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III. Theory

In this chapter, we will cast the problem of scattering from an open cavity embedded in a perfectly

conducting ground plane in terms of integral equations. We shall first define the specific geometry

for the field components. Following the approach of Asvestas and Kleinman [2], we shall then

obtain the final integral equations.

In Section 3.1, we introduce the OCRED geometry. In Section 3.2, we define the electro-

magnetic fields for the OCRED problem, along with the partial differential equations and boundary

conditions they satisfy. In Section 3.3, we introduce several scalar and dyadic functions and de-

fine their properties. In Section 3.4, we develop radiation integrals that define the electromagnetic

fields everywhere in the OCRED domain in terms of the tangential field components on the cavity

surface and aperture. Finally, in Section 3.5, we transform the radiation integrals into a set of three

coupled surface integral equations involving these tangential field components alone.

3.1 Geometry

The general OCRED geometry is shown in Figure 3. The entire xy-plane is partitioned into

,t/ , Df ---- 6o, P~O

xw2infty PE I i~ii:.... ..

(a) A shoebox-shaped OCRED in a finite ground (b) Cross-sectional view of an OCRED.
plane. For an infinite ground plane, let w -- cc.

Figure 3 The geometry of an OCRED. Figure 3(a) shows a three-dimensional representation.
Figure 3(b) shows a two-dimensional view, with regions and surfaces defined.

two regions: a bounded, simply-connected region, a, and its complement in the xy-plane, oc. The

cavity volume, D, is bounded by the closed regular surface OD, which is composed of a and the

open regular surface, S. In the following development, we shall assume the following:

The cavity surface S and the aperture complement or are perfect electric conductors.
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" The boundary of or (i.e. the rim of the aperture), ac, is a closed, bounded, piecewise smooth
curve in the xy-plane.

" The cavity surface S does not extend into the upper half space, and intersects the xy-plane
only at o.

" The unit normal vector, fi, is defined almost everywhere (except for a finite number of edges,
comers, or tips) on S and is oriented away from D.

" The cavity volume D is filled with a homogeneous, isotropic, linear material characterized
by its permittivity El and permeability pi, one or both of which may be complex.

" The upper half space is filled with free space.

Before proceeding further, we should clarify that the symbol F will be used to denote either

the position vector x* + ykr + z or the corresponding point (x, y, z). The distinction will be clear

from the context in which r is used.

zr

~y

Figure 4 Position vector, F, and its image, ri

In what follows we shall make extensive use of image theory. We define the image of F'

with respect to the xy-plane, as Fij = x: + y" - A = F*. Ii, where 1i = xR + k r - H is the

image dyadic. Similarly for a field vector k (F) = Ax (F)R + Ay (f)k + Az (f)i, we have the image

Ait) = Ax (F)R + Ay(i) k - A,(F) = .A(F) -Ij. To summarize, the image of any vector, be it a

position vector or a field vector function, is simply that vector dotted into the image dyadic.

Image surfaces and image volumes are defined analogously to image vectors: the image of

the cavity surface S is denoted Si and defined as Si = {rF: fi E S}, while the image of the cavity
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volume D is denoted Di and is defined as Di = {f : fi E D}, The portion of the upper half space

less those points that are not contained in either volume Di or surface Si is denoted Df.

3.2 Fields

We restrict all impressed sources to exist only in Df so that the total fields in D and Di

satisfy the following Maxwell's equations for homogeneous, linear, isotropic, source-free media

(et time convention) [21]:

V x =-fw9 (la)

V x H = 3wE (lb)

VE=0 (lc)

V. IH = 0 (1d)

where E 9 (f) is the electric field intensity in volts/meter, and A _ IA(F) is the magnetic

field intensity in Amperes/meter. w is the frequency in radians/second, pi is the permeability of

the medium in Henrys/meter, e is the permittivity of the medium in Farads/meter, and 3 = V/--.

Taking the curl of equations (la) and (lb) and combining them, we see that both 9 and H satisfy

the homogeneous wave equation [59]

V x V x 9(f) - k2 (f ) = 0 (2a)

V x V x I() - kk2H(fi ) = 0 (2b)

where k = wfp/c is the propagation constant of the medium in inverse meters. We assume that

the known incident fields, 9" and Ific, impinge on the open cavity, giving rise to the reflected

fields, 9rf and I ref, and the diffracted or scattered fields, 9scat and sat . The given incident fields

are defined to be those that exist in unbounded free space. The reflected fields are defined to be

those scattered by an unbroken, perfectly-conducting ground plane located at z = 0. The scattered

fields represent a perturbation due to the presence of the cavity, and are defined as the remainders:

scat -]g - ]ginc - ]Eref and H'scat - H - IHinc - Itref .
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In addition to equations (1) and (2), the fields must also satisfy certain boundary conditions.

