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Abstract

An understanding of spontaneous emission processes within microcavities is
crucial in addressing the need to make tomorrow’s microlasers more efficient. One
approach to improving the device efficiency is to reduce the threshold input current
at which lasing begins to occur. It has been suggested that the threshold in a mi-
crocavity laser can be decreased by increasing the fraction of spontaneous emissions
into the lasing mode. This can be accomplished by preferentially coupling the gain
medium of the laser to the electromagnetic cavity mode of interest. It therefore
becomes necessary to understand the mechanism by which this coupling takes place.
This research develops a fully quantum mechanical description of the interaction be-
tween a gain medium modeled as a two level atom and a multimode electromagnetic
field in a microcavity. Atomic transition probabilities are computed for systems in
which the atom couples through a single photon process to electromagnetic cavity
modes which range in number from two to 2000. Calculations performed for cavities
with widely spaced modes demonstrate that atoms exhibit Jaynes-Cummings behav-
ior when closely tuned to one mode. Detuning of the atom from the mode inhibits
the exchange of energy, while increasing the strength of the coupling to the mode
amplifies this exchange. Two level systems strongly coupled to many closely spaced

modes exhibit spontaneous emission rates characteristic of an atom in free space.
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SPONTANEOUS EMISSION IN MICROCAVITY LASERS

1. Introduction

1.1 Motivation

As stated in the New World Vistas, one of the goals of the Air Force laser
programs heading into the twenty-first century is to develop very compact, highly
efficient semiconductor laser devices [24]. The breadth of military applications for
miniaturized laser devices continues to grow as portability and cost-efficiency of
mass-manufacturing become increasingly important features across a variety of disci-
plines: optical control circuitry, information storage and retrieval, optical encryption
and decryption technologies—just to name a few. In the past, the applications for
semiconductor lasers were satisfied almost exclusively by traditional edge-emitting
devices. These conventional “horizontal” lasers range in length from roughly 200 to
450 pm, though shorter devices have been fabricated [23]. The design is straight-
forward: an active region is formed by layering appropriate junction materials that
also act as the optical waveguide in operation. The ends of the'device are cleaved
or etched to form mirror surfaces which are orthogonal to the junction (see Figure
1.1a). In this way, the cavity of the resonator is along the interface of the active
region (horizontal). In these Fabry Perot resonators, relatively long cavity lengths
are required to reduce the effects of loss at the mirrors. However, the resonant
mode spacing, or Free Spectral Range, is inversely proportional to the cavity length,
which in turn means long cavities support nearly a continuum of resonant modes
which compete for the energy released by the active region at the junction. What is

needed is a means of taking the non-lasing modes out of the competition.




Active Region Mirror Surface

DBR Mirrors

Active Region —*

b)

Figure 1.1 Diagrams for (a) conventional edge-emitting diode laser and (b) VCSEL
diode laser (After Ref. [23]).

1.2 FEmergence of Vertical Cavity Surface Emitting Lasers

Within the past decade, research in the area of alternate semiconductor laser
designs has produced the Vertical Cavity Surface Emitting Laser (VCSEL). In con-
trast to the edge-emitting approach, the VCSEL design utilizes a layering technique
to form Distributed Bragg Reflectors (DBR) at either end of the cavity such that
the mirrors of this geometry are parallel to the active region in the middle (Figure
1.1 (b)). These mirrors are formed by layering pairs of alternately low and high

refractive index materials as shown in Figure 1.2.

VCSELs are fabricated using a bottom-up layering process using techniques
such as Molecular Beam Epitaxy or Metal-Organic Chemical Vapor Deposition to
grow the entire device on the substrate from the first DBR to the active region to the
second DBR. Although tolerances on the layering process are extremely tight, this
design eliminates the often complex cleaving or etching steps necessary to produce

the mirrors in the conventional laser diodes. In the final product, VCSEL cavities
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measure in the microﬁ to submicron range, roughly two orders of magnitude shorter
than edge-emitting diodes. The advantages of this technology over the edge-emitting
device are well documented and include single longitudinal mode operation (leading
to higher output in the desired mode), smaller threshold currents, and the potential
for application in large two-dimensional laser arrays [3,23]. In what way can these
devices be made more efficient? It has been suggested by Vurgaftman and Singh
that the threshold current for microcavity lasers can be reduced even further through
reductions in cavity dimensions [25]. It is instructive at this point to momentarily
depart from the present discussion to address the basic principles of operation for

laser diodes then return to the implications of cavity length reductions.

1.2.1 Owverview of the VCSEL. At the risk of oversimplifying, the VCSEL

can be described in terms of three basic components:

¢ an active gain medium;

¢ the pump energy, typically in the form of an applied electrical current or optical

pumping that excites the active medium;

e an optical cavity formed by the DBR mirrors that encloses the active medium

and allows for oscillation and subsequent amplification of emitted radiation;

It is the interactions between the active medium and the electromagnetic field in the

cavity with which this thesis is chiefly concerned.

1.2.2 Emission Processes Within The Active Medium. In very elementary
terms, the active medium consists of the region surrounding an interface between
semiconductor materials and is characterized by an energy bandgap structure. A
simple structure is shown in Figure 1.3. In this bandgap structure, charge carriers are
excited from a lower energy bound-state valence band into a higher energy conduction
band by the pump energy. Once excited, the carriers may transition back to the

valence band, either directly or by way of intermediate transitions. The desirable

1-3
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i

e

Reflected
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Figure 1.2  Multilayer reflections of the electric field within the DBR.

transitions are those for which the de-excitation is accompanied by the emission
of photons of the intended lasing wavelength; other means of decay detract from
the overall efficiency of the device and require higher pumping levels to overcome
this effect. When a radiative decay is ‘uninduced’, or independent of the photon
population in the cavity, the process is referred to as spontaneous emission. When
a photon is emitted into the cavity, there is also a probability for it to interact
with other carriers in the region in one of two ways: through absorption, where the
photon is absorbed to excite the carrier, and stimulated emission, where the passage
of a photon induces the excited carrier to de-excite and emit a photon of matching
wavelength, polarization, phase, and direction. If a population inversion is achieved
and maintained such that the number of conduction band carriers exceeds that in
the valence band, then the subsequent avalanche of spontaneous emissions create a
substantial flux of photons in the cavity. A fraction of these photons are emitted into
a resonant mode of the cavity and remain in the cavity temporarily until absorbed
or lost as output. While in the cavity the photons can initiate stimulated emission.
When the gain in stimulated emission exceeds loss to output or absorption, then

lasing threshold is achieved.

1-4
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Valence Band

Figure 1.3  Simple energy bandgap structure.

1.8 Modified Spontaneous Emission

We now briefly return to the idea of modifying the probability of spontaneous
emission into the lasing mode. In order to improve the efficiency of the laser, it is
useful to reduce the power required to bring the laser to threshold. One method of
accomplishing this is to preferentially couple the gain medium to the lasing mode and
decrease the coupling to other modes. It has been suggested that the degree to which
the medium couples to a mode can be enhanced by tuning the transition frequency
in the medium to the mode frequency [28]. The Jaynes-Cummings Model, proposed
in 1963, demonstrates that a two level system interacting with a single mode with

which it is in resonance will exchange energy completely with that mode [13].

It is in this context that the research described in this thesis is presented. A
theoretical model is presented which treats the electromagnetic field, gain medium,
and their coupling within a microcavity laser quantum mechanically. This model is
an extension of the Jaynes-Cummings theory of the interaction between an atomic

spontaneous emission source and the vacuum field mentioned above.
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Figure 1.4 (a) Spontaneous Emission, (b) Absorption, and (c) Stimulated Emis-
sion.

1.4 Jaynes-Cummings Model

The Jaynes-Cummings Model (JCM) as presented by Meystre and Sargent [17]
models the interaction between an atom represented by a two level system and a
single electromagnetic mode in an enclosing optical cavity. The model assumes a
single photon mechanism in which a single quantum of energy is either absorbed
from the field by an atom in the ground state or emitted into the field mode by
an excited atom !. The time evolution of the system is then given in terms of the
evolution of the probability for the atom to spontaneously emit into the field and
decay to the ground state. The JCM predicts a sinusoidal interchange of probability
between the excited atom (P (1)) and excited field (P (2)) states [17]:

& 4g° 5,1
P(1) = + cos (5 V8% +44%t) (1.1)

2+492  62+4¢2

4 g* .o, 1
P(2) = m'g—lenz('é\/52+4gzt) (12)

where g is a constant that describes how strongly the atom is coupled to the field

mode and ¢ is the detuning of the atomic transition frequency from the field mode.

1The definition of the term ‘photon’ varies widely according to the context in which it is pre-
sented. In this thesis, ‘photon’ is used to indicate a single quantum of electromagnetic energy in a
particular mode of the cavity. An interesting discussion of the definitions of the term is found in
Ref. [17] in Section 12-1.




The resulting behavior of these probabilities is known as Rabi flopping after I.I. Rabi
(1936), who explored the behavior of spin-% magnetic dipoles in nuclear magnetic
resonance [17]. The frequency R = \/;5_2_+ng is the Rabi frequency for systems
with no photons in the cavity when the atom is excited.? The probability exchange

described by Equations 1.2 is illustrated in Figures 1.5a-d and 1.6a-d.

It is clear that as the coupling grows stronger, the frequency of the flopping
increases, indicating a more rapid transition back and forth between the upper and
lower atomic states. When the atom and field are perfectly tuned, complete exchange
occurs. An increase in § increases the frequency, but also reduces the amplitude
of the exchange so that the energy in the system increasingly remains in the atom.
However, for g > 8, the exchange amplitude for a detuned atom approaches 1.0. The
JCM demonstrates that the degree of exchange between the atom and field mode is

suppressed through detuning and enhanced for increasing coupling strength.

As mentioned previously, the mode spacing, or Free Spectral Range (FSR), in
the cavity is inversely proportional to the cavity length. For macroscopic cavities
such as those used in typical gas discharge lasers, the mode spacing is very small.
An atom near resonance with one mode is likely as well to be near resonance with
adjacent modes. Conversely, as the cavity length is reduced, the mode spacing
increases. In the limit of microcavity structures (roughly on the order of tens of
microns or smaller), the mode spacing becomes very large (consider that the FSR
for a 10 um cavity is on the order of 10!® Hz compared to 10® Hz for a 1 m cavity).
An atom near resonance with a given mode in a microcavity is much more detuned
from the adjacent modes. Therefore, in the context of the microcavity, the single

mode description contained in the JCM becomes applicable.

2The more general form of the Rabi frequency is R = /82 + 4 g2 (n + 1) where n is the number
of photons in the cavity when the atom is excited.
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1.5 Scope

A truly quantum mechanical description of the microlaser system as a whole
requires a quantized description of every facet of the problem. The individual atoms
in the gain medium are in and of themselves complex systems. Because they’re
not isolated from one another, interactions occur which must be considered as well.
Similarly, the atoms in the cavity walls must interact among themselves and with
the gain medium, and the whole collection of material interacts with the field in the
cavity. Broadening the field of view brings external influences into the picture. Each
component of this system can take on a quantum mechanical description, and the
resulting problem grows well beyond the number-crunching capabilities of even the
best algorithms and high-performance computers. In order to make this problem

tractable, a number of simplifications will be made:

e As in the JCM, the gain medium will be modeled by a single two-level atom.
In effect, this corresponds to taking a vertical slice through the band structure
shown in Figure 1.3. In principle, the medium is best modeled by a continuum
of these slices, but the two level representation will have to suffice in this

simplified model.

¢ A quantum mechanical description of the cavity wall material is not attempted
and the walls are assumed to be perfectly electrically conducting (PEC). As a

result, the only interactions are between the atom and the field, and there is

no loss to the cavity walls.

o Because the wavelengths under consideration fall in the optical regime and are
therefore roughly a thousand times larger than the dimensions of the atom in
the cavity, the atom/field interaction will be approximated as the interaction
of an electric point dipole in an electromagnetic field. Magnetic dipole, electric

- quadrupole, and higher multipole terms will be neglected.
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e The two-level system is assumed to be stationary with regard to position or
moving slowly enough within the cavity that variations in positions are small
enough to be neglected on the timescale of the interactions. This carries the

added benefit of allowing one to eliminate velocity dependent Doppler shifts

from the picture.

o A one dimensional treatment of the electromagnetic field was adopted to sim-
plify calculations. The results may be extrapolated to the three dimensional
cubic cavity without significant extra work, where the spatial dependence of
the electric and magnetic fields is slightly a slightly more complex product of
sines and cosines in , ¥, and z. In addition, the mode frequencies lose their

harmonic spacing in the translation to the three dimensional cavity. 3
e Cavity energies are low enough to warrant a strictly non-relativistic treatment.

These assumptions and constraints form the framework within which the following

approach is pursued.

