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Abstract

This research develops an automated method for segmenting Magnetic Resonance

(MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

segmentation has proven difficult, primarily due to scanning artifacts such as interscan

and intrascan intensity inhomogeneities. The method developed and presented here uses a

PCNN to both filter and segment MR brain images. The technique begins by preprocessing

images with a PCNN filter to reduce scanning artifacts. Images are then contrast enhanced

via histogram equalization. Finally, a PCNN is used to segment the images to arrive at

the final result. Modifications to the original PCNN model are made that drastically

improve performance while greatly reducing memory requirements. These modifications

make it possible to extend the method to filter and segment three dimensionally. Volumes

represented as series of images are segmented using this new method. This new three

dimensional segmentation technique can be used to obtain a better segmentation of a

single image or of an entire volume. Results indicate that the PCNN shows promise as an

image analysis tool.

vii



PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION

OF MAGNETIC RESONANCE BRAIN IMAGES

L Introduction

1.1 Introduction

Current technology enables the detection, diagnosis, and evaluation of many common

and not so common ailments through non-invasive imaging. One of these imaging tech-

niques is magnetic resonance imaging (MRI). Through this procedure, physicians obtain

images, or 'slices', of various parts of the human body. They then analyze these slices in

an attempt to gather information to perform a variety of tasks. One anatomical region

of particular interest is the human brain. MRI permits researchers to study the delicate

brain's functional and physical characteristics with little risk to the patient.

Presently, MRI is able to generate hundreds of images of an anatomical region (head,

thorax, abdomen, etc.). For diagnostic purposes, it is the physician's responsibility to

examine the slices and identify regions of interest (ROI). The ROI is then divided into its

constituent anatomical structures and possible anomalies. This human division of regions

is analogous to computer segmentation of images. With the profusion of medical imaging

data available to the physician, automated methods have been suggested as a means of

easing the burden and allowing him/her to focus on the tasks mentioned.

MR image segmentation is an important step for a number of applications that in-

clude the identification of anatomical ROIs for diagnosis, treatment, or surgery planning,

preprocessing for multimodality image registration, and tumor volume measurement. Ap-

plication has also been proposed for the diagnosis of brain trauma and multiple sclerosis.

These applications present significant problems [3].

Medical image segmentation is not a solved problem. Various methods have been

applied, including neural network and statistical theory based approaches [3]. However,

image and tissue- properties have prevented methods from reliably producing good results.
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Recently, a new neuronal model was developed based on the primate visual system [9]. A

network founded on this model is the pulse coupled neural network. This model shows

promise because it may model the neuron's behavior more closely than other popular neural

networks. However, this new model has not been widely applied to real world problems to

determine its effectiveness.

1.2 Problem Statement

This research will adapt, implement, and test a pulse coupled neural network for

segmenting two-dimensional MR images.

1.3 Scope and Assumptions

The medical data used in this research is magnetic resonance head data. The data was

obtained from Armstrong Laboratories and consists of images of normal human volunteers.

Each image is a 256 x 256 array of gray scale pixel intensity values.

The scope of this thesis is to investigate the application of a pulse coupled neural

network (PCNN) model to the segmentation of MR brain images and volumes.

1.4 Thesis Organization

The following chapter provides background information describing the MR imaging

process. The chapter also includes a discussion on image segmentation methods along

with different image preprocessing techniques. Chapter III describes the image acquisition

method, the MR image filtering method, the segmentation method, and the adaptation

of the pulse coupled neural network. Chapter III also describes the results of segmenting

the MR brain images and volumes. The conclusions and recommendations are given in

Chapter IV.
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II. Background

2.1 Introduction

This chapter provides an introduction to Magnetic Resonance Imaging (MRI), an

evaluation of segmentation techniques, and background on the pulse coupled neural net-

work. Particularly, it emphasizes background material necessary to understand an MR

image and the current state of MR image segmentation techniques.

2.2 Magnetic Resonance Imaging (MRI)

MRI uses magnetism and radio frequencies (RF) to create diagnostic sectional images

of the body [2]. The first magnetic resonance image was produced in 1972 with the first

diagnostic human images being produced by 1977.

The spinning nucleus of an atom is a charged piece of matter that creates a magnetic

field. When the nuclei generating these fields are placed within another magnetic field, the

nuclei align themselves with the field. Since the spinning nuclei have mass, they also have

moments of inertia. The moments resist changes in angular momentum and thus attempt

to inhibit the nuclei from aligning in a magnetic field. The ratio of magnetic moment to

the moment of inertia is called the gyromagnetic ratio. Each isotope has a specific ratio,

allowing it to be identified during MR imaging [2].

Since each gyromagnetic ratio is specific to its isotope, it was hoped that the ratio

along with the length of relaxation time after an RF pulse would allow the distinction

between healthy and diseased tissue. However, the determination of relaxation times for

molecules has proven too complex and MRI data alone can not diagnose tissue type. The

value of MRI relies heavily on the radiologist's visual diagnostic abilities [2].

2.3 Current Technology

This section presents preprocessing and segmentation methods that have been ap-

plied to MR brain images. Each of the methods is reviewed and its merits and problems

noted. An understanding of the approaches taken thus far gives insight into developing
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new approaches with the hope of avoiding past pitfalls and capitalizing on strengths as

well as providing a baseline for comparing the results of this research.

Figure 2.1 illustrates the basic components of a generic image processing system [3].

As can be seen, image segmentation is but one of the pieces in such a system, and is not

typically the first. It is usually preceded by image preprocessing and feature extraction and

can be followed by a classification step which assigns labels to the segmented regions. Such

an illustration provides a good context for the review of the state of image segmentation.

Each step represents the performance of a unique function in the image analysis system.

Not all systems perform every function. The steps a system performs and the manner in

which it performs them define or characterize the system. Therefore, each of these steps

will be discussed in succession with existing methods' approaches to the performance of

such steps presented.

Input

Figure 2.1 Components of an image analysis system.

2.3.1 Image Preprocessing. Image preprocessing can be the first step in im-

age understanding, and before applying any of the segmentation methods, preprocessing

can be performed in an attempt to improve the segmentation results. Two preprocessing

techniques applicable to image segmentation in general are noise removal and contrast

enhancement. Noise removal and contrast enhancement techniques commonly applied to

single gray scale MR images include linear low pass filtering, adaptive filtering, and non-

linear adaptive filtering. Specific to MRI, radio frequency nonuniformity corrections have

also been attempted [3]. Preprocessing techniques try to reduce the artifacts introduced

by the imaging modality. Example artifacts are random noise, partial volume effects, and

intensity inhomogeneities due to the nonuniform radio frequency fields of the MRI scanner.

Traditional linear low pass filtering reduces image noise, however, edge definition is

not maintained. Image blurring and loss of fine detail occurs. Therefore, the cost for noise
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reduction is loss of spatial resolution which can lead to erroneous segmentation results.

The process developed by Tsai [1] uses low pass filtering.

Adaptive filtering tries to overcome the widely varying local intensity distributions

that occur in different spatial locations in the image. Adaptive filtering techniques include

Bayesian image restoration, wavelet analysis, and anisotropic diffusion filtering. Bayesian

image restoration has shown promising results for noise reduction and edge enhancement,

but is sensitive to parameter settings and requires long computation times. Wavelet anal-

ysis has also demonstrated good results for noise removal and edge detection. However,

while wavelet techniques have the advantage of local scale-space encoding, some fine de-

tail is lost during processing and it is unclear how to set the wavelet coefficient reduction

values.

Some nonlinear adaptive filtering techniques have been reported in the literature.

These techniques report some good results, however, they aren't without their difficulties.

One method reports impressive signal-to-noise ratios which aren't computed according to

MR conventions, therefore, leaving the results suspect. Another approach introduces spike

effects into the images.

Therefore, an ideal image preprocessing method applied to medical images should

reduce image noise while maintaining the fine detail and preserving edges. A robust method

that is insensitive to operator settings and can overcome imaging modality artifacts is

desirable. So, while preprocessing is an important step in the overall analysis process, not

all reported methods perform preprocessing outright at the beginning of the process. This

does not mean that it is not performed. These methods try to account for image artifacts

during the segmentation process itself.

2.3.2 Feature Extraction. MRI segmentation is based on a set of measurable

features which are extracted or computed from the images. Features themselves can be

classified as pixel intensity-based features, calculated pixel intensity-based features, and

edge and texture-based features.
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Segmentation approaches that rely solely on the gray scale intensity values of the

pixels themselves as features are simply intensity-based. Intensity values can be from a

single image, a volume data set, a multispectral data set, or a multimodal image set.

When performing pixel-based segmentation, each pixel in the image has a correspond-

ing feature, typically intensity-based. However, when dealing with multispectral data, each

slice will have multiple images, each of different contrast. Some methods use a set of fea-

ture vectors, each containing a number of features equal to the number of different images

used [7] [5].

One problem when dealing with multispectral MRI is the selection of features so that

tissue differentiation is maximized while computational complexity is minimized. Multi-

modal data sets may also have to be registered prior to segmentation to arrive at meaningful

results. Otherwise, a given feature vector may contain feature values not corresponding to

that particular sample.

Features derived using calculated MR imaging parameters are calculated features.

These features appear enticing since knowledge of the image acquisition method and MR

system parameters could lead to better tissue classification. However, the nonlinear nature

of the calculations involved introduces noise that makes the differentiation of tissues and

segmentation reproducibility problematic. An adaptive MRI segmentation technique using

calculated features showed promising results [13]. It was based on an estimated gain field

that multiplied the image intensity data in an attempt to correct the intrascan intensity

inhomogeneities due to the inherent problems with MR image acquisition. Another ap-

proach, the gray white decision network (GWDN), used two types of input with the first

calculated from the pixel intensities. Image pixel intensities are passed through similarity

functions for each tissue class. The results of these calculated measures are one of the

features input to the network.

Edge and texture-based features are yet more types of image features. Although

there are several methods for extracting edges from images, none have yet proven very

reliable for MRI segmentation. Typically, they are used in conjunction with other types of

features. Noted earlier, the GWDN relies upon two types of features. The second feature
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type is edge information. Texture, however, is a statistical feature derived from a number

of pixels. Texture features have typically been applied to tissue classification rather than

image segmentation.

2.3.3 Segmentation. Image segmentation groups pixels into regions, and therefore

defines object regions [3]. Segmentation uses the features extracted from the image(s),

therefore, good feature selection greatly influences segmentation results.

Segmentation methods are not as easily categorized as features. The various aspects

of the segmentation process really define it. There are no broad generalizations that can be

made about the methods. In other words, it cannot be said that certain methods are single

image methods and others are multispectral methods or that some methods are supervised

and others are unsupervised.

A problem with all segmentation methods is the amount of human operator supervi-

sion that is required. The effect that operator involvement has on segmentation accuracy

and reproducibility is of paramount concern, especially when dealing with critical systems.

The imaging method itself can inject nonuniformity and noise that must be considered to

obtain accurate segmentation. Segmentation validation is another problem. The lack of

absolute ground truth for some imaging modalities precludes the objective evaluation of

segmentation results.

MRI segmentation methods use either a single 2D or 3D image or a series of mul-

tispectral or multimodal images. Each multispectral image- represents the same physical

location but with a different contrast. Common segmentation approaches to MR images

are thresholding, edge detecting, clustering, genetic algorithms, neural networks, and prob-

abalistic techniques.