The tangential component of the total electric field must vanish on 0" and S:

fix( 9(F) = 0 for f E S (3a)

i x 9(f) = 0 for f E ac (3b)

The tangential components of the total electric and magnetic fields must be continuous across the

aperture or:

lim. [ix9(f+ 6i ) - ,x E(f- 6i ) =0 for f E or (4a)
6--+0k 1
tim ) 0 for f' C a (4b)

Finally, the scattered fields must satisfy the Sommerfeld's radiation conditions at infinity ([59, pp.

485-6] and [31, p. 56])

lim [f. Vlscat(Fi) +lkflscat(f)] =0 (5a)
If1-+001

lim [. VI-scat(f) +kjrFIscat(f)] 0 (5b)

as well as the regularity conditions [59, pp. 485-6]

lim -f-scat(f) = 0 (6a)Ifl-+OO

lim IfIfsca(f) = 0 (6b)lIf1-+oo

3.3 Green's Functions

We introduce the scalar Green's function

e -3kR
G(k; F, F') - 4rR()

47rR (7)

where f = xi + yk + z and i' = x'1 + y'k + z'1 are position vectors in unprimed and

primed coordinates, respectively. The scalar Green's function satisfies the distributional differential
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equation

V 2 G + k2G = -J(F - F') (8)
= - x') 6(y - y') 6(Z - z')

as well as the scalar analogues of the radiation and regularity conditions expressed by equations (5)

and (6). For readability, we will suppress the dependence of G(k; F, F') on k, F-, and F' where their

presence is clearly implied.

For convenience we define the auxiliary scalar functions

GD(k;F,F') G(k;r,F') - G -(k;,fi') (9a)

GN(k; F, F') = G(k; F, iF') + G(k; iF, Fij') (9b)

It is easy to verify that GD and GN satisfy the homogeneous boundary conditions

GD (k; i, V) = 0 for z = 0 (10a)

-GN(k; f, F') =0 for z = 0 (10b)

We shall refer to GD as the Dirichlet scalar half-space Green's function, and GN as the Neumann

scalar half-space Green's function. We recognize GD as the Green's function for a horizontal

electric dipole over a ground plane, and GN as the Green's function for a vertical electric dipole

over a ground plane [62, page 404]. Next, we introduce the dyadic function

F(k; F, r') = -3kVG(k; F, F') x =I (11)

where I = i + + H is the idemfactor. One can show that 1 satisfies the distributional

differential equation (Appendix A)

V x V x F - k2F = -kV6(f -F') x I (12)
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The curl of r can be expressed in the alternate forms

V x P(k; F, f') = -3k [k 2 G(k; r, ') + VVG(k; i, F')]

=-31k f [3 + 33kR + (3kR)2 ] fu

[i +ykR ~k)2] =} G(k; fF'
R 2  (13)

where R = (F - -') /R. Similarly, we define the auxiliary dyadic functions

Ti = -jk (VGN x It + VGD x H) (14a)

2 = -jk (VGD x It + VGN x H2) (14b)

where It = R + SrS" is the transverse idemfactor. It is easy to show that the auxiliary dyadic

functions satisfy the homogeneous boundary conditions

, x 1 = 0 for z = 0 (15a)

x V x F2 = 0 forz = 0 (15b)

as well as the equations

. [A (F) x V x Pi(k;F,F')] 2i. [A(i) x V x F(k; f,f')] forz = 0 (16a)

. [A(f) x V 2(k; F, F')] 2 [A(F) x F(k; F, F')] for z = 0 (16b)

where A(F) is any vector function of position.

3.4 Radiation Integrals

The scalar and dyadic functions defined in the previous section provide the building blocks

for three theorems which are fundamental to the development of the integral equations of our

problem. All of these theorems are presented in [2] and proved in Appendix A. We state them

here.
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Theorem 1 Let V be a homogeneous region with regular boundary OV, fi be the outward unit

normal vector on OV, and F - P(k; F, F') be defined by equation (11). If A- = (F) satisfies

VxVxA-k2A-0 V iFGV,then

3kV' x A(") forF' E V
ivJAX [VxV] + [VX X xiI ds { (17)

V0 fr i' V

where V is the closure of V; that is, the union of V and its boundary.

