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2.3 Summary

Compared to CT and MRI modalities, ultrasound imaging is inexpensive, efficient,
portable and noninvasive. Because of these advantages, the CARD laboratory chose the
ultrasound imaging technique to acquire cross-sectional image slices of a BK amputee’s residual
limb. Dr. Ping He's compound imaging technique provided the ultrasound image slices. He
specially designed and developed this technique for gathering image data on BK amputee’s

residual limbs.

Although Dr. He's technique produces images with reduced noise and higher details,
typical ultrasound problems due to noise and incomplete boundaries still exist. These problems
present a challenge in processing and recreating an accurate model of the amputee’s limb. To
generate a lower limb model, each slice in the ultrasound image dataset needs segmentation to

extract the locations of the bone structures.
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3  Image Processing, Segmentation, and 3D Rendering Techniques

3.1 Introduction

Three-dimensional (3D) rendering algorithms are used to create computer-generated
graphical models of human anatomical structures. These models provide precise recreations of
structures from two-dimensional medical images. Visualization of 3D models help medical

specialists to diagnose and analyze patients’ medical problems.

The medical images are acquired through computerized tomography (CT), magnetic
resonance imaging (MRI), ultrasound, and other medical modalities. Of these various
modalities, ultrasound is one of three modalities capable of providing the ability to visualize
both soft and bony tissue [STYT90]. This fact, along with its low cost, portability and non-
invasive nature, makes ultrasound the best candidate for obtaining data about an amputee’s
residual limb [NELS93]. However, the special characteristics inherent in ultrasound images,
such as noise and lack of complete boundaries, must also be dealt with to create accurate
representations. To address these problems, ultrasound images are frequently preprocessed
using image processing techniques to enhance image quality leading to more accurate

segmentation.

Since my research concentrates on accurately creating a 3D lower limb model, the scope
of this review will first briefly focus on image processing. Then, this review will explore
segmentation, a preprocessing step for identifying objects of interest within images, and the two
categories of 3D rendering -- volume rendering and surface rendering. Discussion of
algorithms will be brief and will provide high-level overviews rather than including the

specific steps in each algorithm.

11




3.2 Image Processing

Ultrasound images have varying amounts of noise, or speckles, that hide important
details desired by physicians for 3D visualization. Image processing involves the modification
of an image to produce a new image. Generally, image processing techniques are used to
manipulate and enhance images so that they provide important information used in

applications such as object recognition, edge detection, and image segmentation [CAST96].

Filtering, an image processing techniques, is frequently incorporated into algorithms to
reduce noise levels and enhance image clarity [SAKA95a], [SAKA95D]. Filtering can be
performed in one of two domains: spatial or Fourier. Spatially filtering an image by passing
the filter over each image pixel is equivalent to the convolution of images in the Fourier domain

[CAST96].

In their 3D rendering work, Sakas and Grimm used three different types of filters to
achieve different goals. They used filters to reduce noise, smooth contours, and close gaps on
fetal ultrasound images that are characterized by high levels of noise [SAKA95b]. After image
enhancement, segmentation is necessary to separate different objects into appropriate tissue

classes [SAKA95a}, [SAKA95b], [SMIT95].

3.3 Segmentation

Due to the presence of noise and clutter in ultrasound images, automatic segmentation
for identification of objects, such as the outer skin, tibia and fibula, is difficult. Gaps in the
boundaries and wide variations of intensities within tissue classes further complicate the ability
for unsupervised segmentation [HECK96]. For instance, without compensating for noise,
conventional techniques could result in misinterpreting boundaries of random speckle spots as
surfaces, and missing boundaries at contour gaps [LIN91]. At the same time, segmentation
must produce accurate results in order to correctly identify contours of the bone structures within

the lower limb.
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In his tutorial on 3D imaging, Udupa identifies two widely used classes of segmentation
algorithms: boundary-based and region-based. Boundary-based techniques provide contours
of the objects of interest while region-based ones produce binary images with locations of

structures given by voxels marked by ones and all other being zeros [UDUP91].

