Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-17-1996

An Object-Oriented Discrete-Event Simulation System for
Hierarchical Parallel Simulations

Kenneth W. Stauffer

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Computer Engineering Commons

Recommended Citation

Stauffer, Kenneth W., "An Object-Oriented Discrete-Event Simulation System for Hierarchical Parallel
Simulations" (1996). Theses and Dissertations. 5857.

https://scholar.afit.edu/etd/5857

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F5857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5857?utm_source=scholar.afit.edu%2Fetd%2F5857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

An Object-Oriented Discrete-Event Simulation System

for Hierarchical Parallel Simulations

TIESIS - v
Kenneth W. Stauffer = '
(lapt. USAF

AFIT/GCE/ENG/96D-02

mm
P
Distribution UnMmived

DEPARTMENT OF THE AIR FORCE
- AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

anht Patterson All’ Force Base, Ohlo

AFIT/GCE/ENG /96D-02

An Object-Oriented Discrete-Event Simulation System

for Hierarchical Parallel Simulations

THESIS
Kenneth W. Stauffer
Capt, USAF

AFIT/GCE/ENG/96D-02

Approved for public release; distribution unlimited

AFIT/GCE/ENG/96D-02

An Object-Oriented Discrete-Event Simulation System

for Hierarchical Parallel Simulations

THESIS

Presented to the Faculty of the
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Kenneth W. Stauffer, B.S.E.E.
Capt, USAF

December 17, 1996

Approved for public release; distribution unlimited

Acknowledgements

First I would like to thank Dr. Hartrum. His insights into parallel simulation and modeling
helped me to greatly expand my knowledge in this arena. Secondly I would like to thank my

committee members Lt Col Wailes and Maj Banks for their inputs.

I want to thank my classmates and friends, Capt Glenn Jacquot and Capt Brian Garcia.

They were always willing to make a “run for the border” when a break for dinner was in order.

I want to thank the former AFIT graduates who developed and adapted BattleSim. From
this group, I would especially like to thank Capt Jim Hiller for the hours he spent helping me
to understand the C programming language while I was debugging my new architecture and the

insight he provided about the way BattleSim was constructed.

I would like to thank my parents for making me realize how important education is and for

instilling an attitude of Never Quit into me.

Last, but not least, I want to thank my girlfriend Kelly whose love and understanding during

the last few months of this research helped me to see the light at the end of the tunnel.

Kenneth W. Stauffer

ii

Table of Contents

Acknowledgements

List of Figures

............................

...

List of Tables 0 o e e e
Abstract L e e e e e e
L. Introduction e e
1.1 Background e

1.2 Problem e e e e e

1.3 Initial Assessment of Past Efforts

14 Scope . o v i e e e e e e e e e e e e e e

1.5 Approach e e e e e e e e e

1.5.1 Phasel e

1.5.2 Phase2 e e e

1.6 Outlineof Thesis i i

IL Literature Review e e e e e
2.1 Introduction e

2.2 Simulation L e e

2.3 Parallel ISSUES . . . o v ottt e e e e

2.3.1 Partitioning Schemes oo 0oL

2.3.2 Synchronization Schemes,

2.4 Simulation Architecture o oo oo

2.4.1 Pipe and Filter

2.4.2 Object Oriented

...........................

iii

i

ix

10
11
12
14
14
14

III.

2.4.3 Layered approach. i i e

244 JMASS .. e

245 DEVS . . . e

24.6 PASE e

25 TCHSIM e e
2.6 BattleSim Analysis e e
2.7 Masshardt e
2.8 Distributed Interactive Simulation (DIS)
2.9 Conclusion i e e e e e e e e
Design Considerations i i i i i i e e e e e e e
3.1 Imtroduction

3.2 Layered Approach

3.3 Simulation Model

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10

3.3.11

...............................

Simulation Control i i e e e

Graphical Simulation Editor,

JO Manager o o i i e e e e e

Simulation Synchronization

Clock .

................................

Synchronization Filter

Partitioning Filter o o oo

Simulation Manager e e

Node/Network Manager v v i v v v v

3.4 Hardware Layer

3.5 The Application

3.5.1

Playerset

................................
................................

...............................

iv

22
23
24

25
25
25
26
26
27
27
27
27
28
28
28
29
29
29
30
30
30

Iv.

3.5.2 Player e e e e e e e

353 Events. e

3.6 The Hierarchical Player
3.6.1 Vehicle e

3.6.2 Assemblies/Elements o oL

3.7 Inmitialization of Simulation o 0L
3.8 Hierarchical Player Initialization
3.9 Storage of Hierarchical Players
3.10 Simulation Execution
3.11 Hierarchical Player Execution
3.12 Portability e e e e e e e e
313 Summary e e e e e e e e e e e e e e
Analysis and Building of Simulation Architecture
4.1 Introduction e
4.2 Mapping of Old BattleSim to the New Architecture
4.2.1 Simulation Layer e

4.3 Hardware Layer e e
4.3.1 Hypercube e e e e

4.3.2 Application Layer i

4.4 Implementing Support for Hierarchical Players
440 NEQ . o o oo e e e e

'4.4.2 Player o e

443 Events. e

4.5 Implementation of Hierarchical Players
4.5.1 Component Class Requirements

4.5.2 Component Event Class Requirements

4.6 Hybrid Partitioning Schemes o o 0000

37
38
40

43
43

44

44
45
48
48

49
49
51
51
51
52
52
52

4.7 Simple BattleSim Players and Hierarchical Player Interaction

4.8 Portability Issues. e e e e e e

4.9 Conclusion e e

V. Test Results of the New Architecture
5.1 Imtroduction e e

5.2 Original BattleSim VS. the New Architecture

5.2.1 Test Case 1: Sequential Operation

52.2 Test Case2: Bench2l

523 Test Cased:scen96a

5.3 SUIMMATY . . o . o o i e e e e e e e e e e e e e e e e e e

VI. Conclusions and Further Research
6.1 Summary of Results

6.1.1 Reuse Problems e e e S

6.1.2 Performance e

6.1.3 Attainmentof Goals 0o,

6.2 Research Contribution

6.3 Recommendations for Further Study

6.3.1 Remaining Work o

6.3.2 Graphical Simulation Editor

6.3.3 Optimization Algorithm,

6.3.4 Optimistic Synchronization

6.4 SUMINATY o e e e e e e e e e e e e

Appendix A. Definitions and Acronyms o e e e e e e
Appendix B. Tables of Reused Code
Bibliography e e e e e e e

vi

55
55
55
56
56
57
57

58
58
58
59
59
60
60
60
60
61
61
61

62

63

63

® % & & 4 8 s e s s+ s s s % s s s e s e e s+ & s e s s » » a4 & 8 e s+ a4 s s e a 4 2 ® s e s e s =

vii

-

Figure

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.

List of Figures

Big Picture of Problem e e e e e e e e e e

Object Based Architecture of BattleSim (20). e

Spatial Partitioning of a Battlefield e ’

Object Partitioning of a Battlefield e

Rumbaugh Diagram Examples e TR

| JMASS Player Representation . . . e S e e e e e
"DEVS Simulation Model e e e e e e

. Original BattleSim Architecture e e e e e e e

Layered Approach e e e o
Simulation Layer e e e e e e e e e e e e e

Application Layer DU e e e S

Event Representation

Simulation Initialization vt v i e e e e e e

Initialization of Hierarchical Players v v v v v v v v o vt e e et i e e e s ‘

Examples of Hierarchical Players I :

Storage of Hierarchical Players P I

Simulation Execution e e e e e e e e e e e e e e e e e e

- Hierarchical Player Execution e e

Player Data Structure . . . T .
Component Data Structure B -

Scenario B‘attl»eﬁeld P

viii

Page

List of Tables

Table v . ‘ ’ o - Page
1. Attributes of a Geﬁeric Player e e e 32
2. Reused Modules for Simulation Manager e e e e 46
3; Modules Used in Events PP C Cee e - 49
4. Test Results: Original BattleSim vs. New Architecture 56
5. Reused Functions fof Simulation Synchronization 63
6. Reused Functions for Simulation Synchronization Continued 64

| 7. Reused Functions for Simulation Manager i 65
8. Reused Functions for Node/Network Manager e o e . . G . 65
9. Reused Functions for I/O Manager e e - 66
10. Reused Functions for Events e .. 67

X

AFIT/GCE/ENG/96D-02

Abstract

The purpose of this research is to design and implement an object-oriented discrete-event
simulation system which supports hierarchically constructed players in a parallel or distributed
environment. This system design considers modularity and portability so additional modules may

be implemented to experiment with new algorithms for both partitoning and synchronization.

A simulation system which meets these requirements was partially implemented on an eight-
node Intel Hypercube in C. A desired goal was to maintain the functionality of the existing Bat-
tleSim application. Test cases used measure the performance and correct operation of the new
simulation architecture using a BattleSim subclass. Test results prove correct operation of the new

architecture, but show a significant slow down in the parallel operation of this system.

An Object-Oriented Discrete-Event Simulation System

for Hierarchical Parallel Simulations

I. Introduction

1.1 Background

Due to the cost of running tests with aircraft and Weapons systems and the ever increasing
capabilities of computer systems, there has been a push to model these aircraft and weapons systems
on computers in the form of simulation. Once éstab]jshed, these computer simulations cost much
less than the operational costs of real aircraft and weapons systems. One drawback to computer
simulation is the time required to run a simulation which accurately models a real system. This
has led to performing computer simulations in a parallel or a distributed environment in order to

reduce run-time of the simulation by utilizing multiple computer processors.

In order to imoduce a realistic model which will produce realistic simulation output, each
major system of an aircraft or weapon system must be represented in a simulation. This usually
requires complex code which is not easily reusable between models (i.e. F-16 vs F-14 require an
equal amount of work to model). This reuse problem is solvable by applying the object oriented
paradigm to design generic systems whose variables can be loaded at runtime from configuration

files. Each model is built through aggregation and inheritance of these systems.

At the Air Force Institute of Technology, a military simulation called BattleSim has been de-
veloped in order to model multiple players in a spatially partitioned battlefield (3, 10, 12, 17, 20).

This system currently uses a conservative approach to processor synchronization and uses only

simple non-hierarchical players. Masshardt developed an independent hierarchical based player (a
tank) in 1995 (12). In order to increase flexibility and enhance reusability, it is desirable to incorpo-
rate this complex hierarchical player structure into BattleSim. This complex player will be required
to interact with existing simple players with complete transparency to the user. In other words,
the user of BattleSim should not be concerned if a player is simple or complex. Since a complex
player may take longer to simulate than a simple player, a mechanism must be designed to optimize
the simulation of a complex player. This optimization must be transparent to the user. Lastly, in
order to minimize modeling of military systems within BattleSim, a mechanism/interface to allow

other Distributed Interactive Simulations [DIS] to participate with BattleSim players through the

DIS architecture must be developed.

