Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1998

The Application of Sequential Convex Programming to Large-
Scale Structural Optimization Problems

Todd A. Sriver

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Operational Research Commons

Recommended Citation

Sriver, Todd A., "The Application of Sequential Convex Programming to Large-Scale Structural
Optimization Problems" (1998). Theses and Dissertations. 5775.
https://scholar.afit.edu/etd/5775

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5775?utm_source=scholar.afit.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GOR/ENS/98M-24

THE APPLICATION OF SEQUENTIAL CONVEX
PROGRAMMING TO LARGE-SCALE
STRUCTURAL OPTIMIZATION
PROBLEMS

THESIS
Todd Allen Sriver
Captain, USAF

AFIT/GOR/ENS/98M-24

1998047 19

Approved for public release; distribution unlimited

DTIC QuarTy INSPROTED 4

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GOR/ENS/98M-24

THE APPLICATION OF SEQUENTIAL CONVEX
PROGRAMMING TO LARGE-SCALE
STRUCTURAL OPTIMIZATION
PROBLEMS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

Todd Allen Sriver, B.S.
Captain, USAF

March, 1998

Approved for public release; distribution unlimited

AFIT/GOR/ENS/98M-24

THE APPLICATION OF SEQUENTIAL CONVEX
PROGRAMMING TO LARGE-SCALE
STRUCTURAL OPTIMIZATION
PROBLEMS

Todd Allen Sriver, B.S.

Captain, USAF

Approved:

Wames W. Chrissis Date

esis Advisor

oL 7 oA
Maj. Edward A. Pohl Date

Reader

Acknowledgements

I express my sincere gratitude to those individuals who helped make this experience so
rewarding. I would like to thank, in particular, my thesis committee, whose guidance
and support helped me focus clearly on my objectives. My advisor, Dr. James Chrissis,
provided his expertise and encouragement throughout this journey in addition to adept
technical editing recommendations. My reader, Major Edward Pohl, generously applied

his particular expertise to the project, ensuring nothing was overlooked.

I am also deeply indebted to the people of the Design and Methods Development
branch at the Air Force Research Laboratories. My sponsor, Dr. Vipperla Venkayya, was
extremely accommodating to my needs, providing unlimited access to his busy staff and
always finding a computer for me to work on. I thank Vicki Tischler for her expertise
with ASTROS and the test problems. I thank Lt. Gerald Andersen and Dr. Ray Kolonay
(formerly of the Laboratory) for their help in manipulating ASTROS so it would do what

I wanted.

I also owe thanks to classmate Capt. Jonathon Clough, who answered countless of

my BTEX and MATLAB questions so that this document might look decent.

A special thanks goes to Dr. Christian Zillober of the University of Bayreuth, Ger-

many. Without his software, this thesis would have taken a much different direction.

Most importantly, I thank my wife, Stephanie, my son, Tyler, and my daughter,
Kayla. Their patience, understanding, and unwavering love have given this experience

special meaning.

Todd Allen Sriver

iii

Table of Contents

Page

Acknowledgements L. e iii
List of Figures o i e vii
Listof Tables i i i e viii
Abstract L L e e e e e e e e e ix
L Introduction e 1-1
1.1 Structural Optimization 1-1

1.2 Problem Statement 0.0, 1-3

1.3 Sequential Convex Programming 1-4

1.4 Purpose and Approach 1-5

1.5 Overview i e e e e 1-6

II. Literature Review 2-1
2.1 Optimization Methods 2-1

2.1.1 Optimality Criteria Methods 2-1

2.1.2 Mathematical Programming Methods 2-3

2.2 Approximation Concepts 2-4

2.2.1 Design variable linking. 2-4

2.2.2 Constraint set reduction. 2-4

2.2.3 Function approximations. 2-5

2.3 Convex Approximation Methods 2-6

2.4 Dual Solution Methods 2-8

25 SLPand SQP o 2-9

26 SCPMethods. 2-10

iv

Page

26.1 CONLIN, C2-11

2.6.2 Method of Moving Asymptotes 2-13

2.6.3 MMA with a Line Search Procedure 2-15

2.7 Comparative Study Results 2-16
II1. Approach e 3-1
3.1 Overview 3-1
3.2 ASTROS Optimization Loop 3-1
3.3 Alternative Redesign Step 3-3
34 The SCP Optimizer 3-3
34.1 Algorithm R 3-4

3.4.2 Asymptote Determination Strategies 3-5

3.4.3 Auxiliary Subproblem 3-8

3.5 Integration of SCP into ASTROS 39
3.6 Design of the Investigation e e e 3-10
3.7 Summary e e e e 3-12
Iv. Results o e e e 4-1
4.1 OVerview i e e e e e e e 4-1
42 Ten-Bar Truss0io.... 4-1
4.2.1 Model Description 4-1

4.2.2 Resultsand Analysis 4-2

4.3 200 Member Plane Truss (Tr200) 4-7
4.3.1 Model Description 4-7

4.3.2 Initial Testing, 4-7

4.3.3 Optimization Results 4-9

4.4 Intermediate Complexity Wing (ICW) 4-12
4.4.1 Model Description 4-12

Page

4.4.2 Initial Testing. 4-13

4.4.3 Optimization Results 4-14

4.5 High-Altitude, Long-Endurance (HALE) Aircraft 4-16

4.5.1 Model Description 4-16

4.5.2 Optimization Results 4-17

4.6 SUMMATY . .« . o o v e i e e e e e e e e e e e e e 4-20

V. Conclusions and Recommendations. e 5-1
51 Summary0 e e e e e e e 5-1

52 Conclusions e 5-2

5.2.1 Convergence and Efficiency. 5-2

5.2.2 Multi-disciplinary Constraints. 5-3

5.2.3 Constraint Retention 5-3

5.3 Recommendations for Future Research 5-3

Appendix A. Description of Test Problems A-1
A.1 200 Member Plane Truss ‘. Ceee e Al

A.2 Intermediate Complexity Wing A-1

A.3 High-Altitude, Long-Endurance Aircraft A-1

Appendix B. SCP Software Implementation B-1
B.1 ASTROS Configuration Changes B-1

B.2 DESIGN2 Module Source Code B-2
Bibliography L e BIB-1
Vita . o e e e e e e e e e VITA-1

vi

Figure

1.1.

1.2.

3.1.
3.2.

3.3.

4.1.
4.2,
4.3.
4.4.
4.5.
4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.
4.13.

4.14.

Al
A2,

A3,

List of Figures

Ten-bar Truss v v v v i e e e e e e e e e e

FEA /Optimization Process

ASTROS Optimization Loop
SCP Implementation

Design of the Investigation

Ten-bar Truss Model and Design Conditions
Ten-bar Truss Objective Function History (e=-0.1)
Ten-bar Truss Violated Constraint History (e=-0.1)
Ten-bar Truss Maximum Constraint Violation History (¢=-0.1)

Tr200 Initial Test: CPU vs. Iteration Number
Tr200 Objective Function History (NRFAC=0.25 and £€=1000.0) .

Tr200 Maximum Constraint Violation History (NRFAC=0.25 and
€=1000.0) e

Tr200 Convergence Comparison oo v v ...
ICW Initial Test: CPU vs. Iteration Number
ICW Objective Function History (NRFAC=0.125 and ¢=1000.0) .

ICW Maximum Constraint Violation History (NRFAC=0.125 and
€=1000.0) . . i it

ICW Convergence Comparison e
HALE Objective Function History

HALE Maximum Constraint Violation History

200 Member Plane Truss Model
Intermediate Complexity Wing Model
High-Altitude, Long-Endurance Aircraft Model

vii

Page

1-2

1-4

3-2
3-4

3-12

4-2

4-4

4-5
4-8

4-10

4-11
4-12
4-13

4-15

4-15
4-17
4-19

4-19

A-2
A-2

A-3

Table

3.1.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

Al
A.2.

A.3.

List of Tables

User-specified Parameters for the SCP Algorithm

Experimental Runs for Ten-bar Truss Model
Ten-bar Truss Numerical Results
Tr200 Initial Test Results
ASTROS-SCP Tr200 Optimization Results (NRFAC=0.25, €=1000.0)
ASTROS Tr200 Optimization Results
ICW Initial Test Results,
ASTROS-SCP ICW Optimization Results (NRFAC=0.125, £=1000.0)
ASTROS ICW Optimization Results

ASTROS-SCP HALE Optimization Results (NRFAC=0.06, ¢=1000.0)

200-Member Plane Truss Design Conditions e e e
Intermediate Complexity Wing Design Conditions

High-Altitude, Long-Endurance Aircraft Wing Design Conditions

viii

Page

4-8
4-10
4-11
4-13
4-14
4-16

4-18

A-4
A-4

AFIT/GOR/ENS/98M-24

Abstract

Structural design problems are often modeled using finite element methods. Such
models are often characterized by constraint functions that are not explicitly defined in
terms of the design variables. These functions are typically evaluated through numerical
finite element analysis (FEA). Optimizing large-scale structural design models requires
computationally expensive FEAs to obtain function and gradient values. An optimization
approach which uses the SCP sequential convex programming algorithm of Zillober, inte-
grated as the optimizer in the Automated Structural Optimization System (ASTROS), is
tested. The traditional approach forms an explicitly defined approximate subproblem at
each design iteration that is solved using the method of modified feasible directions. In an
alternative approach, the SCP subroutine is called to formulate and solve the approximate
subproblem. The SCP method is an implementation of the Method of Moving Asymptotes
algorithm with five different asymptote determination strategies. This study investigates
the effect of different asymptote determination strategies and constraint retention strate-
gies on computational efficiency. The approach is tested on three large-scale structural
design models, including one with constraints from multiple disciplines. Results and com-
parisons to the traditional approach are given. The largest of the three models, which had
1527 design variables and 6124 constraints, was solved to optimality with ASTROS for
the first time using a mathematical programming method. The structural weight of the

resulting design is 9% lower than the previously recorded minimum weight.

1x

THE APPLICATION OF SEQUENTIAL CONVEX
PROGRAMMING TO LARGE-SCALE
STRUCTURAL OPTIMIZATION
PROBLEMS

1. Introduction

Engineering designs are often modeled using mathematical models with functions repre-
senting their performance characteristics and physical attributes. As the complexity of
engineering designs increases, so too do the expectations for designs that minimize cost
and maximize performance. Optimization theory provides a natural tool to help meet

these sometimes conflicting objectives.

Engineering optimization problems involve the optimization of some design criterion
subject to various constraints on the design parameters. When the design of a structure
(a system of spars, trusses, beams, etc.) is considered, it is often called a structural

optimization problem.

1.1 Structural Optimization

The classical structural optimization problem seeks the design vector x = (z1,...,2ys)
that optimizes an objective function f (typically minimizing structural weight) such that
behavioral and side constraints are met. Denoting the optimization problem as (P), it can

be stated in the following mathematical form:

subject to

1-1

Figure 1.1 Ten-bar Truss

where g; (j = 1,...,m) are the behavioral constraints, m is the number of constraint
inequalities, » is the number of design variables, and xj, x, are the lower and upper
bound vectors (side constraints), respectively, for the design variables. The functions f

and g; (j =1,...,m) may be assumed nonlinear in terms of the design variables x.

Structures are often modeled using discrete finite elements. In a finite-element model,
each element connects a set of grid points. An example of a simple finite-element model
is the classic ten-bar truss, depicted in Figure 1.1. Each element of a finite-element model
contributes one or more design variables to the optimization problem [46], typically repre-

senting sizing or shape parameters of structural components.

Behavioral constraints in structural models typically consist of restrictions on the
structural response quantities. For mechanical structures, the most common constraints
are placed on component stresses under static load but may also include displacement,
frequency, and buckling constraints [44]. For large aerospace structures, the behavioral
constraints may additionally include restrictions on response quantities from multiple dis-

ciplines. Examples include flutter speed, divergence speed, and lift-curve slope [1].

For finite-element models, the explicit forms of the constraint functions are generally
not known [18]. As a consequence, for any given design the constraint responses must
be evaluated numerically through a finite-element analysis (FEA). Many automated de-
sign tools have been developed to accommodate the computational requirements of finite-

element analysis (e.g. see [10] and [21]). Typically, these tools can evaluate constraint

1-2

responses and the constraint gradients, utilizing this information to improve the design via

optimization methods.

Advancements in automated tools and higher costs of production motivate the goal of
designing the total system, rather than just a collection of the individual components. This
methodology impacts structural optimization applications because it may introduce con-
straints from disciplines other than structures into the mathematical model. For example,
a typical aircraft design encombasses elements from structures, aerodynamics, controls,
and propulsion [48]A. The Automated Structural Optimization System (ASTROS) is a
finite-element-based software package that is often used for the design and modification
of aerospace structures. A key objective of ASTROS is to provide a design tool that
can simultaneously design to constraints from multiple disciplines. Constraints considered
by ASTROS include: stress-strain, displacement, modal frequency, aeroelastic effects (lift

effectiveness and aileron effectiveness), and flutter response [27].

