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Abstract

A new control methodology for manual flight control, viz., real-time tracking control,
is developed. Amplitude and rate constrained dynamic actuators are considered. Optimal
tracking control is made possible by the use of unique reference signal prediction strategies
which extrapolate the reference signal over the optimization horizon. Since it would be ill-
advised to rely on long term predictions, a receding horizon formulation is employed. A
linear-quadratic inner-loop controller which yields good small signal performance is used in
conjunction with an outer-loop nonlinear element which modifies the exogenous reference
signal so that downstream actuator constraints are not violated. The novel 2-stage
prediction strategies result in reference signals over the optimization horizon that are
parameterized in the current reference value. The constraint effects mitigation strategy is to
optimally track a modified reference signal which yields feasible actuator commands over
the optimization horizon when the pilot demanded reference is too aggressive to be tracked
by the inner-loop optimal control law. Thus, the current reference value is modified by the
outer-loop nonlinear element. A discrete-time implementation yields computationally
inexpensive, closed-form solutions which are implementable in real-time and which afford
the optimal tracking of an exogenous, unknown ahead of time, reference signal. A stability
analysis of the ensuing nonlinear tracking control system is also performed. The developed
control algorithm is applied to an open-loop unstable aircraft model, with attention being
given to the trade-offs associated with the conflicting objectives of aggressive tracking and
saturation avoidance. One-step ahead constraint mitigation is shown to provide substantial
improvement in the constrained system response, while slightly more complicated

constraint mitigation strategies yield stronger stability properties.



MANUAL TRACKING FLIGHT CONTROL WITH
AMPLITUDE AND RATE CONSTRAINED DYNAMIC

ACTUATORS

1. Introduction

1.1 Actuator Saturation

Dynamic systems are commonly modeled as linear systems, whereas in practice, all
physical control systems are subject to hard (nonlinear) actuator displacement and rate
saturation constraints. Moreover, in control systems the actuating element is critically
located between the controller and the linear plant. Unfortunately, it is not uncommon for
academic controller designs to fail to acknowledge the presence of "downstream" actuator
constraints. Now, it is desired not only to confine one's attention to small perturbations
situations, viz., regulation, but high amplitude maneuvering control is also of interest.
Then the presence of actuator constraints cannot and should not be overlooked. In
addition, the absence of the ubiquitous sensor noise in deterministic control paradigms also
"shoves under the rug" the unavoidable and detrimental actuator rate saturation caused

effects.
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Moreover, with the current emphasis on robustness, the attendant high gain control
laws will bring into the foreground the actuator saturation problem. A large number of
robust linear control design methodologies, as well as model following control design
paradigms, have been proposed. Unfortunately, these high gain approaches will only
exacerbate the actuator saturation problem. Although many of the above mentioned design
paradigms have merit with regard to their intended objectives, the preordained existence of
hard actuator constraints in physical systems precludes their practical application without
significant ad hoc post-design modifications. This is one manifestation of the often
lamented about disparity between control theory and practi(_:e. Thus, the impact of actuator
displacement and rate constraints upon the performance of closed-loop feedback control
systems needs to be addressed.

In conventional well designed plants the operational requirements have been taken into
consideration, and, in addition, the performance specifications which the plant will be
expected to meet, are in line with the applicable physical constraints. For instance, in flight
control the sizing and placement of control surfaces on an aircraft are determined by the
performance requirements. Also, realistic performance specifications must be stipulated.
Moreover, the available control authority must be properly allocated among the tasks at
hand. For example, the 23 degrees of available deflection of an elevator of a modem
fighter aircraft might be allocated as follows: 4" for stabilization (or stability augmentation),
2° for differential roll control, 7° for trim, and 10° for maneuvering. Thus, 10° of effector
deflection should suffice for the maneuvers that the vehicle is expected to perform.
Furthermore, an extreme maneuver requiring, say 12° of effector deflection, will not
necessarily result in saturation, as one would have to be unfortunate enough to be
simultaneously using all of the remaining control authority for the other tasks. In well
designed plants then, and where the control design goals are not too ambitious, the

aforementioned saturation constraints are generally of minimal impact, and industry has
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fared well in plant design and closed-loop feedback control. Evidently, in this context, the
“actuator saturation problem” while real, is, in truth, somewhat contrived.

Hence, one should guard against overzealous performance objectives in feedback
control, e.g., excessively tight tracking or excessive robustness specifications which
invariably require high gain controllers upstream of the actuators. In addition, in
nonconventional air vehicle concepts one moves the center of gravity (CG) back and
reduces the size of the control surfaces to reduce drag and improve performance. As a
result, one abandons the static stability requirement thus forcing the use of feedback control
for stabilization. This is conducive to making actuator saturations a problem. Actuator
saturation then becomes a major obstacle to exploiting the benefits of feedback. Also,
misguided dynamic control power apportionment among the various control effectors can
contribute to and/or exacerbate actuator saturation phenomena.

Typical flight control systems in operational practice generally consist of relatively
simple, low gain, but gain-scheduled compensators which, for the most part have been
highly successful. There are, however, situations where actuator saturation can become a
problem in operational flight control systems. For example, dogfights and aerial
demonstrations at the boundary of the aircraft's operational envelope may require high
amplitude slewing maneuvers at the extreme edge of an aircraft’s capabilities. In the quest
for high performance, and when these systems are “pushed to their limits,” it is reasonable
to expect that actuator saturations may, in fact, occur and the consideration of these
nonlinear effects in the design phase might indeed reduce the degree of conservativeness of
a flight control system (FCS) and thus enhance the FCS performance. Additionally, there
is currently a quest for reconfigurable flight control which is driven by the need to
accommodate failed or battle damaged control surfaces. Saturation of the actuators may
realistically become a problem in the event of a control surface failure or when batie

damage is sustained, and performance is to be recovered.



Deflection (or displacement) limits are probably the most commonly studied type of
actuator saturation, but rate limitations are equally significant, and in practical applications
more important than the former. In flight control, actuator rate saturations have most
recently been implicated in the departure and subsequent crash of a new fighter at an air
show [1],[2], and the YF-22 crash landing [14]. |

Both amplitude and rate actuator saturations change, to some extent the otherwise linear
and familiar response of a linearly designed FCS and one then refers to "windup.” 1In
particular, in FCS's which employ controllers with integral action, this is colloquially
referred to as "integrator windup." In general, actuator saturation invariably causes
windup whenever linear dynamic compensation is used. Indeed, it is important to note that
actuators are necessarily located in the inner-most control loop and at the plant's input.
When the actuator is saturated the plant’s output no longer instantaneously affects its input,
in particular with respect to pulling out of saturation, and the system is, roughly Speaking,
in open-loop operation. Hence, during periods of saturation, the effects of (dynamic)
feedback compensation are reduced or even eliminated. It is obvious then, from this
observation, that actuator displacement and/or rate saturation is especially dangerous when
feedback control is used for stabilization of an open-loop unstable plant, e.g., the F-16, the
Swedish JAS 39, and the X-29 aircraft, with doubling times in the pitch channel of 0.5,
0.3, and 0.2 seconds, respectively. Thus, windup translates into degraded performance,
limit cycling, and/or closed-loop instability/departure - a litany of adverse effects listed in
increasing order of severity.

Concerning the issue of windup in manual flight control: During periods of actuator
saturation and windup, aircraft exhibit nonlinear, abnormal, responses which may
momentarily bewilder the human operator, or pilot, who creates an outer-feedback loop.
This will prompt the pilot to raise his "gain" and further push the FCS into saturation.
Thus, in manual flight control systems in which there exist both an inner feedback loop

with a physical actuator which is subject to saturation, and an outer feedback loop which is
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closed by a human operator, pilot induced oscillations (PIO) can occur [1],[2],[14],[49].
PIO’s caused by actuator saturation are therefore referred to as nonlinear PIO’s.
Robustness optimized small signal designs perform well only when subjected to small
signal stimuli, so that the control constraints are not activated and system linearity is
preserved. A control design methodology which yields high performance, viz., robustness
and tight (dynamic) tracking characteristics, while at the same time mitigates the actuator
saturation problem during high amplitude maneuvers, is desired. The simultaneous
satisfaction of these conflicting objectives is indeed a rich research area. Thus, actuator
saturation must be considered during the control design process, and hence, one must call

upon nonlinear control design.

1.2 Overview of the Current Literature

1.2.1 General. Actuator saturation is a topic of active research in control theory [1]-
[63]. Numerous compensation- approaches related to actuator saturation have been
proposed in the literature. Different approaches have different objectives: The predominant
focus is on minimizing or eliminating windup, while the preferable, but less common,
approach entails avoiding saturation altogether. Computational complexity and practical
(real-time) implementability, as well as stability, must be considered in the design process,
and weighed against improvements in tracking performance. Nonlinear methods (see,
e.g., [28], [29], [19], [50]) may be used to prevent saturations from occurring in the first
place but are, in general, computationally intense and thus not very practical for real-time
implementation, whereas simpler linear approaches (see, e.g., [3], [11], [23], [25], [30]),
by reducing the effects and duration of saturations when they occur, may provide limited
benefits in some applications.

The likelihood of actuator saturation can be greatly reduced by the acceptance of

sluggish “small signal” performance, however, this is, in general, an undesirable approach.
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Even with reasonable gain, linear controllers do not operate at maximum efficiency when
the error signals are small [16], rather maximum control effort (as dictated by the saturation
nonlinearities) must be reserved for the largest allowable reference signals. Consistent with
the solution of the time-optimal control problem for constrained linear systems (see €.g.,
[39]), it may be preferential to go “full-bore” (e.g., bang-bang, maximum rate) until the
desired objective is achieved - provided that stability can be guaranteed “in the large.”
Thus, when designing controllers for constrained linear systems, the designer must take
into consideration the capabilities of the plant, the performance requirements, and the
impact of the constraints on achieving these requirements.

Based on the calculus of variations and Pontryagin’s Minimum Principle, the linear
control constrained optimal control problem has been posed, and, at least, in theory,
“solved” for a variety of low-order plants with simple constraints and performance
functionals (see, e.g., [5], [13], [32], [39]). The controllability problem is mainly
considered, where the emphasis is on steering the system's state to a known target state.
The optimal control framework yields necessary conditions which generally lead to
nonlinear two-point boundary value problems. The solutions may be of an open-loop and
nonlinear nature (e.g., bang-bang in the case of minimum time or minimum fuel problems)
which are difficult to implement and are very sensitive to model uncertainty, disturbances,
and sensor noise [11], [28], [29]. Additionally, analytical solutions for higher order
systems are generally impossible to obtain [32]. For these reasons, these solutions are
seldom used in practice [11], [28], [29]. Rather, sub-optimal, but more practical solutions
are used, and the motivation is thus provided for the large number of ad hoc design
approaches for treating constrained actuators which abound in the current literature. The
optimal control solution does, however, when it can be constructed, provide a quantitative
measure for assessing the performance of other sub-optimal (but practical) control systems

[32].
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In applied control work, saturation nonlinearities are seldom considered during the
control design process. Traditionally, the most common approach is to first design a
controller without consideration to the saturation elements (often referred to as the "linear
controller"), and then to subsequently design additional compensation to mitigate the effects
of actuator saturation. This is referred to as a 2-step design process. With a 2-step
process, there are two basic philosophies: The first being that the modified compensator
perform identical to the original linear controller in the absence of saturation, and provide a
“graceful degradation of system performance in the face of saturation,” see e.g., [3], [15],
[20], [23]. The alternative design philosophy is to obtain linear performance as long as
possible, but without allowing the actuators to saturate at all (see, e.g., [19], [24], [28],
[29], [50]). One disadvantage of a 2-step design approach is that it is not always clear how
the initial controller design may affect the performance properties of the completed design.
Alternatively, a I-step design process acknowledges the existence of the saturation
nonlinearities at the outset so that windup cannot occur, e.g., as in constrained optimal
control theory.

Research papers in which state and/or control constraints are considered in the tracking
control problem are few, but notable exceptions exist [12], [46]. The majority of the
literature on constrained control addresses the constrained regulation problem, as opposed
to the (dynamic) tracking problem which is concerned with following an exogenous
reference input 7(z), such that the output y(¢) = r(). When the reference signal r is not of
an exogenous nature and one employs the "internal model" approach, one merely considers
an augmented regulation problem. The problem with this approach is that the behavioral
assumptions on the reference signal's dynamics feature in the ensuing control law, thus
rendering the controller noncausal. In particular, when the reference signal r is restricted to
constant values (i.e. steps), or varies slowly as compared to the system dynamics, this

may be referred to as a setpoint control problem: These however are not tracking control
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problems. In fact, problems of this type are often rewritten in terms of error coordinates
and treated as regulator problems, see e.g., [34], [42]. In manual flight control, the
emphasis is on dynamic reference signals which are not known ahead in time.
Additionally, in most of the current literature, only stable open-loop plants are considered.
This is true particularly for the two-step anti-windup approaches, as they are not generally
applicable to unstable open-loop plants.

In tracking control systems, there are basically two saturation mechanisms: 1)
"Temporary" saturation occurs because of a large initial error (e.g., at the onset of a step
command), or saturation is caused by the system's transient dynamics (e.g., an
underdamped response in which the overshoot violates the constraints), or saturation is
induced by the dynamic nature of the reference signal, and is henceforth referred to as
transient saturation. 2) State and/or control constraints may impose bounds on the
achievable steady-state output of a given system. Thus, a reference signal r(¢), which
converges to some steady-state value r, is said to be statically admissible with respect to
a tracking system with output y(¢), if the equilibrium condition y(#) = y, = r,, can be
statically maintained without violating the constraints. Static admissibility does not imply
that transient saturations will not be encountered en route to the steady-state equilibrium,
only that the constraints are not violated in the steady-state.

Stability/performance analysis of the complete nonlinear control system is also an
important issue. In the case of 2-step designs, saturation effect compensation strategies
consist of modifications to the “linear controller” for which certain stability and
performance guarantees can be made. The question is, what can be said about the
nonlinearly modified system? While the stability analysis of linear systems is generally
straightforward, analyzing nonlinear systems and guaranteeing their stability is not in
general an easy task. A number of methods have been used to assess the stability
characteristics of constrained and "saturation compensated" systems. Some of these are

based on traditional methods used for the analysis of linear systems, while others employ a



nonlinear framework. Stability analysis of regulators is generally based on Lyapunov
stability theory, see e.g., [7], [8], [9], [21], [22], [56]. Other methods include the use of
Nyquist and describing function methods [59], direct nonlinear analysis techniques [10],
[11], [20], [38], or the treatment of nonlinear effects as (additive [24], multiplicative [40],
or other nonlinear [10]) perturbations to the linear signals. In [5], [11], nonlinear system
components are replaced with linear approximations and the approximation errors are
characterized by norm bounds. The multi-loop circle criterion [52] provides MIMO
versions of gain and phase margins, and has been used in several works [28], [29], [30],
[50]. A similar theorem which provides sufficient conditions for a saturating linear control
system with bounded states is presented in [33]. Bounds of convergence for regulators
which maximizes the set of initial conditions for which stability can be guaranteed, have
been given in [7], [9], [21], [56]. The limitations imposed by right-half-plane (RHP)
compensator poles and RHP plant zeros on the frequency domain properties of constrained
systems are examined in [41]. The existence of smooth, nonlinear feedback stabilizers for
a class of constrained LTI systems has been demonstrated in [53].

1.2.2. Anti-Windup and Performance Enhancement Approaches. The concept of
"windup", "integrator windup", or "reset windup" is an important issue in the analysis of
the effects of saturation in control systems. Most commonly, these terms are used to refer
to the windup or continual growth of the output of integrators, especially in the context of
PI controllers, during periods of actuator saturation. However, any, and particularly,
slow, dynamic compensation can "windup"” in the face of downstream actuator saturation
nonlinearities. Strictly speaking, the input to the plant ceases to change in response to
changes in the error signal, and, moreover, for the command signal to move away from the
actuator saturation level a period of time needs to elapse in order for the states of the
dynamical elements in the compensator to return to "normal” values. The result of windup
is degraded performance (including the possibility of instability), generally in the form of

large overshoots and increased settling times. A characterization of windup has been given
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in [11] as "windup occurs when the states of the controller are driven by the error while the
actuator is in saturation."

One of the most basic anti-windup methods is the concept of "intelligent” or
"conditional” integration, which has often been used in the literature (see, e.g., [3], [6],
[11], [30], [34], [35], [58], [59]). The basic idea is to turn off or modify the integration of
error signals during actuator saturation. In this case, a nonlinear feedback loop is placed
around an integrator such that under "small signal" operation, the feedback loop is open
and the system is simply an integrator. When the integrator output exceeds some preset
threshold (presumably the saturation value), the feedback kicks in, modifying the input-
output relationship depending on the dynamics of the linear feedback compensation H. H
can be a dynamic compensator, or a simple gain. In the latter case, the system becomes a
first-order lag, with its bandwidth determined by the magnitude of the gain. Of course, this
requires physical accessibility of the integrator. The idea of using a deadband in the
feedback loop to obtain "intelligent" integration was proposed by Krikelis [35], but this
particular implementation may be subject to "chatter” [3]. An alternative approach is to feed
back the difference between the limiter’s input and output, which does not explicitly
introduce any additional nonlinearity into the system. Conditional integration, when
applicable, can be effective in reducing the degradation in system performance associated
with the windup phenomenon. It should be noted, however, that when an integrator is
modified to another type of dynamical compensation, the stored energy of the modified
compensation can still result in windup problems, i.e., degraded performance, albeit
generally less severe.

The concept of conventional or classical anti-windup (CAW) is based on the idea of
feeding back the difference between the constrained and unconstrained control signals (see,
e.g., [11], [15]). The block diagram of a CAW system can appear in many different forms
which seem unrelated at first glance, but block diagram manipulation can be used to show

that a number of existing anti-windup compensation schemes are equivalent to the basic
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CAW structure. A particularly convenient form for analysis and comparison purposes is
given in [11], where by a simple parameter modification the CAW structure is readily
shown to decompose or generalize into other techniques [11], e.g., conditional integration
or Internal Model Control (IMC) [11], [15], [17].