1.2 Problem

The large scale implementation of simulations throughout many organizations has introduced
many methods of simulation. It is desirable to develop a common architecture which many simu-
lations could adopt to increase reuse among various simulation environments. The creafion of the
DIS architecture allows simulations from different locations to participate with each other, thus
minimizing work within organizations. To expand the functionality of BattleSim, it is necessary to
design an interface to allow interaction with DIS players. To make BattleSim more appealing to
other organizations, it is also necessary to increase the complexity of the current players which will

allow them to be more realistic.

Problem Statement

¢ Design a simulation architecture which supports multiple hierarchical players on a parallel

computer.

¢ Design an interface to allow DIS players to interact with the players of the new simulation

system.
Masshardt’s Evisti
Hierarchial BXlslt";g
Model attleSim
Phase 1 Design of Architecture
To Support Simple and
Hierarchial Players
Phase 2
Design of Interface DIS Players
For DIS Interaction (Virtual Cockpit)

Figure 1. Big Picture of Problem

Figure 1 shows a procedural model of how the problem can be divided into two different

phases.

1.3 Initial Assessment of Past Efforts

Due to the lack of an easily modifiable, unclassified military simulation, Rizza developed the
original version of BattleSim. Although parallel issues were considered while building BattleSim,

Rizza did not parallelize BattleSim during his thesis work. The original BattleSim ran on a single

serial processor using simple non-hierarchical players. BattleSim was written in C and is capable
of running multiple scenarios with multiple simple players limited only by the memory available on

the computer on which it is executing (17).

In 1992 Bergman parallelized Rizza’s BattleSim code. He used spatial partitioning with
a conservative approach to processor synchronization. He also used a hierarchical, object-based

approach while building the structure of BattleSim (3).

In 1993 Trachsel investigated an object oriented approach to parallel simulation using Bat-
tleSim. His research primarily dealt with the OO representation of the simulation system and not
with the OO representation of a complex player (20). Trachsel created object-based modules of the
BattleSim code as much as possible but still left a lot of the objects highly dependent upon many
other objects. This causes a lot of dependacy between the simulation layer and the application
layer, making the original BattleSim code. highly unusable for other simulation projects due to the

nature of BattleSim specific code which is embedded in the simulation layer.

Figure 2 represents Trachsel’s object based architecture of BattleSim. The actual commu-
nication and dependency model of BattleSim was analyzed to verify the accuracy of this model.
Trachsel’s model, based on Garlan and Shaw’s object oriented organizational model, does not ac-
count for key features of the software architecture. These features include structural issues for a
global control structure, protocols for communication, synchronization and data access (8). These

components of BattleSim were also analyzed during this thesis effort.

In 1994 Hiller developed analytic performance models for BattleSim. His work kept the con-
servative synchronization approach already developed in the parallel implementation of BattleSim.

He also developed a scenario generator with which to generate test cases (10).

Simulation LP

Parallel Discrete-Event
Simulation Support

?T?

Application Support
System

Application

Relationship Map

Object Copy
Manager

Event Scheduler

Partition

Figure 2. Object Based Architecture of BattleSim (20)

Container

Player Container

Contains

Playcrs

1
]
1
! Predicts Event H
]
1

Event Predictor 1
¥

'

Involves !

Players |

Predictor :
for '
Player :
|

1

1

1

1

1

Player

&

In 1995 Masshardt developed a complex hierarchical model of an Army tank. His goals were
to study the object partitioning of this complex object oriented model to determine how to best
partitk‘)n the complex model in order to reduce run-time. In his efforts he developed his own
simulation environment (12). This environment (which was good for his tank) does not allow for
additional scenarios to easily be added to his simulation architecture. Reconfiguration of the tank
simulation requires code changes instead of reading the scenario in from a file. His model also
only allows for a single tank to be modeled instead of simulating several tanks in a scenario. This
simulation architecture would be very difficult to transform into a general purpose simulator, but
his hierarchical model is a commendable start for future hiefarchical models. Masshardt’s tank is

further discussed in Section 2.7.

1.4 Scope

Although a hierarchical model may be more complex than the simple players currently existing
in BattleSim, the goal of this research is to show how this architecture can work to maintain or
increase simulation performance and to add flexibility, and to allow multiple domains to be modeled.
It was not the goal of this research to accurately model, to full detail, a military system, but only

to model computational loads associated with real systems.

1.5 Approach

There are three significant goals of this research.

1.5.1 Phase 1. Integrate a complex hierarchical player into BattleSim.

1.6

Perform a literature review to examine current technologies in object-oriented simulation and

hierarchical modeling.

Study the BattleSim code and design a simulation architecture which will support both simple

and hierarchical based players. which will allow multiple domains to be simulated.

Measure performance of the new simulation system with combinations of simple and complex

players.

Investigate implementation order of proposed Phase 2A and Phase 2B.

1.5.2 Phase 2. Develop an interface layer to communicate with a DIS manager.

Interface with AFIT’s DIS systems in the graphics lab.
Allow other DIS players to see and react to the new simulation players.

Allow the new simulation players to interact with DIS players.

Outline of Thesis

This chapter includes the problem statement and approach taken to solve the three problems

stated. Chapter II provides a clearer picture of some of the problems faced in the form of a

literature review. Chapter III is an initial design of the proposed solution including discussion of

potential problems. Chapter IV discusses the building of the new simulation architecture including

a discussion on reuse of the existing BattleSim code. Chapter V includes test cases which verify the

functionality of the new architecture in comparison to the original BattleSim architecture. Chapter

VI discusses the conclusions of the work done and areas of interest which require more research to

improve the existing architecture and to add more functionality and ﬂexi‘bility to this simulation

architecture.

II. Literature Review

2.1 Introduction

As discussed by Maj General Joseph J. Redden in the keynote address to the 1995 Winter
Simulation Conference, “computer simulation and modeling can be used as a decision support
tool to determine how a battle force should be constituted and how it should be deployed” (16).
Due to this driving force within the military, the growing demands of simulation must utilize new
technology to meet the needs of military customers, producing faster, more accurate, and useful
military simulations which “represent the increased complexity of modern combat” (14). In order
to better understand these requirements, this chapter focuses on simulation, parallel issues and

software architectures which influence military simulation.

2.2 Simulation

A simulation is defined as “the imitation of the operation of a real world process or system over
time” (1). Simulation can be classified in two different ways: continuous and discrete. Continuous
simulation involves observing a model in real-time; this does not conform well in a computer
simulation due to the fact that time within a computer must be incremented in steps, thus in a
discrete or step by step implementation. Continuous simulation is best applied to non-computer
modeled simulations. Discrete simulation involves updating actions and positions of simulated
components based on some constant 7. Discrete simulation conforms well to computer simulations
but has a distinct drawback. The simulation incrementation time 7 is held constant, causing the

simulation time to be pre-determined for a finite length simulation. During these incrementations of

T, there is no guarantee that a major event will take place in the simulation for each incrementation

of 7.

To overcome this constant simulation incrementation time a method called Discrete Event
Simulation can be implemented. In Discrete Event Simulation the simulation clock is not updated
based on some value 7, but is updated based on significant events within a simulation. These
events could include an aircraft reaching a certain route point, a missile being launched or an
aircraft running out of fuel, etc. Basing the simulation on events vs. a constant 7, the simulation

time may be greatly reduced.

Simulations currently are limited because, in order to receive an accurate answer to a prob-
lem, the item being simulated must be accurately mathematically modeled. Without an accurate
mathematical model, simulations may not give a result which is accurate in the real world system
that is modeled. Another limitation to simulation is the response time for the appropriate problem.
Some organizations within the military use simulations to make wartime decisions (13, 14, 15). If a
simulation is run to determine the best egress and digress paths of a particular target for a mission,
the simulation must be completed before the mission is executed. For this reason, the technology

of parallelizing simulations must be studied.

2.3 Parallel Issues

Parallel Discrete Event Simulation is a Discrete Event Simulation in which the simulation
is executed on more than one computer processor. With the introduction of multiple processors,

there are two distinct problems which are to be faced: partitioning and synchronization.

10

2.3.1 Partitioning Schemes. Partitioning of a simulation confronts the key issue of “How
does one distribute the simulation between multiple processors?”. There are two basic approaches

to this problem: spatial partitioning and object partitioning.

Logical Processor 1 Logical Processor 2

Logical Processor 3 Logical Processor 4

Figure 3. Spatial Partitioning of a Battlefield

2.3.1.1 Spatial Partitioning. Spatial partitioning requires that bounds be placed on
the playing field of a simulation. A classic example of this is the simulation of a pool table. The
table surface would be the boundary of the simulation. To gain benefit from parallelization, the
pool table surface is divided into partitions based on the number of computer proéessors dedicated
to the simulation. The pool balls in this example are simulated. Each pool ball is assigned to a
computer processor based on the location of the pool ball in the simulation. Figure 3 shows how
spatial partioning works with respect to a battlefield simulation utilizing four processors. Spatial
partioning has the advantage of reduced interprocessor communication since processors only have
to communicate when a pool ball crosses a boundary and is getting assigned to a different processor.

The disadvantage to spatial partitioning is the potential for unbalanced processor loads. This can

11

be caused by too many pool balls in one area of the table, causing one processor to work harder

than the others. Figure 3 shows a heavy load on processor 3.

[o il Logical Processor 1 -
.) Logical Processor 2
]
B Logical Processor 3
. Logical Processor 4
o .
B [[] L

Figure 4. Object Partitioning of a Battlefield

2.3.1.2 Object Partitioning. Object partitioning, unlike spatial partioning, does not
require bounds to be placed on the playing area. This is because object partitioning distributes the
workload based on the number of objects or players in a simulation. Using the pool ball example,
each ball is assigned to a processor. In a four processor simulation each processor is assigned four
balls. Since the complexity of each object is similar, each processor has an equal amount of work.
Equal load balancing is the main advantage to object partitoning. The disadvantage of object
partitioning is the overhead of communications between processors to keep track of positions of
the balls in the simulation playing field. Figure 4 shows an object partioned simulation using four

processors.

2.8.2 Synchronization Schemes . Synchronization between processors is required to main-
tain the causality of events within a system. Causality is the proper time ordering of events (19).

Two methods to ensure causality are conservative and optimistic synchronization.

12

2.3.2.1 Conservative Synchronization. According to Fujimoto (7), conservative
synchronization was the first type of synchronization algorithm to be developed. Conservative
synchronization ensures causality of events within a system. However Fujimoto also points out that
conservative synchronization is prone to deadlock. This places a requirement upon conservative
algorithm developers to ensure two mechanisms: causality between events and deadlock avoidance.
Deadlock avoidance requires that the “maximum resource requirement of a process be known at
every point during its execution” (19). Resources are only granted to processes if the process can

be guaranteed to finish with the resources available.

One of the most popular conservative algorithms was developed by Chandy and Misra (4).
Their method works on a concept of the “null message” routine. After every event execution, a
timestamped message is sent to all other processors. This null message allows other processors to
develop a timestamp baseline to determine if their next event can be processed. This “null message”
system prevents deadlock. The Chandy and Misra algorithm, however, is a static algorithm. This
means that the number of LPs in tile simulation must remain constant and be known prior to
the beginning of the simulation. Causality is enforced in this algorithm by requiring each message
stream coming from other LPs to carry events in timestamp order. The reception of these messages

are stored in a FIFO queue to ensure they are processed by the receiving LP in time-stamp order

(4).