The most obvious form of a threshold-based segmentation method is the use of a

global threshold. The difficulty lies in determining the value of the threshold. Again,

because of intensity inhomogeneities in the images and overlapping class intensities, global

thresholding methods themselves have not been very successful. To achieve reasonable

segmentation results, other techniques or variations have been applied in conjunction with
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global thresholding. These include knowledge-guided methods using 'goodness functions',

local instead of global thresholding, and morphological filtering.

A process developed by Tsai [1] does exactly this. Thresholding is used to extract

all brain tissue from surrounding background noise. The accumulated image histograms

are used to compute the threshold. The first local minimum of the histogram becomes the

threshold. Morphological operations then extract only the brain matter. Thresholding is

further used to segment the brain into regions.

Edge detection methods are another approach to image segmentation. These meth-

ods are susceptible to image noise, over and under segmentation, and the variability of the

threshold required to select edges in an image. However, one method uses the oversegmen-

tation nuisance to its advantage. A genetic algorithm based method [8] actually performs

edge-based region growing to obtain oversegmentation.

Another edge-based method was developed to locate cortical convolutions in MR

brain images. The method of [4] seeks only to isolate the brain matter from the rest

of the image. The process begins with an initial polygon estimation of the contour of

the brain object. This contour is drawn manually by a human technician. Once the

contour is obtained, a perpendicular transform of the image takes place. Perpendiculars

along each edge of the polygon contour are computed and the image is resampled along

these using bilinear interpolation. A transformation matrix contains a row of intensity

values corresponding to the intensities of each resampled perpendicular. One-dimensional

morphological opening is then applied to each row of the transform matrix. Each pixel

in the transformation matrix is then assigned a cost according to a cost function that is

defined over a number of terms that measure predefined relevant properties. Dynamic

programming is then used to compute a minimum cost path in the matrix. Pixels in the

transformation matrix belonging to the path are mapped to the original image to form

a new contour. The process repeats with the new contour as the starting point. The

processing ends when the difference between successive contours meets a threshold.

When processing proceeds to a new slice, the contour obtained from the previous

slice is the initial contour for the new slice. However, if the contour is not satisfactory, the
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technician may enter a new contour. This indicates the need for constant supervision and

possible human intervention.

The previous process shows that edge detection methods typically require operator

region editing to achieve good results. A method similar to edge detection is boundary

tracing. Boundary tracing consists of an operator choosing a pixel in a region and the

method then finds the boundary of that region and follows the boundary. This method

is more amenable to segmenting well defined structures since a good guess of the initial

boundary is required.

Clustering segmentation methods attempt to find the natural gathering areas of

image or pixel features. Pixels or objects that are near a given cluster are assigned to that

cluster. A method presented by [5] performs MR image segmentation based on clustering

and compares the results for normal and diseased tissues. The approaches use fuzzy c-

means algorithms as their basis for segmentation.

A fuzzy c-means (FCM) method follows a fuzzy c-means model which prototypes the

functions used to derive values used in the algorithm [5]. The algorithm is unsupervised

and works in the following manner. For every feature vector, the algorithm computes

a class membership value for every class for that vector using some initial class cluster

estimates. The process then iteratively computes class clusters based on membership

values and then computes a new set of membership values. If the maximum difference

between old membership values and new values is less than some threshold, the algorithm

terminates with the new values.

An adaptation to the fuzzy c-means algorithm (AFCM) is to use approximations for

some of the calculations [5]. This is done primarily for accelerating the completion of the

algorithm. This modification provides approximately one order of magnitude performance

increase. However, the modification may cause the adapted fuzzy c-means algorithm to

terminate with different results than the original method.

Yet another approach to MR image segmentation is neural networks. Neural networks

attempt to simulate the physiological behavior of a neural connection matrix. Features

are typically fed as inputs to the networks and the outputs are the classification of the
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representative samples. Neural networks typically require training and their architectural

constructions vary.

One neural-network based segmentation technique developed attempts to overcome

the inter-slice intensity variations of MR images through an adaptive learning scheme [7].

The artificial neural network (ANN) requires training on samples selected from each of

the classes and its segmentation performance compared to a maximum likelihood classifier

(MLC) is dependent upon the ANN's training set size. However, the performance of the

ANN is relatively insensitive to the selection of training sets. In other words, even if the

training sets do not appropriately sample the image, the ANN performed reasonably better

than the MLC in the same situation.

The ANN used in [7] was then modified to segment in three dimensions. The research

clearly illustrates that the tissue classes in MR brain studies are not linearly separable and

that the problem is magnified from slice to slice. However, the ANN adaptive algorithm

exploited the fact that there is some continuity of structures from slice to slice and that

a classifier trained on a given slice can be expected to perform reasonably well on the

slice directly above and below. The process works by training an ANN classifier on user

selected training samples from a given slice and then segmenting that slice. Next, the slice

directly above or below the segmented slice is classified using the trained ANN. The slices

are then superimposed and corresponding pixels that received the same classification form

a training set for the slice directly above or below. Finally, the ANN is retrained using the

new training set.

A Hopfield neural network was also used to segment MR images [12]. Typical ANNs

such as generalized perceptrons and back propagation networks are unlike supervised para-

metric methods in that they make no use of a priori probability distributions. However,

they do require training sets and therefore require supervision similar to parametric meth-

ods. The Hopfield net used, however, is unsupervised and seeks to classify the images in

such a way as to minimize an energy function. The energy function expresses the current

classification of image pixels as a sum of distances. The distances being the weighted dis-

tances between a pixel intensity and the centroid of the class to which the pixel is currently

2-8



assigned. Inputs to neurons are changed by the weighted difference. The energy function

is minimal when the input-output activity of the neurons approaches zero.

However, because the method only accounts for pixel intensity and does not in-

clude any spatial information during classification, the resulting segmented images must

be postprocessed. A majority filter was used to eliminate the speckle artifacts present after

classification. Depending upon the size of the filter window, the resulting image may lose

small details.

An analogue constraint satisfaction neural network was constructed to segment MR

brain images [15]. The network developed is termed the Grey-White Decision Network

(GWDN), so called for its desire to distinguish grey and white brain matter. The GWDN

differs from the Hopfield net development in the way that the network's architecture was

developed. Instead of developing a network's architecture from an energy function, it is

developed from the defined task constraints. Task constraints may be conflicting for an

optimal solution. For example, one constrain might be that pixels of a tissue type tend to

be near other pixels of that type. Another constraint might be that pixel intensities cluster

about certain average values. These constraints will conflict if a pixel intensity is that of

a tissue average but located amidst pixels of a different class. The GWDN attempts to

handle this constraint conflict problem.

The GWDN contains a number of neural layers equivalent to the number of desired

tissue classes. Each layer corresponds to a particular tissue class and each neuron corre-

sponds to a pixel in the original image. The layers compete for pixel classification and there

is only one active neuron at any pixel location. This is accomplished through inhibiting

connections between layers while cooperation between neurons within layers strengthens

groups of similar pixels. The cooperation within layers is performed by excitatory con-

nections and reciprocal connections from each neuron to itself allow it to sustain once

activated.

When a strong edge is detected between two pixels in an image, the excitatory

connections between the two corresponding neurons in each layer are reduced or shut off.

However, the inhibitory connections between layers are not affected.
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The resulting network works in the following manner. After initialization of the

neurons to zero, image and edge input is provided to the layers of the network. Neurons

with intensities close to the peak of their similarity functions will begin to activate. Once

neurons are activating, they will attempt to inhibit the activation of neurons of different

layers while at the same time try to excite its neighbors in the same layer into activation.

Once equilibrium is achieved, neurons with the highest activation 'win' and the pixel is

classified according to the neuron's tissue layer.

It is noted in [15] that certain conditions can arise causing a network of this type

to become unstable and produce oscillations precluding the network from attaining the

equilibrium noted earlier. This problem can be overcome by modifying the network in the

following way. Instead of allowing active neighbors to contribute to the excitatory terms

of neurons, have them decrease the inhibition contributions from surrounding layers.

One of the major drawbacks of the GWDN is the requirement for the tissue class

means and standard deviations used to compute Gaussian similarity functions. However,

this cannot be realized unless there is some truth data available or the image data is already

segmented. In reality, even a segmented image is only an approximation and cannot be

proven to correctly classify all intensities. An alternative is to estimate the necessary

parameters from entire image histograms or from image regions.

Another method employed in [5] is a feedforward cascade correlation neural network

(FFCC). The FFCC used is a supervised method attempting to overcome the speed limi-

tation of a feedforward back-propagation network and to allow incremental learning [5].

The cascade architecture works in the following manner. Initially, the network con-

sists of an input layer and an output layer determined by the problem to be solved. Every

input is connected to every output and all connection weights are adjustable. The network

in trained over the entire training set until no significant error reduction is achieved [5].

Network error is then computed by running the entire training set. If the error is less than

some threshold, the algorithm terminates. Otherwise, a hidden node is added to the net-

work with its inputs coming from all input nodes and all other hidden nodes. The outputs

of the new hidden node are not yet connected. The training values are then run over the
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network with the input weights to the new hidden node being adjusted according to a max-

imization function. The outputs of the new hidden node are now connected to the output

nodes and the input weights frozen while the output weights are trained. This is done in

the same manner as was used to train the original network. If a significant reduction in

error is achieved, the network training terminates; otherwise, the process recycles.

A comparison of the segmentation results obtained by the FCM, AFCM, and the

FFCC showed that one method did not provide the best segmentation results for all cases.

The FCM and AFCM displayed the best results for segmenting normal images while the

FFCC provided better segmentation of tumorous regions. The FFCC, however, did not

provide better segmentation results away from the tumorous region. This seems to indicate

that the operator needs to have an idea of the nature of the image in order to apply the

'best' segmentation algorithm [5].

An automated image interpretation technique is presented in [8] that uses genetic

algorithms (GA) to perform image segmentation and labeling. A hypothesize-and-verify

strategy is used in which image segmentation and labeling solutions are generated by the

GA as hypotheses and then verified by an objective function. The 'fittest' hypotheses are

reintroduced to the GA and new hypotheses are generated. This process repeats until until

the GA converges to an optimal image interpretation.

The GA based method begins by oversegmenting an image with an edge-based re-

gion growing technique to construct homogeneous regions. Oversegmentation is preferred

because further processing will only merge regions instead of splitting them and merging is

retrospectively an easier process. A GA code string is then constructed with each position

of the code string corresponding to a numbered region of the segmented image and the

value of each position in the code string being the (hypothesized) region label. Using an

initial population of code strings, new code strings are formed and their fitness is evaluated.

Fitness is evaluated against an objective function which represents a priori knowledge of

the brain anatomy and imaging parameters. Function results are based on image regions

and the relationships between them.
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2.3.4 Classification. Classification is the last step in the process of Figure 2.1.

During segmentation, a pixel, based on features, is assigned to a particular class. How-

ever, some methods make no connection between the segmentation classes and the tissue

classes. They simply group like pixels or regions together. Strictly speaking, this is truly

segmentation.

Some methods incorporate the domain knowledge of the application into the segmen-

tation step to arrive at both segmentation and classification simultaneously. The process

developed by Tsai [1] combines general anatomical knowledge of the human brain with im-

age processing techniques to actually obtain classification. The process uses a combination

of pixel intensity analysis, morphological operations, and anatomical knowledge to classify

brain tissues. This combination takes advantage of each of these components and uses two

MR image types. As regions are identified, their locations and statistical information give

knowledge used for further segmentation. This implies that while there are global rules and

knowledge that guide the segmentation, information gleaned during segmentation allows

adaptation during classification.