Theorem 2 Let V, V, V, fi, and A be defined as in Theorem 1. Let 1 be defined by equa-

tion (14a), V be the image of V with respect to the xy-plane, and Vi be the closure of Vi. Then

3kV' x A(i') forf'EV

fvfi {A x [V x F1 ] + [V x A] x Vi} ds= x A(ril)] forF' E Vi

b8( ) 0 
for r' V UVi

(18)

Theorem 3 Let V, V, DV, Vi, Vi, fi, and A be defined as in Theorem 2. Let V 2 be defined by

equation (14b). Then

kV' x A(') for F' E V

L fi "  x [Vx V2] + [Vx A]x F 2 } ds = -3k [V x .(it)]. forF'E Vi

0 for "' §VUVi

(19)

The operator V differentiates with respect to unprimed coordinates, while V differentiates
with respect to primed coordinates. The differential operator V is the same as V except that -A-

is replaced by =-. Theorems 1-3 do not apply when F' lies exactly on DV, but are valid as F'

approaches DV from either the interior or exterior of V.

Much like the source-free form of the Stratton-Chu equations [59], Theorems 1-3 relate a

vector function evaluated at a point to an integral over a closed surface. We may think of A and
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V x A on the surface as effective sources giving rise to V x A in the volume interior, and, in the

case of Theorems 2 and 3, V x A in the image of the volume interior. However, Theorems 1-3

are stated in general terms; the only requirements are that the vector function A(e) satisfy the

homogeneous wave equation (2) and that the outward unit normal fi be defined almost everywhere

on OV. In this section, we will specialize Theorems 1-3 to the OCRED scattering problem shown

in Figure 3 by associating A(f) with various OCRED field components and associating V with

either the cavity volume D or the upper half space, z > 0.

A notational distinction arises when the cavity volume D is filled with a material whose con-

stitutive parameters differ from those of free space. When we associate V with D, the wavenumber

for the cavity medium appears in the wave equation and the scalar and dyadic Green's functions;

that is, k = k, = wv -7i-j-. When we associate V with the upper half space, the wavenumber is

the free space wavenumber, k = k0 = w- -fp0E.

An exhaustive list of the possible equations arising from the application of Theorems 1-3

to the OCRED problem appears in Appendix B. Here, we will only present those results which

directly contribute to the final integral equations of Section 3.5.

Application 1. Let V = D, A = H4, and e' E D in Theorem 1. Making use of equations (lb)

and (3a), we obtain

kYiE() I j [ i t)F] .V x r (k1 ; f, F:') ds

- ykl 1Y f, Ii x (f)] . (k,; i, ') da for F' e D (20)

where Y 1 = /-lp is the intrinsic admittance of the cavity material. Equation (20) shows that

the total electric field at any point in the cavity volume is a function of the tangential electric and

magnetic fields on the cavity surface and aperture.
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Application 2. Let V D, A E, and F' E D in Theorem 1. Making use of equations (la)

and (3a), we obtain

k 2ZH() r L [ x E(flj - V x :]P(kl; r, F1) ds

Z-JklZ1L [fiX iH(f)] . (ki; r, r') dco for ' E D (21)

where Z1 = Vj/ql is the intrinsic impedance of the cavity material. Equation (21) shows that

the total magnetic field at any point in the cavity volume is a function of the tangential electric and

magnetic fields on the cavity surface and aperture.

Application 3. Let V be the upper half space, A = E 't and z' > 0 in Theorem 2. Making

use of equations (la), (3b), (15a), and (16a), we obtain

-ko fscat(ri) = L x 1(i) • V x f(ko; F, F') da for z' > 0 (22)

Equation (22) shows that the scattered magnetic field at any point in the upper half space is a

function of the tangential electric field on the cavity aperture.

Application 4. Let V = D, A = 1, and F' E D in Theorem 3. Making use of equations (la),

(3a), (15b), and (16b), we obtain

A3kit') = 2L [2 x ftiF)] .PV(k,; i, F:') do,

+ [f ixi-(F)] .LP2(ki;i,i')ds for i' E D (23)

Equation (23) shows that the total magnetic field at any point in the cavity volume is a function of

the tangential magnetic field on the cavity surface and aperture.