Hanus, et al. [23], Campo and Morari [11], and Astrom and Rundquist [3] have each
independently developed basically the same anti-windup controller for control constrained
systems, but by using completely different approaches. In each case, the compensation
technique is developed using a 2-step design process, in that a linear controller which
provides satisfactory performance with the unconstrained system is specified up front. The
resulting controllers in [23] and [11] are actually special cases of the controller developed
by Astrém and Rundquist, but the minor differences in their resulting algorithms are
primarily due to the form in which the original linear controller is specified. The most
general development of this method, is the "conditioning technique" presented by Hanus, et
al., where the approach is based on "realizable references," i.e., a reference signal which
results in a linear controller output that matches the constrained plant input corresponding to
the actual desired reference. Astrom and Rundquist develop the controller using an
observer approach. Using this formulation, it is readily apparent that the windup problem
is caused by feeding back the controller output to the observer as opposed to the actual
plant input. Campo and Morari attack the problem from a state space perspective, with the
goal of not allowing the error e to drive the controller states during saturation. Hence, their
approach is to drive the controller states by the actual plant input, as opposed to the error
signal. A large number of existing anti-windup schemes can be related to this basic
structure [58], which has been used in an anti-windup context as early as 1984 [4]. In the
absence of saturation, the modified controller is equivalent to the prespecified linear
controller. During saturation, windup is avoided. By using the “velocity form” (see [4])

implementation of a PI controller, an example is presented in [23] which demonstrates that
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the algorithm can effectively avoid windup when a rate saturation of the controller output
occurs.

In multiple-input (MI) systems, actuator or input saturations generally are in the form of
single channel operations on the individual elements of the control vector. In MI systems
the alignment or directionality of the control signal is of interest. If only some elements
of the control vector become saturated, or different elements exceed the saturation limit(s)
by different amounts, the control vector becomes directionally distorted in the control
space, which results in additional degradation of performance [6], [11], [22], [49]. Hence,
successful SISO compensation schemes are not always applicable to MIMO systems. The
application of CAW has primarily been restricted to SISO systems, but Doyle, et al., [15]
has presented a modified anti-windup (MAW) scheme which does ensure preservation of
the control vector “direction,” which is basically a MIMO implementation of conditional
integration around a pre-specified, linear controller.

Anti-windup compensation techniques attempt to eliminate or reduce windup effects,
but do not necessarily have any direct bearing on the onset of actuator saturations. If
windup is eliminated/reduced, it would generally be expected that the duration of any
saturations may be shortened, and subsequent saturation avoided, since the "unwinding"
period is shortened or eliminated. That is, anti-windup compensators may result in
fewer/shorter saturations, but this can to some extent be regarded as a byproduct of the
compensation as opposed to a primary objective. For stable plants, these techniques
generally reduce the large overshoots and degraded performance associated with the
windup problem. Simply avoiding windup when the open-loop plant is unstable and
feedback control is used for stabilization, is not a viable control solution: A departure may
occur even when windup is avoided. Hence, it is apparent that anti-windup compensators
are generally not applicable (or, at least, are not sufficient) for stable closed-loop operation
in the presence of actuator saturation when the open-loop plant is unstable. Windup is not

an issue when saturation is avoided altogether.
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Similar to the anti-windup approaches are performance enhancement techniques. For
example, Horowitz [25] has devised a frequency domain approach to "drive the system out
of saturation quickly". This ad hoc approach proposed for SISO systems entails
introducing an additional degree of freedom by placing a linear feedback loop around the
saturation element. The loop transmission L_ around the saturation element can be shaped
independently of the other important loop transmissions of the system. Hence, by
appropriate selection of L,, the system can be made to drive itself out of saturation
“quickly,” thus reducing the impact of saturation. An extension to the case of stable plants
with rate saturations is provided in [26]. In [27] and [36] additional nonlinear
compensation is introduced to provide an extension to the case of unstable plants. The goal
is to improve performance under saturations caused by large reference signals. Hess and
Snell [24] have presented an alternative approach to extend the method of [25] to include
the case of unstable plants. The original technique was not appropriate for application to
unstable plants, because the resultant compensator G includeé zeros intended to cancel plant
poles. Hess has shown that by allowing L to include the unstable poles of the plant, along
with mirroring zeros in the left-half-plane, the stable plant restriction can be removed.

1.2.3. Miscellaneous Approaches. There are a number of other unique and/or ad hoc
approaches to the saturation problem in the literature. Some brief comments regarding
some of these methods are provided here.

A number of research efforts have established stability and convergence properties for
adaptive control methods with input constraints [31], [37], [43], [44], [48], [57], [60],
[61], [62], [63]. Most of these have focused on stable plants, and many are limited to
stable, type 1, and minimum-phase plants. Nonminimum-phase plants have specifically
been addressed in [44], [60], [63]. The usual approach has been to consider d-step ahead
or adaptive pole placement methods followed by a saturation element, with special care
taken in the design of the estimation algorithm to ensure stability of the constrained closed

loop system [44]. Rate saturations are explicitly considered only in [44]. Except for [57],
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which has specifically addressed the issue of windup, these efforts consider only stability
and convergence properties. In [57], a generalization of Hanus’ conditioning technique is
applied to a setpoint control problem.

Using modified versions of the quadratic performance functional which result in a one
point boundary value problem, Frankena and Sivan [16] and Ryan [51] developed bang-
bang control laws for the (elliptically and rectangularly, respectively) control constrained
linear quadratic regulator (LQR) problem for stable plants. By considering a similar
performance functional but with a discontinuous integrand, Bernstein [9] developed an
optimal continuous (saturated linear) control law for stable plants with both types of
constraints, which avoids the problem of singular extremals. A near time optimal control
law which consists of a combination of bang-bang and linear control action is presented in
[45]. The control level saturation in this case is restricted below full deflection to reserve
some control authority for disturbance rejection and plant uncertainty.

An interesting concept referred to as time regulation is presented in [54]. The basic
idea, presented in a fault tolerant robot control context, proposes an on-line time scaling
procedure for partially failed robot arms. The idea is to have the robot arm follow the same
(unfailed) geometric trajectory, but over a longer time period because of the reduced control
authority imposed by actuator failure.

Model predictive control (MPC) schemes are those which explicitly include a model of
the plant, and are of an open-loop, moving horizon, optimal control nature [17], [47], [55].
MPC is attractive for constrained systems because of its ability to explicitly handle
constraints, and feedback can be incorporated via an estimator to eliminate some of the
disadvantages associated with open-loop control solutions, hence enhancing robustness
with respect to the modeling inadequacies. The basic internal model control (IMC)
structure is inherent in all MPC methods [17]. In the absence of model uncertainty, the

IMC system effectively operates open-loop, and the preservation of stability under
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saturation is not an issue only when the open-loop plant is stable. Unfortunately, the
performance of IMC with constrained systems is generally overly sluggish [15].

1.2.4. Saturation Avoidance. Saturation avoidance schemes are necessarily anti-
windup schemes as well, since by definition, actuator saturation must exist for windup to
occur. Kapasouris [29] has addressed the MIMO problem with amplitude control (i.e.,
controller output) constraints using a set theoretic/functional analysis approach. His 2-step

design process, results in an "inner-loop" gain reduction scheme, referred to as an error
governor. The error governor is essentially a nonlinear, time-varying gain A(t), which
operates on the error signal using integral action, i.e., the error governor modifies the linear
controller's input signal. The variable gain 0 < A(t) < 1 is selected in a manner which
prevents the linear controller from achieving states from which the unforced controller
output will saturate. Since the gain A can be made arbitrarily small, saturation of the

controller output can always be avoided. An extension to account for controller output rate
saturations is made in [28] by applying the technique to the controller state equation as
opposed to the controller output equation.

Rodriguez and Wang [50] have applied a modified version of the error governor to an

unstable bank-to-turn missile problem. Consideration of this unstable plant requires two

basic modifications to the procedures described above. First of all, selection of A =0 is not

acceptable since this represents open-loop operation. Hence, design of the error governor

requires the determination of the value Amin, which is the smallest gain which maintains
closed-loop stability. Instead of 0 < A< 1, the error governor design in this case must only

consider Amn< A< 1. The obvious disadvantage is that sufficiently large reference signals

and/or disturbances can now cause saturations to occur. Measures are taken to account for

possible saturations due to large reference signals by means of a reference governor. The
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reference governor is an "outer-loop" gain reduction strategy (which operates on the
reference signal), and its design is similar to that of the error governor.

The error and reference governor strategies discussed above are quite intense from a
computational perspective. Gilbert and Tan [18] have applied the concept of maximal
output admissible sets to streamline the mathematical analysis and reduce the computational
burden of the error governor implementation. Further, Gilbert, et al., [19] have established
the existence of finitely determined approximations to output admissible sets for discrete-
time systems and developed a discrete-time reference governor (DTRG) with global
convergence properties. Indeed, the work of Gilbert is quite impressive, and is the most
pertinent to the actuator saturation problem as addressed in this dissertation. Hence, further
development of the DTRG concept, and implementations theory are pursued in subsequent
chapters of this dissertation.

Finally, Pachter, et al., [12], [46] have recognized that a receding horizon predictive
control (RHPC) approach is well suited to the tracking control problem and thus applicable
to manual flight control, and have combined the LQ and linear programming (LP)
optimization paradigms into a hybrid approach to the control-constrained tracking problem
within the RHPC framework. This work establishes the basic premises on which this
dissertation is based.

1.2.5 Summary. For the most part, the literature consists of a number of ad hoc
approaches, each applicable to a limited class of plants, each with a limited set of
objectives, and each with limited claims of stability and/or performance. It is clear, that
there does not exist a universal solution to the problems caused by actuator saturation.
Many of the techniques from the literature (particularly the anti-windup approaches) are,
however, closely related and oftentimes functionally identical. Most of the work is geared
toward the regulation and set-point control problems as opposed to tracking control, and
thus does not directly apply to maneuvering and manual flight control. Additionally, by

neglecting actuator dynamics altogether, actuator constraints are often treated as control
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constraints, whereas, particularly in "high gain" flight control, actuator dynamics should be
included, in which case actuator displacement and rate constraints introduce state
constraints into the control problem. Thus, the preponderance of the literature is not
directly applicable to the constrained, real-time, manual tracking control problem. Most of
the literature can be classified as anti-windup, with only a few research efforts that strive

for saturation avoidance.

1.3 Problem Statement

Investigate the actuator saturation problem, and develop a control design methodology
which places a high degree of emphasis on both the dynamic tracking and actuator

saturation mitigation aspect, for manual tracking flight control.

1.4 Approach

The stated objectives necessitate the consideration of actuator saturation during the
control design process, and hence, nonlinear control design must be employed. An
optimization-based, linear (small signal) control signal synthesis algorithm, with emphasis
on the tracking aspect, is developed. The control signal is explicitly expressed in terms of
the dynamic reference signal, so that, when required, a nonlinear modification of the
reference signal which minimizes the impact of the downstream actuator constraints on
overall system performance is readily employed. An optimal control approach to the
tracking problem invariably requires advance knowledge of the desired reference trajectory.
Since this information is unavailable in the manual tracking context, means for predicting
the desired (pilot commanded) reference is developed. The undesirable effects associated
with a predictive control strategy are tempered through the use of a receding horizon control

implementation. The latter also yields feedback action.
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Since the optimal control signal is explicitly expressed in terms of the incoming
reference, an additional nonlinear control loop can be placed around the existing system to
address the actuator saturation aspect of the problem, when necessary. The appeal of this
second stage "outer-loop” approach to saturation mitigation, i.e., the placement of an
additional nonlinear feedback loop around an inner-loop closed-loop linear system, in order
to modify the incoming reference signal as a means of averting saturation, lies in the
following fact. If the boundedness of this modified reference signal can be ascertained,
and if saturation is successfully averted, then linear analysis methods remain valid with
respect to the inner, small signal, linearly compensated and stable system, and the overall
control system's stability is guaranteed. Thus, BIBO stability of the overall nonlinear
feedback control system is achieved. If, in addition, this outer, nonlinear control loop is
activated only when saturation is imminent, then the desirable small signal tracking
characteristics of the pre-modified system are also preserved. Thus, the strategy is to
optimally track, when necessary, a less aggressive reference, as a means of avoiding
saturation.

Finally, the use of equivalent discrete-time models for the aircraft (plant) and actuator
dynamics makes it possible to obtain straightforward, explicit control solutions which are

readily implementable in real-time.

1.5 Scope and Assumptions

The development is specifically directed toward the manual tracking flight control
problem with dynamic actuators subjected to hard constraints in both rate and amplitude.
Attention is confined to the single-input single-output (SISO) case, although full state
feedback is employed. Open-loop unstable plants are considered. The constraints' effect
mitigation aspect of the development is directly applicable to a multiple actuator situation,

while the tracking control aspect is extendible to multiple-input situations. Tracking
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control, as opposed to regulation or set-point control is addressed, and the trade-offs
between achievable tracking performance and stability guarantees are investigated. In
manual flight control, a human operator - the pilot - generates the reference signal and
closes the outermost loop around the flight control system. Since evidence exists which
links actuator rate saturation to PIO situations, the saturation mitigation strategies developed
in this dissertation contribute to the alleviation of PIO problems.

The primary assumption on which this research is based, is that adequate control
authority has been allocated to the non-tracking tasks, e.g., maintaining trim and the
rejection of unmodeled disturbances. Finally, it is assumed that the pilot will not
intentionally and deliberately stress the flight control system, which could bring about a
situation where the pilot supplied reference yields an output signal which, although as close
as possible to the reference, is nevertheless very far from the reference; and not-
withstanding BIBO stability of the FCS and thus the boundedness of the output, the pilot

flies the aircraft into the ground.

1.6 Documentation

The dissertation is organized as follows. Chapter 2 provides background
information, an explicit formulation of the problem, and discusses some important
observations regarding the modeling of hard constrained nonlinear flight control systems.
A novel control approach for the actuator constrained manual tracking control problem,
Linear Quadratic Tracking (LQT), which simultaneously addresses the conflicting
objectives of aggressive tracking and actuator saturation effects mitigation, is introduced in
Chapter 3. Chapter 4 is devoted to the development of new methods for predicting the pilot
demanded reference into the future, in a manner which facilitates the subsequent mitigation
of the actuator constraints, and also includes the derivation of the explicit closed-form LQT

control solutions for each prediction strategy. Several simulation examples using the LQT
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control method with unconstrained actuators are provided. In Chapter 5, the impact of hard
actuator constraints on tracking and control system stability, particularly for an open-loop
unstable plant, is first illustrated via a simple example. This is followed by a detailed
examination of the constraint mitigation implementation and tracking and stability
performance within the LQT framework. Next, a special case of the LQT control method
which sacrifices a certain degree of tracking performance in favor of stronger stability
characteristics is discussed. Concluding remarks, and recommendations for future work

are given in Chapter 6. Finally, additional simulation results are provided in the Appendix.

1.7 Summary

The primary emphasis of this research is on the effects of actuator saturations (both
displacement and rate) on control systems and the mitigation of those effects. Secondly,
but equally important, is that the research is done in the context of (manual) tracking
control, and NOT regulation. Specifically, the goal here is to examine and compensate for
the effects of actuator saturations from a manual tracking perspective. Although "tracking”
is a common term among controls engineers, manual tracking control design and analysis is
relatively rare. Perhaps this lack of attention is vested in the fact that the manual tracking
problem cannot be directly posed in an optimization framework because of the need to "see
into the future." Thus, one approach is to heuristically devise "practical” tracking control
methods, and then mathematically assess the resultant system to determine any BIBO
stability guarantees that may be made.

Generally, "tracking" systems found in the literature are based on the concepts of
regulation and are deeply rooted in steady state analysis. These trackers, for the most part,
are made possible only because of the extensive understanding of the time
domain/frequency domain connection in simple second-order systems and the design for

second-order dominant dynamics; frequency domain arguments are (often) used. The
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manual tracking problem, however, is a multivariable control problem of a continually
transient nature - there is, in general, no steady-state. It does not, therefore, make sense to
design controllers for this class of problems based on steady-state analyses. Hence, the
problem is a time domain problem - certainly, in the case of hard actuator constraints, and
should be attacked in the time domain.

In this dissertation, a number of established time domain control system design and
optimization methods are combined in a novel manner to properly attack the manual
tracking problem with actuator constraints. Among these, are the concepts of receding
horizon control (also referred to as model predictive control), full state feedback and LQ
optimal control, constrained optimization and reference signal polynomial extrapolation and
interpolation. It is shown that these tools are instrumental to developing a sound control

strategy for the constrained dynamic tracking problem at hand.
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II. Problem Formulation and Modeling Issues

2.1 Overview

In this chapter, a mathematical formulation of the manual tracking control problem as
addressed in this dissertation is provided. First, an elaboration on the concept of "manual
tracking” is presented, followed by the mathematical representations of the aircraft and
actuator models under investigation. Additionally, there are many subtleties associated
with the modeling of nonlinear physical (continuous-time) systems on a digital computer
which are easily, and consequently, often overlooked. Procedures which are commonplace
for the modeling of linear systems may be inherently flawed when applied in nonlinear
modeling. For example, artificial model windup may occur in discrete-time models of
nonlinear dynamical systems, or, the nonlinear effects of a system may be unfairly
mitigated by improper nonlinear modeling. Thus, the chapter is concluded with a

discussion of these issues.

2.2 Manual Flight Control

Manual flight control entails a pilot flying an aircraft "by the seat of his pants" in order
to satisfy a mission objective. In military aviation this objective could be to engage enemy
aircraft, or to attack ground targets. Thus, manual flight control calls for tracking control.
The tracking problem begins at some point subsequent to take-off and cruise (where the
aircraft could be flown by the autopilot), and ends when the mission is completed. Thus,
the manual tracking task is an "open-ended" problem which evolves in time; its duration is

indefinite.
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Manual tracking control problems are strictly of a dynamic and transient nature.
Hence, "steady state” is meaningless in maneuvering and manual flight control, which
stands in stark contrast to the classical regulation paradigm. For these reasons, and bearing
in mind the very point-wise in time nature of hard actuator constraints, the manual flight
control problem should be addressed in the time domain. However, the tracking situation
arises where the reference signal is not known in advance, and thus the optimal tracking
control paradigm cannot be directly applied to manual, real-time tracking control. Receding
horizon control (RHC) formulations have traditionally been used in process control, in the
absence of viable feedback measurements. In this dissertation, however, and as suggested
by Pachter, et. al., [12], [46], RHC is combined with reference signal prediction strategies
to overcome the shortcoming in the required knowledge regarding the reference signal over

the planning horizon.