2.4 PCNN Theory

The PCNN is a physiologically motivated artificial neural network. The network

model is based on stimulus-specific interactions between cells in primate primary visual

cortex. Modulatory linking between cells has been observed in biology, therefore, this

model was chosen because it simulates this inter-neuron linking.

Neurons have the characteristic or ability to respond to stimuli. This response is

called firing. A neuron fires when its internal activity reaches a certain threshold. The

internal activity of a neuron is determined by its inputs. For the PCNN, inputs are in the

form of primary feeding inputs and secondary linking inputs.

A model PCNN neuron consists of inputs that model dendrites and a pulse generator.

The dendrites receive one or more feeding inputs that are modulated by one or more linking

inputs. Linking inputs are the lateral connections between neurons. The pulse generator

compares the multiplicatively modulated feeding signal to a variable threshold to determine
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firing sequence. A graphical representation of a model neuron is given in Figure 2.2. See [9]

for the theoretical and biological foundations of the PCNN.

Leaky

Integrator
- other Linking Pulse Generator

.Y(t) W Lik InputsL. Leaky

Y,(t) W + L + Integrator

:+1

C It Lk-kYkt
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Integrator [-
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Figure 2.2 Model PCNN neuron

As stated, the internal activity U of neuron k at time t is given by

Uk(t) = fk(t)[l + Lk(t)], (2.1)

where Fk(t) is the feeding signal to neuron k and Lk is the linking signal [10]. The feeding

and linking signals are each the result of a sum of a series of leaky integrators. The leaky

integrators turn pulsed inputs into an exponentially decaying persistent output. A neuron,

Nk, will fire when its internal activity, Uk, exceeds its variable threshold, 0 k. The threshold

is variable in the sense that as soon as it is charged it begins to decay exponentially. The

threshold becomes charged when a neuron fires. Therefore, according to the model, all

neurons fire at time t = 0. Eventually, as 0 k decays and Uk increases, all neurons with

Ek > 0 will fire. For mathematical descriptions of the model neuron see [9] and [10].
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2.5 Conclusion

This chapter introduced the Magnetic Resonance image and discussed current seg-

mentation methods in the context of a generic image analysis system. It also introduced

the concept of the pulse coupled neural network. While there are many filtering and seg-

mentation methods available, the PCNN's physiological foundation in the primate visual

system may hold promise for an MR image segmentation method.

Certain characteristics of current segmentation approaches have shown value and

will be incorporated in the method developed. These traits include spatial information,

noise removal, and contrast enhancement. However, the PCNN method will also attempt

to overcome limitations of current methods. Limitations include training, human super-

vision, and segmentation reproducibility. The next chapter will specifically describe the

adaptation and application of the PCNN to perform both image filtering and segmenting.
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III. Approach

3.1 Introduction

In the previous chapter, the formation of MR images was introduced. Current seg-

mentation approaches were also discussed in the context of a generic image analysis system

and how the nature of the MR image itself presents great difficulty to these methods. Fi-

nally, a new neural network was introduced. This chapter will describe image visualization

and manipulation. The implementation of the PCNN as a physiologically motivated arti-

ficial neural network will be presented and demonstrated for segmenting and filtering.

3.2 Image Manipulation

This section briefly describes the processes and requirements for obtaining the MR

brain images and viewing the images prior to and after image segmentation.

3.2.1 Image Acquisition. MR images used were obtained from a General Electric

Signa MRI scanner. Images were originally obtained by the Computerized Anthropometric

Research and Design Laboratory, Armstrong Laboratories, in cooperation with the MRI

facility, Wright Patterson Medical Center. Each image is a 256x256 array of 16 bit binary

gray scale intensity values. A detailed description of the data transfer process used is given

in Appendix A.

3.2.2 Image Viewing. Images extracted from the archives could now be viewed.

Each original image contained a header with information regarding the patient, scanning

facility, and scanning parameters. This header was removed prior to filtering and segment-

ing. Only pixel information is given to the PCNNs.

Actual pixel data begins immediately after the image header and is in row major

order. Each pixel is 16 bits long and represents a gray scale intensity. Matlab was chosen

for image manipulation because of its flexibility, image processing, and mathematical pro-

cessing power. A description of the routines used for image viewing and manipulation can

be found in Appendix B.
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3.3 PCNN Based Segmentation Method

Images were segmented using a method developed based on the pulse coupled neural

network. The PCNN theory was adapted and implemented to perform segmentation of 2D

MR images. The two-dimensional PCNN was then adapted to work on three-dimensional

volumes. The original PCNN took into account neighbors only in the planar sense. This

is acceptable if dealing with truly two-dimensional data. However, the MRI data was ex-

tracted from a three-dimensional volume. Since the data comes from a volume represented

by a series of slices, a particular slice has a relationship with those above and below it. This

relationship is captured in the 3D implementation of the PCNN and allowed to influence

image and volume segmentation.

The overall segmentation method used to segment MR brain images consists of three

primary stages and is illustrated in Figure 3.1. First, an original image is PCNN filtered

as described in Section 3.3.3. Next, the filtered image is contrast enhanced. Finally, the

contrast enhanced image is PCNN segmented via the processes discussed in Sections 3.3.5

and 3.3.6 to arrive at the final segmentation.

Original MR Segmented
Image PN otatPN MR Image

256 x 256 FitrEhneetSgetr256 x 256
pixels pixels

Stage 1 Stage 2 Stage 3

Figure 3.1 MRI segmentation method

3.3.1 Image Processing PCNN. The modulatory behavior of neurons is the

distinguishing factor of this neural network model. This ability is what allows for image

segmentation. Neurons with like inputs are able to fire at the same time because of

the modulatory linking. Pixels similar in intensity axe therefore able to link and pulse

synchronously. The internal activity equation for an image processing neuron is

Uk = Fk(1 + OLk), (3.1)
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where Fk is the pixel intensity fed to the kth neuron, Lk is the total linking input to

the neuron, and P3 is a bias that represents the value of the linking strength between

neurons [10].

As applied to image segmentation, the PCNN's neurons receive feeding inputs from

gray scale image pixels and linking inputs from neighboring neurons. The network ar-

chitecture consists of one layer of neurons with each neuron corresponding to an image

pixel. Each neuron is also connected to a number of neighboring neurons defined by a

neighborhood linking radius. A graphical representation is given in Figure 3.2.

L ik kiiiiii'' '
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Figure 3.2 Neuron feeding and linking connections

The PCNN segmentation algorithm proceeds in the following manner. Since all

neurons are considered to have fired at time t = 0, the segmentation begins at time

t = 1 with all Ok fully charged. All Fk are normalized by the maximum intensity of the

image so that at time t = 1 the neurons corresponding to the brightest pixels will fire.
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Once a neuron fires, each of the linking fields, Lk, of the neurons in the firing neuron's

neighborhood receives a pulse. If sufficient linking is achieved, i.e., Ok < Fk(l+3Lk), these

neurons will fire also. Therefore, neurons may have to be evaluated many times before they

fire or it is determined that they won't fire during a timestep. Once a determination has

been made for all neurons during a timestep, a steady state is achieved. Time is then

advanced, Ok decays, and the process repeats until all neurons have fired or the given

number of timesteps has been reached.

Here the image processing algorithm implemented departs from the PCNN theory.

Instead of allowing each neuron to pulse throughout the course of the algorithm, only the

timestep of the first pulse of each neuron after time t = 0 is recorded. This timestep

value is indicative of the assigned class. Therefore, all neurons that pulse during a given

timestep are assigned to the same class. A sample image and the results of the first few

segmentation timesteps is shown in Figure 3.3.

Another difference between theory and implementation is that linking fields are only

valid for the timestep for which they were generated. The idea behind this being as follows.

The linking field is providing a modulatory influence on a neuron. If neurons are similar

but not identical, the linking field may be strong enough to bring out the similarity and

cause the neurons to pulse together and therefore be classified together. However, if a

neuron is allowed to influence another neuron to fire at a later timestep, the neurons will

not be classified together even though one was influencing the other.

A modification to the manner in which the neuron's linking field is calculated allows

the PCNN to operate more efficiently in software. The modification is best demonstrated

by examining when the linking field is updated. A neuron's linking field is only useful when

surrounding neuron's have pulsed. Therefore, one software implementation of the hardware

model neuron of Figure 2.2 would be to calculate a neuron's linking field based on the

current state of surrounding neurons every time a neuron's internal activity is calculated.

It can be seen that this approach is inefficient. If one neuron in a neighborhood were to

fire, then every neuron's linking field in that neighborhood would need to be recalculated

to see if neighboring neurons could now fire. Because a neuron's linking field is a sum of
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(a) Original MR Image (b) Timestep 1

(c) Timestep 3 (d) Timestep 5

Figure 3.3 Timestep segmentation results

weighted inputs, a linking radius of 1 results in 8 neighbors updating their linking fields,

or 128 calculations.
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Another approach is to update neighboring linking fields when a neuron fires. By

examining Figure 2.2, it can be seen that when a neighboring neuron fires, the result is a

simple weighted addition to the current value of the linking field. Since the values of the

weights and the magnitude of the linking pulse are known, the weighted addition can be

calculated prior to starting the PCNN. As a result, when a neuron fires, simple additions

can be performed on the neighboring neurons' linking fields. For a linking radius of 1, only

8 additions are performed. This concept is demonstrated in Figure 3.4.

0 
0

0 cv°

Ok E 0 3000000

Figure 3.4 Revised neuron feeding and linking connections

Conceptually, Figure 3.2 and Figure 3.4 are the same. The first represents the fact

that linking inputs are received or gathered from neighboring neurons, and the second

represents linking inputs as being sent out to neighboring neurons. In both cases, linking

inputs are being provided to neighboring neurons. The difference is in the representation

and calculation of the linking field's value. The approach taken here uses the latter.
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Another departure from PCNN theory is the implementation of the decaying thresh-

old, Uk. Theoretically, each neuron's pulse generator contains its own threshold because

neurons were allowed to pulse multiple times and at differing rates, therefore, with differ-

ent thresholds. However, since neurons are only allowed to pulse once, and every neuron's

threshold begins at the same value and decays at the same rate, only one threshold value

is required.

A revised version of the model neuron of Figure 2.2 is given in Figure 3.5.

Leaky Leaky Subscripts
Integrator

Integrator I - neighboring neuron

Ky k -current neuron

-I
+1E +1

Step Function pulse)

Figure 3.5 Revised model neuron

3.3.2 Original Images. Figure 3.6(a) and 3.6(b) represent typical MR brain im-

ages used in this research. These images are unfiltered and unsegmented. Image noise and

spatial intensity variations are apparent. To further illustrate the existing variance, a plot

of intensity value versus pixel location for the vertical reference line drawn in Figure 3.6(c)

is represented in Figure 3.6(d). Note the intensity variance in the circled region of Fig-

ure 3.6(d). This is a high degree of variance for what appears to be pixels of the same

region.