Voxels are the three-dimensional equivalent of pixels [STYT91]. They are small cubes
identified by the x, y, and z coordinates of their centers. Figure 6 shows a diagram of a 3D
dataset of ultrasound images of a limb and a voxel representation pulled out from a image slice.
Each voxel’s height is equal to the thickness of an image slice and each voxel has a value where

meaning is based upon useful data such as intensity or density.
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Figure 6 Voxel Representation for Dataset of Image Slices
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Boundary-based segmentation, also known as edge detection, relies on the detection of
rapid intensity changes within the image to find edges separating different tissues. Most
boundary-based techniques rely on computing the gradient, a mathematical derivative
function, that detects rapid change since edges are normally characterized by high frequencies
which coincide with bright intensity streaks within ultrasound images [CLAR95], [UDUP91).
Laplacian edge detection is another technique used for boundary-based segmentation. The
Laplacian, a scalar second-derivative operator, produces zero-crossings at edges. Castleman

gives other edge operators in his book on digital image processing [CAST96).

In region-based approaches, segmentation is achieved using a set of properties that characterize
voxels within the same tissue type, and distinguish them apart from others. Udupa regards

thresholding to be the simplest method. It distinguishes voxels based on a specified value.

Another common region-based approach involves clustering voxels by a set of
properties associated with different regions [UDUP91]. Pappas’s adaptive clustering algorithm
has been the basis for several research efforts in the segmentation of MRI data. His algorithm
includes spatial constraints and local intensity variations. The adaptive clustering algorithm
calls for moving a sliding window over an image to calculate the intensity means for that given
area. Using the iterated conditional mode (ICM) approach presented by Besag in [BESAS86],

each pixel is inspected to maximize the conditional probability equation given as the following:

Pe1Y) = expo[S—g 0y PIEV) O
C

s <0
xS

where 1 »_1s the intensity mean for class x at pixel s, & +_ is the local noise variance, and y is
S s

the observed intensity mean.

Equation 1 is maximized based on the prior classification of the pixel and its local noise
variance. Relying on a “pairwise interaction model” with a pixel’s four neighbors, equation 1

obtains the Gibbs potential by the summation over all cliques
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and f is the Gibbs random field (GRF) weight initially set at 1.0 with the A = 0.55. The
Pappas algorithm uses the Gibbs random field to model spatial constraint during segmentation.
The Gibbs potential is based on the GRF model and is the a priori probability of the
segmentation. After a specified threshold of pixels converged, the cycle is repeated by
decreasing the window size again by half until it reaches a specified minimum window size
[PAPP92]. Other researchers such as Chang, Ashton, and Yan have used the Pappas clustering
algorithm to develop segmentation techniques for 3D MRI scans of the brain [ASHT95b],

[CHAND93], [YAN94].

Mathematical morphology, a group of image processing techniques, is also able
segment images. This approach is composed of a set of binary-operators which can be used in
different combinations. = Morphological operators use a structure element (SE), which acts
similar to a convolution kernel, over the original image [CAST9)]. The SE can be of any size
and shape containing 0's and 1’s and is usually designed based on knowledge of the object of
interest. Thomas and Peters used several morphological operators in their research to extract
femur length from fetal ultrasound images. Their method used morphological operators to
reduce noise, fill in small holes in the femur, and remove unnecessary extensions from the
femur [THOM91]. Other research by Sakas and Walters also tried morphological operators to
reduce noise and fill in gaps on the surfaces of ultrasound images. They were investigating

various types of filtering to extract surfaces from 3D ultrasound data [SAKA95a].
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3.4 Methods for 3D Imaging

As mentioned previously, three-dimensional medical models created by computers
result from two primary categories of 3D imaging techniques: wvolume rendering and surface
rendering [UDUP90]. Volume rendering makes no assumptions concerning underlying
structures or the surface, but instead, estimates structures using a voxel’s light-reflection
characteristics, and color information [UDUP90]. Surface rendering displays images with
surface estimates based on image data containing information on the structures of the human

body.

In general, although volume rendering tends to produce higher quality, photorealistic
images, it is computationally expensive and requires more memory than surface rendering
[HERM90]. Therefore, the choice in deciding between the two approaches for 3D visualization
of the residual limb for the CASD system depended largely on the needs of prosthetists. Since
prosthetists are not worried about the photorealism, my research investigated the use of a voxel-
based surface rendering technique that not only generates images quickly but accurately. Each
rendering technique is described below, but volume rendering will only be discussed briefly

since this research focused on surface rendering techniques.