2.3.2.2 Optimistic Synchronization. The main difference between optimistic syn-
chronization and conservative synchronization is that optimistic synchronization allows causality
of events to be “disrupted” or to be received out of temporal order. but has a mechanism to “roll

back” the simulation in order to recover. The main advantage optimistic synchronization has over

13

conservative synchronization is that optimistic synchronization allows events to be executed con-
currently on different processors, thus exploiting parallelism to a greater degree. It does, however,
add overhead to ensure causality which may cause performance degradations. One of the best

known optimistic algorithms is known as TimeWarp, developed by Jefferson (11).

2.4 Simulation Architecture

In order to increase modularity and reuse of a basic simulation system and to allow multiple
types of simulations, an architecture or building plan must be designed. Garlan and Shaw describe
the components of software architecture as being: structural issues which include organization and
control structure, communication protocols between modules, functionality of design units, and
distribution of modules (8). Three basic architectures which are commonly used include: pipe and

filter, object oriented and a layered approach(8).

2.4.1 Pipe and Filter. In the pipe and filter architecture, components are linked together
each having a defined set of inputs and a defined set of outputs. The pipe and filter architecture has
three advantages: understandability, reuse and maintenance. Disadvantages of the pipe and filter
architecture include a batch processing approach where one module must wait on the output from
another module, thus causing a delay. They may be hampered by maintaining several differént but
related data streams. and lastly they may add work in the form of parsing and unparsing data in

each module or filter (8).

2.4.2 Object Oriented. In this representation, objects represent abstract data types which
communicate with each other through function or procedure calls. Objects are often privatized to

maintain data integrity of the object. Advantages of an object oriented approach include reuse,

14

maintainability and understandability (8). As long as the interface to an object does not change,
implementation of the object may be changed without affecting clients of the object. The object
oriented approach also allows a problem to broken into smaller pieces. The primary disadvantage
to an object oriented architecture is that objects must be aware of other objects with which they

interact (8).

Inheritance Aggregation
Superclass Assembly Class
Subclassi Subclass2 I I I
Part1-Class Part2-Class
Multiplicity

Exactly one

_C Many (Zero or More)

—0 Optional (Zero or One)

1+

One or More

Figure 5. Rumbaugh Diagram Examples

Rumbaugh defines object oriented modeling of a system as an organization of software using
a “collection of discrete objects that incorporate both data structures and behavior” (18). Char-
acteristics of object oriented modeling include: identity, classification, polymorphism, inheritance,
and aggregation. Identity is the process of quantifying data into distinguishable entities which are
objects. Classification is the identification of objects with identical data structures and behavior.

Polymorphism is the concept of an operation which seems the same by name but operates differ-

15

ently between classes. Rumbaugh compares the move operation between a window class and a chess
piece class (18). Inheritance is the sharing of data structures and behavior based on a hierarchical
relationship. In this relationship, the child structure has the same operations as the parent to which
the child belongs. Aggregation is the formation of a single object or class by composing two or more
classes. The concepts of class, inheritance and aggregation are shown in Figure 5 as represented by

Rumbaugh.

2.4.8 Layered approach. A layered approach is typilcally organized hierarchically with
each layer providing services to layers both above and below it. A layered system provides the
advantages of easy enhancement, reuse and the ability to break large problems into a smaller level
of abstraction. Disadvantages include the fact that not all systems can adhere to a layered approach
since they might need information from a layer more than one level away. Levels of abstraction

may also be more difficult to define for the same reasons (8).

Player
(Assembly) (Element)
Propulsion :
Sygtem Airframe
(Element) (Element) (Element)
Throttle Fuel Tank Engine

Figure 6. JMASS Player Representation

16

2.4.4 JMASS. The JMASS (Joint Modeling and Simulation System) is based on the SSM
(Software Structural Model). This allows an object to be represented as a hierarchal partitioned
model of objects. The SSM is based on the OCU (Object Communication Update) model which
defines one call to each model. This call is known as “update”; all data required for updating
the model is passed to the model during this call. The update call in turn calls all functions or
procedures within an object in order to set it to a proper state. The SSM model deviates from the
OCU model by allowing four types of events. These events include: RF communications, Detonate,
Spatial and Null. Simulation control within the SSM includes a package which will handle event
generation, event handling, environment update and player update. The environment is treated as

a player in the SSM model. It tracks the state and location of all other players in the simulation

(21).

JMASS modeling includes three layers of abstraction. These are Player, Assembly and El-
ement. The composition of an example JMASS player is shown in Figure 6. An clement is the
lowest level model component. In a highly abstracted model an element may be a switch or a
tire. An assembly is a collection of more than one element. A propulsion system assembly may be
comprised of the following elements: engine, throttle and fuel tank. Lastly a player is an assembly
that may be comprised of many other assemblies or elements. The player has a direct link to the

simulation system and interacts with the system for all of its sub-assemblies and elements (21).

2.4.5 DEVS. DEVS, also known as Discrete Event System Specification, is a formalized
structure for developing object oriented simulations in a hierarchical manner (22). The DEVS
Scheme is specifically designed for discrete-event model construction and simulation. DEVS uses

two approaches to models, atomic models and coupled models (23). Atomic models in DEVS

17

follow the set-theoretic formalism for discrete event models which was deveioped by Ziegler. There
are four associated calls with the set-theoretic formalism: internal transition function, external
transition function, output function and time advance function. Coupled models are broken into
three categories, class coupled models, class broadcast models and class digraph models. Class
coupled models are defined in relationship to children of a class. Four basic calls are used for
transfer of information between parents and children, get-children, get-influencees (determines to
which children specific output is sént), get receivers (determines receivers of external events directed
to the parent) and translate (provides communication port translation) (23). Class broadcast-
models allow all components to talk to internal components and the outside world. No limitation
is made to whom the message is sent. Class digraph-models are a hybrid of coupled models and

broadcast models in which communications to other modules can be controlled and limited. (23)

Root Co-Ordinator

Co-Ordinator

Simulator

Simulator Simulator

Figure 7. DEVS Simulation Model

Simulation within DEVS requires each object to maintain its own next event queue. This

is done by setting up a root-coordinator for the top level parent and setting up a co-ordinator in

18

each object in the tree/graph of a hierarchical model and a simulator for the lowest level object
(23). This adds a layered approach to the concept of an object-oriented software architecture.
Figure 7 shows a model of how the DEVS simulation structure may be used with regard to the root

co-ordinator, co-ordinator, and simulator (23).

2.4.6 PASE. The Parallel Ada Simulation Environment (PASE) was developed by Belford
in 1993 at AFIT. The PASE model was implemented in Classic ada and followed the JMASS
architecture. Although hierarchical models of players in the simulation are mentioned, hierarchical
players were not implemented or designed (2). Belford also does not describe the possible interaction
with a DIS player nor does he describe the use of different partitioning schemes. Although the model
proposed by Belford does not use any of the existing architecture or support functions described

by the original BattleSim, it appears that the existing BattleSim could easily be migrated into

Belford’s model.

2.5 TCHSIM

TCHSIM is a general purpose discrete event simulation environment which allows the exper-
imentation of several application models without recreating the basic structures every time (9).
TCHSIM was also written to interface with the UVA SPECTRUM protocol in order to hide par-
allelism at a low level, thus being transparent to the user. Three basic c;)mponents which are
platform independent are the: clock, next event queue (neg), and event (9). The clock provides

four basic operations:

e init_time

e set_time

e get_time
e advance_time

The next event queue maintains events in time order allowing for events to be added and removed

from the queue. The Next event queue provides eight basic operations:

¢ show.neq

o add_event

e count_event
¢ neq._time

e get_event

e peek_event

e simultaneous
e max.neq

The event object provides calls for interactions of events of specific types at a specific time

for one to three players in a simulation.

2.6 BattleSim Analysis

Figure 8 shows the current communication dependencies between the object modules in the
original version of BattleSim. Even though any communication diagram can be drawn into a
spiderweb of lines, the manual process used to construct this diagram was meant to keep the
drawing as simple as possible. As shown in Figure 8 there are many dependencies between modules.

As part of the analysis of the existing BattleSim architecture, communications were analyzed to

20

tchmap.c

$ 1

bject_mgr.c

seclor.e

f

ex_cvent.c

init_maps.c

host3.c

spawns

simdrive.c

/

simentrl.c

I /

map.c

predict.c

battle.c

AN

\

sim_func.c

playerset.c

X

interfaceB.c|

/ event.c

schedule.c /

player.c

methods.c

sim_read.c

bs_player.c

I

routc.c

r_pt.c

ncgA.c

clock.c

Ipman.c

cube2.c

Figure 8. Original BattleSim Architecture

reduce dependecies between modules but also to maintain the functionality of the original BattleSim
project. Section 4.2 discusses in detail the mapping of the current BattleSim modules into the new

simulation architecture.

2.7 Masshardt

In 1995 Masshardt developed a simulation for an object-oriented model of a tank. This object-
oriented model is decomposed in the simulation as an object partitioned discrete-event simulation
using a tree of aggregate event queues. This method of using aggregate event queues is very similar
to Ziegler’s DEVS approach. However, communication is limited to parent to child communication
which was chosen for ease of implementation and initialization. This structure is similar to the
DEVS class-coupled approach discussed in Section 2.4.5. Also, similar to the DEVS approach, each
object within the simulation has a time-ordered NEQ. Each queue contains events for the object
which the event prediction generates after receiving an update call and the next event from its
child, which is similar to the JMASS approach. Masshardt describes the simulation progressing as
“a wave travelling down the hierarchy, bouncing back up and down any number of times before
returning ... to the top simulation object” (12). By analysis of his description, the algorithm used
to implement this traversal of the tree seems very similar to the depth-first search algorithm as

defined by Cormen (6).

To update the simulation in a forward time direction, events must be processed in a causal
order which does not exceed the current simulation time. For example: if the simulation time is (7)
then all events with time (7-x < 7) must be processed. All objects must have a method to process

their events and should have an event handler to determine unknown events which are from their

22

children. This event handler for unknown events should only be able to determine which child the

event is from and should allow the child to process the event (12).

Masshardt uses a form of conservative synchronization for his tank for three specific reasons.
These reasons include: AFIT’s research thrust is conservative synchronization, simulation state is
always correct, and storage space for past events is minimized. His conservative algorithm seems
similar to Huang’s termination detection algorithm as described by Singhal (19). Each processor
contains an object partition of different aggregates of the tank. Each processor will only process
events for that processor once the parent of that partition reports to the simulator (12). This
ensures that the parent knows the event status of all of its children and grandchildren and has
the minimum event time possible. This characteristic is similar to Huang’s termination detection

algorithm.