3.3.3 PCNN Filter. Images first had to be filtered prior to segmentation. This

was done to reduce the local spatial variance that existed within each image, reduce the
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Figure 3.6 Typical MR brain images are represented by (a) and
(b) with (d) representing the intensity plot of the ref-
erence line in (c).

number of pixel intensities in the image, and eliminate noise artifacts present from the

scan.
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The PCNN was also used to perform image preprocessing. A weakly linked PCNN

was fed the original input images and allowed to run. After each epoch, the firing order

of the neurons representing the pixels were examined and their corresponding intensities

adjusted. Figures 3.7, 3.8, 3.9, 3.10, and 3.11 illustrate the progression of an original

image through the filtering process. PCNN filtering is a gradual process and is performed

over multiple epochs. Changes from one image to the next are not always apparent,

however, an appreciation for the overall result can be achieved by comparing the original

image to the final. The reason changes aren't apparent from one stage to the next is that

each epoch results in a number of pixel intensity adjustments. The decision to adjust a

pixel's intensity is based on neighboring neurons.

As stated earlier the neuron's neighborhood is defined by its linking radius. If a ma-

jority of a neuron's neighbors fired before the specified neuron, that neuron's corresponding

pixel intensity was increased. Since the neuron's feeding input is the pixel intensity, an

increase in the feeding value should increase the neuron's internal activity and cause it to

fire sooner. Likewise, if a majority fired after, the intensity was decreased. If a majority

fired at the same time, no action was taken. Once the number of intensity adjustments

dropped below a certain threshold, filtering stopped. The threshold allows the monitoring

of the number of pixels whose intensity values change during an epoch.

Figure 3.12 illustrate the results of applying the PCNN based filter to the original

images in Figures 3.6(a) and 3.6(b). Figures 3.6(a) and 3.6(b) originally contained 164 and

219 different intensity values respectively. After PCNN filtering, the number of intensities

were correspondingly reduced to 74 and 95 intensities. Both images used parameter settings

of -rs = 103, T = 63, Vs = 1.0, 3 = 0.01, and a filtering threshold of ten percent.

The resulting images demonstrate a clear reduction in the variance and number of

pixel intensities. However, there is also an obvious reduction in image contrast.

3.3.4 Contrast Enhancement. One of the effects of filtering is the reduction in

image contrast. Since the PCNN is physiologically based on the primate visual system,

an improvement in contrast should aid segmentation. Therefore, a histogram equalization

procedure is used to perform image contrast enhancement. Figures 3.13(a) and 3.13(b)

3-9



Figure 3.7 Original MR image

demonstrate the results of applying histogram equalization to the PCNN filtered images

to improve contrast. Comparing these figures to those of the filtered images illustrates the

effectiveness of the enhancement. The low contrast of the filtered images makes it difficult

to discern intensity differences, while the enhanced images make intensity differentiation

easier. Additionally, outliers not handled by the filtering process are dealt with.

3-10



Figure 3.8 Results after 1 epoch

3.3.5 2D PCNN Segmenter. The actual PCNN segmentation proceeds much the

same way as the filter process with the exception of the intensity adjustment and strength

of the bias field. Intensities are now fixed and used as features. Since it is assumed that

filtering enhanced the relationships between pixels, the linking field bias is increased. A

filtered and contrast enhanced image is presented to the PCNN and the image is segmented.

Figures 3.14(a) and 3.14(b) illustrate the results of applying the PCNN segmentation

algorithm to the PCNN filtered and contrast enhanced images. Parameter settings of
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Figure 3.9 Results after 2 epochs

TS - 25, T = 14, Vs - 1.0, and Pl = 0.1 were used to obtain both images. The segmented

images now contain only 9 different intensity values. It can be seen that the segmentation

has grouped pixels and regions together that originally suffered from a great deal of noise

and variance. Image detail and object boundaries are generally maintained.

3.3.6 3D PCNN Segmenter. There are two forms of three dimensional segmen-

tation in this research. The first uses the slices directly above and below the slice to
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Figure 3.10 Results after 3 epochs

be segmented as additional information for the linking field of the PCNN. The second

approach actually segments an entire volume represented by a series of images.

Figures 3.15, 3.16, 3.17, and 3.18 are representative of a series of 2D images used to

create and segment a 3D volume. The process used for this procedure was the same as the

process used for the 2D images. The parameters for 3D PCNN filtering and segmenting

are also the same as the 2D parameters.

3-13



Figure 3.11 Results after 4 epochs

Figure 3.15 is a subset of a set of continuous slices used to construct a volume to be

segmented. Structure and intensity similarity can be observed from image to image. Only

small changes occur from one image to the next.

Figure 3.16 is the result of applying the 3D PCNN filter to the images of Figure 3.15.

As with the 2D PCNN filter, intensity variance is reduced at the expense of image contrast.
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(a) (b)

Figure 3.12 PCNN filtered images

(a)(b

Figure 3.13 Filtered images after histogram equalization
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(a) (b)

Figure 3.14 PCNN segmented images

Figure 3.17 is the result of applying contrast enhancement to each of the images in

Figure 3.16. Again, like the 2D approach, contrast is improved and structure and intensities

are easily differentiated.

Figure 3.18 is the result of applying the 3D PCNN segmenter to the filtered and

contrast enhanced volume. The segmentation has again grouped like pixels together while

maintaining more details and boundaries than the 2D method.

Figure 3.19 was obtained using the 3D filter and segmentation processes illustrated

previously with a slight modification. The image was originally segmented using the 2D

process (Figure 3.14(b)) and then segmented using the 3D process except only the images

directly above and below were used to construct the volume. The same parameters were

used for both segmentations. The differences are quite noticeable. An examination of the

boxed area of Figure 3.19 shows details not captured by the 2D segmentation method.
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Figure 3.15 Montage of six original MR brain images used for
volume construction
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Figure 3.16 Montage of filtered version of images of Figure 3.15
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Figure 3.17 Montage of images of Figure 3.16 after contrast en-

hancement
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Figure 3.18 Montage of final segmented images
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Figure 3.19 3D segmentation of image in Figure 3.6(b)
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3.4 Segmentation Analysis

Visually, the results of the processes described and illustrated thus far appear to

produce the desired results. However, visual examination of the resulting images does

not validate the effectiveness of the method. A comparative analysis of the resulting

regions' intensities to corresponding original image intensities should give an indication

of the performance of the method. Figure 3.20 shows a mapping of the original image

pixel intensities of Figure 3.6(a) to the new image pixel intensities of Figure 3.14(a). The

number of bars in the figure represent the number of resulting intensities in the segmented

image. It can be seen that the PCNN has grouped pixels together whose intensities vary

widely.
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Figure 3.20 Segmented intensity to original intensity mapping

3.5 Software Architecture

An object-oriented approach following Rumbaugh [11] was taken to develop and

implement the PCNN based segmentation method. This was done to assure ease of growth

and adaptability. The object-oriented design and implementation allows for the application

to varying data sets and purposes, not just MR image segmentation. A more detailed

description of the software architecture, its implementation, and its use can be found in

Appendix C.
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3.6 Conclusion

This chapter presented the implementation and results of the PCNN as a software

system to perform image segmenting and filtering. Changes to the hardware model neuron

were defined and implemented to allow the PCNN to function more efficiently and to oper-

ate on multidimensional data. The next chapter presents conclusions and recommendations

for future research.
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IV. Conclusions

These conclusions and recommendations are based upon the results detailed in the previous

chapters.

4.1 PCNN Segmentation Method

A segmentation method based on a model of the pulse coupled neural network was

implemented and tested on MR brain images. Certain adaptations were necessary in order

to use the PCNN as an image analysis tool. These adaptations include the modification

of the neuron's feeding field, the single pulse neuron, single timestep linking, and a single

threshold decay variable used by all neurons.

These modifications to the model neuron resulted in over an order of magnitude

performance increase as well as reducing the memory requirements by over thirty percent.

These results allowed the extension of the PCNN to operate three dimensionally. This

new application of the PCNN results in a better segmentation of the image or volume of

interest. This is primarily due to the additional spatial information that the PCNN is

capable of incorporating.

A mapping of each segmented region's new pixel intensities to original image in-

tensities demonstrates that the PCNN segmentation method developed by this research

performs more than just simple thresholding. This research clearly demonstrates that the

PCNN can be used as an effective image analysis tool.

4.2 Recommendations for Further Research

There are several key areas that could be examined by further research. These

include the implementation of a true PCNN feeding field, incorporation of pulse inhibition,

extending the method to perform tissue classification rather than segmentation, and an in

depth examination of the effects of PCNN parameter settings and training.
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Appendix A. Image Extraction

This appendix provides the processes to extract archived MR brain images from 4mm DAT

tape.

A.1 Image Extraction Procedures

Once the data was acquired from the scanner, it was archived on 4mm DAT tapes

and 5 1/4" Optical Disks. However, the data was only readily accessible from a GE MRI or

CT scanning console. This is because the data was written to the tapes and optical disks

in a GE format. The images were also compressed by a GE compression routine prior to

archiving. In order to extract the data from these mediums, two different processes were

used. One process required access to a General Electric (GE) MRI or CT console. Another

process only required equipment capable of reading 4mm DAT tapes.

A.2 Method One

The first process required access to a GE console. The desk where the technician

controls the MRI or CT scanner and equipment is referred to as the console. The GE CT

console at the Wright Patterson Medical Center was used. In order to extract archived

images, they first needed to be restored to the console's hard drive. Once restored, they

resided on a GE partition of the system's hard disk. Restoration was performed by the CT

technician. Next, the images needed to be decompressed and placed in a unix partition of

the hard disk. To accomplish this task, access to the operating system was required. A

command shell started from the utilities menu provided access. The following steps extract

and save restored images.

Step 1 Restore Archived Data

1. Place 4mm tape with archived data into the drive.

2. Have a technician restore data from the console.

3. Obtain exam, series, and image numbers from technician.

4. Once data is restored, remove tape from drive.
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Step 2 Access Unix

1. At the console, touch "Utilities"

2. Touch "Shell"

Step 3 Extract Images

1. From the command shell, type: cd /usr/g/insite/bin <enter>

This is the location of the image extraction utility.

2. To extract images, type: ximg -i e(exam)s(series)iall -s -t <enter>

This command will extract all the images from the given exam and series without

stripping patient information and will save images in rectangular, decompressed

form. Images are located in the /usr/g/insite/tmp directory. Use the exam and

series information obtained from restoration step. If all the restored data must

be extracted, reissue the above command with the appropriate exam and series

numbers until all desired data is extracted.

Step 4 Save Extracted Images to Tape

1. Change directories. Type: cd /usr/g/insite/tmp <enter>

2. Place a new tape in the 4mm tape drive.

3. To save images to tape, type: tar -cvf /dev/nrst8 E* <enter>

Step 5 Remove Extracted Images from Console

1. To remove, type: rm E* <enter>

2. To verify, type: ls <enter>

Step 6 Close Command Shell

Step 7 Remove tape from 4mm tape drive.

Images now reside on the new tape in a format readable by any machine capable of

reading 4mm tapes and executing the tar utility.
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A.3 Method Two

The second process used to restore images from an archived tape used a public

domain utility called dicom3tools. Dicom3tools contains many routines for converting

images to the new Dicom standard. One of the routines has the ability to read GE MRI

archived data from an external device. Once the images were restored, they needed to

be decompressed. A decompression routine was implemented using the GE pseudocode

decompression routine. The following steps illustrate the process.

Step 1 Install Software

1. Install and compile Dicom3tools on the system with the external device that

will be used to read the data.

2. Install and compile the GE decompression routine.

Step 2 Read Data

1. Change to the directory where you wish the data to reside.

2. Place medium with archived data in device.

3. To remove data, type: ex9t (device name) <enter>

Step 3 Decompress Data

To decompress an image, type: decompress (source) (target) <enter>

Issue this command for every image file to be decompressed.

