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AFIT/GOR/ENS/98M-29

Abstract

HQ Air Force Operational Test and Evaluation Center
(AFOTEC) 1is responsible for the operational test and
evaluation of major weapon systems during their‘acquisition
phase. In operational testing at AFOTEC, it is often the
case that not enough data or samples are available to make
high confidence classical inferences on various statistics.
The use of Bayesian statistical methods may be a solution in
which higher confidence inferences can be made on statistics
by using other sources of data.

This research explored the applicability of Bayesian
methods to the problem of determining the reliability of a
series system, a parallel system, and a bridge system. The
time to failure of each component in each system is assumed
to be exponentially distributed. A basic exponential case
and a basic binomial case are also evaluated.

In general, using simulated data and real data when
possible, the Bayesian methods produced confidence intervals
that were much tighter than the classical inference methods,
thus allowing a decision maker to have higher confidence in
making a decision. System 1level data and aggregated
component level data produced a much tighter confidence

interval than component level data aggregated to system.
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USING BAYESIAN STATISTICS IN OPERATIONAL TESTING
I. Introduction
General Issue

In operational testing at the Air Force Operational
Test and Evaluation Center (AFOTEC), it is often the case
that not enough data or samples aré available to make high
confidence classical inferences on various statistics. The
use of Bayesian statistical methods may be a solution in
which higher confidence inferences can be made on statistics
by using other sources of data.

The testing of new weapons systems in the Air Force is
divided into two types of testing: Developmental Test and
Evaluation (DT&E) and Operational Test and Evaluatiocn
(OT&E) . In developmental testing, the contractor
participates directly with the DT&E test agency and the goal
is to produce a workable system. However in the operational
testing phase, AFOTEC performs independent tests to ensure
the system meets Air Force standards and requirements and is
ready for production. Traditionally these two types of
testing were separate, but with the new call for streamlined
acquisition and reduction of testing funds, AFOTEC has to
look at incorporating DT&E data into OT&E.

At present, AFOTEC will use DT&E data only when DT&E

data was collected by sources that are independent of, and



not influenced by, the contractor. Additionally, AFOTEC has
to make sure the data from the DT&E system was from a system
configured like the system to be used in OT&E.

Bayesian statistics incorporates “prior information”,
such as engineering estimates and DT&E data, into making
statistical inferences. For example, let £(ylU) be the
probability distribution function (pdf) for the time to
failure for a component, where y is the data and U is a
parameter of the pdf. To wutilize. prior information,
Bayesian statistics assume that the parameter U is indeed a
random variable in itself, with its own pdf. Bayesian
statistics call the distribution of the random variable U an
a priori or a prior pdf. This prior pdf is called g{(U),
which expresses the state of knowledge (or ignorance) about
U before any new sample data is analyzed. There are various
methodologies to convert prior information, such as
engineering estimates and DT&E data, into a prior
distribution. Then given the prior distribution g(U), the
probability distribution f(ylU), and the new data y, Bayes’
theorem can be used to calculate the so-called posterior pdf
g(Uly). The posterior distribution g(Uly) 1is in a sense,
the updated prior distribution. The posterior distribution
can now be used to update the pdf, £(ylU), the time to

failure distribution.



Problem Statement

Can a system reliability analysis based on Bayesian
statistics using DT&E data be used to reduce the number of
samples and test time needed for OT&E and provide the same
or better confidence levels than classical statistical
infefence methods?
Research Objectives

The objectives of this research are: 1) to investigate
different Bayesian methods and various weighting schemes for
using prior information; 2) develop a methodology for using
Bayesian statistics with DT&E data to predict system
reliability based on data obtained from a program which is
in the process of transition from development to production
and compare the results with those obtained from classical
statistical methods.
Scope

This research will use DT&E and OT&E reliability data
obtained from a test program when possible. Simulated
reliability data will be used to verify and validate the
methodology. This research will concentrate mainly on the
exponential case. This research is limited to exploring the
applicability of Bayesian statistical methods to the problem
of determining the reliability of a series system, a

parallel system, and a bridge system. The time to failure



of each component in each system 1is assumed to Dbe
exponentially distributed. A basic exponential case and a
basic binomial case are also evaluated. The methodology
developed in this research is based on the assumption that
both DT&E and OT&E data are available. The next chapter
will identify and discuss some of the different approaches
of Bayesian statistics as well as comparing and contrasting

these with the classical inference method.




II. Literature Review

Overview

This chapter will begin with the classical statistical
inference and Bayesian statistical inference approaches.
The chapter concludes with current thinking on the use of
Bayesian statistical concepts for the type of reliability
analysis found in the literature.
Two Views of Probability

In the classical method, the probability of an event is
defined as the relative frequency of an event occurring
during repeated runs of an experiment. Let S be the set of
all possible outcomes of an experiment. Let A be one of the
possible outcomes. The classical method defines the
probability of A (the likelihood of outcome A happening) as
P[A] = limp.e (a/n), where a is the number of times outcome
A occurs during n runs of the experiment. The value of P[A]
is an unknown constant that can be estimated if enough runs
of the experiment are conducted. This classical view is
also known as the “frequentist” viewpoint (14:50).

The Bayesian method defines probability subjectively.
In contrast to the classical method, the Bayesian method
does not consider P[A] to be an objective estimate of the
likelihood of outcome A. Instead the Bayesian method

considers P[A] as a rational expression of one individual’s




degree of belief that outcome A will occur. Different
values of P[A] based on different perceptions of prior
experience can be assigned by different individuals. This
does not mean the Bayesian method abandons experimentation.
Experimentation provides an important tool for an individual
to refine their assessment of P[A] (14:50-51).

Consider the following experiment: a coin is flipped,
with the outcome to be “head” or “tail” (S = {head,tail}).
Let the event A = {head}. To find P[A], the classical

method would require n flips of the coin (n large), count

the m occurrences of A = {head}, and compute P[A] to be
approximately m/n. In contrast, the Bayesian method might
declare that P[A] = 0.5 based on experience with similar

coins that a “head” is as likely to occur as a “tail” in any
flip. To validate and refine the estimate, a number of
experimental flips of the coin would then be made.

There are distinctive differences between classical
statistical inference and Bayesian statistical inference
methods. The classical statistical inference uses inductive
reasoning while the Bayesian method wuses deductive
reasoning. The Bayesian method takes into account prior
information while the classical method only considers the
prior information in an informal manner, if at all. The

classical method is more restrictive due to the exclusive



use of sample data. To achieve

the same level of

inferences, the Bayesian method usually requires less sample

data as compared to the classical method.

is expensive or difficult to obtain,

able to use prior information.

characteristics of the two approaches.

Table 1.
Sampling Theory

Inference (6:169)

When sample data

as reliability data
‘often is, the Bayesian method has the advantage of being

Table 1 summarizes the

A Summary of Certain Characteristics of the
and Bayesian Methods

of Statistical

Characteristic Sampling Theory Bayesian
Parameter(s) of Unknown Random Variable(s)
Interest constant (s)

Prior Distribution

Does not exist

Exists and
explicitly assumed

Sampling Model

Assumed

Assumed

because of
exclusive use of
sample data

Posterior Does not exist Explicitly derived

Distribution

Method of Inductive Deductive

Reasoning

Type of Interval Confidence Probability

Estimate interval interval

Role of Past Not applicable Applicable

Experience

Purpose of Supply data for Confirm or deny

Sampling making inferences expected

Experience performance as
predicted from
past experience

Quality of More restricted Depends on ability

Inferences than Bayes’ to quantitatively

relate past
experience to the
sample data

Quantity of Sample
Data

Bayes’ approach
usually requires
less because it
utilizes relevant
past data




Martz and Waller identify four advantages for using the
Bayesian method: 1) increased quality of the inferences,
provided the prior information accurately reflects the true
variation in the parameters; 2) reduction in testing
requirements (test time and/or sample size); 3) inferences
that are unacceptable must come from incorrect assumptions
and not from inadequacies of the method used to provide the
inferences; and 4) the rules for manipulating probability
statements on components into corresponding statements on
system reliability are well known, whereas equivalent rules
for manipulation of confidence statements are not (6:172-3).
Classical Statistical Inference.

Let the population be defined as the total number of
systems in use for a particular system. When it is not
practical to test all members of a population, a subset or
sample of systems can be selected from the population for
testing. The sample is presumed to be randomly selected
such that each system having an equal chance of being in the
sample.

Two types of inferences can be drawn from the sample.
A point estimate approximates the true value of the
population parameter with a single wvalue. However, this
single value of a point estimate does not provide any

information about the uncertainty associated with that



estimate. To account for uncertainty, an interval estimate
provides an estimate that the sample statistic is within a
certain interval about the true population parameter.
Consider the mean of a sample, x, which is a point estimate

of the population mean. Compared with the true population

mean p, X will differ by some unknown sampling error amount
€. Thus X = p + gor x = pnu - €. For large sample sizes,
both the sampling distribution and sampling error
distribution are approximately normal by the Central Limit
Theorem. From this, a confidence interval based on the
population standard error, o, is developed. The population
standard error 1is the deviations or distances of the
population measurements from their mean.

(x - z*0) < u < (x + z*o) (1)
where z is the critical value associated with a specified
probability. The population standard error is usually not
known in most cases. However, it can be estimated by using

the sample standard error, s with

s = (%) Zexa-% (2)
and X = (£) X% . (3)

i=1

Thus an approximate confidence interval is obtained using s.




Bayesian Statistical Inference

Bayes’ Theorem. Bayes’ theorem (6:174-5) <can be

written as:

£(x19)g(6)
g(0lx) = "(—Xf(%gi— (4)

where 0 is the population parameter

g(0|x) is the posterior probability distribution of 6
given sample data x

g(0) is the prior probability distribution of 6

f(x]|0) is the probability of observing sample data x
given the true parameter 6

f (%) is the marginal probability distribution of x.
f(x) can be obtained by

§ f(x10)g(@®)db, 6 continuous
f(x) =
Xf(x10g(@), 0 discrete.

The Prior Distribution. Bayesian inference is
appropriate only when the prior assessment of 6 is accurate.
Great care must be exercised when selecting the prior
density g(0). The prior density can take any form.
However, natural conjugate priors and noninformative priors
(also called priors of ignorance) are used in most practical
applications. When using a natural conjugate prior, the
posterior distribution is in the same family as the prior
distribution and can be obtained simply by using analytical

tools. When there is little or no information on the wvalue

10




of a parameter, a noninformativé prior is used. The most
commonly used is the uniform distribution. For a detailed
discussion of the noninformative prior, see Press (8:46-51).
For the continuous prior distribution, discretization 1is
often used to allow for more tractable data manipulation.
Chay (1) argues that since numerical integration can be done
using computer calculations, it 1is not necessary to

approximate continuous prior distributions using
discretization. The process of determining the form of g(6)

is difficult and controversial. When selecting a prior, it
must be both reasonable and justifiable.

Bayesian Reliability Testing Approaches. In this section,
current approaches in applying Bayesian methods in
reliability testing will be addressed.

Chen and Papadopoulos (2) proposed a Bayesian method
for a generalized exponential failure model for components
in a parallel or series system. The gamma or uniform
distribution 1s used as a prior. The generalized failure
models under consideration are the exponential, Weibull,
Rayleigh, and as a special case, the extreme value failure
model. Sharma and Bhutani (11) considered a parallel system
composed of independent and identical components whose
failure distribution was exponentially distributed. The

exponential distribution is used as a prior. Villacourt and

11




Mahaney (12) wused the Bayesian method to design a
reliability demonstration test on a lithography expose tool.
The failure times are assumed to be exponentially
distributed. The gamma distribution is used as a prior.

Martz, Waller, and Fickas (7) developed a Bayesian
procedure for a series system of binomial sﬁbsystems and
components. Test or prior data (perhaps both or neither) at
the system, subsystem, and component level are considered.
The beta distribution is used as a prior. The method was
used to estimate the overall reliability of an air-to-air
heat seeking missile system with five major subsystems and
up to nine components per subsystem. Martz and Waller (5)
extended the method to <cover the case of a complex
series/parallel systems of binomial subsystems and
components. These methods are very complex and difficult to
implement.

Willits, Dietz, and Moore (15) show that for a
series-system, reliability estimates using very small sets
(less than 10 data points) of binomial test-data, there is
no clear advantage of using Bayes interval estimation unless
the prior mean system reliability is believed to be within
26 percent of the true system reliability. A classical
method for wvery small samples, the Linstrom-Madden

estimator, should be used.

12



When both prior and current data are available, which
is the case in this research, the methods mentioned above in
general are not applicable. However, studying these methods
provided the general knowledge of understanding how Bayesian
statistical methods worked.

In this research, the applicability of Bayesian
statistical methods to the problem of determining the
reliability of a series system, a parallel system, and a
bridge system is being studied. The time to failure of each
component in each system 1s assumed to be exponentially
distributed. A basi¢ exponential case and a basic binomial
case are also evaluated. There is very little information
concerning the use of Bayesian methods to the systems
mentioned above in the literature. The methodology being
developed in Chapter ITII is based on the works of the
following individuals.

Lemaster (4) studied the applicability of Bayesian

method to the problem of determining cruise missile

component reliability. The exponential and binomial
distributions were used for the failure rate. For the
exponential case, a gamma prior is used. For the binomial

case, a beta prior is used.
Sharma and Bhutani (10) considered the case for a

series system when the failure time for the system is

13




exponentially distributed. The gamma distribution 1is used
as a prior.

Frickenstein (3) studied the case for a simple system
(one component) when the failure time for the system is
assumed to be exponentially distributed. The gamma
distribution is used as a prior.

The text book, Bayesian Reliability Analysis, written
by Martz and Wailer (6) is the standard reference work on
Bayesian statistical methods and will be used extensively in
this research effort. The binomial model developed in
Chapter III is based on the methods developed by Lemaster
(4) with modifications based on Martz and Waller (6). The
exponential model developed in Chapter III is based on the
methods developed by Lemaster (4) and by Frickenstein (3)
with modifications based on Martz and Waller (6).

Reliability analysis methods for a series system, a

- parallel system, and a bridge system (with the time to

failure of each component in each system is assumed to be
exponentially distributed) are developed in Chapter. III
utilizing the exponential model. For the series system, the
Bayesian methods developed by Sharma and Bhutani (10) will
also be modified for use in this research. The next chapter
will discuss the methodology used in this research to

accomplish the research objectives stated in Chapter I.

14




III. Methodology
Overview.

This chapter details the methodology used to accomplish
the research objectives stated in Chapter I. The
methodology developed in this chapter is based on the
assumption that both DT&E (prior) and OT&E (current) data
are available. A Dbasic binomial model and a basic
exponential model are developed first. The Dbasic
exponential model is then applied to the problem of
determining the reliability of a series system, a parallel
system, and a bridge system. The time to failure of each
component in each system is assumed to be exponentially
distributed. Classical and Bayesian point estimates and
confidence intervals obtained from each system will be
compared in Chapter IV.

Data Source.

For the basic binomial model, a hypothetical set of
missile test data will be used to validate the methodology.
For the basic exponential model, the model is applied to
data obtained by AFOTEC during a reliability testing of a
selected simple system (system is treated as one component)
with the time to failure of the system is assumed to be
exponentially distributed. This is the only set of true

data used in this research. Simulated data will be used to

15




validate the methodology for a series system, a parallel
system, and a bridge system. This research uses a computer
program called RAPTOR (Rapid Availability Prototyping for
Testing Operational Readiness), which is developed by
AFOTEC, to simulate the true system (series, parallel,
bridge) mentioned above. RAPTOR is verified and validated
by AFOTEC and is an excellent tool for use in this research
effort.

The Binomial Model.

This model is appropriate for systems or components
that are assumed to have binomial failure distribution. The
classical binomial method is given first. Then the Bayesian
binomial method is given based on the assumption that both
prior data (DT&E data) and current data (OT&E data) are
available. The model is then applied to a hypothetical
missile launch problem in Chapter IV.

The Classical Binomial Method.

The binomial distribution is one of the commonly used
distribution in reliability. Consider a missile system that
is being tested with the outcome of each test as the missile
success or. failure to launch. Assuming a missile system has
the binomial distribution, the point estimate for the
probability of success p (which is the reliability of a

missile system) and 80% confidence interval about p will be

16




computed. For the binomial distribution, the point estimate
using the maximum likelihood estimator is

p=(%) (5)
where X is the number of successes from a set of n missile
units placed into a test of given duration (6:53). The
confidence 1limits can be approximated by using the F
distribution. The 100(1 - ¥)% two-sided confidence interval

(TCI) is (6:56)

X (X+1)F1-y/2(2X+2, 2n-2X)
XHO-X+1)F1—/2(20-2X42, 2X) ! (0-X)HX+1)F1y,,(2%+2,2n-2%) ) -  (6)

The Bayesian Binomial Method.

Since they are relatively easy to compute and can be
adapted to a number of situations, the family of beta
distributions, B(x,n), are used for the binomial case to
calculate both the prior and posterior distributions. For
example, the analyst’s knowledge and experience with the
system is utilized to select x and n. Thus the analyst can
increase or decrease the importance of the prior on the
resulting posterior distribution (4:39).

Bayesian Binomial Prior. For the binomial
sampling, a B(xo,n¢) distribution can be used to maximize
flexibility and make it easier to calculate the posterior
distribution since the B(xo,no) distribution is the natural

conjugate prior distribution. The parameters x, and ng can
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be interpreted as the pseudo number of survivals and pseudo
sample size for the prior life test. Here “pseudo” should
be thought of as meaning “pretended” (6:265). When the true
prior distribution is not of the beta family, Weiler (13)
showed that assuming a B(Xxo,n,) distribution is acceptable
in many practical applications. Weiler was éble to show
that severe deviations from the beta prior parameter values
will result in minor changes in the corresponding posterior
distributions. DT&E data will be used to approximate X, and
ne that £fit the B(xXo,ne) distribution. For the missile
launch problem in Chapter IV where the outcome of each test
is a missile success or failure to launch, X¢ is the number
of successes during DT&E test and similarly n, is the total
number tested.

Bayesian Binomial Posterior. For the B (Xo,no)
prior distribution, the resulting posteriof distribution is
also a beta distribution of the form B(x + Xo,N + ny), where
X 1is the observed successes and n is the sample size from
the test being used to update the prior. The probability
density function (6:266) is given as

I'(n+no)
I'(x+x0)['(n+ no — Xx— Xo)

g (p’x; Xoy l'lo) = ( ) p(x+xo)-—l(1 _p)(n+no—x—xo)—1 (7 )

where 0 < p < 1.
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Bayesian Binomial Point Estimate. The mean of the
posterior distribution is the Bayesian point estimator.
Under the squared error loss function, the Bayesian point

estimator is (6:267)

=~ x+xo) . (8)

P = E(pxi%e,o) =  7F D,
The loss function measures the error sustained by
estimating p by D. The squared error loss function often
used in practical application is (P - p)? (14:56).
Bayesian Binomial Probability Interval. The
Bayesian methbds use “probability intervals” instead of
“confidence intervals”. Recall that the classical method
assumes that the parameter p estimated is an unknown
constant. Thus the estimators of the end points of the
confidence interval ‘associated with p estimated are random
variables. A classical confidence interval 1is not an
explicit probability statement about p. However, it is “the
probability that the interval estimator will generate an
interval that will contain the true value of p” (14:57). 1In
contrast, Bayesian method considers p to be a random
variable. Thus a Bayesian probability interval is an
explicit probability statement about the value of p (6:208).
Using the F(m;,n,) distribution, the Total Bayesian

Probability 1Interval (TBPI) can be calculated. A 80%
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confidence interval will be calculated. For the 100(1 - y)$%

TBPI, the upper and lower interval endpoints are (6:270)

X+X0
x+XoHN+no—X—x0)F1-y/2(2n+2n0-2x-2 X0, 2X+2X0) !
(X+x0)F1-y/2(2X+2 %0, 2n+2n0—2 X—2 X0) . (9)
n+no=x=XoHX+x0)F1-y/2(2x+2 X0, 2n+2n0—2X~2 X0)

The Exponential Model.

This model 1is appropriate for systems or components
that are assumed tb have exponential failure distribution.
The classical exponential method is given first. Then the
Bayesian exponential method is given based on the assumption
that both prior data (DT&E data) and posterior data (OT&E
data) are available. In Chapter IV, the model is applied to
data obtained by AFOTEC during a reliability testing of a
selected simple system with the time to failure of the
system is assumed to be exponentially distributed.

The Classical Exponential Method.

The exponential distribution is the most widely used
distribution in reliability. Assuming the time to failure

of a system or component has the exponential distribution,

point estimates for the failure rate A and 80% confidence
intervals on A will be computed. For the exponential

distribution, the point estimate of A using the maximum

likelihood estimator is
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1=(% (10)
where f is the number of failures and T is the total test

time. The number of failures, f, 1s presumed to be a random

variable. The confidence limits can be approximated by
using the chi square y* distribution. The 100(1 - v)%

two-sided confidence interval (TCI) is (6:122)

( x%/5(21) xi-y/z(2f))

27 ! 2T (11)

For the reliability function R(t) = exp(~-At), the
reliability estimator of R(t) for a mission time t is

R(t) = exp(—ﬁt) (12)

where t is the mission length.

Equation 12 is also used to calculate an interval
estimate of ﬁ(t) by using the lower and upper bound of fi
obtained from Equation 11 in place of 7.

The Bayesian Exponential Method.

When examining a continuously operating electronic
system, the failure time 1is often assumed to Dbe
exponentially distributed. The distribution of the number
of failures, f, in fixed total test time, T, can be

described by the Poisson distribution (6:255) as

: . : e (D!
p{f failures in total time TIA) = | —F1 (13)
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where A, T > 0, £ =0, 1, 2, ... and assuming that failed

items are replaced. This is known as Poisson sampling.

Bayesian Exponential Prior. For the Poisson
sampling, a gamma prior distribution, G(a,B), may be used to
maximize flexibility and make it easier to calculate the
posterior distribution since the G(a,P) distribution is the
natural conjugate prior distribution (6:289). The G(a,B)

prior distribution is probably the most widely used and has

the following probability density function:

g(ha,B) = (%)

where A,a,andf > 0 and I'(e) is the gamma function of a.

The shape parameter a can be interpreted as the pseudo

number of failures in a prior life test of duration B pseudo

time units (6:289). The mean and variance of the gamma

distribution are
E(A) = (%) (15)
and V(L) =(—/§‘7) ) (16)

E(A) and V(A) can be estimated using the sample mean

and variance of A respectively with E(A) = A and V(L) = s5.
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Equations 2 and 3 (page 9) are used to compute 7{ and s%.

Thus a and B can be computed as

} EZ(A))
and B = (EV%) . (18)
Bayesian Exponential Posterior. For the G(a,B)

prior distribution, the resulting posterior distribution is
a G(f + a,T + B), where f is the number of failures and T is

| the total test time. The probability density function

(6:290) is given as

|

\

| (T+ﬂ)f+alf+a-—l e—(T+/>')}.

| g(Mfia,B) = ( T(f+a) (19)
\

|

|

| where A > 0. The parameter (f + o) is referred as the

combined number of failures and (T + ) is the combined
total test time.

Bayesian Exponential Point Estimate. The mean of
the posterior distribution is the Bayesian point estimator.
Under the squared error loss function, the Bayesian point

estimator is

1 = E(NfiaB) = (-ﬁ‘%) (20)

where (f + a) is the combined number of failures and (T + B)

is the combined total test time (6:292).
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Bayesian Exponential Probability Interval. For

the 100(1 - y)% TBPI, the upper and lower interval endpoints

are (6:294)
X2(2£420)  x3,/5(2£+20)
2(t+ﬁ) r 2(t+ﬁ) (21 )
For the reliability function R(t) = exp(-At), the

Bayesian estimator of R(t) for a mission time t is (3:8)

I

R(t) = E[R(t) 1£] = [exp(-At)g(A| £; a, HdA
0

(3 |
(3)+(5) +

where f is the number of failures, T is the total test time

]

and t is the mission time.