2.3 Mathematical Formulation

The constrained actuator control problem is often treated in the literature as a control
constrained problem. When actuator dynamics are included, however, the problem should
be addressed as a state constrained problem. Consider the single-input single-output
(SISO) feedback control system depicted in the block diagram of Figure 2.1, which

represents the tracking feedback control problem at hand. The physical aircraft includes

control surfaces which are positioned by dynamic actuators. The controller output is u =
6., which, when linear controllers are employed, is in general, unconstrained. The control

surface deflection 6 which is the plant's input, is however, constrained due to physical

limitations of the dynamic actuators. Thus an appropriate aircraft model requires an

augmentation of the airframe dynamics with the actuator dynamics.
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Figure 2.1. Tracking Problem Block Diagram

The equivalent discrete-time model representation of the resultant single-input closed-
loop linear control system is thus described by
Xpo1 = AgX +bon
T
Yer1 =€ Xy

where x, € R” is the closed-loop state vector and includes both the actuator dynamics and

aircraft dynamics. A, € R"*" and b, € R" are the closed-loop dynamics matrix and input

vector respectively, and k=0, 1, 2, ... is the time step index. The required tracking task
entails the output following an exogenous, unknown a priori reference sequence (r,, 7,,...).
Because the actuator dynamics are imbedded in the closed-loop system's augmented state
vector, the actuator displacements and rates can be expressed in the general form Cx + dr,

and defined as follows:

8k+1
1 (5k+1 _5k) =Cx, +dr,,

T
Thus, the displacement and rate constrained manual tracking problem is treated as a state
and "control" constrained problem. Finally, r,,, is the exogenous reference signal which

becomes available at time k. Note that the convention is employed such that the pilot



supplies the desired reference value r,,, at time k and thus, in the discrete-time formulation,
the control signal at time , u,, is computed such that the resultant output at the subsequent
time step, y,,,, is driven toward the desired reference r,,,. Thus, the difference between
the current desired reference value and the actual system response y,,, is the tracking error
at time k+1.

2.3.1 The Unconstrained Open-Loop System. Linear aircraft dynamics (plant)
models are considered, with discrete-time representations of the form
X, =Ax, +b,6, +ld, k=0,1, .. 2.D

Pr

n,xn

where x, is the plant (aircraft dynamics) state vector at tme k, A, € R” 7and b, €

R™are the dynamics matrix and input vector respectively, &, is the control surface

deflection at time k, { is a disturbance vector, d is a known and constant disturbance input,

and the output of interest is

— AT
yk+l - chPul + dpak

1xn

where the output matrix c]; € R 7 and the feedforward coefficient d, € R. The

inclusion of the known constant disturbance d is motivated by the need to linearize the
aircraft equations of motion about a non-trim point. The dynamics matrix A, is not

necessarily stable, i.e., it may have eigenvalues outside the unit circle.
The control system supplies actuator commands (the control signal u, = J, ), resulting
in control surface deflections according to the actuator dynamics. Proper, linear dynamic

actuator models of the form

X5, =AsX;, +b55c,



are considered, where X; € R™ is the internal state of the actuator at time k, A €

R""and b, € R™ are the actuator dynamics matrix and input vector respectively. The

resultant (unconstrained) actuator displacement is given by
O = chsm
An integrator state z such that
I=r-y
for the purpose of implementing integral action in the time domain is also included, which
adds a pole at the (s-plane) origin. When full state feedback control is implemented,
integral control is not necessary to meet steady state performance criteria, however in

practical applications the utility of integral control is with respect to model uncertainty and

disturbance rejection. The discrete-time representation of this integral state is given by
G =4t T(’;:H - }’k+1)
where T is the sample interval.

Hence (in the absence of actuator constraints), the (linear) augmented open-loop

system ensues

xPhx AP :L bpcg _E_o ka _0_ 0 C
X=X, (= 0L As_101% |#b; 3, 0+ 0d
L | |-TC)A, 1 =Tdcs 1 1]z, | [0 T 0
= Ax, +bu, + Y5, +7,d (2.2)

_T.r1 T i _ T
Vst _[cp 1 d,C5 O]xk+1 =C X
where the respective augmented state, input, output and disturbance input vectors are x,, b,

c’, ¥, € R’ the augmented dynamics matrix A € R"* ", the control signal, the output and
the (constant and known) disturbance are u,, y,,;, d € R, respectively, the "time" variable

isk =0, 1, 2, ..., and the initial state x, € R" is known. Note that the additional input



vector y, € R” is needed to accommodate the inclusion of integral control, and T is the
sampling interval.

2.3.2 The Unconstrained Closed-loop System. Consider, e.g., the simplest
stabilizing state feedback tracking control law given by

u = 6c,, = kka + Kl
where k” =[k£ kD kz] eR'™", withn = n, + n; + 1. Inserting this control law into

Eq. (2.2) yields the closed-loop state equation

X =A X, +byn, +Y,d (2.3)
where A, = A +bk”, and b, = y, + bk,. Clearly, the state feedback gain k. must be

selected such that all the eigenvalues of A, are inside the unit circle. Thus, the closed-loop
system of Eq. (2.3) is said to be stable by design.
2.3.3. The Actuator Constraints. The control surface displacement is constrained in
both amplitude and rate, viz.,
0. <06(t)<d

min max

5. <6()<b,
In the discrete-time case, these constraints are accounted for by enforcing

6mjn < 6k+1 < 5max

Apn $(80 —6)<SAL,., k=01, ..
where A, and A_,, are given by TSmm and TSmx, respectively. In practical applications,

it is not unrealistic to assume that 8, = -0,,,, Ay, = A, and that &,

max?

A...> 0. These

constraints are imposed by the physical limitations of the dynamic actuator. A mathematical

representation of these constraints is as follows. First, define the saturation function
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1, x>1
sat(x)=1< x, —-1<x<1
-1, x<-1

where x is a scalar. Similarly, saf(x) where x is a vector with components x,, is the vector

with elements sat(x;). In terms of this function, then, the symmetric hard amplitude

constraints (with bounds *4,,.) can be characterized by

Sata (5k+1 ) = amusat(—gk“;ﬂ.)

max

This sat function can also be used to characterize the rate constraints alone, viz.,

sat,(84,1,6,) = Amxsat(é!‘—*A—l_—&‘) +6,

max

or to simultaneously characterize both the amplitude and rate constraints, viz.,

saty (8150, ) = Apay - sat[AL [Bmax {sat(%) - sat[ai"—):l]] + Smaxsat( 55" J

The term small signal operation can now be defined. In the most general case where there

are both displacement and rate actuator constraints, small signal operation implies that for
all 8, k =0, 1,..., resulting from the linear system of Eq. (2.3), sat,(6,,,,6,) = 6,.,-
During small signal operation, the dynamic behavior of the closed loop system 1is

governed by the linear system Eq. (2.3). However, when the hard saturation constraints

are encountered, the system behavior is nonlinear and much more complicated. The

unstable plant dynamics of Eq. (2.1) are no longer driven by §,, but by sat,(5,.4,.,).

Consider, e.g., the case of a persistent amplitude saturation where §, = §,,, = ...=0_,,. If

ax

the tracking control law does not alleviate this situation, the result is a constant input to an

unstable system which will ultimately result in a departure. When the saturation is of the
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transient type, recovery may be possible, but if the saturation is the result of a reference

signal which is not statically admissible, departure is inevitable.

2.4 Model Windup

When modeling nonlinear systems, one must take special care to avoid model
windup. That is, windup which is unrelated to the system's physics, and rather is an
artifact of poor modeling which, at least to some extent, invalidates the model. For
example, consider the simple first-order actuator model whose dynamics are described by

8=ab+bé,
When such an actuator is subject to amplitude and rate constraints, a commonly used (see,

e.g., [12]) block diagram level model is as shown in Figure 2.2.

—> b s Al | s s

Figure 2.2. Commonly Used Model for Constrained Actuators

This actuator model, however, is subject to "model windup” and physical inconsistencies.
Actuators are translational devices, and thus, zero rates should dictate constant
displacements and vice versa. In addition to this model being subject to model windup,
regardless of which of the variables depicted in Figure 2.2 are used to represent the
physical quantities of actuator displacement and rate, inconsistencies can arise. Consider
the case where the actuator has encountered a hard displacement constraint. Clearly, in

order to obtain the desired displacement limiting, the variable 8, must be used to represent
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the physical actuator displacement. According to the model depicted in Figure 2.2, a hard
saturation in displacement in no way implies that either of the quantities S or 5L 18 zero.

Specifically, 6 = b8, + a8, which is zero only if

a
5 = -'Z(SL

Moreover, when & , #0 the variable & will windup. Thus, even after ) , Teverses
direction, a period of time will have to elapse before 6=45,, and only then will the
displacement begin to move away from the saturation value. Unfortunately, one is pushed
into this type of block diagram modeling by the modern or "graphical" CAD paradigms,
e.g., MATRIXx System Build or MATLAB Simulink; whereas proper nonlinear modeling
mandates a reversion to the physical state space.

A more realistic model which maintains the translational characteristics of the actuator
could be obtained by ceasing to drive the integrator when a displacement saturation occurs,

as illustrated in Figure 2.3. The switch would remain in the position shown any time that

Lb‘ _/_-v1><—8->J——»_/_5>

0

Figure 2.3. Avoiding Model Windup

the displacement is at the limit, thus preventing both physical inconsistencies and model

windup. The concept of conditional integration, used in the literature to prevent integrator

windup in controllers, could thus be used in the modeling process to avoid model windup.
Perhaps the best approach, and the method incorporated into this dissertation, is to

use a physical variable state space representation for the actuator state vector so that the
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actuator displacement appears as an explicit state. In a discrete-time formulation, rate
saturations can be readily accommodated via appropriate hard limiting of the displacement

state.

2.5 Discretization Issues

Discrete-time models basically play two distinct roles in the control design process.
First of all, digital controllers are often used because of powerful digital computers which
can be used to implement these controllers. Secondly, simulations of physical systems is
essential in the controls design process. Since most of these simulations are performed on
digital computers, equivalent discrete-time (EDT) models are often used to represent
continuous-time systems.

Given a linear, continuous-time model of a physical system that consists of a linear
plant and actuator (as illustrated in Fig 2.1), the model should be discretized as a single
unit. That is, if the plant is of order n, and the actuator is of order n, then the entire system
can be represented with a n = n, + n, order state space model determined by augmenting
the plant and actuator continuous time models as described in Section 2.3.

For a linear plant/actuator system, one could then use canned controls tools, e€.g., the c2d
command in MATLAB, to obtain an EDT model. However, when the actuator is subject to
hard constraints a canned discretization routine, €.g., c2d mentioned above, may yield
invalid results when applied to the augmented system and one attempts to enforce the
constraints in the EDT system. In fact, when simulating complicated systems, these invalid
models have been observed to actually mitigate the actuator saturation effects. It has been
observed, that more realistic results can be obtained by discretizing the actuator and plant
models separately, and then augmenting the EDT models of each subsystem. While this

approach implies the use of a sampling device between the plant and actuator, which by no
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means exists in the physical reality, the selection of a sufficiently small sampling interval
allows one to hide behind the sample rate.
The phenomenon described here is best described by way of example. Thus,

consider the actuator/plant continuous-time (CT) system of Figure 2.4:

Actuator Plant
Oc(s) N 20 | 6(s) 25 Y(s)
s+20 s* +2(.707)5s +25

Figure 2.4. Actuator/Plant System

Further, let the actuator displacement § be constrained in displacement to 1.0 units. A

state-space formulation of the augmented CT system is given by

%] [-707 =25 207 x ] [0
iBl=| 1 0 0 |x |+|0]6.
i 0 0 =20]x]| [1

where the system output is y = ¢’x = [0 25 0]x, and the actuator displacement is 6 = ch =

[0 020]x. The MATLAB c2d command yields the "equivalent" discrete-time model

xk+11] [09305 —0.2413 0.1747] x[k1] [0.0009
x[k+11|=]0.0097 09988 0.0009 | x,[k]|+| O |b.[k] (2.4)
x,[k+1] 0 0  0.8187] x,[k]| |0.0091

An obvious problem lies in the fact that in the discrete-time (DT) model of Eq. (2.4), the

plant can be directly affected by the actuator command §, whereas in reality and as clearly

illustrated in Figure 2.4, this should not be the case. The preferred method entails
discretization of the plant and actuator models individually, then augmenting the resultant

DT models, which yields
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x[k+11] [09305 —0.2413 0.19307 x,[k] 0
x,[k+1]|=|0.0097 09988 0.0010 | x,[k]|+| © [8.[k]
5[k +1] 0 0 08187 ] x,0k]| |0.0091

which is more in line with the physical system. In all three cases, the CT augmented
model, the discretization of the augmented CT model (denoted AUG/DT), and the
augmentation of the individually discretized plant and actuator (denoted DT/AUG) yield

nearly identical linear (i.e., without constraints) performance, as illustrated in Figure 2.5.

12 T T 1 T T T T T I
10}
8t —— i
8 -~ .- AUG/DT
g - - DT/AUG
&
T 6f -
£
b5
2
wn
4._ -
2t i
0 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2

Time (sec)

Figure 2.5. Linear Comparison of Discretization Methods

The input command is a 10 unit step command, and all discretizations use a sample interval
of 0.01 seconds, and assume a zero order hold.
However, when the actuator displacement constraint is enforced, performance of the

AUG/DT model is quite poor as compared to the CT system, as shown in Figure 2.6. The
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Figure 2.6. Nonlinear Comparison of Discretization Methods

DT/AUG method on the other hand, is essentially an exact overlay, and the difference in
the two responses are shown in Figure 2.7. Aside from the obvious problems illustrated in
the preceding example, significant discrepancies in the CT and AUG/DT model responses
may occur even with minimal periods of saturation. However, in realistic situations, viz.,
where the actuator dynamics are relatively fast as compared to the plant, these additional
effects are minimal and very difficult to discern. In order to amplify those effects,
however, one can examine the same situation but with a much slower actuator, or choose a
much longer sampling interval, and see that discretization of the nonlinear, augmented CT

model performs even worse than demonstrated in the above example.
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Figure 2.7. DT/AUG Discretization Method Error

2.6 Summary

The emphasis of this chapter has been to clearly define the aircraft actuator and plant
models used throughout the remainder of the dissertation. In the context of the augmented
system models, it is clear that actuator constraints impose state constraints on the problem,
and thus control constraint mitigation strategies are not directly applicable. Explicit
mathematical representations of the actuator displacement and rate constraints was
provided, as well as a discussion of two important modeling issues, viz., model windup,
and the appropriate approach for the discretization of the aforementioned augmented system
models. Straightforward, canned discretization tools are not necessarily directly applicable
to the problem at hand. Indeed, one must model nonlinear systems carefully by reverting

to their state-space representation.




Il. Linear Quadratic Tracking

3.1 Overview

In this chapter, a new control strategy for addressing the manual flight control
problem with constrained actuators, Linear Quadratic Tracking (LQT), is devised. A
receding horizon (RH) implementation of Linear Quadratic (LQ) optimal control, is
combined in a novel manner with a unique two-stage reference signal prediction strategy.
By parameterizing this predicted reference over the planning horizon in terms of its value at
"time now" 7’ the mitigation of hard actuator constraints effects is made possible in an
effective and efficient manner without sacrificing the aggressive tracking characteristics of
the otherwise linear system. First, an example which demonstrates potential tracking
performance enhancement through the use of a predictive tracking control strategy over that
of a regulator-based approach is presented, followed by an overview of the LQT
methodology. Next, the finite horizon optimal control problem which presents itself within
each RH window is solved in terms of the parameterized predicted reference vector. A
straightforward reflection of the actuator constraints into constraints on #’ is then made to
afford an effective, yet computationally inexpensive, constraint mitigation strategy. This

entails the relaxation of the reference signal (pilot commanded) at "time now." Specific

reference prediction strategies are developed in Chapter 4, and considerable attention is

given to the constraint mitigation aspect in Chapter 5.

3.2 Improving Tracking Performance via Reference Signal Prediction

Optimal control methods cannot be directly applied to the manual tracking control

problem, because the desired reference trajectory is not known in advance. Thus, optimal
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control tracking systems are traditionally based on a somewhat adaptation of the regulation

paradigm. This research is, in part, motivated by the following insight.

In a manual tracking situation, tracking performance can be improved over the performance
achieved by using regulator based approaches, by employing accurate, short-term predictions of the

reference signal.

This is supported by the following example.

FExample 3.1.
Consider the two state (short period dynamics) longitudinal aircraft model of an F-16 derivative, for a
flight condition of 10000 ft, Mach 0.7. The bare plant's state space model is given by

AR N,

where the units of angle of attack o and pitch rate g are rad and rad/sec respectively, with Z, =-1.15,
Z,=09937, Zs = -0.177, M, = 3.724, M, = -1.26, and M; = -19.5. Also, &, represents the elevator
deflection in rad. A first-order actuator model with bandwidth of 20 rad/sec is considered. The
tracking task requires pitch rate g to follow an exogenous reference signal r. Furthermore, an
integral control state Z =r — y is augmented into the system. Using a sample interval of T = 0.01
sec and assuming a zero-order hold on the input yields an equivalent discrete-time system given by

X, = Ax, + b6y + Y., Viz,,

a, ] [ 09887 00098 -00025 0T e, 0 0
g | | 00368 09877 -01756 0]g, 0
= + 5, + r. (32)
5., 0 0 08187 06, | 01813 | 0
F4 -.000368 —.009877 001938 1§z 0 0.01

k+1
arld yk+l = qk+l = chk+l’ Whel'e cT = [0 1 0 O], and Xp = 0.

Two control strategies are considered. First, a finite receding horizon optimal control
approach is employed, using N-point second-order polynomial (parabolic) extrapolations of the

reference signal. Thus, at each time step k the cost functional

k+N-1

7= Y00 -F) + 02, + R (33)

is minimized, where the weights O, = 0.29, 0,=47,R =091, fk a=hy.andthe 7.7

k+N are

the results of the extrapolation. These are determined by 1,,;, 1, and 7,_,. The (relatively long)

planning horizon N = 60 is used in this example, and thus the reference is predicted 0.6 sec into the
future. The second control strategy consists of a regulator-based tracking system. Here the LQR

performance functional




1=3[0,6..) + 02, + Rl G4

m=0

is minimized, where the LQ weights are the same as in the previous case. No emphasis is put on

tracking the reference signal. This yields the optimal regulator solution u; = —kaka, but in order
to meet the tracking objective, the modified input given by u, = -(r,,; + —kiQka) is used. (Note

-1, is used because M; < 0.)
Now, in the first case, the control law is given by
=

5, =kyx, +[k, k, kJ n |=kx +kn (3.5)

< r2

’;H
with k! = [0.3522 " 1.1372 -0.9183 -6.6087], and k! = [-33.1533 75.5399 -43.6337]. The

regulator based control law is given by

8, =1, — Ky, (3.6)

where —kiQR =[0.3509 1.1373 -0.9184 -6.6107]. It should be noted that the long planning

horizon (N = 60) yields the state feedback gains K, = -Kk; o, thus the only real difference between the
two strategies is the predictive information made available by the reference signal extrapolation
(which makes it possible to include the r,'s in the optimization and thus enforce tracking). The

system response to a filtered pitch doublet using each control strategy is shown in Figure 3.1.