2.8 Distributed Interactive Simulation (DIS)

Distributed Interactive Simulation (DIS) is a standard infrastructure which allows the creation
of a large virtual simulation environment in which many persons interact. DIS allows persons with
different simulated objects to interact together through a computer network thus allowing people
at remote sights to participate in a single simulation. One concept of DIS is to allow an Army
organization that simulates tanks to have its tanks particibate with an F-16 model created by an

Air Force organization. Capabilities of the DIS standards include definitions for:

o Identification of data items
e A common representation of these data items

e Formatted Messages called Protocol Data Units (PDUs)

23

¢ When PDUs are transmitted
e Processing of PDUs
o Key algorithms (e.g. dead reckoning) for all participants

Historically DIS has been associated with continuous, real-time, human controlled simulations. The
DIS Steering committee also plans on having DIS interface with more automated simulations such

as the Air Force simulation Air Warfare Simulation (AWSIM) (5).

2.9 Conclusion

This chapter primarily focused on recent research performed in the parallel discrete-event
simulation field with respect to partioning and synchronization algorithms. Several software ar-
chitectures were also presented in order to provide a common framework for building simulation
systems. In order for parallel simulation to advance with growing technologies, one must use these

methods as a baseline and develop hybrid models to gain maximum benefit from each type of

algorithm.

III. Design Considerations

8.1 Introduction

The design of a reusable object-oriented simulation system that is capable of representing
multiple types of simulations must have a well defined architecture. This chapter covers topics of
interest in defining an object-oriented simulation that is capable of using both spatial and object
partitioning schemes. Object representation and interaction with the basic simulation architecture
are discussed and possible alternatives are described. The overall architecture uses components of

JMASS, TCHSIM, Ziegler’s DEVS architecture and Belford’s PASE model as a baseline.

3.2 Layered Approach

Applic ation

i\
\%

Simulation

N
\%

Hardware Platform

Figure 9. Layered Approach

Figure 9 shows a three level approach to layering the simulation system. The application
layer should be written so that no dependency between the application and hardware exists. The
simulation layer will interface with the application and the specific hardware platform. Removing

dependences from the application layer of all hardware specific calls will allow applications to run on

any hardware platform which has a compiler in which the application was written. The simulation

25

layer provides a generic interface to both the hardware layer and the application so that many
different types of applications can be used with the simulation system. Using Generic calls to the
hardware layer will also allow many different hardware platforms to be used with this simulation

model without modifying the internal structure of the simulation layer.

3.8 Simulation Model

The generic simulation model represented in Figure 10 is able to handle any type of parallel
simulation application without regard to the programming of the application. Only a basic set of
functions are required to be present within the application itself to communicate with the simulation
system. This adds transparency to the programmer of future applications with regard to parallel
issues. The following sections describe the proposed interaction of modules within the simulation
system and discuss options available to implement correct operation of the Wholé system.

Interfaces

:]
‘ :
1
' Simulation Layer Simulation With grrirll%lllzl\?oln !
' Control itor H
] 1
: < !

1
E | | Communicates | fonte Nod /Nll " !

- 3 1
H 10 Manager Simulation With | Simulation With (:‘e etwo H
! Synchro Manager M i
i
' ' 1
E i !________________<P ________ S
! no l I | I | !
H l I | | 1+ | N Sun Paragon Hypercube DIS [X X J E
1 | Partitioning AN Other
! Synchr L . !
'l Filter Event l Clock I ‘ NEQ 1 F.y]“CA ? MO e . ! Distributed/Parallel |
H lter] Manages H ! Hardware Platforms |
! £ Playerset 1 ' i
H [| (Application) ' Communicates ~ . E
. - - ! ' With Other X "
! |Ob_|ect I | Spatial I l Hybrid l Conservative Optimistic : DIS Applications !
: \ Hardware Layer E
e e e o e o e o e e e e e et e e ———————————————— e e R bt E b et
Figure 10. Simulation Layer
3.8.1 Simulation Control. The Simulation Control Module is the main interface to ini-

tializing the distributed /parallel simulation environment. This module is responsible for calling the

26

simulation manager once the environment is initialized and ready for the simulation and application

to be instantiated onto the distributed/parallel environment.

3.8.2 Graphical Sé’mulation Editor. The graphical simulation editor is a module which
expands the ease of use to the simulation user. This module will to allow a user to use a point and
click interface in order to design the simulation and to start or stop the simulation. This module
is not part of this research effort. This simulation editor could be linked to a Knowledge Based

Software Engineering (KBSE) module which will allow simulations to be created from the domain

the KBSE represents.

8.8.83 10 Manager. This section of the code handles all file input and output. Upon
initialization of the simulation all input data files will be opened and their address will be passed
by reference to the application so that the application data can be read. A log indicating events,
simulation time and details of the application will be opened. This file will collect pertinent

simulation data in order to record the actions of the simulation.

3.8.4 Simulation Synchronization. This is a transparent interface between the simula-
tion manager and the aggregate components that compose the simulation synchronization class.
This module interfaces with the following components: partitioning filter, clock, event, NEQ, and

synchronization filter.

3.3.5 Clock. This is a basic clock used to increment the time on each LP or processor
which will keep the simulation moving in a forward direction. The clock will be accessed by the

simulation synchronization and next event queue. It will also be used by the simulation control

27

module in order to pass the correct simulation time to the application. The design of this basic

clock comes directly from TCHSIM (9) and is discussed in Section 2.5.

3.3.6 Next Event Queue (NEQ). The design of the next event queue is adapted directly
from the TCHSIM project. However, this NEQ is only capable of having one copy per processor in
a distributed system or node in a parallel machine. In order to adapt to either a JMASS approach,
which inaintains one NEQ in the environment object for all playgrs on a processor or node, plus an
additional NEQ for each player, or a DEVS approach which maintains a NEQ for each hierarchical
component, the TCHSIM design must be modified to have an operation which instantiates a new
NEQ in order to allow multiple NEQs for each object in the simulation. The operation between
these multiple NEQs is discussed in Section 3.6. The operation of the NEQ is discussed in Section

2.5.

3.8.7 FEvent. This module is a generic representation of events whose event types can
be inserted in a generic fashion to allow multiple event types from the simulation domain. This
event module was adapted from TCHSIM and is discussed in Section 2.5. This model will allow
one to three entities to interact with each other. For the purposes of this research this number of

interactions is sufficient.

3.8.8 Synchronization Filter. This section of code determines the synchronization al-
gorithm used for the parallel implementation of the simulation system. This filter will require
communication with the clock and NEQ to determine if the simulation is in a safe state and will
give authority for the simulation to continue. This is assuming a conservative synéhronization ap-

proach. Further expansion of this code will allow optimistic synchronization to include a rollback

28

feature and will also allow hybrids of conservative and optimistic synchronization. At this time, it

is only desired to implement a working conservative synchronization algorithm.

3.3.9 Partitioning Filter. The Partitioning filter maintains the proper algorithms for both
spatial and object partitioning and will also allow hybrid models for partitioning. The operations
within the object, spatial, and hybrid modules will be called through the Partitioningv filter. This
module is called directly by the simulation synchronization module in cases of event prediction

from the application.

3.8.10 Simulation Maﬁdger. The Simulation Manager talks directly to the Node/Network
manager in order to coordinate network activities (DIS players). The Simulation Manager module
also coordinates activities between the Playerset (Main application) and the Simulation Synchro-
nization. This module is the main driver of the simulation and gives authority to the application

to execute events.

3.3.11 Node/Network Manager. —The node/network manager is the main interface between
the hardware layer and the DIS interface. It will filter incoming DIS messages to determine if the
respective DIS player is associated with the LP on which the manager is residing. It is also the
responsibility of the node/network manager to pass external events to the DIS manager so DIS
players are updated based on the actions of the simulation players. A generic interface allows calls

to several types of hardware independent communication protocols.

29

3.4 Hardware Layer

This section contains the operating system specific system calls in order to obtain such items
as the system time. This layer is also the main interface to the selected communication protocol
used between processors in distributed systems, or between nodes in parallel machines. Proposed
platforms include the Intel Hypercube, Paragon, and a network of Unix platforms using either an

MPI or PVM message passing scheme.

3.5 The Application

An expanded generic representation of the application model showing BattleSim specific play-
ers is shown in Figure 11. The relevent BattleSim specific features include the types of events (ex-
cluding DIS events) and the fact that a hierarchical player is a vehicle. The following subsections

describe the proposed interaction of the modules within the application.

3.5.1 Playerset. Playersets contain all players on an LP or processor. Three subclasses
will inherit basic features from the generic playerset. The playerset may be comprised of local
application players, copies of these players from another LP or representations of DIS players.
These appropriate playersets will change dynamically based on movement of a player (in a spatially

partitioned simulation) and instantiation or destruction of a player.

8.5.2 Player. The player module is a simple data storage device for basic descriptions
of players. This is a generic player and can be adapted for any simple player from any domain in
which players move. For domains in which players do not move or have characteristics matching

those listed in Table 1, the values listed can be set to null and the subclass characteristic can be

30

Player Set
AN

Player Copies Network Players

Local Players

(Remote LP) (DIS, Etc)
Follows DIS
Player Player Player
| | Has Events
I I I I I I
Aircraft Tank Missile BS_Player DIS 000
i Event Event Event Event Event Other
Route . Operates in Player
Environment Subclass NEQ T I t I I Subclass
(Vehicle) Event
2 Has Appropriate Event
Route NEQ | Hn @ ® s
Point A Bl
regate t
Events seres ement | Has
Events
Element Aggregate Has
Events | Events

Figure 11. Application Layer

Table 1. Attributes of a Generic Player

Attribute
object_type
object_id
current_time
num_events
NEQ
#components
components

X_position
y_position
z_position
x.velocity

y_velocity
z.velocity
roll

pitch

yaw

roll rate
pitch_rate
yaw._rate
player size
mass
subclass

32

used to insert new domains. The player module includes operations to allow the manipulation and

retrieval of player data.

Events

Play er A
Get / Set
Communication
A BS
Events
s ¢
Subclass

Execute_Subclass_Event

Assembly/
Element
Figure 12. Event Representation
3.5.8 Fvents. Event types may be similat among players (such as turn, destroy object,

etc.) The simulation manager will call the execution of the events from this section of the applica-
tion. The event code provides methods for the events which will access the player to gain required
information in order to perform necessary calculations. A function ezecute_subclass_event will pass
unknown events to the next lowest subclass event handler in the hierarchy. The event class will also

handle event prediction and scheduling. A representation of this description is shown in Figure 12.

33

3.6 The Hierarchical Player

3.6.1 Vehicle. As shown in Figure 11, the vehicle is a subclass of the player class. This
module inherits all attributes from the player class and can add more desired attributes to éxpand
the domain. For example the BattleSim player can be inserted in place of this module in order
to add BattleSim functionality. The BattleSim player, as is exists now, must be modified with a
function to call assemblies and elements which may reside in a hierarchy below this class. Whichever
domain subclass is used in this positién, it must have its own event handler with a function to call
its assemblies and elements within its hierarchy. This subclass inherits the attributes of the player

event handler. This concept is shown in Figure 12.