Another way of computing the Bayesian estimator of R(t)

is R(t) = exp(-Zt). Both methods should yield very similar
result. Mathematically speaking, Equation 22 is selected

for use since it 1is directly derived. The reliability

function R(t) = exp(-At) is also used to calculate an

interval estimate of ﬁ(t) by using the lower and upper

bound of 4 obtained from Equation 21 in place of 7.
Bayesian Weibull Method. If the true distribution
of the time to failure is not exponentially distributed, the

Bayesian method can still be developed but it is a lot
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harder to do the number calculation. Another frequently
used time to failure distribution  1is the Weibull
distribution. The Bayesian Weibull method described below

shows how difficult it can be to do this calculation.
If the prior distribution of A is the two-parameter

Weibull distribution with probability density function

(6:300)
g(A;a,B) = (g) (%) ﬂ_lexp(—(%—) ﬁ) Ao, >0 (23)

where o is the scale parameter and P is the shape parameter.
For the Weibull prior distribution, the resulting

posterior probability density function (6:300) is given as

A E+B-1 o-AT- (A/a)E
o0
[ Af+p-1 g=Ar-(A/af g}
0

g(Mf:a,pB) = A >0 (24)

where f is the number of failures and T is total test time.
For the Weibull prior distribution, the resulting

posterior mean (6:300) is given as

? AEB o—AT-(1/a) 4

7 = E(Mfio,B) A > 0. (25)

? Af+B-1 o-AT~(A/a0)f ).
0

Both equations given above must be numerically evaluated.
Due to the difficulty associated with numerical evaluation,

the Weibull prior will not be used in this thesis.
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Reliability Analysis of a Series System.
Consider a system composed of k independent components
in series configuration. The time to failure of each

component is assumed to be exponentially distributed. Let
A, A2,..., Ax be the respective constant failure rates of

each component. The failure rate for the system is (10:761)
A= Y. (26)

This shows that for a system composed of k independent
exponentially distributed components in series

configuration, the distribution of the failure time of the
system is also exponential with failure rate A.

The Bayesian Method 1 (10:761-763).

Bayesian Prior Analysis. Assuming that the prior

belief about the failure rates A; (i =1, 2, ..., k) is

exponentially distributed with parameter 6. Then the prior
k

belief about A = lei is defined by a gamma distribution
1=

with probability density function (10:761)

k 1 k-1 02
g(A) = (-Q—’—lfaf—-)@——) 2,0,k > 0. (27)

The mean and the variance for the failure rate of the system

are E(A) = k/0 and V(A) = k/0°.
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Bayesian Posterior Analysis. For a system with

failure time being exponentially distributed with failure
rate A, then for the accumulated test time T, the number of

system failures f is Poisson distributed with pdf (10:761)

(Tﬂ.)fe'ﬂ :
P(EIN) = | —F1 £f=20,1, 2, ... (28)

Thus the posterior probability density function for A

given f failures over a time interval (0,T) with respect to

a gamma prior given above is (10:761-762)

(T + H) f+k e—( T+8)A A frk-1
P(A)f) = ( T(f+ k) ) A, (T+0), (£+k) > O (29)

which is also a gamma with parameters (T+0) and (f+k). The

Bayesian estimator of A given f failure in T hours of

testing is (10:762)

7= = [ £tk
2=emn = (£H5) . (30)
For the reliability function R(t) = exp(-At), the

Bayesian estimator of R(t) for a mission time t given £

failures in T hours of testing is (10:762)

f+k

S .
yars)

Using The Exponential Model. This method uses the

R(t) = E[R(t) | f] (31)

Exponential Model given above to calculate the classical and

Bayesian reliability point estimates, R; (1 = 1 .. k), and
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the classical and Bayesian component reliability confidence
intervals, (LB;,UB;). LB; is the interval lower bound and UB;
is the interval upper bound for each component. The next
step is to aggregate the appropriate numbers together to
obtain the classical and Bayesian system reliability point
estimates and the classical and Bayesian system reliability
confidence interval, (LBs,UBs). The system reliability

point estimate is
Re = IR;. (32)

The system reliability confidence interval is calculated as

k
LB, = Il LB; (33)
k .
and UB, = Il UB; . (34)
i=1 .

The Exponential Model is also used to calculate the
classical and Bayesian reliability point estimates and the
classical and Bayesian confidence intervals for the system
using component level data aggregated to system level data.
This is possible since for a series system with exponential
components, the failure rate for the system is also
exponential and is the sum of the components’ failure rates.
Reliagbility Analysis of a Parallel System.

Consider a system composed of k independent components
in parallel configuration. The time to failure of each

component is assumed to be exponentially distributed. Let
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A; (1 = 1 .. k) be the respective constant failure rate of
each component. This method uses the Exponential Model
given above to <calculate the <classical and Bayesian
reliability point estimates, R; (i = 1 .. k), and the
classical and Bayesian component reliability confidence
intervals, (LB;,UB;). LB; is the interval lower bound and UB;
is the interval upper bound for each component. The next
step is to aggregate the appropriate numbers together to
obtain the classical and Bayesian system reliability point
estimates and the classical and Bayesian system reliability
confidence interwvals, (LBs,UBs). The system reliability

point estimate is
k
R, = 1 - HA-Ry). (35)

The system reliability confidence interval is calculated as

k
LB, = 1 - H(1-LBy) (36)
k
and UB, = 1 - II(1-UB)). (37)

For the case of independent and identical components,
The Exponential Model is also wused to calculate the
classical and Bayesian reliability point estimates, R., and
the classical and Bayesian confidence intervals, (LBc,UB:)
for the component using aggregated component level data.
This is possible since the failure rate for each component

is the same. The system reliability point estimate is
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Re =1 - (1 - Rk (38)
The system reliability confidence interval is calculated as

LB, = 1 - (1 - LB:)* (39)

and UB; = 1 - (1 - UB.)*k. (40)
Reliability Analysis of a Bridge System.

Consider a system composed of 5 independeﬁt components
given 1in Figure 1 below. The time to failure of each

component 1is assumed to be exponentially distributed.

C1 C4

C3

C2 C5

Figure 1. Five Components Bridge System.

Let A+ (i = 1 .. 5) be the respective constant failure
rate of each component. This method used the Exponential
Model given above to calculate the classical and Bayesian
reliability point estimates, R; (i = 1 .. 5), and the
classical and Bayesian component reliability confidence
intervals, (IB;,UB;). LB; is the interval lower bound and UB;
is the interval upper bound for each component. The next

step is to aggregate the appropriate numbers together to
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obtain the classical and Bayesian system reliability point
estimates and the classical and Bayesian system reliability
confidence interval, (LBs,UBs) . The 'system reliability
point estimate is (9:422)

Rs = RiRs + R:Rs + RiRsRs + R;RsRs - RiR:R3R; - Ri;R:R3Rs -
RiR;R4Rs = RiRsR4Rs = RoR3R4Rs + 2Ri1R;R3R4Rs. (41)
The system reliability confidence interval is calculated as

LB, = LIB;LB; + LB;LBs + LB:LB3LBs + LB,LB3LB; - LB;LB,LB3;LB4

- LB:LB;LB3LBs - LB;LB:LB,LBs - LB;LB3LB,LBs - LB,LB3LB,LBs +
2LB,LB,LB3;LB,LBs (42)

and UBs = UB,UB; + UB:UBs + UB;UB3;UBs + UB,UBsUB, -
UB,UB.UBsUBy -~ UB,UB,UB3UBs - UB,UB;UB,UBs - UB;UB3UB,UBs -
UB,UB3UB4UBs + 2UB,UB,UB3;UB,;UBs. (43)

For the case of independent and identical components,
The Exponential Model 1is also wused to calculate the
classical and Bayesian reliability point estimates, R., and
the classical and Bayesian probability intervals, (LB.,UB.)
for the component using aggregated component 1level data.
This is possible since the failure rate for each component
is the same. The system reliability point estimate 1is
calculated using Equation 41 above with R. replacing R; (i =
1 .. 5). The system reliability confidence interval is
calculated using Equations 42 and 43 with LB. replacing LB;

(i =1 .. 5) and UB. replacing UB; (i =1 .. 5).
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IV. Results
Overview.

This chapter describes and discusses the results of the
calculations using the methodology in Chapter III. Results
from a basic binomial case and a basic exponential case are
given first. Then results from a series system, a parallel
system with independent and identical components, and a
parallel system with different independent components are
presented. Finally, results from a bridge system with
independent and identical components and a bridge system
with different independent components are given. The time
to failure of each component in each system is assumed to be
exponentially distributed. For detailed calculations, see
the appropriate appendix. Calculations will be shown in
detail the first time presented in the appropriate appendix.
Classical and Bayesian point estimates and confidence
intervals obtained from each system will be presented and
discussed in this chapter.

The Binomial Model.

Suppose the following data are obtained from a missile
test program. For the DT&E portion of the test, two
missiles failed out of 20 missiles launched. For the OT&E
portion of the test, one missile failed out of 12 missiles

launched. Assuming the missile system failures may be
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modeled with the binomial distribution, point estimates for
the probability of success p (which is the reliability of
the missile system) and 80% confidence interval about p will
be computed. From the data above, the following results are
obtained (for detailed calculation, see Appendix A):

Table 2: Summary of Binomial Results

Classical Bayesian
DT&E
D 90.00%
80% Interval (75.52%<p<97.31%)
Interval Width 21.79%
OT&E
D 91.67% 90.63%
80% Interval (71.25%<p<99.13%) | (83.73%<p<96.39%)
Interval Width 27.88% 12.66%

Table 2 shows that the point estimates  for the
probability of success, p, are all very similar. The bounds
using classical method are quite large. You are 80%
confident that the true p is between 75.52% and 97.31% for
DT&E data and between 71.25% and 99.13% for OT&E data. The
strength of Bayesian analysis lies in the posterior analysis
as the table shows. Although the estimates of p is very
close to the estimates of p using classical method, the
Bayesian method yields a much tighter range for the point
estimate. The probability is 80% that the true p is between
83.73% and 96.39%. Even though the width of the probability

interval is still large, it is a significant improvement
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compared to the width of the

classical method.

The Exponential Model.

intervals

obtained using

The following data are obtained from a reliability test

program of a selected simple system by AFOTEC

time to failure

of the

exponentially distributed).

terminals

being

{(assuming the

tested is

For the OT&E portion of the

test, five terminals were tested for a period of seven
months. The number of operational hours (T;) and the number
of critical failures per terminal (X;) were recorded and are
given in Table 3.
Table 3: OT&E Data (3:6)
Terminal i T; Hours X; Failures
1 184.3 12
2 232.6 9
3 172.8 9
4 284.4 17
5 264.8 18
For the operational assessment (OA) portion of the

test,

operational hours

(Ti)

two terminals were tested.

Again the number of

and the number of critical failures

per terminal (X;) were recorded and are given in Table 4.

Table 4: OA Data (3:7)
Terminal i T; Hours X; Failures
1 68.5 2
2 60.9 2
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The reliability of the system for a mission time t will
be estimated and 80% confidence intervals associated with
the estimated system reliability will be computed using the
methodology given in Chapter III. Since the time to failure
of the terminals being tested is assumed to be exponentially
distributed, a gamma prior distribution 1is assumed. From
the data above, the following results are obtained (for

detailed calculation, see Appendix B):
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Results

Table 5: Summary of Exponential
Classical Bayesian
OT&E
R(1) 94.45%
80% Interval (93.58%<R<£95.29%)
Interval Width 1.71%
OA
R(1) 96.96% 95.03%
80% Interval (94.97%<R<98.66%) | (93.87%<R<L96.22%)
Interval Width 3.69% 2.35%
OT&E
R(1.5) 91.80%
80% Interval (90.53%<R<93.02%)
Interval Width 2.49%
OA
R(1.5) 95.47% 92.64%
80% Interval (92.55%<R<£98.00%) | (90.94%<R<94.39%)
Interval Width 5.45% 3.45%
OT&E
R(2) 89.21%
80% Interval (87.58%<R<90.81%)
Interval Width 3.23%
OA
R(2) 94.01% 90.32%
80% Interval (90.19%<R<£97.34%) | (88.11%<R<L92.59%)
Interval Width 7.15% 4.48%
OT&E
R(2.5) 86.70%
80% Interval (84.72%<R<88.65%)
Interval Width 3.93%
OA
R(2.5) 92.56% 88.05%
80% Interval (87.89%<R<96.68%) (85.37%<R<90.82%)
Interval Width 8.79% 5.45%
OT&E
R(3.5) 81.89%
80% Interval {79.29%<R<84.47%)
Interval Width 5.18%
OA
R(3.5) 89.75% 83.69%
80% Interval (83.47%<R<95.39%) (80.13%<R<87.39%)
Interval Width 11.92% 7.26%
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Figure 2: Classical and Bayesian Reliability Estimates
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Figure 3: Comparison of OA Interval Widths
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Figure 2 shows that the OA reliability estimates using
the Bayesian method are lower (more conservative) than the
OA classical estimates (which consider only the 4 failures
in 129.4 hours) for the six different values of t.

Figure 3 shows that the strength of Bayesian analysis
lies in the posterior analysis. In all six cases, the
Bayesian method yields a tighter range for the point
estimate. The difference between the OA Bayesian
probability interval width and OA classical confidence
interval width ranges from 1.34% to 4.66% for the mission
times being considered. As the mission time increases, the
widths of the confidence interval and the probability
interval both increase and the gaps between the two
intervals get larger.

Reliability Analysis of a Series System.

Consider a system composed of k = 3 independent

components in series configuration. The time to failure of

each component is assumed to be exponentially distributed.
Let A, = 0.05 failure per hour, A, = 0.067 failure per hour,
and Az = 0.05 failure per hour be the respective constant

failure rates of each component. The failure rate for the

system is

3
A= XAi= 0.05 + 0.067 + 0.05

i=1

il

0.167 failure per hour.
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Thus the mean failure time for the system is

E(A) = (—}:)= (_(')—%—6_7) = 6 hours.

For the true system, using a mission time, t of one
hour, the reliability of components 1, 2, and 3 are

R; = Ry = exp(-0.05) = 95.12%

R; exp(-0.067) = 93.52%.
The reliability of the system can be calculated as |

Rs = RiXRyXR; = 95.12%%93.52%x95.12% = 84.62%

or Rs = exp(-At) = exp(-0.167) = 84.62%.

Using a computer program called RAPTOR (Rapid
Availability Prototyping for Testing Operational Readiness),
which is developed by AFOTEC, to simulate the true system,
the following data are obtained (to review the simulated

data, see Appendix C):

Table 6: System Level DT Data

Run i T; Hours X; Failures
1 499.86 80
2 449.53 78
3 384.76 46
4 543.47 97
5 591.88 75

Table 7: System Level OT Data

Run i T; Hours X; Failures
1 87.86 13
2 122.92 27
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Table 8: Component Level DT Data
Run i | T; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3
1 499.86 24 28 28
2 449.53 20 37 21
3 384.76 13 20 13
4 543.47 29 39 29
5 591.88 21 33 21
Table 9: Component Level OT Data
Run i | T; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3
1 87.86 4 5 4
2 122.92 9 10 8

The reliability of the system for a mission time t will

be estimated and 80% confidence intervals associated with

the estimated system reliability will be computed using the

methodology given in Chapter III.

following results are obtained

see Appendix D):
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Table 10: System Reliability Using System Level Data
Classical Bayesian Bayesian
Method Method 1 Method
DT&E
R(1) 85.88%
80% CI/PI | (85.01%,86.74%)
Width 1.73%
OT&E
R(1) 82.72% 81.62% 84.31%

80% CI/PI | (79.53%,85.86%) | (85.53%) | (82.10%,86.46%)
Width 6.33% 4.36%
DT&E
R(1.5) 79.58%

80% CI/PI | (78.38%,80.78%)

Width 2.40%
OT&E
R(1.5) 75.23% 73.77% 77.43%

80% CI/PI | (70.92%,79.56%) ( (79.11%) | (74.40%,80.39%)
Width 6.33% 5.99%
DT&E
R(2) 73.75%

80% CI/PI | (72.27%,75.23%)

Width 2.96%
OT&E
R(2) 68.42% 66.69% 71.11%

80% CI/PI | (63.24%,73.72%) | (73.16%) | (67.41%,74.75%)
Width 10.48% 7.34%
DT&E
R(2.5) 68.34%

80% CI/PI | (66.63%,70.07%)

Width 3.44%
OT&E
R(2.5) 62.22% 60.30% 65.32%

80% CI/PI | (56.40%,68.30%) | (67.67%) | (61.08%,69.51%)
Width 11.90% B8.43%
DT&E
R(3) 63.33%

80% CI/PI | (61.43%,65.26%)

Width 3.83%
OT&E
R(3) 56.59% 54.54% 60.01%

80% CI/PI | (50.29%,63.29%) | (62.59%) | (55.35%,64.63%)
Width 13% 9.28%

* The Value in () in Bayesianl collumn is combined DT &

OT.
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Table 11: System Reliability Using Component Level Data

Classical Bayesian True R
Method Method
DT&E
R(1) 85.88% 84.62%
80% CI/PI | (84.37%,87.35%)
Width 2.98%
OT&E
R{1) 82.72% 84.98% 84.62%
80% CI/PI | (77.21%,88.07%) | (82.15%,87.94%)
Width 10.86% 5.79%
DT&E
R(1.5) 79.58% 77.84%
80% CI/PI | (77.51%,81.64%)
Width 4.13%
OT&E
R(1.5) 75.23% 78.35% 77.84%
80% CI/PI | (67.85%,82.65%) | (74.47%,82.47%)
Width 14.8% 8%
DT&E
R(2) 73.75% 71.61%
80% CI/PI | (71.21%,76.31%)
Width 5.1%
OT&E
R(2) 68.42% 72.24% 71.61%
80% CI/PI | (59.63%,77.56%) | (67.50%,77.35%)
Width 17.93% 9.85%
DT&E
R(2.5) 68.34% 65.87%
80% CI/PI | (65.40%,71.32%)
Width 5.92%
OT&E
R(2.5) 62.22% 66.61% 65.87%
80% CI/PI | (52.39%,72.79%) | (61.17%,72.54%)
Width 20.4% 11.37%
DT&E
R(3) 63.34% 60.59%
80% CI/PI | (60.08%,66.66%)
Width 6.58%
OT&E
R(3) 56.60% 61.42% 60.59%
80% CI/PI | (46.03%,68.31%) | (55.45%,68.02%)
Width 22.28% 12.57%
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Figure 4: OT&E Reliability using Bayesian Method 1
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Figure 4 shows that using Bayesian method 1 (Bayesian
method 1 only gives a reliability estimate), the reliability
estimates using only OT&E data are lower than the true
reliability. The gaps between the true reliability and the
OT&E reliability estimates for the mission times being
considered range from 3.01% to 6.01%. Since the true
reliability of the system is known, vyou would want the
reliability estimates of the system to be as close to the
true reliability as possible. The results obtained above
using only OT&E data are not wvery good.

The reliability estimates using combined OT&E and DT&E
data are higher than the true reliability. The gaps between
the true reliability and the reliability estimates for the
mission times being considered range from 0.91% to 2%. The

deviations from the true reliability are still significant.
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However, the results are much better than just using OT&E
data. The rest of the the results below used the

methodology for the exponential model given in Chapter III.

Figure 5: Classical & Bayesian Reliability Estimates
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Figure 5 shows that the DT&E classical reliability
estimates are higher than the true reliability. The
deviations range from 1.26% to 2.74% for the mission times
being considered. The deviations are considered to be
significant. The OT&E reliability estimates wusing the
Bayesian method are higher than the OT&E classical estimates
and closer to the true reliability for the five different
values of t at both the system level and component level.
The OT&E reliability estimates using the classical method

are lower than the true reliability. The deviations range
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from 1.9% to 4% for the mission times being considered.
Again, the deviations are considered to be significant.

The OT&E reliability estimates using the Bayesian
method are all very close (less than 1%) to the true
reliability. The OT&E reliability estimates using system
level data underestimated the true reliability with
deviations ranging from 0.31% to 0.58% for the mission times
being considered. Using component 1level data, the OT&E
reliability estimates overestimated the +true reliability
with deviations ranging from 0.36% to 0.83% for the mission
times being considered.

Figure 6: Comparison of OT&E Interval Widths
(System Level)
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Figure 7: Comparison of OT&E Interval Widths
(Component Level)
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Figuies 6 and 7 show the strength of Bayesian analysis
lies in the posterior analysis. In all five cases, the
Bayesian method yields much tighter ranges for the point
estimate at both the system and component 1level. At the
system level, the difference between the OT&E Bayesian
probability interval width and OT&E classical confidence
interval width ranges from 1.97% to 3.72% for the mission
times being considered. At the component level, the
difference ranges from 5.07% to 9.71%. System level
reliability estimates yield tighter intervals than component
level aggregated to system. For the mission times being
considered, the difference ranges from 4.53% to 9.28% for
OT&E classical confidence interval widths and from 1.43% to

3.29% for OT&E Bayesian probability interval widths.
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Reliability Analysis of a Parallel System with Independent
and Identical Components.

Consider a system composed of 3 independent and
identical components arranged in a parallel configuration.
The time to failure of each component is assumed to be

exponentially distributed. Let A = 0.05 failure per hour be

the constant failure rate of each component. For the true
system, using a mission time, t of one hour, the reliability
of components 1, 2, and 3 are

Re = Ry = R;

R; = exp(-0.05) = 95.1229%.

The reliability of the system can be calculated as

R« =1 - (1 - R)®=1=- (1 - 95.12%)°= 99.9884%.

Using a computer program called RAPTOR, which 1is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,
see Appendix E):

Table 12: Aggregated Component Level DT Data

Run i T; Hours X; Failures
1 1,493.82 79
2 1,463.13 75
3 1,492.59 66
4 1,490.85 70
5 1,490.58 81

Table 13: Aggregated Component Level OT Data

Run i T; Hours X; Failures
1 373.26" 22
2 346.62 15
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Table 14: Component Level DT Data

Run i | T:; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3

1 497.94 24 35 20

2 487.71 26 30 19

3 497.53 22 21 23

4 496.95 20 19 31

5 496.86 23 28 30

Table 15: Component Level OT Data

Run i | T; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3

1 124.42 7 8 7

2 115.54 3 6 6

The reliability of the system for a mission time t will

be estimated and 80% confidence intervals associated with

the estimated system reliability will be computed using the

methodology given in Chapter III.

following results are obtained

see Appendix F):
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Table 16: System Reliability Using Aggregated Data
Classical Method Bayesian Method True R

DT R(1) 99.989% 99.988%
80% CI/PI | (99.986%,99.991%)

Width 0.005%

OT R(1) 99.987% 99.9088% 99.988%
80% CI/PI | (99.978%,99.994%) | (99.985%,99.991%)

wWidth 0.016% 0.0006%

DT R(5) 98.922% 98.918%
80% CI/PI | (98.720%,99.100%)

Width 0.38%

OT R(5) 98.837% 98.906% 98.918%
80% CI/PI | (98.069%,99.367%) | (98.604%,99.161%)

Width 1.298% 0.557%
DT R(10) 93.930% 93.910%
80% CI/PI | (92.956%,94.823%)

Width 1.867%
OT R(10) 93.508% 93.865% 83.910%
80% CI/PI | (89.972%,96.217%) | (92.394%,95.133%)

Width 6.245% 2.739%
DT R{15) 85.355% 85.314%
80% CI/PI | (83.335%,87.259%)

Width 3.924%
OT R(15) 84.480% 85.238% 85.314%
80% CI/PI | (77.491%,90.355%) | (82.202%,87.937%)

width 12.864% 5.735%
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Table 17: System Reliability Using Component Level Data

Classical Method Bayesian Method True R

DT R(1) 99.989% 99.988%
80% CI/PI | (99.984%,99.992%)

Width 0.008%

OoT R(1) 99.988% 99.988% 99.988%
80% CI/PI | (99.969%,99.997%) | (99.980%,99.994%)

Width 0.028% 0.014%

DT R(5) 98.927% 98.918%
80% CI/PI | (98.567%,99.222%)

Width 0.655%

OT R(5) 98.871% 98.880% 98.918%
80% CI/PI | (97.412%,99.641%) | (98.225%,99.369%)

Width 2.229% 1.144%
DT R(10) 93.962% 93.910%
80% CI/PI | (92.228%,95.452%)

Width 3.224%
OT R(10) 93.699% 93.772% 93.910%
80% CI/PI | (87.227%,97.748%) | {90.690%,96.225%)

Width 10.521% 5.535%
DT R(15) 85.429% 85.314%
80% CI/PI | (81.881%,88.644%)

Width 6.763%
OT R(15) 84.920% 85.129% 85.314%
80% CI/PI | (72.587%,93.991%) | {(78.908%,90.377%)

Width 21.404% 11.469%

Figure 8: Classical and Bayesian Reliability Estimates
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Figure 8 shows that the DT&E classical reliability

estimates slightly overestimate the true reliability. The
deviations range from 0.001% to 0.12% for the mission times
being considered. The deviations are considered to be
insignificant. The OT&E reliability estimates using the
classical method underestimated the true reliability. The
deviations range from 0% to 0.83% for the mission times
being considered. The deviations are considered to be not
too bad.