In addition to their multidisciplinary nature, most practical aerospace structures are
large: in excess of 50 design variables and a similar number of constraints [48]. When
the design model is large, optimization methods that act directly on the given problem
to improve the design are computationally inefficient. For this reason, approximations
that reduce the dimension of the design space are often used in FEA applications. A
common approximation technique involves replacing the design problem with a series of
lower-dimensional approximate subproblems that, when solved in succession, converge to
the optimal solution of the larger problem. Figure 1.2 shows how this technique is in-
corporated into a typical automated optimization process for structural designs (adapted
from [44]). Because the constraint responses and gradients can be retrieved from the finite-
element analysis, the subproblems are readily formed using a first-order Taylor-series ex-
pansion about a trial désign point. The optimization process is halted when an appropriate

convergence criterion is satisfied.

1.2 Problem Statement

Even with the use of approximation concepts, structural applications can still be

computationally burdensome, particularly for very large problems. The essential problem

1-3

Initial FEA
Evaluate
constraints
Rank constrz.zints/ Sensitivity ana-lysis/ Create/.Solve Update design/
retain active [calculate gradients [— approzimate |—*
: . perform FEA
constraints for retained subproblem
constraints
No Converge 7

Yes l
Terminate

Figure 1.2 FEA/Optimization Process

is that function and gradient calculations through finite-element analysis are expensive.
This problem can be compounded if the optimization method is slow to converge, thereby
leading to more design iterations and hence more FEAs. Clearly, to obtain optimal designs

as efficiently as possible, it is necessary to:

e minimize the number of design iterations,
¢ minimize the number of gradient evaluations at each iteration, and
e employ an efficient optimizer.

The objective of this research is to seek efficient solutions to large-scale structural opti-
mization problems using the ASTROS design tool as the test platform. In particular, an
alternate optimization algorithm is tested. This algorithm belongs to the class of nonlinear

programming algorithms known as sequential convez programming.

1.3 Sequential Convex Programming

The concept of solving a large nonlinear optimization problem with a sequence of
approximate subproblems is well established. Two well-known methods that use this tech-
nique are sequential linear programming (SLP) and sequential quadratic programming

(SQP). The SLP approach solves a sequence of subproblems that are linear approximations

1-4

of the original problem. Similarly, SQP solves a sequence of approximated subproblems in

which the objective function is quadratic and the constraint functions are linear.

Although not as well known, sequential convex programming (SCP) methods are
similar in concept to SLP and SQP. SCP methods replace the implicit structural optimiza-
tion problem with a sequence of convex explicit subproblems of simple algebraic form [18].
SCP methods use an efficient dual solution technique to solve the approximate subprob-
lem, taking advantage of its convexity and separability. One such SCP method, CONLIN
(for CONvex LINearization), forms an approximate subproblem using a first-order Taylor-
series expansion about the current design point with respect to a mixed set of direct and
reciprocal design variables [15]. The Method of Moving Asymptotes (MMA), another SCP
method, generates a subproblem with the use of specialized parameters, called moving
asymptotes, that are designed to stabilize and speed up convergence [38]. The MMA is
considered a generalization of CONLIN. A third SCP method further stabilizes the MMA

with the addition of a line search procedure [53].

1.4 Purpose and Approach

Sequential convex programming methods have attained success in solving structural
optimization problems because they provide high quality approximations for structures
under static loads with stress-strain constraints. However, current literature suggests that
these methods have not been rigorously tested against very large problems, nor against
problems of a multi-disciplinary nature. The hypothesis for this study is that an SCP
optimizer, combined with an aggressive constraint retention strategy, can lead to efficient
solufions for these problem types. The purpose of this research is to test this hypothesis

against three large-scale structural design models.

For this study, Zillober’s SCP method [51] was chosen for implementation into AS-
TROS to test against the structural design models. This algorithm is an implementation
of the Method of Moving Asymptotes with an optional line search procedure that can be
used to scale the redesign step size. Zillober’s code is flexible in that it offers five different
strategies for determining values for the asymptote parameters, including one scheme that

approximates CONLIN.

1-5

To improve computational efficiency, this research investigates two areas:

1. An effective asymptote determination strategy, and
2. An efficient constraint retention strategy.

The asymptote determination strategy controls how the approximate subproblems are
formed and directly correlates to the quality of the design point produced for the next
design iteration. High quality design points can positively impact efficiency by minimiz-
ing the number of design iterations that are necessary. The constraint retention strategy
determines the number of constraints that are retained for the subproblem. The fewer
constraints that are retained, the fewer gradient calculations are required, saving compu-

tational expense.

The goal of this study is to learn if there exists any combination of strategies that can
solve the test problems more efficiently than the traditional ASTROS approach. Results
are compared to solutions obtained using the traditional approach in terms of computer
processing (CPU) time, number of iterations required, number of gradients computed, and

solution quality.

1.5 OQverview

The next chapter describes background information and develops the methodology
behind sequential convex programming methods as found in the literature. Chapter III
describes the SCP method used and how it was integrated into the ASTROS environment.
Chapter IV presents analysis of testing conducted against a small test problem for the
purpose of obtaining good strategy choices, followed by comparative results of this imple-
mentation against the method currently used in ASTROS applied to the large structural
design models described in Appendix A. Chapter V gives conclusions and recommenda-

tions for areas of further research.

1-6

1I. Literature Review

This chapter summarizes the review of literature conducted in preparation for this study.
Pertinent background information related to both structural optimization and sequential
convex programming is described, thus laying the foundation for the remainder of the

research.

2.1 Optimization Methods

Numerical methods for solving structural optimization problems are generally grouped
into two categories: optimality criteria (OC), and mathematical programming (MP) meth-
ods [37]. OC methods use the Karush-Kuhn-Tucker (KKT) necessary conditions to formu-
late a recursive relationship for the design variables, iteratively converging to optimality.
MP methods generate a sequence of improving design points using a computed search

direction and step size at each design iteration.

2.1.1 Optimality Criteria Methods. Optimality criteria methods originated in
response to the need for optimization of large practical structures [46]. As such, they
existed in industry for some time with specialized application to the design of structures
with a single constraint type (such as stress, displacement or frequency) [9]. More re-
cently, Venkayya formulated a generalized optimality criteria approach for application to
general mathematical functions that has enabled the application of OC methods to design

optimization in a multi-disciplinary setting [46].

The two basic elements of OC methods are a resizing and a scaling algorithm [49,
p. 154]. The resizing algorithm is derived directly from the optimality conditions and
provides a simple recursive formula to update the design variables at each iteration. The
purpose of the scaling algorithm is to locate the constraint boundary from anywhere in
the n-dimensional space simply and economically. A scaling algorithm is important for
constrained optimization problems because the optimum usually lies on the constraint

boundary [49, p. 151].

2-1

A well-known resizing algorithm is derived in [46]. To develop optimality conditions,

the Lagrangian function for problem (P) is first written as,

L A) = F) 43 Agi(x) (2.1)

i=1

where) is the vector of Lagrange multipliers. The stationary condition of the KKT

necessary conditions requires that the optimal pdint satisfy,

of(x) <&, 9g(z) .
— 7} E A —2> 2 =0 =1,... . 2.2
Oz, s I Bz, » EE Do (2:2)

Equations (2.2) can be rewritten as
m
Ze,‘j/\j=1, t=1,...,n (2.3)
i=1

where
dg;(x)/0x;

€j = — 2f(x) /0% . (2.4)

Based on this condition, a simple resizing formula is formed as,

m 1/o
it = ay [E ez’j’\j:| (2.5)
j=1

by multiplying both sides of Equation (2.3) by z¢. The parameter « is defined as the step

size and v is the iteration cycle.

The scaling algorithm forces the OC method to search along a constraint boundary.
During the search, the solution vector is tested to determine whether its location lies on

the constraint surface. If not, the solution is scaled according to the relation [49],
new __ ,old -
ey =2l N ,t=1,...,n (2.6)

where A;; are the scale factors. The scale factors are determined using rules for simple

scaling or compound scaling. Their derivation is omitted here but can be found in [49].

2.1.2 Mathematical Programming Methods. Mathematical programming meth-
ods are intended to solve the general nonlinear programming problem. They are considered
more robust than OC methods because of a wider applicability to many nonlinear prob-

lems. MP methods are based on the following iterative scheme:
xHD) = x(8) 4 g, a%) (2.7)

where k is the iteration number, d*¥) is the search direction at iteration k, and ay is the

step size along the search direction at iteration k.

Numerous methods implement numerical search techniques based on Equation (2.7),
details of which can be found in standard engineering optimization or nonlinear program-
ming textbooks (e.g. [3], [23], [32], [33], or [43]). A reason for the large number of methods
is that no single method can solve efficiently all optimization problems [23, p. 29]. Only a

general overview of the methods is given in this section.

MP methods are often distinguished based on the solution space that is used to solve
the problem under consideration. Primal methods solve the problem in the solution space
of the primal variables (i.e. the design variables) where dual methods solve the problem
in the solution space of the dual variables. Some of the more well-known primal methods
are the constrained steepest descent method, the conjugate gradient method, the method of
feasible directions, the gradient projection method, the generalized reduced gradient method,

sequential linear programming, and sequential quadratic programming ([3] and [32]).

Primal methods are much more common than dual methods but special conditions
may exist which make a dual method a more efficient technique. For example, if the
problem in question is convex, separable in terms of the design variables, and the number
of design variables exceeds the number of active constraints, a dual method can solve
the problem much more efficiently than a primal method [17, p. 510]. Sequential convex
programming methods use dual methods of solution. A detailed discussion of dual solution

methods is therefore covered in Section 2.4.

2-3

2.2 Approzimation Concepts

Optimizatioﬁ of practical structural designs is encumbered by the large number of
design variables and the implicit nature of the constraints—both of these characteris-
tics adding considerable computational expense to finding good solutions. The quest for
efficiency has led to innovative methods for dealing with the computational burden. Ap-
proximation concepts have evolved over the years and have been integrated into solution
methods by replacing the problem under consideration with a sequence of relatively small,
explicit, approximate subproblems that preserve the essential features of the original design

problem [37, p. 31]. Three approximation techniques exist to meet this goal (from [36]):

1. Reducing the number of independent design variables by employing design variable

linking.

2. Reducing the number of constraints to be evaluated by considering only the most

critical constraints (i.e. violated, active, or near-active constraints).

3. Approximating the retained constraints by employing a Taylor-series expansion to

explicitly approximate each constraint function.

2.2.1 Design variable linking. Also known as basis reduction, design variable
linking fixes the relative size of some preselected group of members of a finite-element
model so that some of the independent design variables control the size of all members [33].
This is accomplished by relating the original design variables x to the independent design

variables xp through a matrix of linking constants 7,
The entries of matrix T’ contain predetermined ratios between the variables of x and xpg.

2.2.2 Constraint set reduction. The concept of selecting only the most critical
constraints can be discussed in two different contexts. First, when an MP algorithm
is seeking a valid search direction, it may need to evaluate some constraint functions,

depending on the method being used. It makes sense that only the constraint boundaries

2-4

in the region of the current design point be considered when making this determination. As
a result, the method may be implemented with a potential constraint strategy in which only
the violated, active, and near-active constraints are considered at an iteration point (3, pp.

355-356].

Secondly, when a sequence of approximate subproblems is used to solve the larger
main problem, an active set strategy may be used. In this methodology, the construction
of the subproblem requires the gradient values for all constraints that are to be included
in the subproblem. If some constraints are eliminated from this set (i.e. the inactive
constraints), then the method is more efficient because the number of gradient evaluations
is reduced [37, p. 33]. Since the approximation is only valid over a relatively small region
(particularly for first-order approximations), it makes sense to exclude inactive constraints

that are far from the current design point.

2.2.83 Function approzimations. As mentioned previously, the constraint re-
sponses for finite-element models in structural optimization are typically implicit in terms
of the design variables—the explicit nature of the functions are not known. When con-
structing subproblems to be solved sequentially, it is therefore necessary to approximate
these functions explicitly. Most function approximations used in structural optimization
are first-order because many finite-element software packages have the capability to com-

pute the first derivative quantities but not second-order or higher-order derivatives.

The earliest first-order function approximations to be used were the linear approx-
imations, obtained by expanding a Taylor series about a design point with respect to
the direct variables (i.e. the design variables themselves). The linear approximation for a

function ¢(x) with respect to n direct variables z; yields the following approximation,
n
o(x) = ¢(x°) + Z:cf(at:2 —a?) (2.9)
i=1

where ¢f denotes the first derivative of ¢(x) with respect to variables x; evaluated at x°.

The early interest in approximating nonlinear problems in this manner was driven by the

2-5

success of the simplex algorithm for linear programming models. This spawned research

in sequential linear programming methods for structural optimization problems [4].

A drawback of the linear approximation is its inaccuracy, even for design points
that are near the expansion point. Research was directed toward finding higher quality
approximations without increasing the order of the expansion. As a result of studies on
structures consisting of truss or plane stress elements, an approximation was developed that
applies a first-order Taylor-series expansion with respect to reciprocal variables, 1/z; [4].

The result for function ¢(x) is,

1

e(x) = e(x°) + i(mf)%f (;1; - F) : (2.10)

For structures in which the design variables are the cross-sectional areas of truss elements
and thicknesses of plane-stress elements, Equation (2.10) yields an approximation for stress

and displacement constraints that is exact for statically determinate structures [4, p. 54].

Continued research in function approximations resulted in the development of a class
of approximations that yield convex functions. Since these approximations are the corner-
stone for sequential convex programming methodology, they are discussed in detail in the

following section.

