20 Nodes
_40 GA 20 Nodes.
- I BFS 30 Nodes ---
50 Ii GA30Nodes "

-50 I

-60 I I I I I
0 200 400 600 800 1000 1200 1400

Figure 5.8 CPP: Effects of Random Variable Count on Performance of Algorithms

5-7

1000

900

800 BFS at SQ = -10
GA at SQ - -10.

700

600

Critical Point

400

300 .

200 .

100 ...

0
20 22 24 26 28 30

Figure 5.9 UC: Effects of Random Variable Count on Performance of Algorithms at
SQ = -10

In Figure 5.9 we see the utility curve for the GA and the BFS when log solution

quality is -10. Notice the critical point at approximately 21. Using this UC as a decision

making tool, and assuming all other features equal, we would choose the BFS algorithm

when the RV count was below 21 and the GA when the node count was above 21.

Another intersting feature of this graph is the slope of the two curves for BFS and GA.

Notice that the slope for the GA is lower than the slope of the BFS (approximately 35 com-

pared to 90 respectively). This phenomenon shows that the RV count has a much greater

affect on the BFS than the GA, adding evidence to our claim that a topological-based

search algorithm is more likely to be affected by topological features than a probabilistic

algorithm.

5.3 Completeness

The effect of completeness on the performance of the algorithms is presented in

this section. Four subgroups were composed of BKBS with 33, 50, 75 and 100 percent

completeness. Figure 5.10 presents a picture of the performance profiles for the GA and

5-8

r0

III

'i I

')
i e,,:'1
I

0

I 0

0 0 0

000

"'I 0

-.-. I I"

I 0%

'I --. . .L 0

I II

Figure 5.10 CPP: Effects of Completeness on Performance of Algorithms

5-9

-20

-40

--- -------------------------

-60;

-80 .BFS 100%
BFS 75%.
BFS 50%--

-100 BFS 33%

-120
0 500 1000 1500 2000

Figure 5.11 CPP: Effects of Completeness on Performance of BFS (Closeup View)

0 7I. .7

-5

-10

0 500 10005020

-5-1

BFS on each of the four groups. Figures 5.11 and 5.12 show close up views of the

performances over each of the four groups.

4000 I

3500

3000 BFS at SQ -57
GA at SQ = -57.

2500

2000

1500

1000

500

30 40 50 60 70 80 90 100

Figure 5.13 UC: Completeness vs. Time

A utility curve for the log solution quality of-57 is provided in Figure 5.13. A solution

quality of -57 was the maximum average solution quality achieved by the BFS algorithm

for a 33 percent complete graph. Therefore this was the maximum SQ point useable for a

utility curve. Notice that the BFS is highly affected by the changes in completeness while

the GA appears unaffected. Since completeness is a toplogical characteristic for a BKB,

we would assume that it has a greater effect on the BFS than the GA.

5.4 Cyclomatic Complexity

This section examines the effect of cyclomatic complexity on the performance of the

GA and BFS algorithms. Figure 5.14 shows the results of CC for the algorithms. The

three subgroups, CC = 3000-4999, 5000-7999, and 8000-10999 each contain the average

performance of both algorithms over 12 BKBs that fit into the CC subgroup. The actual

averages for the low, medium and high CC metrics are 3918.3, 6135.6 and 9557.66.

5-11

0

- 0

Ir

I 0

I0
i I.

I C

0 0 0

0

00

II I

i I ,'I

" J | i....- I I I I

'- 00

Fiur 5.1 CP:Efcs fCcoacCmlxiyo efomneo Agrtm

5-12

-- - 0

I I

Figure 5.14 CPP: Effects of Gyclomatic Complexity on Performance of Algorithms

5-12

Close views of the performance of the BFS and the GA can be seen in figures 5.15

and 5.16. When examining these figures, observe that the x and y axis scales are different

for each figure.

-40
-50 --

-70 '"'

-80 ['

-90

-100 FS CC: 8000-10999
BFS CC: 5000-7999.

-110 BFS CC: 3000-4999 ---

-120

I I I I I I

-130
0 500 1000 1500 2000 2500 3000 3500

Figure 5.15 CPP: Effects of Cyclomatic Complexity on Performance of BFS (closeup
view)

In Figure 5.15 we see that there effects of cyclomatic complexity on the BFS are

substantial, yet in Figure 5.16, we see that CC has little effect on the performance of the

GA. As expected, CC, a topological characteristic, has a greater effect on performance of

a topological reasoning algorithm than on a probabilistic algorithm.