The OT&E reliability estimates using the Bayesian
ﬁethod are all very close (less than 0.2%) to the true
reliability. The OT&E reliability estimates using
aggregated component 1level data underestimated the true
reliability with deviations ranging from 0% to 0.08% for the
mission times being considered. Using component level
data, the OT&E reliability estimates also underestimated the
true reliability with deviations ranging from 0% to 0.19%
for the mission times being considered. The OT&E
reliability estimates using the Bayesian method are closer
to the true reliability than the classical OT&E reliability

estimates.
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Figure 9: Comparison of OT&E Interval Widths
(Aggregated Level)
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Figure 10: Comparison of OT&E Interval Widths
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Figures 9 and 10 again show the strength of Bayesian
analysis. In all six cases, the Bayesian method yields much
tighter ranges for the point estimate at both the aggregated
level and component level. At the aggregated component
level, the difference between the OT&E Bayesian probability
interval width and OT&E classical confidence interval width
ranges from 0.01% to 7.13% for the mission times being
considered. At the component level; the difference ranges
from 0.01% to 9.94%. Aggregated component level reliability
estimates yield tighter intervals than component levels
aggregated to system. For the mission times being
considered, the difference ranges from 0.01% to 8.54% for
OT&E classical confidence interval widths and from Of01% to
5.73% for OT&E Bayesian probability interval widths.
Reliability Analysis of a Parallel System with Different
Independent Components.

Consider a system composed of 3 different independent
components arranged in a parallel configuration. The time

to failure of each component is assumed to be exponentially

distributed. Let A = 0.1 failure per hour, A = 0.05

failure per hour, and A3 = 0.025 failure per hour be the

respective constant failure rates of each component.
For the true system, using a mission time, t of one

hour, the reliability of components 1, 2, and 3 are
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R; = exp(-0.100)
R, = exp(~-0.050)
R; = exp(-0.025)

90.48%

95.12%

97.53%.

The reliability of the system can be calculated as

Re =1 - (1 - Ri)(1 - Re) (1 = Rs)

=1 - (1 - 0.9048) (1 - 0.9512) (1 - 0.9753)

Using a

developed by AFOTEC, to

following data are obtained

see Appendix G):

computer program called RAPTOR,

simulate the true

= 99,9885%.

which is

system, the

(to review the simulated data,

Table 18: Component Level DT Data
Run i | T; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3
1 488.03 55 27 10
2 498.15 53 30 8
3 498.39 44 24 12
4 496.55 36 26 9
5 496.36 60 33 9
Table 19: Component Level OT Data
Run i | T; Hours | X; Failures | X; Failures | X; Failures
Component 1 | Component 2 | Component 3
1 122.22 13 9 3
2 113.29 8 8 4

The reliability of the system for a mission time t will

be estimated and 80% confidence intervals associated with

the estimated system reliability will be computed using the

methodology given in

following results are obtained

see Appendix H):

Chapter III.
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Table 20: System Reliability Using Component Level Data
Classical Method Bayesian Method True R

DT R(1) 99.99% 99.989%
80% CI/PI | (99.986%,99.993%)

Width 0.007%

OT R(1) 99.983% 99.989% 99.989%
80% CI/PI | (99.957%,99.995%) | (99.983%,99.994%)

Width 0.038% 0.011%

DT R(5) 99.106% 98.977%
80% CI/PI | (98.776%,99.371%)

Width 0.595%

OT R(5) 98.495% 99.062% 98.977%
80% CI/PI | (96.682%,99.503%) | (98.584%,99.428%)

Width 2.821% 0.844%
DT R(10) 95.189% 94.498%
80% CI/PI | (93.661%,96.496%)

Width 2.835%
OT R(10) 92.202% 94.974% 94.498%
80% CI/PI | (84.868%,97.087%) | (92.813%,96.722%)

Width 12.219% 3.909%
DT R(15) 88.792% 87.183%
80% CI/PI (85.7%,91.578%)

Width 5.878%
OT R(15) 82.457% 88.323% 87.183%
80% CI/PI | (69.464%,92.678%) | (84.066%,91.935%)

Width 23.214% 7.869%

Figure 11 shows that the DT&E classical reliability
estimates overestimated the true reliability. The deviations
range from 0.001% to 1.61% for the mission times being
The are considered to Dbe

considered. deviations

significant. The OT&E reliability estimates using the

classical method underestimated the true reliability. The
deviations range from 0.006% to 5.87% for the mission times
being considered. The deviations are again considered to be

significant.
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Using component level data, the OT&E reliability
estimates overestimated the true reliability with deviations
ranging from 0% to 1.14% for the mission times being
considered. While the deviations are still large, the OT&E
reliability estimates using the Bayesian method are much
closer to the true reliability than the classical OT&E

reliability estimates.

Figure 11: Classical and Bayesian Reliability Estimates
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Figure 12 once again shows the strength of Bayesian
analysis. In all six cases, the Bayesian method yields much
tighter ranges for the point estimate. The difference
between the OT&E Bayesian probability interval width and
OT&E classical confidence interval width ranges from 0.03%

to 15.35% for the mission times being considered.
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Figure 12: Comparison of OT&E Interval Widths
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Reliability Analysis of a Bridge System with Independent and
Identical Components.

Consider a system composed of 5 independent and
identical components given in Figure 1 (page 30). The time
to failure of each component is assumed to be exponentially

distributed. Let A = 0.05 failure per hour be the constant

failure rate of each component. For the true system, using
a mission time, t of one hour, the reliability of components
1, 2, 3, 4, and 5 are

Re =R =Ry = R; = Ry = Rs = exp(-0.05) = 95.12%.

The reliability of the system can be calculated as

Rs = RiRy + R:Rs + RijRsRs + R:R3Ry - RiR:R3Rs - RiR:RsRs -

RiR:RiRs = RiR3R4Rs —= R:RsR4Rs + 2R;R;R3RRs = 99.50%.
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Using a computer program called RAPTOR to simulate the

true system, the following data are obtained

simulated data, see Appendix I):

{to review the

Table 21: Aggregated Component Level DT Data
Run i T; Hours X; Failures
1 2,496.85 136
2 2,486.35 123
3 2461.30 124
4 2493.05 125
5 2498.40 130
Table 22: Aggregated Component Level OT Data
Run i T; Hours X; Failures
1 618.85 30
2 604.10 26
Table 23: Component Level DT Data
Run i T; Hours Cl X; C2 X C3 X C4 X C5 X
1 499,37 32 21 35 25 23
2 497.27 28 17 24 27 27
3 492.26 27 28 25 20 24
4 498.61 26 27 22 23 27
5 499.68 27 23 33 25 22

Table 24: Component Level OT Data
Run i | T; Hours | Cl X; C2 X; C3 X; C4 X; C5 X;
1 123.77 7 6 8 3
2 120.82 6 5 6 4 5

o)}

The reliability of the system for a mission time t will
be estimated and 80% confidence intervals associated with
the estimated system reliability will be computed using the
methodology given in Chapter III. From the data above, the
following results are obtained (for detailed calculation,

see Appendix J):
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Table 25: System Reliability Using Aggregated Data
Classical Method Bayesian Method True R

DT R(1) 99.48% 99.50%
80% CI/PI (99.42%,99.53%)

Width 0.11%
OT R(1) 99.58% 99.49% 99.50%
80% CI/PI (99.43%,99.71%) (99.44%,99.54%)

Width 0.28% 0.1%
DT R({4) 92.39% 92.74%
80% CI/PI (91.67%,93.07%)

Width 1.4%
OT R(4) 93.82% 92.52% 92.74%
80% CI/PI (91.70%,95.62%) (91.85%,93.16%)

Width 3.92% 1.31%
DT R(7) 79.95% 80.76%
80% CI/PI (78.29%,81.55%)

Width 3.26%
OT R(7) 83.36% 80.25% 80.76%
80% CI/PI (78.37%,87.80%) (78.70%,81.75%)

Width 9.43% 3.05%
DT R(10) 65.75% 66.95%
80% CI/PI (63.35%,68.13%)

Width 4.78%
OT R(10) 70.86% 66.21% 66.95%
80% CI/PI (63.47%,77.91%) (63.94%,68.43%)

Width 14.44% 4.49%
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Table 26: System Reliability Using Component Level Data
Classical Method Bayesian Method True R

DT R(1) 99.50% 99.50%
80% CI/PI (99.38%,99.61%)

Width 0.23%

OT R(1) 99.63% 99.52% 99.50%
80% CI/PI (99.24%,99.85%) (99.38%,99.65%)

Width 0.61% 0.27%

DT R (4) 92.64% 92.74%
80% CI1/PI (91.01%,94.10%)

Width 3.09%

OT R(4) 94% 92.87% 92.74%
80% CI/PI (89.18%,97.66%) (90.91%,94.67%)

Width 8.48% 3.76%

DT R(7) 80.48% 80.76%
80% CI/PI (76.76%,83.98%)

Width 7.22%

OT R(7) 84.65% 81.05% 80.76%
80% CI/PI (72.73%,93.18%) (76.50%,85.40%)

Width 20.45% 8.90%
DT R(10) 66.52% 66.95%
80% CI/PI (61.16%,71.79%)

Width 10.63%
OT R(10) 72.81% 67.39% 66.95%
80% CI/PI (55.66%,87.02%) (60.78%,74.03%)

Width 31.36% 13.25%

Figure 13: Classical and Bayesian Reliability Estimates
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Figure 13 shows that the DT&E classical reliability
estimates underestimated the true reliability. The
deviations range from 0.02% to 1.2% for the mission times
being considered. The deviations are considered to be
significant. The OT&E reliability estimates using the
classical method overestimated the true reliability. The
deviations range from 0.08% to 5.86% for the mission times
being considered. The deviations are again considered to be
significant.

The OT&E reliability estimates wusing the Bayesian
method are all wvery close (less than 1%) to the true
reliability. The OT&E reliability estimates using
aggregated component level data underestimated the true
reliability with deviations ranging from 0.01% to 0.74% for
the mission times being considered. Using component level
data, the OT&E reliability estimates overestimated the true
reliability with deviations ranging from 0.02% to 0.44% for

the mission times being considered. While the deviations

‘are still significant, the OT&E reliability estimates using

the Bayesian method are much closer to the true reliability

than the classical OT&E reliability estimates.
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Figure 14: Comparison of OT&E Interval Widths
(Aggregated Level)

Comparison of OT&E Interval Widths

20
15 - * .
z 8 »* OT Aggregated Classical
E N x X OT Aggregated Bayesian
10
& . o ° o Aggregated Different
® [ o
5
C % o % X
C o X X
0 [ N ol L § 1 )l( 1 1 1 1 1 ] '
0 2 4 6 8. 10 12
Mssion Time

Figure 15: Comparison of OT&E Interval Widths
(Component Level)
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Figures 14 and 15 again show the strength of Bayesian
analysis. In all seven cases, the Bayesian method yields
much tighter ranges for the point estimate at both the
aggregated level and component level. At the aggregated
component level, the difference between the OT&E Bayesian
probability interval width and OT&E classical confidence
interval width ranges from 0.18% to 9.95% for the mission
times being considered. At the component level, the
difference ranges from 0.34% to 18.11%. Aggregated
component level reliability estimates yield tighter
intervals than component level aggregated to system. For
the mission times being considered, the difference ranges
from 0.33% to 16.92% for OT&E classical confidence interval
widths and from 0.17% to 8.76% for OT&E Bayesian probability
interval widths.

Reliability Analysis of a Bridge System with Different
Independent Components.

Consider a system composed of 5 independent components

given in Figure 1 (page 30). The time to failure of each

component is assumed to be exponentially distributed. Let

A, = 0.1 failure per hour, A, = 0.05 failure per hour, A; =
0.033 failure per hour, A; = 0.025 failure per hour, and As

= 0.02 failure per hour be the respective constant failure

rates of each component.
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For the true system, using a mission time, t of one

hour, the reliability of components 1, 2, 3, 4, and 5 are

R, = exp(~-0.10) = 90.48%
R, = exp(~0.05) = 95.12%
R; = exp(~-0.033) = 96.75%
Ry = exp(-0.025) = 97.53%
Rs = exp(-0.20) = 98.02%.

The reliability of the system can be calculated as

Rs = RiRsy + R:Rs + RiR3Rs + R:RsRs - RiR:R3Rs - RiR:R3Rs -
RiR:R4Rs = RiR3RsRs = R:R3RsRs + 2R;R:R3R4Rs = 99.48%.

Using a computer program called RAPTOR, which 1is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,

see Appendix K):

Table 27: Component Level DT Data
Run i T; Hours Cl X C2 X C3 X C4 X; C5 X
1 499.09 51 19 22 15 13
2 490.55 41 23 21 12 9
3 497.97 44 30 17 6 8
4 495,31 52 26 18 12 10
5 498.76 48 25 22 18 15

Table 28: Component Level OT Data

Run i | T; Hours | C1 X; C2 X; C3 X; C4 X; C5 X;
1 124.09 11 10 5 1

2 119.96 12 3 3 4 1

—
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The reliability of the system for a mission time t will

be estimated and 80% confidence intervals associated with

the estimated system reliability will be computed using the

methodology given in Chapter IIT.

following results are obtained

see Appendix L):

From the data above, the

(for detailed calculation,

Table 29: System Reliability Using Component Level Data

Classical Method Bayesian Method True R

DT R(1) 99.50% 99.48%
80% CI/PI (99.38%,99.59%) :

width 0.21%

OT R(1) 99.51% 99.50% 99.48%
80% CI/PI (99.14%,99.76%) (99.33%,99.65%)

Width 0.62% 0.32%

DT R({4) 93.08% 92.97%
80% CI/PI (91.64%,94.37%)

Width 2.73%

OT R(4) 803.52% 93.24% 892.97%
80% CI/PI (89.08%,96.70%) (91.06%,95.12%)

Width 7.62% 4.006%

DT R{7) 82.21% 82.13%
80% CI/PI (78.92%,85.27%)

Width 6.35%

OT R(7) 83.58% 82.71% 82.13%
80% CI/PI (73.88%,91.23%) (77.73%,87.16%)

Width 17.35% 9.43%
DT R(10) 69.82% 69.86%
80% CI/PI (64.97%,74.52%)

Width 9.55%
OoT R(10) 72.29% 70.71% 69.86%
80% CI/PI (58.41%,84.44%) (63.34%,77.61%)

Width 26.03% 14.27%
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Figure 16: Classical and Bayesian Reliability Estimates
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Figure 16 shows that the DT&E classical reliability
estimates are very close to the true reliability. The
deviations range from -0.04% to 0.11% for the mission times
being considered. The deviations are considered to be
insignificant. The OT&E reliability estimates using the
claésical method overestimated the true reliability. The
deviations range from 0.03% to 2.43% for the mission times
being considered. The deviations are considered to be
significant.

Using component 1level data, the OT&E reliability
estimates overestimated the true reliability with deviations
ranging from 0.02% to 0.85% for the mission times being
considered. While the deviations are still large, the OT&E

reliability estimates using the Bayesian method are much
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closer to the true reliability than the classical OT&E

reliability estimates.

Figure 17: Comparison of OT&E Interval Widths
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Figure 17 once again shows the strength of Bayesian
analysis. In all seven cases, the Bayesian method yields
much tighter ranges for the point estimate. The difference
between the OT&E Bayesian probability interval width and
OT&E classical confidence interval width ranges from 0.3% to
11.76% for the mission times being considered.

Summary.

The overall trend from the results obtained in this
chapter is that the Bayesian methods used in this research
produced much shorter confidence intervals compared to the
classical methods. Another trend is that system level data
and aggregated component level data yield tighter confidence

intervals than component level data aggregated to system.
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For the simulated systems considered in this research, the
Bayesian reliability point estimates are much closer to the
true reliability of the system as compared to the classical

reliability estimates.
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V. Conclusions

The results in Chapter IV show that the Bayesian
methods used in this research produced much shorter
confidence intervals about the reliability point estimates
for a wvariety of systems than the traditional classical
methods. This research shows that meaningful results (in
the form of shorter confidence intervals) can be obtained by
simply applying Bayesian techniques to consecutive test
phases.

The binomial model shows that while the OT&E point
estimates are similar (90.63% wvs. 91.67%), the Bayesian
method produced a much tighter confidence interval (12.66%
vs. 27.88%), thus making it easier for managerial
decision-making. The exponential model applied to a real
set of data again shows that the Bayesian method produced
smaller confidence intervals.

For a series system with exponential components, using
simulated data for a 3-component system, the Bayesian method
produced tighter confidence intervals. The reliability
point estimates using the Bayesian method are closer to the
true reliability of the system as compared to the classical
reliability point estimates. System level reliability
estimates yield much tighter confidence intervals than

component level aggregated to system. From the results in
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Chapter IV, note that the Bayesian Method 1 only produced
the reliability point estimates. Thus this method might not
useful for a decision maker.

For a parallel system with independent and identical
components, using simulated data for a 3-component system,
the Bayesian method again produced tighter confidence
intervals. The reliability point estimates using the
Bayesian method are again closer to the true reliability of
the system as compared to the classical reliability point
estimates. Aggregated component level reliability estimates
yvield much tighter confidence intervals than component level
aggregated to system.

For a parallel system with different independent
components, using simulated data for a 3-component system,
the Bayesian method once again produced tighter confidence
intervals. The reliability point estimates wusing the
Bayesian method are again closer to the true reliability of
the system as compared to the classical reliability point
estimates.

For a bridge system given in Figure 1 (page 30) with
independent and identical components, using simulated data,
the Bayesian method again produced much tighter confidence
intervals. The reliability point estimates wusing the

Bayesian method are closer to the true reliability of the
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system as compared to the classical reliability point
estimates. Aggregated component level reliability estimates
yield a much tighter confidence intervals than component
level aggregated to system.

For a bridge system given in Figure 1 (page 30) with
different independent components, using simulated data, the
Bayesian method once again produced much tighter confidence
intervals. The reliability point estimates wusing the
Bayesian method are much closer to the true reliability of
the system as compared to the classical reliability point
estimates.

In summary, the results of this research show that the
Bayesian method produced a much tighter confidence interval
as compared to the classical method for OT&E data. System
level data and aggregated component level data will yield a
tighter confidence interval than component level data
aggregated to system. For multiphase test process commonly
implemented by agencies such as AFOTEC, the Bayesian method
will work with using all the previous test data as prior
information for the current test. However, it is up to the
analysts to determine if the previous test data are
representative of the current test. Otherwise, you are
comparing apples to oranges and the results obtained are

meaningless.
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Appendix A: Calculation For The Binomial Model.
The Classical Binomial Method.

Suppose the following data are obtained from a missile
program. For the DT&E portion of the test, two missiles
failed out of 20 missiles launched. For the OT&E portion of
the test, one missile failed out of 12 missiles launched.
Assuming the data have the binomial distribution, point
estimates for the probability of success p and 80%
confidence interval about p will be computed. The point

estimate of p for DT&E and OT&E are

DT&E: P = (—%—g— = 90.00%

OTSE: P = (%) - 91.67%.
The 80% TCI are

DT&E: (75.52%,97.31%)

. 18
Lower bound: (18+(20-18+1)F1—o.2/2(2><20—2x18+2,2x18))

= 18 _ 18 _
( 18+3Fo.9(6, 36)) ( 18+3x1.95 0.7552

Upper bound:( (18+1)F1-0.2/2(2X18+2, 2X20-2x18) )

(20-18)+(18+1)Fi-0.2/2(2X18+2, 2X20-2x18)

_ 19F0.9(38, 4) ) _ 19%3.81 3
N (2+19Fo.9(381 4)) (2+19X3.81 = 0.9731

OT&E: (71.25%,99.13%)

: 11
Lower bound: (11+(12—1l+1)F1_o.2/2(2x12——2x11+2, 2xll))

_ 11 _ 11 _
= (11+2Fo.9(4,22)) = <11+2x2.22 = 0.7125
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. (11+1)Fi-0.2/2(2X11+2,2x12-2x%11) )
Upper bound:| G311y (11+1)F10.2/2(2X 1142, 2x12~-2X11)

- (1+12Fo.s(24,2) T+12x9.45/) = 0.9913

The Bayesian Binomial Method.

There are two failures out of 20 missiles launched
during DT&E, thus x, = 18 and no = 20 and the B(18,20) prior
distribution is used. There 1is one failure out of 12
missiles launched during OT&E, thus x = 11 and n = 12.

The mean of the posterior distribution is the Bayesian
point estimator. Under the squared error loss function, the

Bayesian point estimator is

= +X
B = Elplxixe,no) = (£322) = (HH18) - (£2) - 90.63s.

For the 80% TBPI, the upper and lower interval
endpoints are (83.73%,96.39%).

Lower bound:

11+18
( 11+18+(12+20-11~-18)F;¢.2/2(2X12+2x20~-2Xx11-2x18, 2x11+2x18)
29 _ 29 _
(29+3Fo o6, 58)) = \Z9+3x1.88/) ~ 0-8373
Upper bound:
( (11+18)F;9.2/2(2%x11+2x18, 2X12+2%x20-2x11-2x%x18)
12+20—11—18+UJ+18N54JUAZX11+ZX18,2x12+2x20—2x11—2x18))
29F0.9(58,6) \ _ 29%2.76 \ _
(3+29Fo o(58, 6)) = \3+29x2.76/) = 0.9639



Appendix B: Calculation For The Exponential Model.

The Classical Exponential Method.

The following data are obtained from a reliability test

program.
Table Bl: OT&E Data (3:6)
Terminal i T; Hours X; Failures 7i= XJT,
1 184.3 12 0.06511
2 232.6 9 0.03869%
3 172.8 9 0.05208
4 284 .4 17 0.05977
5 264.8 18 0.06798
Table B2: OA Data (3:7)
Terminal i T; Hours X; Failures
1 68.5 2
2 60.9 2

Assuming the time to failure of the terminals have the

exponential distribution, point estimates for the failure

rate A and 80% confidence interval about A will be computed.

.7 = il_)_ —65 ).
. 5 fz) _ 4 _

where f, = 65 1s the number of failures and T, = 1138.9 is
the total test time from Table Bl and f; = 4 is the number
of failures and T; = 129.4 is the total test time from Table
B2.