A.4 Decompression Code

#include "ge-structs .h"

main(int argc, char *argv[])
{
FILE *infile;
FILE *outfile;
char byte;
int i;
unsigned short int real-pixels[256*256];
unsigned short int base;
unsigned short int first-byte;
unsigned short int second-byte;
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if (argc < 3)

{
printf("usage: decom infile outfile\n");
exiit(');

if ((infile = fopen(argv[1], "r")) == NULL)

printf('input file could not be opened\n");
exit(1);

if ((outfile = fopen(argv[2], "w")) == NULL)

I
printf("output file could not be created\n");
exit(1);

fseek(infile, (2260+3180), 0);

base =0;
for (i=O;i<256*256;i++)

first-byte = fgetc(infile);
if (first-byte < 0x40)

base = base + first-byte;
else if (first-byte < 0x80)

base = base + (short) (first byte - Mx8);
else

if (first-byte < OxaO){
second-byte = fgetc(infile);
base = base + (((short) (first byte & Oxlf))KK8) + second-byte;

else if (first-byte < OxcO){
second-byte = fgetc(infile);
base = base + (((short) (first -byte I OxcO))«<8) + second-byte;}

else{
base = fgetc(infile);
base = base << 8;
base = base I fgetc(infile);}

real-pixels[iI = base;
fwrite(&base, sizeof(unsigned short int), 1, outfile);
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Appendix B. Visualization

This appendix provides the functions used to view MR brain images represented by 16 bit

binary values.

B.1 Image Viewing

function brain = getmribrain(filename, header-size, image-sizel, image-size2)
% GETMRIBRAIN Load a 16 bit binary representation image
% brairtimg = getmnribrain(filenamae, header-.size, rowvs, columns)
% by: Lt Shane L. Abrahamson

fid = fopen(filename, 'r');
% read header
if header-size -=0

temp =fread(fid,[1 ,header-.sizel, 'char,);
end

% read image data
[brain, cntl = fread(fid,[image-sizel, image-size2, 'ushort');
brain = brain,;
fclose(fid);

X display image
figure;
imagesc(brain)
colormap(gray)
axis( 'equal')
title(filename);
return
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Appendix C. Software Architecture

This appendix provides a description of the software developed for the PCNN and how it

is used.

C.1 Object Model

Figure C.1 contains the object model of the PCNN software developed. An MRI

PCNN segmentation system consists of one or more PCNNs, a Reader, and a Writer. The

PCNNs can be filters, segmenters, or pulsers. The PCNNs in turn consist of 3D arrays

and a Stack. The design was implemented using the C++ programming language.

F rMRI Segmenter c t

PCNN ThReader i Writer

dtinoafleevesoofteoiia.TePCNN segmenter aceth iltere dat

EI a
Figure C.1 PCNN Segmentation System Architecture

Conceptually, the various objects can be thought of as a set of filters through which

the image data flows and is transformed. Figure (C.2 demonstrates a type of program that

could be constructed. In this instance, an image file is transformed by the Reader into

an object that the PCNN filter can understand. The PCNN filter in turn, transforms the

data into a filtered version of the original. The PCNN segmenter accepts the filtered data

and segments before the Writer transforms it back to an image file.
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Image File

Reader

PCNN Filter

PCNN Segmenter

Writer

Image File

Figure C.2 Sample PCNN Object Flow Diagram

Each of the objects in Figure C.2 must be instantiated and its parameters set. A

listing of each object's required parameters is given in the header of each object's source

file. The main program in Section C.2 implements the concept of Figure C.2.

C.2 Sample Main

#include "PCNN.Segmenter. cc"
#include "PCNFilter. cc"
#include "Reader. cc"
#include "Writer. cc"
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#include <fstream.h>

int main()

PCNN..Filter *my-filter =new PCNN-Filter;
PCNN.Segmenter *rny-segmenter = new PCNN-Segmenter;
Reader *my-reader = new Reader;
Writer *seg-writer = new Writer;

my-reader-> SetDataDimensions(256, 256, 1);
my..reader-> SetFilePrefix(" original- mage");
my..reader->SetlmageRange(1, 1);

my-filter->SetBeta(.O 1);
my..filter-> SetLinkingRadius( 1);
my-.filter->SetLinkingTime~onstant(0);
my-filter->SetThetaTimeConstant(100); 1/82
my-filter->SetTimeSteps(60) ;// 50
my-filter->SetThetaV(1.0);
my-filter->SetLinkingV(1.0);
my-filter->Setlnput(my-reader-> GetOutputo);
my-filter ->Set FilterThreshPercent (. 1);
my-filter->SetOutput((OutputType) 1);

my-segmenter->SetBeta(.1);
my-segmenter->SetThetaTime~onstant(25);
my-segmenter->SetTimeSteps(15);
my-segmenter->SetOutput((OutputType) 1);
my-segmenter->SetLinkingRadius(1);
my-segmenter->SetLinkingTimeConstant(0.0);
my..segmenter->SetThetaV(1 .0);
my-segmenter->SetLinkingV(1 .0);
my-segmenter->Setlnput(my-filter-> Get Outputf0);

seg-writer.-> SetFilePrefix(', segment ed-inage");
seg-writer->Setlnput(my-segmenter->GetOutputO);.
seg-writer->ExecuteO;

return 1;
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Appendix D, PCNN Code

This appendix provides source code listings of the C++ objects that imnplemnent a Pulse

Coupled Neural Network.

D.1I PCNN Base Class

* Class PCNN4 contains the variables and methods necessary to
* implement a pulse coupled neural network.

" The following parameters MUST be set prior to use:
" output
" Timesteps
" LinkingRadius
" Linking V
" Theta V
" Beta
* Theta Time Constant
" input

#ifndef -PCNN4-
#define -PCNN4-

#include "NewStack. cc"
#include "AS.cc"

typedef struct neuron{
int dep;
mnt row;
mnt cot;

typedef enum Output Type { Timestep, Intensity};

class PCNN{

protected:

A8<float> *input;
A3<float> *LinkingField;
AS<zfloat> * Theta;
float Thetal;
A3<float> * linking-w eights;
AS<float> *results;
St ack< neuron> *PCNNStack;
int LinkingRadius;
float Linking Time Constant;
float Theta Time Constant;
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float ThetaV;
float Theta0;
float LinkingY;
float Beta;
float Pals eHeight;
int Redraw;
int TimeSte pa;
jut Timer;
iut NumClasses;
Output Type output;

public:

IIConstructor initializes all variables of the pcnn to default values

PCNN()
input (N ULL),
LinkingField(NULL),
Theta(NULL),
Thetal(0. 0),
linking-weights (NULL),
results (NULL),
PGNNStack(NULL),
Linkinglladius9(0),
Linking Time Cons tant(0. 0),
Theta Time Constant(0. 0),
The ta V(0. 0),
Theta0(0. 0),
Linking V(0. 0),
Beta(0.0),
PutsecHeight (MA XFL OAT /100.0),
Redraw(0),
TimeSteps(0),
Timer(0),
NumClasses(0),
output (Intensity)

IISetInput assigns the pointer of the input class

void Setlnput(A SCfloat> *PCNNInput)

input = PCNNInput;

/1Set Output assigns the type of output to produce
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/ /***********************************************************************

void Set Output(Output Type value)
{

output = value;}

//*********************************************************************
//
/1 InitializeLinkingField instantiates a new instance of AS. The linking
//field contains values used to calculate the contribution of
// neurons. The array is padded and initialized to the value passed in.
/-

* ** **** **** ** *** ** ******* *** ****** * ******** ***** *** **** ***** *** * **** ** *

void InitializeLinkingField(int rows, int cols, int depth, float value)
{

LinkingField = new AS<float>(rows, cols, depth);

LinkingField-> SetData(value);I

//*********************************************************************
/-
// InitializeTheta instantiates a new instance of AS. The Theta array
// contains the theta values of each neuron in the net and is used in the
/threshold comparison. The array is also padded and initialized to the
// value passed in.
//
/ /* **** ******** *** ********** **** *** ** ********* * **** * **** * ***** *** * * **** **

void Initialize Theta(int rows, int cols, int depth, float value)
{

Theta = new AS<float>(rows, cols, depth);

Theta-> SetData(value);I

//********************************************************************,,
/-
I/ Initialize Weights instantiates a new instance of AS. The Weight array
// is a mask of weights that are applied to surrounding neurons during
/the potential calculation. The array is of size 2 * LinkingField + 1.
I-
I** *** *** ***** ***** ** ***** ***** ******** *** ** ******* *** ** ***** *** * **** ** *

void Initialize Weights(
{

linking-weights = new A3<float>(LinkingRadius * 2 + 1,
LinkingRadius * 2 + 1,

LinkingRadius * 2 + 1);
}

//***********************************************************************
//
1/ InitializeResults instanitates a new instance of AS. The results
// array will contain the timestep at which a particular neuron fires.
//
I/***********************************************************************

void InitializeResults(int rows, int cols, int depth, float value){
results = new AS<float>(rows, cols, depth);
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results-> SetData(value);
I

// InitializeStack instantiates a new stack to operate on neurons and
// sets the maximum number of items that the stack can hold.
//

/* * ** ** *** ** ** ******* *** ** **** * *** ***** ** *** * ****** *** ** ****** **** *** ** *

void InitializeStack0{
PCNNStack = new Stack<neuron>;

}

// InitializePCNN calls the methods to allocate space for the various
// classes used by the pcnn as well as setting their initial values.
// The input is also normalized at this time. Therefore, the input must
/be set prior to execution of the pcnn. This method should be private.
//
/* *** ** *** * ****** ** ** *** ** **** * *** ****** * *** ** *** ** ****** ** ***** ***** ** **

void InitializePCNNO
{

int row, col, dep;

row = input-> GetActualRowsO;
col - input-> GetActualColsO;
dep = input->GetActualDepthO;

InitializeResults(row, col, dep, 0.0);
InitializeLinkingField(row, col, dep, 0.0);
Initialize Weights(9;
Load Weights O;
InitializeStack 0;
NormalizeInput(input);

// Initialize Theta(row, col, dep, GetThetaVO);
Thetal = 1.0;

} // end InitializePCNN

// SetLinkingRadius assigns the passed value to LinkingRadius.
//
/ ***********************************************************************

void SetLinkingRadius(int value)
{

LinkingRadius = value;}

/ /$***************************$*$$$$$$****$$*$$***************

//
If GetLinkingRadius returns the current value of LinkingRadius

//
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int GetLinkingRadius)

I
return LinkingRadius;}

/ /***************************************************$$**************

/-
// ShowLinkingRadius outputs the current LinkingRadius to Standard Out

I/ ************************************************************************
void ShowLinkingRadius0)

{
cout << "LinkingRadius: " << LinkingRadius << end!;}

//******************************$$*******************$*************
//

// SetLinkingTimeConstant assigns the passed value to LinkingTimeConstant
//

void SetLinking Time Constant (float value)
{

LinkingTime Constant = value;
}

//*******************************$$***************************$$*****
//
// GetLinkingTime Constant returns the current value of LinkingTimeConstant
//
/ ***************************************************$***************

float GetLinkingTime Constant0{
return Linking Time Constant;}

/ /******************************************************$***********$%

/1
// ShowLinkingTimeConstant outputs the current LinkingTime Constant to
// Standard Out.
//
/ ************************************************************************

void ShowLinkingTimeConstant0{
cout << "LinkingTime Constant: " << LinkingTime Constant << endl;}