3.4.1 Volume Rendering Techniques

Volume rendering methods have been developed to display data directly from gray-
scale volume data. Two primary techniques for volume rendering are octree encoding and ray-
tracing. In octree encoding, a hierarchical data structure must be created to represent the
volume data. This structure allows for direct manipulation of the 3D model, for example, slicing

through images to reveal inner tissue [BARI93].

Greater efficiency, compared to the octree method, makes the ray-tracing technique
more widely used for volume rendering since no preprocessing is needed to set up a

hierarchical structure. Ray-tracing consists of three steps: the geometrical transformation to
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align the data with the viewpoint, spatial segmentation to select only the voxels in the volume
of interest, and finally gray-level segmentation to display objects of interest from the volume

dataset [BARI93].

3.4.2 Surface Rendering Techniques

Newer surface rendering techniques usually rely on voxel-based methods rather than
triangulation algorithms using planar contours to produce 3D representations and result in
higher accuracy and reliability. Generally, these surface rendering techniques are composed of
three steps: segmentation, extraction and tiling of the surface contour, and application of

perspective with shading [BARI93].

Since segmentation has already been discussed, the discussion moves to the next step of
surface tracking. A surface-tracking algorithm is executed to extract and tile the surface contours
with polygons (usually triangles) to create a surface database. This approach starts by
identifying all voxels within a dataset that have surfaces cutting through them to create a
surface database [BARI93]. In the late 1980’s, Lorensen and Cline presented the “marching
cubes” method to detect voxels which have surfaces intersecting them and to estimate the

intersecting polygons based on surface topology [LORES7].

The surfaces extracted can then be displayed using colors, shading, and illumination to
create realistic 3D images. To increase realism and recognition, colors that approximate the
anatomical structures are used to display the 3D model. Shading and illumination models are
used to give depth and orientation cues. This final step, incorporating color, shading, and
illumination, is not covered in detail here since our research is limited to achieving accurate

segmentation and surface definitions of a residual limb.

3.5 CASD Systems and Role of 3D Rendering

Due to advances in technology, computer-aided socket design (CASD) and computer-

aided manufacturing (CAM) research for design and fabrication of prosthetics and orthotics has
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been rapidly progressing over the past ten years. Currently, several commercial systems are

available that use CASD and/or CAM technologies [TOPP90].

One such system is the CANFIT system developed by the University of British
Columbia and Shape Technologies, Inc. A clinical study compares this system with the manual
form of socket fitting. The study indicated favorable results for the CANFIT system but also
identified areas needing further improvement such as 3D visualization of the limb and data

acquisition techniques to show internal structures as well as surface topology [TOPP90).

To acquire a model of the amputee’s limb, the CANFIT system used measurements
obtained by the prosthetist to match the amputee’s limb to the closest fitting models in its
database of nine models. The system then took these models matching a amputee’s limb to
extrapolate and generate a 3D representation. Because of subjectivity during measurements
and a limited database, data acquisition produced inaccurate representations of the amputee’s
limb. As a result, this process required additional fittings to achieve acceptable results. In
addition to the previously mentioned shortfalls, the system was too expensive to be used on a

broad scale [TOPP90].

Another noteworthy project was at Sandia National Laboratories in New Mexico.
Researchers there developed a system composed of ultrasound imaging equipment to acquire
data and software composed of both commercial-off-the-shelf and customized software packages
to produce 3D renderings of the limb [MORI9)]. Since the Sandia system used interactive
segmentation algorithms to create a 3D rendering, there is still a need to address improvements

for faster, more automated segmentation.

The CASD system that Armstrong Laboratory has been creating will exhibit similarities
to both of the systems mentioned above. However, a number of improvements will be
incorporated into this system. Like the system at Sandia, Armstrong’s system will use
ultrasound imaging equipment to acquire sequences of image slices of the lower limb. The

system’s software will provide automated segmentation to depict the internal bone structures
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and surface topology of a residual limb. Then the CASD system will be able to accurately
render a 3D model of a limb for viewing and manipulation. The CARD Laboratory is also

exploring automatic landmarking of pressure and relief areas on the 3D models.