3.6.2 Assemblies/Elements. Fach Assembly or Element will maintain its own NEQ
and event handling modules. The assembly/element NEQ uses the same NEQ class used by the
simulation system. However a new instantiation must be made in order to guarantee separate
NEQ’s. Section 3.11 discusses the interaction of assemblies and elements in an example, and
Figure 18 shows a graphical representation of this section. Two approaches are recommended for
the communication between assemblies,' elements and players when two or more components have
dependent event prediction. One is a parent to child relationship where assemblies and elements
communicate in a tree like structure passing messages only between parent to child or child to
parent. The second approach is to use “flattening” so that assemblies and elements may talk
directly if not in the same tree structure. Under the parent to child communication scheme, the
child will be responsible for informing its parent of internal events so they eventually will be logged

in the LP NEQ so that proper synchronization may occur. The first approach will be used for ease

of testing and implementation.

34

3.6.2.1 Environment. As in the JMASS model, the environment is treated as a

player. The environment contains boundary information and player location. The environment is

also in control of predicting the interaction between players in an application. The environment

should be able to be expanded to include terrain and weather information which may affect the

simulation at a later date. The simulation is also aware of all the types of players in an application

in order to enforce the rules determined for the environment. For example, if an airplane and a

cloud were modeled in an application, both would be players and would not be able to collide (and

cause damage).

3.7 Initialization of Simulation

(6) read_datafile

Control

(2) init_sim

0(3) init_mapping

Simulation

1/0 Manager

(7a) read_data_line

(5) init_Playerset
(8) add_player

Simulati oHKD(I) init_OS_environment

Simulation

Manager

(9) init_sectors
(10) init_objects

(4) init_icons

(7b) init_player_structure

(7) init_player

Playerset

Synchro

Simulation Layer

Application Layer

(7c read_component)

Player

(7¢) read_subclass

Figure 13.

Hierarchical
Player

Player
Subclass

Simulation Initialization

(7d read_component)

Figure 13 shows the initialization of the simulation layer and its interaction with the appli-

cation layer. The order of initialization is labeled within Figure 13 and follows a sequential order.

35

This order is described in functionality throughout the rest of this section. The simulation control
module calls the function init_OS_environment; this function initializes the distributed/parallel en-
vironment as described in Section 3.3.1. Once the distributed/parallel environment is initialized,
the simulation control module calls the function init_sim in the simulation manager module and
is not returned to until the end of the simulation. The simulation manager calls the function
intt_mapping which calls the player module in order to determine player types and player interac-
tion events. This information is primarily used by the simulation synchronization module during

the simulation. The function init_mapping then calls the init_icons function to get the player type

information.

The simulation manager module then calls the function init_playerset in the playerset module
in order to initialize the linked list which will store the application player information. This storage
process is discussed in Section 3.9 in more detail. The init_playerset function in-turn calls the
init_player function residing in the player module until all players have been read into the simulation
(iterative loop). The player module then calls the I/O manager module in order to read the player

data from the scenario file.

The player module then calls the init_player_structure function which determines either to call
read_subclass or read_component based on the player type. Further discussion of the initialization
of the hierarchical player is discussed in Section 3.8. The player fnodule then passes the player
information back to the playerset so that the playerset can call the function add_player to update

the playerset data structure.

The playerset then returns control to the simulation manager. The simulation manager then

uses information it read previously to determine what type of partitioning will be used and will

36

call either or both of the functions init_sectors and init_objects based on the partitioning type
information. The simulation manager then proceeds to call the function start_sim to get the

simulation running. This process is discussed in Section 3.10.

3.8 Hierarchical Player Initialization

Simulation (2) request_datafile_open
Manager (3) request_datafile_close
(4) read_component
(1) read_component Hierarchical
Player Player

read_subclass

(1) read_component
Player

Subclass

Figure 14. Initialization of Hierarchical Players

As shown in Figure 14, a hierarchical player is initialized. The rest of this section describes
in detail of how this diagram is executed in the new simulation system. Ffom Section 3.7, once the
player type is identified it either calls read_component or réad_subclass. If read_subclass is called, it
may call read_component based on the player type. The component in the hierarchical player then
calls the request_datafile_open in the simulation manager in order to open the datafile associated
with the hierarchical player. Once the data file is opened, and the data is read, the function

request_datafile_close is called to close the datafile. If the component type is identified to have

37

other aggregate components, read_component is called again and the process is repeated until the
hierarchical player is completely read. Once the hierarchical player is finished initializing, control

is then returned to either the player subclass or player depending on which module initially called

for initialization of the hierarchical player.

3.9 Storage of Hierarchical Players

*p1 *P2,3,13 *PG
! |
*BS *BS

*EL *EL *EL

*AS *EL

*AS *EL

Figure 15. Examples of Hierarchical Players

The storage of hierarchical players is of interest to form a standard for programmers of new
hierarchical players for this simulation system. This simulation system is aware of the entities
playerset and player. These are generic representations which can be applied to nearly any domain
since they contain basic information, and subclasses can be used through inheritance to expand this
model. Figure 16 shows the storage of multiple types of players as shown in Figure 15. Realizing

that there are multiple types of storage systems and search algorithms available, Figure 16 shows

38

Playerset

1 *P | *BS | *AS | *EL | NUL
2 *P | *BS | NUL
3 *P | *BS | NUL

Player_id 4 *P | NUL
13 *P | *BS | NUL
6 *P | *EL | *EL | *EL | NUL
NUL

Figure 16. Storage of Hierarchical Players

a representation for implementation (6). The implementation must be standardized so that if a
KBSE system is used in conjunction with this simulation system, data is stored in the proper
format. Section 3.3.2 mentions one type of a KBSE that can work with this system. In Figure

16 the playerset is represented as an array which contains pointers to a linked list. The following

notations are used in this diagram:

e *P(Player ID) (Generic Player Class)
o *BS (BattleSim Subclass)
o *AS (Assembly: Hierarchical Player component)

e *EL (Element: Hierarchical Player component)

The storage of these players in this linked list will be implemented in the init_player_structure
function in the player module as shown in Figure 13. Hierarchical players can be represented as
a tree of objects, so a simple search algorithm such as depth-first-search can be implemented to

store these objects in a methodical order. In Figure 16 player_id 1 shows a simple player with a

39

BattleSim subclass and two hierarchical components, an assembly and an element. Player.ids 2, 3
and 13 show a BattleSim player; player_id 4 shows a simple player with no subclasses and player_id
6 shows a simple player with three elémeuts. From these linked lists, the actual player structure
is unknown, relying on the storage and retrieval search algorithm to determine structure. This
is shown in Figure 15 because the additional assemblies and elements are actually tracked by the
assembly that owns them. A minimum requirement for this simulation system is to have a generic

player class. Hierarchical components cannot exist without this basic player class.

8.10 Simulation Ezecution

Sér;#éﬁtr’g" receive incoming message Node/Network
update_neq Manager
o broadcast message
update_sim_time
____________________ \
Simulation ! '
Manager send message ! glatfpfr.m :
.)) ecific i
write_to_logfile : odule '
'
/O Manager : '
, Hardware Layer !
update Returns next minimum event

Simulation Layer

Application Layer

Playerset

updateP
P execute_method updateH_player

Hierarchical

Player Events Player

Figure 17. Simulation Execution

Figure 17 describes the iterative action of simulating events in this discrete-event simulation.
This section describes the interaction and function calls used between the simulation, application

and hardware modules. Assuming a conservative synchronization approach, the simulation manager

40

receives messages from all incoming communication channels via the node/network manager. These
messages indicate the minimum time for interaction between players on different LPs to interact.

In an optimistic approach this message would most likely be a rollback command.

Once all messages are received and it is determined by the synchronization algorithm that it is
safe to proceed to a safe time 7, the simulation manager gets the next time ordered event from the
NEQ and calls the playerset module, on that LP, with the appropriate player information to include
the event and the player_id. The playerset then calls the updateP command in the player module.
If the event passed with the update data is a generic player call, then the event is executed, a new
player event is predicted, and the next predicted event is returned. Discussion of how a hierarchical
player follows this event flow is discuséed in Section 3.11. Once the simulation manager receives
the new event, the new e?ent is updated in the processor NEQ. The node/network manager is
then called to make any specific synchronization calls to the other participating processors and
to convert the simulation event into a DIS PDU packet to be broadcast to other DIS players via
the platform specific module. The I/O manager is then called to write the event, player_id and

simulation time to the log file. This process repeats until the simulation end time is reached.

3.11 Hierarchical Player Ezecution

As described in Section 3.10 the generic player event module calls the next hierarchical player
as defined from the playerset module storage mechanism discussed in Section 3.9. Each Hierarchical
component is aware of all of its children and who its parent is. Stepping through the example shown
in Figure 18, Assembly #1 does not recognize the event as its own, so it passes the event to its
children, Assembly #2 and Element #3. Assembly #2 does not recognize the event so it passes

it to its children, Element #1 and Element #2. Element #2 recognizes the event, executes the

41

Return Next Event updateH_player
Assembly #1
NEQ
Hierarchical Player
Type
Assembly #1 Assembly #1
Events
Return Next Event
T update_child
Assembly #2 |
Element #3
NEQ NEQ
Assembly #2 Element #3
Assembly #2 Element #3
Events Events
Return Next Event T update_child
Element #1 Element #2
NEQ NEQ remove_event
predict_event
Element #1 Element #2 schedule_event
: Element #2
Element #1 Events
Events - =

execute_method

Figure 18. Hierarchical Player Execution

event, removes that event from the Element #2 NEQ, predicts a new event, schedules the newly
predicted event on the Flement #2 NEQ and returns a status message of the new event and the
event simulation time to its parent. This information is passed to the top of the hierarchical player

until it can be handled by the simulation manager as described in Section 3.10.

3.12 Portability

Provided this design is implemented in a language which is compilable for the desired platform,
there are only two modules which need to be re-written in order to port the implementation of this
design to other hardware platforms. These are the simulation control module and a module residing

in the hardware layer for the appropriate platform. These modules are shown in Figure 10.

3.13 Summary

This chapter discusses the design and interaction of the simulation system with the application
layer. Where appropriate, event flow diagrams are provided in order to show how these modules

work together.

43

IV. Analysis and Building of Simulation Architecture

4.1 Introduction

One of the main considerations during this project was to maintain the functionality of the
existing BattleSim program while making modifications to the existing code to allow modularity and
portability for future versions. This chapter focuses mainly on converting the original BattleSim into
the new simulation architecture while allowing for code restructuring to add further capabilities
such as modular hierarchical players, hybrid (object/spatial) partitioning schemes and software
portability to other platforms which will allow parallel/distributed processing of the new Simulation

architecture.

4.2 Mapping of Old BattleSim to the New Architecture

As stated before, reuse was a necessary part of maintaining the integrity of the original
BattleSim functionality while also allowing for better object representation for the modularity of
the software components involved. During the reuse analysis, code in the original BattleSim was
removed in order to aid in better readability of the code. The old history records were removed
since this information is archived. Numerous “IFDEF” statements were also removed since this
code was idéntiﬁed as test statements which were constructed by the code designers at the time of
development in order to test the proper functionality of the code they had written. Since no original
specifications from a software engineering perspective were available with this code, verification of
the code modules could not truly be conducted and it was assumed that the code presented works

as conceived by the original programmers.