50 T T T T T
T B wih redaie
o~ e with prediction
AN iR P

Time (sec)

Figure 3.1 Benefits of Predictive Control
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Clearly, as seen in this figure, the RH predictive response essentially lies on top of the desired
reference, and the predictive information has improved the tracking performance. Thus, receding
horizon control is well suited to the manual flight control problem, where it is required to track the
pilot's commands over a finite time interval.

Remark: It should be noted that the two control strategies differ even in the case where the simplest
(ZOH) extrapolation rule
T =Ty, M=k+1, k42, .., k+N (3.7
is used; in which case both control strategies operate on the same information. In this case,
8, =kyx, +kr,, (38)

where k, = -1.2471 and k, = k; is the same as before. W

3.3 Optimization Methods in Tracking Control

The time domain Linear Quadratic (LQ) optimal control theory addresses the regulation
and/or set-point control problem, particularly in the control unconstrained case, where the
linear control system x = Ax+bu, x(0) =x,, =0 is considered. In tracking control, it
is required that the system output of the general form y(f) = ¢’x(t) + du(t) follow a
reference signal r(f). Regulation and set-point control consider reference signals that are

known in advance, viz., r(f) is zero or a constant for all time. Having upfront knowledge

of the desired system trajectory for all time of interest, optimization methods can be
employed to determine the optimal control u*(f)= k’x(t), 0 < t < o, which minimizes a

given quadratic performance functional, typically of the form

= [ - 2 2
1=[{o0-roy o+ R}d:
Thus, the entire control signal time history (as a function of the state) is determined prior to
the execution of the control task, based on prior knowledge of the entire reference signal

r(t), 0 <t < . That is, optimization requires advance knowledge of the reference signal
r(t) over the entire planning horizon on which the performance functional is based. This

obviously is indeed the case in regulation and set-point control, whereas, the goal in
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manual tracking control is to follow an unknown a priori, exogenous, reference signal r(r)
as it becomes available in real-time. A causal control strategy is needed; indeed, only in
batch simulations does one have the luxury of knowing the entire simulation time history
upfront. Consequently, classical LQ optimal control can not be directly applied to manual
flight control. On the other hand, automatic control of an aircraft, e.g., as is the case in
autopilot design, where, during cruise, it is required to regulate the aircraft at a prespecified
and fixed altitude or maintain the airspeed, is a regulation/set-point control problem. Thus,
regulation and set-point control play an important role in autopilot design, but these are
merely special cases of the tracking control problem and therefore are not adequate for the
full gamut of manual flight control system design, where the tracking control paradigm
applies.

In a discrete-time formulation, the optimal control tracking task requires the system
output to follow an exogenous reference, i.e., it is required thaty,,, =r,,,, k = 0,1,... An
LQ optimal control approach would thus entail the minimization of a performance

functional of the general form

J= ;[Q(ykﬂ ~ 1)+ Ru] (3.9)
where the scalar weights Q and R =2 (.  An optimal control tracking solution thus requires
that the reference signal r,,,;, be known for all & in advance.

The manual tracking problem, however, is an "open-ended" task, that is, tracking is
not about moving from point A to a prespecified and known point B, but rather to
continually follow an unknown, exogenous reference as it becomes available in time.
Thus, r,,, is not known until time k (recall that the convention is used such that the pilot
provides r,,, at time k), at which time r,,,, ..., 7,5, -.. are not known. Hence, at time k it
is impossible to explicitly evaluate (or much less minimize) a performance functional J of
the form in Eq. (3.9) for a given tracking task until it is over; clearly, at this point it is too

late to utilize this information in the control of the vehicle during the tracking task.
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3.4 LQOT Control

In order to employ the optimal control method, the reference signal time history, viz.,
each r,, must be prespecified over the planning horizon (N). This is not feasible in the
case of manual, viz., real-time tracking control at time k, however the reference can be
predicted into the future based on the currently available reference signal r,,, and the recent
past history of the reference signal. It would be ill-advised to rely on long term
predictions, thus a receding horizon approach is logical and is used to break up the
indefinite horizon tracking problem into an open-ended sequence of finite horizon
optimization problems Based on short-term only predictions of the pilot demanded reference
signal. Thus, at each time step k, i.e., within each receding horizon window (RHW), the
reference signal is extrapolated (details of the reference prediction are provided in Chapter
4) over the planning horizon N, denoted by #,,, n = 2, ..., N, and the finite horizon

performance functional

k+N-1
J= 2 [QP(ymH - ;:m+1)2 + Q]Ziﬂ +Rur2n] (3.10)

m=k
is minimized, in accordance with the prescribed system dynamics, and where z represents
the integral state described in Chapter 2. The result is an N-dimensional optimal control
vector u’, where the optimality is with respect to tracking the extrapolated reference vector
from the current system state forward to the end of the current window. In the
unconstrained case, the first element of this control vector is used to physically drive the
system (the remaining elements are discarded) and the procedure is repeated at each
subsequent time step. In the presence of downstream actuator constraints, however, within
any given window the resultant control vector may not be feasible, i.e., it may induce
actuator saturations which invalidate the linear system representation, nullify the optimality
of the control vector, and adversely impact the stability of the closed-loop system. Hence,

special measures must be taken to prevent this state of affairs from occurring.
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Within the window initiated at time k, an optimization problem over R is posed by

considering the vectors

u=[u]l=[ug,u, .., uy,]l € R (3.11)
t=[£]=[r.50.nFy] € RY (3.12)
y =D, =Dy o yal" € RY (3.13)
z=1[z,) = [z, 2 - 25 € RY (3.14)

where u represents an N-point input vector, r is the extrapolated reference vector, y is the
corresponding N-point output vector, and z is the N-point integrator “charge.”

The performance functional Eq. (3.10) can now be written in the form
N-1 o , .
J= Z[QP()’M ~ o) +Qpzan + Ru,,] (3.15)
n=0

where the initial (i.e., with respect to the current window) state x, is x, and thus state

feedback action is achieved via the receding horizon formulation. The optimal control

* * * T . . . i3
vector w’ =[u0,u1,...,uN_l] e R" is obtained at each real time step k, corresponding to

. . A A A
optimal tracking of the extrapolated reference vector r = [rl,rz,...,rN] . Note that the first

element of r is the currently demanded pilot reference signal, and thus does not have to be
predicted. Moreover, it transpires, u” = u'( F';x,) is linear in both x, and r. If the vector

r is too aggressive in the sense that it can not be optimally tracked with respect to the
designated performance criteria and within the bounds of the actuator constraints, the

!

strategy is to optimally track the closest feasible reference, r'. In light of the preceding

observations, the corresponding feasible control vector is readily determined, viz.,

v =u(r';x,)
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which is the optimal control vector corresponding to the feasible reference r'. Moreover, r’
is the best reference vector that can be tracked with the given optimal control law without
violating the actuator constraints. In other words, the relaxed reference vector r’ is as
"close" as possible to the pilot demanded r.

There are many important questions which need to be addressed when assessing the
feasibility of the reference vector. For example, since only the first element of the vector u’
will actually drive the system, is it really necessary to be so conservative as to ensure that
each and every element of u’ does not induce saturation? Thus, specific feasibility
criteria must be stipulated, which best serve the specific problem at hand. Furthermore,
one must assess the long term stability implications of the criteria, as well as whether or not
guarantees can be made regarding the existence of a feasible reference at subsequent time
steps. The investigation of these issues is pursued in Chapter 5.

Further elaboration is also required regarding the use of the terms best and closest in
the preceding. In the following chapter, innovative methods of predicting the pilot
demanded reference are devised in which the feasible reference vector is expressed in the
linear relationship

r'=kr/+h (3.16)
The term best (or closest) reference vector is used to imply the minimization of |, — 7]

subject to the specified feasibility criteria. It is important to note that r, is the only reference
value which is ever explicitly tracked, and thus this implication is stronger than it may

appear at first glance. Under certain conditions the resultant r’ sequence is the solution to

min [t —r|, subject to the specified feasibility criteria, for any norm. Furthermore, during

small signal operationr’ = r, and optimal (with respect to the extrapolated pilot reference

and within the given window) tracking ensues. In any event, this novel formulation yields
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a computationally efficient solution which is highly amenable to real-time tracking control

applications.
The closed-loop system configuration is illustrated in Figure 3.2. When the

exogenous reference signal is such that it attempts to drive the system out of its small signal

d
+ Aircraft
. ' and
r r Linear | Oc " , X Yy
—» X > Controller Constrained > T P>
Actuator
+ Dynamics
K,

Figure 3.2. Overall Closed-Loop Configuration

operating range, the result is tantamount to a nonlinear scaling (represented by the nonlinear
operator Ain Figure 3.2) of r, = r,,,, yielding a feasible reference ', = r,,;. Hence, using
this control architecture the state feedback structure is unaffected and BIBO stability of the
inner-loop feedback system (from 7’ to y) is maintained. Although BIBO stability from r’
to y is guaranteed provided that the LQT solution exists, BIBO stability from r to y requires
an assurance that r’' remains bounded. The mere preclusion of downstream actuator
saturation does not provide this assurance when the open-loop plant is unstable. Stronger
feasibility criteria must be enforced to prevent the feasible reference r’ from simply
"following" the unstable output of an open-loop unstable plant. This issue is discussed
further in Chapter 5. Furthermore, in this control scheme, during small signal operation,

1, = .., and the linear performance characteristics are preserved: Small signal
performance is not sacrificed to accommodate the actuator constraints. Finally, it should be

noted that Ir',,,| 1 r,,,! does not necessarily hold. The case Ir',,;| > Ir,,,| is indeed possible,
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and, e.g., it is also possible that r,,, = 0 whereas r',, # 0. Hence, a rather general
adjustment of the reference signal is employed in order to address the manual tracking

problem with both amplitude and rate constrained actuators.

3.5 The Unconstrained Optimal Control Solution Within Each Window

In this section, the finite horizon optimization problem is solved from within each

window. At this point in time, the actuator constraints are not explicitly addressed. The
only concern here is the determination of the optimal control vector u” = [u0 uN_l]

which minimizes the finite horizon performance functional Eq. (3.15). The development is

based on the discrete-time control system given by

Xy = AX, + by + V5 +Y,d (3.17)
Ve =€ Xy (3.18)
where it is assumed that x, =x[k]=[x[k] - x,_[k] zk]T eR" where z, is the

integrator state described in Chapter 2. The following development remains valid without

the integrator state by letting O, (and possibly v,) = 0. Within the window initiated at time

k, the initial state is x,, and thus the notation x, = x, is employed. During the ensuing
development, it is evident that the reference signal has been predicted into the future, and
thus, the "hat" notation is temporarily suppressed.

Given the discrete-time system described by Egs. (3.17) and (3.18), and with the

reference signal r, stipulated for all 1 < k < N, the unconstrained tracking problem with

finite planning horizon N can be posed as a linear quadratic optimization problem in the

control sequence [u,, Uy, ..., uy,]’€ R" by considering the vectors of Egs. (3.11)-(3.14).

Throughout the remainder of this document, the subscript £ (0 < k < ) is used to

represent real-time instants, while, within a given receding horizon window, the subscript
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n(0<n<N)isused. Thus, each u, and r,,, over the tracking task will be represented by
a u, and r, respectively in one of the receding horizon windows.

According to the receding horizon modus operandi, u, represents an actual system
input. The remaining control signals u,, ..., uy, do not represent physically realized inputs
to the system. Furthermore, at any given time instant k in the system time reference x,
from the window time reference represents x,, thus state feedback action is achieved via
the receding horizon formulation. Thus, the second through N-th components of u are
never actually used to drive the system, nor are the second through N-th elements of y
actually realized.

Using the notation of Egs. (3.11)-(3.14), the convex cost functional Eq. (3.15) can be
written

J=Q,[y—-r'[y-r]+Qz"z+ Ru"u, (3.19)
and the optimal control sequence u” = u*(r;x,) for the unconstrained problem over the
planning horizon N is given by u = u* such that d//ou” =0. Thus, it is required to

express J as a function of u only.

The explicit solution of the difference Eq. (3.17) is
n-1
x, =A"%,+ > A*(bu,__, +¥7,, +7,d), n=12,...N (3.20)
k=0

Direct substitution of Eq. (3.20) into the quadratic functional Eq. (3.15) yields

N-1 m 2
J= Z QP(CTAm+lxo + ZCTAk (bum-k + YNk 'de) - rm+l) :I

m=0 k=0
N-1 [ m 2

+2 Q,(cfA'"“xo + ZcZTA"(bum_k + YT+ yzd)j +Ru
m=0 k=0

where the row vector ¢, = [0,,_1 | 1], ie., €lx =z

Now,
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du

g_[aj a T

oy O, Oy,

Setting dJ/du, =0 for each n = 0, 1, ..., N-1, and after some algebraic manipulation, the

optimal control vector u’ is expressed in vector notation as

*
Uy

=X"(Yr+Zx, +Vad)

*
Uy

where the vector d=1,,,d, and V, X, Y and Z are matrices depending only on the known

system parameters. Specifically, V, X, Y € R™ and Z € R are explicitly given by

and

where the entries

VN-1LN-1 | py

Xo0 7 XoN-1 Yoo 0 Yonw-i
X=| : : Y=| : ' :
Xn-10 "7 XN-LN-1 ey YN0 7 YN-LN-1
Zy
Z=| :
T
ZN-1 {nen
N-1
—de(Yz), i2j
m=i
Vii =Y wa
—ZO'M(YQ), Jj>i
m=j

N-1
Y.o,b), j<i
N-1
X ;=9 Zom(b)+—1—e—, Jj=i
m=i P
N-1
c,), j>i
m=j
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N-1
=20, (1), P>

N-1
Yii =19 ~26m(71)+ch’ i=]

N-1

-Y.0,(1)+c"A7b, >

[ m=i

and where
6, (v)=c’ A" 'be’A" v + QI—CZTA'"‘"bcfA'”‘jv, ve R
P
and
= , 0 ,
2/ == (c"A"b)(c"A™) + Q—’(cfA'""b)(cfA"’“ )
m=i P

The indices i, j = 0, 1, ..., N-1. Now, define the matrices K, =X"'Y, K _=X"Z,

k, =X"'V1,,,. Then the unconstrained optimal control vector can be expressed in closed
form, viz.,

u'(r;x,)=K,x, +K r+k,d
where the matrices K_ € R™, K, € R™ and k, € R" depend only on the system
parameters (A, b, ¢, v;, ¥,) and the LQ weights O, Q,and R. An important observation is

that u* is linear in both r and the initial state x, = x,.

The corresponding optimal state vector time history over the planning horizon can

thus be obtained
* «T o« T T
X =[x1 Pl Xy ] =M x, +M,r+m,
where M, € R™", M, e R™*¥, and m,e R". Let M,(v) € R *" be the lower
block triangular matrix with dummy variable v € R”, and with block elements [M,(v)];; €

R" given by
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AT, i2j
M,(v)|. =
[ A( )]z,J {Onxl’ l<]
Then,
A
sz +MA(b)KX, (3.21)
M, =M, (b)K, +M,(¥,) (3.22)
and
[ L]
(I+A)
m;=| [ tMbK, (3.23)
=1
QA"
| m=0 n

Additionally, the control surface deflection  is contained in x, viz., 8 = e;x. Thus, over
the planning horizon the optimal control surface deflection vector is given by
* % * T *
5 =[5 - 8] =(1,8)
where ® is the Kronecker product. Hence,
8 =(I,®chHMx, +(Iy ®c))Mr+ (I, ®c;)m,d

Thus, define
A T A T A T
N,=(I, ®c;M,, N,=(I, ®c;M,, n,=(I, ®cj)m, (3.24)
and &  can be written
&=[6 - &) =Nx,+Nr+n.d (3.25)
where N, e R**", N, e R"*" andn,e R".

Since the actuator rates are also of concern, the calculated optimal actuator

displacement difference vector is given by
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6* _6* 5*
A.=| 7.0 |=E T |-e. 6
6y =Oya) L6y

0 1
01 0
D, = 0
0 1
n_ 0— NxN
e, =[1 0 - 0], and 8, = c;x,. Now, let
P, =(I,-D; )N, -e, c; (3.26)
P.=(1,-Dj, )N, (3.27)
p, =(Ly - D}, )n, (3.28)
Finally, A.. can be written
A.=Px,+Pr+p,d (3.29)

where P_e RV*", P, e R"*" and p,e R".

3.6 Transformation of Actuator Constraints
In Chapter 4 several reference prediction schemes are devised in which the feasible
reference vector r'is parameterized by #’, and written in the form
r'=kr/+h (3.30)
Assume for the moment that the reference is feasible and thus r’' = r. Then, the optimal
control vector can be written

u' =K x,+Kkr +Kh+k,d (3.31)
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Hence, the unconstrained LQT optimal control vector is specified linearly in terms of the
current plant state x,, the known and constant disturbance d, the present reference signal
value r, and possibly known past values of the reference signal in h. The known plant

parameters and the LQ weights feature in the coefficient matrices K, K, and k,,.

The control vector u’ (r;x,) produced by the inner-loop control law Eq. (3.31) indeed
induces optimal tracking of the stipulated reference over the given planning horizon, but
does not necessarily satisfy the actuator constraints. Thus, a modified control signal u' is
sought which does not infringe upon the actuator constraints. This modified control vector
is based on the determination of the feasible reference vector r’. Specifically, this feasible
control vector is given by

v =K x,+K kr/+Kh+k,d (3.32)
Taking into consideration Egs. (3.25), (3.29) and (3.30), it is readily apparent that the
actuator constraints (both amplitude and rate) can be transformed into linear constraints on
the current reference value r,. Thus, a nonlinear "scaling” is performed on r, to yield 7’
which in turn defines the feasible reference vector r'. Furthermore, u’ is the optimal
control for tracking the relaxed reference r’. However, it is not necessarily true that u' is
the optimal control solution to the original constrained problem.

The amplitude constraints yield

8 <N x,+Nkr+Nh+n,d<d_, (3.33)
and thus
&  -Nx,-Nh-n,d<Nkr<d  -Nx,-Nh-nd (3.34)
Similarly, the rate constraints yield
18, <Px,+Pkr/+Ph+p,d<T5 (3.35)
and thus

76, —Px,-Ph-p,d<Pkr’'<Td -Px,-Ph-p,d (3.36)

min
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Each of the Egs. (3.34) and (3.36) yield up to 2N constraints which #" must satisfy, for a

total of 4N constraints. Moreover, the saturation avoidance/mitigation strategies discussed
in Chapter 5 are readily employed. Regardless of the particular mitigation scheme selected,
the end result is a single inequality of the form

Toin SH ST (3.37)
which satisfies some or all of the constraints dictated in Egs. (3.34) and (3.36). Thus, the

scalar 1 is chosen accordingly, viz.,

Tnin> h <rmin

'——

K=<8, T <SKH<r.. (3.38)
rmax’ ’i >rmax

The details regarding the selection of r are provided in Chapter 5.