2.3 Conver Approximation Methods

A function is said to be convex if a line segment joining two points on the function
curve lies entirely above or on the curve [32, p. 876]. Convex approximations are formed
by linearizing a function about an expansion point with respect to appropriately chosen
intermediate variables. Fleury and Braibant were the first to propose a function approxi-
mation to exploit convexity [12]. Their CONLIN method generates a convex function by
linearizing a given function ¢(x) with respect to a mized set of direct variables z; and
reciprocal variables 1/z;, depending on the sign of the first derivatives. This yields the
following convez approximation,

o
T z3

e() = e(x°) + 3 (e — 2) — 3 (a2)%e? (i, -2) (2.11)
+ — 1

2-6

where ¢¢ denotes the first derivative of ¢(x) with respect to design variable z; evaluated
at x°. The symbol 37, (37_) represents the summation over the terms for which ¢ is
positive (negative) [18]. An important characteristic of this approximation is that it is

the most conservative approximation amongst all combinations of mixed direct/reciprocal

variables [15]. As a consequence, the approximation is valid over a larger region in the

solution space than an approximation using any other combination.

The Method of Moving Asymptotes (MMA), another first-order method proposed
by Svanberg, linearizes ¢(x) with respect to the intermediate variables 1/(z; — L;) and
1/(U; — x;), again depending on the sign of the derivatives. The approximation is of the

form [38]:

o(x) = G _ R 2.12
=) 2J,:(Ui—ﬂw) Z_:(xi—f?i) (2.12)

where

dc\° dc\°
- . ,0)2 H
¢i = (U; — 2?) (8%) if (8;1:{) >0

dc\° dc\°
C; = —((E,‘? — Lz)z (%) lf (a:> < 0.

The constant d° includes the zero-order terms of the expansion. The I; and U; parameters

act as asymptotes that may “move” at each iteration, hence the name of the method. It
can be shown that when L; = 0 and U; = 400, this is equivalent to CONLIN and when
L; = —o0o and U; = 400, this is equivalent to an SLP approach. The motivation for this
approach is to further generalize the approximation so that greater flexibility exists for the

types of constraints that can be handled.

An important characteristic of the first-order convex approximations is that they
are separable. A function is said to be separable when it can be expressed as the sum of

functions of the individual variables [43], i.e., if the function F(x) is separable, then:

F(x) = fulz1) + fola) + -+ Fulan) - (2.13)

The significance of separability for convex nonlinear programming problems is discussed in
the next section. It is introduced here to be discussed in context with second-order convex

approximations.

Second-order approximations are not separable in general, but measures may be taken
to ensure separability. A separable, second-order convex approximation was developed by
Fleury [14], who proposed an extension to the MMA using second-order information to
compute the asymptotes. Several improvements have been suggested in the literature to
further generalize the method (e.g. see [7]). Fleury also introduced a “diagonal SQP”
method that ensures separability of the approximation and makes the method suitable for
larger problems [13]. Second-order methods are advantageous because of the high quality
approximations that are obtained [24]. However, since second derivative information is
required, they are not generally considered computationally feasible for large-scale finite-

element applications.

2.4 Dual Solution Methods

As mentioned in Section 2.1.2, dual solution methods are efficient for optimization
problems that are both convex and separable. An optimization problem is said to be
convez if éhe Hessian matrices of the objective function and all the constraints are positive
semi-definite [50]. The attractive property of a convex problem is the uniqueness of the
optimal solution, which equals the minimum of the primal and the maximum of its dual.
Therefore, if it is more efficient to solve the dual than the primal problem computational

savings can be achieved.

Formulation of the dual problem is derived from the Lagrangian function of the
convex problem. Recall the definition of the Lagrangian function for the primal problem
(P) from Equation (2.1) and note that the vector of Lagrange multipliers A are also the
dual variables. Repeating Equation (2.2), the stationary condition of the KK'T necessary
conditions requires that the optimal point satisfy,

) Z,*agf =0, i=1

o S : ey (2.14)
(3 (2

2-8

Separability of f and g; (j = 1,...,m), and therefore L, implies from Equation (2.14)
that there is a unique correspondence between the optimal x* and A*. Hence, the design
variables can be written explicitly in terms of the dual variables, which can be substituted

back into the Lagrangian function to obtain the following dual problem [18]:
max L(\) (2.15)

subject to

A\j>0, j=1,...,m. (2.16)

The solution, A*, to this problem can then be substituted into the explicit expression

*

x* = x(A*) to solve for the design variables.

The efficiency of the dual method can be explained by the following [37]:

e The algebraic structure of the approximate primal problem is exploited to obtain an

explicit dual function in terms of the dual variables.
e Each explicit dual function is quasi-unconstrained (non-negativity constraints only).

e The dimensionality of the dual space is usually small because the number of dual
variables corresponds to the number of active constraints, which is usually smaller

than the number of design variables.

2.5 SLP and SQP

Section 2.2.3 referenced the early research work in applying SLP to structural opti-
mization. Considering the generality and simplicity of the methodology, its appeal in an
engineering design context is not surprising. The basic approach is to approximate the
objective function and each critically selected constraint using a first-order Taylor-series
approximation about the current solution vector. Solve this subproblem and use the so-
lution vector as the expansion point in the next iteration. Repeat the process until an

appropriate termination criterion is reached.

Despite its popularity, this method has been shown to have serious limitations. Al-

ready mentioned is the poor quality of approximations generated through conventional

2-9

linearization (i.e. using direct variables). Another drawback of the method is that the
sequence of approximate subproblems does not converge to a local minimum unless each
solution to the linearly-approximated subproblems occurs at a vertex of the feasible do-
main. Otherwise, the optimization process may converge to a non-optimal vertex or oscil-
late indefinitely between two or more vertices [12]. It is also possible for the subproblem
to produce a solution that is unbounded [3, p. 365]. These problems have been dealt with
by the addition of artificial “move limits”, which restrict the solution of the subproblem
to a specified region (rectangular in 2-space). These move limits are gradually tightened,
using an update formula, at each iteration so that the solution converges to the optimal

solution of the original problem [12].

Addition of move limits to the SLP process poses complications because their selec-
tion as input parameters is critical to the success of the algorithm [3, p. 366]. Several trials
may be necessary before proper values are chosen. The SQP methods were developed to
alleviate the need for the choice of move limits. In this methodology, the subproblem is
formulated with respect to the search direction. The constraints are still formed as linear
approximations to the original problem. The objective function, however, is formed as a
quadratic approximation to the Lagrangian function. Control parameters are added to
the subproblem to ensure that the linearized constraints do not cut off the feasible space.
The solution to the subproblem provides the direction of search. The step size is then
determined by minimizing an appropriately chosen merit function. The process is then
repeated, using the solution from the previous iterate as the expansion point until the
termination criterion is satisfied [32, pp. 480-481]. Many implementations of this general
method have been researched (see e.g. [41]). These methods are attractive because the
subproblems can be solved by standard methods for solving quadratic programming prob-
lems and they have been shown to be robust; a drawback of the methods is that they can

be sensitive to the control parameters [45].

2.6 SCP Methods

The basic procedure of SCP methods involves replacing the original problem with

a series of convex and separable subproblems using one of the methods described in Sec-

2-10

tion 2.3 to approximate the objective function and each active constraint. At each iterate,
the dual of the subproblem is formed and solved in terms of the dual variables (Lagrange
multipliers). The primal variables of the subproblem are then determined using the explicit
relationship between the primal and dual variables. The approximation expansion point
at each iteration is the solution of the subproblem at the previous iteration. This process

is repeated until the termination criterion is satisfied [16].

SCP methods have an advantage over SLP that results from the convex curvature in
the constraint function approximations. The convexity implies that the solution is unique
and move limits are therefore not required. SCP can have advantages over SQP methods
in terms of efficiency. By their nature, SQP methods are not separable, which implies that
the dual problem cannot be formulated explicitly. Therefore, if the dual space is of lower
dimension than the primal space (i.e. less active constraints than design variables), the

SCP methods may be more efficient due to their dual solution method.

The SCP methods presented in this section are the CONLIN method, the Method of
Moving Asymptotes (MMA), and the MMA augmented with a line search. The construc-
tion of a convex subproblem for the CONLIN method and the MMA is demonstrated for

the following simple nonlinear programming problem, taken from [47]:

(P1) min f(x) = 1021 + o2
subject to g1(x)=—2z1+22+1<0
92(x) = —21+ 232 —1<0
g3(x) =2} — 22, — 22, +1<0

using the solution vector x° = (1,1)T as the expansion point. Additionally, the dual
solution method is illustrated for the CONLIN method. Note, that the optimal solution
to (P1) is x = (0.55,0.10)7 and f = 5.61.

2.6.1 CONLIN. The CONLIN method uses the convex approximation of Equa-
tion (2.11) for the objective function and each active constraint to construct the subprob-
lem. An attractive feature of the method is that it chooses the appropriate combination

of mixed variables to use in the approximation based on the sign of the derivatives of each

2-11

function with respect to each variable [12]. The only input required are the function values
and gradient values for the objective function and the same for the active constraints—no

control parameters are necessary.

The CONLIN method is now illustrated for problem (P1). The partial derivative

quantities evaluated at x° = (1, 1)T are required:

)]
&
I

j—y
[en]

(>3]

2
(l
—

'Qw

I

|

N

S §
I

—_

Oy

o)
8
N

Q‘)“g:
8
[EY)
Il
I
[aary
|Q7 Q’}gj
e 8
NN
n
| N
[y

Oz =0

D
£
N

Using these quantities and the approximation technique of Equation (2.11), the following

subproblem is generated:

(SPl) min 10.’1)1 + z2
. 2
subject to o tz2<3
1
71 +2z9 <3
2 <4,

Ty —
To solve problem (SP1) using the dual method, state the Lagrangian function as,
2 1 2
L(X, /\) = 10:131 + z9 + /\1(:1:_ + x2 — 3) + Az(x— + 2£I,'Q - 3) +)\3(5— ke 4) . (217)
1 1 2

Differentiating with respect to z; and z, and setting equal to zero yields,

2 1
10—~ A\ —=A2=0 2.18
i (2.18)
2
14+ A +2X0 — —Xs =0, (2.19)
22

Solve Equations (2.18) and (2.19) for z; and x5 in terms of the dual variables,

2y = 1 9—%2 (2.20)

2-12

223

Tt (221)

Lo =

and substitute these expressions back into the Lagrangian function to construct the dual

problem:

max L(A) = 10\/2’\113/\2 \/1+,\1+2>\2
+ XM (\/2/\1+,\2 + \/1+/\21/\-|§2/\2 - 3)
+ A2 (\/;A1+/\2 + 2\/ et 3)
SO

subject to Ay, Ag, A3 > 0

The optimal to the dual problem is A = (3.2,0,0.525)T. When substituted into Equa-
tions (2.20) and (2.21), the solution x(!) = (0.8,0.5)7 is reached. Upon repetition, the
following sequence of points are generated: x(2) = (0.66,0.26)7, x(® = (0.59,0.16)7,
x® = (0.56,0.11)7, and x©® = (0.55,0.10)7.

2.6.2 Method of Moving Asymptotes. Svanberg’s Method of Moving Asymptotes
approximates the objective function and the constraint functions using Equation (2.12).
The obvious distinction between this method and CONLIN are the use of the asymptotes
L; and U;, which may be diﬁ'ereﬁt for each variable and may change at each iteration. The

choice of these parameters is a key to the method’s performance.

In choosing of L; and U; at iteration k, the following inequality must hold:

LF <ok <UF, i=1,...,n (2.22)

where x* = (:v]f, 3:12“, ., &%) is the current design point. The closer L; and U; are to rk the

more curvature is introduced into the approximating function, and the more conservative
the approximated subproblem. Asymptotes chosen further away from z% result in an
approximation approaching linearity. The flexibility of MMA is fully exploited by allowing

the asymptotes to change at each iteration based on the following rules [38]:

2-13

e If the convergence process tends to oscillate, it may be stabilized by moving the

asymptotes closer to the current iteration point.

e If the convergence process is slow and monotone, it may be relaxed by moving the

asymptotes away from the current iteration point.

Many implementations of these rules are possible. In his original work, Svanberg suggested
the following strategy [38]. Here, s is a positive number less than one and z;(%;) denote

the lower (upper) bound on design variable ;.

For k=0 and k =1,

tf =2 - (@ -2;) and UF =20+ (7 -2).

7

For k > 2,

(2) 1f sign(al” — 2 1) # sign(a ™) - a{*?),

Lf = wgk) - s(z

(k-1) L’y—l)

¢

UF = o 4 o(UF - D).

(b) If sign(z{® — 2{*) = sign(e* — o),

Lt =a) — @ —2F s

Uk = xz(-k) + (Ui’“"1 — a:z(-k—l))/s .

2

Additional examples for parameter choice strategies are discussed in Section 3.4.

To demonstrate the method, a subproblem is generated here for problem (P1) using
parameter choices LY = -2, (i = 1,2) and U? = 2, (i = 1,2). The required derivative
information is the same as for the CONLIN example. Using Equation (2.12) to approximate

all four functions, an approximate subproblem is obtained as,

2-14

(SP2) min F% 4 L
subject to ;;1%5 + 5—}5 <7
9 2
142 + 2—xo S 5

18
S8

The solution to this subproblem is x(1) = (0.8,0.25)T. After only two more iterations the

method converges to two decimal places using the following parameter choices:

L}=-2,(i=1,2), and U} =2, (i=1,2), atiteration 2
(L3,U}) = (—3.43,2.28) and (L3%,U2)=(-3.13,2.58), at iteration 3.