3.6 Summary

Algorithms leading to 3D rendering of ultrasound datasets need to consider the special
characteristics associated with them. Accurate segmentation of the ultrasound images of the
residual limb is very important in providing a 3D model for the CASD system. Since
numerous segmentation algorithms already exist to handle CT and MR images, the use of these
algorithms on ultrasound images needs investigation. By specifically tailoring these techniques,
the challenges presented by ultrasound images can be met. Using segmentation combined
with surface rendering to generate a realistic 3D model of a limb provides better understanding
of the surface topology and it’s relationship to internal bone structures. This increases a
prosthetist’s ability to fabricate more comfortable prosthetic sockets in a shorter amount of time

with fewer fittings.
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4  Evaluation of Segmentation Techniques

4.1 Introduction

This chapter presents the implementation details and results of the four segmentation
techniques evaluated in this research. Each technique’s approach was reviewed for
applicability to low noise ultrasound images. Since the ultrasound images used in this research
contained low noise, these images may not need the extensive preprocessing of other ultrasound
images. Normally, because of high noise and poor image quality, typical ultrasound scans
require the use of various image processing techniques to distinguish desired detail from
artifacts. The examination of each technique also ensured that algorithms did not rely on
parameters dependent on a particular modality such as CT or MRI. In addition, selection was
based on consideration of image types used for experimental testing. Algorithms that had been
used on images similar to the ultrasound lower limb images were more favored. These
selection criteria enabled overall assessment of each technique’s potential for accurately

segmenting the ultrasound images.

The techniques implemented in this chapter were tested using Dr. Ping He’s ultrasound
dataset. Figure 7 shows an ultrasound slice from his dataset. The two white outlines in the
image are bounding boxes denoting locations of the bone structures in the lower limb. These
bone regions were manually identified based on anatomical knowledge and known ultrasound
characteristics of bone structures. To aid in comparison, most figures in the result sections
display composite images. A composite image has the original ultrasound image overlaid with

the boundary outlines from the segmented image.
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Figure 7 Locations of Bone Structures in Original Image

4.2 Multiresolution Bayesian Segmentation

Examination of previous research efforts in the use of a Bayesian approach provided
evidence for its potential success in segmentation of noisy images. In an earlier research effort,
the Bayesian technique accurately detected and analyzed surface classifications and normals on
noisy ultrasound images [LIN91]. In two other efforts, the Bayesian approach provided accurate,
automated segmentation of MRI brain scans [CHAN93], [YAN94]. According to Sakas and
Walter, a multiresolution framework allows for elimination of noise and minor structures faster
than important surfaces. This happens because smaller artifacts have lower coherency while

larger surfaces are still detectable at lower resolutions [SAKA95a].

Supported by these previous efforts, the multiresolution Bayesian approach presented
by Ashton and Parker was selected for its ability to reduce speckles and accurately segment

noisy 2D ultrasound images. The developers of this algorithm tested their approach on
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transesophageal echocardiographic scans of the human heart. The specialized algorithm takes
into account the statistical nature of ultrasound data to process and segment images [ASHT%4a]),

[ASHT95a]. The following paragraphs summarize the implementation of this algorithm.

4.2.1 Approach and Implementation Of Original Algorithm

This Bayesian algorithm initially applies a low-pass filter to remove speckles from the
original ultrasound images. The filter, constructed to characterize and reduce the speckles, has
to optimally maximize two goals: noise elimination and preservation of important edge detail.
The filter suggested by Ashton and Parker is a finite impulse response (FIR) filter. The FIR
filter is implemented as a Gaussian with a response equal to twice the diameter of the estimated

speckle spot size n.

To increase speed, the FIR filter is implemented in the Fourier domain. First, an image
of the filter is constructed using a multivariate Gaussian distribution. The original image and
the filter image have to be the same image size with dimensions based on powers of two.
Then, both images are fast Fourier transformed and convolved. The convolved image are then
inverse Fourier transformed back to the spatial domain to produce a filtered version of the

original image.

The speckle spot size n is an important filter parameter. Varying the size of the speckle
spot parameter affects the resulting image. The larger the speckle spot size (or diameter of the
Gaussian), the lower the frequencies passed. In other words, a smoother image results.
Increasing the smoothing factor of the filtered image can cause the loss of important boundary or

edge definition. Therefore, the speckle spot size has to be carefully chosen.

After filtering, the image is segmented with a K-means clustering algorithm to calculate
each pixel’s initial intensity-based classification. The K-means algorithm finds the k number of

intensity means that an image’s intensity values cluster around. These k intensity means are