/ ************************************************************************
/-
// SetThetaTime Constant assigns the passed value to Theta Time Constant
//
/ ************************************************************************

void SetThetaTimeConstant(float value){
ThetaTime Constant = value;

}
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// Get ThetaTimeConstant returns the current value of ThetaTime Constant
//
I ************************************************************************

float Get Theta Time Constant0{
return Theta TimeConstant;

}

// ShowThetaTimeConstant outputs the current ThetaTime Constant to
// Standard Out
//
/ ************************************************************************

void ShowThetaTimeConstant0{
cout << "ThetaTimeConstant: " << ThetaTime Constant << end!;

I

I//* * ** *$$$$$$$$$$$$$$*$$$$*** * ** ******* *** ***** **** * * * ** * ** ** ** *

//
// SetThetaV sets ThetaV to the passed value
/-

void SetThetaV(float value)
{

Theta V = value;
I

// GetThetaV returns the current ThetaV to the calling method
//
/ ***********************************************************************

float GetTheta V0{
return ThetaV;}

///***********************************************************************
//
// ShowThetaV outputs the current ThetaV to Standard Out
//
/ ***********************************************************************

void ShowTheta V0

{
cout << "ThetaV: " << ThetaV << endl;I

/ /***********************************************************************

/-
// SetThetaO assigns the passed value to ThetaO

//
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void SetThetaO(float value){
ThetaO = value;I

// GetThetaO returns the current ThetaO to the calling method
//
/ ***********************************************************************

float GetThetaO0{
return ThetaO;}

//****************************$$****************************************
/-
II ShowThetaO displays the current ThetaO to Standard Out
//
/ ***********************************************************************

void ShowThetaO0{
cout < "ThetaO: " < ThetaO < endl;

I

// SetLinkingV assigns the passed value to LinkingV
//
/ ***********************************************************************

void SetLinking V(float value)

LinkingV = value;I

// GetLinkingV returns the current LinkingV to the calling method

I/ ***********************************************************************
float GetL inking V0)

{
return LinkingV;I

/ /***********************************************************************
/-
// ShowLinkingV displays the current LinkingV to Standard Out
//
/ ***********************************************************************

void ShowLinkingV0

{
cout << "LinkingV: " << LinkingV << endl;

D
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/-

// SetBeta assigns the passed value to Beta
//
I ***********************************************************************

void SetBeta(float value)
{

Beta = value;}

I/**************************************************$******************
//
// GetBeta returns the current Beta to the calling method
//
/ ***********************************************************************

float GetBeta()
{

return Beta;}

/ /****$$********************$$$$$*********************$$$********

//
// ShowBeta displays the current Beta to Standard Out
//
/* ** ** *** *** ******* * **** ** **** **** ** *** * ***** * *** ***** ** *** * ***** * *** * **

void ShowBeta0{
cout << "Beta: " << Beta << endl;
}

// SetPulseHeight assigns the passed value to PulseHeight
//
/ ***********************************************************************

void SetPuIseHeight (float value)
{

PulseHeight = value;
}

// GetPulseHeight returns the current PulseHeight to the calling method
//
I**** *** **** ********* *** ***** ***** ***** *** *** * ***** *** * **** * ***** * ***** *

float GetPulseHeight0{
return PulseHeight;I

/ I***********************************************************************
//
// ShowPulseHeight displays the current PulseHeight to Standard Out
//

void ShowPulseHeight(
{
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cout << "PulseHeight: " << PulseHeight << endl;
}

// SetRedraw assigns the passed value to Redraw indicating whether
// neurons fired during the current timestep.
//
/ ***********************************************************************

void SetRedraw(int value)
{

Redraw = value;
I

I/ GetRedraw returns the current value of Redraw to the calling method
// indicating whether neurons fired during the current timestep
//

* ** *** * **** ** ***** ** ***** *** ** *** ** *** ****** * ***** *** ** *** * **** ***** ** *

int GetRedraw0{
return Redraw;
}

/ /***********************************************************************
/-
// SetTimeSteps assigns the passed value to TimeSteps, indicating the
// number of timesteps to run the pcnn
//
/ ***********************************************************************

void SetTimeSteps(int value)
{

TimeSteps = value;}

// GetTimeSteps returns the number of timesteps the pcnn has been set to
// run.
//

int GetTimeSteps0{
return TimeSteps;}

/ I********************************************$*********************
/-
// ShowTimeSteps displays the number of timesteps to Standard Out that
/the pcnn is set to run.

void ShowTimeSteps(
{

cout << "TimeSteps: " << TimeSteps << endl;
D
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/* ** * * ** **** ** *** ** * ***** **** *** ** ** ***** *** ** *** *** ** *** ** *** **** *** ****

/-
// SetTimer assigns the passed value to Timer. Timer holds the current
// timestep of the penn
/// **** **** *** ** *** ** ***** *** ** * **** * **** *** ******* * ****** *** ** ****** ** ** *

void SetTimer(int value)
{

Timer = value;I

/ ************************************************************************

/-
/* GetTimer returns the current value of the Timer, which is the current
*/ timestep of the pcnn, to the calling method

I/ ************************************************************************

int Get Timer 0)

{
return Timer;

I

/ ************************************************************************

/-
** ShowTimer displays to Standard Out the current value of the Timer.
//
/* *** ** ***** ** *** **** *** *** **** *** * **** ******* ***** **** * *** ***** *** *** ***

void ShowTimerQ
{

cout << "Timer: " << Timer << endl;}

/ ************************************************************************

/-
// SetNumClasses assigns the passed value to NumClasses which tracks how
** many of the timesteps produced a pulsing neuron.
//
,/I***********************************************************************

void SetNumClasses(int value)
{

NumClasses = value;
}

/ **************$********************************************************

/-
** GetNumClasses returns the number of timesteps that have produced a
** pulsing neuron.
//
/ ************************************************************************

int GetNumClasses0{
return NumClasses;

}
//***********************************************************,***
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//
// ShowNumClasses displays the current number of timesteps that have
// produced a pulsing neuron. Display is to Standard Out.
//
/ ***********************************************************************

void ShowNumClasses0{
cout << "Number of Classes: " << NumClasses << endl;I

//*:******$************************$$*******************************
/-
// ShowInput displays to Standard Out the input assigned to the penn.
//
I ************************************************************************

void ShowInput0{
input-> ShowA 30;}

// ShowWeights displays to Standar Out the weights used by the penn.
//
I**** *** ** **** ***** *** ******* ** **** * *** *** *** * ***** ***** ***** *** ** *** ** *

void ShowWeights0{
linking-weights-> ShowA30;}

//*$***************************************************************
//
/1 ShowResults displays to Standard Out the results of the pcnn. Results
// contains the timestep that a neuron pulsed during execution of the
//pcnn.
//
/ ************************************************************************

void ShowResults0{
results-> ShowA 30;I

// ShowTheta displays to Standard Out the values assigned to each of the
// thetas.
//
/ ************************************************************************

void ShowTheta0{
Theta-> ShowA 30;

/1 GetMaxInput returns the maximum value assigned to the input
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//

float GetMaxInput)
{

return input-> GetMaxO;
}

/ I*****************************************************************$**
//

// ShiftInput shifts the input data by the amount passed
//
/ ************************************************************************

ShiftInput (float amount){
int dep, row, cot;

for (dep = 0; dep < input->GetActualDepthO; dep++)
for (row = 0; row < input-> GetActualRowsO; row++)

for (col = 0; cot < input->GetActuatCotsO; cot++)
input->Set(dep, row, cot, (input->Get(dep, row, cot) + amount) );

/ ***********************************************************************
/-
// NormalizeInput changes the input to a range of 0-1.
//
/ ************************************************************************

void Normalizelnput(A3<float> *tamp)
{

int dep, row, cot,
float factor = 1 / temp->FindMazO;
for (dep = 0; dep < temp->GetActuatDepthO; dep++)

for (row = 0; row < temp->GetActualRowsO; row++)
for (cot = 0; cot < temp->GetActuatColsO; col++)

temp->Set(dep, row, cot, (temp->Get(dep, row, cot) * factor) );

// LoadWeights initializes the Weight array with values that correspond
/to distances from the center of the weight mask.
//
/ ***********************************************************************

void LoadWeights0{
float DistanceSquared;

int j, k, 1;

for(j = -LinkingRadius; j <= LinkingRadius; j++)
for(k =- LinkingRadius; k <= LinkingRadius; k++)

for(l =- LinkingRadius; I <= LinkingRadius; l++)
{

DistanceSquared = (float)(j * j + k * k + I * 1);
if(DistanceSquared > 0)

linking-weights->Set(j + LinkingRadius, k + LinkingRadius,
I + LinkingRadius, 1);
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else
linking-weights->Set(j + LinkingRadius, k + LinkingRadius,

I + LinkingRadius, 0.0);
}/end for

} /end Load Weights

/1ApplyDecay exponentially decays the linking and theta fields

void ApplyDecay()

float LinkingDecayRate;
float ThetaDecayRate;
int dep, row, col;
static mnt ActualRows LinkingField-> GetActualRowsQ;
static mnt ActualCols =LinkingField-> GetActualColso;
static mnt ActualDepth =LinkingField-> GetActualDeptho;

if (Linking Time Constant == 0.0)
LinkingDecayRate = 0.0;

else
LinkingDecayRate = exp(- 1 / Linking Time Constant);

if (Theta Time Constant == 0.0)
ThetaDecayRate =0.0;

else
ThetaDecayRate =exp(.1 / Theta Time Constant);

Thetal Thetal * ThetaDecayRate;
for (dep =0; dep < ActualDepth; dep++)

for (row = 0; row < ActualRows; row++)
for (cot = 0; col < ActualCols; col++)

if (LinkingRadius > 0)
LinkingField->Set(dep, row, col, LinkingField-> Get(dep, row, col)

* LinkingDecay Rate);
// if (Theta-> Get (dep, row, col) < 100)
1/ Theta->Set(dep, row, col, Theta->Get(dep, row, col)

// * ThetaDecayRate);
I/end for

} 1end ApplyDecay

/1UpdateLinkingAndThetalnternalState updates the theta field of the
//firing neuron and the linking field of the surrounding neurons.

void Updat eLinkingA nd The talnt ernalStat e(int dep, mnt row, mnt col)

int surdep, surrow, surcol;
mnt wdep, wrow, wcol;
float temp-fired = LinkingField->Get(dep, row, col);

if (LinkingRadius > 0)
for (surdep = dep - LinkingRadius, wdep = LinkingRadius * 2;
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wdep >= 0; wdep-, surdep++)
for (surrow =row - LinkingRadius, wrow =LinkingRadius 2;

wrow >= 0; wrow-, surrow++)
for (surcol = col - LinkingRadius, wcol =LinkingRadius *2;

wcol >= 0; wco 1-, su.rcol++)
if (InBounds(surdep, surrow, surcol))

{ikn~ed>e~udp urw ucl
Linking~ie.Seludpsurowsurcsolsrcl

Linking V * lirnking-weights-> Get(wdep, wrow, wcol));

// Theta->Set(dep, row, cot, Theta->Get(dep, row, col) + Theta V*
II PulseHeight);

LinkingField->Set(dep, row, col, temp-fi red);
} /end UpdateLinkingAndThetalnternalState

/1CanNeuronFire calculates the Uk of the given neuron and determines
//whether the neuron exceeds the threshold. If the neuron can fire,
/the neuron is pushed on the stack, results for that neuron are set.