Application 5. Let V be the upper half space, A = IA t, and z' > 0 in Theorem 3. Making

use of equations (Ib), (3b), (15b), and (16b), we obtain

- 3 k0 scatw (r- 2 x 1(t) VF(k0; i, i') da for z' > 0 (24)
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Equation (24) shows that the scattered electric field at any point in the upper half space is a function

of the tangential electric field on the cavity aperture. This equation serves as the overall radiation

integral for the OCRED scattering problem. Once 2 x E on a is known, equation (24) allows us

to calculate the OCRED echo area Ae (also known as radar cross section) using the well-known

definition [21, page 116]

li,2 2-ctl

Ae lim 47r I E' ]scat(Ft) (25)

where the incident field is a uniform plane wave having unit amplitude.

3.5 Surface Integral Equations

Equations (20)-(24) define the total fields in the cavity volume and the scattered fields in

the upper half space in terms of the tangential field components on the cavity surface and aperture.

Thus it is sufficient to find these tangential field components to solve the entire OCRED scattering

problem. In this section, we develop surface integral equations which may be used to find these

tangential field components.

We notice that the left and right sides of equations (20)-(23) involve different types of field

quantities. Specifically, we see that the right sides of equations (20)-(23) involve the tangential

components of E and ft evaluated on OD, but that the left sides of these equations involve E and

H evaluated at points away from OD.

To make equations (20)-(23) more useful, we will let F' approach aD, and then "sift out"

the tangential component of the result. First, we fix a point r on 9D, so that fi is the outward unit

normal vector at iF, as shown in Figure 5. Second, we cross multiply the equations by fi. Finally,

we let F' = f + 6 fi and evaluate the limit as 6 -+ 0. In so doing, we make use of the following

theorem ( [2], [30, p. 334], [62, p. 354], [48, p. 205]):

Theorem 4 Let V be a volume with regular boundary DV, F be a fixed point on WV, fi be the

outward unit normal vector at i, and F(k; F, F') be defined by equation (11). If A (F) is continuous
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OD fi

Origin

Figure 5 A portion of aD in the neighborhood of r. The point r' approaches r along fi such
that i"-f= 6 fi.

on OV, then

lim fi x J fI(r")" V (k; i", F') ds"
F- f a V

= F +A() +fix A(F") • ;, ") ds" (26)2 a

where the upper sign is taken if i ' --+ ffrom the exterior of V, and the lower sign is taken if F -i F

from the interior of V.

Theorem 4 provides a means to treat the limit of the integrals involving the dyadic kernel r as

F' approaches OD; the limit as F' -+ aD is different from the evaluation of such integrals with

-' E OD. In contrast, integrals involving the dyadic kernel V x F exhibit no such discontinuity

and behave as

lim fix J X(F") . V x r(k; F", i') ds" = fi x f A(F"). V x (k; F",rF') ds" (27)
7)v v

where V, V, F, fi, P, and A are defined as in Theorem 4. Furthermore, we note that the total

tangential fields are continuous across o-, as shown in equations (4a) and (4b).

We now apply the procedure outlined earlier in this section to each of equations (20)-(23).
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Application to equation (20). Fix E o so that fi = i, and set ' =, - J , with6 > 0. We

cross multiply equation (20) by 2 and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

2D

2 zf x ft(F') it' V Fk

+ jkYl x J [i x f(F)] .F(kl;',') da for ,' c a (28)

It is easy to show that 2 x I ([2 x (F (ki;iFV)} 0 when Ft a and F' Ea. Thus the

second integral in equation (28) vanishes and we are left with

-kly x f [fiX A V x (kl;i,')ds for F' E a (29)
2 JaDfi

Equation (29) shows that the tangential electric field on a can be expressed as a function of the

tangential magnetic field on OD.

Application to equation (21). Fix f E a so that fi = 2, and set F' = F - 6 2, with 6 > 0. We

cross multiply equation (21) by 2 and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

OfZ---- l -(,') i X Vr X IF') 'V (kl; i, i t ) ds

2 1F)= L [2 x t(Ft)] liFF)d

-jklZl2 X f [fix f(F)]. .(k 1 ;i, F') ds for i' Go (30)

Equation (30) shows that the tangential magnetic field on a can be expressed as a function of the

tangential magnetic field on S and the tangential electric field on a.