The utility graph presented in figure 5.17 depicts the time needed to achieve a con-

stant log solution quality of -60.0. This was the maximum achievable average solution

quality for the low CC group. The utility curves demonstrate that the GA could always

achieve a solution quality of -60.0 before the BFS. The BFS took less time as the cy-

clomatic complexity increased, while the GA held a constant time to reach that quality.

Notice that there are no critical points in this graph. When there are no critical points on

a particular UC, one algorithm always outperforms the other algorithm for the range of

the characteristic expressed and the solution quality desired.

5-13

0 - -

-5

-10 . '

-15

-20

-25

-30 GA CC: 8000-10999
GA CC: 5000-7999.

-35 GA CC: 3000-4999 -- -

-40 SI I

0 500 1000 1500 2000 2500 3000 3500

Figure 5.16 CPP: Effects of Cyclomatic Complexity on Performance of GA (closeup
view)

2500

2000 BFS-cc

GA-cc

1500

1000

500

0 I

3000 4000 5000 6000 7000 8000 9000 10000

Figure 5.17 UC: Cyclomatic Complexity vs. Time

5-14

5.5 Skewness

The effect of average skewness on the performance of algorithms was examined for

several BKBs. The results are presented in this section. Figure 5.18 presents an overview

of the effects of skewness, while Figures 5.19 and 5.20 present closeup views of the effects

of skewness on the BFS and the GA.

Figure 5.21 is a utility curve generated for a desired log solution quality of -13.5.

Notice the critical point at a skewness of 0.94. Decisions made on the basis of this UC

would indicate that if skewness was below 0.94, we would choose to use a GA, while if the

skewness was above 0.94, the BFS would reach the desired solution quality the fastest.

5-15

'II

0

ii =

I:

CN (O 00 0 r-00
I I

I I*.. .i.I d

I5.-

II O O000C-

II I I I I I I I -

* I 0 .

I ",'.

• L

5-16

0

-20 " ------ ---

-40

-60

-80 BFS 0.95 - 1.00
* BFS 0.85 -0.95

-10 BFS 0.75 -0.85 ---
-10 BFS 0.65 -0.75...

-120

-140 I I

0 200 400 600 800 1000 1200 1400

Figure 5.19 CPP: Effects of Skewness on Performance of BFS

F -,. r--.

-20

-40

-60

-80 GA 0.95- 1.00
GA 0.85- 0.95.
GA 0.75 -0.85 -- -

-100 - GA 0.65 - 0.75 . . .

-120

-140

0 200 400 600 800 1000 1200 1400

Figure 5.20 CPP: Effects of Skewness on Performance of GA

5-17

4500 I

4000

3500 BFS at SQ--13.5 -

GA atSQ- -13.5.
3000

2500

2000

1500

1000

500 Critical Point

0 40
0.7 0.75 0.8 0.85 0.9 0.95

Figure 5.21 UG: Effects of Skewness on Performance of GA

5-18

VI. Conclusions and Future Research

The last chapter presented the experimental results of the effects of domain characteristics

on the performance of algorithms. This chapter presents a discussion of those results

and their applicability towards performance prediction and selection under constrained

resources. This chapter also elaborates the benefits and limitations of the approach and

concludes with a description of future research in this area.

6.1 Discussion of Results

The experimental results presented in the last chapter comprised the first three steps

in the five step strategy building process outlined in Section 4.1:

1. Find a set of characteristics of the network that are differentiating characteristics

(DC).

2. Collect networks that exhibit a variety of values over all of the selected DCs. This

collection is called the test suite.

3. Gather data on the performance of algorithms when the DCs are varied.

4. Generate the relation that can be used to predict performance of the algorithms.

5. Test the relation.

The first three steps in this process showed that performance of algorithms is related

to the characteristics of their input domain. The fourth step promoted the concept of the

critical point, the value of a characteristic where the utility of using either algorithm was

the same.

Chapter V simulated the fourth step in the strategy building process for each charac-

teristic on an individual basis by explaining which algorithm should be chosen for various

values of that characteristic.

For the BFS and GA, we found that RV count, skewness and extremeness each had

discernible critical points in their utility graphs. These characteristics are applicable in

the decision of which algorithm to use for best performance. The other characteristics,

6-1

cyclomatic complexity, and completeness are useful in conceptualizing the behavior of an

algorithm under various values of the characteristic.