The iterates produce the solution vectors x(® = (0.57,0.08)T and x(® = (0.55,0.10)7.

2.6.3 MMA with a Line Search Procedure. Numerical experience with the SCP
methods presented thus far has discovered one serious drawback: the methods are not guar-
anteed to converge [50]. For inappropriately chosen initial solution vectors, the solutions
may diverge or oscillate indefinitely between infeasible designs [38]. In response, Zillober
stabilized the MMA with the addition of a line search procedure [53]. The motivation for

the method was to guarantee convergence from an arbitrary starting point.

Zillober’s method, the Sequential Convex Programming (SCP) method to denote
its similarity to SQP, computes a line search with respect to a merit function after the
subproblem produces the search direction. The merit function, in this case, is an augmented

Lagrangian function defined as,

m Aigi(x +1gzx,ifg‘x Z—-%’i
@(X,)\) — f(X) + Z ,\g]() 2]() .7() (223)
=1 | 35, otherwise

where 7 is the penalty parameter. The penalty parameter must be sufficiently large and
controls the degree of penalization when leaving the feasible region. This function is also

used by Schittkowski in an SQP method [35].

Zillober theoretically proved global convergence of the method. The numerical results

were somewhat mixed. For some test problems the MMA and SCP produced the same

2-15

iteration sequence, for others the sequences differed but both reached optimality, and for

the remaining problems MMA diverged but SCP converged to optimality [53].

2.7 Comparative Study Results

Published studies that compare the performance of SCP methods to other well-
known optimization methods are rare. The lone exception is the comprehensive study of
Schittkowski, Zillober, and Zotemantel [34]. Schittkowski et. al. compare the performance
of eleven algorithms within the MBB-LAGRANGE structural optimization system on 79
test problems having up to 144 design variables and 1020 constraints. CONLIN, MMA,
and SCP are all evaluated in the study. The study suggests that, for the SCP methods,
algorithm reliability is only reasonably achieved with the use of safeguards (i.e. moving
asymptotes or line search). The efficiency of the SCP methods compared favorably to
the other methods. This is not surprising since most of the test problems were composed
of primarily stress constraints. The methods performed surprisingly well, however, when
mixed constraints were used. The authors theorize that the stress constraints dominate
in these cases. The results also showed the SCP method to be only slightly more reliable
than the MMA, a consequence of the relative proximity of the initial designs to the optimal

solutions.

2-16

III. Approach

3.1 Qverview

This chapter describes the details of the research conducted. Zillober’s code, SCP,
was chosen for testing because of its flexibility in choosing the asymptote parameters.
Additionally, the algorithm is implemented via a FORTRAN subroutine with a special
“reverse communication” logic which makes it easy to integrate into the ASTROS frame-
work. A driver program was needed for the algorithm to interface with ASTROS. In this
chapter, the current and proposed redesign step of the ASTROS optimization loop are
contrasted, the SCP algorithm is described in greater detail, and an outline is given on

how SCP was tested against large, multi-disciplinary structural models within ASTROS.

3.2 ASTROS Optimization Loop

ASTROS is an automated design and analysis tool that was developed to assist in
the preliminary design of aerospace structures [30, p. 1]. The multi-disciplinary nature of
these structures is accounted for in ASTROS using a modular approach; different ASTROS
modules, which perform the necessary finite-element computations, represent the various
disciplines of the structure under consideration. The ASTROS optimization procedure is
driven by a sequence of calls to the modules, which feed the ASTROS optimization loop
the data it needs to optimize the design of the structure. The standard sequence is written
in the MAPOL (MAtrix Analysis Problem Oriented Language) programming language, a
high level language that was designed to support the large-scale matrix operations typically
encountered in engineering analysis [28, p. 475]. The user defines the structural design
model to be optimized and tailors the standard MAPOL sequence to suit specific needs

through a data input file.

ASTROS optimizes a given structural design according to the schematic presented in
Figure 3.1 [30, p. 25]. The optimization is divided into three distinct phases: the analysis
phase, the sensitivity phase, and the optimization phase. Of particular importance here
is the optimization phase; this is where a redesign is performed to produce a new design

point in the optimization process.

Analysis Phase

Compute Constraints

Converged or
Max Iterations

Sensitivity Phase
Select Active Constraints
Compute Active Constraint
Gradients

Optimization Phase]

Redesign Step

Figure 3.1 ASTROS Optimization Loop

The ASTROS optimization process uses all of the approximation techniques discussed
in Section 2.2 to improve computational efficiency. Three design-variable linking options

are available [30, pp. 28-29]:

o Unique linking—the global variables are the same as the local variables.
o Physical linking—one global variable uniquely specifies a number of local variables.
e Function linking—a local variable is the weighted sum of several global variables.

ASTROS also employs a constraint retention strategy, retaining only the active con-
straints during the sensitivity phase of Figure 3.1 for use in the redesign step. Active

constraints are defined by the following criteria [30, p. 176]:

o All constraints with a value greater than a specified value, €, are retained.

e The most active (NRFAC X ndv) are always retained, where NRFAC is a user-

specified parameter and ndv is the number of global design variables.

Default values of NRFAC = 3.0 and ¢ = —0.10 are specified in the standard MAPOL

sequence but may be tailored in the data input file, providing the user with significant

3-2

control over how many constraints are included in the redesign. Computational savings

can be gained because the sensitivities are calculated for only the active constraints.

In the optimization phase, the design module is called from the standard MAPOL
sequence. This module constructs an approximate subproblem, using only the active con-
straints selected in the previous phase. This subproblem linearizes the objective function
and each of the constraints with respect to direct or reciprocal variables using a first-order
Taylor-series expansion [30, pp. 177-178]. The module then performs the redesign task by
calling the u-DOT optimization algorithm, which solves the approximate subproblem using
the method of modified feasible directions. This method combines aspects of the method

of feasible directions and the generalized reduced gradient method [42].

3.8 Alternative Redesign Step

For this study the SCP algorithm was used to construct and solve the approximate
subproblem during each iteration of the optimization loop. This was accomplished by
modifying the optimization phase of the ASTROS optimization loop in Figure 3.1 so that
during the redesign step the SCP algorithm was called instead of the u-DOT algorithm. A
new design module (denoted as DESIGN2) was written to serve as a driver program for SCP
and provide the interface between ASTROS and SCP. When using this implementation,
the ASTROS standard sequence is altered so that DESIGN2 is called in lieu of the standard
ASTROS design module. Details of the SCP integration into ASTROS are deferred until
Section 3.5 so that a more thorough description of the SCP algorithm may be given.

3.4 The SCP Optimizer

Zillober implemented the SCP method as a FORTRAN subroutine [52]. The modular
structure of the implementation is depicted in Figure 3.2 (from [51}). The user must provide
the main program as well as the NLFUNC (function call) and NLGRAD (gradient call)
subroutines. As noted in the figure, use of the line search (LINSEA) subroutine is optional.
The user selects a method, either MMA, or MMA with line search, as an input to SCP to

determine if the line search is performed.

main program Initialization

l

SCP Checks, array-handling
OPTIM Algorithm
DUAL T Solution of subproblems
— NLFUNC Call of function values
LINSEA [+ Line Search (in case of SCP)
— NLGRAD Call of gradient values

Figure 3.2 SCP Implementation

3.4.1 Algorithm. The algorithm, as presented in [51] is stated here. Recall that &
is the augmented Langrangian function used in the line search, r is the penalty parameter,

and ¢ is some positive number.

Step 0 : Choose x° € X, \>>0,0< ¢ < 1, (e.g. 0.001),0< 9 <1 (e.g.
0.5),7>0(eg.1),letk=0.

Step 1 : Compute f(x¥), Vf(x*), g;(x*), Vg;(xF), i =1,..., m.

Step 2 : Compute L¥ and Uz-]C (i =1...n) by some scheme; define approx-

imating functions f(x), gi(x),j=1,..., m.

Step 3 : Solve subproblem; let (y**1, v**1)T be the solution, where y*+1
p ’

denotes the corresponding vector of Lagrange multipliers.

Step 4 : If y¥+! = x* stop; (x*, \¥)T is the solution.

3-4

Step 5 : Let sF = (x¥ — y*+1 AF — pFHYT [k — ||yF+1 — xk||,

i (U} — ab)? (af — 1)?
k_ — ¢ : : i : z <
= i i, {2 i {8 |} 00

Step 6 : Compute ®(x*, \¥), VO(x*, AF), Vo (xF, A\F)Tsh .

Step 7 : If VO(xk, M) sk < 7k(6%)2/4, let » = 107 and go to step 6;

otherwise compute the smallest 7 such that
8, [(x*, \F)T — pix*] < ®,.(x%, AF) — cop? VB, (x5 XY sk, let oF = 47 .

Step 8 : Let (xF+1, M) = (xk AR)T — gksk | = k + 1; go to step 1.
, The line search is carried out in step 5 through step 8 of the algorithm.

Three user-specified parameters, which are key to performance of the algorithm, are
listed in Table 3.1. The first parameter, METHOD, has already been discussed. This
determines whether the pure Method of Moving Asymptotes or the MMA with a line
search is used. The STRAT parameter is probably the most important, as it determines
how the asymptote parameters (L; and U;) are computed in step 2 of the algorithm, and
thus is critical in determining the structure of the resulting subproblem. These strategies
are covered in detail in the following subsection. The ACTRES parameter is the only
means the SCP algorithm has for controlling the number of constraints that are included
in the subproblem. Choice of this parameter impacts the computational efficiency of the

algorithm because gradients are computed for only those constraints considered active.

3.4.2 Asymptote Determination Strategies. The five strategies implemented by
Zillober are defined in this section. Note that strategy N requires the use of supporting
parameters 7, 'tl, and t2, and strategy P requires the use of supporting parameter ¢t1. The

supporting parameters are restricted to the following ranges,

0.01<y<1

Parameter Purpose

Choices

METHOD Determines which optimization
method is used

STRAT Determines the strategy for
computing the asymptotes
ACTRES Determines the active constraint

set strategy; Constraints with
values < ACTRES are active

‘S’ - MMA
‘A’ - MMA with line search

6S” ‘N’7 7Z3, ’P7, ’F’

Any real number

Table 3.1

User-specified Parameters for the SCP Algorithm

0.1 <11 <0.99

1<2<10

which are also specified by the user.

?

Strategy S: A slightly modified scheme of Svanberg’s original proposal

Fork=0and k=1,

Lf =gz; — 0.1(Z; — z;) and Uik =7; + 0.1(T; — z;) -

For k > 2,

i sign(e{®) ot # sign (o6 -

LF = avz(-k) —0.7(z;

2

Uk =

2

If sign(xgk) - xf-k_l)) = sign

(k-

xEk) + 0.7(Uf‘

(kD) —

2{F77),

1_ m(k—l)))

257y,

Lk = wgk) -

2

Uk _ (Uzk—l

0.7

—27Y)

Feo®y

3-6

0.7

Strategy N: Currently used by Svanberg

For k=0and k£ =1,
k (o kE_ (k) =
i i 7(x1 —:Qz) and Ui =Z; + ’)’(:E, -@z) .

For k£ > 2,

If ﬂgn(sz) _ mz(k—l)) # Sign (xl(k—l) _ wl('k__g))’

LF = o 1z - [F1

7

Uik = a:z(-k) + tl(Uz»k"1 — mgk_l)) .

If sign(g;z(,k) _ wz(k~1)) — Sign (CL‘gk—l) _ :cz(-k"Z)),
O el)
P 12
k-1 (k-1)
k_ (k) (U —a;)
Brmelt 12 :

Strategy Z: Used when variable bounds are not “reasonable”

Note that the values 16¢(ub?) denote the ith lower (upper) bound of

the subproblem for z?.
For k=0,

If 23] < 1,
L? = max(-2,z; — 1) and U = min(2,7; +1).
If {2¢| > 1,
L? = max(—2|zi|,z; — |ei| - 1) and U = min(2|z;|,Z; + |2 + 1) .

For k=1,

3-7

If 2} = ub?,
L} = 1? and U} = min(max(10|z}],2),%; + |2 + 1) .
If o} = 102,
L} = max(min(—-10|2}|,-2),2; — |z;| — 1) and U} = U?.
Otherwise
L} = L2 and U} =P .

For k > 2, same as in strategy S.

Strategy P: Must have lower bounds and initial guess greater than 0

Forallk: L¥ =41 ¢¥ and UF =af/t1.

Strategy F: An approximation of CONLIN

Forallk: LF =0 and UF=10°.

In this study, selection of appropriate strategies are determined through initial testing

on a small test model. This is discussed more in-depth in Section 3.6.

3.4.8 Auziliary Subproblem. A common difficulty with sequential convex pro-
gramming methods occurs when an approximate subproblem must be built about a design
point that is infeasible, which occurs frequently during the initial iterations. If two or
more of the violated constraints are incompatible, an infeasible, and therefore unsolvable,
subproblem is generated [12]. The SCP algorithm handles this situation by forming an
auxiliary problem that relaxes the violated constraints by adding artificial variables [53].
For large-scale applications, this may significantly increase the complexity of the prob-

lem because the number of added artificial variables equals the number of violated con-

3-8

straints. This study monitors the impact of infeasible designs on algorithm performance
and attempts to mitigate any negative impact to efficiency through the use of an effective

constraint retention strategy, details of which are discussed in Section 3.6.