The 80% two-sided confidence intervals (TCI) are

X5.5/2(2%65)  x2_o.5/2(2X65) x5.1(130)  x3.4(130)
OT&E: 2x1138.9 7 2x1138.9 = 2277.8 1 2277.8
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.81 151.05
(:§g27?é, 2277.8) = (0.04821,0.06631)

X5.2/2(2%4)  x}-0.2/2(2%4) x5.1(8)  x8.5(8) )
OA: 2x129.4 1 2x129.4 = 258.8 7 258.8

(R, 85%) - ©.01305,0.05163)

The reliability estimators of R(t) for a mission time t
= 1 hour are

OT&E: R(t) = 94.45%

”~

R(t) = exp(-At) = exp(-0.05707X1) = 0.9445
oa: R(t) = 96.96%
R(t) = exp(-it) = exp(-0.03091X1) = 0.9696.

The 80% two-sided confidence intervals (TCI) are

OT&E: (93.58%,95.29%)
exp(-0.06631X1) £ R(1) £ exp(-0.04821X1)

OA:  (94.97%,98.66%)
exp(-0.05163X1) £ R(1) £ exp(-0.01349X1).

The Bayesian Exponential Method.
Bayesian Exponential Prior. OT&E data are used to

obtain a gamma prior. The mean and variance of the gamma
distribution are E(A) = a/B and V(A) =a/B?. E(A) and V(A)
can be estimated using the sample mean and variance of A
respectively. Thus o and f can be computed as oa =

E*(A)/V(A) and B = E(A)/V(A).
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From Table Bl:
E(AM) = 4 = 0.05673 and V(A) = s;:2 = 0.00014.

These yielded the parameter estimates

0.056732) _ 0.05673) _
a = (560014 ) = 23-28 and B = (ggogiy) - 405-21.

Bayesian Exponential Posterior Analysis. The mean of
the posterior distribution is the Bayesian point estimator.

Under the squared error loss function, the Bayesian point

estimator is

3 . - [ £xa) _ 4+23.28 _
l = E(Mf,a,B) - (T""ﬂ) - 129.4+405.21 = 0.05103.

The 80% two-sided probability interval (TBPI) is

X5.2/2(2X442%23.28)  x3_o ,/0(2%4+2x23.28)
2(129.4+405.21) ¢ 2(129.4+405.21)

41.18 67.67

The Bayesian estimator of R(t) for t = 1 hour is

g a+f
- | B
L(5)+(5)~

(405 21)*1

\ 2&?35%) +( 405.21) +1

The 80% two-sided probability interval (TBPI) is

= 95.03%

exp(-0.06329X1) < R(1) £ exp(-0.03852X1)

(93.87% < R(1) < 96.22%).
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Appendix C. Simulated Data For Series System.
DT Data Run #1
Time Component Time Component
Failure Failure

4.06 C3 244.08 Cl
6.20 C2 245.78 C3
12.19 C2 247.35 C3
15.64 Cl 262.18 C2
16.39 Cl 278.38 Cl
22.66 C2 279.89 Cl
39.58 Cl 280.96 C3
43.63 C3 282.47 C2
44.47 C3 288.81 C2
49,98 C2 296.84 C3
53.87 C2 308.01 Cl
57.15 Cl 308.60 Cl
71.94 Cl 310.25 C2
72.13 Cl 316.96 C3
73.51 C3 329.51 Cl
77.89 C3 333.17 C2
82.85 C2 336.92 C3
91.34 Cl 340.08 C2
93.36 C3 343.54 Cl
101.92 C3 362.98 C2
106.49 C2 369.64 C2
113.87 Cl 373.05 C2
114.93 C2 379.03 C2
127.01 Cl 395.63 C3
139.00 C3 396.23 C3
141.46 C2 400.42 Cl
145.83 Cl 407.82 C2
149.97 C3 411.09 C2
151.10 C2 415.78 C2
169.35 C2 421.76 C3
178.76 Cl 426.12 Cl
197.32 C3 430.44 Cl
197.58 C2 433.82 Cl
198.19 C3 444.57 C3
199.98 C3 461.05 C2
200.04 Cl 485,22 c2
226.10 C3 495.04 C3
227.85 C2 496.78 C3
228.57 C3 497.25 Cl
239.47 C3 499.86 C3
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DT Data Run #2

Time Component Time Component
Failure Failure
12.04 C3 227.72 C3
12.07 Cl 255.18 C3
18.71 C3 255.70 C2
24.93 C2 261.48 C3
31.60 C2 267.05 C2
32.47 C3 274.55 Cl
32.66 C3 276.86 Cl
37.16 Cl 281.57 Cl
37.68 C3 281.73 C2
41.33 C3 286.19 C3
53.45 C2 286.56 Cl
64.13 Cl 296.05 C3
73.42 Cl 296.35 Cc2
75.56 Cl 298.56 C2
‘ 87.54 C2 301.29 C3
87.78 C2 301.38 Cl
88.24 C2 308.87 Cl
| 93.96 C2 313.78 Cc2
1 97.05 c2 318.71 C1
| 99.47 C2 323.07 C3
135.04 C2 323.64 C3
139.54 C2 336.32 Cl
154.84 Cl 337.83 Cl
159.06 C3 351.36 Cl
161.17 C2 353.18 Cl
165.41 Cl 353.51 C2
173.80 C2 363.70 C3
183.58 c2 366.73 - C2
185.59 Cc2 374.64 C2
187.10 C3 376.48 C2
189.16 C2 388.35 C2
195.88 C3 396.67 C2
198.87 C3 397.31 Cl
199.44 C2 398.38 C2
204.14 C2 398.81 C2
206.88 C2 403.77 C2
207.29 C2 404.07 C3
224.62 Cl 410.53 C3
225.61 C2 449.53 C2




DT Data Run #3

Time Component Time Component
Failure Failure
12.73 C2 171.78 Cl
16.97 Cl 176.02 C3
21.21 C3 207.53 C2
51.23 C2 220.65 Cl
55.53 C2 224.89 C3
68.30 Cl 225.93 C2
72.54 C3 272.35 C2
73.78 C2 276.70 Cl
74.04 Cl 280.94 C3
78.29 C3 285.39 C2
98.37 Cl 301.25 Cl
101.92 C2 305.49 C3
102.61 C3 308.09 C2
103.04 C2 324.04 C2
119.60 C2 330.31 C2
128.83 C2 330.52 C2
135.90 Cl 348.70 C2
137.39 Cl 363.13 Cl
140.14 C3 367.37 C3
141.63 C3 372.01 C2
159.47 Cl 377.28 C2
163.71 C3 380.51 Cl
165.49 C2 384.76 C3
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DT Data Run #4

Time Component Time Component Time Component
Failure Failure Failure
2.18 C2 137.72 C3 334.87 C2
2.39 C2 142.78 C2 338.17 C2
2.91 Cl 155.78 Cl 366.00 Cl
3.12 C3 155,98 C3 366.21 C3
3.18 Cl 187.69 C2 400.51 C2
3.39 C3 190.38 Cl 405.11 C2
15.20 C2 190.58 C3 406.97 C2
20.27 Cl 201.10 C2 407.45 C2
20.95 C2 206.01 C2 421.23 C2
27.89 C2 214.66 C2 432.10 C2
27.93 Cl 224.39 C2 435,24 C2
28.13 C3 227.45 C2 435.88 Cl
37.18 Cl 242.22 C2 436.09 C3
37.39 C3 248.19 C2 446.39 C2
38.87 C2 250.25 Cl 446.49 Cl
42.58 C2 250.45 C3 446.69 C3
51.82 Cl 268.14 Cl 450.89 Cl
52.03 C3 268.34 C3 451.09 C3
53.20 C2 274.50 C2 461.14 C2
56.77 Cl 274.68 Cl 473.75 C2
56.98 C3 274.88 C3 475.42 C2
62.50 C2 286.21 Cl 517.25 C2
70.94 Cl 286.41 C3 532.99 C2
71.14 C3 299.19 Cl 534.02 Cl
82.07 C2 299.39 C3 534.22 C3
83.33 Cl 303.27 Cl 534.39 C2
83.54 C3 303.47 C3 540.14 Cl
103.14 C2 322.96 Cl 540.35 C3
109.42 Cl 323.17 C3 542.63 Cl
109.63 C3 326.91 C2 542.83 C3
116.83 C2 330.92 Cl 543.27 Cl
137.52 Cl 331.12 C3 543.47 C3

80




DT Data Run #5

Time Component Time Component
Failure Failure

2.04 C2 349.24 C2
2.72 Cl 377.55 C2
3.40 C3 379.54 Cl
7.41 C2 380.22 C3
9.88 Cl 387.73 C2
10.56 C3 396.03 Cl
27.19 C2 396.71 C3
36.25 Cl 417,28 C2
36.93 C3 434.15 Cl
133.50 C2 434.83 C3
145.89 C2 437.04 Cl
146.74 C2 437.72 C3
148.39 C2 443.40 C2
178.00 Cl 456.58 C2
178.68 C3 457.24 Cl
188.27 C2 457.92 C3
194.52 Cl 459.69 C2
195.20 C3 465.66 Cl
195.65 Cl 466.34 C3
196.33 C3 483.97 C2
197.85 Cl 499,04 C2
198.53 C3 503.40 Cl
234.22 C2 504.08 C3
234.27 C2 509.51 C2
243.58 C2 516.97 Cl
251.03 Cl 517.65 C3
251.71 C3 521.73 C2
284.65 C2 525.92 C2
297.02 C2 551.90 C2
312.30 Cl 555.80 C2
312.37 Cl 556.38 Cl
312.98 C3 557.06 C3
313.04 C3 563.60 C2
324.77 Cl 572.05 C2
325.45 C3 590. 64 C2
325.61 C2 591.20 Cl
327.78 C2 591.88 C3
342.93 C2
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OT Data Runs #1 and #2

OT Data Run #1

OT Data Run #2

Time Component Time Component
Failure Failure
11.88 C2 27.30 C2
15.85 Cl 31.95 C2
19.81 C3 36.40 Cl
24.52 C2 41.05 C3
30.77 C2 42.60 Cl
32.69 Cl 45.94 C2
36.65 C3 47.25 C3
40.69 C2 47.72 C2
41.03 Cl 58.60 C2
44,99 C3 61.25 Cl
54.26 Cl 63.62 Cl
58.22 C3 65.90 C3
87.86 C2 68.27 C3
76.87 C2
78.14 Cl
82.79 C3
87.02 C2
88.69 C2
92.19 C2
102.49 Cl
105.31 C2
107.14 C3
116.03 Cil
118.26 Cil
120.68 C3
122.91 C3
122.92 Cl
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Appendix D. Calculation For Series System Reliability.
Consider a system composed of k = 3 independent
components in series configuration. The time to failure of
each component is assumed to be exponentially distributed.

Let Ay = 0.05, A2 = 0.067, and A; = 0.05 be the respective

constant failure rates (failure per hour) of each component.

The failure rate for the system is

0.167 failure per hour.

i

3
A= _21/11-= 0.05 + 0.067 + 0.05
1=

Thus the mean failure for the system is

E(A) = ('%:*)= (‘6'—%'6—7') = 6 hours.

For the true system, using a mission time, t of one
hour, the reliability of components 1, 2, and 3 are
R = R3 = exp(-0.05) = 95.12%

Rz

exp(-0.067) = 93.52%.

The reliability of the system can be calculated as

Rs = RiXR:XR; = 95.12%X93.52%%x95.12% = 84.62%

or Ry = exp{-At) = exp(-0.167) = 84.62%.

Using a computer program called RAPTOR, which 1is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,

see Appendix C):
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Table D1: System Level DT Data

Run T; Hours X; Failures A= XJ/T;
1 499.86 80 0.16005
2 449,53 78 0.17352
3 384.76 46 0.11956
4 543.47 97 0.17848
5 591.88 75 0.12672
Table D2: System Level OT Data
Run T; Hours X; Failures A = XJT;
1 87.86 13 0.14796
2 122.92 27 0.21966
Table D3: Component 1 DT Dat
Run T; Hours X; Failures 7.= X/T;
1 499,86 24 0.04801
2 449.53 20 0.04449
3 384.76 13 0.03379
4 543.47 29 0.05336
5 591.88 21 0.03548
Table D4: Component 1 OT Dat
Run i T; Hours X; Failures A1 = XJT;
1 87.86 4 0.04553
2 122.92 9 0.07322
Table D5: Component 2 DT Dat
Run T; Hours X; Failures ;= XJT,
1 499.86 28 0.05602
2 449,53 37 0.08231
3 384.76 20 0.05198
4 543.47 39 0.07176
5 591.88 33 0.05576
Table D6: Component 2 OT Dat
Run Ti; Hours X; Failures Ay = XJT;
1 87.86 5 0.05691
2 122.92 10 0.08135
Table D7: Component 3 DT Data
Run i T; Hours X; Failures Ai = XiT;
1 499.86 28 0.05602
2 449.53 21 0.04672
3 384.76 13 0.03379
4 543.47 29 0.05336
5 591.88 21 0.03548
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Table D8: Component 3 OT Data

Run i T; Hours X; Failures 7i= XJTs
1 87.86 4 0.04553
2 122.92 8 0.06508

The Bayesian Method 1.

Bayesian Prior Analysis. Assuming that the prior

belief about the failure rates A; (i = 1, 2, 3) 1is

exponentially distributed with parameter 6. Then the prior

3
belief about A = lei is defined by a gamma distribution
i=

with pdf given in Equation 27. The mean of the system is

E(A) = k/6. With E(A) = 6 from above, solving for 6 to
: =k V- (3=

obtain 6 = (E(l)) (6) 0.5.

Bayesian Posterior Analysis.
At the system level OT data, there are 40 failures (f;

= 40) observed during the total test time T, = 210.78 hours,

k = 3 and A= 0.167 failure per hour. Thus

o _(F+k) 4043 _
A=E(ML) = T+0) = (210.78+O.5 = 0.20352.

At the system level OT data, there are 40 failures (f;
= 40) observed during the total test time T, = 210.78 hours,

k = 3 and A = 0.167 failure per hour. Thus

4043

R(t) = 1 ) = 0.8162.

= 1
1+(210.78+0.5
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Computations Using The Exponential Model.
The Classical Exponential Method. Assuming the time to

failure of each component has the exponential distribution,

point estimates for the failure rate A and 80% confidence

intervals about A will be computed.

System Level DI: 4 = (& )— (525=) = o0.15226
System Level OT: 4 = ('f&) 210 e 0.18977
Component 1 DT: 1= (%) 416097 3 = 0.04333
Component 1 OT: 1= (%) (210 78 0.06168
Component 2 DT: 7= (%) 416597 5 0.06358
Component 2 OT: 1= (%) (210 78 0.07116
Component 3 DT: 7= (%) 416192 g = 0.04535
Component 3 OT: 1= (%) (210 78 0.05693

where f; = 376 1is the number of failures and T, = 2469.5 is
the total test time from Table D1 and similarly £, = 40 Vand
T, = 210.78 from Table D2, f; = 107 and Ts = 2469.5 from
Table D3, f, = 13 and T; = 210.78 from Table D4, fs = 157 and

= 2469.5 from Table D5, fs = 15 and T¢ = 210.78 from Table
D6, f7 = 112 and T; = 2469.5 from Table D7, fg3 = 12 and Ts =

210.78 from Table DS8.
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The 80% two-sided confidence intervals (TCI) are

System Level DT: (0.14229,0.16240)

%3.2/2(2x376)  x%_o.2/2(2%376) 702.75 802.11
2%X2469.5 1 2%X2469.5 = 4939 7 4939

System Level OT: (0.15248,0.22910)

(X%.2/2(2X40) Xf-o.z/z(zx’lo)) ( 64.28 96.58')

2%x210.78 71 2%X210.78 421.56 7 421.56

Component 1 DT: (0.03806,0.04878)

,(23.2/2(2><107) X§—0.2/2(2><107)) _ (137.95 240,9)

2X2469.5 1 2%X2469.5 4939 7 4939

Component 1 OT: (0.04102,0.08436)

(X%.z/z(2><13) Xi-0.2/2(2x13) ( 17.29 35.56 )

2%210.78 1 2%210.78 421.56 7 421.56

\ Component 2 DT: (0.05717,0.07016)

(Z%.z/z(2><157) Xf-o.z/z(2X157)) _ (282.34 346.51)

2X2469.5 7 2x2469.5 4939 7 4939

Component 2 OT: (0.04886,0.09549)

(x%.2/2(2x15) X%-o.z/z(zxw)) =( 20.6 40.26)

2%210.78 1 2x210.78 421.567 421.56

Component 3 DT: (0.03996,0.05093)

|
|
\
(X%.212(2X112) Xf-o.z/z(lelz)) (197.34 251.52)

2%x2469.5 1 2x2469.5 4939 r 4939

Component 3 OT: (0.03715,0.07875)

2x210.78 7 2x210.78

(X%.z/z(zxm) X%-o.z/z(zxu)) ~ 15.66 33.2
- 421.56 7 421.56

The reliability estimators of R(t) for t = 1 hour are
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System Level DT:

System ILevel OT:

Component 1 DT:

Component 1 OT:

Component 2 DT:

Component 2 OT:

Component 3 DT:

Component 3 OT:

Component Level Aggregated to System DT:

R(t)
R(t)

R: ()

Rs (t)

exp (-0.
exp(-0.
exp(-0.
exp(-0.
exp(—O.
exp(-0.
exp(-0.

exp (-0.

15226X1)
18977X1)
04333X1)
06168X1)
06358X1)
07116X1)
04535X1)

05693X1)

R(t) = Ri*R,*R; = 0.9576*0.9384%0.9557 =

Component Level Aggregated to System OT:

R(£) = Ry*R,*Rs = 0.9402*0.9313%0.9447 =

The B0% two-sided confidence intervals

System Level DT:
exp(—0.16240Xi)
System Level OT:
exp(-0.22910X1)

Component 1 DT:

exp(-0.04878X1)

Component 1 OT:

exp(-0.08436X1)

Component 2 DT:

(85.01%,86.74%)

= 85.

= 82

= 95,

= 94.

= 93.

= 93,

= 95,

R(t)

94.

88%

.72%

76%

02%

84%

13%

57%

47%

= 85.88%

0.8588

R(t)

= 82.72%

0.8272.

(TCI)

< R(1) £ exp(-0.14229X1)

(79.53%,85.86%)

< R(1) < exp(-0

(95.24%,96.27%)

.15248X1)

< R(1) € exp(-0.03806X1)

(91.91%,95.98%)

< R(1) £ exp(-0

(93.22%,94.44%)
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exp(-0.07016X1) £ R(1) < exp(-0.05717X1)

Component 2 OT: (90.89%,95.23%)
exp(-0.09549X1) < R(1) < exp(-0.04886X1)

Component 3 DT: (95.03%,96.08%)

exp(-0.05093X1) < R(1) € exp (-0.03996X1)

Component 3 OT: (92.43%,96.35%)

exp(-0.07875X1) < R(1) £ exp(-0.03715X1)

Component Level Aggregated to System DT:
(84.37%,87.35%)

]
]

Lower Bound 0.9524*0.9322*0.9503

I
i

Upper Bound 0.9627*%0.9444*0.9608

Component level Aggregated to System OT:
(77.21%,88.07%)

0.8437

0.8735

Lower Bound = 0.9191*0.9089*%0.9243 = 0.7721

0.9598*0.9523*0.9635

]
I

Upper Bound
The Bayesian Exponential Method.
Bayesian Exponential Prior.

For the system level data, from Table Dl:

0.8807.

E(A) = A = 0.15166 and V(A) = s:2 = 0.00073.

These yielded the parameter estimates

_(0.151662Y _ 0.15166
a = 0.00073) = 31.51 and B = (m

For Component 1 data, from Table D3:
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B(A) = 4 = 0.04303 and V(A) = s,2 = 0.00007.

These yielded the parameter estimates

0.04303%Y) _ 0.04303 B
a = 0.00007 ) = 26.83 and B 0. 00007 = £23.58.

For Component 2 data, from Table D5:

E(A) = 1 = 0.06356 and V(A) = s;:2 = 0.00017.

These yielded the parameter estimates

_ {0.063562%) _ 0.06356 —
a = 0.00017 = 23,76 and ﬁ O 00017 = 373.88.

For Component 3 data, from Table D7:

B(A) = A = 0.04507 and V(A) = s;2 = 0.0001.

These yielded the parameter estimates

0.04507%2Y) _ 0.04507
a = 0.0001 ) = 20.31 and B 0 0001 = 450.7.

Bayesian Exponential Posterior Analysis.

System Level: 7= 21652%126%{76 = 0.17086.
Component 1: 4 = 215?%%%2&%358 = 0.04774.
Component 2: 1 = (z7gsiiagg) = 0.06630.
Component 3: 4 = 12+20.31 = 0.04885.

210.78+450.7
The 80% two-sided probability intervals (TBPI) are

X3.5,5(2x4042%x31.51)  y3_,. ,,,(2x4042%x31.51)
System Level: 2(210.78+207.76) '  2(210.78+207.76)

121.8 165.06
( 837.08 7 837.08) = (0.14551,0.19718)-




X%.2/2(2X1342x26.83)  x%_, ,,,(2x13+2x26.83)
Component 1: 2(210.78+623.58) 7  2(210.78+623.58)

63.38 95.48

x2 5/2(2X15+2%23.76)  x3_g.2/2(2X154+2X23.76)
Component 2: 2(210.768+373.88) 7 2(210.78+373.88)

61.59 93.27

23.2,2(2x1242x20.31)  x3_5.5,2(2x1242x20.31)
Component 3: 2(210.78+450.7) 7 2(210.78+450.7)

50 78.86

The Bayesian estimators of R(t) for t = 1 hour are

System Level: R(t) = 84.31%

210.78 31.51440
207.76

R(t) =
(45%28) +( 7o 76) +1

Component 1: R(t) = 95.34%

210 78 26.83+13
_ (&% 2%-18) +1

R =
(t) S Zg) (623 58) +1

Component 2: ﬁ(t) = 93.59%

210.78 23.76+15
( 373.88) +1

R(t) =
(53348) +(553s8) +2

Component 3: ﬁ(t) = 95,24%

(Z5H) +

250 +( 450.7) +1
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Component ILevel Aggregated to System: ﬁ(t) = 84.98%

R(t) = 0.9534%0.9359%0.9524 = 0.8498

The 80% two-sided probability intervals (TBPI) are

System Level: (82.10% < R(1) < 86.46%)

exp(-0.19718X1) £ R(1) £ exp(-0.14551X1).

Component 1: (94.44% < R(1) < 96.27%)

exp(-0.05722X1) < R(1) < exp(-0.03798X1).
Component 2: (92.33% < R(1) < 94.87%)
exp(-0.07976X1) < R(1) £ exp(-0.05267X1).

Component 3: (94.21% < R(1) < 96.29%)

exp(-0.05961X1) < R(1) < exp(-0.03779X1).

Component lLevel Aggregated to System:

(82.15% < R(1) < 87.94%)

0.9444%0.9233%0.9421 < R(1) £ 0.9627*0.9487*0.9629.
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Appendix E. Simulated Data For Parallel System With
Independent And Identical Components.