3.7 The Explicit LQT Control Law

It is reiterated that regardless of the prediction method or constraint enforcement

strategy selected, the only element of u’ which is actually used to drive the system is
uy = u,, which can be written
w=uy=e w=e (Kx,+Kki+Kh+k,d) (3.39)
Thus, in the spirit of Eq. (3.17) the actual control signal u, applied at each time step is
explicitly given by
w, =KIx, +k.1/,, +k,d+¢, (3.40)
where the state feedback gain
k; =¢ K, (3.41)
is constant, as is the current reference signal gain
k. =ef KKk (3.42)

and the disturbance signal gain
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k,=¢ K, (3.43)
The control signal u, thus consists of four components, viz., the state feedback component
klx,, the reference signal component k_r.,, which is used not only for tracking, but also
to ensure feasibility of the control signal, the disturbance component k., and the
prediction-induced memory component ¢, = elTNK,h, where information from previous
reference signal values is contained. Except during small signal operation, the feasible
reference value 77,, is nonlinearly determined and depends on the particular saturation

mitigation strategy employed, while the gain k,. is constant but depends on the prediction
method employed, i.e., the vector k as described in Chapter 4. The explicit formula for ¢,,

which may include previously demanded and/or previously applied reference values, also
depends on the specific reference prediction method used, and is explicitly computed for

each method devised in the following chapter.

3.8 Summary

A new approach to manual tracking control with amplitude and rate constrained
actuators, referred to as LQT, has been presented. A motivational example, demonstrating
potential benefits of a reference predictive control strategy was followed by a discussion of
the problems which preclude the direct application of optimization methods in a real-time
tracking control situation. Subsequently, the LQT methodology, which combines the
established tools of LQ optimal control and receding horizon control was outlined. Next
the finite horizon unconstrained optimization problem which arises in each receding horizon
window was posed and solved yielding an optimal control vector u”, which is expressed
linearly in terms of a predicted reference vector r. Taking advantage of this linear

relationship, the hard actuator constraints are transformed into constraints on the predicted
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reference vector. A nonlinear scaling of the predicted reference vector can then be
performed which precludes saturation of the downstream actuators, thus preserving
linearity of the closed-loop system. The resultant computationally inexpensive control law

is of the form
u, =Kx, +k.r), +k,d+¢,
where each of the gains k , k,, and k, is constant. Specific reference prediction strategies

are devised in Chapter 4, and the issue of constraint effects mitigation and the achievement

of BIBO stability is addressed in Chapter 5.
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IV. The Feasible Reference Vector

4.1 Overview

In the previous chapter, the LQT control laws were developed, and the optimal

control solution within each receding horizon window (RHW) was expressed linearly in
terms of an N-dimensional reference vector, . Subsequently, it was noted that optimal

tracking of r may not be feasible due to the existence of the hard displacement and rate
actuator constraints, and a feasible reference vector, r’ was alluded to. This Chapter is

concerned with the generation of this feasible reference vector, viz.,
v=[r - (4.1)
The crux of an optimal tracking control approach to manual control lies in the suitable
and accurate prediction of the reference signal over the planning horizon. One of the goals
of this research is to explore prediction methods which meet these criteria and readily
extend themselves to an efficient handling of the downstream actuator constraints. At the
same time, it is desired to keep computational requirements to a minimum.
Several two-stage prediction schemes are examined which yield a feasible reference

vector of the form

=k#'+h (4.2)

Thus, the reference vector is parameterized in the reference signal at "time now," 7 .

Within each RHW the k and h column vectors are constant, and r’' is (in some sense)



feasible. The latter comment is further explained in Chapter 5. Since the entire reference
vector is parameterized by the scalar r), the door is opened to employ a variety of relatively
simple saturation avoidance strategies.

A two-stage reference signal extrapolation scheme is developed.  First, an
extrapolation of past reference values is performed to predict the desired reference signal

from the pilot into the future, yielding the extrapolated reference vector

i=[f - A 4.3)
Due to the actuator constraints it may not be possible for the linear controller to track this
reference. Thus, r is subsequently modified to obtain the closest feasible reference vector
r.

For each strategy presented, a heuristic description is provided, followed by the
derivation of the explicit formulae in terms of past and present pilot demanded reference
signal values. Finally, the explicit LQT control law is derived. While each of the two-
stage prediction strategies are devised with constraint mitigation in mind, the unconstrained
performance needs to be assessed as well, since this is the small-signal performance which
will be obtained when these prediction strategies are employed. Simulation examples are

deferred to Chapter 5 and the Appendix.

4.2 Stage 1: Extrapolation of the Pilot Demanded Reference

In the first stage of the prediction process, the pilot's reference is predicted into the
future using a p-th order polynomial (poly-p) extrapolation. Thus, over the planning

horizon, each 7, satisfies an equation of the form
7=a,+an+an’+--+an’, n=.2,..,N (4.4)
Determination of the polynomial coefficients requires p + 1 known solutions, viz., the

present and p past values of the pilot demanded reference.
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The polynomial coefficients in Eq. (4.4) are determined by solving the linear system

of equations
5,] [1 1-p a-p? - A-p'a]

: : : : . : a4
=1 -1 1 - (=1)" ||& |=Ea
n| |1 0 0 - 0 |

| 1] _1 1 1 1 __ap_

thus, E;; = (i - py', i,j = L,..,p+1. Now,

and the coefficients
T
-l
a=E'[r, - r, 5 5]

E is a Vandermonde matrix, and therefore invertible. Thus, let

€ € &
8 8 cen E
- 21 2,2 2,p+1
E'=| D : 4.5)
£p+1,l 8p+1,2 £p+1,p+l
Then
p+l
a, = zgmﬂ,jrj_p, m =0, .., p, and
j=1
p { p+l
h=2, "
r;l - 8m+1,jrj—p n
m=0\_j=1
ptl 14
— m
=2 || X" s
j=1 m=0
p+l
=2 Cn s (4.6)
j=1

where the c,; are constants given by
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P
Cps = X" (4.7)

m=0

and the g; are as defined in Eq. (4.5). Thus, r can be written in the general form

r =kr, +h, where

and thus

and

P
r=c r+2c T,
n n,p+1°1 nj'j-p
(4.8)

=k +h,

(4.9)

p
hn = chrj—p

j=1

It should be noted that #, =1, = ,,;.

The general case poly-p extrapolation is illustrated in Figure 4.1. Each of the

71Ty TEprEsent actual past pilot inputs and are explicitly known. Each of these, as well

r A

- r

o g K’* PNy —

extrapolated ref

hz\>

pilot supplied ref

=

Figure 4.1. Poly-p Extrapolation of the Pilot's Reference
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as the 7,,...,r, satisfy the polynomial Eq. (4.4). For the simplest case p = 0, each

>

r=f=r=r,,n=L..,N,ie,eachr, is assumed to be the beginning of a step input.

The case p = 1 provides for a linear extrapolation, and p = 2 is a parabolic extrapolation.
An explicit evaluation of the reference vector coefficients is provided in Table 4.1 for the

values p =0, 1, and 2.

Table 4.1. Poly-p Extrapolation Coefficients

p k, h,

0 1 0

1 n (1‘n)ro

2 0.5(n"+n) 0.5(n*-n)r, + (1-n°)r,

In the unconstrained case with poly-p extrapolation, the extrapolated reference vector
r can be written in the form kr, + h, where the elements of k are defined in Eq. (4.9).

The component h can be written in the form

T
pe Bln, ny o n]L p>0 (4.10)
0y, p=0

where H = [h(i,j)] € R"*?, whose elements are given by h(i,j) = c,_, ; Where the ¢, ; are as

defined in Eq. (4.7). Thus,
)4
h(i, /)= Y i"€prjp i=L..uN, j=1.p
m=0

where the €__, . are as defined in Eq. (4.5). Hence, (for p > 0),

‘m+1j
T T
¢k =e1NKrH[’i—p r2—p rO]

where ¢, is the prediction-induced component mentioned in Chapter 3, and the optimal

control vector is given by
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u =K x,+K kr, +Kh+k,d
=K x, + K kr, + K,H[rl_p h_, rO]T +k,d

P

which yields the control signal
e =KXtk +hd+ krT[’}m—p Tesa-p rk]T (4.11)
where k! € R'*” is given by k] = e/ K H and the remaining components are as defined

previously in Egs. (3.41)-(3.43) with k as defined in Eq. (4.9). For the case p = 0, the
last term of Eq. (4.11) does not exist. Note that in the unconstrained case, the
parameterization of r by r, is of no particular use. The above is provided only for

consistency. Alternatively, the optimal control vector could simply be written as
u =K x,+Kf+k,d (4.12)
where the elements of r are defined in Eq. (4.8). It follows then, that u, = efN u’.

This poly-p extrapolation scheme yields reasonable approximations, provided that the
actual (pilot) reference is relatively smooth. This implies that it may be prudent to prefilter
the pilot reference prior to the extrapolation. This issue is discussed further in Section 4.4.
The performance of this poly-p extrapolation scheme is demonstrated with some smooth

reference signals in the following example.

Example 4.1.
Consider the reference signals of Figure 4.2. The base reference signal is a 6 second doublet. The

two smooth references, filter 1 and filter 2, are obtained by filtering the base reference with

32 109
2 and 2
s°+8s5+32 " +65+109
respectively. The two responses are quite different, but the poly-p extrapolation scheme does a nice
job of extrapolating each, as demonstrated in Figure 4.3 where a sampling interval of 7 = 0.01 sec, a
prediction horizon N = 10, and polynomial order p = 2 are used. Each plot shows an overlay of the

loci of 7, from each window, shifted to the right by (n-1)T seconds. That is, the first trace is given

by the locus of the 7 's from each window, and the next is the locus of 7,'s from each window, but
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Figure 4.2. Poly-2 Test Reference Signals
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Figure 4.3. Poly-2 Extrapolation Test Results

shifted to the right by one time step. Every locus of 7 points is shown for n = 1, ..., N=10, with

each locus shifted #-1 time steps to the right. Recall that 7,=r,, thus the locus of 7's is simply the



original reference signal shown in Figure 4.2. Hence, the accuracy of the predictions is apparent
since the actual reference is included inside the tightly packed responses. Of course, the maximum

width (error) of the locus of plots is NT seconds, viz., 0.1 s in this casc. W
4.3 Stage 2 - Determining a Feasible Reference Vector

In this section the extrapolated reference vector r is modified into a feasible reference
vector I’ expressed linearly in r” which is as of yet unknown. During the constraint
enforcement phase, r’ is determined such that the resultant reference vector satisfies the
prescribed feasibility criteria. The exact meaning of the term feasible depends on the
particular saturation mitigation strategy, and is discussed in Chapter 5.

4.3.1 Strategy: Poly-p + Poly-p'. According to this strategy, a p-th order
polynomial fit is considered for the second stage. Since 7’ is assumed known, only p'
points of the polynomial solution need to be explicitly stipulated. One of these points will
be 7y, viz., set ry = Fy, so that the feasible vector r’ still ends up at the same place as the
pilot demanded r. In extreme cases, it may be prudent to modify this endpoint. The
remaining p’ - 1 polynomial values needed to determine the polynomial coefficients consist
of previously applied reference commands, i.e., the corresponding #’ from the previous
p'- 1 windows.

This method is similar to the extrapolation of stage 1, in the sense that each r satisfies
a polynomial equation of the form

r=ay+an+an’ +--+an’, n=12,.,N
The poly-p + poly-p’ prediction strategy is illustrated in Figure 4.4. The reference signals
ry and r_,...,7, are known. They represent the current and p previous values of the pilot
supplied (desired) reference, viz., r,,, and r,,,,....r, respectively. That is, in the k-th

window r,,, is the specified reference value and is referred to as r|, r,,, is referred to as r,,
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Figure 4.4. Poly-p + Poly-p’ Prediction of the Reference

etc. Recall that r, is known at time &, and u, is used to drive the output y,,, toward the

desired value r,,,. The r,_ p,...,ro* terms are also known. They represent the feasible
reference values determined from previous windows, i.e., ,_, = r’, from the n-th previous
window. Observe that if the constraints are never encountered, i.e., ' = r, in every

window, and if p = p’, then r’ =r holds.

The a] 's are determined by solving the linear system

1,y (1 2-p @-p) - @-p)’ 4]

: : : : : a

rn|=Ta’=[1 0 0 0 a (4.13)
7, 1 N N* ... N”¥ 5
Ed 1 1 1 1 __a;,_

The first p*-1 terms on the left side of Eq. (4.13) are the previously applied feasible

reference values, which appear only for p’ > 1. The p'-th term corresponds to 7, and is

included only when p’ 2 1. The p'+1-th term appears for all p' 2 0. That is, for p' = 1,
Eq. (4.13) reduces to
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T

and for p' =0,
r=ag

Let

- , ) o]

L 2opt @opy e @Y Yu  Na v Y
i A

1 1;[ Af Nl" _ Youg Vpuz 70 YVpapn
Then,

a'=T_][r2*_p, e By rl’]T

Looking at the polynomial coefficients individually,

-1
r * ) ’ .
a_, = E Viili-ps1 T Yipn Vil i=12,...,p+1
j=1

p’-1 p+l p

— ’ * m

=Ygt X Vit i 2l | 2N € o
j=1 j=1 | \m=0

Thus, the components of the feasible reference vector can be written in the form

p'+l

’_ ’ i-1
r= E a._n
i=1

p'+l

p-1 p+l P
—- ’ * m i-1
- Z (yiyp’ﬂrl + 2'}/,-,,"}_1,41 + Yi,p’Z[(ZN gmﬂ‘i)rj—piDn
i=1 j=1 j=1

m=0

p'+l . p-l1f p'+1 1) . p+1[ p’+1 . p
_ i- ’ i- i- m
= Zyi,p'ﬂn r1+2 27’:‘.1'” rj-p'+1+2 Z%,p'" ZN Emrj |li-p
i=1 =1\ i=l j=1] =1 m=0
p+l

p-1

— ’ , ¥ ’

- knrl + ch.j'}-p’ﬂ +Zdn,jrj—p
j=1 j=1

— ’
=kn'+h,
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where the k,, ¢, and d, ; are constants. Thus, the feasible reference sequence can be

written in the desired form of Eq. (4.2), where the k, are constants given by
p'+l )
DN A (4.14)
i=1
and the h, = h,,(r;_p,,...,n)*,rl_,,,...,rl) are given by

p+l

p-l
_ , U * ’
h, = ZCn,m-pm +Zd,,'jrj_p
j=1 j=1

where
p'+l
=2y mn (4.15)
i=1
and
p'+l P
d,; = gyi,p,n"'l';)N'"eM } (4.16)

The h,'s depend only on the past and present values of the desired and applied (feasible)
references, thus, the coefficients vector h is also constant within each window. Hence, as
it relates to the required optimization, r'is explicitly known as a linear function of 1’. Note
that k, = 1 and h, = 0. Explicit off-line evaluations of the reference vector coefficients for
the poly-p + poly-p’ prediction strategy are provided in Tables 4.2 and 4.3. Note that for

the case p'=0, r’ =1 regardless of p, i.e., k, =1 and h, = 0..

Table 4.2. Explicit Poly-p + Poly-p’ Coefficients, p'=1

D k, h,
0 n—N 1-n
n
1-N 1-N
1 n-N N(1-n)
1-n)1-N)r, + r
2 n—-N N 1 NQ-n)(N+1)
—nm-Dr,+(A-n1+ Ny, + ————r,
gy 2( ), +(1=n) )IA 5 N s
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Table 4.3. Explicit Poly-p + Poly-p’ Coefficients, p'=2

p k, h,

0 n(n—-N) [N(l—n)+n(n~1):|r.+ n(l-n) .
1-N N * Na-N)'

1 n(n-N) [N(l—n)+n(n—l)jl . n(l—-n)r +n(l—n)r
1-N N ° N ° a-N"

2 n(n—N) [N(l—n)+n(n—1)]r.+ln(n_1)r . n(l—n) . +ln(l—n)(N+1)r
1-N N ) TONA+N)' 2 a-N) !

Depending on the feasibility criteria, the end point 7, may be deemed unacceptable.
For example, it may be required that all 7/, n=1, ..., N be statically admissible. In this
case, a modified end point 7, which is acceptable may be selected. Thus, the elements of
the feasible reference vector are given by
p’-1
rn’ = knrl,+ zc;.j’}*—p’ﬂ + dr:FN
j=1
where the k, and ¢}, are as in Eqs. (4.14) and (4.15), respectively, and the d, are given

by
p'+l ]
d=37,n" @.17)
i=]
For the case of poly-p + poly-p’ reference prediction, the feasible reference vector r’ is
written in the form kr'+h, where k is defined in Eq. (4.14). The component h can be

written in the form

'H T H *® * * T ?
1['i-p e, ** rp+l—p] + 2[1'2_p, By o rp,_p,] , p'>1
T 4
h=‘H1[r1—p Lop rP+l—p] ’ p'=1
’ —
0y, p'=0

where H, ¢ R"***" and H, € R"*”"" and with elements
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H G )= dnl=i,j’

H,Gj)= C:::i,j

where the d; ; and c, ; are defined in Egs. (4.16) and (4.15) respectively. Clearly, H,

exists only for p’> 1, and H, exists only for p' > 0, since for p'= 0, r’ depends only on 7’

(and thus h = 0), and for p' = 1, r’ depends only on 7’ and r,. The resultant control

signal is thus

Kix, + k.1, +k,d,

.

( T ’ T
KIx, + k.t +hyd + K [,

rk+1]T + krT*[rl:n-p‘ rk*]T’ p'>1

T
rk+1] s p' =1
p' =0

T _ T T _ T s .
where k; =¢; K H,, k;.=¢; K.H, and the remaining components are as previously

defined in Egs. (3.41)-(3.43) with k as defined in Eq. (4.14).