3.5 Integration of SCP into ASTROS

Since the SCP dlgorithm has the capability to construct the subproblem, it was
not necessary to build this capability into DESIGN2. The primary requirements of the
DESIGN2 module were,

o Bring the current design information (design variable values, active constraint values,
active constraint gradients, objective function value, objective function gradient) into

core and establish arrays to store the information.
e Initialize the parameters needed by the SCP algorithm.
o Call SCP to perform the redesign task.

e Update the ASTROS database with the new design information after subproblem

convergence.
The FORTRAN subroutine that implemented DESIGN2 is listed in Appendix B.

One complication with this implementation is that SCP was developed with the ca-
pability to control the master loop of the optimization. As part of this capability, SCP can
flag the active constraints according to a limit set on constraint values by the ACTRES
parameter and call for the gradient evaluations of only those constraint functions that
are considered active. These capabilities overlap the capabilities that are built into the
standard ASTROS design. In this study it was desired to minimize the changes to the
ASTROS standard loop so the research could focus more on how well SCP was solving
the subproblems. As such, it was necessary to “trick” SCP into solving one subproblem
at each master loop iteration by setting the maximum iteration parameter (for a master
loop) within SCP to unity and setting the ACTRES parameter to a very high number.
This implementation allowed ASTROS to flag active constraints and compute the neces-

sary gradients, and SCP to construct and solve the subproblems. The appropriate arrays

containing the design information as well as a logical array containing the active constraint

flags were then passed to SCP when it was called by DESIGN2.

An additional complication with this implementation is that the line search option
in the SCP algorithm requires evaluation of the orz’ginal. constraint functions and the
objective function along the search direction, where the search direction is determined by
the solution to the approximate convex subproblem. Obtaining these constraint values
requires another FEA during the redesign phase, a departure from the standard ASTROS
optimization loop. Implementation of this capability requires a significant coding effort.
Additionally, it is doubtful that the benefits gained in the convergence properties of the
algorithm would outweigh the added computational expense, particularly for the large
problems considered by this study. Method ‘A’ (MMA with line search) was therefore not
tested.

3.6 Design of the Investigation

SCP was implemented as the optimizer to perform the redesign task in ASTROS.
This implementation was tested on three large-scale structural design models provided by
the Air Vehicles Directorate/Structures Division of the Air Force Research Laboratories.

The three chosen models were,

1. 200 member plane truss (Tr200),
2. Intermediate complexity wing (ICW), and
3. High-altitude, long-endurance (HALE) aircraft.

The Tr200 model, which has 200 design variables and 2500 constraints, was chosen
because it is a classic large problem with known solutions. The ICW model has 350 design
variables and 750 constraints. It was chosen because it has constraints from both the
structural and flutter disciplines. The HALE model, having 1527 design variables and
6124 constraints, has been solved only twice, once by an optimality criteria method [9] and
once using sequential quadratic programming [2]. It was chosen because it was the largest

problem available. A more detailed description of these models is given in Appendix A.

3-10

Before testing the large models, appropriate choices for the following str‘a)tegies were

necessary.

e Asymptote determination
o Constraint retention.

The asymptote determination strategy is important because this determines the form taken
by the subproblems. A poor choice for this strategy can lead to poor algorithm performance
or even a divergent iteration sequence. The constraint retention strategy is important be-
cause infeasible designs are anticipated early in the optimization process. For the large
problems being tested, too many violated constraints included in the subproblem may over-
whelm the auxiliary subproblem and lead to a break down in the optimization. Conversely,

enough constraints need to be retained to produce subproblems of high quality.

As presented in Section 3.4, the asymptotes I; and U; are determined in the SCP
algorithm by selecting one of five options for the SCP parameter STRAT (S, N, Z, P, or F)
and specifying a value for the applicable supporting parameters 1, ¢2, and . The num-
ber of retained constraints can be controlled either by specifying values for the ASTROS
parameters NRFAC and ¢ or through the SCP parameter ACTRES. For this study, the
constraint retention strategy was determined using the ASTROS parameters to allow for
greater control over how many constraints were retained. The ACTRES parameter was
set to a high number so that SCP would not decrease the number of retained constraints

already specified through the ASTROS parameters.

In short, choices were required for six different parameters: STRAT, t1, t2, v,
NRFAC, and €. Prudent use of computational resources required some preliminary anal-
ysis with a small test problem to obtain reasonable choices for the parameters. The ten-bar
truss example of Figure 1.1, having only ten design variables and 18 constraints, was -used

for this purpose.

Figure 3.3 describes the sequence of testing conducted. A set of 12 experimental runs,
at varying levels for the parameters, was executed using the ASTROS-SCP implementa-
tion. The results were analyzed to select appropriate parameter settings for the asymptote

determination parameters. After these tests, initial tests on the Tr200 and ICW models

3-11

Preliminary Asymptote
Analysis Determination
(10-Bar Truss) Strategies
12 runs l
Tr200, ICW Constraint
Initial —> Retention
Tests Strategy
4 runs / each l
Tr209, ICW | | Refined
f[“gsl?; Strategies
3 runs / each l
HALE
Tests
3 runs

Figure 3.3 Design of the Investigation

were conducted to obtain appropriate settings for the constraint retention parameters, fol-
lowed by the final test runs on these models. The last set of tests, conducted on the HALE
model, used lessons learned from the Tr200 and ICW testing to refine both the asymptote

determination and constraint retention strategies.

3.7 Summary

The details of the ASTROS-SCP implemention and the design of the investiga-
tion have been described in this chapter. The final test runs on the Tr200, ICW, and
HALE models were attempted using both the traditional ASTROS loop and the alter-
native ASTROS-SCP implementation. Comparisons were made with respect to solution
quality, CPU time, number of iterations required, and number of gradieﬁts computed.

Results of the testing conducted is presented in the next chapter.

3-12

IV. Results

4.1 OQOverview

This chapter reports the results of the testing described in Section 3.6. The ASTROS-
SCP implementation was first tested against the ten-bar truss finite-element model to ob-
tain appropriate settings for the asymptote determination parameters. To arrive at an
adequate constraint retention strategy, a series of four initial test runs were then executed
on both the Tr200 and ICW models using a consistent asymptote determination strategy
but a varying constraint retention strategy. These results were used to determine a con-
straint retention strategy for the remaining two runs. This initial testing is not conducted
on the HALE model due to its large size. Lessons learned from the Tr200 and ICW ini-
tial test runs are used to estimate an appropriate constraint retention strategy for HALE.

" Three “final” runs were then executed on the HALE model.

The three large test problems were also solved (or attempted) using the standard
ASTROS approach. Three different constraint retention strategies are used in the ASTROS

runs so that consistent results may be compared to the ASTROS-SCP implementation.

Each of the models is treated in individual sections. Results are summarized in tables

and run charts. For the tables in this chapter, the following notation is used:

NRET = Number of constraints retained per iteration
NITER = Number of iterations required
F = Objective function value (weight in pounds)
CPU-TOTAL = Total CPU time required to terminate (seconds)
CPU-REDESIGN = Average CPU time spent in the redesign mbdule (seconds)
NCG = Total number of individual constraint gradients computed
MCV = Maximum constraint violation.

4.2 Ten-Bar Truss

4.2.1 Model Description. The ten-bar truss model consists of eight nodes con-

nected by ten finite elements representing structural rods. The design variables are defined

4-1

i AN

|+ 360" | 360"

P2 P2
! T T
360"
L

P | Py |
Material: Aluminum, E=107 psi, p=.1 pci
Stress Limits: +25000 psi (All members)
Displacement Limits: 2.0 in (All nodes)
Lower Bounds: 6.67 x1073 in?
Upper Bounds: 1000 in?

Loading Conditions: P;=150,000 lbs, P,=50,000 lbs

Figure 4.1 Ten-bar Truss Model and Design Conditions

as the cross-sectional areas of the rods. The material properties, stress limits, displacement
limits, design variable bounds, and loading conditions are presented in Figure 4.1 (data
taken from [36]). The resulting mathematical model consists of ten design variables, 18
behavioral constraints (stress and displacements), and 20 side constraints. The objective

is to minimize structural weight. The initial solution vector is feasible.

4.2.2 Results and Analysis. Twelve experimental runs were executed using this
model. The parameter settings for each of the runs are depicted in Table 4.1. The con-
straint retention strategy was controlled through the use of the ¢ parameter only; NRFAC
was set to a value of zero for each of the runs. When ¢ is set to a very low number, e.g.
-1000.0, all constraints are retained. When ¢ is set to near zero, e.g. -0.10, only the ac-
tive and violated constraints are retained. The purpose of using these two settings is to

compare the worst-case scenario (retention of all constraints) to an active set strategy.

A summary of the numerical results is presented in Table 4.2. Figure 4.2 shows the

path of the objective function value for strategies Z, F, and P (at all three levels of ¢1) at

4-2

Run Parameter settings

Number STRAT t1 t2 v €
1 S - - - -1000.0
2 N 08 1.2 0.5 -1000.0
3 Z - - - -0.1
4 Z - - - -1000.0
5 P 09 - - -0.1
6 P 09 - - -1000.0
7 P 0.5 - - -0.1
8 P 05 - - -1000.0
9 P 0.1 - - -0.1
10 P 0.1 - - -1000.0
11 F - - - -0.1
12 F - - - -1000.0

Table 4.1 Experimental Runs for Ten-bar Truss Model

a setting of -0.1 for . Figures 4.3 and 4.4 show the number of violated constraints and
the maximum constraint violation histories, respectively, for strategies Z, F, P (¢1 = 0.1),
and P (t1 = 0.5) at the same setting for ¢. Strategy P (1 = 0.9) is omitted because each

solution in the iteration sequence is feasible.

The data was analyzed to help select an asymptote determination strategy for use
in testing the large problems. It was hoped that the data would also help determine a
constraint retention strategy, but Table 4.2 shows that altering the constraint retention
parameter (¢) has little to no effect on the solution time even though the number of indi-
vidual gradients computed increases significantly when all the constraints are retained. For
the large problems, it is anticipated that infeasible designs with many violated constraints
will cause problems with algorithm performance and solution quality, necessitating the ini-
tial testing of the Tr200 and ICW models to arrive at an appropriate constraint retention

strategy.

Table 4.2 indicates that strategies S and N produced a divergent series of solution
vectors. This result is not surprising since, in each strategy, the asymptotes are computed
using the difference of the upper and lower bounds on the design variables, which is on
the order of 103 for this problem. As a result, poor choices are made for the asymptotes

during subproblem construction, producing approximations of low quality.

4-3

.CPU-
Run || NITER F NCG TOTAL

1 Divergent Series
2 Divergent Series
3 60° 5048.0° 304 118.0
4 60 5048.0° 1062 117.5
5 60° 5704.5 110 114.2
6 60° 5702.6 1062 117.1
7 24 5097.2 44 51.9
8 23 5111.6 396 51.3
9 12 5085.0 26 31.4
10 12 5080.4 198 32.2
11 14 5087.5 91 35.2
12 10 5078.1 162 28.8

“max iterations

Yinfeasible design

Table 4.2 Ten-bar Truss Numerical Results

14000 T T T T T
12000 A—A Z
>——>> P, 11=0.9
G——o P, t1=05
—a P, t1=0.1
10000 o— F

8000

6000

4000

Objective Function Value

2000

Weight = 5080

25

Iteration Number

Figure 4.2 Ten-bar Truss Objective Function History (¢=-0.1)

30

15 T T T T T T

Number of Violated Constraints

Iteration Number

Figure 4.3 Ten-bar Truss Violated Constraint History (e=-0.1)

20

-
o

-
o

o

Maximum Constraint Violation
=

-5 L L 1 1 r 1

5 10 15 20 25 30 35

Iteration Number

Figure 4.4 Ten-bar Truss Maximum Constraint Violation History (e=-0.1)

4-5

Strategy 7Z quickly moves to a highly infeasible point and progresses through the
infeasible region for 20 iterations until it reaches the neighborhood of the minimum-weight
solution. The algorithm does not converge but rather oscillates between a series of four
infeasible designs until reaching the maximum number of iterations. Other than at the
initial design, this strategy never produces a feasible solution. Conversely, strategy P (¢1
= 0.9) stays in the feasible region but progresses at such a slow rate towards the minimum
weight that the maximum number of iterations is reached before nearing the minimum-

weight solution.

As with strategy 7, strategies F, P (t1 = 0.1), and P ({1 = 0.5) also enter the
infeasible region immediately but to a much lesser degree of infeasibility. Although P (¢1
= 0.5) obtains feasibility sooner than the other two, it takes longer to converge to the
minimum-weight solution. F and P (1 = 0.1) are superior to the other strategies in terms

of solution quality.

From the results it is clear that as the asymptotes are moved further away from the
design variables, there is a greater potential for large changes in the solution. This is a
consequence of the approximations that are built by each strategy. The further away the
asymptotes are from the design variables, the less conservative the approximation, leading
to a larger feasible region for the subproblem. For strategy P, moving the asymptotes fur-
ther away from the design variables corresponds to a decrease in t1. Strategy F is merely
a special case of strategy P in which the asymptotes are moved the furthest. Strategy Z
enters the infeasible region immediately because at the first iteration the asymptotes are
moved further away from the design variables than for the remaining strategies. The solu-
tion to the resulting subproblem represents the largest change in the redesign. Although
large changes in the redesign can lead to infeasible designs during the early iterations, they
can also lead to faster convergence, as was the case for Strategies P ({1 = 0.1) and F. In
choosing the parameter settings a tradeoff is necessary between the potential for infeasible

designs and the potential for convergence in fewer iterations.