1.6 Methodology

As mentioned earlier, the model to be developed is an extension to the JCM
outlined in Section 1.4. Where the JCM coupled the atom to a single mode of the
electromagnetic field within the cavity, here the freedom to select multiple modes is
added. In the model developed in this thesis, the atomic system is quantized in a
fashion completely analogous to the spin-% particle in a magnetic field. 4 Transitions
between the two atomic levels are accomplished by means of operation on the state
vector with the atomic raising and lowering operators (see Chapter 2). Quantization
of the electromagnetic field is accomplished by first defining the mode structure by

solving the classical cavity problem for a PEC cavity, then translating to a quantum

3The 1-D frequencies vary linearly with mode number m whereas in a 3-D cubic cavity the
dependence is (n2 + nZ + n2)!/2,
4For an excellent discussion of spin-:} systems, see Cohen-Tannoudji et al, Ch. IV (Ref. [8])
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mechanical picture by associating with each mode the characteristics of a quantized
harmonic oscillator. A dipole interaction is assumed, and coupling coefficients are
defined which determine the strength of interaction between the atom and each of the
cavity modes. Together, the atomic, field, and coupling terms yield the full Hamil-
tonian of the system. The full Hamiltonian is diagonalized and the time evolution
of the eigenstates is oscillatory with characteristic frequencies given by the energy
eigenvalues. Finally, the transformation matrix that diagonalizes the Hamiltonian is
used to transform back into the uncoupled basis to determine as a function of time

the probability that the atom has undergone spontaneous emission.

The results obtained in Chapter 6 were obtained by computing the matrix
elements of the full Hamiltonian for the system and diagonalizing the resulting ma-
trix using FORTRAN 90 and a public domain Linear Algebra Package (LAPACK)
diagonalizing routine. The resulting eigenvectors and eigenvalues were then used to
propagate the system in time giving the evolution of the probabilities to be in each

of the uncoupled states.

1.7 Notation

Where applicable I’ve adopted the Dirac Bra-Ket notation. State vectors are
represented by | ) € V, where V is a vector space. Additionally, |[c) = c|¢)
with ¢ in general a complex constant. The scalar product is defined as {p1|p2) = ¢
with the corresponding complex conjugate (pa|p1) = c*. Abstract operators are
designated by a “hat” above the operator: A, for example. The hat is dropped when
a representation is taken, as with (o; | A|a;), where o;; are members of the basis
in which A is represented. Note however, that &, §, and 2 are used as unit vectors
in the classical field discussions to denote the direction of a vector quantity with
respect to a set of z, y, and z coordinate axes, such as the classical electric field

vector E = Fy & directed along the z direction. Finally, the matrix elements of the

1-12




operator A are A;; = (u;| A|u;) such that

...................

1.8 Owverview

The remainder of this thesis is devoted to presenting the theory, computational
results, and implications of this quantum mechanical approach to the microcavity

laser. To this end, a chapter has been devoted to each of these three aspects of the

problem as outlined in the following paragraphs.

The focus of Chapter 2 is to present the theory underlying the quantum me-
chanical treatment of the atom. The analogy is made between the two level system
and a spin-% particle by means of the atomic raising and lowering (or spin-flip) op-
erators. The resulting atomic Hamiltonian is then represented in the | +) eigenbases

in matrix format.

In Chapter 3, expressions for the electric and magnetic fields are obtained
for the classical PEC cavity. The amplitudes of these quantities are normalized
by considering the total energy in the cavity, and the translation to a quantum
mechanical operator form follows. As in Chapter 2, a matrix form is obtained by
representing the Hamiltonian in the eigenbasis, in this case |{1,}), where the {1,}
notation indicates that the s state has a single photon in the s** mode and none
in any of the others. The uncoupled Hamiltonian is then obtained from the sum of

the atomic and field Hamiltonians.

Chapter 4 develops the dipole interaction between the atom and field. The
interaction Hamiltonian matrix is obtained by representing the Hamiltonian in the

-uncoupled atom/field basis { | + {0}), | — {1,}) }.
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The atom, field, and interaction Hamiltonians are brought together in Chapter
5. The chapter discusses how the eigenvectors of the diagonalized Hamiltonian are
used to translate between the eigenbasis and the uncoupled basis mentioned above.
The time evolution operator is introduced here, and the steps required to compute

the time evolution of the bare state probabilities are outlined.

Chapter 6 contains the results of the calculations based on the theory presented
in Chapters 2 through 5. A number of parameters, including cavity size, atomic
transition frequency, and the coupling factor, are varied and the effects of these

changes on the evolution of the system are extracted. Two regimes are of particular

interest:

¢ atoms interacting with a field of widely spaced modes under weak coupling
e atoms strongly coupled to a large number of tightly spaced modes

In the limit of weak coupling and small cavities, the results obtained reproduce
those of the JCM oscillations with predicted Rabi flopping frequencies. Likewise, for
stronger coupling and large cavities where the atom easily accesses a large number of
modes, the atom decays exponentially from the excited state with a rate comparable
to an atom in free space. Chapter 6 concludes with a brief discussion of several

unanticipated results.

The final chapter in this thesis, Chapter 7, presents a summary of the results
and potential implications for microlaser performance. Recommendations on future

studies in this area are provided at the closing.

Appendix A will describe the steps taken to verify the validity of the FOR-
TRAN code written for this problem, while the code itself is presented as Appendix
B. Appendix C contains several plots demonstrating an anomalous suppression of
atomic de-excitation for moderate coupling strengths. Finally, Appendix D lists sev-
eral useful conversion factors from the atomic unit system to the MKS and Gaussian

unit systems.
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II. The Atomic Hamaltonian, H 4

This chapter develops the Hamiltonian describing the atomic system. Recall from
Section 1.5 that the simplification is made to represent the atom as a two-level
system. While this significantly simplifies this aspect of the model, it is by no means
intended as a realistic model of the material within a VCSEL or other microcavity

laser.

2.1 Two Level System

Consider the two level system shown in Figure 2.1. The upper and lower states
of the system are written |[+) and |—) and are eigenstates of the atomic Hamiltonian,
Hy:

Ha ) = By |4)

with energy eigenvalues iw,. Note that the operator H4 can also be written
Hy=1Hs1

where 1 is the unit operator. The closure relation of quantum mechanics becomes

useful at this point:
Dol =1

if the [¢) form a complete orthonormal basis. The previous expression for Hy

becomes

Hy = Z|i><i|HA|Z|j><jl
= oli) Yl Hal)il
= Doli) 3 by (ili) Gl
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N

Figure 2.1 Renormalization of the atomic energy.

Recall that (i|j) = 6;; for orthonormal bases. Therefore,

Hy = EIZWW:M
- Y hal. (21)

For the convenience of subsequent discussion, suppose the zero-energy reference is
renormalized to a value precisely halfway between the energies of the two states as

in Figure 2.1. If the energy of transition between the two levels is
ﬁw+—ﬁw_ = h(w+—w_) == hw,

then renormalization of the energies presents a new set of measured values

(HHA) = ) = 2
and
LA
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The operator H, can finally be re-expressed (with the help of Equation 2.1) as

Hy = (1 (- 1))

= 2 - 14D (2.2

2.2 Matriz Representation of H,4

At this point it is worthwhile to discuss the matrix representation of the atomic

Hamiltonian. Consider the expansion of |+){+| in the |+) basis:

I+) I-)
@[ A(FHREFE) FHEE)
[+){(+| = : (2.3)
o\ (R (=)
Those elements containing the scalar product (+|F) vanish by orthogonality, while

the remaining element is 1, leaving
[H){+] =

This matrix can be written as the sum of two others:

10 1 10 1 0
[+ ){(+| <= = - + . (2.4)
0 0 2 01 0 —1
The first matrix in the brackets is the identity matrix, 1, while the second is the

matrix representation of the Pauli &, spin operator. Performing similar operations

for |—)(—| leads to the correspondences

[ = 2T ' (25)
)] = - (2.6)
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When the results of Equation 2.6 are substituted into Equation 2.2, an expression

for H, is obtained in terms of &,:

hw (140, 1-o0,
Hy = — -
4 2 ( 2 2 )
Aw
= —o0,
2
And in operator form,
- hw |
Hy = 5 0=

2-4
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III. The Multimode Electromagnetic Field Hamiltonian, Hp

Attention turns now to developing the Hamiltonian for the electromagnetic field in
the cavity. Following the method of Chapter 2, the ultimate goal here is an expression
for Hp, the field Hamiltonian, in the bare state representation. Initially, the classical
modes of the cavity are derived in Gaussian units with a transition to atomic units for
the quantum mechanical expressions. Throughout the classical cavity development,
the quantities ¢y and g, which are both equal to 1 in these units, are retained as

place holders to facilitate future studies that investigate dispersive cavities.

3.1 Classical Electromagnetic Cavity Modes.

The classical cavity discussion begins with Maxwell’s equations for free space

in Gaussian units,

10B
VXE+Z§ = 0 a)
€opo OE

V xB 5 0 b)
(3.1)

V-E =0 c)

V-B =0 d)

The curl of the first equation yields

VxVxE+1a(V><B)—O - (3.2
cot o (3:2)




Figure 3.1 One dimensional PEC microcavity.

Substituting from Equation 3.1b and expanding the repeated curl above produces

the wave equation in E:

2 €oMo 62E .
VE- 357 =0. (3.3)

This equation can now be subjected to the boundary conditions for the PEC cavity.
Choosing the z-axis as the direction along the cavity length and an E polarization

in the £ direction ! (Figure 3.1), the first term becomes a second order derivative in

z alone:

8?E(z,1)
022

z.

VZE(z,t) =
This leaves a differential equation in z and ¢ which is solved by separation of variables,

OE(z,t)  eopo 8°E(z,t)

0.
022 c? ot?

Because the walls are perfect electrical conductors, the transverse (%) component of

the electric field vanishes at z = 0 and z = L where L is the length of the cavity.

Solutions are of the form

En.(z,t) = E,, sin(kz) exp~i9tz; (3.4)
ko= % m=1,2,3,

!Note here that the hat denotes a vector direction and not an abstract operator as explained in
Section 1.7. ‘




with m** mode amplitude E_, propagation constant k, and angular mode frequency
Q. Ey,, will eventually need to be normalized when accounting for the total energy
in the cavity, but for now it will remain as is. In order to find the cavity mode fre-

quencies, §2,,, this solution is now substituted back into the wave equation, Equation

3.3,

02 ;
= {—k2+ EQ_F_:QE_@_} Eo sin(kz) exp™™t & = 0

92
O H0 (3.5)

= k2= >
C

The frequencies are now defined according to
Q2 - ¢ [(m?n?
" €olo L?

mem

Qp = —. 3.6

L \/eopo (3.6)

The solutions for B are found using E(z,t) in Equation 3.5 together with Equation
3.1b,

€t OE
V xB(z,t) = — —
(Z, ) c 6t
OBy(z,t) . . €00 2m : —ilmt
e ; E,,, sin(kz) exp z
Qm :
B.(z,t) = —1 Mc—gk_ Ey,, cos(kz) exp™ ¥t
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Recall from Equation 3.5 that 3@&"— = k and the expression for the magnetic

inductance in the cavity is obtained,

B,.(z,t) = — i/ uo Eo,, cos(kz) exp™™ ™ g . (3.7)

3.2 Total Cavity Energy

From the last section, the expressions for the mode field quantities E,,(z,t)

and B,,(z,t) are shown below,

En.(z,t) = Eo, sin(knz) exp™!z
Bn(z,t) = —i/eomo Eq, cos(kmz) exp~i ¥t §. (3.8)

In general, the total electric and magnetic fields in the cavity can be expanded in

terms of these mode quantities,

E(z,t) = ZEOm sin(kp,2) exp~*mt 3 (3.9)
B(z,t) = Z — i /G o Eo,, cos(kmz) exp™mt § (3.10)

where the amplitude Ey A must now be normalized using the total energy in the

cavity. The classical energy density U/ in the cavity is given by

U:eOE-E+—1—B-B .
Ko

Using the expansions in Equation 3.10, and averaging out the time dependence (the

( ) indicates the time averaging), the energy density becomes

U = Z{eo <E:n<z,t)-Eml(z,t»+,;1;<B:,,.<z,t>-Bml<z,t)>}

m,m'
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= Z {—69 Ey,, By, sin?(km2) + (60_#(2 Ey,, Eo,, cos?‘(kmz)}

m,m' 2 2 Ho
= Z % {60 EIOm EO 1 Sinz(k'lnz) + M EOm EO ! cosz(k""'z)} *
m,m' " Ho ”

Integration of this energy density over the volume of the cavity produces the total
energy H in the cavity. Since the field quantities are expanded in orthogonal modes,

integration over the volume eliminates those quantities Ey,, Eo_, for which m # m,

1 ) (€0 o)
H = 2 gin2(k,, 2 2(k
/dv E {eo EZ sin®(knz) + : EZ cos*(knz2)