Application to equation (22). Fix E a so that fi = 2, and set F' = r+ 6 2, with 6 > 0. We

cross multiply equation (22) by 2 and take the limit as 6 -- 0. Applying Theorem 4, we obtain

-k2Zo -sa , )  
fx scat() 2 x x () • V x r(ko; F, F') da for F' E a (31)

2
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Noting that ]ascat = A - fI'inc - A -e and that i x I4r f = 2 x A inc on a, this becomes

-k Z° I - 2Iinc(F')]
2 Lr

2 x 12 x -() •V x F(k; , -') da for -' e rr (32)

Equation (32) shows that the tangential magnetic field on a can be expressed as a function of the

tangential electric field on a and the tangential incident magnetic field on a'.

Application to equation (23). Fix i E S and set F' = r-- 3 fi, with 3 > 0. We cross multiply

equation (23) by fi and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

Al W x fi(r') = 2fi' x L [2 x 1I(F)] " F(kl;F' ')

+ fi [ fs iX I(r)] P2(k,;F,F') ds fori' : S (33)

Equation (33) shows that the tangential magnetic field on S satisfies a second-kind integral equation

because the unknown function fi x A appears both within the integral and outside it.

Equations (29), (30), (32), and (33) are coupled integral equations involving four functions:

the tangential magnetic field on S, the tangential electric field on a, the tangential magnetic field

on or, and the incident tangential magnetic field on a. The last of these functions is known while the

first three are not known a priori. We associate these tangential field components with equivalent

current densities as follows:

Js() =fix A(i) for F C S (34a)

i ,i) x I(F) for Fa E o (34b)

l()=-i x I() for i C a (34c)

jo(i) =2, x finc(r:) for F E a (34d)

We call is and J, "equivalent electric current densities" and M, the "equivalent magnetic current

density." J0 is the familiar "physical optics" electric current density that exists on an unbroken

ground plane. With these definitions, equations (29), (30), (32), and (33) become integral equations

involving three unknown current densities (Js, ,J,, and M,), along with one known one (J). We
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will find it convenient to combine equations (30) and (32) by dividing equation (30) by -k l ,

dividing equation (32) by - 3 ko, and forming the difference of the result. Then, equations (29),

(30), (32), and (33) become

i x J (r) . V x F(kl;Fr-') da + i x fs(f) . V x F(kl;f ') ds

_k1 Y ( for F' e a (35)
2

Vx (ki;,ri?) v x r(k; ir,r) V
i X M) k -3kl -k

+ kl Z2 J () - Zli x Js(r) .(kl; i, i') ds

,j (r ) for V E a (36)

2fio x J(r:) . r(kl;r,ri') do,+ fio x ss(it) -V2 (kl;r:,rit) ds

_kl is for V ES (37)

Equations (35), (36), and (37) constitute a system of three coupled integral equations involv-

ing three unknown functions: Js, Ja, and M,. When this system is solved and the equivalent

current densities Js, J, and M, are found, then equations (20)-(24) can be used to find the fields

everywhere in the cavity volume and in the upper half space.

We note that equation (35) may be considered to be an explicit definition of M, in terms

of J, and Js, which may be used in equations (36) and (37) to eliminate M, as an unknown.

Similarly, we note that equation (36) may be considered to be an explicit definition of J, in terms

of M,- and is, which may be used in equations (35) and (37) to eliminate J, as an unknown.

While these may seem appealing because they reduce the number of unknown functions from

three to two, this comes at the price of much more complicated integral equations involving iterated

24



surface integrals. 1 We choose to keep the equations as simple as possible, and thus we will work

with all three integral equations for the remainder of this document.

3.6 The Degenerate Case

We define the degenerate case to be that in which the cavity is filled with free space. In this

case, k = kl = k0, Y = Yj = Y0, and Z = Z= Z0 , and examination of equation (36) reveals

that the dyadic kernel of the integral involving M, vanishes, so that equation (36) involves the

electric current densities J, and Js alone. In other words, the electric current densities J, and Js

effectively decouple from the magnetic current density M,. With M, eliminated, equations (36)

and (37) form a system of equations independent of equation (35). We note that this reduced set of

equations is identical to those developed by Asvestas and Kleinman [2].

In the degenerate case, it is possible to express the scattered electric field in Df in terms of

Js. To see this, we combine equations (178) and (180) to get

i.scat( W,) =1-l f js(it) - 1(k; it, i') ds for F'GDf (38)

Then by equation (lb),

scat I) = 1 X s(t). - V(k; F, V) ds for F' E Df (39)

Equations (36), (37), and (39) are all that are needed to solve the degenerate scattering OCRED

problem.