4.3.2 Strategy: Poly-p + Asymptotic Convergence. This method consists of using a

first-order filter to propagate the elements of r’ from #’ to 7y, as illustrated in Figure 4.5.

r A

'4

';-IJ r A ¢ ;DN

O R 4 L e —

- DR

pilot supplied ref extrapolated ref
feasible ref
rlt
>

n

Figure 4.5. Poly-p + Asymptotic Convergence

Specifically, r'is generated from the equation

rn,+l=karn,+(1_ka);N’ n=1,-.

|
|
|
|
\
|
T ’ T
u, =< kx, +k.n, +kd+k [rM“p
|

LN-1, 05k <1

a
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Thus, the r's asymptotically approach 7,. The filter constant k, is a tuning parameter and
can be selected accordingly such that ) is arbitrarily close to 7,. Furthermore, the
resultant r’ can be represented in the desired form r’ =k#'+h. Specifically, the elements
of k are given by

k =k'', n=1L...,N (4.18)

and the elements of h are given by

n=2
h’n = ;:N(l _ka)zkaj
j=0

=R (1-k") (O<k,<1)

(4.19)

Note that k, = 1, and h, = 0, and observe that h = 7 h,, where h, is a constant. Explicit

reference vector coefficients for p = 0, 1, 2 using the poly-p + asymptotic convergence

prediction strategy are provided in Table 4.4.

Table 4.4. Explicit Poly-p + Asymptotic Convergence Coefficients

p . h,
0 | ! 1=k,
NS (1-k (A= Ny, + Nr]
S
k™ (1- k;“l)[%(Nz —N)r, +(1=NVr, + %(1\/2 + N)rl]

If the value 7, is deemed not to be an acceptable endpoint, this scheme can also be
modified such that the asymptotic convergence is not to 7, but rather the closest feasible
value to #,, Fy. For example, it could be required that this endpoint be statically

admissible. This concept is illustrated in Figure 4.6. The equations corresponding to this

approach are the same as before, except that 7, is replaced with 7,.
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, extrapolated ref f;
i-p

O 4 M S P

v < |

pilot supplied ref k i

feasible ref
rl,l

>

n

Figure 4.6. Modified Poly-p + Asymptotic Convergence

In this case, the feasible reference vector is again written kr'+h, but where the
elements of k are as defined in Eq. (4.18). For the unmodified strategy, the h component

can be written
h= H[rl_p L, rp+l_p]T
where He RY*?*! and has elements
H(, j)= 1=k )pen,
where the c,; are as defined in Eq. (4.7). Hence, the prediction-induced component is
o=’ KHr, r, - x|

and the feasible control vector is given by

v =K x,+K kr/+ K,H[rl_p Ty rl]T +k,d
which yields the feasible control signal
T ’ T T
w =K x, +k.n,, +k [rk+l—p Teaz-p  °7 rk+l] +k,d

where kf, k. and k, are as in Egs. (3.41)-(3.43) with k determined by Eq. (4.18), and

k; =¢] KH
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4.3.3 Strategy: Poly-p + parallel. This strategy is the simplest of all proposed.

Specifically, r'= r — A, where A is a constant vector with elements A; =A =7 —r". This

parallel translation concept is illustrated in Figure 4.7.

r A
extrapolated ref 7
Mo r o
Sy b n b N
o T
pilot supplied ref 3 }/:N
h feasible ref
>
n

Figure 4.7. Poly-p + Parallel Prediction of the Reference

In this case, r’'=7 —A,n =1, 2, ..., N, and thus

p+l
/ = —_—
T = zcn,irj—p A
j=1
p+l

— - ’
= Coilip ~H
j=1

p+l
— 47 —
=1+ 2 en s
j=1
— ’
- knrl + hn
Hence, as it relates to the required optimization, r' is again explicitly known as a linear

function of #’, where k, = 1, and

p+l
By = hy(Fepe ool ) = DGty = i (4.20)

j=1
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where the c;, are defined as in Eq. (4.7). Explicit reference vector coefficients for p =0, 1,

2 using the poly-p + parallel prediction method are given in Table 4.5.

Table 4.5. Explicit Poly-p + Parallel Coefficients

p k, h,

0 1 0

1 1 (n+Dr, +(n—Dn

2 1 0.5(n* —m)r, + (1=n*)r, +0.5(n* +n-2)r,

In this case, the feasible reference vector is given by r’ =ks'+h wherek =1, and h

can be written in the form
T
h= H[rl_p ro]
where H € RY*?*! has elements H (i,j) defined by

j#Ep+1

nj?

H(i,j)={ (4.21)

¢;-L Jj=p+1
where the c,; are as defined in Eq. (4.7). Hence, the feasible control vector is given by
T

u, = Kxxo + Krkrl’+ KrHFL['i~p r2—p o 'i]

and
T T
O = eINKrHPL Bat-p Newa—p 77 rk+l]
It follows then, that the feasible control signal is given by
T ’ T d
W= kxxk + kr";c-é-l + kr [’;c+1—p o rk] + kdd

where k7, k, and k, are given by Egs. (3.41)-(3.43) with k = 1, and k; =e] K H,

where H is defined by Eq. (4.21).
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4.4 Reference Signals with Corners and Jumps

Polynomial extrapolation is not well suited to reference signals which contain corners
and/or jumps, since it requires high order polynomials to come close to an accurate
representation, and a perfect fit cannot in general be achieved. Linear extrapolation (p = 1)
is less sensitive to these problems, but is also generally less accurate than say parabolic
extrapolation. Obviously, and as observed in simulations, the higher the order of the
polynomial the greater the impact of the nonsmoothness of the pilot supplied reference
signal. Thus, in a predictive control strategy it is wise to prefilter the pilot's reference
signal prior to the extrapolation. First-order prefilters of the form

a

s+a
do a nice job of rounding out corners, €.g., as in a step or pulse type reference, but second-

order prefilters of the form

w2

n

s +2lw,s+ o

may prove even more useful, since they additionally prevent instantaneous change in the
first derivative of the reference, which is another source of corners. This, in turn,
improves the performance of high-order reference extrapolation algorithms.

The performance of poly-2 extrapolation on smooth reference signals is considered in
Example 4.1. Now, consider for example, the reference signal used in Example 3.1. This

reference contains several corners. The trajectories for each r, n = 1,...,.N are
superimposed (and appropriately shifted) in Figure 4.8, using a poly-2 extrapolation with a
sample interval T = 0.01 sec and a planning horizon of N = 10. Note that at the corners,

large spikes appear due to the inability of the second-order polynomial to fit these areas. It
should be noted however, that these unidirectional spikes may not be as significant as they

appear. Recall that this same method of extrapolation is used in Example 3.1, but with a
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Figure 4.8. Parabolic Extrapolation of a Reference with Corners

longer prediction horizon (which exacerbates this phenomenon), yet the control system
output is quite good. It is important to note that only # =, (which is always error free) is
actually injected into the system. Thus, the system never tries to explicitly track these
errors, but the optimization is based on the assumption that these errors are what is to come
in the future. Since the spikes are always in the right direction, the result is perhaps a more
aggressive approach toward r, than actually necessary. When higher order polynomials are
used in the extrapolation, spikes occur in both directions, and the peak magnitude grows
with the polynomial order. Thus, it is believed that the maximum polynomial order used
for extrapolation purposes should be 2, i.e., parabolic extrapolation. These spikes are

eliminated when linear (p = 1) extrapolation is used, as shown in Figure 4.9.
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Figure 4.9. Linear Extrapolation of a Reference with Corners

4.5 Summary

Several two-stage reference prediction strategies have been devised which can be used
in support of the LQT methodology discussed in Chapter 3. The first stage entails a
polynomial extrapolation of the pilot demanded reference signal, based on the currently
available and previously demanded pilot input signals. A p-th order polynomial
extrapolation has been shown to work well with smooth reference signals. This method is,
however, less successful for predicting reference signals which contain corners or large
jumps. Thus, prefiltering the reference signal (particularly with a second-order filter)
greatly enhances the accuracy of the prediction.

Each of the second stage interpolation schemes, viz., p-th order polynomial
interpolation, asymptotic convergence, and parallel, can be used with a receding horizon
control strategy to express a feasible reference vector linearly in terms of the current

feasible value r’. For each proposed strategy, the explicit LQT control algorithms are
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derived. Unconstrained simulation examples (for selected parameter values) utilizing each
of these strategies are provided in the appendix. These unconstrained simulation examples
are important, because they represent the small-signal system performance when the given
strategy is employed. However, final judgment on the performance of each technique
should be reserved until after the constrained simulation results are examined as well.
Finally, the closed form and linear representation r’ =kr’+h attained by each of the
investigated prediction strategies opens the door to a number of relatively simple constraint
mitigation (saturation avoidance) strategies which are discussed in Chapter 5. Indeed, the
concise representation and seamless integration into the LQT framework afforded by the
polynomial extrapolation methods is the primary motivator for using polynomial prediction
methods. An investigation into the application of more stable and accurate extrapolation

methods to the LQT methodology would be a worthwhile endeavor.
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V. Mitigation of the Hard Constraints Effects

5.1 Overview

Chapters 3 and 4 have focused on the development of explicit control law formulations
in terms of the "as of yet unknown" feasible reference value at time now # which is then
used to parameterize a feasible reference vector r’ for the duration N of the optimization
horizon. This chapter is devoted to an investigation into the pertinent actuator saturation
issues affecting the selection of 7, and the selection process itself, viz., explicitly
obtaining the feasibility criteria alluded to in previous chapters. First, a simple, scalar
control system example is investigated which clearly illustrates the critical tracking and
stability aspects of the constrained actuator tracking control problem. Subsequently, a
constraint mitigating control strategy is developed, and examined via extensive simulation.
In each case, the feasibility criteria are specified and explicit closed form algorithms for the
computation of 7, and thus, the derivation of the tracking control law, are developed. The
two layers controller arrived at is nonlinear, where #’ is determined such that the
downstream actuator bounds are not violated and the control signal is then determined by
r, such that a quadratic tracking performance functional is minimized. Finally, attention is

given to ascertaining the BIBO stability of the ensuing nonlinear control system.

5.2 A "Simple" Example

A simple control constrained system is analyzed in order to demonstrate the critical
tracking and stability aspects of the constrained tracking control problem. The continuous-

time scalar plant with an amplitude constrained control is given by
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Xx=ax+b-sat(u), x(0)=x, (5.1)

where the nonlinear sat(u) function is

-1, —-1l<u
sat(u)=<u, -1<5u<l
1, u>1

Since the case of an open-loop unstable plant is of particular interest, assume a > 0. A state
feedback control law is desired which yields tracking, i.e. x = r, for all ¢ > 0, for the largest
possible set of initial states x,, and for "all" exogenous reference signals r(z). The simplest
continuous-time control law within this framework is of the form

u=kx+kr (5.2)
Note that u is in the familiar form Cx + Dr (in which closed-loop actuator responses are
often characterized), and thus actuator constrained problems relate to the example at hand.
The linear control law of Eq. (5.2) combined with the open-loop plant of Eq. (5.1) yields
the closed-loop control system whose block diagram is shown in Figure 5.1.

plant

[y

sat(u)

ky

Figure 5.1. Closed-loop Control System

An examination of the relevant augmented (two-dimensional) space of r and x,

VRx{lu}
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provides insight into the problem. There are several sets with respect to this space which

are of importance - refer to Figure 5.2:

lul=1%

Figure 5.2. Sets of Interest

The set V, is determined by the control constraint, and consists of the region of the space V
in which the closed-loop system (Figure 5.1) operates linearly. The set of statically
admissible references R, = [-r,, r,] and the set of statically admissible states X, = [-x,, x]

can thus be defined, where

a+bk,
ka

r

and

The rectangular set V represents the portion of the space which contains statically
admissible reference values and states, i.e., V. =R XX, where each re R yields an

equilibrium x € X, and such that the equilibrium control u =k x + kr does not violate

5-3



the control constraint - note however that this does NOT imply that every [r, x]" € Vj is an

equilibrium point of the system. For example, for a tracking system which yields zero
steady-state error, only the points which are contained in V| and lie on the line x = r are

equilibrium points. Finally, there exists an invariant set V; € (V, N V;) such that for any

constant 7 = r, and [r,, x,)* € V,, all subsequent [r,, x]* resulting from the closed-loop

dynamics is also inside V;. Here, x is the response of the linear system of Eq. (5.1). In
this simple (scalar) case, V;= Vg N V,, but this does not necessarily hold true for higher-
order systems. For example, a second-order system whose constrained quantity of interest
is underdamped would have a V; of the general shape shown in Figure 5.2, since any fixed
value of r yields a percentage overshoot in x.

The following interesting observations can be made. First of all, there exist

trajectories v(f) € V, which are unbounded; that is, r and x can both grow without bound,

without violating the control constraints. Thus, although the closed-loop linear system is
BIBO stable, saturation mitigation strategies which solely modify the incoming reference in
order to avoid saturation do not necessarily yield a BIBO stable nonlinear control system.
Another observation is that should the system ever achieve the valid, yet very special linear
equilibrium point v, = [r,, x,]", the system becomes "stuck": The only two options after

such an equilibrium state is reached is to stay there forever, or diverge. Additionally, for

any x € int(X)), i.e., -x, < x < x, there always exists an r which can bring the state

toward the origin without violating the constraints. Conversely, for any Ixl = x_, the state
can never be brought back to the origin. (If the open-loop plant were stable, recovery from
this state of affairs would be possible, but would entail violations of the control constraints
and periods of nonlinear operation.) This goes back to the previous observation regarding
"open-loop" operation during periods of actuator saturation. This problem just described is

illustrated in the state diagram shown in Figure 5.3. Note: In this particular figure it is
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Figure 5.3. Stable and Unstable Equilibria (¢ >0,5 >0, k. > 0, k, < 0)

assumed (without loss of generality) thatk, < 0, b > 0, and k, > 0. Since unstable open-
loop plants (a > 0) are being considered, these assumptions are consistent with a stable

closed-loop system which yields zero steady-state error. The sign of x is indicated by
arrows. It is apparent from Figure 5.3 that the closed-loop system has stable equilibria
points on int(X,) = (-x,, x,), viz., x = r, and unstable equilibria at the endpoints x = *x_.

Thus, a successful saturation mitigation strategy (SMS) cannot allow x = + x,. One could

thus define some tolerance € > 0, and confine the state x to the smaller set [-x +€, x.-€]. Is

the problem then solved? Actually, no. As x approaches *x, the amount of available,

stabilizing control diminishes. Thus, as € becomes small, the system gets "sticky," with

the worst case being getting stuck at x = x,. Whether or not Irl < r, at any given point in

time is of little consequence, but ensuring that x € int(X) is crucial. Hence, confining v to
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V, for all time is necessarily conservative from the tracking standpoint, since there exist
[r, x]" & V, which can be included in the augmented state trajectory (AST), where:
1. The closed-loop system always operates linearly (constraints not encountered)
2. The AST is stable, and
3. The AST is recoverable
Now, due to the constraints on u, there exist values of r which cannot be tracked

linearly. Since u depends linearly on r, the control constraints are readily transformed into

constraints on r, viz.,

= ‘max
T T

—;1-(1+kxx) =r (X)<r<r (x)=ki(1—kxx) (5.3)
Thus, if prior to the input to the system, the exogenous reference r is modified into an r’
which always satisfies the inequality given by Eq. (5.3), the actuator saturation element
becomes transparent, i.e., removing it from the physical system would have no effect.

Specifically, r'is given by

rmjn(x)’ r< rmin('x)
r=<r, m(X)Sr<r,, (x) (5.4)

oo (X), T>71 (x)
where 7, (x) and r_,.(x) are given in Eq. (5.3).

This transformation of the constraints yields saturated linear control (the term
"saturated linear control” is chosen because although linear, the control signal appears to
be hard limited at the saturation values), which in this particular case provides no
compensatory benefit in and of itself. Indeed, the block diagram shown in Figure 5.4,
where the nonlinear block 4/ is as defined by Eq. (5.4), is input-output equivalent to the
block diagram in Figure 5.1. Even so, there are some noncompensatory benefits of this

transformation, namely, a linear system (from r' to x) ensues, enabling the use of linear
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kx |

Figure 5.4. Transformed Closed-Loop System

analysis methods, saturation avoidance methods can be employed without tinkering inside
the inner-most (plant stabilizing) control loop, and, moreover, provided that during the
operation of the control system the nonlinear action 4/ does not cause r' to grow without
bound when r is bounded, the system is guaranteed to be BIBO stable.

In the more general (and practical) case, where u is subject to some form of dynamics
prior to the hard saturation, e.g., actuator dynamics are included, or a dynamic
compensation element is used, e.g., integral action, a transformation of the constraints of
this type does provide a compensatory benefit, viz., anti-windup, by maintaining
consistency between the signals coming into and out of the saturétion element. Thus, the
element 4/ in the outer-loop in essence removes any dynamics from the inner-loop which
are susceptible to windup when the control signal is saturated.

Hence, the control strategy entails a modification of r (to ') such that the input actually
applied to the system is given by

u =kx+kr
where u' not only satisfies the control constraint (Eq. (5.3) is satisfied), but, and this is
very important, also refrains from driving the state x too close to bnd(X,). This is

accomplished, however, without otherwise restricting r’ - specifically, the AST is not
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restricted to V,. The use of equivalent discrete-time models lends itself well to this strategy,
since subsequent state values are readily determined. In fact, for the scalar case presented
here, a one-step ahead constraint enforcement strategy can be employed which guarantees
BIBO stability with a minimally conservative control signal.

The closed-loop system is thus given by

x=(a+bk )x+bkr

=a,x+bkr
Since perfect tracking should be achieved in steady state, it is clear that
bkr = —acl

and thus

Furthermore, x, = r, = b/a.

For example, leta=1,b=2,and k, =-6. Then k, = 5.5, and x, = r, = 2. Also, let
€ = 0.1 (the "anti-sticking" margin). First, consider the system responses to a pulse input

of one second duration and with amplitude 2.4 as shown in Figure 5.5. A reference signal
with magnitude greater than x, has been purposely chosen, and thus it is impossible for the
constrained system to track this signal with zero steady-state error. The unconstrained
system tracks quite nicely, however, when the control constraint lul £ 1 is enforced, the
response diverges. Next, the constraint mitigation strategy just described is employed. It

is implemented in discrete-time assuming a zero-order hold on the control signal u and a
sample interval T = 0.01 sec. That is, at each time step &, r'is chosen such that |u;| < 1
and x,, € [-x+€, x,-€]. Even when saturation mitigation is employed, it is impossible for

the system to track this reference: The concept of static admissibility is dictated by the

physical limitations imposed on the plant by the actuator constraints. Thus, the
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Figure 5.5. Unmitigated System Responses

performance should not be judged on how well the system tracks this reference, but how

well the system tracks the nearest feasible reference. In this particular case (x, = 2,
€ =(.1), the feasible reference will never converge to a value greater than 1.9. The results

(shown in Figure 5.6) are compared to Gilbert's reference governor implementation [19],

which in essence restricts each [r,,x;]” to remain inside the invariant set V, (reduced

accordingly by the parameter €). The achieved improvement in tracking performance,

although modest, is readily apparent (Note that the choice € = 0.1 restricts the maximum

output to 1.9 since x, = 2.0). For this simple case, not only is the tracking performance

improved, but the computational burden is substantially reduced and global stability is not

sacrificed. The main difference is that in the current approach, r' > r, - € is allowed (see

Figure 5.6). It should be noted however, that these results are specific to the scalar

problem at hand. Indeed, Gilbert's discrete-time reference governor (DTRG) is quite
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Figure 5.6. Scalar Example Results with Saturation Mitigation

admirable: The current method seeks to "squeeze out the last drop" of tracking performance
- an issue not directly addressed by the DTRG. Thus, while BIBO stability is

commendable, it is also obvious that attention needs to be given to tracking performance.