DT _Data Run #1

Time Component Failure Time Component Failure
12.04 C3 282.71 C2
12.06 Cl 289.01 C2
18.71 C3 291.78 C3
32.47 C3 296.17 - C1
33.23 C2 304.14 C2
37.16 Cl 306.46 C2
37.35 Cl 311.16 C2
41.36 C3 315.75 Cl
42.37 Cl 316.15 C2
46.02 Cl 316.49 C3
62.38 C2 326.02 Cc2
68.33 C3 331.25 C2
77.62 C3 331.31 C3
79.76 C3 334.20 C2
107.82 C2 335.24 Cl
108.15 C2 342.72 Cl
108.76 C2 351.61 C3
116.38 C2 352.56 Cl
120.51 C2 355.99 C2
123.73 C2 356.56 C2
159,04 C3 370.17 Cl
163.75 Cl 371.68 Cl
165.04 C3 385.22 Cl
171.15 C2 387.04 Cl
175.61 C3 396.62 C2
192.46 C3 404.57 C3
192.59 Cl 414.25 C2
199.20 C2 424.79 C2
201.88 C2 427.24 C2
205.62 Cl 431.17 Cl
206.64 C2 442.25 Cl
214.41 Cl 443.08 C2
217.39 Cl 444.53 Cl
220.35 C2 444.94 C3
226.62 C2 445.11 Cl
230.28 C2 451.56 C3
230.81 C2 458.01 C3
246.24 Cl 495,84 C2
251.66 C3 497.94 C3
255.25 C2 497.94 C2
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DT Data Run #2

Time Component Time Component
Failure Failure
4.20 C3 275.50 C2
4.58 Cl 281.06 Cl
6.07 C2 290.49 C3
17.53 C2 295.71 C2
18.43 Cl 304.23 Cl
34.77 C3 306.66 Cl
46.48 C3 313.05 C2
57.70 C2 336.41 C2
62.53 C3 336.81 Cl
68.69 Cl 337.86 C3
75.71 C2 344.63 Cl
90.38 C3 351.90 C2
90.50 Cl 361.93 Cl
91.35 C2 363.04 Cl
93.99 C3 365.05 C2
94.21 Cl 368.64 C2
105.29 C3 389.02 C3
107.87 Cl 391.29 Cl
110.82 C3 398.75 C2
114.35 C3 403.27 C2
135.40 C2 415.59 C2
142.04 Cl 425.97 C3
142.34 Cl 427.24 Cl
153.25 Cl 428.28 C2
159.69 C2 429.95 Cl
161.91 Cl 431.16 Cl
168.85 C2 441.17 C2
170.29 C2 449.38 C2
177.01 C3 451.03 C3
208.26 Cl 455.09 -C2
216.50 C3 458.15 C2
- 218.39 Cl 459.00 C2
224,21 C2 459.80 Cl
230.03 C3 463.57 C2
230.64 Cl 464.11 Cl
248.50 C2 475.82 C3
270.19 C3 487.71 C2
274.10 C2




DT Data Run #3

Time Component Time Component
Failure Failure

9.08 C2 255.75 C3
12.18 C3 259.70 Cl
26.30 Cl 261.80 C3
40.09 C3 266.50 Cl
40.41 C3 288.06 C2
61.50 C2 288.64 C3
61.75 C3 292.05 C2
64.21 C2 294.44 C3
69.80 C3 295.71 Cl
71.06 C3 334.44 C2
71.24 Cl 334.85 C2
74.24 C2 336.79 C2
105.08 C2 356.86 Cl
110.15 C2 357.14 Cl
110.28 C3 366.86 C3
122.39 Cl 367.70 C3
123.14 C2 371.11 Cl
134.03 C3 376.81 C3
138.38 C3 378.97 C2
142.06 C3 380.16 Cl
168.67 Cl 381.50 Cl
169.65 C3 385.48 Cl
172.87 Cl 389.79 Cl
179.59 C2 392.03 Cl
189.06 C3 401.88 C2
189.37 Cl 436.54 C2
192.59 C2 448.39 C3
217.46 C2 448.48 Cl
220.53 C2 460.88 Cl
221.95 C2 494.32 C3
233.27 C1l 494,72 Cl
237.80 C2 495.58 C3
251.11 C3 497.53 Cl
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DT Data Run #4

Time Component Time Component
Failure Failure

7.12 C3 250.70 C3
22.95 Cl 256.25 Cl
36.55 Cl 262.69 Cl
37.98 C3 278.48 C2
55.79 C3 280.28 C3
59.30 C2 281.44 C2
70.99 C3 286.02 C3
77.46 Cl 291.79 C3
96.21 C2 299.82 C2
100.76 C3 300.73 C3
104.27 C2 302.40 C3
105.69 Cl 321.65 C3
112.94 C2 324.77 C3
120.84 C3 327.33 C3
124.10 C2 338.50 Cl
125.88 Cl 349.24 C2
130.52 C2 357.36 Cl
130.76 C3 360.37 C3
144.16 Cl 365.21 C2
150.61 C3 366.03 C2
154,18 C3 366.04 Cl
156.54 Cl 380.64 C2
163.03 Cl 389.64 C2
166.15 Cl 418.84 C3
167.21 Cl 427.39 Cl
179.93 C2 429.46 C3
195.27 C3 437.45 C3
201.07 C3 449,55 Cl
203.93 C2 455.18 - C3
204.56 C2 455,99 Cl
205.88 C3 475.72 C3
215.39 C3 479.32 C3
228.63 C2 491.46 Cl
243.40 Cl 494.00 C3
245.96 C3 496.95 C2
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DT Data Run #5

Time Component Time Component
Failure Failure

10.07 Cl 311.09 Cl
38.94 Cl 311.42 Cl
51.73 C3 312.23 C3
57.02 C3 317.40 Cl
59.39 Cl 321.72 C2
73.67 C2 325.49 C2
77.17 C2 338.23 Cl
79.56 C2 343.49 C2
81.77 Cl 346.16 C3
83.79 C2 351.11 C3
102.76 C2 359.99 C2
111.46 Cl 364.48 C3
113.76 C2 367.25 C2
117.40 C3 373.64 Cl
120.92 C2 374.40 C3.
140.39 Cl 376.93 C2
140.93 C3 384.09 Cc2
143.52 C3 394.25 Cl
143.67 C3 401.81 C2
150.00 Cl 402.77 C3
153.58 Cl 417.35 C3
157.12 Cl 418.39 C3
160.97 C2 422.69 C3
164.65 C3 425.16 C2
185.65 C3 426.57 C2
186.87 C3 437.34 Cl
188.08 Cl 438.51 Cl
190.84 C2 442.89 C2
192.22 C3 443.85 C3
197.47 C3 444,85 Cl
199.83 C2 447.39 C3
200.71 Cl 449,22 C2
202.67 C2 455.79 C3
203.83 Cl 457.86 Cl
215.12 C3 460.98 C3
222.97 C3 462.83 Cl
243.53 C3 479.77 C2
266.85 C3 486.68 C2
275.75 C2 490.60 C2
276.66 C3 496.86 C3
302.19 C2
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OT Data Runs #1 and #2

OT Data Run #1

OT Data Run #2

Time Component Time Component
Failure Failure
4.06 C3 11.34 C3
8.27 C2 18.10 C3
15.64 Cl 29.26 C3
16.26 C2 35.38 C2
17.01 C2 36.41 C3
29.60 Cl 51.17 C3
40.19 C2 55.38 . Cl
43.63 C3 75.49 Cl
44 .47 C3 79.78 C2
57.77 C2 84.86 Cl
62.95 C2 88.63 C2
66.03 Cl 96.55 C3
73.51 C3 103.25 C2
73.69 C3 111.41 C2
80.82 Cl 115.54 C2
85.21 Cl
92.91 C3
100.67 Cl
101.59 C2
110.15 C2
123.20 Cl
124.42 C3
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Appendix F. Calculation For Parallel System Reliability
With Independent and Identical Components.

Consider a system composed of k = 3 independent and
identical components in parallel configuration. The time to
failure of each component 1s assumed to be exponentially
distributed. Let A = 0.05 failure per hour be the
respective constant failure rates of each component.

For the true system, using a mission time, t of one
hour, the reliability of components 1, 2, and 3 are

Re = Ri = R, = R; = exp(-0.05) = 95.12%.

The reliability of the system can be calculated as

Rs =1 - (1 -R)>=1=- (1- 95.12%)° = 99.9884%.

Using a computer program called RAPTOR, which 1is

developed by AFOTEC, to simulate the true system, the

following data are obtained (to review the simulated data,

see Appendix E):

Table Fl: Aggregated Components DT Data

Run i T; Hours X; Failures 7i= XJT;
1 1,493.82 79 0.05289
2 1,463.13 75 0.05126
3 1,492.59 66 0.04422
4 1,490.85 70 0.04695
5 1,490.58 81 0.05434

Table F2: Aggregated Components OT Data

Run i T; Hours X; Failures A= XJT;
1 373.26 22 0.05894
2 346.62 15 0.04328
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Table F3: Component 1 DT Data

Run T; Hours X; Failures 7= XJTs

1 497.94 24 0.04820

2 487.71 26 0.05331

3 497.53 22 0.04422

4 496.95 20 0.04025

5 496.86 23 0.04629
Table F4: Component 1 OT Data

Run T; Hours X; Failures 2;= XJ/T;

1 124.42 7 0.05626

2 115.54 3 0.02597
Table F5: Component 2 DT Data

Run T; Hours ¥X; Failures 7: = XJT,

1 497.94 35 0.07029

2 487.71 30 0.06151

3 497.53 21 0.04221

4 496.95 19 0.03823

5 496.86 28 0.05635
Table F6: Component 2 OT Data

Run T: Hours X; Failures Ai = XJT;

1 124.42 8 0.06430

2 115.54 6 0.05193
Table F7: Component 3 DT Data

Run T; Hours X; Failures i = XJ/T;

1 497.94 20 0.04017

2 487.71 19 0.03896

3 497.53 23 0.04623

4 496.95 31 0.06238

5 496.86 30 0.06038
Table F8: Component 3 OT Data

Run T; Hours X; Failures ;= XJT;

1 124.42 7 0.05626

2 115.54 6 0.05193
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The Classical Exponential Method. Assuming the time to

failure of each component has the exponential distribution,

point estimates for the failure rate A and 80% confidence

interval about A will be computed.

Component Aggregated DT: 7= 74:338197 = 0.04993
Component Aggregated OT: 1= (719 88 = 0.05140
Component 1 DT: 1= (‘liz') 24-17%599 = 0.04643
Component 1 OT: 4 = (Lj) (239 3¢ = 0.04167
Component 2 DT: 4 = (L:) i2255) = 0.05369
Component 2 OT: 71 = ('f'_':') (239 56 = 0.05834
Component 3 DT: 4 = (f-;-) S155255) = 0.04966
Component 3 OT: 1= (%) (239 56 = 0.05418

where f, = 371 is the number of failures and T = 7430.97 is
the total test time from Table Fl and similarly £, = 37 and
T, = 719.88 from Table F2, f; = 115 and T; = 2476.99 from
Table F3, f;, = 10 and T, = 239.96 from Table F4, f; = 133 and
Ty = 2476.99 from Table F5, fi = 14 and T¢ = 239.96 from
Table F6, f, = 123 and T; = 2476.99 from Table F7, fz = 13

and Tg = 239.96 from Table F8.

101



The 80% two-sided confidence intervals (TCI) are

Component Aggregated DT: (0.04664,0.05328)

23.2/2(2x371)  x%_4.2/2(2%371) 693.08 791.78
2x7430.97 7 2X7430.97 = 14861.94 7 14861.94

Component Aggregated OT: (0.04091,0.06248)

X3.2/2(2x37)  x%_4.2,2(2X37) 58.9 89.96
2x719.88 7 2X719.88 = 1439.76 7 1439.76

Component 1 DT: (0.04097,0.05206)

x8.2/2(2x115)  x% 4 5/2(2%x115) 202.98 257.88
2%2476.99 1 2x2476.99% = 4953.98 7 4953, 98

Component 1 OT: (0.02593,0.05920)

(X%.z/z(me) X%—o.z/z(zxm)) ~ ( 12.44 28.41)

2%X239.96 7 2%x239.96 479.92 71 479.92

Component -2 DT: (0.04782,0.05974)

(X%.2/2(2X133) X§-0.2/2(2X133)) _ ( 236.90 295,95)

2%2476.99 1 2x2476.99 4953.98 7 4953.98
Component 2 OT: (0.03946,0.07901)

X5.2/2(2x14)  x3_0.5/2(2x14) 18.94 37.92
2%239.96 7 2%X239.96 = 479.92 7 479,92

Component 3 DT: (0.04401,0.05548)

X5.2/2(2x123)  x3_.5/2(2%x123) 218.04 274 .82
2Xx2476.99 1 2%X2476.99 = 4953.98 7 4953.98

Component 3 OT: (0.03603,0.07410)

X5.2/2(2x13)  x%_g.5/2(2%13) 17.29189 35.56317
2%x238.96 7 2%239.96 = 479.92 1 479.92
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The reliability estimators of R(t) for t = 1 hour are

Component Aggregated DT:

_———

Re(t) = exp(-0.04993X1) = 95.13%

Component Aggregated OT:

Ro(t) = exp(-0.05140X1) = 94.99%

Component 1 DT: Ri(t) = exp(-0.04643X1) = 95.46%

Component 1 OT: Ri(t) = exp(-0.04167X1) = 95.92%

Component 2 DT: R2(t) = exp(-0.05369X1) = 94.77%

Component 2 OT: Ry () = exp(-0.05834X1) = 94.33%
Component 3 DT: Ra(t) = exp(-0.04966X1) = 95.16%

Component 3 OT: R3(t) = exp(=0.05418X1) = 94.73%

Aggregated Component to System DT: ﬁ(t) 99.9885%

R(t) =1 - (1 -R)®*=1 - (1 - 95.13%)% = 0.999885

Aggregated Component to System OT: ﬁ(t) 99.9874%

ﬁ(t) =1 - (1 -R)®=1- (1 - 94.99%)3 = 0,999874
Component Level Aggregated to System DT:

R(t) =1 - (1 - Ri)(1 - R) (1 - Rs)

=1 - (1 - 0.9546) (1 - 0.9477)(1 - 0.9516) = 99.9885%
Component Level Aggregated to System OT:

R(t) =1 ~ (1 = R)(1 - Ry) (1 = Ry)

=1- (1 -0.9592)(1 - 0.9433)(1 - 0.9473) = 99.9878%.
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The 80% two-sided confidence intervals (TCI)

Aggregated Component DT: (94.81%,95.44%)
exp(-0.05328X1) < R(1) < exp(-0.04664X1)
Aggregated Component OT: (93.94%,95.99%)
exp(-0.06248X1) < R(1) < exp(-0.04091X1)

Component 1 DT: (94.93%,95.99%)

exp (-0.05206X1) < R(1) < exp(-0.04097X1)

Component 1 OT: (94.25%,97.44%)

exp(-0.05920X1) £ R(1) £ exp(-0.02593X1)
Component 2 DT: (94.20%,95.33%)
exp (-0.05974X1) € R(1) < exp(-0.04782X1)
Component 2 OT: (92.40%,96.13%)
exp(-0.07901X1) < R(1) < exp(-0.03946X1)

Component 3 DT: (94.60%,95.69%)

exp(-0.05548X1) < R(1) £ exp(-0.04401X1)

Component 3 OT: (92.86%,96.46%)

exp (-0.07410X1) <€ R(1) £ exp(-0.03603X1)

Aggregated Component to System DT:
(99.9860%,99.9905%)

I

1 - (1 - 0.9481)°

Il

Lower Bound 0.999860

Upper Bound = 1 - (1 - 0.9544)° 0.999905

Aggregated Component to System OT:
(99.9778%,99.9936%)
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0.999778

il

Lower Bound = 1 - (1 - 0.9394)3

Upper Bound = 1 - (1 - 0.9599)°® = 0.999936

Component Level Aggregated to System DT:
(99.9841%,99.9919%)

Lower Bound = 1 - (1 - LB;) (1 - LB;) (1 - LBj)

=1- (1~ 0.9493)(1 0.9420) (1 - 0.9460) = 0.999841

Upper Bound = 1 - (1 - UB;) (1 - UB;) (1 - UBs;)

=1- (1 - 0.9599) (1 0.9533) (1 - 0.9569) = 0.999919

Component Level Aggregated to System OT:
(99.9688%,99.9965%)
Lower Bound =1 - (1 - LB;) (1 -~ LB;) (1 - LBs)

=1 - (1 - 0.9425) (1 0.9240) (1 - 0.9286) = 0.999688

Upper Bound = 1 - (1 UB;) {1 - UB;) (1 - UBs)

=1- (1 - 0.9744) (1

0.9613) (1 - 0.9646) = 0.9399965.
The Bayesian Exponential Method.
Bayesian Exponential Prior.
For the component aggregated data, from Table Fl:
E(A) = 2 = 0.04993 and V(A) = s:° = 0.00002.

These yielded the parameter estimates

0.049932Y) _ 0.04993
a = 0.00002 = 139.59 and B 0.00002 = 2795.66.

For Component 1 data, from Table F3:

E(A) = 1 = 0.04645 and V(A) = s:2 = 0.00002.

These yielded the parameter estimates



0.046452Y _ 0.04645Y) _

For Component 2 data, from Table Fb5:
B(A) = 4 = 0.05372 and V(A) = s;:2 = 0.00018.

These yielded the parameter estimates

- = (0.05372Y _
a = (555015 ) = 16.25 and b = (§:G5315) = 300.71.

For Component 3 data, from Table F7:

E(M) = 1 = 0.04962 and V(A) = 5,2 = 0.00012.

These yielded the parameter estimates

0.049622Y) _ _ (0.04962\ _
a = 0‘00012) = 19.97 and B = m = 402.48.

Bayesian Exponential Posterior Analysis.

Aggregated Component: i= 71&?@%&?%5?%66 = 0.05023.
component 1: 1 = ( g3gooi2sid—=) = 0.04594.
Component 2: 7= 23§¥g%£ﬁﬁ%i7l = 0.05576.
component 3: 1 = (z335etdiss) = 0.-05132.

The 80% two-sided probability intervals (TBPI) are

Aggregated Component:

X3.2,2(2x3742x139.59)  x%_4.5/2(2X37+2x139.59)
2(719.8842795.66) 7  2(719.88+2795.66)

319.41 387.45
= (7031.08 7 7031.08) = (0.04543,0.05511) .
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x3.2/2(2x1042x92.19) x4y 5/,(2x1042x92.19)
Component 1: 2(239.96+1984.67) 7 2(239.96+1984.67)

178.58 230.28

X%.2/2(2X1442x16.15)  xi_o.5/2(2x1442X16.15)
Component 2: 2(239.96+300.71) 7  2(239.96+300.71)

46.46 74.4
= ( 1081.34 7 1081.34) = (0.04296,0.06880) .

2%3.2/2(2x1342x19.97)  x%_5.5/2(2x13+2x19.97)
Component 3: 2(239.96+402.48) 7  2(239.96+402.48)

50.88 79.97
= (1284.88’ 1284.88) = (0.03960,0.06224).

The Bayesian estimators of R{(t) for t = 1 hour are

Aggregated Component: ﬁ(t) = 95.10%

719. 88 139.59+37
Rt = 2795.66) +1

") +(prgleg) 1
5795.66) T\ 2795 .66

Component 1: ﬁ(t) = 95.51%

239.96 92.19+10
Rit) = 1984. 67) +1

235,96 )41
fsei-o7) +( T950Te7

Component 2: ﬁ(t) = 94.58%

239 96 16.15+14
(300 71)+1

R(t) =
i %‘%‘3‘%) +(W)+1

Component 3: ﬁ(t) = 95.00%

R( ) = ( 402 zg) 1 19,97+13
t) =
402.48) (402.48)




Aggregated Component to System: ﬁ(t) = 99,9882%

R(t) =1 - (1 -RJ)3=1- (1 - 95.10%)> = 0.999882

Component Level Aggregated to System: ﬁ(t) = 99,9878%

R(t) =1 - (1 - 0.9551) (1 - 0.9458) (1 - 0.9500)

The 80% two-sided probability intervals (TBPI) are

Agqregated Component: (94.64% < R(1) < 95.56%)

-

exp(-0.05511X1) < R(1) < exp(-0.04543X1).
Component 1: (94.96% < R(1) < 96.07%)
exp(-0.05176X1) < R(1) £ exp(-0.04014X1).

Component 2: (93.35% < R(1) < 95.80%)

exp(-0.06880X1) < R(1) < exp(-0.04296X1).

Component 3: (93.97% < R(1) < 96.12%)

exp(-0.06224X1) < R(1) £ exp(-0.03960X1).

Aggregated Component to System: (99.9846%,99.9913%)
0.999846

Lower Bound 1 - (1 - 0.9464)3

0.999913

Upper Bound = 1 - (1 - 0.9556)°3

Component Level Aggregated to System:
(99.9798%,99.9936%)

Lower Bound = 1 - (1 - LB;) (1 - LB2) (1 - LB3)

=1~ (1 - 0.9496) (1 0.9335) (1 - 0.9397) = 0.999798

Upper Bound = 1 - (1 - UB;) (1 - UB:) {1l - UB;)

=1- (1 - 0.9607) (1 0.9580) (1 - 0.9612) = 0.999936.
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Appendix G. Simulated Data For Parallel System With
Different Independent Components.