3.7 Summary

In this chapter, we have defined the OCRED geometry along with the characteristics of the

electromagnetic fields for the OCRED scattering problem. We have introduced dyadic functions

which form the kernels of several integral equations defining the electromagnetic fields everywhere

in terms of the equivalent electric and magnetic current densities on the cavity surface and aperture.

'Such a reduction may be attractive when dealing with very large geometries where matrix solve time dominates the

overall solution time, but in this effort we will limit ourselves to smaller OCREDs.
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We have transformed these integral equations into a set of three coupled surface integral equations

that are satisfied by the equivalent current densities. We have shown that this set is a generalization

of the set developed by Asvestas and Kleinman.
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IV Numerical Solution of the Integral Equations

The set of three coupled integral equations (35)-(37) cannot be solved analytically for arbitrary

cavity shapes. However, we can approximate the solution to an acceptable level of accuracy by

using the method of moments [22]. The method of moments involves approximating the integral

equations by a system of linear equations, and then solving the system to find the unknown func-

tions. Provided it is implemented judiciously, the approximate solution produced by the method of

moments approaches the exact solution if the latter is available.

To start with the method of moments involves approximating the unknown function as a

linear combination of a known set of functions, called basis functions. Usually, the basis functions

are of the subdomain type, which means they are non-zero over only a small portion of the domain

of the unknown function. This allows great flexibility in approximating the unknown function,

but at the expense of needing to find a large number of coefficients. One useful choice of basis

functions [54] uses triangular subdomains to model the unknown function over arbitrary three-

dimensional surfaces. These triangles are typically 0.1A on a side (where A is the wavelength), so

that one square wavelength of surface requires on the order of 100 basis functions. It is easy to see

that the problem rapidly becomes unmanageable as the domain of the unknown function increases

in area expressed in square wavelengths.

The remainder of this chapter is organized as follows. The geometry of a special class of

OCRED geometry is defined in Section 4.1. The basis functions to be employed in the method of

moments are introduced in Section 4.2, while the testing functions and inner product are discussed

in Section 4.3. The details of calculating the elements of the moment method matrix are given

in Section 4.4. The system excitation, or forcing function, is given in Section 4.5, and some

computational savings reaped by exploiting symmetry properties are shown in Section 4.6.

4.1 Body of Revolution OCRED

Since the backscatter pattern of an effective OCRED is relatively insensitive to small changes

in aspect angle, we will restrict our attention to those geometries having a backscatter pattern that

is independent of azimuth angle. Such OCREDs are symmetric with respect to the z axis, and
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are termed "body of revolution," or BOR, OCREDs. We shall see also that this restriction greatly

reduces the labor of modeling the OCRED backscattering problem.

Generating Arc

Figure 6 A cone frustum generated by revolving a line segment about the z axis.

Consider a simple, open curve that lies in the xz plane and does not intersect the z axis. If we

revolve this curve about the z axis, we generate an open surface that is rotationally symmetric about

the z axis. Such a surface is called a surface of revolution, and the curve is called the generating

arc. If the curve is a straight line segment, then the corresponding surface of revolution is a cone

frustum, as shown in Figure 6. If we let the endpoints, and only the endpoints, of the curve lie on

the z axis, then the corresponding surface of revolution becomes a closed surface, and the region

enclosed by the surface is called a body of revolution. If the OCRED cavity interior D is a body of

revolution, we call the OCRED a BOR OCRED.

The generating arc for the BOR OCRED is a bounded, piecewise-smooth plane curve which

begins at the origin and ends on the z-axis somewhere below the origin. The BOR OCRED gener-

ating arc is shown in Figure 7. It does not intersect the z-axis except at the endpoints, and, without

loss of generality, we restrict the generating arc to lie in the xz-plane. We parameterize the gen-

erating arc by its arc length e such that t = 0 corresponds to its endpoint at the origin and t = L,

where L is the length of the generating arc, corresponds to its endpoint on the negative z axis.