5.3 LQT with Saturation Effects Mitigation

Attention is now turned to the general case. Recall from Chapter 4 that the actuator
displacements and actuator rates over the entire planning horizon can be written as a
function of the current state x,, and the predicted reference r in the concise form

6=Nx,+Nr+n,d
A;=Px,+Pr+p,d
where all of the coefficient matrices are constants and can be computed off-line.

Additionally, the reference vector r is parameterized as
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r=kn+h
where K is also a constant vector, but h may depend on past reference values depending on
the prediction method employed. Now, to characterize all possible amplitude and rate

constraints over the planning horizon, let

where
f; =0, 1y —N,x, —Nh-n,d
f,=T5_1,~Px,~Ph—p,d
B; = N k
B, =Pk
g; =01, ~Nx,~Nh-n,d
and

g, =T6,,1y,-Px,~Ph-p,d

The actuator constraints can then be written in terms of explicit constraints on the reference
signal at time now r, viz.,

fy <Byn<gy (5.5)
If a modified 1’ can be determined such that the constraint Eq. (5.5) is satisfied, then the
solution is said to be consistent, and there exists a feasible reference vector r’ =kr'+h
which can be optimally tracked with the LQT control law, without violating the actuator
constraints. For the general case, however, there is no guarantee that such an r” exists. In

this case, the solution is referred to as being inconsistent.
The vectors & and A, are based on the reference signal prediction. Since too much

emphasis should not be placed on this prediction of the future, one may desire to account

for only some of these constraints. In fact, simulation results have shown that even a
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1-step ahead constraint mitigation strategy will yield greatly improved large signal tracking

performance. Thus, define

£, =[L, i 0, ]
£, =[1, } 0,y ]f,
Bs, =[1, i 0,.n-.Bs
Ba, =[L, i 0,,~.]B,
g5 =[1, 0,2

gA,l =[In 0an«n]gA

fsn B 8, _ g5,
LT b

One must then be concerned only with satisfying the constraints

and let

fn S Bﬂ’i S gﬂ (5'6)
This is referred to as n-step ahead constraint mitigation. The feasible reference value at
time now r’ is determined as follows. Foreach 1 <i<2n, if B,(i) < 0, switch the values
f (i) and g,(i). The physical interpretation of B,(i) = 0 or B,(i) very small implies that 7’

can be infinite or very large. Under these circumstances, the constraints are not significant
and need not be considered. Moreover, this situation implies that the actuator amplitude

and rate are somewhat independent of the reference input, and hence, is an unlikely

occurrence. Next, the vectors r_, and r_,_ are determined, where r_, (i) = f (i)/B,(i), and
r..() = g,(i)/B,(i). Finally, bounds on 7 are specified by

rl'm = mxax[rmin (i)]

and
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K, = min[r,, ()]

It is also possible to include additional constraints in this formulation, e.g., to account for

multiple actuators and/or to enforce specific bounds on the remaining states. Thus, one

would analogously define f_, B, and g, vectors which could then be augmented onto the

f. B, and g, vectors respectively.

In the general case, any number of constraints n = 1,...,N can be enforced over the

planning horizon. Then, for example, if one amplitude and one rate constraint are to be

accounted for then £, B,, and g, € R?. Since the second through N-th components of 3

and A, represent predicted (future) system responses, it is not so critical that they be

explicitly accounted for. Indeed, enforcement of all N constraints may prove to be
unnecessarily conservative, bearing in mind that the exogenous reference signal is
continuously changing. When high gain control laws and/or high-order polynomial
extrapolations are employed, attempts to enforce a large number of these future constraints
increases the likelihood that an inconsistent solution will occur. It is important to realize,
however, that an inconsistent solution at a future time step does not necessarily imply a
breakdown in the LQT control law. That is, although an inconsistent solution arises, the
LQT inputs which actually reach the system, viz., the u,'s, will not necessarily ever attempt
to exceed the actuator constraints because of the inexact nature of a predictive control
strategy.

- Consider for the moment a 1-step ahead mitigation strategy. The appeal of this
method lies in the availability of a relatively simple closed-form control solution which

requires little on-line computation for constraint mitigation purposes. Since the first

elements of 8 and A; represent actual system responses, it is clear that r’ should be chosen

such that it does not immediately induce a saturation. This does not preclude the state of
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affairs from occurring in which the actuator rate and amplitude constraints can not be
simultaneously satisfied. However, extensive simulation has shown that this method can
be effective when reasonable inputs are applied to the system. Thus, a suitable prefilter,
combined with an open-loop hard limiter on the pilot stick (as is employed in many
operational aircraft today), and coupled with a properly tuned 1-step ahead LQT controller,
can yield a rather robust closed-loop control system. Indeed, the large signal range of

operation is greatly extended over that of the uncompensated system.

5.4 Simulation Examples and Discussion

This section provides a representative sample of simulation examples which
demonstrate the potential performance gains attainable with the LQT control method. Each
example has been chosen in order to illustrate or clarify specific aspects of the problem.
Additional simulation results can be found in the appendix.

The first example demonstrates the potential performance improvements of the LQT
control method over a linear, small signal, regulator-based design. The LQT method is
applied to the F-16 longitudinal plant model of Example 3.1, but where actuator amplitude
and rate constraints have been included, viz.,

—0.37<6(1)<0.37
-1.0<8(r)<1.0
in rad and rad/sec respectively. In the discrete-time formulation with a sample interval

T = 0.01, these constraints are represented by

~0.37<8,,, <037

5.7
~0.01<6,,, -65,<0.01, k=0,1,... 67

The LQ weights O, =47, 0, = 0.29, and R = 0.91 are chosen. A planning horizon N = 15
(thus, the reference signal is predicted 0.15 sec into the future) is used with a poly-1 +

poly-1 reference prediction strategy. The resultant LQT control law is explicitly given by
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u, =klx, + kf[r,( rk+1]T + k.1,
where the precomputed and fixed gains k” = [0.2013 0.7317 -0.5686 -4.007], k; =
[5.2366 -5.6107], and k. = -0.4197. The pitch rate reference input is an aggressive 1
rad/sec pulse doublet, prefiltered by a second-order flying qualities prefilter with unity gain
and (s-plane) poles s = -10 = j10. The unconstrained responses (i.c., the actuator

constraints are not imposed) of both the LQT controlled system and the LQR based

controller of Example 3.1 are compared in Figure 5.7a. Note that both control laws exhibit

(a) unconstrained response
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Figure 5.7. LQT/LQR Comparison

similar tracking performance. The LQT controller yields slightly improved tracking
performance, and although not readily apparent from the plot, the LQT control law yields a
lower actual cost over the entire simulation by approximately 50%. Next, the constrained

responses are shown in Figure 5.7b. The advantage of the LQT constraint mitigation is
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now apparent: The LQT controlled system's tracking performance, while unavoidably
degraded somewhat due to the physical limitations of the actuator, does a nice job of
tracking, while the simpler LQR controller does quite poorly. Note that if the LQT solution
is employed, but without the saturation mitigation compensation, the constrained LQT
response is similar to the hard constrained LQR response. The LQT constraint mitigation
compensation has clearly extended the range of acceptable operation of the constrained

system. The actuator activity for each of these controllers is shown in Figure 5.8. It

Act Amplitude (rad)

Act Rate (mps)
, 5 R

—

1

0 1 2 3 4 5 6
Time (sec)

'
[\M]

Figure 5.8. LQT/LQR Actuator Responses

should be noted that although both actuator rate responses appear to be hard limited, in the
LQT case this appearance is due to the feasible reference value r” and is not the result of
encountering the hard saturation. In fact, whether or not the hard constraints are even
enforced in the LQT simulations makes no difference since the LQT controller does not

generate actuator responses outside the linear range of operation.
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In terms of small signal operation, the predictive reference information can be
augmented into the closed-loop dynamics matrix, yielding the linear, closed-loop system

equation
§k+1 = Aclgk +b,n, (5.8)

where in this particular case (poly-1 + poly-1 reference prediction)

a4

B {A +bk, : bk,(l)J
cl ’

0 0

nxl

and

b, = [b(k,(z) + k,,)]

Now, given the formulation of Eq. (5.8), the system meets the requirements for the
implementation of a discrete-time reference governor (DTRG). The application of the
DTRG saturation mitigation strategy to this closed-loop LQT design (in lieu of performing
the LQT saturation mitigation strategy) yields poor tracking as compared to the full LQT
response - see Figure 5.9. The actuator response for both of these methods is shown in
Figure 5.10.

This disparity between the LQT and LQT/DTRG approaches is greatly exacerbated
when higher order reference signal prediction algorithms are employed. Consider for
example a poly-2 + poly-2 reference prediction strategy, applied to the same problem using
a planning horizon N = 30. The responses from the 1-step ahead LQT and the LQT/DTRG
methods to a 0.5 rad step, prefiltered by a first-order filter with bandwidth of 10 rad/sec are
compared in Figure 5.11. Thus, although the LQT/DTRG controller delivers BIBO

stability, its tracking performance is substantially lacking.
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Figure 5.10. LQT and LQT/DTRG Actuator Response Comparisons
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Figure 5.11. 1-Step LQT vs LQT/DTRG with Second Order Prediction

In all fairness, the DTRG performs much better when applied to a non-predictive,
e.g., a simpler, LQR type inner-loop control law. Additionally, the LQT system response
becomes more conservative when additional "future” actuator saturations are accounted for.
When a predictive strategy such as this Poly-1 + Poly-1 strategy is employed, the LQT
controlled system may become even more conservative than the LQR/DTRG system,
because the effects of potential future constraints are being mitigated in the former. Figure
5.12 repeats the simulation of Figure 5.7, but compares the 1-step and 10-step LQT
responses, to the LQR solution, but with the DTRG constraint mitigation. It is observed
that now the 1-step LQT solution is less conservative than the LQR/DTRG solution, but the
10-step LQT solution is more conservative than the LQR/DTRG solution. It is apparent,
however, that the consideration of the actuator constraints in the initial design phase is

-

beneficial.
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Figure 5.12. LQT 1-step, 10-step and LQR/DTRG Comparison

5.5 A Globally Bounded Output LOT Controller

The novel LQT nonlinear control method will yield a globally bounded output stable

closed-loop control system under the following conditions:

1. A poly-0 + parallel (or equivalent) reference prediction strategy is employed,

2. Static admissibility is included in the feasibility criteria, and

3. n-step ahead constraint enforcement is employed, where n is sufficiently large.
That is, the controlled system output is then guaranteed to always be bounded, regardless
of the reference input, whether bounded or unbounded, given to the constrained closed-
loop system. This proposition holds because saturation avoidance and consistent (i.e., the
constraints will not conflict with one another) solutions are guaranteed. Thus, the system
is then always operating in the small signal regime and hence, linear, mode of operation,

which is bounded-input bounded-output (BIBO) stable by design. Obviously, the overall
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system will be BIBO stable provided that 7' is bounded and saturations are not encountered.

This fixed output bound is determined by the linear (closed-loop) system dynamics and the
maximum steady-state system output which can be achieved without violating the actuator
constraints. Moreover, only the amplitude constraints come into play with respect to these
static admissibility concerns, since when the control surface is at its limit in steady-state,
the actuator rates are obviously zero. Furthermore, such a stability guarantee necessarily
entails a trade-off in tracking performance, since the system obviously will not be able to
track any reference signals which exceed this bound.

In terms of constraint mitigation, this special case is very similar in concept to the
DTRG. The basic idea entails at each time step ensuring that saturations will never occur,
provided that the reference signal remains constant. By using a poly-0 prediction of the
reference, the reference signal is indeed assumed constant over the planning horizon. The

(small signal) closed-loop system is thus of the form

Xprr = AgX +bon (5.9)
where
A, =A+bk
and
b, =bk.+vy

as described in Chapter 2. Now, since the linear (small signal) system is stable, a constant
reference input r, will cause the state vector to asymptotically approach some terminal

quiescent state X given by

X = [I - Acl]_1 bclro

S8

If x_, is such that the actuator (amplitude) constraints are not violated, i.e.,

T
Onin SCsX, <6,

min —
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then r, is said to be statically admissible. One must then also ensure that no transient
saturations occur. That is, no saturations occur in the resultant state trajectory during the
transient between the initial and terminal states. If »n is chosen sufficiently large, then the
enforcement of Eq. (5.6) will ensure the avoidance of transient saturations. Eq. (5.6)
could also be used to enforce static admissibility, but because of the asymptotic nature of
the linear system response, this requires n —eo. An anti-sticking tolerance should be
included to avoid the sticking phenomenon discussed in Section 5.2, which will also
ensure the existence of a finite n which can preclude saturation in the steady-state. This is,
in fact, the concept utilized by the DTRG. However, unless one is willing to sacrifice a
substantial portion of the available control authority, » can still be quite large.

The required size of n (and thus, the on-line computational requirements) can be
substantially reduced by breaking the enforcement of static admissibility and the avoidance
of transient saturations into a two-stage process. Thus, Eq. (5.6) is used only to avoid
transient saturation, while more direct means are employed to ensure static admissibility,
viz., hard limiting of the feasible reference value. That is, the feasible reference value at

time now r’ is determined subject to both Eq. (5.6) and

e SHST,, (5.10)
where r__and r,, are given by
r,. ={el[I- ATy} (8, +10]) (5.11)
and
s = {1 A,] b, ) (8, t01) (5.12)

where tol is the anti-sticking tolerance mentioned previously. When there are multiple
control surfaces with constrained actuators, Egs. (5.11) and (5.12) are written for each one

with the most restrictive results being used in Eq. (5.10).
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Thus, at each time step (in real-time), 7’ is determined in accordance with Eqgs. (5.6)

and (5.10). Now, with n sufficiently large, enforcement of Eq. (5.6) precludes any
transient saturations from occurring, and since the reference input is further restricted to
values which will not cause saturation in steady state, it is guaranteed that saturations will
never occur provided that the feasible reference input is held constant. Thus, the necessary
condition that a viable fallback is available at the subsequent time step, viz., maintaining the
same feasible reference determined in the previous time step, is satisfied. Hence, the
system always operates in the stable small signal mode described by Eq. (5.9). It is by
now apparent that n "sufficiently large" implies that any potentially offensive transient
characteristics of the actuator response have died out within » time steps. It is important to
realize that when saturation is averted, the linear characteristics of the closed-loop system
are well-behaved and highly predictable. Furthermore, the constrained closed-loop stable
system output is bounded by the same bounds that the linear (unconstrained) system

adheres to when the reference input is restricted to [r,, r,,.].

For a more formal analysis, consider the linear system

X, =A,x,+b,n,., k=01, ... (5.13)
with actuator displacement
Opsy = chkﬂ
and actuator rate
Ao =6, -6,

and where A , is asymptotically stable. Let the initial state at time k = 0 be x,, and assume

that
@ [8,|=e5xo| < S and

(ii) There exists an 7" such that
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a. 16,,,|= cg[AZ,“xo + iA:’;bc,rl’:l <6, V n=0,1, ..., and
m=0
b' An+1 = cg[(Acl —I)n+lx0 + i(ACl - I)Mbdr{] S Al'l'lax’ V n= 0’ L
m=0

Note that the condition (ii) is not overly restrictive. Indeed, an infinite number of small
perturbation situations about the origin satisfy both (i) and (ii), and in addition, whenever

(i) is satisfied and x, is an equilibrium state of the system, then (ii) is satisfied with an y

-1 . o.e : o
such that x, = (I-A,)" b, Thus, whenever the initial system is at rest, only condition

cl

(i) must be satisfied. In essence, these conditions simply require that the system not start at
an initial state where it is impossible to avoid saturation, an obvious necessity.

Let r,, > 0 yield the steady state equilibrium

X =(I—AC,)~1b r,

sa

such that

=0,

max

5.&'6

.7
- lc5 X5
Then, clearly, satisfaction of (i) implies that —r,, <#'<r,. In order to guarantee that a

feasible 7/,, can be finitely determined at each time step k, feasible reference values are

sa

restricted to the interval R, = [el —I T, —81], where g > 0 can be selected arbitrarily

small, and specifically £ << r,. For any in this interval, the steady-state actuator

deflection magnitude

6&&'

- ‘nm 5.,
71 —3 00

lies inside the interval [€, — 8 ,..» Opax — €, ], Where

-1

£, = ‘cg (I - Acl) bcz\31
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Moreover, the actuator rate tends to zero in the steady state. Thus, by restricting " to R,

saturation will not be a problem in steady state, and only transient saturations need to be

addressed.

Now, since A, is asymptotically stable, there exist finite "settling times" n, = n,(€;)

and n, = n,(€,) such that

5n+1 "<‘6max —83’ v nzn’l
and
A, l<€, V nzn,
where 0 < &, < &,, and 0 < & < A_,.. Thus, over the finite interval n = 0, 1, ..., n" =
max(n,,n,) both |§,,,| and |A,,| achieve maximum values. If the pilot demanded reference

r, yields either

max_ 5n+l > 6max
O<nsn

or
max.|An+l > Amax

O<n<n

then a feasible reference value " must be determined as described in Section 5.3, which

0

n+l

<A, foralln=0,.,n". Otherwise, r =r,. This 7’

<6, and

ensures that A,

is guaranteed to exist by condition (ii). Thus, #/,, is determined and used to drive the
system yielding the updated state x, = x,(r’) according to the stable, linear system

dynamics. At the subsequent step, k = 1, the process is repeated, where conditions (i) and

(i1) become
(iti) |6,|=[c5X,| < Sy and

(iv) There exists an r, such that
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a. |6,.|= cgliA;’,”xl + iA'c’;bC,rg] <., Vn=01 .., and
m=0
b. |A.l= cg[(Ad -1)"x, + i(AC, —I)mbdrz’] <A_., Vn=01,..
m=0

Condition (iii) is satisfied because of condition (ii)a, specifically at n = (0. Condition (iv) is
satisfied because of condition (ii), viz., r, =1  is a feasible reference value (according to
condition (ii) for n = 1), and hence, a feasible reference is guaranteed to exist. Generally,
r, =r will not be the only viable reference value. Ideally, the pilot demanded reference is
acceptable, i.e., r;=r,. When this is not the case, 7, is chosen such that |r, — ] is
minimized and conditions (iii) and (iv) are satisfied, as described in Section 5.3. At the
next time step k = 2 the predetermined existence of r, guarantees that the analogous set of
required conditions can be satisfied and thus the existence of 7, for the same reasons that
r/ guarantees the existence of 7, as just described. Clearly, this is true for all subsequent
time steps: The existence of 7/, guarantees the existence of a feasible r,,. Thus, the
following facts concerning the system Eq. (5.13) subject to the hard saturation constraints
8| € Oan» V k=0,1,2,...
and
|Aju|S A ¥ k=0,12,...
are ascertained:
1. The system will never attempt to exceed the hard actuator constraints.