For the large test problems, the initial solution vector and the design variable bounds
are on the same order of magnitude as the ten-bar truss, and therefore strategies S and N

can be eliminated from consideration. Strategy Z is eliminated because of its path through

4-6

the infeasible region and its poor convergence. For strategy P, the choices for ¢1 are limited
to values of less than 0.9 so that convergence is accelerated. For testing the Tr200 and

ICW, the following strategies were used:

o P with t1 = 0.5,
e P with ¢1 = 0.1, and
o F.

Before testing HALE, the results from the Tr200 and ICW runs were analyzed to see if

any adjustments should be made to the strategy selection.

4.3 200 Member Plane Truss (Tr200)

4.8.1 Model Description. This model consists of 77 nodes connected by 200
finite elements representing steel rods. The design variables are the cross-sectional areas
of the rods. Stress constraints are placed on the rods and displacement constraints on
the nodes. The model is subjected to five loading conditions. The resulting mathematical
model consists of 200 design variables and 2500 behavioral constraints. The objective is to
minimize structural weight. The initial solution vector is infeasible. Additional supporting

data and a model diagram are included in Appendix A.

4.3.2 Initial Testing. Four test runs were conducted using Strategy P (¢1 = 0.1)
with varying constraint retention strategies. In three of the runs the number of constraints
retained was determined explicitly by setting e to a high number (1000.0) and specifying
a value for NRFAC. The fourth run tested an active constraint set strategy in which all
constraints with values greater than -0.10 were retained. Table 4.3 summarizes the results
of these four runs and Figure 4.5 displays the cumulative CPU time per iteration for the

first three runs.

Since the initial solution vector is infeasible, the SCP algorithm creates an auxiliary
subproblem during the first few iterations. Using the active set strategy, 666 active and
violated constraints are retained and the algorithm is overwhelmed by the size of the

auxiliary subproblem, spending twenty hours of CPU time attempting to solve it. The

4-7

Constraint Retention Strategy

NRFAC=0.25 | NRFAC=0.50 | NRFAC=0.75 | NRFAC=0.0
ASTROS-SCP €=1000.0 €=1000.0 €=1000.0 €=-0.10
NRET 50 100 150 666
NITER 17 18 5 3
F 29413.6 29353.6 8460.9 9963.4
CPU-TOTAL 182.2 513.6 1392.1 39.99 hrs
CPU-REDESIGN 4.6 174 338.5 19.99 hrs
NCG 803 1702 604 1998

*number of active and violated constraints at initial design
Yterminated early

Table 4.3

Tr200 Initial Test Results

1500 T T T T T T T

A—A NRET=50
——© NRET=100
G—i_

NRET=150

1000

Cumulative CPU Usage (seconds)
g

od L 1 I ' 1

Iteration Number

Figure 4.5

4-8

L 1
2 4 6 8 10 12 14

L I
16 18 20

Tr200 Initial Test: CPU vs. Iteration Number

subroutine eventually returns an error message indicating the algorithm cannot overcome
the infeasibility of the subproblem. Because ASTROS terminates with an error if the

solution does not change after three iterations, the run completes after the third iteration.

Retaining 150 constraints per iteration, SCP solves the auxiliary problem in the first
two iterations, returning infeasible designs each time. In the next iteration, however, the
algorithm cannot overcome the infeasibility and ASTROS again terminates with errors

after three more iterations.

In the remaining test runs, SCP overcomes this situation and the optimization eventu-
ally converges to the minimum-weight solution. In each case, a feasible design is reached at
the fourth iteration. Figure 4.5 shows that the negative impact to computational efficiency
is more pronounced for NRET = 100 than for NRET = 50 during the first three iterations.
These results suggest the necessity for an aggressive constraint retention strategy to over-
come the situation that an infeasible subproblem is generated. In testing strategies P (¢1

= 0.5) and F, 50 constraints per iteration were retained.

4.3.3 Optimization Results. The results of testing the remaining strategies are
summarized in Table 4.4. The objective function and maximum constraint violation histo-
ries are shown in Figures 4.6 and 4.7, respectively. The model was also solved three times

using the standard ASTROS approach using the following constraint retention strategies:

e ASTROS default - NRFAC = 3.0 and ¢ = -0.10,
e active constraint set - NRFAC = 0.0 and ¢ = -0.10, and
e same strategy as ASTROS-SCP - NRFAC = 0.25 and ¢ = 1000.0.
Results are tabulated in Table 4.5. A convergence comparison plot is shown in Figure 4.8.

Although strategy F reaches the minimum-weight solution in fewer iterations, its
computational performance is inferior to strategy P (¢1 = 0.1). This is because strategy
F requires eight iterations to reach feasibility where P (¢1 = 0.1) needs only four. In fact,
strategy I spends an average of 420 seconds performing the redesign during iterations 7

and 8 (compared to about 9.5 seconds for the first six iterations).

4-9

ASTROS- Strat P | Strat P | Strat F
SCP t1=0.5 | t1=0.1

NITER 34 17 15

F 29511.1 | 29413.6 | 29412.4
MCV 0.0 0.0 0.0
CPU-TOTAL 369.3 182.2 773.0
CPU-REDESIGN 4.8 4.6 48.3
NCG 1656 803 702

Table 4.4 ASTROS-SCP Tr200 Optimization Results (NRFAC=0.25, e=1000.0)

45

I el
o w n IS

Objective Function Value

1.5

1 1 1 1 ' !

5 10 15 20 25 30

Iteration Number

Figure 4.6 Tr200 Objective Function History (NRFAC=0.25 and ¢=1000.0)

4-10

Maximum Constraint Violation

Tteration Number

Figure 4.7 Tr200 Maximum Constraint Violation History (NRFAC=0.25 and
£=1000.0)

Strategy P (¢1 = 0.5) does not encounter computational difficulties with infeasibility,
but simply takes too many iterations to converge. Its solution quality is also inferior to

the other two strategies.

The fastest of the standard ASTROS runs occurs using the same constraint retention
strategy as ASTROS-SCP, converging to a slightly better solution in nearly half the time
and computing fewer gradients than strategy P (1 = 0.1). The other two ASTROS runs
reach a lower weight solution but take more than twice as long as ASTROS-SCP, strategy

Constraint Retention Strategy
Standard NRFAC=0.0 | NRFAC=0.25
ASTROS Default €=-0.10 €=1000.0
NITER 15 18 14
F 29103.2 29153.6 29400.9
MCV 0.0 0.0 0.0
CPU-TOTAL 595.7 446.2 99.4
CPU-REDESIGN 34.4 20.2 1.1
NCG 8468 2069 651

Table 4.5 ASTROS Tr200 Optimization Results

4-11

o
o

(4
T
1

P o—o P,t1=01
P & — -0 ASTROS - defautt
A~ -A ASTROS - same E

p
o
T

»

w
o

I
&)

Objective Function Value

-
n

—
&

1 1 1 1 I 1 i 1

2 4 [} 8 10 12 14 16 18
Iteration Number

Figure 4.8 Tr200 Convergence Comparison

P (t1 = 0.1). Figure 4.8 shows that the ASTROS runs representing the best solution
quality and fastest termination converge more directly to the region of the minimum-

weight solution than strategy P (¢1 = 0.1).

4.4 Intermediate Complezity Wing (ICW)

4.4.1 Model Description. This model consists of 88 nodes connected by 158 rods.
Quadrilateral and triangular membrane elements model the wing skins, and shear panels
model the spars and ribs. Stress constraints are imposed on the rods and displacement
constraints imposed at the tip of the wing in the transverse direction. A flutter speed
constraint of 925 knots, corresponding to a flight condition of Mach 0.8 at sea level, is
also applied. The resulting mathematical model consists of 350 design variables and 750
behavioral constraints. The objective is to minimize structural weight and the initial
solution vector is feasible. Additional supporting data and a model diagram are included

in Appendix A.

4-12

Constraint Retention Strategy

NRFAC=0.125 | NRFAC=0.25 | NRFAC=0.50 | NRFAC=0.0

ASTROS-SCP €=1000.0 €=1000.0 €=1000.0 €=-0.10
NRET 44 88 175 Active®
NITER 27 27 27 100°
F 41.835 41.817 41.818 44.293
CPU-TOTAL 501.6 653.4 865.1 2664.5
CPU-REDESIGN 5.2 9.3 16.9 13.6
NCG 1146 2288 4550 5430

“varies per iteration

*max iterations

Table 4.6 ICW Initial Test Results

Cumulative CPU Usage (seconds)

Figure 4.9

4.4.2 Initial Testing.

=
=3
S

8
S

NRET=175

NRET=ACTIVE]

) :
5 10

1
15

1 .
20 25

Iteration Number

constraints is higher for ICW than Tr200.

L)
30 35 40

ICW Initial Test: CPU vs. Iteration Number

As in the Tr200 tests, the ICW model was tested using
strategy P (¢1 = 0.1) at four different constraint retention strategies. Table 4.6 summarizes
the results and Figure 4.9 shows the cumulative CPU time per iteration number. For

this model, lower values of NRFAC were tested because the ratio of design variables to

In testing this model, the feasibility of the initial solution allowed each run to avoid

4-13

infeasibilities in the early iterations. When using an active set strategy, however, the
algorithm produced an infeasible point at the fourth iteration at which 185 constraints

were active or violated. This not only impacted computational efficiency, as Figure 4.9

ASTROS- Strat P | Strat P | Strat F
SCP t1=0.5 | t1=0.1

NITER 30 27 100
F 42.523 | 41.835 | 41.329
MCV 0.0 0.0 0.88514
CPU-TOTAL 534.6 501.6 | 40413.9
CPU-REDESIGN 4.2 5.2 392.9
NCG 1278 1146 4366

“reached max iterations

Table 4.7 ASTROS-SCP ICW Optimization Results (NRFAC=0.125, e=1000.0)

shows, but also produced a series of infeasible designs that the algorithm could not recover

from. The run eventually reached the maximum number of iterations before converging.

The efficiency of the dual solution method is demonstrated by Figure 4.9. Since the
dual problem has the same dimension as the number of retained constraints, the constraint
set strategy that retains only 44 constraints per iteration is most efficient. This strategy
was used in testing the remaining asymptote determination strategies P (t1 = 0.5) and F
even though the minimum-weight solution was slightly higher than when 88 constraints

were retained.

4.4.3 Optimization Results. The results of testing the remaining strategies are
summarized in Table 4.7. The objective function and maximum constraint violation his-
tories are shown in Figures 4.10 and 4.11, respectively. As in the Tr200 tests, the model
was also solved three times using the standard ASTROS approach under the ASTROS
default constraint retention strategy, an active constraint set strategy, and a constraint
retention strategy that mirrored the ASTROS-SCP approach. The results are tabulated

in Table 4.8. A convergence comparison plot is shown in Figure 4.12.

Using strategy F, the iteration sequence enters the infeasible region after three iter-
ations and cannot recover, eventually reaching the maximum number of iterations, even
though the solution is in the neighborhood of the minimum weight (see Figure 4.10). The
algorithm also uses close to seven minutes of CPU time per iteration, again demonstrating

SCP’s difficulties in handling infeasible design points for this strategy.

4-14

k)

600

5001

200

Objective Function Value

100

Iteration Number

Figure 410 ICW Objective Function History (NRFAC=0.125 and £=1000.0)

N

ES
T
Il

Maximum Constraint Violation

-
T

5 10 15 20 25 30 35 40 45

Iteration Number

Figure 4.11 ICW Maximum Constraint Violation History (NRFAC=0.125 and
£=1000.0)

4-15

Constraint Retention Strategy
Standard NRFAC=0.0 | NRFAC=0.125
ASTROS Default €=-0.10 €=1000.0
NITER 19 13 14
¥ 41.853 42.872 42.189
MCV 0.0 0.0 0.0
CPU-TOTAL 1135.8 373.4 326.9
CPU-REDESIGN 43.6 17.1 9.8
NCG 13500 421 572

Table 4.8 ASTROS ICW Optimization Results

By contrast, both versions of strategy P converge to a minimum-weight solution by
producing a series of feasible, or nearly feasible, designs. These two strategies average
about 18 seconds per iteration — less than six seconds performing the redesign. Strategy

P (t1 = 0.1) produces the lowest structural weight design.

The most notable difference between the standard ASTROS results and the ASTROS-
SCP results is that ASTROS solves in significantly fewer iterations. Figure 4.12 shows that
the ASTROS-SCP reaches the neighborhood of the minimum-weight design in more itera-
tions than ASTROS but again is slow to satisfy convergence criteria. However, ASTROS-
SCP with strategy P (¢1 = 0.1) achieves a lower weight and is more efficient performing
the redesign.

4.5 High-Altitude, Long-Endurance (HALFE) Aircraft

4.5.1 Model Description. The mission of this aircraft is to patrol for several
days at 150-250 knots at an altitude of 65,000 feet. The model is made of a truss sub-
structure and metallic cover skins. The design variables represent the cross-sectional areas
of rods and the thicknesses of panels. Constraints are imposed on the member stresses
and the wing-tip deflections. Four static loads are applied to simulate aerodynamic forces.
The resulting mathematical model consists of 1527 design variables and 6124 constraints.
The objective is to minimize structural weight. The initial solution vector is infeasible.