void CanNeuronFire(int dep, int row, int col)

fla{ k .0
float Lk = 0. 0;
float Thks = 0.0;

neuron CurrentNeuron = {dep, row, coil;

/if (Uk > Theta)
Uk = input-> Get(dep, row, col) * (1 + Beta

LinkingField-> Get(dep,row, col));
//Thresh = Theta0 + Theta-> Get(dep, row, col);

Thresh = ThetaG + Thetal;
if (Uk > Thresh)

SetRedraw(1);
PCNNStack->push(CurrentNeuron);
results->Set(dep, row, col, (float) GetTimer());
UpdateLinkingAndThetalnternalState(dep, row, col);
CheckNeighbors 9;

}// end if (Uk > Theta)
} /end CanNeuronFire

//CheckNeighbors checks the neighbors surrounding the given neuron to
//see if they can fire.

void CheckNeighbors()

neuron CurrentNeuron;
mnt surdep, surrow, surcol;
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float Uk, Thresh, Lk = 0.0;

while (!PCNNStack->IsEmpty()/ check surrounding neurons

C'arrentNeiuron =PCNNStack->popo;
for (surdep = GurrentNeuron.dep - LinkingRadius;

sitrdep <~= CurrentNeuron.dep + LinkingRadius; surdep++)
for (surrow = CurrentNeuron.row - LinkingRadius;

surrow <= CurrentNeuron.row + LirdvingRadius; surrow++)
for (surcol = CurrentNeuron.col - LinkingRadius;

surcol <= CurrentNeuron.col + LinkingRadius; surcol++)
if (results-> Get(surdep, surrow, surcol) < 1.0 &

InBounds(surdep, surrow, surcol))

Lk =LinkingField-> Get (surdep, surrow, surcol);
/if (Uk > Theta)
Uk = input-> Get(surdep, surrow, surcol) * (1 + Beta * Lk);
// Thresh = Theta0 + Theta-> Get(surdep, surrow, surcol);
Thresh = Theta0 + Thetal;
if ( Uk > Thresh)

neuron PushNeuron = {s'urdep, surrow, surcoll;
PCNNStack->pusqh(PusqhNeuron);
reslIts-> Set(surdep, surrow, surcol, (float) Get Timer());
UpdateLinkingAndThetalnternalState(surdep, surrow, surcol);

}// end if (Uk > Theta)
} /end if

} /end while
} /end CheckNeighbors

/InBounds determines whether the given neuron is within the range of
/the image/volume

inline mnt InBounds(int dep, mnt row, mnt col)

static mnt ActualDepth = input-> GetActualDepth();
static mnt ActualRows = input-> GetActualRows();
static mnt ActualCols = input-> GetActualColsQ;

if ( (dep < 0) 11 (row < 0)1 (col < 0) 11 (dep >= ActualDepth) I
(row > = ActualRows) II(col > = ActualCols))

return 0;
else

return 1;
} /end InBounds

/1CalculateLinkingAndOutput calls CanNeuronFire for every neuron that
//has not fired yet.

void CalculateLinkingAndOutput()
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{
int dep, row, col;

for (dep = 0; dep < input->GetActualDepthO; dep++)
for (row 0; row < input->GetActualRows(; row++)

for (col 0; col < input->GetActualCols(); col++)
if (results->Get(dep, row, col) < 1.0)

CanNeuronFire(dep, row, cot);
} // end CalculateLinkingAndOutput

/ ************************************************************************
//
// Exponentialize returns the normalized values to the range of the
// original input.

void Exponentialize0

{
int dep, row, cot;
float max = input->GetMaxO;
for (dep = 0; dep < results->GetActua[DepthO; dep++)

for (row = 0; row < results->GetActualRowsO; row++)
for (col = 0; col < results->GetActualColsO; col++)
if (results->Get(dep, row, cot) >= 1.0)

results->Set(dep, row, col, (float) (max *
exp (-(results-> Get(dep, row, col)-1) / Theta Time Constant)));

results-> SetMax(results-> FindMaxO);I

//***********************************************************************
/-
// ZeroOneMap converts the timestep results to a zero one map
//
/ ***********************************************************************

void ZeroOneMapO
{

int dep, row, cot;
for (dep = 0; dep < results->GetActualDepthO; dep++)

for (row 0; row < results->GetActua[RowsO; row++)
for (col = 0; col < results->GetActualColsO; col++)

if (results->Get(dep, row, col) > 0.0)
results->Set(dep, row, col, 1.0);}

/ /**********************************************************************
/-
// OneEpoch performs one run of the pcnn with the number of timesteps set.
//
//***********************************************************************

void OneEpoch(){
Jut TimeCounter;

SetNumClasses (0);
cout << "TimeStep: " << flush;
for (TimeCounter = 1; TimeCounter <= TimeSteps; TimeCounter++)
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{
Set Timer(Time Counter);
SetRedraw(O);

ApplyDecayO;
cout << TimeCounter << " " « flush;

CalculateLinkingAndOutputO;
if (GetRedrawO) // Something Pulsed this time step
{

cout << ". ";
SetNumClasses(GetNumClasses 0 + 1);
}

} /1 end for TimeCounter

cout << endl;
}//end OneEpoch

/**** *** **** ** * **** ** ****$**** *** ** *** ** *** **** ** *** ** ****** **$*** **

/-
// Destructor calls destructors of the classes used by the pcnn.
//

-PCNNO
{

delete results;
delete Theta;
delete linking.weights;

} // end Destructor

I;
#endif

D.2 PCNN Segmenter Code

* Class PCNNSegmenter contains methods specific to a PCNN
* used to perform segmentation.

* The variables required by the PCNN base class MUST be set

* prior to use.s

#include "P CNN4.cc"

class PCNNSegmenter : public PCNN{

public:

/ ***********************************************************************
/-
II Constructor initializes all variables of the pcnn segmenter to default
// values
//
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PCNNSegmenterO
PCNN0{}

//**********************************************************************
/-
// ExecuteSegmenter executes the pcnn (one epoch) to perform segmentation.
//
/1* **** **** * *** *** ** *** ** ****** * *** ** *** ** **** * ***** *** ** *** ** *** * ****** *

A3<float>* ExecuteSegmenter 0{.
timet t = time(NULL);
OneEpochO;
if (output == Intensity)

ExponentializeO;
cout << "Program took: " < time(NULL) - t < " seconds" << endl;

ShowNumClassesO;
return results;

} II end ExecuteSegmenter

//* *** * *** ***** ***** ** *** * ****** **** * *** * **** ** ***** *** * ******* **** ***** *

//
// GetOutput returns the result of the pcnn to the calling method. If
// the pcnn has not been executed, it is executed, otherwise, results is
// returned.
//
/ ***********************************************************************

A3<float>* GetOutput0{
if (results == NULL)
{

InitializePCNNO;
return ExecuteSegmenterO;

I
return results;

I;

D.3 PCNN Filter Code

I**************************************************************

* Class PCNN-Filter is a subclass of PCNN and contains methods
* and variables specific to performing PCNN filtering.

* The following MUST be set prior to use:

* Those variables required by the PCNN
* FilterThreshPercent

/***************************************************************

linclude "PCNN4.cc"

D-18



class PCNN..Filter : public PCNN{

protected:

float Filter ThreshPercent;

public:

//Constructor initializes all variables of the pcnn filter to default
//values

PCNN-Yilter()
PCNN(',
FilterThreshPercent(0)

//ExecuteFilter executes a pcnn filter. The pcnri is executed until the
//desired threshold is reached.

I

mnt num..adjusts = results-> GetActualCols() * results9-> GetActualRows()
results-> GetActualDeptho';

mnt num-epochs = 0;

time-t t = time(NULL);

while ( results.> GetActualCols() * results-> GetActualRows()
results-> GetActualDepth() * GetFilter ThreshPercent() <= num-adjusts)

results-> SetData(0. 0);
// Theta-> SetData(Get Theta V();
Thetal = 1.0;
LinkingField->SetData(0. 0);
OneEpoch 9;
num-epochs = ium-epochs + .1;
num-adjusts =Adjust Values 9;
cout << "Epoch: " << num-epochs << endl;
cout << "Number of Adjustments: <<« num-adjusts << endl;

Exponentialize();
cout << "Program took: " << time(NULL) - t << " seconds" << endl;
cout << "Number of Classes: " << GetNumClasses9 << endl;
return -results;
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/-
// Check Majority
//

* * ** ** ** ***** ***** ** ****** **** **** * *** ** *** ** ****** **** *** ** ***** *** ****

CheckMajority(int dep, int row, int col)
{

Jut surdep, surrow, surcol, before = 0, after = 0;
float target = results-> Get(dep, row, col);
int neighbors = (LinkingRadius * 2 + 1) * (LinkingRadius * 2 + 1) - 1;
int half;

if (results-> GetActualDepth() > 1)
neighbors = (int) pow((LinkingRadius * 2 + 1), 3) - 1;

half = neighbors / 2;

for (surdep = dep -LinkingRadius; surdep <= dep + LinkingRadius; surdep++)
for (surrow = row - LinkingRadius; surrow <= row + LinkingRadius;

surrow + +)
for (surcol = col - LinkingRadius; surcol <= col + LinkingRadius;

surcol++)
if (InBounds(surdep, surrow, surco ))
{
if (results-> Get(surdep, surrow, surcol) > target)

after = after + 1;
else if (results-> Get(surdep, surrow, surcol) < target)

before = before + 1;
}

if (before > half)
return (1);

else if (after > half)
return (.1);

else
return (0);

I***** **** ********* *** ***** **** *** * **** ***** ** *** ** ***** *** ** *** ** *******

/-
// AdjustValues is called by the filter and adjusts the intensities of
//pixels based on the firing order of the neurons around it. If a
// majority of neurons fire before, then the intensity is adjusted
// upward. If a majority fire after, the intensity is adjusted
// downward. If a majority fire at the same time, no action is taken.
//
I ***********************************************************************

Jmt Adjust Values 0{
Jut dep, row, col, count = 0;
static float factor = 1 / input.> GetMaxO;
Jmt direction;

for (dep = 0; dep < results->GetActualDepthO; dep++)
for (row = 0; row < results-> GetActualRowso; row++)

for (col = 0; col < results->GetActualColso; col++)
if (results->Get(dep, row, col) > 0.0)
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direction = CheckMajority(dep, row, cot);
if (direction != 0)
{

input->Set(dep, row, col, input->Get(dep, row, col) +
factor * direction);

count++;
}

}
return count;

// SetFilterThreshPercent assigns the passed value to Filter ThreshPercent
//
/ ************************************************************************

void SetFilter ThreshPercent (float value)
{

Filter ThreshPercent = value;}

// GetFilterThreshPercent returns the current Filter ThreshPercent to the
// calling method.
//

* * * *** ** ** *************** *** *** ** ***** ** *** ** *** * ****** **** * *** *******

float GetFilterThreshPercent0{
return Filter ThreshPercent;

}

// GetOutput returns the result of the pcnn to the calling method. If
// the penn has not been executed, it is executed, otherwise, results is
// returned.
//
/ **** ** ** *** ************** ***** *** ****** * *** ** ***** ***** ***** *** ** *** ****

A3<float>* GetOutput0{
if (results == NULL)
{

InitializePCNNfO;
return ExecuteFilterO;

I
return results;

}

};
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D.4 PCNN Pulser Code

* Class PCNNPulser contains all the methods specific to
* a PCNN that allows neurons to pulse multiple times.