DT Data Run_ #1

Time Component Time Component Time Component
Failure Failure Failure

6.03 Cl 177.73 C2 328.02 Cl
9.36 Cl 180.72 C2 328.93 Cl
21.91 Cl 184.44 Cl 337.22 C2
24.08 C3 187.58 Cl 351.00 Cl
28.79 Cl 189.41 Cl . 354.85 C2
33.23 C2 189.68 Cl 365.39 C2
33.42 C2 201.89 Cl 367.84 C2
38.45 C2 209.57 C2 371.18 Cl
41.87 C3 226.86 Cl 376.72 Cl
43.37 Cl 240.59 Cl 377.86 Cl
49.15 C3 243.74 Cl 383.68 C2
65.41 C2 249.69 C2 384.25 C2
74.71 C2 251.30 Cl 386.30 C3
76.85 C2 261.09 Cl 390.86 C2
102.23 Cl 262.25 Cl 397.32 C2
102.40 Cl 264.60 Cl 404.24 Cl
102.70 Cl 267.10 Cl 405.30 Cl
106.51 Cl 274.40 C2 418.69 Cl
108.57 Cl 276.84 Cl 424.05 Cl
110.18 Cl 279.60 C3 427.08 Cl
133.90 Cl 284.25 Cl 429.30 Cl
136.90 Cl 284.26 C2 434.15 Cl
140.04 C3 285.73 Cl 437.05 Cl
151.32 Cl 290.06 C3 437.24 C2
156.12 C2 296.62 Cl 443.94 Cl
161.19 C3 301.54 Cl 444.49 C2
165.34 Cl 304.56 C2 446.56 Cl
171.86 Cl 305.03 C3 448.34 Cl
172.97 C2 306.18 C3 457.56 Cl
173.20 Cl 322.17 C2 488.03 Cl
177.59 Cl 323.68 Cc2
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DT Data Run #2

Time Component Time Component Time Component
Failure Failure Failure
3.90 C2 196.14 C3 340.60 Cl
7.23 C3 201.56 Cl 365.29 Cl
7.61 C2 203.70 C2 366.46 C2
7.82 Cl 213.24 Cl 369.83 Cl
14.65 Cl 217.15 Cl 381.72 Cl
17.42 Cl 219.19 C2 389.02 Cl
18.91 C2 236.49 C2 398.17 Cl
22.44 C2 242.73 Cl 399.58 C2
34.50 Cl 243.28 Cl 407.08 C2
46.64 Cl 249.64 C2 409.67 C2
46.79 Cl 253.23 C2 413.71 Cl
52.25 Cl 256.43 C3 416.37 Cl
56.58 Cl 257.41 Cl 416.42 C2
61.16 Cl 275.39 Cl 417.14 Cl
84.34 Cl 277.64 Cl 418.10 Cl
85.06 Cl 283.34 C2 424,77 Cl
85.10 C2 283.80 Cl 432.10 C2
95.32 C3 296.04 C2 439.16 Cl
112.01 Cl 296.34 Cl 440.17 C2
115.58 C3 298.74 C2 443,43 Cl
118.78 Cl 299.96 C2 447.82 C2
124.60 C2 302.78 Cl 452.04 Cl
130.93 Cl 306.89 Cl 454.71 C2
140.08 C3 309.74 Cl 458.89 Cc2
156.14 Cl 322.13 Cl 468.41 Cl
164.75 C2 323.67 Cl 471.86 Cl
166.15 C2 324.09 Cl 481.86 C2
166.29 Cl 326.37 Cl 482,41 Cl
177.87 Cl 328.53 Cl 498.15 Cl
186.36 C2 328.59 C2
191.28 C3 330.33 C3
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DT Data Run #3

Time Component Time Component
Failure Failure

2.47 C2 274.65 Cl
3.89 C2 279.05 C3
6.14 C3 283.69 Cl
12.44 Cl 288.17 Cl
19.74 C2 289.58 Cl
24.37 C2 292.01 Cl
30.43 C2 296.44 C2
37.23 C2 306.05 Cl
37.56 Cl 311.49 C2
52.17 Cl 313.14 C3
54.17 Cl 330.60 C3
57.07 Cl 330.62 Cl
58.99 C3 332.40 C3
64.06 C2 343.77 Cl
78.26 Cl 347.58 Cl
78.47 Cl 356.96 Cl
79.43 Cl 363.66 C3
100.52 Cl 370.35 Cl
100.66 Cl 371.06 C2
107.65 Cl 387.09 C3
108.07 Cl 392.95 Cl
112.62 Cl 394.49 Cl
117.15 Cl 394.51 Cl
125.21 C2 395.85 Cl
148.12 C2 401.96 C2
149.47 C2 416.91 Cl
152.94 Cl 419.24 Cl
153.45 C2 421.87 C2
155.09 Cl 425,12 Cl
155.69 C2 427.82 Cl
183.32 Cl 434.34 Cl
190.35 C2 435.53 C2
203.84 C3 441.33 Cl
228.08 Cl 446.11 Cl
228.64 C3 455.95 Cl
231.15 C3 464.17 C2
236.29 C2 474,43 C2
236.76 C3 481.60 Cl
245.00 Cl 488.36 C2
269.60 C2 498.39 Cl
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DT Data Run #4

Time Component Time Component
Failure Failure

1.07 C2 254.11 Cl
9.19 Cl 259.43 Cl
10.02 C2 260.10 Cl
11.54 C3 266.24 C2
11.68 C2 275.53 Cl
14.80 C2 280.58 C2
17.36 C2 283.27 C2
33.90 Cl 288.07 C2
43.33 Cl 288.67 Cl
50.04 C3 296.32 C2
50.40 C2 297.52 C2
51.32 Cl 300.02 C3
51.73 Cl 300.80 Cl
59.03 Cl 302.24 C3
67.39 C3 309.28 Cl
85.41 C3 323.91 Cl
89.71 Cl 336.46 C3
95.02 Cl 357.20 C2
106.10 Cl 381.58 C2
108.87 C2 389.83 C3
110.09 Cl 406.69 C2
113.31 Cl 411.97 Cl
123.58 Cl 415.72 Cl
126.61 C2 417.64 Cl
130.21 C2 435.36 Cl
141.32 Cl 438.08 Cl
144.89 C2 441,96 Cl
157.24 Cl 445.27 Cl
161.29 C2 448,37 C3
164.69 Cl 452 .14 C2
208.39 Cl 454.89 Cl
208.97 Cl 463.03 C2
215.92 Cl 467.94 Cl
216.81 Cl 496.10 C2
234.96 C2 496.55 C2
239.33 C2 :




DT Data Run #5

Time Component Time Component Time Component
Failure Failure Failure
0.17 Cl 136.39 Cl 311.20 Cl
11.94 C3 139.84 Cl 313.51 Cl
12.00 C2 141.80 Cl 319.84 C2
15.77 C2 151.48 Cl 319.96 C2
17.13 Cl 156.22 Cl 320.31 Cl
33.77 C2 159.43 Cl 328.99 C2
34.84 Cl 166.95 C2 334.68 C2.
37.31 Cl 167.06 Cl 336.05 Cl
43.99 Cl 168.03 Cl 339.66 C2
47.63 Cl 168.91 Cl 344.45 C2
50.27 C2 176.16 Cl 345.21 C2
52.59 Cl 180.09 Cl 353.47 Cl
53.61 C3 181.48 Cl 364.79 C3
59.96 C2 198.49 Cl 368.50 Cl
62.89 Cl 202.00 C2 371.28 C2
67.11 C2 211.50 Cl 384.22 C2
71.75 Cl 216.34 Cl 400.70 C2
83.43 Cl 226.76 C2 404.40 Cl
90.72 Cl 235.59 Cl 409.07 C2
91.24 Cl 236.75 C2 414.83 Cl
93.38 Cl 239.91 Cl 417.70 Cl
103.97 Cl 247.21 Cl 425,99 C3
104.68 Cl 256.07 C2 426.65 Cl
110.20 C2 257.26 Cl 442.94 Cl
110.35 C3 257.53 Cl 449.73 Cl
111.37 C2 258.07 C2 451,98 Cl
112.83 Cl 264.20 C2 451.99 C1l
114.60 Cl 271.22 C2 452.57 Cl
117.70 C2 273.63 Cl 474.32 C3
121.11 Cl 281.84 C2 479.76 Cl
123.04 C3 282.96 C3 479.79 C2
126.10 C2 283.17 C2 480.37 Cl
131.07 C2 283.24 Cl 491.62 Cl
133.41 C3 310.37 Cl 496.36 Cl
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OT Data Runs #1 and #2

OT Data Run #1

OT Data Run #2

Time Component Time Component
Failure Failure

7.82 Cl 5.58 Cl
8.11 C3 12.85 C2
8.27 C2 14.31 C3
22.23 C2 27.61 C2
22.99 C2 27.78 Cl
24.08 C3 32.47 Cl
27.60 Cl 36.89 Cl
36.39 Cl 47.72 C2
36.81 Cl 60.70 Cl
46.17 C2 62.34 C2
51.33 Cl 70.50 C2
51.35 C2 74.63 C2
66.15 C2 85.33 Cl
66.33 C2 86.59 C2
70.65 Cl 89.67 Cl
72.85 Cl 91.98 C2
80.58 Cl 105.08 C3
85.55 C2 109.31 C3
96.34 Cl 113.13 Cl
96.94 C3 113.29 C3
100.62 Cl

106.24 Cl

108.08 C2

112.81 Cl
122.22 Cl
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Appendix H. Calculation For Parallel System Reliability
With Different Independent Components.

Consider a system composed of k = 3 different
components in parallel configuration. The time to failure
of each component '~ is assumed to be exponentially
distributed. Let A = 0.1, A2 = 0.05, and A3 = 0.025 be the
respective constant failure rates (failure per hour) of each
component.

For the true system, using a mission time, t of one

hour, the reliability of components 1, 2, and 3 are

R; = exp(-0.100) = 90.48%
R, = exp(-0.050) = 95.12%
R; = exp(-0.025) = 97.53%.

The reliability of the system can be calculated as

R =1 - (1 - Ry)(1 = Rz) (1 = R3)

=1 - (1~ 0.9048)(1 - 0.9512)(1 - 0.9753) = 99.9885%.

Using a computer program called RAPTOR, which 1is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,
see Appendix G):

Table Hl: Component 1 DT Data

Run i T; Hours X; Failures 7i= XiJT;
1 488.03 55 0.11270
2 498.15 53 0.10639
3 498,39 44 0.08828
4 496.55 36 0.07250
5 496.36 60 0.12088
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Table H2: Component 1 OT Data

Run T; Hours X; Failures 7i= XiJT:

1 122.22 13 0.10637

2 113.29 8 0.07062
Table H3: Component 2 DT Data

Run T; Hours X; Failures 7= XJTs

1 488.03 27 0.05532

2 498.15 30 0.06022

3 498.39 24 0.04816

4 496.55 26 0.05236

5 496.36 33 0.06648
Table H4: Component 2 OT Data

Run T; Hours X; Failures ;= XJT;

1 122.22 9 0.07364

2 113.29 8 0.07062
Table H5: Component 3 DT Data

Run T; Hours X; Failures ;= XJ/T;

1 488.03 10 0.02049

2 498.15 8 0.01606

3 498.39 12 0.02408

4 496.55 9 0.01813

5 496.36 9 0.01813
Table H6: Component 3 OT Data

Run T; Hours X; Failures 2. = XJT:

1 122.22 3 0.02455

2 113.29 4 0.03531

The Classical Exponential Method.

Assuming the time to failure of each component has the

exponential distribution,

rate A and

confidence

point estimates for the failure

intervals

about A will be

computed.
Component 1 DT: 7= (7%) 24%$848 = 0.10010
Component 1 OT: 7= (7@) (235 BT = 0.08917
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Component 2 DT: 2= (%) 24}73048 = 0.05651
Component 2 OT: 4 = (-I:j-) (235 £ = 0.07218
Component 3 DT: 1 = ('f“z‘) = (ﬁ%-s—z-g) = 0.01938
Component 3 OT: 7= (%) = (-2—357-—5—1—) = 0.02972

where f; = 248 is the number of failures and T = 2477.48 is
the total test time from Table Hl1l, f, = 21 and T, = 235.51
from Table H2, f3 = 140 and T3 = 2477.48 from Table H3, f; =
17 and T, = 235.51 from Table H4, fs = 48 and Ts = 2477.48
from Table H5, fg = 7 and T¢ = 235.51 from Table H6.

The 80% two-sided confidence intervals (TCI) are

Component 1 DT: (0.09205,0.10833)

X5.2/2(2%248)  x%_y ,/,,(2%248) 456.09 536.77
2%X2477.48 71 2%x2477.48 = 4954.96 7 4954.96

Component 1 OT: (0.06532,0.11484)

(15.2/2(2X21) X§—0.2/2(2X21)) _ ( 30.77 54,09)

2x235.51 7« 2%235.51 471.0217 471.02

Component 2 DT: (0.05048,0.06271)

(Z%.2/2(2X140) X%—o.2/2(2X140)) ( 250.13 310.72 )

2X2477.48 7 2%2477.48 4954.96 f 4954.96

Component 2 OT: (0.05085,0.09533)

(l%.Z/Z(ZXID Z§—0.2/2(2X17)) ( 23.95 44.9 )

2x235.51 1 2x235.51 471.02171 471.02

Component 3 DT: (0.01589,0.02303)
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x%.2/2(2%48) x5 g.5/2(2%48) 78.73 114.13
2X2477.48 T 2%x2477.48 = 4954.96 7 4954.96

Component 3 OT: (0.01654,0.04472)

(X%.2/2(2X7) X%-o.2/2(2X7)) _( 7.79 21,05)

2%235.51 1 2x235.51 471.02 77 471.02

The reliability estimators of R(t) for t = 1 hour are

Component 1 DT: Ri(t) = exp(=~0.10010X1) = 90.48%

Component 1 OT: Ri(t) = exp(~0.08917X1) = 91.47%
Component 2 DT: Rz (t) = exp(-0.05651X1) = 94.51%

Component 2 OT: Rz (t) = exp(-0.07218X1) = 93.04%

Component 3 DT: Rz (t) = exp(-0.01938X1) = 98.08%

i

Component 3 OT: T?;(t)

exp(-0.02972X1) = 97.07%

Component Level Aggregated to System DT: ﬁ(t) = 99,99%
R(t) =1 - (1 - 0.9048)(1 - 0.9451) (1 - 0.9808)
Component Level Aggregated to System OT:

R(t) =1 - (1 - 0.9147) (1 - 0.9304) (1 - 0.9707)

i

99.9826%.

The 80% two-sided confidence intervals (TCI) are
Component 1 DT: (89.73%,91.21%)

exp(-0.10833X1) < R(1) < exp(-0.09205X1)

Component 1 OT: (89.15%,93.68%)

exp(-0.11484X1) < R(1) £ exp(-0.06532X1)

Component 2 DT: (93.92%,95.08%)
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exp(-0.06271X1) < R(1) £ exp(-0.05048X1)
Component 2 OT: (90.91%,95.04%)
exp(-0.09533X1) < R(1) < exp(-0.05085X1)

Component 3 DT: (97.72%,98.42%)

exp(-0.02303X1) € R(1) € exp(-0.01589X1)

Component 3 OT: (95.63%,98.36%)

exp(-0.04472X1) < R(1) < exp (-0.01654X1)

Component Level Aggregated to System DT:
(99.9858%,99.9932%)

Lower Bound = 1 - (1 - 0.8973)(1 - 0.9392)(1 -~ 0.9772)

Upper Bound = 1 - (1 - 0.9121)(1 - 0.9508) (1 - 0.9842)

Component Level Aggregated to System OT:

(99.9569%,99.9949%)

Lower Bound = 1 - (1 - 0.8915)(1 - 0.9091)(1 - 0.9563)

Upper Bound = 1 - (1 - 0.9368) (1 - 0.9504) (1 - 0.9836).
The Bayesian Exponential Method.

Bayesian Exponential Prior.

For Component 1 data, from Table H1l:

E(A) = A = 0.10015 and V(A) = s:2 = 0.00038.

These yielded the parameter estimates

o = (5H0L°) - 26.40 ana p - (2-10015) _ 263,55,

For Component 2 data, from Table H3:
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E(M) = A = 0.05651 and V(A) = s° = 0.00005.

These yielded the parameter estimates

0.05651%) _ _ (0.05651Y _
a = 0.00005) = 63.87 and B = m = 1130.2.

For Component 3 data, from Table H5:
BE(A) = A = 0.01938 and V(A) = s:2 = 0.00001.

These yielded the parameter estimates

_(0.019382Y _ _ (0.01938Y _
a = (“g-g0001) = 37-56 ana B = (§-B5g0r) - 2938

Bayesian Exponential Posterior Analysis.

R 21+26.4 -

D LT 17+63.87 _
R 74+37.56 -

The 80% two-sided probability intervals (TBPI) are

X5.2,2(2X2142%26.4)  x3_4.,,2(2%X21+2X26.4)
Component 1: 2(235.51+263.55) 7 2(235.51+263.55)

76.91  111.94
= (998.12' 998.12) = (0.07706,0.11216) .

X%.2/2(2x1742x63.87)  x2_5.,,2(2Xx17+2%63.87)
Component 2: 2(235.51+1130.2) 7  2(235.51+1130.2)

138.47 _184.38
= (2731.42/ 2731.42) = (0.05070,0.06750) .

X5.2/2(2x742x37.56)  x2_5 2/2(2X742x37.56)
Component 3: 2(235.51+1938) 7/ 2(235.51+1938)

72.39 106.47
= (4347'02, 4347.02) = (0.01665,0.02449).
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The Bayesian estimators of R(t) for t = 1 hour are

Component 1: R(t) = 90.95%

235.51 26.4+21
(263 55) +1

(263 55 +( 263, 55) +1

Component 2: R(t) = 94.25%

R(t) =

235 51 ©€3.87+17
1130.0) *1

Rt =
o 235550) +(1352) +

Component 3: ﬁ(t) = 97.97%

( 2%8321) +1 37.56+7

232:31) +(1555) +2

Component Level Aggregated to System: ﬁ(t) = 99.9894%
R(t) =1 - (1 - 0.9095) (1 - 0.9425)(1 - 0.9797).

The 80% two-sided probability intervals (TBPI) are
Component 1: (89.39% < R(1) < 92.58%)
exp(-0.11216X1) £ R(1) £ exp(-0.07706X1).
Component 2: (93.47% < R(1) < 95.06%)

exp (-0.06750X1) < R(1) < exp(-0.05070X1).
Component 3: (97.58% < R(1) < 98.35%)
exp(~0.02449X1) < R(1) < exp(-0.01665X1).

Component Level Aggregated to System: (99.9832%,99.994%)
Lower Bound = 1 - (1 - 0.8939)(1 - 0.9347)(1 - 0.9758)

Upper Bound 1 - (1 - 0.9258)(1 - 0.9506) (1 - 0.9835).




Appendix I. Simulated Data For A Bridge System With
Independent And Identical Components.

DT Data Run #1

Time Fail Time Fail Time Fail Time Fail
6.66 C5 139.79 Cc2 260.39 C3 384.83 C5
12.04 C3 140.33 C2 264.41 Cc2 386.05 Cc2
12.06 Cl 142.74 C3 266.69 C2 391.94 C4
20.96 C1 149.49 C5 270.53 Ci 394.66 C3
25.80 C3 158.44 C1l 271.10 Cl |401.82 C4
25.99 C3 164.77 C2 271.47 C3 403.74 Cl
29.44 C4 167.16 C4 275.73 C5 407.75 C3
31.02 C3 171.06 C2 277.59 C4 407.96 C4
31.76 C5 182.30 C4 277.71 Cl 420.43 C3
33.23 C2 185.90 Cl 279.82 Cl 424.30 C4
34.66 C3 188.21 i 282.18 C5 428.60 - C3
43.96 C3 189.61 C5 292.90 C5 430.08 C5
46.09 C3 192.67 C3 298.96 C5 433.07 C3
50.10 Cl 192.92 Ci 303.40 C5 437.72 C5
50.43 Cl 194.60 C5 306.61 C1l 441.39 Cl
51.04 Cl 195.77 C2 312.40 Cl 445,33 C3
56.41 C4 201.01 Cc2 313.09 C5 447 .24 C2
58.66 Cl 201.87 C4 317.51 C4 447.41 C5
60.53 C4 202.79 C1l 319.45 C2 450.87 C5
61.88 Cl 203.96 C2 320.35 C5 464.21 C4
67.88 Cl 2098.42 C5 322.77 C4 466.10 C3
78.68 Cc2 211.44 C2 323.89 C5 466.32 C3
89.25 C2 212.15 C3 326.18 Cl 468.33 C5
96.73 Cl 219.26 C5 332.49 C3 485,42 C4
107.96 C4 219.83 C5 336.490 C3 486.10 C4
113.57 C1l 222.17 C4 341.22 C4 490.04 C1
117.30 Cc2 223.68 C4 354.70 Cl 490.37 Cl
119.98 C2 224 .57 Cl 360.58 C3 491.49 C4
124.74 C2 226.39 Cl 361.05 Cl 492.86 C2
125.37 C3 229.76 C3 365.46 C4 494.52 C3
126.60 Cl 237.22 C4 372.13 C3 495.03 C4
129.59 Cl 247.40 C3 380.68 C1l 495.29 C3
133.52 Cc2 257.93 C3 381.88 C3 495.50 C3
139.08 C3 259.89 C5 383.66 C4 498.06 C3
499,37 C3




DT Data Run #2

Time Component Time Component Time Component
Failure Failure Failure

4.36 C2 131.29 C2 344.14 C5
4,51 Cl 134.68 C3 345.53 Cl
6.77 C4 146.27 C4 351.96 C2
7.22 Cl 147.67 C5 353.05 C3
8.43 Cl 150.14 C5 359.08 C2
12.33 C3 151.84 Cl 368.48 Cl
12.69 C5 157.55 C4 372.65 C5
18.40 C5 162.11 C5 372.68 C2
19.66 C4 165.01 C4 379.50 C4
20.53 C3 165.05 Cl 383.91 C3
21.38 C3 166.16 C3 387.88 C2
22.73 C4 167.51 Cl 390.46 C5
25.95 C3 168.83 C2 398.52 C5
27.04 C4 173.24 C5 409.40 Cl
29.43 C2 174.81 C2 413.68 C3
37.07 Cl 176.95 C2 416.10 C2
43.19 C5 195.96 Cl 416.42 C4
50.09 C3 196.87 C4 418.07 Cl
52.26 C5 198.22 C4 418.60 C5
64.90 C4 199.84 C3 424.48 Cl
76.03 C5 202.09 Cl 426.34 C4
79.50 C4 215.72 C5 427.27 C2
83.22 C3 228.84 C5 433.87 C3
86.45 Cl 228.97 C3 436.88 C5
89.05 Cl 229.03 Cl 437.44 C3
90.71 C3 229.58 Cl 439.65 C2
94.35 C5 230.82 Cl 442.77 C2
95.79 Cl 241,36 Cl 443.83 C2
95.87 C5 271.43 Cl 443.93 C3
96.05 C3 274.81 C5 446.19 C4
97.80 C5 282.22 Cl 451.99 C4
109.38 C3 282.96 Cl 456.79 C4
110.57 C4 287.80 C4 457.42 C4
111.47 Cl 289.59 C4 467.93 C3
117.46 C3 290.93 C5 473.89 Cl
117.48 C2 308.02 C5 477.44 C3
119.12 Cl 310.90 C3 477.97 C5
119.12 C4 313.61 Cl 481.49 C4
123.30 C4 335.89 C3 486.24 C4
124 .37 C2 337.22 C4 490.82 C5
126.57 C5 337.25 C4 497.27 C5




DT Data Run #3

Time Component Time Component Time Component
Failure Failure Failure
2.96 C2 209.14 C3 363.63 C5
4.04 Cc2 215.08 C4 370.63 C3
5.75 C4 220.14 C3 370.89 C5
12.68 C2 221.98 Cl 376.93 C2
16.24 C2 227.31 C3 380.55 C3
33.59 Cl 231.32 C5 380.57 C5
37.24 Cl 238.67 c2 385.48 Cl
38.44 Cil 240.93 C5 386.03 C4
48.96 C2 241.09 C5 387.73 C5
55.34 C3 241.26 C2 397.54 C2
68.16 C2 244.01 C4 403.20 Cl
69.77 C2 244,84 C2 404.23 Cl
79.30 C4 245.51 Cl 408.53 Cl
81.39 Cl 247.55 C4 408.92 C3
85.81 C4 262.06 C5 410.34 C3
86.40 Cc2 263.28 C5 411.08 C5
88.56 C4 267.35 C3 412.12 C2
90.60 C5 268.55 C4 412.25 C5
97.14 C5 268.64 C5 418.46 C2
97.65 C3 273.88 C5 418.58 C5
103.04 C4 275.38 Cl 422.00 C2
103.96 C3 275.81 c2 426.65 C3
137.42 C1l 277.54 C4 429.11 C4
140.36 C5 278.22 Cl 429.70 Cl
147.29 Cl 278.93 C2 430.40 Cc2
148.69 C3 279.98 C3 431.59 C5
149.72 Cc2 286.78 C2 434.30 C4
149.80 C3 291.53 C5 434.67 Cl
152.45 C3 300.53 C3 438.59 Cl
153.95 Cil 301.34 C5 441.21 C4
163.35 C4 310.11 C2 450.70 C4
164.02 Cl 326.98 C3 457.12 C4
166.31 C3 327.32 C3 457.21 C3
173.01 Cc2 329.63 C2 457.94 Cl
178.30 C2 333.29 C3 459.89 Cl
186.75 C3 336.91 C5 461.63 Cl
192.89 Cl 340.68 C5 466,28 Cc2
196.39 Cl 350.62 C4 472.38 c4
198.78 Cl 354.13 C3 474.14 Cc2
201.63 C5 358.68 C5 475.16 C4
203.02 Cl 363.56 C2 476.14 Cl
492.26 C3
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DT Data Run #4

Time Component Time Component Time Component
Failure Failure Failure

9.99 C4 179.08 C5 341.36 C3
14.23 C5 182.59 C2 349.36 C5
14.24 C5 184.75 C3 351.70 Cl
23.47 C3 186.46 C4 357.70 C4
24.44 C5 192.17 C3 366.46 C4
25.32 Cl 192,27 C2 371.11 C2
28.88 C5 196.37 Cl 382.98 C3
30.50 Cl 209.78 C3 384.09 C5
32.08 C3 218.92 C2 390.94 C5
32.86 C4 222.44 C2 391.66 Cl
38.49 C2 224.64 C5 394.03 C3
40.20 C4 226.48 Cl 397.11 C2
41.35 C4 227.60 C4 397.88 C2
41.83 C4 231.42 Cl 400.00 C4
42.61 C2 233.02 C5 406.06 C3
44.88 Cl 243.07 Cl 419.63 C5
47.21 C2 243.08 Cl 419.94 C3
59.71 Cl 247.54 C3 425.22 C3
63.46 C5 249.07 C3 428.58 Cl
64.38 Cl 259.52 C3 432.91 C2
80.78 C2 260.99 Cl 434.18 Cl
84.46 C2 262.70 C5 435.45 C5
91.49 C4 276.34 C4 436.52 Cl
99.18 C2 286.19 C2 436.58 C5
103,74 C2 286.85 C2 447,31 C4
108.38 C4 291.65 Cl 448.34 C3
109.49 Cl 292.46 C2 452.06 Cl
109.73 C2 292.62 C3 453.11 Cl
112.68 C5 292.92 C4 457.29 C4
118.74 Cl 298.54 C5 457.46 C4
124.77 C5 298.93 C5 462.20 C2
129.61 Cl 300.74 Cl 462.78 C4
130.63 C2 302.56 C2 464.59 C5
131.63 C2 302.72 C2 478.08 C5
140.39 C3 303.75 C2 480.56 C5
146.45 C5 311.16 Cl 486.78 Cl
151.21 C3 319.74 C3 487.90 C3
158.31 C4 320.36 C2 491.72 C4
163.06 C5 322.40 C3 493.38 C3
166.08 C4 326.34 C4 493.77 C4
176.23 C2 327.79 C5 498.61 C5
177.60 Cl 337.68 C5