6.2 Limitations of this approach

The benefits of this approach are that it is easy to understand, and also provides

very clear indications of which algorithm should be used based on the critical points in

the utility curves. However, this approach has several limitations which may curtail its

widespread use.

The approach is time intensive. It requires a suite of domain instances to be run

on each algorithm so that performance data can be gathered and the critical points can

be calibrated. The research performed for this thesis took over 680 hours of CPU time

on Sun Ultra-Sparcs to generate performance data for two algorithms. Few organizations

can afford an entire month of CPU time for calibration purposes. Furthermore, if any of

the algorithms are modified, the entire test suite must be re-run to generate performance

curves. Then utility curves must be generated, and new set of critical points must be

calibrated.

The approach is experimental in nature. It relies on a statistical analysis of a large

sample space of data to predict future performance of algorithms. While statistical analysis

can uncover trends, no number of experiments is sufficient to prove a theory.

No number of experiments is adequate to prove a theory, however, statistical anal-

ysis of large samples can show trends. This approach relies on a statistical analysis of a

large sample space of performance curves, further increasing the preprocessing needed for

accurate calibration of critical points.

The approach treats the algorithms as black boxes. By predicting performance solely

on the domain characteristics, we cannot hope to comprehend the idiosyncrasies of the

algorithm. There may be a niche of "abnormal" performance that is caused by the internal

workings of the algorithm, and if our test suite is not comprehensive enough, we may miss

that anomaly. Even if we locate the anomaly with this approach, we may not have a

method to cope with the abnormal performance when calibrating the critical points.

6-2

6.3 Future Research

There were several focuses of this research effort. They are listed below in order of

importance.

* Demonstrate the validity of predicting conditional performance profiles using domain

characteristics as discriminators.

e Develop algorithms for inference over BKBs

* Extend the awareness of the benefits and limitations of using the Bayesian Knowledge

Base structures for inference.

Chapter III discussed the benefits and limitations of the Bayesian Knowledge Base as a

structure for inference. We showed that while the BKB's structure eases the knowledge

acquisition process, it puts the burden of handling incompleteness on the inference engine.

As shown in Figures 5.10, 5.11, and 5.12, the more incompleteness in a BKB, the worse

the performance of a topological algorithm, even though there are fewer arcs and supports

remaining in the BKB. This problem presents a large area of available future research:

coping with incompleteness. The research can be decomposed into two subareas: Coping

with incompleteness before the BKB is inferenced over (in the knowledge acquisition or

verification and validation phases,) and coping with incompleteness during inference.

This thesis made several assumptions about coping with incompleteness during the

development of inference techniques (Chapter IV):

" A complete solution (even a zero probability complete solution) is always better than

an incomplete solution

" All incomplete solutions can be ordered by their level of incompleteness. Thus, the

higher the level of incompleteness in a given solution, the worse that solution is.

These assumptions may need to be challenged in future research. By modifying or elim-

inating them, new policies for dealing with incompleteness during inference could allow

more efficient inference algorithms.

While this research shows that predicting performance based on domain character-

istics is plausible, there are many limitations in the approach. One of the assumptions

6-3

made for this research is that the randomly generated BKBs represented a large range of

potential real world BKBs. Currently, no real world validated BKBs exist, and the time

required to develop and validate a real world knowledge domain precluded generating the

many BKBs that would be needed to perform the experiments exhibited in the last chap-

ter. Future research, however, could validate the results of the experiments seen in the last

chapter using real world BKBs.

Another topic that needs to be -explored is the effect of the algorithm on the perfor-

mance curves. In this research, the algorithm was treated as a black box, and a model of

the BKB was used as input to the black box. With this approach, the only method for

predicting performance was through analysis of experimental results, a time consuming

process with limited applicability. If, however, the algorithm as well as the data could be

modelled, the "experiments" could be replaced by mathematical simulations. The output

of the simulation would be the performance predictions of the various algorithms and a

choice of which algorithm to run.