= Z -;—/dv {eo E? sin®(knz) + (—G(LH—O)E;",L cos2(kmz)} . (3.11)
0
™oV

The volume of the 1-D cavity is L and the integral in Equation 3.11 is over z to yield

the total energy,
1 L ., 1L 2
H= mE 5 {60 5 EO,,. + “—05 (60 ﬂ»g) EO,,.} . (3.12)

The expressions for E and B in Equation 3.8 may be reexpressed as

En(z,t) = Qu(t) [%rsin (mgz) 2
Buat) = Qul) v | =] cos (223
where
Ey,, exp ™t = Q,u(2) F?GO%./?&] 2
and \ o N
~i By, exp ¥t = —4 Q,,(t) [% o Qum(t) LO%] "
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The Q,(t) and Q,,(t) are mode coordinate and mode velocity variables. These new

expressions for E and B are substituted into Equation 3.12 to yield

H = ;5 {605 [—e—of] Qm + ;(;’2‘(60/10) LO_L] m}

= Ys{onen e} (3.13)

m

3.8 Translation to Quantized Field

The transition to a quantum mechanical expression for electric field as well
as the total cavity energy involves a straightforward conversion of the Q2 and an

variables to operators. Define Qm and Pm as

Qm=[%"i] Q = Q,Q% = RO,

. [ 1 7, a0 .
A

such that the operator Hp corresponding to the total field energy is

Ap = Zh—g—ﬂ{éfn+ﬁi} " (3.14)

m

while the electric field operator becomes

~ . 20277
E=) Qn 3 sin(k,z) . (3.15)

The raising and lowering operators for a given field mode (a!,, &,,) corresponding
to adding and removing, respectively, a photon from that mode can be constructed

from the Q.,,,, and P,,,, operators:
i = 75 (Qutiba)
A = —F= m 1,
V2

3-6




i, = —(Qm—iPm). (3.16)

On = %(&L-F&m) (3.17)
P, = %(a}n—am) (3.18)

i
= Ym0, ut PP
= S o) i)+ (el ) (il )}
-
= Z%{%(dmﬁL&l‘") (@, + am) + = (4m — &) (am_&m)}
= }Ehg’" amal, + al an

The commutator [dm, &In] is developed in most quantum mechanics texts and eval-

uates to 1, allowing the substitution a,,&! = a! a,, + 1 and
~ R s
Hp = ; —" {24} . + 1}
U
= Z hﬂm a"ma"m + 5 . (3.19)

The r—‘%ﬂl contributed by all modes leads to the infinite zero-point energy alluded to
in the first chapter. Once again, it is the changes in energy with respect to some

reference that can be measured, so the problem can be rescaled to exclude the factor
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of % above. The resulting field Hamiltonian is
Hp = ) hQyila,. (3.20)

When this operator acts upon a state vector describing all modes of the cavity, the
total energy held in each mode is determined as the number of photons n,, in the

mt* mode times the energy AS),, of a single photon in that mode:
Hplning -+ np) ={m A +nahio+ - +np AQp} {nang -+~ ny) . (3.21)

The states labeled |nyng - -- n,) = |{n,}) are in fact the eigenstates of the Hamil-

tonian Hp.

The electric field operator can now be expressed in terms of the raising and

lowering operators:

- hQ,]7
— A-" ~ m .
E Em (@}, + an) [ oL ] sin(knz) .

1/2
Meystre and Sargent refer to [%}}] = &, as the electric field per photon, giving

E= Z (a1, + @) Em sin(knz) . | (3.22)
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3.4 Matriz Representation of Hp

The matrix elements of Hy are given by ({n,}| Hp|{n,}), where

Ing) [n2) ctT Inm)
(nq] 77,191 0 0
n 0 Qy - 0
He = k" SR . (3.23)
(nm | 0 0 anm

By combining the atom and field Hamiltonians, H4 and Hp, an uncoupled

Hamiltonian can be obtained,

~ h .
Harr = 7“’5,,+meajnam.

Defining the bare state representation as | £ {n,}) = |) ® | {n,}) yields

{+00---) | —10---) oo | —0---1})
(+00--- | % 0 0
{(—10---]| O Q _« oo 0
Harp = k. ST . . (3.24)
(=0..1] 0 0 I ) s

This Hamiltonian describes the energy of the system when interactions between the
atom and field are ignored. Note that since the matrix is already diagonal, the bare
states are the eigenstates of H4,p with eigenvalues given by the diagonal elements.
For example, the time independent Schrédinger equation involving the | — 010-- )

state is

(Ha+ Hg)| —010--) = (mz-’%“’n —010---).
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IV. The Atom - Field Interaction, Hip;

4.1 Dipole Operator D

The classical energy of interaction between the atom and field is given by
Hiy=—-er-E=D-E, (4.1)

where D is the dipole moment of the two level atom. The operator form of the

equation above is obtained by recognizing the correspondence between the vector

quantity r and the operator f:
D=—er<D=—cf.

The matrix elements of D define those transitions which are dipole allowed in the
atomic system. By symmetry, the matrix elements (i| — er|j) vanish if ¢ and j

label the same state. Since r is antisymmetric,
(il —erli) = [dr v @ =0, i=j, (4.2)

While it is also possible for the matrix elements to vanish for certain ¢ # j, this
model will assume transitions between the two levels in the atomic system are dipole

allowed. The eigenstates of Hy, |+) are used to represent the dipole matrix,

I+) i-)

D = e @ [ ) A+l

- (=Irl+) (=|r|-)

_ 0 e
(=lrl+) 0
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Let (+|—er|-)=—ery_ =D, and (—|—er|+)=D_, =D} _:

0 D,
Dy 0

01 '
- D+_ +D*_
0

= Dy oy +Di_o_ . (4.3)

The matrices o, and o_ correspond to the atomic raising and lowering operators,
64 and 6_. This can be seen by their action on the states |[+) and |—) with their

vector representations, (1 0) and (0 1):

6i|—) < =

) 00
6_4) -
10 0

Because this system is limited to two levels, raising of the upper and lowering of the

lower states is not allowed. The dipole operator is given by

D=D, 6,+D% 6_ . (4.4)

4.2 Interaction Hamiltonian

Equations 3.22 and 4.4 together form the quantized interaction Hamiltonian,

H;,;. Combining the two equations,

~ A

Hint = ij
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= (Dy_6,+D%_6_ &l +a,) Em sin(kz)
+ + + 'm

m

= > {(D4-64 +D;_6_) (&f, + am) En sin(kz)}

S {0l + Gnins + Gl Gant ) (45)
where gn = 5:D,_ « En sin(kz) and g}, = 3z D}_ - &, sin(kz) are the coupling
constant and its complex conjugate that describe the strength with which a given
atomic transition and field mode interact. With the definitions D, _ = —er;_ and

1/2
En = [%Lﬂl] , the explicit form of g, is

_er,_cosf [th

1/2
= in(k
Jm 2h coL ] sin(kz)

where cosf represents the projection of the electric field polarization vector along
the dipole moment of the atom. When the electric field lies along the dipole axis,
coupling is maximized; conversely, a dipole aligned perpendicular to the field will
not couple to that field. In the development of the quantized field in Chapter 3,
the polarization of the electric field was taken to be in the & direction and as a
simplification the orientation of the dipole moment is taken to lie in the & direction
as well. The cos@ factor can then be replaced by 1. The coupling terms are then

given by

1/2
Gm = —627;‘ [’i&"} sin(kz) . (4.6)
Note from Equation 4.5 that there are four terms of interaction: g,al é,, gmamd,
ghal,6_, and g},a,6_. The first term describes a process in which the states of
the atom and m? field mode are simultaneously raised. Similarly, the fourth term
describes the ldwering of both the atomic and field mode states. The second and
third terms involve ‘cross processes’ in which an exchange of energy occurs wherein

the excitation of the atom is accompanied by a lowering of the field and vice-versa.

It is shown in Meystre and Sargent that the contribution of the cross terms to the




Hamiltonian is on the order of g l_w while in comparison the contribution of the

remaining terms is Qm1+w [17]. In general, the key interactions dealt with in this
analysis involve atomic and field frequencies which are roughly of the same order of
magnitude, so the g,a! . and g* a,,6_ terms are neglected. This approximation is
analogous to the Rotating Wave Approximation in semi-classical treatments of the

atom-field interaction. The final form of the interaction Hamiltonian is

Hipy =Y b {gmémbys + ghato_} . (4.7)

4.3 Matriz Representation of Hiy,

Using the properties of the field and atom raising and lowering operators, the

bare state representation of H;,, is given by

| 400y | —10...) e+ | —1pm)
{+00--- | 0 g]. .. gm
(—10--| g* 0 === 0
Hpe = b A . (4.8)
(=1m | [/ 0 ‘.- 0

The full Hamiltonian H,, is given by
f{tol = ﬁA + IA{F + f{int

= 7az+;hﬂmalnam+2h{gmama++gma;’no_} ,  (4.9)

m
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and the matrix elements of H,,; are then (& {1,}|Hyo:| £ {1s}) where,

|+00“‘) |"10“'> v f~0--1pm)
(+00--- % a1 e Im
* w
(=10} g]. Ql —_ = oo 0
Hee = B ‘ 2 . . (4.10)
(comtml \ Gl 0 e Q-

45




V. Time Evolution of the System
5.1 Time Evolution in the Bare State Basis

Discussion of the time evolution of the system begins with the time-dependent

Schrédinger Equation,
. d .
§ S |9(0) = Bl 9(0)) - (1)

Solution of this equation for a time-independent Hamiltonian yields

| $(t)) = exp [ =i it ] | 9(0)) - (5.2)

In the bare state representation,
zH,,
(B|9¥(t)) = (B| exp [ = ] 14(0)) (5.3)

where the shorthand notation |B) = | & {1,}) has been adopted and U(t) =
exp [L},{L‘ﬂi] is the time evolution operator. Using the completeness of the bare

state basis, Equation 5.3 can be rewritten

]| pys (o)) (5.4)

(B|9(t) = Z(BI exp [

The matrix form of I:Itot is non-diagonal in the bare state basis, making the ex-
ponential of the Hamiltonian difficult to evaluate. If the time evolution operator
is represented in the eigenbasis of fI,o,,, also known as the dressed state basis, the
expression is greatly simplified. The completeness of the dressed states | D) allows

Equation 5.4 to be re-expressed as
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(B|¥(t)) =
S S S (BIDXD| exp [ ~i Hit

I D DI

| D)D" | B')Y(B'|4(0)) . (5.5)

The exponential is expanded in a Taylor series,

—iH,,t iHyt  H2, 62
exp — ]_ — h -— 2 hz .. s

and the quantity (D | exp [ sttt t] | D') is evaluated term by term in the expansion.

The dressed states are by definition orthogonal, and the expansion terms evaluate

as

(D[1|D) = 1(D|D')= épp»
(5.6)
i.ﬁtott Z ED’

(Dl - |D’) (DlD’) = —zwD:t6D D'

h

where Ep is the eigenvalue corresponding to the eigenstate D’ and wpr is the associ-

ated eigenfrequency. Equation 5.6 can be re-summed to give the resulting expression

for (B [%(t)),

(Bl4(t)) = > > (B|D) exp[~iwpt] (D|B')(B'|$(0)). (5.7)

B D

There are an infinite number of modes in the cavity and therefore an infinite number

of bare states. The matrix form for the time evolution in the bare state basis is
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(Bu|9(t))

(Bi1|Dy) --- et 0 (D1|B1) --- (B1]4(0))
) . 0 : . :
Cp(t) = TU TT Cp(0) (5.8)

where Cp(t) are the expansion coefficients of ¥(t) in the bare state representation,

C+00...(t)

(CB _ C_lo....(t) ’ (59)

C_0--1,, (t)

T is the matrix obtained by diagonalizing H;, that transforms from the dressed

states representation to the bare state representation,

fes1) les2) tee lesm)

(+00---{ C11 C12 ... Cim
(~10---| €21 C22 To Com

T = , (5.10)
(—0---1p | cml cm2 .o cmm

and U is the time evolution operator in the dressed state representation,

eXp_iEl t/h 0 - 0
0 exptE2t/h .. 0
U = | S | . (s
0 0 “ee exp"”: Em t/h
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The last two terms in Equation 5.8 are the transpose of T and the initial state of

the system in the bare state representation.

The probability for finding the system in a given bare state is found by squar-
ing the absolute value of the appropriate expansion coefficient. For example, the

probability of finding the system in a state with an excited atom and no photons in

the field at time ¢ is
P(+00---) = c%g9..(t) c100--(t) = | cxo0-- ()] . (5.12)

The recipe now exists to compute the probabilities for the atom/field system to be
in any given state at a particular time. This provides insight into how the atom

couples to the various field modes as a function of time.