Additional supporting data and a model diagram are included in Appendix A.

4-16

" o—© P, i1=0.1
48+ 1 ¢ - —~0 ASTROS - default B
Al & — -A ASTROS - same

FS
D
T

S

Objective Function Value
& &

S
T

H
hry
T
1

S
o

Iteration Number

Figure 4.12 ICW Convergence Comparison

4.5.2 Optimization Results. On the Tr200 and ICW models, strategy F was the
most computationally expensive of the three strategies tested and in the case of ICW, did
not converge to a minimum-weight solution. In testing HALE, strategy F was replaced with
strategy P (t1 = 0.7) in hopes of avoiding a non-converging sequence of infeasible design
points. The tests on the Tr200 and ICW models also demonstrated that the number of
retained constraints should be less than 100 to have a chance of recovering from infeasible
design points. For the HALE test runs the value of NRFAC was set to 0.06 so that
approximately 92 constraints would be retained at each iteration. The results of the
test runs using strategy P at levels t1 = 0.7, {1 = 0.5, and t1 = 0.1 are summarized in
Table 4.9. The objective function and maximum constraint violation histories are shown

in Figures 4.13 and 4.14, respectively.

The HALE model could not be solved using the standard ASTROS optimization
within the available computer memory. To solve HALE, ASTROS requires about 15
megawords of dynamic memory, primarily working memory for the p-DOT subroutine.
By comparison, the ASTROS-SCP implementation required less than one megaword. As

a consequence, no ASTROS results are available for comparison. However, comparisons

4-17

Strat P | Strat P | Strat P
ASTROS-SCP t1=0.7 | t1=0.5 | t1=0.1
NITER 94 150° 350
F 1453.06 | 1452.49 | 487.70
MCV 0.0 0.4 12.0
CPU-TOTAL (min) 836 1044 | 2990
CPU-REDESIGN (min) || 8.2 6.3 84.4
NCG 8556 13708 3220

“reached max iterations before converging
bdivergent series

Table 4.9 ASTROS-SCP HALE Optimization Results (NRFAC=0.06, e=1000.0)

are made to solutions that have been reported in the literature on two occasions using

non-standard approaches within ASTROS.

As the figures show, strategy P (¢1 = 0.1) produces a large change in the solution
vector immediately in the iteration sequence. The algorithm averages 84 minutes of CPU
time in the redesign step but cannot recover from the severe infeasibilities. The optimiza-
tion is finally halted after 35 iterations and nearly 50 hours of run time. Strategy P (11 =
0.5) takes a much smoother path towards the minimum-weight solution but, interestingly,
encounters minor infeasibilities (in terms of magnitude) at each iteration until reaching
the maximum number of iterations. Strategy P (t1 = 0.7) progresses nicely from the ini-
tial infeasible design point to the feasible region after six iterations and converges to the

minimum-weight design at iteration 94 in just under 14 hours of run time.

The minimum-weight solution of 1453.1 pounds obtained in this study is the lowest
recorded to date. Using an optimality criteria approach, Canfield and Venkayya reported
a feasible weight of 1650.6 pounds after 13 iterations [9]. Using a sequential quadratic
programming implementation, Abramson and Chrissis reported a feasible weight of 1601.4
pounds after 91 iterations, but his algorithm terminated prematurely after exhausting
computer memory [2]. The ASTROS-SCP implementation is the first MP method to

successfully solve the HALE model to the convergence criteria.

4-18

3500

3000 H

2500H\;

2000

1500 | . |

1000

Objective Function Value

5001
0 1] 1 L
0 20 40 60 80 100 120
Iteration Number
Figure 4.13 HALE Objective Function History

14} -
o
.S 12t i
+~
=
S
2 10f 1
+>
s
‘® 8p P, t1=0.1 i
B
w
=
Q s .
&)
g
=
g
g
=

P,t1=0.7
2 1 I) I L
0 20 40 60 80 100 120
Iteration Number
Figure 4.14 HALE Maximum Constraint Violation History

4-19

4.6 Summary

ASTROS-SCP successfully solved three large-scale structural design problems. Com-
parisons were made, where possible, to the solutions using the traditional ASTROS ap-

proach. The next chapter gives conclusions and recommendations for further research.

4-20

V. Conclusions and Recommendations
5.1 Summary

The purpose of this thesis was to apply a sequential convex programmming method
to optimize large-scale structural design models in a multi-disciplinary environment. The
literature suggests that these methods solve structural optimization problems efficiently

but have not been rigorously tested on large problems with multi-disciplinary constraints.

Zillober’s SCP algorithm was chosen as the optimizer primarily because of its flexible
asymptote determination strategy and its FORTRAN implementation, which made it easily
integrated into the ASTROS design tool. In a previous study, this algorithm had been

shown to perform well on small to medium-sized structural optimization problems [34].

In the standard ASTROS approach, the method of modified feasibile directions solves
a subproblem at each design iteration using approximate functions of the objective function
and the retained constraints. For this research, SCP was integrated into the ASTROS
optimization loop as the method to construct and solve the approximate subproblems.
The hypothesis was that this approach, combined with an aggressive constraint retention
strategy to take advantage of SCP’s dual solution method, could lead to computationally

efficient results.

After testing the ASTROS-SCP implementation against the low-dimensional ten-bar
truss model to obtain appropriate parameter settings, the implementation was tested on
three large-scale structural models, one with multi-disciplinary constraints. ASTROS-SCP
successfully solved each model to the convergence criteria. For the Tr200 and ICW models,
the results showed that the standard ASTROS approach was more efficient when the same
constraint retention strategy was used. However, ASTROS-SCP reached a better solution

for the ICW model.

The largest model tested was the HALE model. The standard ASTROS configuration
could not solve HALE because the memory requirements exceeded available resources.
Using the ASTROS-SCP implementation, the HALE problem was solved to the optimality

conditions for the first time by a mathematical programming method within the ASTROS

environment. The resulting design is a 9% improvement over the previously recorded

minimum weight.

5.2 Conclusions

This research has demonstrated that SCP can be used to optimize large-scale struc-

tural designs. Analysis of the results leads to the following conclusions.

5.2.1 Convergence and Efficiency. The efficiency of the SCP dual solution tech-
nique is demonstrated by examining the redesign CPU averages of Tables 4.7 and 4.8 for
the ICW model results. Strategy P, at both levels of ¢1, performs the redesign in about
half the time of ASTROS (using the same constraint retention strategy). The same cannot
be said for strategy F (see Table 4.7) nor any of the Tr200 tests (see Tables 4.4 and 4.5).
Clearly, redesign efficiency is impacted in these runs by the infeasible design points that

are encountered.

Tables 4.4, 4.5, 4.7, and 4.8 show that when using the ASTROS-SCP implementation
combined with an aggressive constraint retention strategy, the Tr200 and ICW models were
solved faster than with the standard ASTROS approach and the default constraint reten-
tion strategy. Using the same constraint retention strategy, ASTROS was able to solve the
models faster but to a worse solution than when using less restrictive constraint retention
strategies. In the case of ICW, ASTROS-SCP would have solved faster but simply could
not converge to the optimal design point fast enough; the ASTROS solution converged in
nearly half the number of iterations albeit to a slightly worse solution. Although ASTROS
was faster, the ASTROS-SCP solution times of three minutes for Tr200 and eight minutes

for ICW are well within what may be considered as reasonable.

For the HALE model, although no ASTROS results are available for comparison, the
14 hour run time that ASTROS-SCP required to solve to an indicated optimal solution
(see Table 4.9) is well within reason for this size problem. As a comparison, on an older
computing system, Abramson and Chrissis reported a 198 hour run time for three fewer

iterations in solving HALE [2]. The attractive quality of ASTROS-SCP is the reduced

memory requirement. The efficient use of dynamic memory by SCP suggests that problems

of a much larger size could be solved using this implementation.

5.2.2 Multi-disciplinary Constraints. The inclusion of flutter constraints in the
ICW model may have played a part in the slow convergence of ASTROS-SCP. The test
run results indicate that, of the 44 constraints retained per iteration using strategy P
(t1 = 0.1), 30 were flutter constraints in the first two iterations, 24 were flutter in the
third iteration, and at least five were flutter from the fourth through the eighth iterations.
This high proportion of retained flutter constraints may have led to poor approximations,
causing a less-than-direct search to the region of optimality. More research is necessary in

this area before conclusive statements can be made.

5.2.3 Constraint Retention. The results of the initial trial runs of Chapter IV
show that the ASTROS-SCP performance was seriously impacted by the number of re-
tained constraints at infeasible design points. In particular, the Tr200 results of Table 4.3
showed that too many retained constraints led to a break down in the optimization but
the situation could be overcome by aggressively restricting the number of constraints. The
best results employed a retention scheme whereby the number of retained constraints was a
small fraction of the design variables. This strategy also takes advantage of SCP’s efficient
dual solution technique by limiting the number of variables in the dual problem to the

number of active constraints.

5.8 Recommendations for Future Research

This study has shown that sequential convex programming methods are valid opti-
mization methods for large-scale structural design models. The extent of their promise in
this realm, however, is not completely understood. The remainder of this chapter proposes

potential topics for further study that may help expand knowledge in this area.

Multi-disciplinary Model Testing. In testing the ICW model, this study considered a
structural design with constraints from both structures and flutter. In the previous section,

conclusions were postulated on the performance of the ASTROS-SCP implementation on

5-3

this model, but this only represents an isolated case study. A research effort dedicated
to the application of SCP methods to multi-disciplinary design models would shed more
light on how sequential convex programming methods perform against a wider range of
test problems. Such a study should choose test problems with a variety of representative
disciplinary constraints so that lessons can be learned about which constraint types the

convex approximation schemes have difficulties with.

Asymptote Determination. This study fixed the asymptote determination strategy
for each test, but there is no reason the strategy cannot be altered at some point during
the optimization. For example, an adaptive strategy that employs a more conservative
strategy [such as strategy P (¢1 = 0.5)] to force an initially infeasible design into the feasible
region, followed by a less conservative strategy (such as F) to accelerate convergence to
optimality, may lead to more efficient results. Since the choices for asymptotes are based
almost completely on numerical experience, more empirical data is needed upon which to
base judgements. There is much opportunity for computational experimentation in this

area.

Constraint Retention. Analogous to the asymptote determination schemes, nothing
forbids changing the strategy that chooses the number of constraints to retain at any
given iteration. It is known that SCP methods are more efficient when fewer constraints
are retained, but enough constraints need to be retained to construct an approximate
subproblem of sufficient quality. Further study with constraint retention strategies may

yield adaptive schemes that provide more efficient and/or more accurate solutions.

Extensions to the ASTROS-SCP Implementation. To improve the robustness of the
ASTROS-SCP approach, steps could be taken to enable the line search option of the SCP
algorithm. This would involve a coding effort to allow the DESIGN2 module to return to
the ASTROS executive sequence and perform a finite-element analysis, then returning the
function values to the DESIGN2 module. It is doubtful that computational efficiency would
be gained with this modification, but the reliability of convergence could be improved. This
can be important for large-scale problems because feasible initial solutions are difficult to

ensure.

5-4

Recent Advances in Convex Approzimations. Over the last three years, research has
been directed toward the improvement and further generalization of convex approximation
methods. In particular, Ma and Kikuchi propose an approximation that expands a Taylor-

series about a new intermediate variable,
yi =| @i — i ¥

where §; and ¢; are parameters for the design variable z; [25]. The authors-label the
approach as a further generalization to CONLIN and MMA but with enhanced flexibility

and convergence properties.

Additionally, Zhang and Fleury propose a modified CONLIN method in response to
the need for a general and flexible method that can be reliably applied to constraints of
multiple disciplines [50]. The method adjusts the convexity of the CONLIN approximation
using a two-point fitting scheme based on the available function value at the previous
iteration. The scheme ensures that the current approximated function will exactly fit at
the previous iteration design point. The purpose of the scheme is to expand the validity

of the approximation over a larger region of the design space.

The ASTROS environment provides the ideal environment for testing of such meth-
ods. Its modularity provides enough flexibility to integrate alternative optimization meth-

ods and its powerful capabilities provide for analysis of large, multi-disciplinary designs.

Interior Point Methods for Convex Programming. The topic of interior point solution
methods for convex programming problems has received considerable attention in recent
years (see, for example [31] and [20]). In engineering analysis, these methods have been
applied primarily to control theory but have also been used in the optimization of large-
scale truss topology and shape designs [6]. The appeal of these methods is the efficient,
polynomial-time algorithm performance. The application of interior point methods to the
solution of a sequence of approximate convex subproblems is an area worthy of research in

a structural optimization context.

5-5

Appendiz A. Description of Test Problems

This chapter provides supporting data for the test models solved. A finite-element model

diagram and table of design conditions are included for each.

A.1 200 Member Plane Truss

Table A.1 shows the design conditions on the Tr200 model [9]. Figure A.1 displays

the finite-element diagram.

A.2 Intermediate Complezity Wing

Table A.2 shows the design conditions on the ICW model [9]. Figure A.2 displays

the finite-element diagram.

A.3 High-Altitude, Long-Endurance Aircraft

Table A.3 shows the design conditions on the HALE model [9]. Figure A.3 displays

the finite-element diagram.