If f(t) is a point on the generating arc, then we see that F(e) is uniquely determined by its

coordinates in the xz plane; that is, F(t) = R p(t) + i z(e), as shown in Figure 7. Since, for the
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Figure 7 The generating arc of a body of revolution (BOR) OCRED. The dashed portion gener-
ates the aperture o, while the solid portion generates the cavity surface S. The arc length variable i
increases from 0 to L. The position vector iF(i) defines a point on the generating arc, with normal
vector fi(t) and tangent vector 1(t). The angle a(t) defines the orientation of 1(f).

BOR OCRED geometry, no part of the generating arc lies above the z axis or to the left of the x

axis, we see that p(t) > 0 and z(e) < 0 for 0 < R < L.

If we now allow i?(e) to rotate about the z axis by an amount 4 in the positive sense, then we

see that every point on the surface of revolution is specified by the chosen values of i and 4 in the

ranges 0 < f < L and 0 < 4 < 27r. For arbitrary f and 4, the corresponding point on the surface

of revolution is then given by

r-(t, 0) = Rp(f) cos4' + p(t) sin4' + i z(f) (40)

It is obvious that p, 4, and z are the coordinates of the circular cylindrical coordinate system.

We have established that the coordinates f and 4 uniquely determine a point i(f, 4) on

the surface of revolution. In addition, they also determine several vector quantities of interest.

Specifically, we define i(f) to be the unit vector in the direction of increasing t, $(4) to be the

unit vector in the direction of increasing 4, and fi(f, 4) to be the unit vector normal to the surface,

pointing away from the interior volume. It is easy to see that £, 4, and fi are mutually orthogonal.
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Thus, i and are tangent to the surface at F(i, q). The angle a(i) describes the orientation of

and fi in the xz-plane, such that = icos a - sin a and fi = * sin a + k cos a. The radius p( )

is the magnitude of the projection of F(e) onto the xy-plane and is given by p(e) = li() • it

The generating arc for a BOR OCRED can have any amount of curvature so long as it

generates a valid BOR OCRED. To make the analysis more tractable, however, we shall require

the generating arc to be piecewise linear. This is not too great a restriction since we expect an

arbitrary curved generating arc may be well approximated by a piecewise linear one, especially if

the line segments are small compared to a wavelength.

Consider a piecewise linear BOR OCRED generating arc consisting of N segments joining

N + 1 nodes. We number the nodes in ascending order such that each node corresponds to a

progressively larger value of the arc length variable t. Then we may write the relation

0 = 0 < l < 2 < ... < fN+l = L (41)

The number of segments that generate the aperture a is Na and the number of segments that

generate the cavity surface S is N, such that N = Na + N. Now suppose i?(t) is a point on the

nth segment; that is, <n-1 < <tn. Let p, = p(En) and zn = z(fn). Then any point i"( ) on the

nth segment is fully characterized by the linear relations

p(t) = Pn-1 (.-) + P. ( n-1) for tn-1 < f < n (42a)
en- en-l

z(f) = Zn-1 (in - ) + Zn ( n-1) for tn-1 < f < tn (42b)tn - tn-1

The orientation angle a(f) is constant on the nth segment and is given by

a(f) = a
zT- 1 - zn(43)

= arctan for in-I < i < in

Pn - Pn-1
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Figure 8 A piecewise-linear generating arc. Na segments generate the aperture a and N, seg-
ments generate the cavity surface S. The nth segment falls between r(n- 1) and r(en).

4.2 Basis Functions

The first step in the method of moments is to define a set of basis functions capable of

accurately approximating the unknown functions. Referring to equations (35)-(37), we see that the

unknown functions we wish to approximate are M,. (F) and J, (F) for r- E a and JS (f) for F E S.

The basis functions we will use here are the same as those used by Mautz & Harrington [41] and

Medgyesi-Mitschang & Putnam [44]. These basis functions have a piecewise smooth variation

with t and complex exponential (Fourier) variation in q. We define the basis functions formally as

-mn(£ ,) = 3m (44a)

-mn t,) = e3m T ) (44b)p(£)

where£ = *cosa(t) cosq€ + cosa(t) sine0 - 2 sina(t), = -- - sine0 + 5 cos4, and

Tn (t) is a "triangle" function as shown in Figure 9 and given by the equation

31



0-

Figure 9 Triangle function, Tn (t). Tn (t) is the piecewise linear function having unit amplitude
at &n and vanishing at all other nodes on the generating arc.