44

The following subsections describe the reuse of the original BattleSim code in order to build
the new modules. These subsections are broken into three categories in order to reference their
appropriate design diagrams. These categories are: simulation layer, hardware layer and application
layer. This layout follows a layered approach as discussed in Section 3.2. The code itself is written
in the C programming language due to the fact that the reused code was written in C. The target
platform for this implementation is the Intel Hypercube since the original BattleSim code was
written for this specific platform. Tables showing original BattleSim modules which were divided

to form the new architecture are listed in Appendix B.
4.2.1 Simulation Layer.

4.2.1.1 Simulation Control. The simulation control module is a direct adapta-
tion from the original BattleSim’s “host3.c” program. The behavior of this module matches the
described behavior of the simulation control module as designed in Section 3.3.1. The host3.c
program initializes the appropriate number of nodes on the hypercube and sets up the required
communications between the nodes. It then calls the BattleSim module “battle.c”. This was

modified so that it invokes the simulation manager in the new simulation architecture.

4.2.1.2 1/O Manager. The I/O manager module is a direct implementation from
the “sim_read.c” and “interfaceB.c” module in BattleSim. Although the design does not account
for interaction between the I/O manager and the application, this does not seem to be a significant
problem since the I/O module is only used during initialization of the simulation when the I/O
module uses the call read_player. In-turn, all players use the function “read_dataline” from the

I/O manager in order to read associated data to fill the player with data. This allows a standard

45

call to the I/O manager that is not BattleSim specific, thus allowing other domains to follow these

two basic requirements. Functionality for VISIT logging was also added to the I/O manager.

4.2.1.8 Simulation Manager. The simulation manager uses functions from the
modules listed in Table 2. The second column in Table 2 shows if all the functions (total) or a
subset (partial) were used. Appendix B contains Table 7 which lists all of the BattleSim functions

which were used from these modules.

Table 2. Reused Modules for Simulation Manager

battle.c partial
interfaceB.c partial
object_manager.c | total
tchmap.c total
sim_drive.c total
sim_cntrl.c .| total

4.2.1.4 Node/Network Manager. The node/network manager module in the new
simulation architecture uses components from the original BattleSim module “interfaceB.c”. The
calls used pertain directly to the calls “interfaceB.c” makes to “lpman.c” and “cube2.c”. The

functions which were reused from “interfaceB.c” are listed in Appendix B in Table 8.

4.2.1.5 Partitioning filter. The partitioning filter module is composed of functions
from the module “sector.c” in the original BattleSim. This sets up the rules for a three dimen-

sional spatial partitioning scheme. The original BattleSim did not incorporate a method for object

partitioning.

4.2.1.6 Spatial. The spatial module is composed of the sector rules for orientation

from the original BattleSim code “sector.c”.

4.2.1.7 Clock. The clock module is a direct implementation of the TCHSIM module

“clock.c”.

4.2.1.8 NEQ. The NEQ module is a direct implementation of the TCHSIM module
“neqA.c”. However, this module does not support instantiation of multiple instances of this class.

Section 4.4.1 describes the changes made to meet the design specifications for the NEQ as discussed

in Chapter III.

4.2.1.9 FEvent. The event module is a direct implementation of the TCHSIM module

“event.c”.

4.2.1.10 Simulation Synchronization. This module uses components from the Bat-
tleSim module “InterfaceB.c” which are specific to its lower level components. These calls include
the interface to the TCHSIM modules clock, event, and negA. The functions used from “inter-
faceB.c” are listed in Appendix B in Table 5. This also violates the original design because the
player and event predictor module in the original BattleSim depend on functions residing in “in-
terfaceB.c”. The solution to this dependency is to add an additional call which interfaces with the
calls associated with these three modules into the simulation manager. This adds overhead during

each event execution which can be seen in the results listed in Table 4.

4.8 Hardware Layer

As stated before, this implementation used a significant amount of re-used code from the
original BattleSim and TCHSIM. In order to verify the correct operation of the new architecture in
comparison to the original BattleSim, the selected platform for this implementation was the Intel

Hypercube.

4.8.1 Hypercube. This module in the new architecture is adapted from the original
BattleSim code modules “cube2.c” and “Ilpman.c”. The direct correlation of the “cube2.c” module
is straight forward since this module was already written for implementation on the hypercube. The
implementation of “lpman.c” was decided upon due to the fact that “lpman.c” uses UVA spectrum
formats for message passing. This union of code modules to adapt to the new architecture is in

compliance with the design proposed for the hardware layer as defined in Section 3.4.
4.8.2 Application Layer.

4.8.2.1 Player Set. The playerset module is a direct implementation from the

original BattleSim code “playerset.c”.

4.8.2.2 Player. The player module is a direct implementation from the original
BattleSim code “player.c”. However, the player structure has additional attributes added to support

the hierarchical players. Section 4.4.2 discusses the new structure of the player module.

4.8.2.3 FEvents. The events module in the new architecture is a union of the original

BattleSim code to include modules listed in Table 3. Functions from these modules are listed in

Appendix B in Table 10. However, additional function support must be implemented to support

the hierarchical player. This support is discussed in Section 4.4.3.

Table 3. Modules Used in Events

predict.c

schedule.c
ex.event.c
methods.c

4.3.2.4 Route. The route module is a direct implementation from the original

BattleSim code “route.c”.

4.8.2.5 Route Point. The route point module is a direct implementation from the

original BattleSim code “rt_pt.c”.

4.4 Implementing Support for Hierarchical Players

The original BattleSim code does not allow support for hierarchical players. Modifications to
the modules listed in the following subsections must be made in order to support the hierarchical

player structure.

4.4.1 NEQ. The current NEQ does not allow for instantiation of a new NEQ in the
function Xinit_neq. This should be modified so that it returns a pointer to the module that calls
it. Functions which update the NEQ should be modified to pass a pointer reference to which NEQ

they wish to access.

49

struct playerclass

{

int objeci_type;

int object.id;

double current_time;

int update_origin;

int num_events;

void *NEQ, /*pointer to the NEQx*/

int num_components; /+number of components*/

array [xcomponent]; [+an array storage of
pointers to direct
hierarchical components
of the player class x/

struct location_type location;
struct zyz_velocilies velocity;
struct orientation_type orientation;
struct rotation_rates rotation;
double player._size;

double mass;

void *polygon_list;

void *subclass;

Figure 19. Player Data Structure

50

10

20

struct componeniclass

{
void xparent; /*pointer to parent*/
void *NEQ:; /*pointer to the component NEQx/
int num_components; /+number of componentss/
array [*component]; /*an array storage of
pointers to direct
hierarchical components
of the player class %/
int component_type; /+definition of the
component type
used for reading
aggregate components*/
/*additional
component
data fields
specified
for this
components/
h
Figure 20. Component Data Structure
4.4.2 Player. Figure 19 shows the proposed data structure to use. This data structure

will allow support of the hierarchical players as defined in Chapter III. Storage of the hierarchical

components is described in Section 3.9.

4.4.8 FEvents. Currently as implemented, the player’s event module recognizes unknown
events and prints an error message. In the case of an unknown event, this recognition of unknown
events should call the ezecute_component_event which will in-turn call the appropriate component
call based on the definition of the event. Methods to include the retrieval of subclass data structures
are also contained in this module. This is due to the lack of inheritance capability in the C

programming language.

4.5 Implementation of Hierarchical Players

51

10

20

4.5.1 Component Class Requirements. Each component will have the minimum attributes
as shown in Figure 20. It will also provide the attributes associated with the specification of
that particular component. Methods in the component class will include get and set calls for
each attribute which will be accessible by the component event handler. Elements will have zero

components and assemblies will be constructed of one or more lower level components.

4.5.2 Component FEvent Class Requirements. — Component event class requirements are re-
quired to provide methods for event execution for the component, event prediction, event scheduling

for the component NEQ and a method to update lower level components.

4.6 Hybrid Partitioning Schemes

The original BattleSim program only allowed for spatial partitioning of the simple players.
This was done by using a three dimensional partitioning module called “sector” in the original
BattleSim. The concept of object partitioning was not built into the original BattleSim. In order
to accomplish this, three items need to exist. The first required item is a module which maps players
and player components for hierarchical players to a specified LP on the hypercube or processor in

a distributed system. This was done by creating the object module shown in Figure 10.

The second requirement was to add a designator to the player class to identify it as either a
simple player or a hierarchical player.. The difference between a simple player and a hierarchical
player is that a hierarchical player will have an extra data structure filled with hierarchical player
information which will identify the number of direct children this player has and the simple player’s
data structure will be filled with NULL statements. Figure 16 in Chapter III shows three various

configurations of players to include: a simple BattleSim player, a hierarchical player and a simple

52

player with no subclasses. As discussed in Chapter III, a parent to child communication process is

only allowed at this time and may be expanded depending on the design of the model.

The third requirement is to modify the original BattleSim data file in order to indicate a

player which is either spatially or object partitioned.

4.7 Simple BattleSim Players and Hierarchical Player Interaction

Whether a player is simple or hierarchical, the same interactions will occur between the

players. These basic interactions as defined are collision, attack and sensor detect.

At this point in time, interactions of hierarchical components are completely transparent to
the user. For example: if a radar array (a component on a hierarchical player) were to detect an
enemy aircraft it will be treated as if the hierarchical player detected the enemy plane and not the

SEeNsor array.

4.8 Portability Issues

As shown in Figure 10, there are two modules which must be recompiled into the simulation
layer when changing platforms. These include: Simulation control and the selected module for the
desired platform (i.e. Sun, Paragon, Hypercube, etc.). As designed, all hardware interaction is
done through the appropriate module for the desired platform. The Simulation control module, as
it currently exists, is the module “host3.c” as shown in Figure 8. In “host3.c”, a host is set up on
the hypercube to interact with the LPs. The module “cube2.c” as shown in Figure 8 contains all

of the required calls to the hypercube’s operating system.

When porting this “C” code to other distributed platforms, such as a network of Suns, the
MPI or PVM (or a similar message passing interface) should be constructed and contained within
the “Sun” module and the “Simulation Control” module should be adapted to initialize the desired

protocol on the distributed network before initialization of the simulation occurs.

4.9 Conclusion

This chapter focuses mainly on the reuse portion of the old BattleSim program and describes
methods to adapt to the new architecture. Issues faced by the new architecture are also addressed.

These include interaction of simple and hierarchical players, and portability issues.

54

V. Test Results of the New Architecture

5.1 Introduction

This chapter focuses on the test results of the new simulation architecture using the BattleSim
subclass in comparison to the original Battlesim architecture using the same scenario to ensure

proper functionality between the two simulation systems.