5.2  Truncation of My

As mentioned in the previous section, the infinite number of field modes re-
quires an infinite number of basis vectors to represent the system. As a result, the
Hamiltonian is infinitely large. In practice, we must decide how to truncate the
matrix. In other words, we need to anticipate how many modes the atom can be
expected to couple to. There are two (related) ways to answer this. The first is to
compare the relative sizes of the coupling terms on the off diagonals to the corre-
sponding term on the diagonal. For a given value of 7, _ and L, the coupling terms g,,
in the first row and column can be written as a constant times the square root of the
mode frequency times the spatial mode amplitude modulation sin(kz) = sin(™}%),
giving

9m = K QY2 sin (?) ,

€T

where k = — eI The diagonal matrix elements are

w
Q'm. T8
2
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Figure 5.1  Ratio of the off-diagonal Hamiltonian terms to the diagonals as mode
number increases for several. In this case w ~ ;.

and the ratio of the off-diagonals to the diagonals becomes

KZQ'},{Z sin (mf")

w
o—

If w is comparable to the fundamental mode frequency, and we temporarily ignore
the sinusoidal modulation in favor of examining the envelop of the ratio values, then

the ratio varies approximately as
K

oM
for large m. A plot of this ratio is shown in Figure 5.1 for several values of .
If enough modes are added, the off-diagonals eventually become negligible com-
pared to the diagonals. As these coupling terms become negligible, the remainder
of the Hamiltonian matrix takes on the appearance of the uncoupled Hamiltonian
of Equation 3.24. The Hamiltonian can then be said to be block-diagonal, with a

coupled symmetric block and a diagonal uncoupled block (with mode frequencies
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much greater than the atomic frequency). This block diagonal form of H,, is

{ % g1 ot Im \
g h-% - 0 0
| gm0 R 2. (513)
[ 0y 0 -0
0 Qo 0
O . .+2 . .
\ R O O Tt Q'Inmaz: R )

Hence, the atom is more or less uncoupled from these higher modes. ! Note that if a
threshold is chosen below which the coupling terms are effectively zero, then Figure
5.1 illustrates that larger coupling strengths necessitate more modes and thus larger
matrices. This serves as the basis for truncating the matrix. Using the definitions
in Equations 5.9 and 5.10, the initial probability amplitudes of the eigenstates (i.e.

the expansion coefficients) are given by

Cp(0) = TTCp(0) (5.14)
Ces; (0) Ci1 €1 Cml 1 c11
Ces, (0) ] ez ez o Cm 01 | ce
Cesp (0) Cim C2m " Cmm 0 Cim

The probability that the atom is initially in the i** eigenstate is found by squaring
c1;- Recall from above that by adding field modes, the Hamiltonian can be made
large enough that it approaches block-diagonal form. The transformation matrix

T that diagonalizes the Hamiltonian will therefore also be block diagonal. The

It is important to note that regardless of the magnitude of w, the matrix can always be made
large enough to block diagonalize it by adding modes.
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block for which the Hamiltonian is non-diagonal will transform in some complex
way giving rise to mixtures of eigenstates comprising the bare states of that block.
Conversely, the diagonal block is, of course, diagonalized by the identity matrix. The

transformation matrix becomes

( — i1 G2 - Cim ] \
€1 Ca - Com 0
T _ | Cmi1 Cm2 " Cmm ] i i} . (515)
1 0 0
0 1 0
0 . . . .
\ i 0 0 --- 1 J /

It was shown above that the distribution of eigenstate probability amplitudes for the

excited atom bare state at ¢ = 0 was given by

Ces, (0) C11
Ces, (0) _ C12
Cesm (0) Cim

A sample plot of the initial eigenstate probabilities for a coupled Hamiltonian in
which none of the coupling terms were neglected is shown in Figure 5.2. It confirms
that the eigenstate amplitudes do indeed eventually vanish, so that such plots as
these can be used to select an appropriate number of modes for a particular coupling
strength. In this way, the amount of computation can be reduced while obtaining

the same results (see Figure 5.3).
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5.8 A Closer Look at H,,;

Now that the groundwork has been laid to perform the calculations, a closer
look at the nature of the Hamiltonian, Hy,,, should provide some insights towards
how the system might behave under several limiting circumstances. The previous
section demonstrated how the Hamiltonian becomes block diagonalized when the
ratio of the couplings terms to the bare state frequencies (£2,,, —w/2) on the diagonal

vanishes.

Consider Figure 5.1 once again. As mentioned earlier, the ratio vanishes much
more quickly for weak coupling. It seems reasonable to assume that x = —% can
be chosen such that the atom couples to a very small number of modes, perhaps even
one mode. In that event, eigenstate plots similar to Figure 5.2 should reveal that
only two eigenstates (corresponding to the two dominant configurations of the sys-

tem) participate. For one mode coupling, the system will exhibit Jaynes-Cummings

behavior. We shall see in the next chapter that this is in fact the case.

On the other hand, when « is significantly larger, the atom should couple to
many more modes. This in turn implies that there will be many more eigenstates
with non-trivial amplitudes arising from the diagonalization of H,. It is intuitive to
believe that an atom coupled strongly to a large number of modes should decay to a
ground state with a small likelihood of returning to the excited state. The atom in
free space can be considered the limiting case where the atom couples to an infinite
number of infinitesimally spaced modes of an infinitely long cavity. The second half

of Chapter 6 explores this regime of strong coupling and narrow mode spacing.

The next chapter details the results of these calculations for various values of
coupling strength, cavity size, and atom-field detuning. For fields composed of many
modes, numerical solutions are required. The diagonalization of the Hamiltonian is
carried out by a public domain linear algebra routine that returns eigenvalues and
eigenvectors which are then used to propagate the system and translate the result

to the bare state basis.




VI. Spontaneous Emission Results

In this chapter the results of the calculations based on the previously developed
theory are presented. In the first section, the one-mode Jaynes-Cummings problem
is extended to the two-mode case to demonstrate the JCM behavior of a simple
multimode system in which the atom is near resonance under weak coupling with
one of the modes. In this regime of coupling strengths, the influence of the other
modes can be neglected. For strong coupling, the single-mode simplification breaks
down and the atom is shown to couple also to the off-resonant mode. The field is
then expanded to 100 modes under a variety of coupling strengths and detunings
to explore the influence of the additional modes. Section 6.2 demonstrates that an
atom accessing a large number of closely spaced modes spontaneously decays from
an excited state with a rate comparable to an atom in free space. All calculations
and results are presented in atomic units, and conversions to MKS and Gaussian

systems are provided in Appendix D.

There are essentially four parameters available to adjust in this model: the
atomic transition frequency w, the position of the two-level system z, the cavity
length L, and the value assigned to r,_. In selecting values for 7,_, it should be
noted that it is possible to choose a coupling strength that is high enough to couple
the atom strongly to the highest frequency modes in the field. One could then
argue that there would be influences from even higher modes not accounted for in |
the Hamiltonian. Such behavior is characterized by noticeable amplitudes in the
probabilities of the outlying bare states as shown in Figure 6.1. In order to remedy
this, either the coupling constant must be reduced or the number of modes must be
increased until the outlying states no longer participate. In all calculations presented
here, the coupling was kept low enough that a significant number of the highest

states exhibited negligible amplitude in the probability plots and the amplitudes of




Probability

Bare State

Figure 6.1 Plot of all bare state probabilities for a case in which the coupling
strength is too high for the size of the Hamiltonian. The probability
of the state corresponding to the excited atom is plotted at the left on
the bare state axis. Note the growing amplitude of the probabilities for
the higher-numbered bare states.
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the highest eigenstates were negligible (recall the discussion on matrix truncation in

Chapter 5).

One may also adjust the coupling strength to each mode by varying z. Doing
so affects each mode differently through the sin(kz) term in g. It follows, then,
that a particular choice of position may cause one or more of the coupling terms
to vanish if the atom is located at a node. For example, Figure 6.2 shows how the
choice of position can affect coupling. In the top diagram, the atom is located at
a position where the electric field amplitude of the fundamental mode is maximum.
Consequently, the coupling of the atom to this mode is stronger than to the second
cavity mode in (b). Since the amplitude of the second mode vanishes at —g—, the
coupling constant ¢ = D, _ - &, sin(kz) also vanishes. Unless otherwise noted, the
calculations presented below were performed for a two level system located away from
the center of the cavity at g While this has the disadvantage of modulating the
coupling values in a predictable yet uneven fashion, it avoids the undesirable effect of
decoupling half of all of the modes (the center position decouples the even-m modes)

in the cavity.

6.1 Jaynes-Cummings Behavior

As mentioned in Section 1.4, the JCM predicts an oscillatory interchange of
probability between an excited atom state and a single excited field state for which
the frequency of the excited mode is closely tuned to the atomic transition (also
referred to as the resonant atom or resonant field case). Figure 1.5, reproduced here
as Figure 6.3 shows this complete interchange. Now suppose that a single mode is
added to the existing field at the next cavity mode frequency (twice the fundamen-
tal frequency). When the coupling strength is ‘weak’, an atom tuned near either
frequency will couple only to that mode as predicted by the JCM. Figure 6.4 shows
the change in how the atom is coupled to the field modes as the atomic transition

frequency is ‘dialed’ from resonance with the fundamental mode to resonance with
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E amplitude

Fundamental
Mode
(a)
/j J’ 1'\\ Second Cavity
T \_y __:__, :/_ Mode
4
S + /’
(b)

Figure 6.2 Strength of coupling for a given mode is modulated by the atom’s
position in the cavity. Coupling is maximized at the antinodes (a) and
zero at the nodes (b).

the second cavity mode. The atom is located % of the way along the cavity so that

the sin(kz) factor in the coupling constant contributes equally to both modes.

The Rabi frequency can be calculated for the two mode system for comparison
with the analytical one-mode result, where the frequency of probability exchange
went as -721 = %\/m . The probability exchange represented by Figure 6.4a has
a half-period of T} /2 = 1.865 x 10° in atomic units (recall that the flopping frequency
exhibits a cos? temporal dependence in Equation 1.2, such that a period spans three

peaks instead of two for cos). This corresponds to an angular frequency of

Rda.ta _ 2w

= = 3.369 x 107° in atomic units of frequency.
2 2T

For § =0, O = 2278 x 1073, (r,_) = 0.01, L = 10um = 1.890 x 10°%, ¢ =
.0795, e=1 and h = 1, all in atomic units, the JCM result for % is

R 1 o

2 2
_oer,_ &y
= 55 sin(kz)
. ]
= sin(kz)
2h
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Figure 6.3  Characteristic complete probability exchange predicted by the analyt-
ical one mode JCM solution for a resonant atom (from Chapter 1).
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Figure 6.4 (a- n) JCM behavior of a two-mode system with atomic transition fre-
quency tuned from resonant with fundamental mode (a,b) to resonant

with second cavity modes (m,n). L = 10 um, (r,_) = 0.01.
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Figure 6.5 Overlay of the two mode calculation of excited state probability with
the one mode JCM prediction.

_ (0.01)\/ 2208 X107 oo

2 \/ (0795)(1.890 x 10°)

= 3.371 x 107% in atomic units.