2. The system behavior is always determined by the linear stable difference Eq. (5.13)

3. The system state never attains any value that cannot be attained by the unconstrained

linear system, where each stimulus r,,, € R,

Hence, the constrained system is guaranteed to be bounded output stable.
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Consider once again the F-16 longitudinal plant model of Example 3.1, subject to the
actuator constraints of Eq. (5.7). The global stability properties of the LQT control design
using a poly-0 + poly-0 reference prediction strategy are demonstrated. The planning
horizon is N = 60, and the LQ weights are the same as chosen previously. Approximate
requirements for the constraint enforcement horizon n can be quickly determined from an
examination of the quantities of interest in the closed-loop system's unconstrained step

response, as shown in Figure 5.13. A good rule of thumb is twice the number of time
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Figure 5.13. Unconstrained Actuator Step Responses

steps to the latest maximum peak value in all the constrained quantities. In this case, the
largest peak in actuator displacement occurs at approximately time step 6, and the worst
peak in rate is at time step 1, but with another potentially offensive peak at approximately
time step 11. Thus, n = 15 is chosen. Simulation results verify that this value of n is

sufficient. The step response to a very high amplitude 4 rad/sec pitch rate step command
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using an anti-sticking tolerance of 0.5 rad is shown in Figure 5.14. For this particular
example, static admissibility requires that I < 3.7935, and the step input is purposely

chosen at a larger value.
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Figure 5.14. High Amplitude Step with tol = 0.5
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The importance of the anti-sticking tolerance is clearly illustrated in Figure 5.15.

When zero tolerance is enforced, the system becomes stuck with the actuator amplitude at

it's limit. Note that this situation is preferable to the unmitigated system. Indeed, since the

open-loop plant is unstable, having the actuator hard saturated would result in a departure.

This state of affairs is, nonetheless highly undesirable. As the tolerance is increased the

| system becomes less sticky, where the phenomenon is basically gone for tol = 0.5, as

evidenced by the fact that the "downward" response is approximately as fast as the

"upward" response.
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Figure 5.15. The Sticking Phenomenon

It has also been observed through simulation, that enforcing artificial bounds on the
remaining states can be an effective method to ensure static admissibility. Although one

would expect n to have to be quite large, a relatively modest value n = 15 works quite well

here. The procedure here is to enforce artificial constraints on the remaining states, viz., o

and g, at levels which correspond to r,, less the desired tolerance, in lieu of enforcing the
hard constraint on 7. The system response to the same input used in Figure 5.14, but
using this strategy, is shown in Figure 5.16. The response is similar, but lacks the slight

overshoot which featured in Figure 5.14.
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Figure 5.16. High Amplitude Step with Artificial State Bounds

5.6 Summary

The LQT control concept entails the following. First, the pilot's reference signal is
predicted into the future over the planning horizon, and parameterized in terms of it's
present value. Next, an expression for the optimal control solution over the planning
horizon is obtained in terms of this reference signal. Subsequently, a modified feasible
reference value is determined which can be optimally tracked with this control law over the
planning horizon without violating the actuator constraints. The term feasible is
determined by the saturation effects mitigation strategy selected. That is, feasibility may
imply that hard saturation will not occur anywhere from 1 to N-steps ahead, or hard
saturation will only be avoided at time step 1, or, e.g., static admissibility is enforced. The
resultant nonlinear control solution is a closed-form, constant gain feedback solution in the

state, current and possibly previous reference values, and this present feasible reference.
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This control law is easily implementable. It has been observed that emphasis on the
potential future saturations is not necessary, and may lead to overly conservative
responses. It has also been shown that a 1-step ahead constraint enforcement strategy
yields acceptable performance.

The LQT controller whose synthesis has been outlined above does not come with any
guarantees regarding BIBO stability or the existence of consistent solutions, but extensive
simulation has shown that a properly tuned LQT controller can yield greatly improved large
signal performance, prevent saturation induced departures experienced by small signal
design methods, and substantially increase the acceptable range of operation for a
constrained system.

An adaptation of the general LQT concept which utilizes a zero-order reference signal
prediction strategy, and in which the feasible reference is confined to statically admissible
values, has been shown to yield a globally bounded output stable control system. This
method while similar to the DTRG concept in terms of constraint mitigation, yields
somewhat improved tracking performance. Finally, by separating the transient and steady-
state saturation issues and breaking the constraint mitigation process into two stages, a
lower on-line computational burden is achieved, as compared to a brute force search for the

maximal invariant set.
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VI. Conclusion

6.1 Overview

Manual tracking control in the presence of constrained dynamic actuators is indeed a
rich research area. It has been demonstrated that even the simplest tracking control problem
is rather complex. Research which places a high degree of emphasis on the tracking aspect
of the problem, while at the same time gives attention to the mitigation of the impact of
actuator rate and amplitude constraints, and particularly for the challenging case of open-
loop unstable plants, is warranted. Section 6.2 outlines the accomplishments of this
research and the contribuﬁons to the literature, followed by an overview of the LQT design
process and the resultant control law. Specific conclusions resulting from this research are

listed in Section 6.3, and recommendations for future research are listed in Section 6.4.

6.2 Contributions & Accomplishments

Aggressive tracking performance and the mitigation of actuator hard saturation effects
are directly conflicting objectives. While a number of robust and high gain tracking control
paradigms exist in the literature, the failure to explicitly address this conflict precludes the
practical implementability of these powerful methodologies. Thus, the often lamented
"disparity between theory and practice" arises. In this dissertation the novel time-domain
tracking control approach LQT, which uses an on-line optimization strategy, that directly
addresses both rate and displacement saturation is developed. The LQT control
methodology, by acknowledging the hard actuator constraints upfront, makes it possible to

concisely address both aggressive tracking and saturation effect mitigation objectives
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simultaneously. Thus, this research provides a stepping stone toward closing the gap
between the high gain theoretical control paradigms and those actually implemented in
industry.

Because actuator rate saturations have been known to contribute to the onset of pilot
induced oscillations, the LQT approach also implicitly addresses the nonlinear PIO
problem. Simulations have demonstrated that the "large signal" performance of a
constrained system is greatly enhanced over that of a small signal design when the LQT
methodology is employed. Thus, the acceptable range of operation of a dynamic FCS can
be extended by the LQT control method. Moreover, since the hard saturation effects are
effectively mitigated, the likelihood of encountering a PIO situation is greatly reduced.

The development of computationally inexpensive reference signal prediction strategies
affords a practical implementation of the optimal tracking control paradigm in a manual
flight control context, viz., real-time tracking of an exogenous, unknown ahead of time
dynamic reference signal. Thus, one is not forced to manipulate the regulation paradigm to
fit the manual control problem. The causal, closed-form, state feedback LQT control law
yields constant feedback gains which can be computed off-line, and thus minimal on-line
computation is required. Moreover, simple, one-step ahead constraint mitigation strategies
have been demonstrated to prevent unstable responses to inputs which cause unmitigated
small signal control designs to diverge. Hence, the LQT control methodology 1is readily
implementable in real-time.

A special case of LQT control, in which a zero-order reference prediction strategy is
employed, and static admissibility issues are addressed, has been shown to yield a globally
(with respect to the reference input) bounded output closed-loop control system. While
necessarily requiring a relaxation of the tracking performance expectations, and additional
computational burden, this approach is a viable option when mathematical stability
guarantees are desired. The trade-offs between tracking performance, stability, and

computational requirements have been addressed.
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The constraint mitigation strategy which has been presented can be used not only to
mitigate the effects of hard actuator constraints, but can also be used to impose "soft
constraints" on the state vector. That is, artificial bounds may be imposed on other critical
states to prevent the system from realizing undesirable states. For example, one may desire
to confine an aircraft's angle of attack to a predetermined range in which the aircraft's
performance is known to be well behaved.

Implementation of the LQT control methodology consists of:

1. Selecting a reference prediction strategy, where low order polynomial extrapolation for
stage one, and low order polynomial interpolation or the parallel approach for stage two are

recommended.

2. Tuning the linear controller to obtain desired small signal performance, i.e., select the

LQ weights Q,, O, and R, and the planning horizon N.

3. Assess the impact of the constraints with this small signal controller.

4. Establish an acceptable feasibility criteria, e.g., employ an n-step ahead constraint
mitigation strategy, enforce static admissibility, and/or impose "soft" constraints on the

state vector.

The result is a computationally inexpensive, causal, closed-form and in real-time
implementable solution to the constrained tracking problem. Specifically, the solution is

given by an explicit control law of the form

w=Kx, +k.r +0¢ +kd 6.1)

where ¢, is of the general form
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and where the gain vectors k,, k,, K,., and the gains k. and k, are constants which
depend only on the optimization horizon N, the plant parameters A, b, ¢, ¥,, ¥, and the LQ

weights Q,, Op, and R, and therefore can be computed off-line. Thus, the on-line
computational requirements for the linear LQT control law are independent of the
optimization horizon N. x is the current state, r;, j = k+1, k, ...k+1-p are the present and

past pilot's commands r',,, is the current feasible reference, and the rj*, Jj=k k-1, ...,

k+2-p', are the previous feasible (and therefore, applied to the control system and known)
reference signals, and d is the known constant disturbance. Thus, the constrained Linear
Quadratic Tracking (LQT) solution is expressed as a fixed gain controller which operates
on the current values of the state, reference input, and feasible reference, p previous values
of the pilot desired reference, and p*-1 previous values of the (actually input) feasible
reference. Note however that this control is only linear in appearance, for in the case of
large inputs or strong deviations from trim the feasible reference signal r’,,, is nonlinearly
determined as a function of the current state, the present and possibly past reference values.

When actuator saturation is not encountered, as in small signal operation, the signals
r* and r' are simply the pilot input », and full linear action is realized. Thus, when the
actuator saturation limits are not infringed, the control u, is linear in x, Tharps > Tals and
d, and Eq. (6.1) can be written

U, = kka + ki[rh—l-p’ ) rk+1]T +kd
with
ki =kl +[0 | KL 1 k]

Now, the inclusion of the reference signal past values introduces additional dynamics and

causes an augmentation of the closed-loop system, yielding p additional states. In the



linear case, however, the only effect on the closed-loop system lies in the number and
placement of the closed-loop zeros, as the additional p poles will always be at s = -co.
In the constrained case, and has been alluded to above, the control law is nonlinear

due to the nonlinear calculation of ', viz.,

T T T, T T
uy= KXo + Ko (70,000 oo o] + Koa[r¥ 00 0o 78] + k,d
K (X Trtps oo Trars Toraapn oo T d) (6.2)

Moreover, the nonlinear function f(0,7,,, »-...71,.0.7 %5 .., 7%, 0) # 0. Note however
that the nonlinearity fis piecewise linear in its arguments. The dependence of the nonlinear
component f of Eq. (G.i) on not only previous (closed-loop system) input values, but also
on previous state values (via the ¥, , ..., r*) augments the system, for r¥.; = f.(x,,
Tt proeesliats T ¥ea ot 1o d) and will clearly affect the closed-loop poles.

The LQT optimization-based approach to manual tracking control includes actuator
dynamics and accounts for both rate and displacement actuator (not control) constraints,
addresses the dynamic and transient nature of the manual tracking problem, has no inherent
requirement for stability of the open-loop plant, and employs full state feedback.
Furthermore, the resulting piecewise linear control law is computationally inexpensive,
does not require the use of on-line numerical search/optimization routines, is easily
implementable in real-time, and small signal performance is maintained. At the same time,
good responses to large exogenous (pilot) commands are obtained. In the case of a non-
varying certain plant, the optimization horizon N can be chosen arbitrarily large without
affecting the on-line computational requirements, as this information is embedded in the
constant gains k, k, k,. and k,.. For the case of uncertain and/or varying plants, it may be
possible to combine this control strategy with an on-line system identification algorithm, in
which case it would be desirable to keep N small, since these gains would have to be

reevaluated on-line.




Finally, in the context of manual flight control an additional benefit of the LQT
tracking control paradigm is in the handling qualities arena, for the proposed saturation
mitigating controller will tend to delay or preclude the onset of nonlinear, viz., actuator

saturation caused, PIO's.

6.3 Research Conclusions

Based on this research, the following specific conclusions are drawn:

1. Predictive tracking control strategies can yield better tracking performance over
comparable regulator based trackers.

2. The use of receding horizon control, combined with short term reference signal
predictions and optimal tracking control algorithms is a viable real-time manual tracking
control strategy.

3. The transformation of actuator constraints into constraints on the reference signal is
an effective anti-windup strategy.

4. The parameterization of the predicted reference vector in it's current value, is
highly useful to develop extremely cost effective constraint mitigation strategies.

5. Simple, one-step ahead constraint mitigation strategies can yield significant
performance improvements.

6. Linear system modeling tools cannot be indiscriminately applied to linear system

models subjected to hard saturation constraints.

Specifically concerning open-loop unstable plants:
7. Anti-windup is important, but does not adequately address the actuator saturation

problem when the open-loop plant is unstable.



8. Static admissibility is an important issue, but temporary excursions of the reference
signal outside the statically admissible range are not necessarily a problem: It is static
admissibility of the state which is critical, as opposed to static admissibility of the reference
signal.

9. Enforcing static admissibility of the reference signal is an effective and efficient
method which can be used to obtain stability guarantees.

10. The situation where the closed-loop system attains an equilibrium at the maximum
statically admissible value should be avoided, as this is generally a non-recoverable
situation.

11. The goal of obtaining stability guarantces necessarily entails significant

compromises in tracking performance.

6.4 Recommendations

The following areas are recommended for future research:

1. Perform a complete MIMO extension of the LQT control methodology. That is,
develop the optimal control tracking solution for a multiple reference signal situation (e.g.,
longitudinal and lateral aircraft control), and apply the existing LQT constraint mitigation
techniques. This will require attention being given to the directionality of the control signal
issues.

2. Combine the receding horizon LQT control paradigm with on-line system
identification to achieve full envelope adaptive flight control.

3. Investigate the on-line adaptation of the LQ weighting coefficients in the inner-loop
linear controller to reduce actuator stress (perhaps using a fuzzy logic approach), and
possibly including an actuator rate penalty in the performance functional. Although this

would entail a significant increase in the on-line computational workload, it may prove to
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be an efficient way of implementing “inner-loop” techniques with minimal concern
regarding destabilization of the inner (i.e., stabilizing) control loop.

4. Investigate the application of more sophisticated extrapolation methods to the LQT
methodology.

5. Use man-in-the loop paper pilot modeling techniques to investigate and characterize

the relationships between PIO's and actuator saturation.

6-8



Appendix: Additional Simulation Results

This appendix contains selected simulation results for several examples in order to
demonstrate some of the trends associated with the various parameters in the reference
signal prediction strategies. While the LQT controller's parameters using each prediction
strategy can be tuned to achieve acceptable optimal performance of the overall LQT
predictor/controller, "good optimal tuning" is not always performed for each set of
predictor parameters so that the effects specific to the particular predictor parameter being
modified is more clear. Thus, many of these results represent "poorly tuned” controllers
and do not represent the best achievable performance of the LQT method utilizing the given
reference signal prediction strategy. The inclusion of simulation results with all possible
parameter variations is not feasible, and thus only a representative sample is included.

The first set of plots demonstrates the effects of the planning horizon length N for
selected values of p and p’ using the poly-p + poly-p’ reference signal prediction strategy.
In each of these plots, Figures A.1 through A.6, The LQ weights are O, = 47, O, = 0.29,
and R = 0.91. The plant is the F-16 model used throughout the dissertation, and the
reference is a 1.0 rad/sec pulse doublet input prefiltered with a critically damped second-
order filter. Generally, an increase in the planning horizon N corresponds to a higher state
feedback gain, and tighter tracking ensues. However, there are limits to this trend. This
occurs when the LQT state feedback gain is approximately equal to the analogous LQR
state feedback gain. If the tracking performance is not satisfactory at the maximum length
planning horizon, then one must turn to the ILQ weighting coefficients to improve tracking
performance.

Next, several unconstrained examples are provided (Figures A.7 through A.10) where

the poly-p + asymptotic convergence reference prediction strategy is employed. The plant



model and reference input signal is the same as in the previous set of plots. In this case,
the LQ weighting coefficients @, =47, 0, =29, and R = 0.91 are used. In Figure A.7 the
effects of the planning horizon are examined, while in Figures A.8 through A.10, the
asymptotic convergence coefficient k, is varied.

Finally, constrained system responses are demonstrated in Figures A.11 through
A.16. The same F-16 plant model is used, but actuator displacement and rate constraints of
+0.37 rad and 1.0 rad/sec, respectively, are included. In each case, the reference signal
doublet is scaled to 0.5, 1.0 and 2.0 rad/sec and the normalized responses are overlaid on a
single plot for each method. It should be noted that each of these magnitudes represents an
extremely aggressive input for the given plant. These overly large magnitudes are chosen
for demonstrative purposes only. The actuator activity is also provided in each case, and it
is obvious that these simulations induce a considerable amount of stress on the actuators.

The parameter values used in these simulations are provided in Table A.1.

Table A.1 Constrained Simulation Parameters

Figure [0 Op R N )4 p' k,
ATl 47.0 29.0 22.75 15 2 2 -
AT12 47.0 29.0 22.75 15 2 2 -
A3 47.0 29.0 0.91 10 2 - 0.8
A14 47.0 29.0 0.91 10 2 - 0.8
A15 47.0 29.0 22.75 15 2 - -
A 16 47.0 29.0 22.75 15 2 - -
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