5.2 Original BattleSim VS. the New Architecture

(0,118000) ' (117000,118000)
l i :
i | {
Sectorl3 ! Sector 14 : Sectorl5 : Sectorl6
| |
—————————— R sEnGEEEETERE £ - EEEEEETEEEE
]] |
Sector9 : Sectorl0 : Sectorll : Sectorl2
I l :
—————————— (e Rt el St
i | |
| | |
Sector5 : Sector6 : Sector?7 : Sector8
| |]
i |]
----------) i sEEEEEEREEE P o) TEREEEEEEEE
i | |
Sectorl : Sector2 : Sector3 : Sector4
| | |
| | I

0,0) (117000,0)

Figure 21. Scenario Battlefield

In order to verify that the original BattleSim scenario files can be used with minor modification
and correct operation, three test cases were executed by both systems and compared. The scenarios
are discussed on a case by case basis in the following subsections. Figure 21 shows the layout of an

example battlefield which has sixteen sectors and four LPs.

99

Table 4. Test Results: Original BattleSim vs. New Architecture

[Architecture | #LPs | #Players | Simtime I Realtime (sec) | %Dift |
New Architecture | 1 1 10000 135010 N/A
BattleSim 1 1 10000 N/A N/A
New Architecture | 2 4 60000 185183 133
BattleSim 2 4 60000 138514 75
New Architecture | 8 40 1000 716083 196
BattleSim 8 40 1000 363499 51

Figure 21 shows the layout of the battlefield. Qutput files were compared to verify correct

operation of the new architecture using the original BattleSim output file as a benchmark.

5.2.1 Test Case 1: Sequential Operation. The sequential version of this test case was
written to verify correct operation of the new architecture on a single processor. This test case
removes the element of parallelism in order to aid in debugging. The sequential scenario was written
with Hiller’s BSGen scenario generator (10). The sequential scenario did not work with the original
BattleSim application. Existing sequential scenarios were tried (Bench21 w/1LP) to no avail with
the original version of BattleSim. Event execution consisted primarily of reaching turnboints in the
scenario and were verified against the original input file. No comparison between the architectures
could be made due to lack of results from the original version of Battlesim. Results are listed in

Table 4.

5.2.2 Test Case 2: Bench21. This test case was designed in order to verify that BattleSim
players are properly replicated when entering a sector owned by another LP . This scenario uses
one BattleSim object (a plane) and 8 sectors divided between two LPs. This scenario was designed
to test correct execution of events when players cross sectors in a zig-zag pattern. The plane flies in

a zig-zag route in the x direction and then a zig-zag pattern in the y direction. As shown in Table

56

4, The new architecture required 1.33 times longer to finish the scenario. This is probably due to
the amount of overhead in limiting calls to the new architecture which allows a larger application
base. Output files were sorted by LPs and compared between the two programs to verify correct

operation of the new simulation system.

5.2.3 Test Case 3: scen96a. This test case was designed by Hiller in order to test a new
synchronization scheme. This scenario contains 40 players and uses 64 sectors on eight LPs. As
shown in Table 4, the simulation time required for the new simulation architecture to complete
is almost double the time that it required the original BattleSim program to complete. This is
again related to the overhead required to strictly define the interface between the simulation layer
from the application layer which will allow applications from different domains to be used with this
simulation system. As in Test Case 2, output files were sorted by LPs and compared between the

two programs to verify correct operation of the new simulation system.

5.3 Summary

Verification of the new simulation architecture using the BattleSim subclass was successful.
This will allow tools such as Hiller’s BSGen program to be used for BattleSim type simulations

with the new simulation architecture.

37

VI. Conclusions and Further Research
6.1 Summary of Results

Problems with reuse caused a delay in the forward progression of the implementation of the
design specified in Chapter III. These reuse problems are discussed in detail in Section 6.1.1.
However the new architecture successfully supports the functionality of the original BattleSim
program using a BattleSim subclass. The results indicate that, due to the inqreased overhead to
tightly couple the interface between the simulation layer and application layer, communications are

increased by a factor of two based on the simulation times reported in Table 4.

6.1.1 Reuse Problems. The whole premise of using an object oriented approach to design
and implement a system is to be able to define specific interfaces for coupling of models. The
problems encountered during this thesis effort regarding the reuse of code can be accounted for
by the fact that the BattleSim code was not written to be re-used. This was a simulation system
whose only purpose was to simulate a battlefield environment. This led to complications when
trying to reuse the simulation related portion of this code because this portion of the code relied

heavily upon the application code.

The reuse philosophy of software engineers in general is that no modifications should be made
that affect the operation or functionality of the code. Modifying the code in any way may introduce
unexpected bugs in the software. In an attempt to modify multiple functions in order to reduce
dependencies between the existing modules, I had to devise a new approach to reuse which allowed
modification to the dependency of the code to fit the new architecture as designed. The first
attempt at this approach failed and severely limited the forward progress of the code. A second

approach corrected the problems encountered during the first round of programming, but from

58

the experience encountered it only verifies the fact that when reusing existing code, modifications
should not be made to the code. In retrospect the code that needed to be modified should have
been written from scratch. This may have reduced the time required to finish this project. This,

however, might have not conformed to the operation of the original BattleSim.

6.1.2 Performance. As shown in Table 4, the new architecture executes slower than the
original BattleSim while using identical scenario files. This is most likely due to the restructuring

of the code causing additional layers of calls to define a strict interface to the application.

6.1.83 Attainment of Goals. As discussed in Section 1.2, there were two épeciﬁc goals of

this research. The attainment of these goals are discussed in the following sections.

6.1.3.1 Simulation Architecture. A simulation architecture was designed to support
multiple hierarchical players. The main simulatioh engine was implemented and the design for the
hierarchical players was defined in Chapter III. Due to time limitations the hierarchical player was
not implemented or tested with fhe new simulation system. Section 6.3.1 discusses what additions

to the existing structure need to be accomplished to meet this goal.

6.1.3.2 Interface to DIS. The actual design of the interface to the DIS standard
was not completed. This was postponed in order to focus efforts on the design an implementation

of the new simulation architecture.

6.2 Research Contribution

This research produced a reusable simulation system in which many applications can be

written. This will allow further research in areas other than battlefield simulation. With a well

59

defined interface between the simulation and the application level, the simulation system does not
have to be modified in order to create new applications. This design integrates some of the best
features available in ob ject-oriented lliel‘archical simulations. Written in an object-oriented style
and in the C programming language, this model can be easily ported to other parallel or distributed

environments without much effort in order to perform additional comparisons between platforms.

6.8 Recommendations for Further Study

6.3.1 Remaining Work. Following designs for the interaction of the hierarchical player
discussed in Chapter III, and the partial implemementation discussed in Chapter IV, the following

items need to be accomplished in order to make this system complete.

Modify the neqA program to have an instantiable NEQ.

Expand the attributes of the player class data structure as discussed in Chapter IV.

Program the assemblies and elements of a hierarchical player based on the data structure

shown in Figure 20.

Add the event handler to update hierarchical players in the basic player’s events module.

6.3.2 Graphical Simulation Editor. Possible future research into the simulation con-
struction through the use of a graphical Knowledge Based Software Engineering (KBSE) approach
may be done with this module. This would allow the use of a graphical interface which accesses a
database of simulation objects in order to design a simulation through software specifications which

were previously deéigned for the desired domain to be simulated.

60

6.3.3 Optimization Algorithm. Design and implement an algorithm which analyzes a
KBSE library of components to conclude the best possible hybrid partitioning scheme (spatial and

object) based on the functionality of the KBSE components.

6.3.4 Optimistic Synchronization. Design and implement an optimistic synchronization
approach to the simulation. Once this is done, hybrid synchronization schemes may be designed

and implemented.

6.4 Summary

This research project investigates a parallel discrete-event simulation system which allows
the use of hierarchically constructed players. The architecture was implemented in the “C” pro-
gramming language for the Intel 1386 eight node Hypercube using the UVA SPECTRUM message

passing scheme.

61

Appendiz A. Definitions and Acronyms
e Assembly: An aggregate formed by one or more elements or aggregates
e Causal: The time ordering of events in sequential increasing order.
¢ DEVS: Discrete Event System Specification
¢ Digress: The route to the origin from the target
e DIS: Distributed Interactive Simulation
o Egress: The route to a target from the origin
¢ Element: A low level component
¢ Hierarchical: The ordering of objects in a tree-like structure
o JMASS: Joint Modeling And Simulation System
e LP: Logical Process
e NEQ: Next Event Queue
¢ OCU: Object Communication Update ‘

o SSM: Software Structural Model

62

Appendiz B. Tables of Reused Code

Table 5. Reused Functions for Simulation Synchronization

New Module

Function

Battlesim Source

Simulation Synchronization

show_neq

interfaceB.c

Simulation Synchronization

record_neq_state

interfaceB.c

Simulation Synchronization

restore_neq-_state

interfaceB.c

Simulation Synchronization

show_neq.state

interfaceB.c

Simulation Synchronization

clear_packed_neq

interfaceB.c

Simulation Synchronization | add_event interfaceB.c
Simulation Synchronization | count_event interfaceB.c
Simulation Synchronization | neq_time interfaceB.c
Simulation Synchronization | get_event interfaceB.c
Simulation Synchronization | peek_event interfaceB.c
Simulation Synchronization | simultaneous interfaceB.c
Simulation Synchronization | max_neq interfaceB.c
Simulation Synchronization | zapQ_E1 interfaceB.c
Simulation Synchronization | zapQ_E2 interfaceB.c
Simulation Synchronization | pullQ_E1 interfaceB.c
Simulation Synchronization | pullQ_E2 interfaceB.c
Simulation Synchronization | set_time interfaceB.c
Simulation Synchronization | adv_time interfaceB.c
Simulation Synchronization | get_time interfaceB.c
Simulation Synchronization | new_event interfaceB.c

Simulation Synchronization

show_event

interfaceB.c

Simulation Synchronization

show_event_state

interfaceB.c

Simulation Synchronization | zap_event interfaceB.c
Simulation Synchronization | setEtime interfaceB.c
Simulation Synchronization | getEtime interfaceB.c
Simulation Synchronization | dup_event interfaceB.c
Simulation Synchronization | pack_event interfaceB.c