Rdata
2

R
= 3.369 x 10~%au ";M =3.371 x 10~%au (6.1)

As expected, the flopping frequency predicted by the JCM is very close to the fre-
quency exhibited by the two mode system. An overlay of the excited-atom state
probabilities from the JCM and two mode calculations confirms the result (see Fig-
ure 6.5). To place the value of the coupling strength in somewhat of a historical
context, the value of er, _ used in the investigation of the ammonia maser by Jaynes
and Cummings [13] was 1.47 x 1078 esu = .5787 au which corresponds to a coupling

strength in this scenario of g,4ser = 1.95 X 1074,

However, if the coupling constant is significantly increased, an atom tuned to
a given mode can be forced to couple to other modes as well. This is demonstrated
most simply for the two mode field by increasing the coupling by a factor of 200 over

the Jaynes-Cummings-like case in Figure 6.4a !. Figure 6.6a indicates a significant

Irecall the value of the coupling in Figure 6.4a was r,_ = .01. Calculations indicate that 7.
values over 50 are possible for certain high quantum-number states in simple hydrogenic atoms.
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departure from the JCM, and complete breakdown of the one mode approximation is
achieved in 6.6b for a factor of 500 increase in coupling. It is clear that a single mode
field is insufficient to adequately describe the spontaneous emission properties of the
atom beyond the weakly coupled limit. In order to demonstrate that the presence
of many more modes has a minimal impact on the Jaynes-Cummings behavior of
the system, we now consider a field expanded to 100 modes in which the atom may
be slightly detuned from a mode near the center of the frequency range, such as the
49*" mode. In light of the earlier discussion of the effect of atomic position on the
coupling terms in the full Hamiltonian, the atom is placed at a position selected to
decouple a minimum of modes. In this case, the atom is placed % x L away from one
wall. Since the n** mode has n+ 1 nodes spaced % x L apart, we are assured that the
atom is positioned at precisely one node, the 19* node of the 53™ mode. As before,
the cavity is small by macroscopic standards, L = 10 mu = 1.8897 x 10° a.u., and
the mode spacing is equivalent to the fundamental mode frequency, 2.2278 x 1073 in
atomic frequency units (roughly in the infrared). Once again, recall that the effect
of detuning the atom from the field mode in the JCM is to reduce the amplitude
of probability exchange and increase the flopping frequency. Figure 6.7a shows the
interaction when the atom is perfectly tuned to the mode— clearly the complete
flopping observed in the tuned JCM. The analytical results can be overlaid on the
solid line to show how closely the JCM flopping is duplicated (see Figure 6.7b). Now
the atom is detuned from the mode by 5% of the mode spacing. The detuning causes
a reduction in the exchange amplitude as shown in Figure 6.8a, and the overlay of
the JCM prediction for this detuning in Figure 6.8b reveals excellent agreement with
the numerical results. Now the frequency dial is adjusted to bring the atom to 10%
detuning. The amplitudes of exchange are further reduced as expected, and the
familiar overlay of the JCM data again indicates the agreement between analytical
one mode and numerical 100 mode results (Figure 6.9a,b). As a final check, the atom

is detuned to 20% and the probabilities are plotted in Figures 6.10a and 6.10b.
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If we now hold the atomic frequency fixed at 10% detuning as in Figure 6.9,
we can see how small increases in coupling strength (via 7,_) can cause the detuned
atom to exchange more completely with the field mode. In Figure 6.11, the amplitude
of the exchanges does indeed increase as 7, _ is raised from .05 to .10, but the overlay
plot shows a de-phasing between the JCM prediction and the numerical results.
Notice also in Figure 6.12, where r,_ = .15, that P,,.. doesn’t quite return to
one after the initial decay, and the differences between the analytical and numerical
periods of exchange oscillation are increasing. The irregularities that begin to appear
in P,,,.. are amplified for r,_ = .20 (Figure 6.13). This is a sign that the coupling is
strong enough for the surrounding modes to begin to interact with the atom. Finally,
a plot of all of the bare state probabilities in Figure 6.14 confirms that this is the
case. Thus, in contrast to the JCM, where the coupling strength can be increased ad
infinitum until the effect of detuning is negligible (in Equations 1.2) and exchange is
complete, an upper limit is placed on the degree to which total probability exchange

can be recovered in the multiple field mode cavity.

The next section investigates the other extreme of coupling strength and mode
spacing, in which a two level system interacts with many closely spaced field modes

under the influence of substantially higher coupling strengths.
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results from the JCM are superimposed on the numerical data.
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Figure 6.11
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Figure 6.13
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(a) The exchange is further increased, but the irregularities appearing
in P,,.. indicate coupling to additional modes. (b) A non-trivial
difference in the oscillation periods is quite apparent.
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Probability

Figure 6.14

60

100 0
Bare State

The structure along the first bare state describes the evolution of the
excited atom state. Here the atom is coupling strongly to the 49
mode in the field, although the ripples near the base of the excited
mode probability indicate that coupling to a number of off-resonant
modes is non-negligible.
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Parameter Value

# Modes 200

L 1.8897x10° au = 10 cm
0 2.2782x10~7 au = 1.5 GHz
w 1.1391x107° au = 75 GHz
z .6774x10° au = 3.58 cm

Table 6.1 Fixed parameter values for the progression from weak coupling to strong
coupling. r,_ is varied to demonstrate the transition.

6.2 Free Space-Like Spontaneous Emission

The results from Section 6.1 showed that an atom tuned to a single mode in
a multimode field exhibited Jaynes-Cummings-like behavior for systems with weak
coupling and widely spaced modes. Here, the narrow mode spacing and strong
coupling regime is explored. Figure 6.6 hinted at the fact that the inclusion of

additional modes for stronger coupling can produce markedly different behavior than

is predicted by the JCM. In fact, under the influence of strong coupling with a large

number of modes, the atom exhibits spontaneous emission rates similar to those of
an excited atom in free space. The excited atom state probability is shown to follow
a decay which is approximately exponential in the high coupling regime, and the
rate of this decay is compared to the rate of decay predicted for an atom in a one

dimensional cavity by the Wigner-Weisskopf theory [17].

To demonstrate this, we begin with an uncoupled system in which the atom is
resonant with a mode of the cavity—in this case, the 50t* cavity mode—but g = 0.
Imagine now that there is a dial controlling the value of 7, _ with which the atom-field
interaction may be adjusted. This dial has four settings: the initial zero coupling
7._ = 0.0 and three higher settings of r,_ = 0.225, r,_ = 0.450, and r,_ = 4.500.
By progressing through these settings, we can see how the behavior of the system
evolves towards a nearly free space decay of excited atom state probability. The
fixed parameters (number of modes, L, Q;, w, and z) for this series of scenarios are

summarized in Table 6.1. In Figure 6.15a, the atom is completely uncoupled from
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the field. As a result, the atom remains in the excited state. The accompanying
plot of the eigenstate amplitudes shows that the system is described entirely by
one eigenstate, consistent with the uncoupled scenario. In the next two figures, the
coupling has been turned up so that the atom interacts not only with the resonant
mode, but also with several off-resonant modes as well. The off-resonant coupling is
indicated by the increasingly rapid and erratic probability evolutions. Finally, the
last figure in the series, Figure 6.18, demonstrates what appears to be an exponential
decay in the | + 000---) probability. “When all bare state probabilities are plotted
as in Figure 6.19, the extent of participation by the large number of modes becomes

evident.

The decay from this multimode analysis is compared in Figure 6.20 to the
exponential decay predicted by the Wigner-Weisskopf Theory. The presentation
of this theory in Meystre and Sargent is based on a three dimensional vacuum of
sufficient size that the modes form a continuum. When the theory is appropriately
reduced to the one dimensional case through the application of the 1-D mode density
and the limitations on the orientations of the dipole moment and field polarization,
the predicted decay rate I is
_JersPu

r
cephi

such that the excited atom state probability falls as exp~T.

Using the values of w and r,_ that produced Figure 6.18a, the one dimen-
sional Wigner-Weisskopf theory predicts an exponential free space decay rate of
I' = 2.115x107° in inverse atomic units of time (8.744 x 10! s~1), while an expo-
nential fit to the results in Figure 6.18 gave a decay rate of 3.70 x 10~° in inverse
atomic units of time (1.53 x 10* s71). Figure 6.18a is reproduced in Figure 6.20 with
an overlay of the Wigner-Weisskopf prediction for comparison. However, it must be
stressed that the behavior of the two level system in the closely spaced mode cavity
is not irreversible as in the free space spontaneous decay. The theory of Wigner and

Weisskopf predicts a strictly exponential decay and does not allow the possibility of
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revivals in the excited atom state probability after a finite period of time. In con-
trast, these revivals do occur for the quantized system presented here. Figure 6.21
illustrates this probability revival that occurs when the temporal axis of Figure 6.18a
is extended by a factor of 100. The revivals are a result of the phasing properties of
the eigenstates. Since each eigenstate evolves at its own eigenfrequency, then it is
reasonable to expect that there exists times at which groups of the eigenstates are
in phase (recall that at ¢t = 0 all eigenstates are in phase), causing resurgences in the

amplitude of the initial bare state of the system.
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Figure 6.15 | + 000---) probability and eigenstate amplitudes for r,_ = 0.0. The
atom is completely uncoupled from the field and remains in the excited
state.
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Figure 6.16 | + 000---) probability and eigenstate amplitudes for r,_ = 0.225.
Coupling to several off-resonant modes introduces irregularities in the
time evolution.
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Figure 6.19 Evolution of the bare state probabilities for r,_ = 4.5. The exponen-
tial decay of the excited atom state results from the strong coupling
with many modes.
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Figure 6.21  Revivals in the excited atom state probability appear when the system
is allowed to evolve for much longer timescales (note the change in the
Time axis from Figure 6.18).
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Figure 6.22 The atom decays from its excited state more slowly in the smaller
cavity in which the mode spacing is larger.

Now consider the effect of reducing the cavity size on the decay rate. As the
cavity size is reduced, the mode spacing becomes larger. An atom tuned near one
mode of the cavity becomes more detuned from the rest of the modes. Therefore, if
w and r,_ are held fixed while L is reduced, then the atom will couple less to the
off-resonant modes and the decay rate should decrease. Figure 6.22 compares the
decays of a cavity of length L = 10cm = 1.8897 x 10° a.u. (solid line) and the cavity
reduced by half to L = 5cm = 9.4486 x 10% a.u. (dashed line). The two level system
was still positioned at é—g L. Even for such a relatively small change in cavity length,

the decay is noticeably more gradual for the smaller cavity.

6.8 Unanticipated Effects

The results of the previous two sections illustrated that appropriate choices
of the various parameters lead to the recovery of results for two limiting cases in
agreement with two independent well-established theories of spontaneous emission.
However, the appropriate choices did not reveal themselves easily. In exploring

the various combinations of coupling strengths, atomic transition frequencies, cavity
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lengths, and matrix truncation points, several regimes were discovered in which the
behavior of the coupled atom-field system could be characterized as anomalous. In
the first case, a two-level system exhibiting complete Rabi flopping with a mode
could be caused to decouple from the mode by drastically increasing the number of
modes in the field. As the mode number increased, the amplitude of the probability
exchanges decreased as if the atom were being detuned from the field. The same
effect also manifested itself in the investigation of free space-like behavior discussed
in Section 6.2: the exponential spontaneous decay illustrated in Figure 6.18 became
more gradual and eventually evolved to a probability curve which dropped quickly
from 1 to a steady state value near .7 when the number of modes was expanded to
1000. It seems likely that this may be a result of an ill-conditioned Hamiltonian
matrix, in spite of the fact that the diagonalization routine indicated convergence
of the solutions and the conservation of probability and energy were verified (see
Appendix A). The first step in addressing this problem will be to investigate the
stability of the Hamiltonian under a variety of coupling strengths and matrix sizes,
and analyze in depth the method by which the diagonalization is carried out by the
LAPACK routine. If numerical insfability in the matrix is ruled out as a cause for
this behavior, then the conclusion which remains is that this is simply the way the
system behaves under those conditions, and the ‘problem’ so to speak lies in the

interpretation of these results.

A similar phenomenon occurred for the Jaynes-Cummings-like system in which
the atom was perfectly tuned near a single cavity mode. When the perfectly tuned
100 mode system in Section 6.1 was subjected to gradually increasing coupling
strengths through increases in r, _, the spontaneous emission was again suppressed.
An increase of a factor of ten in r,_ resulted in a 5% reduction in the exchange
amplitude. However, recall from Section 6.1 (Figures 6.11-6.13) that the detuned
atom behaved in the opposite fashion—the exchanges in the probability plots became

more complete as 7,_ was increased. Several plots illustrating the decoupling effect
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on the perfectly tuned atom are included in Appendix C, but no further explanation

is provided here for this behavior.
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VII. Conclusion

The scale of today’s microlaser devices are quickly approaching sub-micron dimen-
sions as military and commercial requirements push the envelop of fabrication tech-
nologies. Microcavity structures such as the VCSEL offer the promise of large arrays
of highly efficient lasers to meet a variety of needs. The forward progress in making
these microcavity lasers more efficient inevitably relies on a thorough understanding
of the spontaneous emission processes within. This thesis develops a fully quantum
mechanical model of the spontaneous interaction between a two-level atom com-
prising the gain medium and a multimode electromagnetic field within an optical
resonator cavity. The research described in the previous chapters provides a foun-

dation for future exploration into the behavior of

7.1 Quantization of the Atom, Field, and Their Interaction

One of the first steps in addressing a problem quantum mechanically is to
develop a Hamiltonian for the system under observation. In this case the system
consists of a two-level atom interacting with a multimode electromagnetic field within
a one dimensional perfectly conducting cavity. As a simplification, only processes
in which a single photon was either emitted from or absorbed by the atom were

considered. Chapter 2 describes the steps taken to construct the atomic Hamiltonian.