DT Data Run #5

Time Fail Time Fail Time Fail Time Fail

0.66 Cl 100.21 C5 230.54 Cl 361.06 C3

2.46 Cl 101.18 C3 237.16 C3 362.47 C4

9.64 C3 107.58 Cl 250.45 C3 362.49 C3

11.34 C2 108.34 C3 259.24 C5 366.30 C2

15.24 C5 110.96 Cl 261.30 C3 372.01 C3

15.76 C2 113.82 C5 269.72 Cc2 379.40 C3

16.99 Cl 116.24 C5 271.63 C3 387.26 C3

18.92 C4 136.24 C4 283.72 Cl 387.52 C2

19.35 Cl 136.89 Cl 284.86 C3 394.09 Cl

23.96 Cl 137.38 C3 287.11 C3 398.00 C2

27.71 C5 143.38 Cc2 290.48 Cl 402.96 c2

32.46 C3 144.89 C2 293.61 Cl 408.64 Cl

39.19 C4 146.83 C2 298.03 C5 412.57 C4

41.84 C4 148.11 C2 298.94 C4 413.73 C3

42.73 C3 148.17 C4 303.67 C5 418.63 C4

46.14 Cl 150.91 c2 304.29 C3 424.71 C2

51.54 Cl 153.87 C4 304.86 C2 429.67 C4

53.34 C4 157.99 Cl 312.43 C3 429.92 C2

54.58 C5 159.91 C5 312.70 C5 432.24 C3

58.58 C2 165.49 C3 318.07 Cl 432.71 C4

59.05 Cl 166.48 C5 330.95 c2 449.61 CS

62.97 C4 170.87 C4 339.34 C4 457.91 C5

63.89 C3 177.89 C3 343.35 C4 462.61 C5

70.26 C3 181.20 C3 344.37 C5 462.62 C3

70.93 C2 182.23 C2 345.96 C3 465.37 Cl

83.10 Cl 184.71 C3 350.78 C5 469.82 C5

84.92 C4 199.68 Cl 351.37 C4 485.61 C5

88.38 C3 201.85 C3 351.86 Cl 491.02 C4

89.47 C2 214.69 C4 352.32 C4 492.67 C2

89.86 Cl 218.13 C4 354.27 C4 496.42 C5

98.77 C2 221.07 Cc2 354.44 Cl 499.68 C5

98.82 C3 223.39 Cl 358.72 C3

99.94 C4 225.80 C5 360.41 Cl
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OT Data Runs #1 and #2

OT Data Run #1

OT Data Run #2

Time Component Time Component
Failure Failure

4.06 C3 0.87 C2
8.27 C2 8.85 C3
12.04 C3 9.38 Cl
12.80 C3 15.50 C2
15.64 Cl 17.54 Cl
22.23 C2 19.63 C2
35.98 C3 28.30 C2
36.82 C3 29.50 Cl
39.57 C5 33.68 C2
39.80 C2 40.37 C4
44.76 C5 42.48 C4
52.07 Cl 44.47 C4
52.25 Cl 47.61 C5
59.55 C5 58.12 C3
62.05 C4 69.32 C5
63.94 C5 76.44 Cl
65.86 C3 76.90 C5
71.46 Cl 79.17 C3
77.51 C4 87.49 C5
78.45 C2 90.62 C5
80.02 Cl 98.37 C3
88.39 C3 103.75 Cl
89.69 C2 116.16 C3
93.16 Cl 120.20 C4
95.46 C5 120.63 C3
104.13 Cl 120.82 Cl
108.31 C5 122.92 Cl
108.52 C2
114.59 C4
123.77 C3
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Appendix J. Calculation For A Bridge System Reliability
With Independent And Identical Components.

Consider a system composed of 5 independent and
identical components given in Figure 1 (page 30). The time
to failure of each component is assumed to be exponentially

distributed. Let A = 0.05 failure per hour be the

respective constant failure rates of each component.

For the true system, using a mission time, t of one
hour, the reliability of components 1, 2, 3, 4, and 5 are

Re =Ry =R, =R;y = Ry = Ry = exp(-0.05) = 95.12%.

The reliability of the system can be calculated as

Rs = RiRy + RRs + RiRsRs + RRsRs - RiR:R3Rs - RiRR3Rs -
RiR2RsRs = RiR3R4Rs - RzR3R4Rs + 2R:R:R3R4Rs = 99.50%.

Using a computer program called RAPTOR, which is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,
see Appendix I):

Table Jl: Aggregated Components DT Data

Run i T; Hours X; Failures A:= XJT;
1 2,496.85 136 0.05447
2 2,486.35 123 0.04947
3 2,461.3 124 0.05038
4 2,493.05 125 0.05014
5 2,498.4 130 0.05203
Table J2: Aggregated Components OT Data

Run i T; Hours X; Failures 1= Xi/T,
1 618.85 30 0.04848
2 604.1 26 0.04304
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Table J3: Component 1 DT Data

Run T; Hours X; Failures Ai= XiJT;

1 499.37 32 0.06408

2 497.27 28 0.05631

3 492.26 27 0.05485

4 498.61 26 0.05215

5 499.68 27 0.05404
Table J4: Component 1 OT Data

Run i T: Hours X; Failures Ai= X:/T;

1 123.77 7 0.05656

2 120.82 6 0.04966
Table J5: Component 2 DT Data

Run T; Hours X; Failures Ai = XiT;

1 499,37 21 0.04205

2 497.27 17 0.03419

3 492.26 28 0.05688

4 498.61 27 0.05415

5 499.68 23 0.04603
Table J6: Component 2 OT Data

Run i T; Hours X; Failures Ai = XT;

1 123.77 6 0.04848

2 120.82 5 0.04138
Table J7: Component 3 DT Data

Run i T; Hours X; Failures 7:= XJT;

1 499.37 35 0.07009

2 497.27 24 0.04826

3 492.26 25 0.05079

4 498.61 22 0.04412

5 499,68 33 0.06604
Table J8: Component 3 OT Data

Run i T; Hours X; Failures 1i= Xi/T;

1 123.77 8 0.06464

2 120.82 6 0.04966
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Table J9: Component 4 DT Data

Run T; Hours X; Failures 7:= XJTs

1 499.37 25 0.05006

2 497,27 27 0.05430

3 492.26 20 0.04063

4 498.61 23 0.04613

5 499.68 25 0.05003
Table J10: Component 4 OT Data

Run T: Hours X; Failures A:= X/T;

1 123.77 3 0.02424

2 120.82 4 0.03311
Table Jl1l: Component 5 DT Data

Run T; Hours X; Failures Ai= XJ/T,

1 499,37 23 0.04606

2 497.27 27 0.05430

3 492.26 24 0.04876

4 498.61 27 0.05415

5 499.68 22 0.04403
Table J12: Component 5 OT Data

Run T; Hours X; Failures Ai = XJT;

1 123.77 6 0.04848

2 120.82 5 0.04138

The Classical Exponential Method.

Assuming the time to failure of each component has the

exponential distribution,

rate A

computed.

Component Aggregated DT: 1=

Component Aggregated OT: 7=

and 80%

confidence

intervals

___ 638
12435.95

(555
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point estimates for the failure

about A will be

= 0.05130

= 0.04579
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0.05315

i

0.04664
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0.04497

0.05589
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= 0.02862

= 0.04945

= 0.04497

= 56 and T:
140 and T3 = 2487.19 from Table
f; = 116 and Ts
244.59 from Table
fs = 14 and Ty =
fs = 120 and Ts = 2487.19 from Table

fi, = 123 and Tn;




= 2487.19v from Table Jl11, fi; = 11 and T, = 244.59 from
Table J12.
The 80% two-sided confidence intervals (TCI) are
Component Aggregated DT: (0.04872,0.05392)

(13.2/2(2X638) X2-0.2/2(2%638) ( 1211.7 1341,15)

2x12435.95 7 2x12435.95 24871.97 24871.9

Component chrreqatea OT: (0.03815,0.05379)

(X8.2/2(2X56) 13—0.2/2(2X56)) =( 93.3 131.56)

2x1222.95 1 2x1222.95 2445.97 2445.9

Component 1 DT: (0.05028,0.06247)

(X%.z/z(ZXMO) Xf—o.2/2(2X140)) ( 250.13 310,72)

2X2487.19 7 2X2487.19 4974.38 7 4974.38

Component 1 OT: (0.03535,0.07270)

(X%.z/2(2><13) X§—0.2/2(2X13)) _ ( 17.29 35.56)

2X244.59 1 2%x244.59 489.18 7 489.18

Component 2 DT: (0.04118,0.05227)

(X%.2/2(2X116) X%-o.z/2(2X116)) (204.86 260 )

2X2487.19 1 2x2487.19 4974.38 7 4974.38

Component 2 OT: (0.02870,0.06299)

(X%.z/z(zxn) X§—0.2/2(2X11)) _ ( 14.04 30.81)

2%X244 .59 1 2X244 .59 489.18 7 489.18

Component 3 DT: (0.04990,0.06204)

(x%.z/z(le39) x%-o.zxz(2><139)) ( 248.24 308.61)

2%x2487.19 7 2%X2487.19 4974.38 7 4974 .38

Component 3 OT: (0.03872,0.07751)
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( x5.2/2(2x14)

X2 0.2/2(2%14) 18.94
2%X244 .59 7 =

37.92
2X244.59 489.18 7 489.18

Component 4 DT: (0.04270,0.05397)

x%_o.z/z(-?xmo)) 212.39 268.47
2x2487.19 1974.38 7 497438

x3.2/2(2x120)
2x2487.19 17

Component 4 OT: (0.01592,0.04306)

X5.2/2(2X7)  xi_0.2/2(2X7) 7.79 21.06
2X244.59 1 2x244.59 = 489.18 7 489.18

Component 5 DT: (0.04383,0.05525)

X8.2/2(2x123) x4 0.2/2(2X123) 218.04 274.82
2xX2487.19 7 2%X2487.19 = 4974.387 4974.38

Component 5 OT: (0.02870,0.06912)

x5.2/2(2x11)  x% 4 ,/0(2%x11) 14.04  33.81
2%X244 .59 71 2%x244.59 = 489.18 7 489.18

The reliability estimators of R(t) for t = 1 hour are

Component Aggregated DT:

Ro(t) = exp(-0.05130X1) = 95.00%

Component Aggregated OT:

Ro(t) = exp(-0.04579X1) = 95.52%

-———

Component 1 DT: Ri(t) = exp(~0.05629X1) = 94.53%
Component 1 OT: Ri(t) = exp(-0.05315X1) = 94.82%
Component 2 DT: Rz (t) = exp(-0.04664X1) = 95.44%
Component 2 OT: T?;(t) = exp(-0.04497X1) = 95.60%
Component 3 DT: Rs(t) = exp(-0.05589X1) = 94.57%




Component 3 OT: R3(t) = exp(-0.05724X1) = 94.44%
Component 4 DT: Ra(t) = exp(-0.04825X1) = 95.29%
Component 4 QOT: Ri(t) = exp(-0.02862X1) = 97.18%
Component 5 DT: Rs(t) = exp(-0.04945X1) = 95.18%
Component 5 OT: Rs(t) = exp(-0.04497X1) = 95.60%

Substitute the appropriate wvalues into ﬁ(t)== RiR; + R:Rs
+ R1R3R5 + R2R3R4 - R1R2R3R4 - R1R2R3R5 - R1R2R4R5 - R1R3R4R5 -

R;R:R;Rs + 2R:R;R3R4Rs to obtained the following:

i

Aggregated Component to System DT: ﬁ(t) 99.48%

Aggregated Component to System OT: ﬁ(t) = 99 _ 58%

Component ILevel Agqgregated to System DT:ﬁ(t) = 99.50%

Component Level Aggregated to System OT:ﬁ(t) = 99,63%.

The 80% two-sided confidence interwvals (TCI) are

Aggregated Component DT: (94.75%,95.25%)

exp(-0.05392X1) £ R(1) £ exp(-0.04872X1)

Aggregated Component OT: (94.76%,96.26%)

exp(-0.05379X1) £ R(1) £ exp(-0.03815X1)
Component 1 DT: (93.95%,95.10%)
exp(-0.06247X1) £ R(1) £ exp(-0.05028X1)
Component 1 OT: (92.99%,96.53%)
exp (~0.07270X1) <€ R(1) < exp(-0.03535X1)

Component 2 DT: (94.91%,95.97%)
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exp(-0.05227X1) £ R(1) < exp(-0.04118X1)
Component 2 OT: (93.90%,97.17%)
exp (~0.06299X1) < R(1) < exp(-0.02870X1)

Component 3 DT: (93.99%,95.13%)

exp (-0.06204X1) € R(1) £ exp(-0.04990X1)

Component 3 OT: (92.54%,96.20%)

exp(-0.07751X1) £ R(1) < exp(-0.03872X1)
Component 4 DT: (94.75%,95.82%)
exp(-0.05397X1) < R(1) £ exp(-0.04270X1)
Component 4 OT: (95.79%,98.42%)
exp(-0.04306X1) < R(1) < exp(-0.01592X1)

Component 5 DT: (94.63%,95.71%)

exp(-0.05525X1) < R(1) < exp(-0.04383X1)

Component 5 OT: (93.32%,97.17%)

exp(-0.06912X1) < R(1) < exp(-0.02870X1)

Substitute the appropriate wvalues into ﬁ(t)= RiR: + R2Rs
+ RiR3Rs + RyR3R¢ - RiR:R3Ry - RiR:R3Rs - RiR;R4Rs — RiRsR4Rgy =
R:R3R4Rs + 2R1R:R3R4Rs to obtained the following:

Aggregated Component to System DT: (99.42%,99.53%)

Agaregated Component to System OT: (99.43%,99.71%)

Component Level Aggregated to Svstem DT:

(99.38%,99.61%)
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Component Level Aggregated to System OT:

(99.24%,99.85%) .
The Bayesian Exponential Method.
Bayesian Exponential Prior.

For the component aggregated data, from Table Jl:

B(A) = A = 0.051298 and V(A) = s:% = 0.000004.

These yielded the parameter estimates

0.0512982Y _ _ (0.051208Y) _
o (G 55650r) = 657.67 ana b = (§:J3555) - 128245,

For Component 1 data, from Table J3:
E(M) = 41 = 0.05628 and V(A) = 5,2 = 0.00002.

These yielded the parameter estimates

_ (0.056282Y _ 0.05628Y _
o = ( 0.00002 ) = 150.85 and B O 00002 = 2680.14.

For Component 2 data, from Table J5:
E(A) = 1 = 0.04666 and V(L) = s’ = 0.00008.

These yielded the parameter estimates

0.046662 ( 0.04666
0.00008

a = 0.00008 = 25.92 and B 00008 = 555.48.

For Component 3 data, from Table J7:

E(L) = A = 0.05586 and V(A) = s:2 = 0.00013.

These yielded the parameter estimates

Q.055862
o ={ 550013 ) = 23.64 and B = (3=22288) = 423.19.

For Component 4 data, from Table J9:




B(A) = A = 0.04823 and V(A) = ;2 = 0.00003.

These yielded the parameter estimates

o = (404823°) _ 89.47 ana p = (2:04823)  1gss.
For Component 5 data, from Table Jll:

B(M) = 1 = 0.04946 and V(L) = s> = 0.00002.

These yielded the parameter estimates

o (U] - 121,10 and p = (L-04246) - 2245.09.

Bayesian Exponential Posterior Analysis.

Aqggregated Component: 1= (1222?;5655334.5 = 0.05082.
Component 1: 4 = (2 7 41.35-53—5206'8805.1 7 = 0.05602.
Component 2: 4 = (2441.1523—55'5952.48 = 0.04614.
Component 3: 4 = (2441_4553_34'2634.19 = 0.05637.
Component 4: A4 = (24Z+E?S)9+11555 = 0.04595.
Component 5: 4 = (2441.15-5%1-1212‘4189.09 = 0.04902.

The 80% two-sided probability intervals (TBPI) are

Aggregated Component:

X3.2/2(2X5642%657.87)  x2_o.2/2(2X56+2x657.87)
2(1222.95+12824.5) ! 2(1222.95+12824.5)

1359.7 1496.64
= (28094.9’ 28094.9) = (0.04840,0.05327).
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X5.2/2(2X13+2x150.85)  x3_5.,,,(2x13+2x150.85)
Component 1: 2(244.59+2680.14) r  2(244.5942680.14)

294.68 360.17
= (5849.46' 5849.46) = (0.05038,0.06157).

X8.2/2(2x1142%25.92)  x% 5 ,,5(2x11+2x25.92)
Component 2: 2(244.59+4555.48) 7  2(244.59+555.48)

58.01 88.85
= ( 1600.14 7 1600.14) = (0.03625,0.05553).

X8 2/2(2X1442%23.64)  x%_o.,,2(2x1442X23.64)
Component 3: 2(244.59+423.19) 7  2(244.59+423.19)

59.8 91.06
= (1335.56’ 1335.56) = (0.04477,0.06818).

X58.2/2(2X7+2x89.47) 2 4. 5/2(2X7+2x89.47)
Component 4: 2(244.59+1855) 7 2(244.59+1855)

167.35 217.5
= ( 4199.18 7 4199.18) = (0.03985,0.05180) .

X5.2/2(2X1142x111.19) 235 ,,,(2x11+2x111.19)
Component 5: 2(244.59+2248.09) 7  2(244.5942248.09)

216.15 272.7
= ( 4985.36 7 4985.36) = (0.04336,0.05470).

The Bayesian estimators of R(t) for t = 1 hour are

Aggregated Component: ﬁ(t) = 95,.05%

—:222 95 657.87+56
(:2824 5) +1

R(t) =
(%5—5%2?—?) +(T273tz4—.5) +1

Component 1: R(t) = 94.55%

244 59 150.85+13
2680, 14) +1

44,59

5660.14 +( 2680.14)*1
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Component 2: ﬁ(t) = 95,.49%

244 59 25.92+11
% ( 555, 48) +1

T (EER) (i)
|
|
|
\
i
\
\
|

Component 3: ﬁ(t) = 94.52%

423, 19) +l

'33—3%) +(got7s) +1

: R(t) = 95.51%

R(t) =

1

Component

(2]4.3529) +1 89.47+7

448582) +(7o55) 1

Component 5: R(t) = 9§, 22%

R(t) =

Rie) = 2248, 09) +1

; (t) = 244.59 +( )+1
2248.09 231509
|

\

|

Substitute the appropriate wvalues into ﬁ(t)= RiRs + R:Rs
+ RiR3Rs + RoR3R; - RiRoR3R; - RiR:R3Rs = RiR:RiRs = RiRsR4Ry -~

RoRsR4Rs + 2R1R2R3R4R5 to obtained the following:
Aggregated Component to System: ﬁ(t) = 99.49%

Component Level Aggreqgated to Svstem: ﬁ(t) = 99.,52%.

The 80% two-sided probability intervals (TBPI) are
Aaggregated Component: (94.81% < R(1) < 95.28%)
exp(~-0.05327X1) € R(1) < exp(-0.04840X1).

Component 1: (94.03% < R(1) £ 95.09%)
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exp(-0.06157X1) £ R(1) < exp(-0.05038X1).
Component 2: (94.60% < R(1) < 96.44%)
exp(-0.05553X1) < R(1) < exp(-0.03625X1).

Component 3: (93.41% < R(1) < 95.62%)

exp(-0.06818X1) < R(1) < exp(-0.04477X1).
Component 4: (94.95% < R(1) < 96.09%)
exp(-0.05180X1) € R(1) £ exp(-0.03985X1).

Component 5: (94.68% < R(1) < 95.76%)

exp(-0.05470X1) < R(1) < exp(-0.04336X1).

Substitute the appropriate values into ﬁ(t) = R;jRs + R:Rs
+ RiR3Rs + R2R3R:s = RiR:R3Rs = RiR:R3Rs - RiR:R4Rs = RijR3R4Rs =
R:R3RsRs + 2R;R;R3R4Rs to obtained the following:

Aggregated Component to System: (99.44%,99.54%)

Component Level Aggregated to System: (99.38%,99.65%).
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Appendix K. Simulated Data For A Bridge System With
Different Independent Components.