Simulation Synchronization

unpack_event

interfaceB.c

63

Table 6. Reused Functions for Simulation Synchronization Continued

Simulation Synchronization

setQnum

interfaceB.c

Simulation Synchronization

getQnum

interfaceB.c

Simulation Synchronization

setEid

interfaceB.c

Simulation Synchronization

getEid

interfaceB.c

Simulation Synchronization

setEtype

interfaceB.c

Simulation Synchronization

getEtype

interfaceB.c

Simulation Synchronization

setEentl

interfaceB.c

Simulation Synchronization

getEentl

interfaceB.c

Simulation Synchronization

setEent2

interfaceB.c

Simulation Synchronization

getEent2

interfaceB.c

Simulation Synchronization

setEent3

interfaceB.c

Simulation Synchronization

getEent3

interfaceB.c

Simulation Synchronization

setEpentl

interfaceB.c

Simulation Synchronization

getEpentl

interfaceB.c

Simulation Synchronization

setEpent2

interfaceB.c

Simulation Synchronization

setEpent2

interfaceB.c

Simulation Synchronization

getEpent3

interfaceB.c

Simulation Synchronization

getEpent3

interfaceB.c

Simulation Synchronization

setEdatabuf

interfaceB.c

Simulation Synchronization

getEdatabuf

interfaceB.c

Simulation Synchronization

setEbufsize

interfaceB.c

Simulation Synchronization

getEbufsize

interfaceB.c

Simulation Synchronization

setEdatl

interfaceB.c

Simulation Synchronization

getEdatl

interfaceB.c

Simulation Synchronization

setEdat2

interfaceB.c

Simulation Synchronization

getEdat2

interfaceB.c

1 Simulation Synchronization

Xinit_safe

interfaceB.c

Simulation Synchronization

Xset_safe

interfaceB.c

Simulation Synchronization

Xadv_safe

interfaceB.c

Simulation Synchronization

Xget _safe

interfaceB.c

Simulation Synchronization

last_time

interfaceB.c

Simulation Synchronization

last_event

interfaceB.c

Table 7. Reused Functions for Simulation Manager

New Module Function Battlesim Source
Simulation Manager | init_appl battle.c
Simulation Manager | do_event battle.c
Simulation Manager | schedule_init_events | battle.c
Simulation Manager | end_appl battle.c
Simulation Manager | main sim._drive.c
Simulation Manager | simdrive sim_drive.c
Simulation Manager | init_sim_cntrl sim_cntr.c
Simulation Manager | free_state sim_cntr.c
Simulation Manager | synch_lps sim_cntr.c
Simulation Manager | synch_all lps sim_cntr.c
Simulation Manager | set_cntrl.cmd sim_cntr.c
Simulation Manager | get_cntrl_cmd sim_cntr.c
Simulation Manager | record LP state sim_cntr.c
Simulation Manager | restore_LP _state sim.cntr.c
Simulation Manager | show _state_list sim.-cntr.c
Simulation Manager | send_update_player | object_mgr.c
Simulation Manager | send_Pcopy._updates | object_mgr.c
Simulation Manager | startup interfaceB.c

Table 8. Reused Functions for Node/Network Manager

New Module Function Battlesim Source
Node/Network Manager | get_.LP_node interfaceB.c
Node/Network Manager | send_event interfaceB.c
Node/Network Manager | send_both interfaceB.c
Node/Network Manager | send_object interfaceB.c
Node/Network Manager | recv_event interfaceB.c
Node/Network Manager | flush_spectrum interfaceB.c
Node/Network Manager | true_time interfaceB.c
Node/Network Manager | setLPid interfaceB.c
Node/Network Manager | getLPid interfaceB.c

Node/Network Manager

Send_OS_message

interfaceB.c

Node/Network Manager

Recv_OS_message

interfaceB.c

Node/Network Manager

Wait for_OS_message

interfaceB.c

Node/Network Manager

Check_for OS_message

interfaceB.c

65

Table 9. Reused Functions for I/O Manager

New Module | Function Battlesim Source
I/O Manager | read_dataline | sim_read.c
I/O Manager | read_data file | sim.read.c

I/O Manager

init_report

interfaceB.c

66

Table 10. Reused Functions for Events

New Module | Function Battlesim Source
Events predict_event predict.c
Events det_boundary_event predict.c
Events time_to_intercept_plane predict.c
Events time_to_intercept_line predict.c
Events time_to_intercept_point predict.c
Events det _collision_event predict.c
Events det_next_event schedule.c
Events new _subclass methods.c
Events free_subclass methods.c
Events read _subclass methods.c
Events copysubclass methods.c
Events list_subclass methods.c
Events pack subclass methods.c
Events unpack_subclass methods.c
Events subclass_packsize methods.c
Events execute_collision methods.c
Events det_subclass.internal _event methods.c
Events execute_event ex.event.c
Events do_dummy ex.event.c
Events front_end _object ex.event.c
Events center_of_object ex_event.c
Events back_end_object ex_event.c
Events reached _turnpoint ex_event.c
Events collision_distance_reached ex_event.c
Events start_player ex._event.c
Events update_mapping ex-event.c
Events add_player_copy ex_event.c
Events update_player_copy ex.event.c
Events remove_player_copy ex_event.c
Events execute_terminate_object ex_event.c
Events do_end ex.event.c
Events operator_evaluation ex.event.c
Events terminate_object ex_event.c
Events on_collision_course ex_event.c
Events get_roots sim_func.c
Events time_to_intercept sim.func.c
Events pull_playercopy events sim _func.c
Events reschedule_playercopy_events | sim_func.c
Events pull_events_and _reschedule sim_func.c

67

10.

11.

12.

13.

14.

15.

16.

Bibliography

. Banks, Jerry and John S. Carson. Discrete-Event System Simulation. Prentice Hall, 1977.

Belford, Captain James T. Object-Oriented Design and Implementation of a Parallel ADA
Simulation System. MS thesis, Air Force Institute of Technology(AU), 1993.

. Bergman, Captain Kenneth C. Spatial partitioning of o Battlefield Parallel Discrete-EFvent

Simulation. MS thesis, Air Force Institute of Technology(AU), 1992. AD-A258911.

. Chandy, K.M. and J. Misra. “Distributed Simulation: A Case Study in Design and Verification

of Distributed Programs,” IEEE Transactions on Software Engineering, 440-452 (1979).

. Committe, DIS Steering, “The DIS Vision A Map to the Future of Distributed Simulation.”

ftp://sc.ist.ucf.edu/public/STDS/docs/vision.

. Cormen, Thomas H. et.al. Introduction to Algorithms. The MIT Press, 1990.
. Fujimoto, Richard M. “Parallel and Distributed Simulation.” Proceedings of the 1995 Winter

Simulation Conference, edited by C. Alexopoulos et. al. 118-125. 10662 Los Vaqueros Circle
PO Box 3014, Los Altimos CA 90720: IEEE Computer Society Press, December 1995.

. Garlan, David and Mary Shaw, “An Introduction to Software Architecture.” Advances in

Software Engineering and Knowledge Engineering, 1993.

. Hartrum, Tom C., “TCHSIM: A Simulation Environment for Parallel Discrete Event Simula-

tion,” 1993.

Hiller, Captain James B. Analytic Performance Models of Parallel Battlefield Simulation Using

Conservative Processor Synchronization. MS thesis, Air Force Institute of Technology(AU),
1994. AD-A289249.

Jefferson, D. R. “Virtual Time,” ACM Transactions on Programming Languages and Systems,
404-425 (1985).

Masshardt, Captain Conrad P. Design and Analysis of a parallel Hierarchical Battlefield Sim-
ulation. MS thesis, Air Force Institute of Technology(AU), 1995.

Molitoris, Joseph J. and Thomas D. Taylor. “Advanced Simulation, Battle Managers, and
Visualization.” Proceedings of the 1995 Winter Simulation Conference, edited by C Alexopou-
los et. al. 10662 Los Vaqueros Circle, PO Box 3014 Los Altimos CA 90720: IEEE Computer
Society Press, December 1995.

Oswalt, Ivar. “Technology Trends in Miliary Simulation.” Proceedings of the 1995 Winter
Simulation Conference, edited by C. Alexopoulos et. al. 10662 Los Vaqueros Circle, PO Box
3014, Los Altimos CA 90720: IEEE Computer Society Press, December 1995.

Painter, Ronald D. “Object-Oriented Military Simulation Development and Application.”
Proceedings of the 1995 Winter Simulation Conference, edited by C Alexopoulos et. al. 10662
Los Vaqueros Circle, PO Box 3014 Los Altimos CA 90720: IEEE Computer Society Press,
December 1995.

Redden, Joseph J. “Military Simulation and Modeling - Today - Tomarrow.” Proceedings of
the 1995 Winter Simulation Conference, edited by C Alexopoulos et. al. 10662 Los Vaqueros
Circle, PO Box 3014 Los Altimos CA 90720: IEEE Computer Society Press, December 1995.

68

17.

18.
19.

20.

21.

22.

23.

Rizza, Captain Robert J. An Object Oriented Military Simulation Baseline for Parallel Sim-
ulation Research. MS thesis, Air Force Institute of Technology(AU), 1990. AD-A231030.

Rumbaugh, James et. al. Object Oriented Modeling and Design. Prentice Hall, 1991.

Singhal, Mukesh and Niranjan Shivaratri. Advanced Concepts in Operating Systems. Mcgraw
Hill, 1994.

Trachsel, Captain Walter G. Object Interaction in a parallel in a Parallel Object-Oriented
Discrete-Event Simulation. MS thesis, Air Force Institute of Technolgy(AU), 1993. AD-
A274084.

Whitted, Gary A., “Software Structural Model Design Methodology for the Modeling Library
Components of the Joint Modeling Simulation System (JMASS) Program.” ASD/RWWW
WPAFB OH.

Ziegler, Bernard P., “DEVS Framework for Modeling, Simulation, Analysis and Design of
Hybrid Systems.” http://linus.cast.uni-linz.ac.at/devs-archive/index.html.

Ziegler, Bernard P, “Hierarchical, Modular Discrete-Event Modeling in and Object Oriented
Environment.” http://linus.cast.uni-linz.ac.at/devs-archive/index.html.

69

Vita

Captain Kenneth W. Stauffer _ In May 1992 he

graduated with a Bachelor of Science in Electrical Enginnering from The Citadel, The Military

College of South Carolina and received a commission as a Second Lieutenant in the Air Force.

Captain Stauffer’s First assignment was to the Air Force Information Warfare Center at Kelly
AFB. as a computer Security Engineer. He served there until May of 1995 when he was accepted

to AFIT.

Permanent address:

70

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and compieting and reviewing the collection of information. Send comments r
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

arding this burden estimate or any other aspect of this

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1996

3. REPORT TYPE AND DATES COVERED
Masters Thesis

4. TITLE AND SUBTITLE
An Object-Oriented Discrete-Event Simulation System
for Hierarchical Parallel Simulations

6. AUTHOR(S) _
Kenneth W. Stauffer, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING QRGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCE/ENG/96D-02

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING

Capt Mike Lightner
WL/AASE BLD 620

513)255-4429

2241 Avionics Circle, Suite 32

Wright-Patterson AFB, OH 45433-7334

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The purpose of this research is to design and implement an object-oriented discrete-event simulation system which

supports hierarchically constructed players in a parallel or distributed environment. This system design considers
modularity and portability so additional modules may be implemented to experiment with new algorithms
for both partitoning and synchronization. A simulation system which meets these requirements was partially
implemented on an eight-node Intel Hypercube in C. A desired goal was to maintain the functionality of the
existing BattleSim application. Test cases used measure the performance and correct operation of the new
simulation architecture using a BattleSim subclass. Test results prove correct operation of the new architecture,
but show a significant slow down in the parallel operation of this system.

14. SUBJECT TERMS

Parallel, Simulation, Discrete-Event, Object-Oriented, Hierarchical

15. NUMBER OF PAGES
80

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
;g%sarolged by ANSI Std. Z39-18

	An Object-Oriented Discrete-Event Simulation System for Hierarchical Parallel Simulations
	Recommended Citation

	tmp.1691089078.pdf.NnYT6