The result is given in Equation 2.7 as

Hy= G,

.
2

where &, is the Pauli z spin operator. A representation in the orthogonal two level

atomic basis {|+), | —) } can be taken in which the matrix elements of H, are

hw

(+|Hal+) = + 5




(~1Hal-) = —22

In Chapter 3, the classical wave equation is solved subject to the boundary conditions
for a PEC cavity. The expression for the electric and magnetic fields are normalized
to the total electromagnetic energy in the cavity and the field is quantized by asso-

ciating each mode with a quantum mechanically treated harmonic oscillator. The

Hamiltonian Hp for the field is
Hp = Y hQuilam

with photon raising and lowering operators &}, and &,, (Equation 3.20). The basis
with which to represent Hp consists of states in which there are no photons in any
of the modes or one photon in one of the modes: {|0000---),]0---1,,0---) }. The

matrix elements of Hy are

(0000--- | Hp |0000---) = 0
(1,00--- |Hp|1,00---) = A&y

(00-- 1, |Hp|00- 1) = AQ

Since H4 and Hp commute, the uncoupled operator H,4, r can be constructed:

- hw
Happ = = 6.+ ) hQy il

with an eigenbasis formed from the direct product of the atomic and field bases
{| + {0}), | — {1,}) }. These eigenstates of the uncoupled Hamiltonian H4, r are
the bare states of the system and are useful in describing the state of the system be-

fore and after transitions have taken place. Chapter 4 treats the interaction between




the atom and the field. The interaction is given by

Hint - Z h {gm&'m&-!- + g:n&j'n&*}
m
where 6, and 6_ are the atomic raising and lowering operators and g, and its
conjugate characterize the strength of coupling between the atom and m** mode
of the field. In the bare state representation, H,; couples the excited atom state,

| + {0}), to each of the states | — {1,}). The full Hamiltonian is therefore given in

Equation 4.9 as

Hiw = Hpo+ Hp+ Hi
fiw of A . . ot A
= —2—&z+Zh9ma;'nam+Zh {gmamb 4 +gma;’na_}
m m

The matrix representation of H,,, in the bare state basis is non-diagonal when the
coupling terms are non-zero, so it is useful to find a basis in which the Hamiltonian
is diagonal. The transformation matrix T that diagonalizes the matrix H,; consists
of elements which are the projections of the eigenbases, or dressed states, onto the
bare states. The time evolution of the bare state expansion coefficients of the system

wavefunction is then computed using Equation 5.8:
Cp(t) = TUT*'Cp(0)

The probability to find the system in a particular bare state at time ¢ is obtained
by squaring the absolute value of its expansion coefficient in Cg. The behavior of
the system is analyzed by inspecting the way in which these probabilities evolve in
time. The results of these analyses obtained in Chapter 6 for the limiting cases of an
atom weakly coupled to a single field mode and an atom strongly coupled to many
modes are summarized below. Following Section 7.2, recommendations are prﬁvided

for future studies beyond the scope of this project.




7.2 Qwverview of the Results

7.2.1 Jaynes-Cummings Limit. In the limit of weak coupling, an atom
in a two mode field was shown to behave in a manner consistent with the Jaynes-
Cummings Model, an analytical model which describes the interaction of a two level
atomic system with a single field mode. The presence of additional modes was shown
to have minimal impact for an atom near resonance with and weakly coupled to one
mode, but increases in the coupling strengths through r, _ caused the atom to begin

coupling to off-resonant modes.

7.2.2 Free Space-Like Behavior. When the two level atom was placed in
a field of many tightly spaced modes and the dipole matrix element proportional
to 4 was increased by a factor of ~100 over those used in the Jaynes-Cummings
limit, the atom coupled to a large number of modes and decayed exponentially to
the lower state. The decay rate exhibited by the atom was comparable to the rate
calculated using the Wigner-Weisskopf Theory of spontaneous emission for an atom
in free space: 3.70 x 107° in inverse atomic units of time (1.53 x 10! s71) from a fit
of the data compared to the Wigner-Weisskopf result of 2.115x107° in inverse atomic
units of time (8.744 x 10 s71). Investigation of the effect of changing the cavity size
indicated that reduction in L caused a decrease in decay rate, a result attributable
to the increase in mode spacing and therefore decrease in the effective coupling of

the atom the modes in the cavity.

7.2.3 Anomalous Results. In the pursuit of these investigations, several
regimes of parameter values produced results which were counterintuitive and with-
out explanation. In one regime, it was discovered that the addition of a significant
number (500 - 800) of modes to a system which clearly exhibited either Jaynes-
Cummings or free space-like behavior caused that behavior to change drastically.
In both cases, the atom in the presence of the expanded field tended to remain al-

most to the point of exclusion in the excited state. It can be seen by looking at the
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form of the Hamiltonian matrix that it is possible to make the matrix large enough
through the addition of modes, and hence, states, that the ratio of the largest to
smallest elements can become quite large (~ 10* — 10°). This indicates a rather
ill-conditioned matrix which may have caused numerical instabilities in the diago-
nalization of the Hamiltonian. Without an in-depth analysis of the diagonalization
methods used by the LAPACK routine employed, it is difficult to draw any concrete
conclusions regarding possible connections between the anomalous results and the
condition number of the system. In another regime, a moderate increase in cou-
pling strengths could cause a suppression of decays out of the excited atomic state
for an atom perfectly tuned to a cavity mode and previously exhibiting complete
probability exchanges. As shown in Section 6.1, however, the detuned atom did
not experience this suppression. This phenomenon is not easily attributed to the

conditioning of the matrix, and no explanation can be offered here.

7.8 Recommendations for Future Study

As alluded to in the abstract, the research detailed in this thesis carries an
exploratory element to it. Along the way I've encountered more than a few dead
ends, numerous dead ends that turned out not-so-dead, and a great many questions
as yet without answers. It is in that context that I provide my recommendations for

possible future studies for which this research may in part serve as a foundation.

1. The anomalies referred to in the previous section need to be investigated in
depth. Wahile it is quite possible that numerical instabilities are in part to
blame for the behavior of the large matrices, the inhibition of spontaneous
decay due to coupling increases for a perfectly tuned atom manifests itself in

what appear to be stable systems.

2. In this analysis, the simplification was made to treat the cavity as a perfect
conductor. However, the cavities within VCSELs and other microcavity lasers

are by no means perfect conductors. A natural complement to this research is

7-5




an exploration of the imperfectly conducting, or lossy, cavity. In more realis-
tic treatments of microcavities, there is a certain penetration of the radiation
into the walls of the resonator, and for all practical purposes it is necessary
to artificially introduce loss at one end to obtain an output for the photons
oscillating within. One key implication of a lossy cavity is the introduction
of a finite linewidth to the emitted radiation. The details of integrating this
linewidth into the Hamiltonian are to be worked out, but it may be plausible
to assume that each cavity mode with its inherent lineshape can be discretized
into a collection of tightly packed modes of infinitesimal linewidths whose am-
plitudes follow a Lorentzian shape. The behavior of an atom coupled to a
single longitudinal mode could be ascertained by examining the interaction of

the atom with the modes under the Lorentzian profile.

3. A related offshoot addresses the problem of the dispersive cavity. Instead of
the atom in a vacuum cavity, the gain medium should be modeled to more
accurately reflect the characteristic of the semiconductor materials used in
laser diodes. This has several implications. First, the behavior of the medium
itself must be addressed. Secondly, the dispersive nature of the semiconductor
materials which fill the cavity has an impact on the mode structure of the
electromagnetic field. The two level system modeled here more accurately
describes the quantum dot structures which are yet another area of current

interest in microcavity edge emitting and surface emitting lasers.

4. In its infancy, this research was intended to explore the three dimensional cubic
cavity. In order to simplify some of the issues related to the coupling terms,

the problem evolved into the one dimensional cavity addressed here.

All of these recommendations are based on a need to actively pursue an under-
standing of the spontaneous processes in microcavity devices. This thesis constitutes
a first step towards addressing the interactions between the gain medium and the

multimode field that influence laser efficiencies at an atomic level. Ultimately, this
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research complements the existing body of knowledge employed by Air Force sci-
entists and Research Planners in improving current microcavity technologies and

assessing the direction of tomorrow’s laser programs.
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Appendiz A. Verification of the FORTRAN 90 Code

One of the most important steps in carrying out a numerical analysis of a complex
problem such as this is to verify that the computer code used produces valid results.
This is, of course, a misleading statement—the analyses are usually employed to
address problems for which ‘valid’ results are the unknowns. However, it is typi-
cally the case that exploratory research is built upon prior results in which there is
sufficiently high confidence. This appendix describes the steps that were taken to
validate the FORTRAN 90 code in Appendix B to as high a degree as possible. The

process of validation involved certain checks described briefly as follows:
Does the code compute the cavity mode frequencies correctly?

The mode frequencies were computed manually on a PC using a simple 16-bit pre-
cision function created in Mathematica for a variety of cavity lengths. These were
used as a baseline for comparison with the results from the code. The purpose was
to catch gross errors in the algorithms versus compare the numerical accuracy of the
machines used. Quite obviously, the capabilities of the SGI Origin 2000 for produc-
ing high accuracy, high precision results heavily outweigh the Pentium 66. However,

a comparison showed that the results agreed to seven or eight significant digits.
Does the code construct the full Hamiltonian correctly?

Once again, the objective was to catch errors in the way the matrix elements were
computed. Sample matrices were generated by another Mathematica routine and
compared to the results from the code, then both of these were checked against
a matrix generated by hand. In matrices as large as 100x100, the diagonals and
coupling terms sampled at random compared as favorably with the code as the

frequencies above.
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Are the results from the diagonalization routine reliable?

To verify the performance of the LAPACK diagonalization routine and its interface
with my code, the eigenvalues and eigenvectors of 1, 2, 5, 20, and 100 mode sys-
tems were compared with those generated by the built-in Eigensystem function in
Mathematica. An additional self-consistency check is provided in the code: for each
run, a routine computes the product of the eigenvector matrix with its transpose.
Since these matrices perform unitary transformations of the Hamiltonian, the prod-
uct TTT should result in the identity matrix. One of the outputs of the code is
a sum of the elements of this product which in all cases should produce the total
number of columns or rows (an n x n identity matrix logically has n entries of 1 for

its diagonals). This sum was confirmed following each run.
Does the code evolve the system in time properly?

Part of this verification is provided as the body of Section 6.1. The code results for
1, 2, 5, and 20 mode systems were overlaid on the analytical (for the 1 mode system)

and Mathematica results with no discernible differences in the plots.
Is probability conserved for the system as it evolves in time?

It is a basic necessity that at all points in time the total probability for observing the
system in one of its states is 1. In order to confirm this, the probability amplitudes
for all states must be squared and summed for all times ¢. One of the routines in
the code calculates these sums for every time sampled and writes them to a file. In

all cases, the sum of the probabilities was 1 to within 5 significant digits.
Is energy conserved for the system as it evolves in time?

Since there is no loss mechanism built into the system, it is expected that a cavity
which contains a specified total energy at time ¢ = 0 should have that same total
energy at each time step thereafter. A routine was built into the code to compute
the total energy in the system for each iteration over the time variable. The results

of this were then written to yet another file. Because the analyses all started with

A-2



the system in the excited atom state, the initial energy in the cavity was the energy
of the excited atomic state: %" The results written to the energy conservation
file consistently demonstrated at every time step that the total energy in the cavity
remained Ezﬂ

Can the original full Hamiltonian be reconstructed using the eigenvectors and

eigenvalues from the diagonalizing routine?

The most compelling test of the diagonalizing routine is the reconstruction of the
original full Hamiltonian from the diagonal Hamiltonian and the transformation
matrix both obtained from the LAPACK routine. A comparison of the reconstructed
and original Hamiltonians provides a figure of merit Y in assessing the accuracy of

the LAPACK solutions. The reconstructed Hamiltonian is found from
]ﬁ]:tot =TH TT

where I is the diagonalized dressed state (diagonal) representation of the Hamilto-
nian. ]ﬁltot can then be subtracted element-wise from Hi,;, the differences squared,
then the square root of the sum of the resulting squares computed, and finally nor-
malized to the matrix size by dividing by n?. For the a sampling of the matrices
evaluated in this thesis, the values of T fell around 107!, In other words, the orig-
inal and reconstructed Hamiltonians agreed element by element out to around the

tenth or eleventh digit.




Appendiz B. Source Code

Main Program:

This program computes the time evolution of the bare states for a

quantized coupled atom-field system in a one-dimensional perfect electrically
conducting cavity. The atomic system is quantized as a 2-level system and the
field is comprised of from 1 to n normal modes, where n can be as large as
computational resources will allow. A coupled Hamiltonian is created based
on user input parameters, then is diagomalized using a public domain

LAPACK routine. The eigenvalues and eigenvectors are then used with

the user-specified initial state of the system to determine the time
evolution in terms of the bare states. The components are:

decs_module - Module containing the global declarations

funct_module - Module containing several common functions

readinl_1id - Subroutine to read the user specified parameter values

fullham_1d - Subroutine to construct the full Hamiltonian and
diagonalize using the LAPACK routine dsyevd.for

timedev_1d - Subroutine to compute the time evolution of the
system in the bare state basis

PROGRAM mainiD

USE ecs_module
USE funct_module
IMPLICIT NONE

CALL readin_1id
CALL fullham_1d
CALL timedev_1id

END




The following two modules are structures which contain information
or functions which are global entities. The module decs_module
contains the global declarations, while funct_module contains

two functions used by several subroutines.