* The variables required by the PCNN base class MUST be set
* prior to use.

#include "PCNN4. cc"

class PCNNIPulser: PCNN{

public:

/*/*** **** ****** ***** ** *** * **** ** **** * **** * *** ** **** * ****** ** ** **** * *** ****

/-
// Constructor initializes all variables of the penn pulser to default
//values
//
/ ************************************************************************

PCNN.Pulser0
PCNN({}

// ExecutePulser executes one timestep each time it is called and returns
// a zero/one map of the neurons that pulsed at that timestep.
I/
/ **********************************************************************

AS<float>* ExecutePulser0{
results->SetData(O. 0);
SetPuIseHeight(1. 0);
SetTimer(GetTimer0 + 1);
SetRedraw(O);
ApplyDecayO;
CalculateLinkingAndOutputO;
if (GetRedrawO) // Something Pulsed this time step
{

SetNumClasses(GetNumClasses() + 1);
Zero OneMap O;

}
return results;

/ ***********************************************************************
/-
// GetOutput returns the result of the pcnn to the calling method. If
// the penn has not been executed, it is executed, otherwise, results is
// returned.
//
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A3<fioat>* GetOutput()

I
if (results ==NULL)

InitializeP CNN();
return ExecutePulsero';

return ExecutePulser;

D. 5 PCNN Reader Code

" Class Reader performs a file read. It requires that the
" file be represented as 16 bit binary values.

" The following variables MUST be set prior to use:
" ActualRows
" ActualCols
" ActualDepth
" ImageLow
" ImageHigh
" FilePrefix

#include "AS. cc"

class Reader{

protected:

mnt ActualRows;
int ActualCols;
mnt ActualDepth;
mnt ImageLow;
mnt ImageHigh;
char * FilePrefix;
AS<fioat> * Volume;

public:

// Constructor
Reader()

Volume (NULL),
ActualRows(O),
ActualCols(O),
Actualflepth(O),
ImageLow(O),
ImageHigh(O),

D-23



FilePrefix(NULL)

IIDestructor
-Reader()

I
delete Volume;

I

void SetDataDimensions(int rows, int cols, int depth)

ActualRows =rows;

ActualCols =cols;

ActualDepth =depth;

void SetFilePrefix(char *InFilename)

I
FilePrefix = InFilename;

void SetlmageRange(int low, int high)

ImageLow =low;

ImageHigh =high;

//Execute reads in a series of images and fills the 3D input array.
//The method also works with 1 and 2 dimensional data as well.

void Execute()

short mnt *hold;
mnt dep, row, col;
PILE *FID;
char new-filename[100];
size.t result;
//fill a 3D matrix

if ( (!ActualRows) II(lActualCols) I(!ActualDepth))

cout << "Data Dimensions not set properly... .exiting!" << endl;
exit(- 1);

Volume = new A3<fioat> (ActualRows, ActualCols, ActualDepth);

for(dep = 0; dep < ActualDepth; dep++)

sprintf(new-filename, "%s.%d", FilePrefix, dep + ImageLow);
printf("Loading binary R.F. file %s: \n", new-filename);

FID = fopen(new-filename, "rb");
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if (FID == NULL)

printf(' n Could not open input file %s .. exiting\n'", neux-filename);
exit(. 1);

}// end if FID

hold = new short int[ActualCols];

for(row =0; row < ActualRows; row++)

result = fread(hold, 2, ActualCols, FID);
if (ActualCols != result)

printf("\nError while reading binary R.F. input file %s .. .exiting\n",
new-filename);

exit(- 1);

}// end if != result
for(col = 0; col < ActualCols; col++)

Volume-> Set(dep, row, col, (fioat)hold/col]);

//I end for row
fclose(FID);

}// end for dep
delete/] hold;

}// Execute

A3<fioat>* Get Output()

if (Volume ==NULL)

Execute();
Volume-> SetMax(Volume->FindMax 0);

,return Volume;

D.6 PCNN Writer Code

* Class Writer performs a file write. Output is 16 binaryj
* values.

" The following variables MUST be set prior to use:
" FilePrefix
" Input

#include "A 3.cc"

class Writer{

protected:
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A3<float> *Input;
char * FilePrefix;

public:

// Constructor
Writer()

FilePrefix(NULL),
Input (N ULL)

//Destructor
-Writer('

01

void Setlnput(A3<fioat>* in-.volume)

I
Input =in-volume;

I

void SetFilePrefix(char * OutFilename)

FilePrefix =OutFilename;

//Execute writes the data to file. Works with 1 and 2 dimensional data
//as well.

void Execute()

FILE *fid;
int row, dep, col;
char new-filename[100];
sizejt result;
int ActualRows = Input-> GetActualRowso';
int' ActualCols = Input->CGetActualColso';
int ActualDepth =Input-> GetActualDeptho;
short mnt temp;
static mnt file-.extension =0;

for (dep = 0; dep < ActualDepth; dep++)

sprintf(new..filename, "%s. %1d ", FilePrefix, file-extensiorij;
cout << "Writing binary file: " << new-filename << endl;

fid = fopen(neu-filename, "w");
if (fid == NULL)

printf("\n Could not open input file %s ... exiting\n", new-filename);
exit (-1);

}// end if FID

for (row = 0; row < ActualRows; row++)

D-26



for (col = 0; col < ActualCols; col++)
{

temp = (short int) Input->Get(dep, row, col);
fwrite(&temp, sizeof(short int), 1, fid);

}

fclose(fid);
file-extension+ +;

}
}

I;

D. 7 PCNN Stack Code

* Class NewStack implements a stack using a template. The
* stack is represented by a linked list.
*

** ************************************************************

#include <stdio.h>
#include <math.h>

#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <memory.h>
#include <ctype.h>
#include <time.h>
#include <values.h>
#include <iostream.h>

/ *************************************************************
/-
/Class Stack is a generic stack that accepts the data type
//which the stack was instantiated with. Operations are push
f/and pop.
///* ***** *** **** ***** ***** ** *** ** *** * **** * ********* ***** * **** ****

template <class STACKTYPE>

class Stack{

protected:
typedef struct stack.rec{

STACKTYPE item;
stack-rec* next;

stack.rec* current;

public:

//constructor
Stack()
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{
current NULL;}

//destructor
-Stack()

{
}

inline void push(STACKTYPE item)
{

stackrec* temp;
temp = new stack-rec;

temp->item = item;
temp->next = current;
current = temp;

inline STACKTYPE pop()

{
STACKTYPE temp;
stack-rec* old;
if (current != NULL)
{

old = current;
temp = current->item;
current = current->next;
delete old;
return(temp);

I
else
{

cerr << "Stack is empty" << endl;
exit(-1);

I

inline mnt IsEmpty0{
if (current == NULL)

return 1;
else

return 0;
}

I;

D.8 PCNN A3 Code

* Class A3 is a container for a three dimensional array. It is
* implemented as a template. By setting depth to 1, a two
* dimensional array is created. By setting depth and columns
* to 1, a one dimensional array is created.
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" The following parameters MUST be set prior to use:
" ActualRows
* ActualCols
" ActualDepth

*They are set when the class constructor is called

#ifndef -At..
#define .At..

#include <sqtdio.h>
#include <math.h>
#include <stdlib.h>
#finclude <malloc.h>
#include <cstring.h>
#include <memory.h>
#include <ctype.h>
#include <time.h>
#include <values.h>
#include <iostream.h>

" Matrix...tD creates a three dimensional matrix for storing
" a volume constructed from a series of images.
" ActualRows and ActualCols are the size of an image
" ActualDepth is the number of images

template <class TYPE>
class A3{

protected:
TYPE*** matrix;
iut ActualRows;
iut Actual~ols;
jut ActualDepth;
TYPE max;
TYPE min;

public:

A3(int p-Actuallows, jut p-Actual~ols, jut p.ActualDepth)
matrix(NULL),
ActualRows(p-Actualaows),
ActualCols(p-Actual~ols),
ActualDepth(p-ActualDepth)

iut dep, row, col;

matrix = (TYPE ***) calloc(ActualDepth,sizeof(TYPE*))
if (matrix == NULL)

printf("Not enough memory to hold 3D matrix. . .exiting\n");
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exit(-1);

for(dep = 0; dep < ActualDepth; dep++)

matrix[dep] = (TYPE **) calloc(ActualRowssizeof (TYPE*));// Cols
if (matrix[dep] == NULL)

printf("Not enough memory to hold 3D matrix. . .exiting\n");
exit (- 1);

for (row = 0; row < ActualRows; row++) 1/cot

matrix[dep] [row] = (TYPE*) calloc(ActualCols, sizeof (TYPE)) ;// cot
if (matrix[dep[row] == NULL)//cot

printf('Not enough memory to hold 3D matrix. .. exiting\n");
exit (-1);

-A3()

mnt dep, row; //cot

if (matrix !=NULL)

for(dep =0; dep < ActualDepth; dep++)
for(row = 0; row < ActualRows; row++)// Cola

if(matrix[dep] [row] != NULL)// cot
free(matrix[dep] [row]);// cot

if (matrix != NULL)
free(matrix);

inn YE* arx
I

return matrix;

I

if ( (i < 0)1 <1 0)1 (k < 0)1 (1 >= ActualDepth) I
(j >= ActualRows) II(k >= ActualCols)

return (TYPE) 0;
else

return matrix[i]U] [k];

inline void Set(int i, mnt j, mnt k, const TYPE& p-in)
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matrix[lhl[k] = p-in;

void SetData(const TYPE& p-in)

int dep, row, col;
for(dep = 0; dep < ActualDepth; dep++)

for(row =0; row K ActualRows; row++)
for(col =0; col K ActualCols; col++)

matrix[dep] [row] [coil = p-in;

void ShowA3O)

int dep, row, col;
cout << "Depth: " <K ActualDepth << " Rows: "<< ActualRows <<

"Cols: " << ActualCols << endi;
for(dep =0; dep < ActualDepth; dep++)

for(row = 0; row < ActualRows; row++)
for(col = 0; col < ActualCols; coi++)

cout << "dep: "<K dep << row: " <K row
<< " col: "<< col << M: " << matrix[dep] [row] [col] << endi;

void ShowEiement(int dep, int row, int col)

cout <<K matrix[dep] [row] [coil K<K endi;

TYPE FindMaxo

int dep = 0, row =0, col = 0;
TYPE tempmax = matrix[depl [row] [coil;
for (dep = 0; dep K ActualDepth; dep++)

for (row =0; row < ActualRows; row++)
for (col =0; col < ActualCols; col++)

if (matrix[dep] [row] [coil > tempmax)
tempmax = matrix[dep] [row] [coil;

return tempmax;

I

int dep, row, col;
TYPE tempinin = (TYPE) MAXINT;
for (dep = 0; dep < ActualDepth; dep++)

for (row =0; row K ActualRows; row++)
for (col =0; col K ActualCols; col++)

if (matrix[dep] [row] [coil < tempmin)
tempmin = matrix[dep] [row] [col;

SetMin(tempmin);
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inline void SetMax(const TYPE& p-in)

max =p-in;

void SetMin(const TYPE& p-in)

I

inline TYPE GetMax()

return max;
I

TYPE GetMino

I
return min;

I

return ActualRows;
I

inline mnt GetActual~ols()
I

return Actual~ols;

inline mnt GetActualDeptho

return ActualDepth;

#endif
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