] fort,-, < t < t,

T( =V) 1  for &n < t < t,+l (45)

0 - otherwise

When n = Na, we will treat Tn(t) to be either the left half-triangle or the right half-triangle,

depending on whether Tn (t) is being used in a basis function with support on the aperture or the

cavity surface, respectively. This is necessary to allow for the possible discontinuity of the electric

and magnetic current densities in the neighborhood of the aperture rim. Using the basis functions

of equation (44), we approximate the unknown functions by

m=-M n=1
M Na

Bran) mZn (, q) + A O1 n(e, )] (47)

m=-M n=1

M Na+Ns
B' n V, )] (48)

m=-M n=

where M is the highest-order Fourier mode to be included and Amn, B-, and are complex

coefficients to be determined. The choice of M will be discussed in Section 5.4.3, but it should be

proportional to the electrical size of the aperture, that is M oc ENa /A. Likewise, Na and N, will
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increase linearly with frequency. In equations (46) and (47), 0 < f < eNa and 0 < 4 < 27r, while

in equation (48), £Na < f < eNa+N and 0 < 1 < 21r. To enhance numerical stability, we scale the

expansion of M, by Z0 so that all expansion coefficients will be of similar orders of magnitude.

The behavior of the fields near the rim of the aperture provides valuable information. As-

suming that the radius of the aperture rim is not too small, the electric and magnetic fields near the

aperture rim obey the same conditions as the fields near the tip of a two-dimensional PEC wedge,

as shown in Figure 10. In the two-dimensional wedge geometry, p measures the distance from

the wedge tip and o measures the angle from one of the wedge faces. This geometry is studied

E0,0 P /Field point

a oo c

. . . .. . . . . . .... . .. . . .... ..... .... .. .... ... . . ... . ... :::

i-a

El, 14S 7r-

Figure 10 Two-dimensional wedge geometry corresponding to the aperture rim. 0 measures
distance from the wedge tip. o measures angle counterclockwise from ac. The region 0 < W < 7r
is the upper half space; the surface W = 7r is the aperture a; the region 7r < o < 27r - a is the
cavity volume D; and the surface o = 27r - a is the cavity surface S.

by Meixner [45], who shows that the total magnetic field parallel to the wedge tip is finite and

invariant with Wp as o -+ 0. Then by the relations J, = i x IH and Js = fi x H, we see that

lim J,• t = lir Js • t; that is, the f component of the electric current density on S U a is

continuous and finite in the neighborhood of the aperture rim. In contrast, the magnetic field per-

pendicular to the wedge tip is unbounded and varies with p as 0 -* 0, so that lim ,J • ¢ and

lir is are unbounded and, in general, not equal. Turning our attention to the electric field,
I'-rtNa I

we find that the electric field parallel to the wedge tip vanishes as p -0, while the electric field

perpendicular to the wedge tip is unbounded and varies with W as p - 0. Then using the relation

= - 9 × E, we see that lim . e vanishes, while lim 1V . q is unbounded. This a
33-+eNa
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priori knowledge of the behavior of J(, Js, and lM4, in the neighborhood of the aperture rim will

be extremely valuable in later calculations (specifically, Sections 4.4.2 and 4.4.3).

4.3 Testing Functions and Inner Product

The second step in the method of moments is to define a set of testing functions and an

appropriate inner product. In accordance with Galerkin's procedure, we will use testing functions

that are of the same form as the basis functions.

' (im, €, Tn'(e') ' (49a),, , , €) = p(e,)

-nmi , Tn'(e') (49b)

where :i = cos a(e') cos q' + k cosa (e') sin 0' - , sin (e') and ' = -R sin €' + " cos 0'. As

an inner product, we will choose the following:

(, ) = j A(i) . f*(F") ds' (50)

where 1t* denotes the complex conjugate of f3 and S U or = OD is the boundary of the cavity

interior. This choice of testing function and inner product allows us to realize the major advantage

of the BOR symmetry [41]. Since f eimOe_3m'do = 0 for m :i m', we see that the basis and

testing functions are orthogonal with respect to the inner product when their Fourier indices are

different. In other words, the different Fourier modes do not influence each other and effectively

decouple. This will allow us to consider each Fourier mode separately.

Applying our choices of basis function, testing function, and inner product to the coupled in-

tegral equations (35)-(37) results in a system of linear equations which can be expressed compactly

in matrix form as

2Y W(LC 2 '-Y) 1 [A
ZO(LW ,)1) IklZl+3 k°Z°), , ) -Z 1 (L4'",) J = (51)

L2(L5) (60, )J0
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