MODULE decs_module

IMPLICIT NONE

Constants:
DOUBLE PRECISION ¢
DOUBLE PRECISION pi
DOUBLE PRECISION epsO

DOUBLE PRECISION mu0
DOUBLE PRECISION me
DOUBLE PRECISION hbar
DOUBLE PRECISION e

! Values from Bransden&Joachain

PARAMETER (c = 137.036D0 ) ! 1/alpha
PARAMETER (pi = 3.14159265359D0 )

PARAMETER (hbar = 1.0DO )

PARAMETER (eps0O = 0.07957747155D0 ) ! 1/4Pi
PARAMETER (mu0 = 6.69176247674D-4 ) ' 4Pi/c"2
PARAMETER (e = 1.0D0 )

PARAMETER (me = 1.0DO )

Array-related declarations:

DOUBLE PRECISION, ALLOCATABLE :: a_f_array(:,:)
DOUBLE PRECISION, ALLOCATABLE :: intarray(:,:)
DOUBLE PRECISION, ALLOCATABLE :: fullarray(:,:)
DOUBLE PRECISION, ALLOCATABLE :: tempfull(:,:)
DOUBLE PRECISION, ALLOCATABLE :: afreqarray(:)
DOUBLE PRECISION, ALLOCATABLE :: ffreqarray(:)
DOUBLE PRECISION, ALLOCATABLE :: phot_numarray(:)
DOUBLE PRECISION, ALLOCATABLE :: gvector(:)
DOUBLE PRECISION, ALLOCATABLE :: eigenvalues(:)
DOUBLE PRECISION, ALLOCATABLE :: bareinitial(:)

INTEGER imax
INTEGER iterate
INTEGER countmax
CHARACTER(2) amethod
CHARACTER(2) fmethod
CHARACTER(2) gmethod

DOUBLE PRECISION gstart

DOUBLE PRECISION testval
INTEGER lworkfactor

Atomic system declarations:

DOUBLE PRECISION rba
DOUBLE PRECISION a_freghalf

DOUBLE PRECISION z
Field declarations:

INTEGER m
INTEGER mmax
INTEGER phot_num

DOUBLE PRECISION 1
Initial conditions:

INTEGER istate ! sgpecifies the initial state of atom
Time~development declarations:

DOUBLE PRECISION tmax

DOUBLE PRECISION tmin

DOUBLE PRECISION tstep

END MODULE decs_module

mode_number
total number of modes
number of photons

cavity dimensions

Module containing common functions for field frequencies
and mode spatial distributions

MODULE funct_module
USE decs_module
IMPLICIT NONE
CONTAINS
Function to calculate the radiation frequencies
DOUBLE PRECISION FUNCTION r_freq (mode,dim)
INTEGER mode ! mode numbers
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DOUBLE PRECISION dim ! cavity dimensions
r_freq = c*pi*mode/dim
RETURN

END FUNCTION

! Function to calculate the value of the field spatial
' distribution at a given location for a given mode

DOUBLE PRECISION FUNCTION g_spatial(mode,dim,pos)

INTEGER mode A ! mode numbers

DOUBLE PRECISION dim ! cavity dimensions
DOUBLE PRECISION pos ! atom position in cavity
g_spatial = SIN(mode * pi * pos / dim)

RETURN

END FUNCTION
END MODULE funct_module




Subroutine readin_id:

Opens a stream to the file ’microcav.dat’ and reads
the user input, assigning values to the appropriate variables.
The conversions from MKS to atomic units occur in this

subroutine where necessary.

SUBROUTINE readin_1id

USE decs_module !
USE funct_module !
IMPLICIT NONE

INTEGER i, j !
CHARACTER(1) fgheader !
CHARACTER(13) dummy !
CHARACTER(8) day !
CHARACTER(10) clock !
DOUBLE PRECISION lmicrons !

in microns
DOUBLE PRECISION zmicrons

!
DOUBLE PRECISION atomic !
DOUBLE PRECISION fund_freq !
DOUBLE PRECISION step !
DOUBLE PRECISION tempwave !
DOUBLE PRECISION tempg '

declarations_
common functions

iterators

header letter at top of f_or_g.inp file
dummy for reading in (skipping over) strings
used for date stamp in message file

used for time stamp in message file

accepts input cavity length

input position in microns

input transition wavelength/frequency depending on amethod
sets fundamental mode frequency if fmethod is manual

used for creating the gvector array of coupling constants

temporary holder for read-in field wavelengths/frequencies
temporary holder for read-~in g values

Open a message file for run-time error statements and other
miscellaneous junk (time/date stamped)

OPEN (unit=7, file=’messages.dat’, status=’replace’)
CALL DATE_AND_TIME(DATE=day, TIME=clock)

WRITE (7, 1) day,clock
WRITE (7, ’("Messages:")’)

Open the input file

OPEN (unit=8, file=’micro_1d.inp’,status=’0ld’)

Read in the values

READ(8,15) amethod
READ(8,15) fmethod
READ(8,15) gmethod
READ(8,30) gstart
READ(8,10) dummy
READ(8,30) atomic
READ(8,30) rba
READ(8,10) dummy
READ(8,30) lmicrons
READ(8,30) zmicrons
READ(8,20) mmax
READ(8,20) phot_num
READ(8,10) dummy
READ(8,20) iterate
READ(8,10) dummy
READ(8,20) istate
READ(8,35) tmin
READ(8,35) tmax
READ(8,35) tstep
READ(8,35) testval
READ(8,20) lworkfactor

Initialization of input-dependent quantities
imax = mmax+1 ! array dimensions
Convert from input microns to the a.u. used internally

1=1microns+*18897.26877774
z=zmicrons*18897.26877774

Flag to make sure 2-level system is in the cavity!

IF(z.GT.1 .AND. gmethod.EQ.’a’) THEN
WRITE(7,’ ("micro_1d.in Error -- Verify z<1")’)

STOP
END IF

Array initialization block

ALLOCATE (intarray (imax,imax) )
ALLOCATE(a_f_array(imax,imax))
ALLOCATE(fullarray(imax,imax))
ALLOCATE( tempfull (imax,imax))
ALLOCATE(afreqarray(iterate))
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ALLOCATE (ffreqarray(mmax))
ALLOCATE (eigenvalues (imax))
ALLOCATE (bareinitial (imax))
ALLOCATE(phot_numarray (imax))
ALLOCATE (gvector (imax))

intarray = 0.0

a_f_array = 0.0 ! matrices
fullarray = 0.0
eigenvalues = 0.0 ! vectors
bareinitial = 0.

This block calculates atomic frequencies based on input file values

SELECT CASE(amethod)
CASE(’AW’,’aw’) ! Single frequency is calculated based on atomic wavelength
! The factor 0.0455633 converts from micron wavelengths
! to a.u. frequencies
afreqarray(1) = 0.0465633/atomic

CASE(’AF’,’af’) ! A single frequency is read in directly from micro_1id.inp

afreqarray(1) = atomic

CASE(°M’,’m?) ! Creates array of length ’iterate’ of atomic frequencies
! The values range from 0 to twice the fundamental frequency

fund_freq = r_freq(1,1)

afreqarray(1)=fund_freq

IF(iterate.GT.1) THEN
afreqarray(1)=0.0
step = 2xfund_freq/(iterate-1)
D0 i=2,iterate

afreqarray(i)=afreqarray(i-1)+step

END DO

END IF

END SELECT

Create an array of field frequencies using either the r_freq function
or read-in wavelength values from f_or_g.in

ffreqarray = 0.0d0
SELECT CASE(fmethod)

CASE(’AA’,’aa’) ! calculate field resonant frequencies
DO i=1,mmax
ffreqarray(i) = r_freq(i,l1)
END DO
CASE(C°MW’,’mw’) ! read in field wavelengths

IF(gmethod.EQ.’a1’ .OR. gmethod.EQ.’m’) THEN
OPEN(unit=10,action=’READ’,file=’f_or_g.inp’,status=’old’)
READ(10,15) fgheader
IF(fgheader.EQ. ’f’) THEN

tempwave=1.0d0
DO i=1,mmax
READ(10,30) tempwave
ffreqarray(i) = 0.0455633/tempwave

END DO
ELSE
WRITE(7,’("f_or_g.in -~ Verify header matches data")’)
STOP
END IF
ELSE
WRITE(7,’("micro_1d.in -- gmethod must not be &
% mf {i.e. read wavelengths OR g values from file, not both}")?’)
STOP
END IF
CASE(’MF’,’mf?*) ! read in field frequencies

IF(gmethod.EQ.’al’ .OR. gmethod.EQ.’m’) THEN
0PEN(unit=10,action=’READ’,file=’f_or_g.inp’,status=’old’)
READ(10,15) fgheader
IF(fgheader.EQ.’f’) THEN

tempwave=1.0d0
DO i=1,mmax
READ(10,30) ffreqarray(i)

END DO

ELSE
WRITE(7,’("f_or_g.in -- Verify header matches data")’)
STOP

END IF

ELSE
WRITE(7,’("micro_1d.in -~ gmethod must not be &

B-5




10
15
20
30

40

& mf {i.e. read wavelengths OR g values from file, not both}")?’)

STOP

END SELECT

The array phot_numarray holds the number of photons in the field
phot_numarray = phot_num

This block initializes the array holding the values of g for each
mode which are artificially reduced for increasing mode number
arithmetically from gstart down to 0. Note that gvector(1) is always
set to O since this corresponds to a dipole forbidden +/+ atomic
transition

SELECT CASE (gmethod)

CASE(°M1’,’m1’,’A’,’a’,?A2’,%a2’) ! makes all g values = 1.0; if ’a’, gvector
! will be overwritten in sub fullham_1d

gvector = 1.0d40
gvector(1) = 0.040

CASE(’MF’,’mf’) ! read in g values

gvector(1) = 0.0
IF(fmethod .EQ.’AA’ .OR. fmethod.EQ. ’aa’) THEN

0PEN(unit=10,action=’READ’,file=’f_or_g.inp’,status=’old’)

READ(10,15) fgheader
IF(fgheader.EQ.’g’) THEN
DO i=1,mmax
READ(10,30) tempg
gvector(i+l) = tempg

ELSE END DO
WRITE(7,’ ("f_or._g.in -~ Verify header matches data")’)
STOP
END IF
ELSE
WRITE(7,’("micro_1d.in -- gmethod must not be &
& mf {i.e. read wavelengths OR g values from file, not both}")’)
STQP
END IF
CASE(’A1’,’al’) ! calculate g values from field frequencies

gvector(1) = 0.0
DO i=1, mmax

gvector(i+1) = SQRT(ffreqarray(i))
END DO

END SELECT

Initialize the bare state expansion coefficients

IF(istate.GT.imax) THEN
WRITE(7,’ ("micro_1d.in Error -- Verify istate <{mmax+2}")’)
STOP

ELSE
bareinitial(istate) = 1.0

END IF

FORMAT(’Date/Time: ’,a9,1X,a10)
FORMAT (a11)

FORMAT(a)

FORMAT (a5)

FORMAT(i5)

FORMAT(£16.10)

FORMAT (£20.10)

FORMAT (a8)

RETURN
END ! Subroutine readin_1d
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Subroutine fullham_1d:

]
t
! This subroutine populates the full Hamiltonian then diagonalizes it using the
! LAPACK routine DSYEVD. The eigenvectors and eigenvalues are saved to

)

SUBROUTINE fullham_1d

USE decs_module ! declarations
USE funct_module {  common functions
IMPLICIT NONE

INTEGER i, j, count

INTEGER mtemp

DOUBLE PRECISION g_const

DOUBLE PRECISION element

DOUBLE PRECISION rad_freq

DOUBLE PRECISION, ALLOCATABLE :: evarray(:,:)

¢ LAPACK declarations

INTEGER lwork

INTEGER liwork

INTEGER info

INTEGER, ALLOCATABLE :: iwork(:)

DOUBLE PRECISION, ALLOCATABLE :: work(:)

Define several functions for use in populating the arrays:

iterators

temporary mode numbers

constants in g
spatial/mode-dependent component of g
field frequency

temporarily holds eigenvalues

element (m) : combines the field frequency computation
with the spatial dependence of the matrix

element

rad_freq(m): calculates field frequency using spec’d dimensions

element(m) = SQRT(r_freq(m,1))
rad_freq(m) = r_freq(m,1)

! Initialize LAPACK parameters
lwork = (1+5*imax+2*imax*(INT(LOG10(REAL(imax))/L0G10(2.0)) + 1) + 3*imax**2) * lworkfactor
liwork = 2 + b*imax

ALLOCATE (work(1work) )
ALLOCATE (iwork(liwork))

i
! INTERACTION HAMILTONIAN

i This section populates the interaction hamiltonian using the

! coupling term g = -~ (e rba / 2 hbar) [4 hbar Wn / V e0171/2 £(x,y,2)
! if using gmethod = ’a’ (automatic) or forces g’s to specified values
! if gmethod = ’m’.