DT Data Run #1

Time Fail Time Fail Time Fail Time Fail
6.03 Cl 134.00 Cl 246.06 C4 368.17 C5
16.66 C5 135.49 Cl 250.50 C3 370.91 C4d
18.06 C3 149.91 Cl 253.23 C3 378.72 C4
18.58 Cl 153.05 Cl 261.18 Cl 382.44 C1l
31.40 C3 153.22 C3 267.25 C5 382.74 C3
31.68 C3 154.03 C3 270.00 C1l 392.26 C3
33.15 C1 154.61 C2 273.13 C4 394.56 Cl
33.23 C2 154.88 Cl 275.26 Cl 404.38 Cl
36.88 C2 168.43 C4 278.04 C4 409.59 C3
39.22 C3 174.94 Cl 283.04 C2 413.48 Cl
46.64 Cl 178.08 Cl 283.18 Cl 418.01 C2
51.07 C5 185.65 Cl 285.32 C2 424 .22 C3
51.28 Cl 190.69 C3 285.89 C2 425.01 Cl
56.41 C5 198.01 Cl 292.50 C2 427.08 C4
57.23 C5 199.16 Cl 300.20 C4 430.78 C2
58.75 C5 201.52 Cl 309.56 C1l 436.65 C3
58.89 C4 204.01 Cl 313.11 C4 439.46 C5
67.14 C4 204.54 C2 317.32 C4 440.66 C2
73.58 C4 213.75 C1l 319.43 C3 447.63 Cl
77.80 C5 214.40 Cc2 329.52 Cl 453.97 Cl
90.92 Cl 219.63 C2 332.56 Cl 454,82 C5
92.80 C5 220.05 C3 334.78 Cl 456.28 C3
105.35 Cl 221.16 Cl 335.50 C3 462.14 Cl
107.39 C3 222 .58 C2 339.62 Cl 464.38 C1l
119.24 C5 223.35 C4 344.19 C3 468.20 Cl
119.37 Cl 230.07 Cc2 346.51 Cl 474.33 Cl
125.88 Cl 232.06 Cl 349.14 Cl 475.25 C5
127.22 Cl 240.86 Cl 353.52 c2 478.31 C2
129.60 Cl 241.15 Cl 355.06 C3 479.17 Cl
132.66 C3 243.04 C4 357.07 C2 499.09 Cc2
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DT Data Run #2

Time Component Time Component Time Component
Failure Failure Failure

11.59 Cl 171.92 Cl 285.74 Cl
12.80 Cl 179.22 Cl 286.81 Cl
17.46 C2 181.59 C2 299.44 C2
27.87 Cl 188.38 Cl 305.57 C2
35.62 Cl 190.77 C3 306.92 C2
39.53 Cl 192.12 Cl 313.42 C3
40.82 C2 194.66 C3 326.50 C5
42,43 C4 195.49 Cl 357.10 C3
43.35 C5 196.26 Cl 369.98 C4
46.11 C5 202.67 C3 374.32 Cl
58.12 C2 204.10 Cl 376.79 C3
61.71 C2 205.55 C3 377.61 C3
65.11 Cl 206.34 C4 379.47 C3
68.73 C4 210.76 Cl 393.84 C5
71.05 C3 211.40 C5 395.29 C3
77.82 C3 212.66 C2 396.50 C2
83.59 Cl 215.04 Cl 411.47 C3
89.93 Cl 218.49 Cl 412.58 C3
91.82 C2 222.49 C4 412.62 C2
94,53 C2 229.88 C2 414,42 C2
96.31 C3 230.52 C5 415.28 Cl
98.13 C3 230.85 C4 423.83 Cl
102.47 Cl 234.85 Cl 441.89 Cl
106.57 Cl 247.80 C5 454.39 Cl
107.42 C2 248.72 C3 458.56 C3
109.43 Cl 252.85 C2 461.91 C4
110.96 Cl 253.62 Cl 461.98 C4
111.38 Cl 255.32 C2 462.04 C2
113.66 Cl 259.60 Cl 469.00 C5
115.82 Cl 263.34 Cl 470.35 Cl
116.73 C5 265.63 C3 473.91 Cl
127.89 Cl 268.53 C2 484.30 C3
132.20 C2 268.90 Cl 489.34 Cl
140.65 C4 270.99 C2 490.55 C2
141.09 C3 273.04 C4

158.80 C4 285.02 C4
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DT Data Run #3

Time Component Time Component Time Component
Failure Failure Failure

1.41 Cl 160.90 C2 375.72 C3
7.29 C3 169.54 C2 380.98 C3
8.93 Cl 180.54 Cl 384.56 C3
15.20 C2 182.31 Cl 390.91 C3
23.93 C2 198.68 Cl 391.00 Cl
24.83 C2 200.50 Cl 391.32 C2
38.72 Cl 201.10 Cl 400.48 Cl
46.53 Cl 220.33 C4 402.32 C2
50.34 Cl 222.58 Cl 404.66 C5
51.13 C2 231.44 C5 408.31 C4
59.72 Cl 235.47 C5 409.49 C2
65.58 Cl 243.10 C2 414.94 Cl
70.22 C5 243.74 Cl 416.24 Cl
73.84 C4 249.61 C2 416.31 Cl
77.92 C2 252.36 C2 419.10 C2
80.99 C3 258.72 C4 422.68 C2
80.99 C2 271.75 Cl 426.22 C2
81.05 C3 275.02 Cl 426.80 Cl
83.69 C2 277.05 C5 435.44 C3
88.17 Cl 287.67 C4 441,74 Cl
90.51 Cl 292.83 C5 442.35 Cl
96.39 Cl 295.49 C3 445,02 Cl
103.22 Cl 296.63 Cl 451,33 Cl
103.60 C2 310.30 C3 455.83 Cl
105.91 Cl 315.67 C2 457.19 C2
112.90 Cl 316.78 C2 458.45 Cl
116.65 C2 320.29 C3 459.87 Cl
126.22 C2 324.26 C3 461.43 Cl
127.22 Cl 327.27 Cl 463.48 C5
144.20 C3 332.30 Cl 466.94 C3
145.90 C2 340.06 C2 474,84 C2
147.47 C5 345.05 C3 478.73 C3
152.86 Cl 358.16 Cl 488.40 C4
159.59 C3 360.81 Cl 495,40 C2
159.82 C2 368.93 C2 497.97 Cl

143




DT Data Run #4

Time Component Time Component Time Component
Failure Failure Failure

0.22 Cl 147.31 C2 309.30 C2
0.67 C4 152.25 C4 320.00 Cl
3.65 Cl 158.28 C5 326.05 Cl
16.32 Cl 167.07 C5 330.21 C2
19.52 C2 169.02 C3 330.35 C5
30.00 C5 174.94 C2 331.48 - Cl
38.34 Cl 183.38 Cl 331.98 Cl
40.80 C2 186.99 Cl 351.89 C2
46.32 Cl 187.80 C4 354.28 Cl
49.32 C2 189.02 C5 361.43 C4
50.08 C3 189.94 C4 362.59 Cl
55.09 Cl 191.47 Cl 362.72 C2
64.39 C4 199.83 C2 366.47 Cl
65.60 Cl 203.21 Cl 376.66 Cl
66.95 Cl 210.58 C3 378.74 C2
67.51 Cl 210.59 C3 379.84 Cl
74.37 C5 214.07 C2 388.36 C3
75.71 Cl 214.64 Cl 397.50 C2
78.55 Cl 216.86 Cl 402.61 Cl
86.86 Cl 219.45 Cl 402.89 C3
86.87 Cl 222.68 C2 404.92 C2
91.08 C5 225.89 C3 423.19 Cl
91.80 Cl 236.74 Cl 428.51 C4
92.30 C2 237.05 C2 429.30 C3
96.83 C4 240.41 Cl 431.57 C2
98.62 Cl 240.59 C4 434.60 C3
100.03 Cl 240.99 Cl 438.24 Cl
106.39 C4 241.17 C2 440.71 Cl
106.40 Cl 241.55 C4 447,17 C3
107.29 Cl 245,77 C2 450.31 C5
116.25 C3 265.82 Cl 464,64 C3
118.98 Cl 268.15 Cl 464.67 C3
127.47 C3 271.20 C4 465.08 Cl
128.22 Cl 278.93 C5 465.85 Cl
130.74 C3 279.34 C2 471.07 Cl
131.84 Cl 288.12 C5 487.62 Cl
132.45 C3 292.76 Cl 491.53 C3
141.67 C2 294.07 C2 495.31 C2
144.92 C2 295.04 Cl

146.64 C3 300.05 C2
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DT Data Run #5

Time Component Time Component Time Component
Failure Failure Failure

0.67 C2 166.70 C2 322.14 C2
0.82 C3 175.46 C4 323.43 C5
7.46 C2 183.11 C3 325.20 Cl
9.39 C2 186.66 C2 329.85 Cl
10.75 Cl 192.37 C5 337.16 C2
11.20 C4 197.14 Cl 338.71 Cl
11.56 C3 197.29 C3 339.89 Cl
13.02 C2 197.48 C5 346.68 C3
17.47 C5 205.10 C2 349.52 C5
17.70 Cl 209.58 C2 358.04 Cl
30.01 C5 210.49 Cl 359.73 Cl
37.85 - C2 213.39 C3 367.10 C3
44.40 Cl 223.49 C4 367.43 C5
48.36 C4 232.47 C2 373.47 C5
53.53 Cl 237.11 Cl 374.25 Cl
53.64 Cl 237.44 Cl 380.21 Cl
61.29 C5 239.24 C3 381.77 C2
61.65 C4 240.12 C2 385.44 C4
62.00 Cl 241.92 C2 388.47 C4
63.82 C3 242.26 Cl 390.76 Cl
66.33 C2 244.28 C4 391.40 Cl
69.25 C3 253.14 C4 392.34 C4
73.82 Cl 253.66 Cl 392.80 Cl
73.87 C3 256.45 Cc2 403.73 C4
74.55 Cl 258.81 C2 406.00 C3
74.64 Cl 262.10 C3 408.46 Cl
78.55 C3 267.99 C5 409.87 C2
78.99 C5 269.02 C3 411.74 Cl
85.24 C5 275.07 Cl 422.27 C2
106.44 C5 278.08 C4 437.73 C4
108.23 Cl 279.08 C2 441.40 Cl
109.67 Cl 280.21 Cl 443.16 C1l
112.07 Cl 283.38 C4 444.36 C4
114.33 C3 290.57 C2 462.58 Cl
118.03 Cl 290.79 Cl 466.10 C2
122.81 C3 294.19 C4 468.55 C3
149.15 C2 295.60 Cl 473.70 C3
149.39 Cl 298.09 C2 474.43 Cl
149.73 C3 301.78 Cl 478.64 C4
150.20 C5 309.33 C3 482.65 C5
151.99 Cl 312.76 Cl 492.94 C4
157.39 Ccl 318.88 C3 498.76 Cl
161.74 Cl 321.82 Cl




OT Data Runs #1 and #2

OT Data Run #1 OT Data Run #2
Time Component Time Component
Failure Failure
6.08 C3 22.69 Cl
7.82 Cl 23.44 C5
8.27 C2 27.11 Cl
9.03 C2 30.16 C3
14.80 Cl 34.43 Cl
18.06 C3 37.63 C2
32.21 C2 38.51 Cl
33.01 Cl 41.76 C2
33.05 C2 42.56 C4
38.23 C2 44.49 Cl
44,42 C3 50.43 C2
47.53 Cl 53.33 C4
47.62 Cl 57.57 C4
57.23 Cl 61.55 C4
59.43 Cl 67.96 Cl
66.62 C3 78.81 Cl
67.16 Cl 89.34 Cl
76.87 C2 93.12 Cl
78.42 Cl 104.07 C3
85.43 C2 106,78 Cl
96.68 C2 116.38 Cl
96.96 Cl 117.95 Cl
98.93 C5 119.96 C3
109.81 C2
113.89 C3
114.65 Cl
120.78 C2
124.09 C4




Appendix L. Calculation For A Bridge System Reliability
With Different Independent Components.

Consider a system composed of 5 different independent
components given in Figure 1 (page 30). The time to failure
of each component is assumed to be exponentially
distributed. Let A ;= 0.1, Az = 0.05, A3 = 0.033, A, = 0.025,
and As = 0.02 be the respective constant failure rates
(failure per hour) of each component.

For the true system, using a mission time, t of one

hour, the reliability of components 1, 2, 3, 4, and 5 are

Ry, = exp(-0.10) = 90.48%
R, = exp(-0.05) = 95.12%
R; = exp(-0.033) = 96.75%
R,y = exp(~-0.025) = 97.53%
Ry = exp(-0.02) = 98.02%.

The reliability of the system can be calculated as

Rs = RiRs + RRs + RiRsRs + R:R3sRy - RiR:R3Ry - RiR;R3Rs -
RiR:RsRs = RiR3RiRs = RpR3R4Rs + 2Ri1R:R3R4Rs = 99.48%.

Using a computer program called RAPTOR, which is
developed by AFOTEC, to simulate the true system, the
following data are obtained (to review the simulated data,

see Appendix K):
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Table L1l: Component 1 DT Data

Run T; Hours X; Failures 7.= XiJT;

1 499.09 51 0.10219

2 490.55 41 0.08358

3 497.97 44 0.08836

4 495.31 52 0.10499

5 498.76 48 0.09624
Table L2: Component 1 OT Data

Run i T; Hours X; Failures 2;= Xi/T;

1 124.09 11 0.08865

2 119.96 12 0.10003
Table L3: Component 2 DT Data

Run i T; Hours X; Failures 71 = XJT;

1 499.09 19 0.03807

2 490.55 23 0.04689

3 497.97 30 0.06025

4 495,31 26 0.05249

5 498.76 25 0.05012
Table 1L4: Component 2 OT Data

Run T; Hours X; Failures A;= XJT;

1 124.09 10 0.08059

2 119.96 3 0.02501
Table L5: Component 3 DT Data

Run i T; Hours X; Failures Ai= XJ/T;

1 499.09 22 0.04408

2 490.55 21 0.04281

3 497.97 17 0.03414

4 495,31 18 0.03634

5 498.76 22 0.04411
Table L6: Component 3 OT Data

Run T; Hours X: Failures A= XJTs

1 124.09 5 0.04029

2 119.96 3 0.02501
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Table L7: Component 4 DT Data

Run T: Hours X; Failures 1:= XJT;

1 499.09 15 0.03006

2 490.55 12 0.02446

3 497.97 6 0.01205

4 495.31 12 0.02423

5 498.76 18 0.03609
Table L8: Component 4 OT Data

Run T; Hours X; Failures i = XJT;

1 124.09 1 0.00807

2 119.96 4 0.03334
Table 1L9: Component 5 DT Data

Run T; Hours X; Failures 1= XT;

1 499.09 13 0.02605

2 490.55 9 0.01835

3 497.97 8 0.01607

4 495,31 10 0.02019

5 498.76 15 0.03008
Table L10: Component 5 OT Data

Run i T; Hours X; Failures .= XJ/T:

1 124.09 1 0.00806

2 119.96 1 0.00834

The Classical Exponential Method.

Assuming the time to failure of each component has the

exponential distribution,

rate A and

computed.

Component 1 DT: 7

80%

(1

Component 1 OT: 7= (

confidence

point estimates for the failure

intervals about A will be
236 _
) (2481 gg) = 0.09510
) (244 05 = 0.09424
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Component 2 DT: 1 = ("%‘) 24%%368 = 0.04956
Component 2 oT: 4 = (%) = (52355) = 0.05327
Component 3 DT: 7= (“f'i') 24%8068 = 0.04030
Component 3 OT: 7= (%) = (-2—;1—48——0—5-) = 0.03278
Component 4 DT: 7= (—f‘;‘) (2481 ) = 0.02539
Component 4 OT: 1= (—f%) = (ﬁ) = 0.02049
Component 5 pT: 4 = (%) = (57245) = 0.02216
Component 5 0T: 4 = (52) = (578c5) = 0.00820

where f; = 236 is the number of failures and T, = 2481.68 is
the total test time from Table L1 and similarly f; = 23 and
T, = 244.05 from Table 12, f; = 123 and T3 = 2481.68 from
Table L3, f; = 13 and T, = 244.05 from Table L4, fs = 100 and

= 2481.68 from Table L5, fs = 8 and Ts = 244.05 from Table
L6, f; = 63 and T; = 2481.68 from Table L7, fz = 5 and Ts =
244.05 from Table 18, fy = 55 and Ty = 2481.68 from Table
19, fio = 2 and Ty = 244.05 from Table L10.

The 80% two-sided confidence intervals (TCI) are

Component 1 DT: (0.08726,0.10311)

x3.2/2(2x236)  xio.p/2(2%236) 433.08 _511.78
2%2481.68 7 2%X2481.68 = 4963.367 4963.36

Component 1 OT: (0.07010,0.12014)
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x3.2/2(2%23)  x3_g.2/2(2%23) 34.22 58.64
2x244 .05 7 2x244 .05 = 488.1 7 488.1

Component 2 DT: (0.04393,0.05537)

(X%.z/2(2><123) X§—0.2/2(2X123)) _ ( 218.04 2’74.82)

2%X2481.68 7 2%X2481.68 4963.367 4963.36

Component 2 OT: (0.03543,0.07286)

(13.2/2(2X13) X5-0.2/2(2%13) (17,29 35.56)

2x244.05 71 2X244.05 488.17 488.1

Component 3 DT: (0.03523,0.04554)

(x%.z/z(2><100) x§-o.z/z(2><100)) _ ( 174,84 226.02)

2%x2481.68 7 2X2481.68 4963.36 7 4963.36

Component 3 OT: (0.01908,0.04823)
(X%.Z/z(zxs) X§-0.2/2(2><8)) _ ( 9.31 23_54)

2x244.05 1 2x244.05 488.17 488.1

Component 4 DT: (0.02138,0.02956)

(X%.z/z(2><63) Xf—o.z/z(2X63)) _ ( 106.13 146.72)

2%x2481.68 f 2x2481.68 4963.36 7 4963.36

Component 4 OT: (0.00997,0.03275)

(13.2/2(2X5) Z§—0.2/2(2><5)) (4,37 15,99)

2x244.05 1 2x244.05 488.17 488.1

Component 5 DT: (0.01843,0.02607)

(x%.z/z(?—x55) xf-o.z/z(2><55)) ( 91.47 129.39)

2x2481.68 7 2x2481.68 4963.367 4963.36

Component 5 OT: (0.00218,0.01594)

(X%.z/z(2><2) X§—0.2/2(2X2)) ( 1.06 7.78 )

2%244.05 ¢ 2x244.05 488.17 488.1
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+ RiRs3Rs

The reliability estimators of R(t) for t = 1 hour are

Component 1 DT:

Component 1 OT: Ry

Component 2 DT:

Component 2 OT:

Component 3 DT:

Component 3 OT: R

Component 4 DT:

Component 4 OT: Rq

Component 5 DT: Rs

Component 5 OT:

Substitute the

+ RR3R; -

Ry (t) = exp(-0.09510X1) = 90.93%
Ri(t) = exp(-0.09424X1) = 91.01%
B (t) = exp(-0.04956X1) = 95.17%
Ro (t) = exp(-0.05327X1) = 94.81%
Rs (t) = exp(-0.04030X1) = 96.05%
Rs(t) = exp(-0.03278X1) = 96.78%
Rs (t) = exp(-0.02539X1) = 97.49%
Ri (t) = exp(-0.02049X1) = 97.97%
Rs (t) = exp(-0.02216X1) = 97.81%
Rs (t) = exp(-0.00820X1) = 99.18%
appropriate values into ﬁ(t) = RiR; + RzRs
RiR:RsR: - RiR:RsRs - RiRoRiRs - RiR;RsRs ~

R:R3R:Rs + 2R;R,R3R4Rs to obtained the fOllOWil’lg:

Component ILevel Aggregated to Svstem DT:ﬁ(t) = 99.50%

Component Level Aggregated to System OT:ﬁ(t) = 99 51%.

The 80% two-sided confidence intervals
Component 1 DT:
exp(-0.10311X1) < R(1)

Component 1 OT:

(TCI) are

(90.20%,91.64%)

<

exp (~0.08726X1)

(88.68%,93.23%)

exp(-0.12014X1) < R(1) £ exp(-0.07010X1)

Component 2 DT:

(94.61%,95.70%)




exp(-0.05537X1) < R(1) < exp(-0.04393X1)
Component 2 OT: (92.97%,96.52%)
exp(-0.07286X1) < R(1) < exp(-0.03543X1)

Component 3 DT: (95.55%,96.54%)

exp (-0.04554X1) € R(1l) £ exp(-0.03523X1)

Component 3 OT: (95.29%,98.11%)

exp (-0.04823X1) € R(1) < exp(-0.01908X1)

Component 4 DT: (97.09%,97.89%)

exp(-0.02956X1) < R(1) £ exp(~0.02138X1)
Component 4 OT: (96.78%,99.01%)
exp(-0.03275X1) < R(1) < exp(-0.00997X1)

Component 5 DT: (97.43%,98.17%)

exp(-0.02607X1) < R(1) £ exp(~0.01843X1)

Component 5 OT: (98.42%,99.78%)

exp(-0.01594X1) < R(1) £ exp(-0.00218X1)

Substitute the appropriate wvalues into ﬁ(t):= RiRs + R2Rs
+ RiRsRs + R:R3Rs - RiR:R3R¢y = RiR:R3Rs - RiR:RiRs - RiRsR4Rs -
R;R;RaRs + 2R;R:RsRRs to obtained the following:

Component ILevel Aggredated to System DT:

(99.38%,99.59%)

Component Level Aggregated to System OQT:
(99.14%,99.76%) .
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The Bayesian Exponential Method.
Bayesian Exponential Prior.

For Component 1 data, from Table Ll:

B(A) = 4 = 0.09507 and V(A) = s;:2 = 0.00008.

These yielded the parameter estimates

o = ($9807°) _ 112 98 ana p = (L-92307) - 1188.38.
For Component 2 data, from Table 13:

B(A) = 4 = 0.04956 and V(A) = s;2 = 0.00007.
These yielded the parameter estimates

o = (S0L355°) _ 35,00 ana p = (204236} _ q0s.
For Component 3 data, from Table LS5:

E(A) = A = 0.04030 and V(A) = s3> = 0.00002.
These yielded the parameter estimates

o = (5080300) _ g1.21 ana p = (L-04030) - 2015.
For Component 4 data, from Table L7:

E(A) = 1 = 0.02538 and V(L) = s;2 = 0.00008.
These yielded the parameter estimates

o = ($92535°) - 8.05 ana p = (3-02338) _ 317.25.

For Component 5 data, from Table L9:

E(A) = A = 0.02215 and V(A) = s3> = 0.00003.
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These yielded the parameter estimates

0.02215%) _ 0.02215) _

Bayesian Exponential Posterior Analysis.

Component 1: 4 = 24i¥%§£ﬁ%ﬁi§.38 = 0.09493.
Component 2: 7= 2%2?35;388 = 0.05051.
Component 3: 4 = (242T§§;§é15 = 0.03949.
Component 4: 2 = (myrheesty—5s) = 0.02325.
Component 5: 2 = (zyr2aaci3a—335) = 0.01868.

The 80% two-sided probability intervals (TBPI) are

¥5.2/2(2x234+2%x112.98)  x3 4 /2(2%23+2x112.98)
Component 1:\ ~2(244.05+1188.38) 7 2(244.05+1188.38)

241.63 301.23
= (2864.86’ 2864.86) = (0.08434,0.10515).

X3.5/2(2x13+2%x35.09)  x%_4.5/2(2x13+2%35.09)
Component 2: 2(244.05+708) 7 2(244.05+708)

78.73  114.13
= (1904.1! 1904.1) = (0.04135,0.05994) .

X3.5,2(2x8+2x81.21)  x%_4.2/2(2x842x81.21)
Component 3: 2(244.0542015) 7 2(244.05+2015)

154.29 202.57
= ( 4518.1 7 4513.1) = (0.03415,0.04484).

X5.2/2(2x5+2x8.05)  x% 4 5/2(2X5+2x8.05)
Component 4: \ 2(244.05+317.25) / 2(244.05+317.25)

17.29 35.56
= (1122.6’ 1122.6) = (0.01540,0.03168).
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x3.2/2(2%x242%16.35) % 4. 5/2(2%2+2X16.35)
Component 5: 2(244.05+738.33) 7 2(244.05+738.33)

25.64 47.21

The Bayesian estimators of R(t) for t = 1 hour are

Component 1: ﬁ(t) = 90.95%

244 05 112.98+23
1188, 38) +1

244.05 . 1

1188.38 ‘*(1188.38) +1

Component 2: ﬁ(t) = 95.08%

( 24740805) +1 35.09+13

R =
@ @) ()

Component 3: ﬁ(t) = 96.13%

() )"

R(t) =
| (%6:22) +(30m3) +2

Component 4: ﬁ(t) = 97.70%

244 05 8.05+5
317, 25) +1

244.05

317.25 "'(317.25)'+1

Component 5: ﬁ(t) = 98.15%

244.05 16.35+2
Rt = 2853 +1

Z2L.05) (L) +1
738.33) *\ 738.33

Substitute the appropriate values into ﬁ(t) = RiR; + R:Rs
+ RiRsRs + RyR3R; - RiR:R3R; - RiR;R3Rs - RiR:R4Rs = RijR3R4Rs -~

R:R3RRs + 2R1R:R3R4Rs to obtained the following:
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Component Level Aggregated to System: ﬁ(t) = 99 .50%.

The 80% two-sided probability intervals (TBPI) are

Component 1: (90.02% < R(1) £ 91.91%)
exp(-0.10515X1) € R(1) < exp(-0.08434X1).

Component 2: (94.18% < R(1) < 95.95%)

exp (-0.05994X1) < R(1) < exp(-0.04135X1).
Component 3: (95.62% < R(1) < 96.64%)
exp(-0.04484X1) < R(1) < exp(-0.03415X1).

Component 4: (96.883% < R(1) < 98.47%)

exp(-0.03168X1) < R(1) < exp(-0.01540X1).
Component 5: (97.63% < R(1) < 98.70%)
exp(-0.02403X1) £ R(1) £ exp(~0.01315X1).

Substitute the appropriate values into ﬁ(t) = RiRsy + R:Rs

+ R1R3R5 + R2R3R4 - R1R2R3R4 - R1R2R3R5 - R1R2R4R5 - R1R3R4R5 -

R:RsR4Rs + 2R;R:R3R4Rs to obtained the following:

Component Level Agdgregated to System: (99.33%,99.65%).

\
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