This research focused on predicting and choosing which single algorithm would

demonstrate optimal performance for a given problem instance. Future research should

explore which set of algorithms to run based on how they act individually and how they

act in concert. With all of the possible combinations of algorithms, the number of exper-

iments required to determine the set of algorithms with optimal performance would grow

combinatorically. Therefore, this area of research cannot be undertaken until a method

for developing a model of an algorithm is complete. Once the model of each algorithm

is valid, future researchers can begin development of a model for how anytime algorithms

interact. Then the optimal set of algorithms can be chosen for inference under constrained

resources.

At a higher level, this research is applicable for predicting the performance of any

algorithm that has a performance profile that varies with changes the characteristics of

its input (the method is not applicable if the algorithms performance is independent of

the input characteristics). With the capability of predicting the performance of multiple

algorithms, the methods presented in this thesis can be used to determine which algorithm

will perform the best for a specific problem.

6-4

Bibliography

1. Banks, Darwin 0. Acquiring consistent Knowledge for Bayesian Forests. MS thesis,
Air Force Institute of Technology, March 1995.

2. Boddy, Mark and Thomas Dean. Solving Time-Dependent Planning Problems. Tech-
nical Report CS-89-03, Providence RI: Brown University, February 1989.

3. Borghetti, Brett J., et al. "Inferencing Over Incomplete Solution Spaces with Genetic
Algorithms for Probabilistic Reasoning." Online Proceedings of the 1996 Midwest ar-
tificial Intelligence and Cognitive Science Conference., edited by M. Gasser. URL.
http://www.cs.indiana.edu/event/maics96/Proceedings/Port.html, April 1996.

4. Cooper, Gregory F. Probabilistic Inference Using Belief Networks is NP-hard. Tech-
nical Report KSL-87-27, Medical Computer Science Group, Stanford University, 1987.

5. Cooper, Gregory F. "The Computational Complexity of Probabilistic Inference Using
Bayesian Belief Networks," Artificial Intelligence, 42:393-405 (1990).

6. Dagum, Paul and Michael Luby. "Approximating probabilistic inference in Bayesian
belief networks is NP-hard," Artificial Intelligence, 60:141-153 (1993).

7. Dean, Thomas, et al. "Deliberation Scheduling for Time-Critical Sequential Decision
Making." Proceedings of the Ninth Conference on Uncertanty in Artificial Intelligence.
1993.

8. Dean, Thomas, et al. "Planning Under Time Constraints in Stochastic Domains,"
Artificial Intelligence, 76:35-74 (1995).

9. Eric J. Horvitz, Gregory F. Cooper, David E. Heckerman. "Reflection and action
Under Scarce Resources: Theoretical Principles and Emperical Study." Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence. 1121-1127. San
Mateo, CA: Morgan Kaufmann, August 1989.

10. Goldberg, David E. Genetic Algorithms in Search, Optimization & Machine Learning.
Reading, MA: Addison-Wesley, 1989.

11. Horvitz, Eric J. "Reasoning about Beliefs and Actions under Computational Resource
Constaraints." Proceedings of the Third Workshop on Uncertainty in Artificial Intel-
ligence. 429-444. Mountain View, CA: AAAI and Association for Uncertainty in
Artificial Intelligence,, July 1987.

12. Horvitz, Eric J. "Reasoning Uder Varying and Uncertain Resource Constraints." Pro-
ceedings of the Sevent National Conference on Artifiacial Intelligence. 111-116. San
Mateo, CA: Morgan Kaufmann, August 1988.

13. Jitnah, N. and A.E.Nicholson. Belief Network Inference Algorithms: a Study of Per-
formance Based on Domain Characterisation. Technical Report TR-96-249, Clayton,
VIC, 3168 Australia: Monash University, 1996.

14. McCabe, Thomas J. "A Complexity Measure," IEEE Transactions on Software Engi-
neering, SE-2(4):243-245 (October 1976).

BIB-1

15. Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1992.

16. Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Francisco, CA: Morgan Kaufmann Publishers, Inc, 1988.

17. Poole, David. "Average-case analysis of a search algorithm for estimating prior and
posterior probabilities in Bayesian networks with extreme probabilities." Proceedings

of the Thirteenth International Joint Conference on Artificial Intelligence. 606-612.
August 1993.

18. Rojas-Guzman, Carlos and Mark A. Kramer. "GALGO: A Genetic ALGOrithm De-
cision Support Tool for Complex Uncertain Systems Modeled with Bayesian Belief

Networks." Proceedings of the Conference on Uncertainty in Artificial Intelligence.
368-375. San Francisco, CA: Morgan Kaufmann Publishers, 1993.