! Open a series of files for output data including uncoupled hamiltonian
! terms, interaction terms, dressed state eigenvalues, and the full
: hamiltonian
OPEN(unit=9,file=’combined.dat’,status=’replace’)
OPEN(unit=12,file=’fullham.dat’,status=’replace’)
! Determine whether to calculate or force g values and carry it out

SELECT CASE (gmethod)
CASE(°M1’,’m1’ ,°’MF’,’mf’ ,’A1°,’al’) ! Sets Hint(1,i) = g(i)
DO i=1, imax
intarray(1,i) = gvector(i) * SQRT(DBLE(phot_num))
END DO
CASE(’A’,’a’) ! Calculates g(i) for Hint(1,i)
g_const = - e * rba * SQRT( hbar/(l*eps0) ) / (2+hbar)
intarray(1,1) = 0.0
gvector(1) = 0.0
m=1
DO i=2, imax ! this step overwrites initial gvector values
mtemp = m
gvector(i) = g_const * element(mtemp) * g_spatial(mtemp,l,z)
intarray(1,i) = gvector(i) * SQRT(DBLE(phot_num))
m = mtemp+1
END DO
CASE(’A2’,’a2’) ! Calculates g(i) for Hint(1,i)

g-const = -~ e * rba * SQRT( hbar/(l*eps0) ) / (2*hbar)
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intarray(1,1) = 0.0
gvector= 0.0
gvector(2) = g_const * element(1) * g_spatial(1,1,z)
DO i=2, imax
intarray(1,i) = gvector(i) * SQRT(DBLE(phot_num))

END DO
END SELECT
! First column is same as first row
DO i=2, imax
intarray(i,1) = intarray(1,i)
END DO

! Interaction hamiltonian created

! Repeat the calculation countmax times to process each atomic frequency
! specified
! This block determines how many times (countmax) to repeat the calculation
SELECT CASE(amethod)
CASE(’AF’,’af’,’AW’,’aw’)
countmax=1
CASE(’M’,’m’)
countmax=iterate
END SELECT

ALLOCATE(evarray(imax, countmax))

DO count=1,countmax
s * DO BLOCK kakkkkk *ok

ATOM-FIELD UNCOUPLED HAMILTONIAN
The following block populates the atom-field uncoupled array

a_f_array(1,1) = afreqarray(count)/2 ! 4+ (phot_num-1)*rad_freq(mtemp)
m=1
DO i=2, imax

mtemp = m

a_f_array(i,i) = -afreqarray(count)/2 + phot_num*ffreqarray(i-1)

m = mtemp+1
END DO

! Uncoupled hamiltonian created

FULL HAMILTONIAN:

!

1

! Simple statement to add the uncoupled and interaction Hamiltonians;

! Since the input array to dseyvd is altered to hold the eigenvectors,

: create a temporary full hamiltonian to pass to the diagonalizing routine

fullarray = hbar * (a_f_array + intarray)
DO i=1,imax
If(fullarray(1,i)/fullarray(i,i) .LT. testval) THEN
fullarray(1,i)=0.0
fullarray(i,1)=0.0
END IF

END DO

tempfull = fullarray

! Diagonalize

CALL dsyevd(’V’,’U’,imax,tempfull,imax,eigenvalues,work,lwork,iwork,liwork,info)

! Write the resulting eigenvalues to a file and append for each iteration over
! the atomic frequencies

WRITE(7, ’("Diagonalizing routine output: ")’)
WRITE(7, 1) info

WRITE(9,5) count, afreqarray(count)
DO i=1,imax
WRITE(9,20) (tempfull(i,j), j=1,imax)
END DO
WRITE(9,20) (eigenvalues(i), i=1,imax)
DO i=1,imax
evarray(i,count)=eigenvalues(i)
END DO




! Write the full and interaction hamiltonians to a file and append
! for each iteration

1ok ok kol Aok ok ok ok ook ok ok koK R ok ok ok ok okokok END DO BLOGK skt oo sk o ok o o s ol st stk ok o ek i ek o i kol o e 36k o ok ok
END DO

! Write results to appropriate files

! DO i=1,imax
! WRITE(11,40) (evarray(i,j), j=1,countmax)
' END DO
DO i=1,imax
WRITE(12,50) (fullarray(i,j), j=1,imax)

END DO

1 FORMAT (i4)

5 FORMAT(i4,2X,e12.6)

10 FORMAT(® ’, 100000(e9.3, 1X))

20 FORMAT(100000(e18.10,1X))

30 FORMAT(’ ’, 100000(el12.6, 1X))

40 FORMAT(® ’, 100000(e13.7, 1X))

50 FORMAT(’ ’, 100000(el12.6, 1X))

!print *, ’pre-deallocation okay’
DEALLOCATE(iwork)
DEALLOCATE(work)
DEALLOCATE(a_f_array)
DEALLOCATE(intarray)

! DEALLOCATE(fullarray)

DEALLOCATE(afreqarray)
DEALLOCATE(£freqarray)
DEALLOCATE(phot_numarray)
DEALLQCATE(gvector)
DEALLOCATE(eigenvalues)
fprint *, ’fullham completed’

RETURN
END ! Subroutine fullham_1d
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Subroutine timedev_1d:

'

!

i Uses the eigenvectors and eigenvalues generated in fullhamid to
! evolve the system in time and translate the result to the

I

SUBROUTINE timedev_1id

USE decs_module

IMPLICIT NONE

INTEGER i, j, count, timeiteration
INTEGER dummy1l

DOUBLE PRECISION dummy?2

DOUBLE PRECISION t
DOUBLE PRECISION eigencheck

COMPLEX(8), ALLOCATABLE :: Uii(:,:)

COMPLEX(8), ALLOCATABLE :: eigen(:,:)

COMPLEX(8), ALLOCATABLE :: eigentranspose(:,:)
COMPLEX(8), ALLOCATABLE :: time_evolve(:)

DOUBLE PRECISION, ALLOCATABLE :: probarray(:)
DOUBLE PRECISION, ALLOCATABLE :: evprodarray(:,:)
DOUBLE PRECISION, ALLOCATABLE :: hamtest(:,:)
DOUBLE PRECISION, ALLOCATABLE :: newham(:,:)

! Allocate space for the arrays

ALLOCATE(Vii(imax,imax))
ALLOCATE(eigen(imax,imax))
ALLOCATE(eigentranspose{imax,imax))
ALLOCATE(time_evolve(imax))
ALLOCATE (probarray(imax) )
ALLOCATE(evprodarray (imax,imax))
ALLOCATE (nevham(imax,imax))
ALLOCATE (hamtest (imax,imax))

OPEN(unit=13,file=’timedev.dat’,status=’replace’)
OPEN(unit=14,file=’firstate.dat’ ,status=’replace’)
OPEN(unit=15,file=’probsq.dat’ ,status=’replace’)
OPEN(unit=16,file=’conserv.dat’,status=’replace’)
OPEN(unit=17,file=’evproduct.dat’,status=’replace’)
OPEN(unit=18,file="hamtest.dat’,status=’replace’)
OPEN(unit=19,file=’realtime.dat’ ,status=’replace’)
OPEN(unit=20,file=’imtime.dat’ ,status=’replace’)
REWIND(9) ! resets the read pointer back to the beginning of the file

: Initialize some arrays
Uii = CMPLX(0.0,0.0)
time_evolve = CMPLX(0.0,0.0)

! Iterate the time-evolution computation for each of the atomic frequencies
DO count=1, countmax

LE L L] e 3 e ok ok DO BLOCK %% ek ok *k a0k ook kK

! Read the eigenvalues and vectors from the file ’combined.dat’
READ(9,5) dummy1,dummy2

! ’tempfull’ now becomes a temporary holder for eigenvectors then

! eigenvalues

! Read eigenvectors

tempfull = 0.0d0
DG i=1, imax
READ(9,20) (tempfull(i,j), j=1,imax)
END DO
evprodarray = MATMUL (tempfull,TRANSPOSE (tempfull))
DO i=1, imax
WRITE(17,20) (evprodarray(i,j), j=i,imax)
END DO
! The following matrices are the eigenvector matrix and its transpose
! for calculating the transition probabilities

eigen = CMPLX(tempfull)
eigentranspose= TRANSPOSE(eigen)

! Verify that the eigenvectors are orthomormal

eigencheck = REAL (SUM(MATMUL (tempfull , TRANSPOSE (tempfull))))
WRITE(7,’("Sum of the elements of eigenvectors x (eigenvectors)T:")’)
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WRITE(7,30) eigencheck
! Read eigenvalues
tempfull = 0.0d0
READ(9,20) (tempfull(1i,i), i=1,imax)
! Write the eigenvalues back to ’combined.dat’ to verify they’re read correctly

WRITE(9,20) (tempfull(l,i), i=1,imax)

! Verify the diagonalization is accurate by multiplying Ev. Uii . EvT to recover Hfull

newham=0.0
DO i=1,imax
newham(i,i) = tempfull(1,i)
END DO
hamtest = MATMUL(REAL(eigen) , MATMUL (newham,REAL(eigentranspose)))
DO i=1,imax
WRITE(18,20) (hamtest(i,j), j=1,imax)
END DO
Now the fun...for t=0 to tmax in steps of tstep, the vector of time-
dependent bare-state expansion coefficients is calculated from

I} ci(t) Il = || Eigenvec || . || Uii Il . || EigenvecT I] . || Ci(0) ||

timeiteration = 1
t = tmin

DO WHILE(t.LE.tmax)

DO i=1, imax
Uii(i,i) = CMPLX(COS(tempfull(1,i) * t),-SIN(tempfull(1,i) * t),8)

END DO
time_evolve=MATMUL (eigen ,MATMUL( Uii,MATMUL(eigentranspose,bareinitial)))
! Write real and imaginary parts of time_evolve to files for diagnostic purposes

WRITE(19,25) t, REAL(time_evolve(1))
WRITE(20,25) t, AIMAG(time_evolve(1))

! Compute probabilities

DO i=1,imax
probarray(i) = REAL(CONJG(time_evolve(i)) * time_evolve(i),8)

END DO

! Write the results for the current value of t to files:

WRITE(13,25) t, (probarray(i), i=1,imax)
WRITE(14,25) t, probarray(1)

! Verify conservation of probability and energy

WRITE(15,25) t, SUM(probarray)
WRITE(16,25) t, DOT_PRODUCT(time_evolve ,MATMUL (fullarray,time_evolve))

time%teration = timeiteration + 1
t= + tstep
END DO ! end of time iterations

END DO ' end of atomic frequency iterations

Uii contains the terms

)

'

]

! | Exp[-i E1 t/hbar] 0 0 .
' ! 0 Exp[-i E2 t/hbar] ..
' Uii(i,i) = | 0 0 Exp[-i E3 t/hbar] o
' | 0 |
! | N
! | |
i where E1, E2, ..., are the eigenvalues

)

' Format statements

5 FORMAT(i4,2X,e12.6)
10 FORMAT (a)
20 FORMAT(100000(e18.10,1X))
25 FORMAT(e14.6,1x,100000(e18.10,1X))
30 FORMAT(£10.5)
RETURN
END ! Subroutine timedev_id
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Appendiz C. Inhibited Spontaneous Emission Plots

For the sake of completeness, several plots demonstrating the suppression of decay
out of the excited atomic state alluded to in Chapter 6 are provided on the following

pages. No additional discussion of the phenomenon is provided at this time.
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Appendiz D. Unit Conversions

Listed below are several conversions for converting between atomic units and other
unit systems. Values are taken from Bransden and Joachain Appendix 11 [7] as well

as the Naval Research Laboratory Plasma Formulary [6].

Quantity Atomic Units MKS Gaussian
Angular Momentum h 1.0546 x 10734 J s 1.0546 x 10727 erg s
Charge e 1.6022 x 1071 C 4.8032 x 10710 statcoul
Length ag 5.2918 x 10~ m 5.2918 x 107° cm
Velocity Vo 2.1877 x 10 m s 2.1877 x 10% cm s™?
Time o 2.4189 x 10717 s 24189 x 10717 s
Frequency T 6.5797 x 10 s~ 6.5797 x 101° 571
Energy 41.»6;2 ™ 4.3598 x 10~18 ] 4.3598 x 107! erg

1

Note that the value of ¢ in atomic units is ;.
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Following is a graphical representation of a portion of the electromagnetic

spectrum to provide a scale for comparison of atomic unit frequencies to more familiar

quantities.
Region A nm V Hz ® au
12
A T 50,000 5.0x10 .00076
|
Microwave
13
3.0x10 00456
Infrared 14
3.8x10 05775
Visible 14
7.5x10 .11399
Ultraviolet

l

Figure D.1 A portion of the electromagnetic spectrum for comparison of atomic
units of frequency to transition wavelengths (nm) and transition fre-

quencies (Hz).
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