19. Santos, Jr., Eugene. A Fully Integrated Probabilistic Framework for Expert Systems
Development. Technical Report, Department of Electrical and Computer Engineering,
Air Force Institute of Technology, 1993.

20. Santos, Jr., Eugene. A Distributed Anytime System With Co-operative Task Man-
agement For Reasoning Under Uncertainty : The PESKI Engine. Technical Report,
Department of Electrical and Computer Engineering, Air Force Institute of Technol-

ogy, 1995.

21. Santos, Jr., Eugene, et al. On a Distributed Anytime Architecture for Probabilistic

Reasoning. Technical Report AFIT/EN/TR95-02, Department of Electrical and Com-
puter Engineering, Air Force Institute of Technology, 1995.

22. Shimony, Soloman Eyal. "Finding MAPs for Belief Networks is NP-hard," Artificial
Intelligence, 68:399-410 (1994).

23. Wolpert, David H. and William G. Macready. No Free Lunch Theorems for Search.
Technical Report 95-02-010, 1399 Hyde Park Rd. Santa Fe, NM, 87501, USA: The
Santa Fe Institute, February 1995.

24. Zilberstein, Shlomo and Stuart Russell. "Optimal Composition of Real-Time Systems,"
Artificial Intelligence, 82:181-213 (1996).

BIB-2

-lo-

Vita

Brett Borghetti He graduated

from Worcester Polytechnic Institute in 1992 with a Bachelor of Science degree in Electrical

Engineering. Brett also received his commission in May 1992 through the Reserve Officer

Training Corps. He entered active duty service in the Air Force in January 1993 and

worked for two and a half years at the Taining System Product Group , Wright Patterson

AFB, Ohio. He began pursuing a Master of Computer Systems degree at the Air Force

Institute of Technology in May 1995.

VITA.1

REOR D CU E 7,2.iO P G Form Approved

I 0MB No. 0704-0188f ut~REPORT DOCUMENTA TION PAGE orm Apo.ved-0

PuoiIc reoOirting curceri cOr -his coilection Ot !n~ortation is estimatpd !o 3aeraoe i jour oer resoonse. nucling tr-e time for reviewing instructions, searchina existing data sources,
gathering and maintaining the data needed, and comoteting and reviewin the collection of information. Send comments regarding this Durcen estimate or any other aspect of this
collemton of information. incuding suggestions l:ir reducing this ourcen. *0 Nashington Headauarters Services. C.rectorate for information OCoerations and Qe orts. '2t5 efferson
Davis Highwav, Suite 204, Arlington, VA 22202-1302. and to the Office of Management and Budget, Paoerwori Reduction Project i704-0188),Washington, 3C 20503-

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 03. REPORT TYE AND DATES COVERED
I December 1996i Master s Tesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Inference Algorithm Performance

and Selection Under Constrained Resources

6. AUTHOR(S)
Brett J. Borghetti

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 83. PERFORMING ORGANIZATION
I REPORT NUMBER,Air Force Institute of Technology REPOT NBER

2950 P Street /AFIT/GCS/ENG/96D-05

WPAFB OH 45433-6583

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Dr Abraham Waksman AGENCY REPORT NUMBER

AFOSR/NM

110 Duncan Ave
Bolling AFB, DC 20332
202-404-7496 _

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Knowing that reasoning over probabilistic networks is, in general, NP-hard, and that most reasoning environments
have limited resources, we need to select algorithms that can solve a given problem as fast as possible. This
thesis presents a method for predicting the relative performance of reasoning algorithms based on the domain

characteristics of the target knowledge structure. Armed with this knowledge, the research shows how to choose
the best algorithm to solve the problem. The effects of incompleteness of the knowledge base at the time

of inference is explored, and requirements for reasoning over incompleteness are defined. Two algorithms for
reasoning over incomplete knowledge are developed: a genetic algorithm and a best first search. Empirical

results indicate that it is possible to predict, based on domain characteristics, which of these algorithms will

have better performance on a given problem.

14. SUBJECT TERMS 15. NUMBER OF PAGES

artificial intelligence, reasoning, inference, distributed processing, 71

uncertainty, probabilistic networks, expert systems, Bayesian Knowledge Base 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Inference Algorithm Performance and Selection under Constrained Resources
	Recommended Citation

	tmp.1691169095.pdf.wvIGc