A-1

Figure A.1 200 Member Plane Truss Model

Figure A.2 Intermediate Complexity Wing Model
A-2

Table A.1

200-Member Plane Truss Design Conditions

Material, steel

Modulus of elasticity

Weight density

Stress limits

Lower limit on rod areas

Displacements on all nodes
(horizontal and vertical directions)

Number of loading conditions

Loading condition 1

Loading condition 2

Loading condition 3

Loading condition 4
Loading condition 5

E =30 x 10° psi
0.283 1b/in.3
30,000 psi
0.1in.?

0.5 in.

5

1000 1b acting in +X direction

at nodes 1, 6, 15, 20, 29, 34,

43, 48, 57,62, 71

1000 Ib acting in -X direction

at nodes 5, 14, 19, 20, 28, 33,

42, 47, 56, 61, 70, 75

10,000 1b acting in -Y direction

at nodes 1, 2, 3, 4, 5, 6, 8, 10,

12, 14, 15, 16, 17, 18, 19, 20, 22,

24, ...,71,72,73, 74, 75

Loading conditions 1 and 2 together
Loading conditions 2 and 3 together

Figure A.3

High-Altitude, Long-Endurance Aircraft Model

A-3

Table A.2 Intermediate Complexity Wing Design Conditions

Isotropic material, aluminum

Modulus of elasticity E =30 x 108 psi
Poisson’s ratio 0.30
Weight density 0.11b/in.3
Tensile stress limit 67,000 psi
Comprehensive stress limit 57,000 psi
Shear stress limit 39,000 psi
Lower limit on thickness

(shear panels) 0.02 in.
Lower limit on rod areas 0.02 in.?

Orthotropic material, graphite epoxy
Modulus of elasticity E; =30 x 10° psi
Ey = 1.6 x 10° psi
G2 = 0.65 x 10° psi

Poisson’s ratio 0.25

Weight density 0.055 1b/in.?
Stress limits 115,000 psi
Lower limit on plies 0.00525 in.

Behavior constraints
Limit on transverse tip
displacements 10.0 in.
Flutter speed limit 925 knots

Table A.3 High-Altitude, Long-Endurance Aircraft Wing Design Conditions
Isotropic material, aluminum

Modulus of elasticity FE =10.5 x 10° psi
Poisson’s ratio 0.30
Weight density 0.1 1b/in.3
Stress limits 60,000 psi
Lower limit on thickness
(shear panels) 0.021 in.
Lower limit on rod areas 0.10 in.?

Behavior constraints

Limit on transverse tip
displacements 200.0 in.
Number of loading conditions 4

A-4

Appendiz B. SCP Software Implementation

Implementing the alternate redesign task in ASTROS required the definition of a new
ASTROS module. This module served as a driver program that called Zillober’s SCP
subroutine. The required ASTROS configuration changes are described in section B.1.
The source code for the alternate redesign module, DESIGN2, is listed in section B.2.
Zillober’s SCP source code is omitted. The code was compiled in ASTROS version 13
on an IBM RS6000, Unix-based system at the Air Force Research Laboratory, Wright-

Patterson Air Force Base.

B.1 ASTROS Configuration Changes

'The following steps were taken to Conﬁgure ASTROS such that the DESIGN2 module
could be called to perform the redesign step in the ASTROS optimization. Note that the
file containing the DESIGN2 subroutine was named design2.f and the SCP subroutine was
named ascp.f.

Step 1: The DESIGN2 module and the SCP subroutine were compiled and

linked by invoking the ASTROS FORTRAN 77 compiler with the

following command:

% astrosf77 design2.f ascp.f
Step 2: So that ASTROS could recognize DESIGN? as a module, the module
was defined by adding the following lines to the end of the
MODDEF . DAT file:

DESIGN2 11

102 1 1 4 2 2 2 717 7T 71T 8 7
c
C PROCESS ’DESIGN2’ - ALTERNATE REDESIGN MODULE
C

CALL DESIGN2 (IP(1), IP(2), LP(3), RP(4), RP(5), RP(6),
1 EP(7), EP(8), EP(9), EP(10), EP(11))
END

B-1

Step 3: All of the following files were included in the working directory:
MAPOLSEQ.DAT, MODDEF.DAT, RELATION.DAT,
SERRMSG.DAT, and TEMPLATE.DAT.

Step 4: ASTROS system parameters were defined in the local directory with

the following command:

% sysgen
Step 5: An ASTROS version 13 was created in the local directory with the

following command:

% makelocalastros
Step 6: The DESIGN2 module was called instead of the standard ASTROS design
module through an edit to the standard MAPOL sequence. The following

lines in the data input file accomplished this:

EDIT GO NOLIST

REPLACE 1887, 1889

CALL DESIGN2(NITER, NDV, APPCNVRG, CNVRGLIM,
CTL, CTLMIN, GLBDES, CONST, CONSTORD,
[AMAT], DESHIST);

This completed the steps necessary to override the ASTROS design module with
DESIGN2. The tests were run by invoking the standard ASTROS execution command,

astrosi3_uai filename.d.

B.2 DESIGN2 Module Source Code

SUBROUTINE DESIGN2 (NITER, NDIM, APPCNVRG,

+ CNVRGLIM, CTL, CTLMIN, GLBDES,

+ CONST, CSTORD, A, DESHIST)
Cokoskeskesk stk s ok ook ok sk s sk sk st ok ok sk sk s ksl ok sk ok sk sk sk sk s sk sk s ook sk ok sk ok sk sk ok ok KoK sk oKk ok ok oK K ok
DESIGN2 MODULE:
THIS SUBROUTINE IS A DRIVER FOR AN ALTERNATE DESIGN TASK
TO THE STANDARD DESIGN MODULE IN ASTROS. THE SUBROUTINE
SOLVES THE APPROXIMATE PROBLEM AT EACH ASTROS DESIGN
ITERATION USING SEQUENTIAL CONVEX PROGRAMMING IMPLEMENTED
IN ZILLOBER’S SCP ALGORITHM. THE SCP SUBROUTINE IS CALLED
FROM THIS DRIVER MODULE.

aaQOaaaaaan

B-2

c
C AUTHOR: CAPT TODD A. SRIVER, AFIT/ENS, GOR-98M, 08-FEB-98
Gtk sk ok skeskok sk okok ok ok ki sk ok ok sk ok sk ok ok ok ok sk sk sk stk skeok sk ok st ek stk sk sk sk skskok sk kool sokokok ook
c

CHARACTER*8 DSLIST(3)

CHARACTER*8 DHLIST(11)

CHARACTER*(*) A, GLBDES, CONST, CSTORD, DESHIST

INTEGER INFO(20),IX0,IX,IDX,IXU,IXL,IDF,IG,IDG,IU,

+ IUL,IUU,IACTIVE,IDIMN,LDIMN,RDIMN,I,J,

ICON,ITEMP,IACT,WA,MNN,IDV,ISTOBJ,POSITN(2)

INTEGER NDIM,NMAX,MG,MH,MMAX,ITMAX,IPRINT,NOUT,
+ RDIM,IDIM,LDIM,IERR,MODE,NRF,

+ NRG,MAXINT,ITDUAL

LOGICAL APPCNVRG

DOUBLE PRECISION F,FO,ACC,ACTRES,T1,T2,GAMMA,EMACH
CHARACTER*1 METHOD, STRAT

Q

DYNAMIC MEMORY ALLOCATION: ALL DATA ARRAYS STORED IN CORE

DOUBLE PRECISION DCORE(1)
REAL RCORE(1)

INTEGER ICORE(1)

LOGICAL LCORE(1)

COMMON /DSCORE/ DCORE
EQUIVALENCE (DCORE(1),RCORE(1),ICORE(1),LCORE(1))
INTEGER IBUF(11)

REAL BUF(11)

EQUIVALENCE (IBUF(1), BUF(1))
COMMON /PRECIS/EMACH
EMACH=1.D-14

DATA DSLIST/’VALUE’, °*VMIN’, ’VMAX’/
DATA DHLIST/’0BJEXACT’, ’NFUNC’, ’NGRAD’, ’NCON’, ’NAC’,
1 ’NVC’, ’NLBS’, ’NUBS’, ’CONVRGD’, ’NITER’, ’0BJAPROX’/

CALL MMBASE (DCORE)

GET THE DESIGN VARIABLE INFORMATION AND OBTAIN MEMORY

TO STORE DESIGN VARIABLE VALUES (BOTH INITIAL AND AFTER
REDESIGN), UPPER AND LOWER BOUNDS, AND OBJECTIVE FUNCTION
GRADIENTS

QO aaa

CALL DBOPEN (GLBDES, INFO, ’RO’, ’NOFLUSH’, ISTAT)
NMAX=NDIM + 1

B-3

Q

Q

CALL MMGETB (’X’, ’RSP’,5xNMAX, ’SCP’, IX0, ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(5*NMAX,’RSP’,’SCP 1°)

IX = IX0 + NMAX

IXL = IX + NMAX
IXU = IXL + NMAX
IDF = IXU + NMAX

CALL RECOND (GLBDES, ’NITER’, ’EQ’, NITER)
CALL REENDC
CALL REPROJ (GLBDES, 1, ’VALUE’)
CALL REGB (GLBDES, RCORE(IX0), NDIM, ISTAT)
DO 5 I =1, NDIM

RCORE(IX+I-1) = RCORE(IXO0+I-1)
CONTINUE

CALL RECOND (GLBDES, ’NITER’, ’EQ’, NITER)
CALL REENDC

CALL REPROJ (GLBDES, 1, ’VMIN’)

CALL REGB (GLBDES, RCORE(IXL), NDIM, ISTAT)

CALL RECOND (GLBDES, ’NITER’, ’EQ’, NITER)
CALL REENDC

CALL REPROJ (GLBDES, 1, ’VMAX’)

CALL REGB (GLBDES, RCORE(IXU), NDIM, ISTAT)
CALL DBCLOS (GLBDES)

GET OBJECTIVE FUNCTION GRADIENTS FROM API INTRINSIC

CALL APWOBJ (ISTOBJ, POSITN)
CALL GWOBJD (ISTOBJ, POSITN, RCORE(IDF))

CONVERT TO DOUBLE PRECISION

CALL MMGETB(’DX’,’RDP’,4*NMAX,’SCP’,IDX,ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(4*NMAX,’RDP’,’SCP 27’)

IDXL = IDX + NMAX
IDXU = IDXL + NMAX
IDDF = IDXU + NMAX

DO 10 I = 1, NDIM
DCORE(IDX+I-1) = DBLE(RCORE(IX+I-1))
DCORE(IDXL+I-1) = DBLE(RCORE(IXL+I-1))

Q

Q

Q

aQaaQaan

DBLE(RCORE(IXU+I-1))
DBLE(RCORE(IDF+I-1))

DCORE(IDXU+I-1)
DCORE(IDDF+I-1)
10 CONTINUE

GET MEMORY FOR ACTIVE CONSTRAINTS

CALL DBOPEN(A,INFO,’R0O’,’NOFLUSH’,ISTAT)
MG = INFO(2)

CALL DBCLOS(A)

MMAX = MG + 1

MH = 0

CALL MMGETB(’CON’,’RSP’ ,MMAX+MG,’SCP’,ICON,ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(MMAX+MG,’RSP’,’SCP 3°)
IACT = ICON + MMAX

RETRIEVE ACTIVE CONSTRAINT VALUES

CALL DBOPEN(CSTORD,INFO,’R0O’,’NOFLUSH’ ,ISTAT)
CALL RECOND(CSTORD, ’NITER’, ’EQ’, NITER)
CALL REENDC
CALL REPROJ(CSTORD, 1, ’CVAL’)
CALL REGB(CSTORD, RCORE(ICON), MG, ISTAT)

. CALL DBCLOS (CSTORD)

RETRIEVE CONSTRAINT ACTIVE FLAGS

CALL DBOPEN(CONST,INFO,’R0’,’NOFLUSH’ ,ISTAT)
CALL RECOND (CONST, ’NITER’, ’EQ’, NITER)
CALL RESETC (’AND’, ’ACTVFLAG’, ’EQ’, 1)
CALL REENDC

CALL REPROJ(CONST, 1, ’ACTVFLAG’)

CALL REGB(CONST, ICORE(IACT), MG, ISTAT)
CALL DBCLOS(CONST)

CALL MMGETB(’G’,’RDP’ ,MMAX,’SCP’,IG,ISTAT)

IF (ISTAT.NE.O) CALL UTMCOR(MMAX,’RDP’,’SCP 4°)
CALL MMGETB(’GACT’,’RSP’,MG,’SCP’ ,IACTIVE,ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(MG,’RSP’,’SCP 57)

CONVERT CONSTRAINT VALUES TO DOUBLE PRECISION AND
ACTIVE FLAG TO LOGICAL

DO 20 I = 1, MG
DCORE(IG+I-1) = -1.0DO*DBLE(RCORE(ICON+I-1))

B-5

@]

(9]

Q

Q

LCORE(IACTIVE+I-1) = .FALSE.
IF (ICORE(IACT+I-1).EQ.1)
+ LCORE(IACTIVE+I-1) = .TRUE.
20 CONTINUE

GET MEMORY FOR CONSTRAINT GRADIENTS

CALL MMGETB(’TEMP’,’RDP’,NDIM, ’SCP’,ITEMP,ISTAT)

IF (ISTAT.NE.O) CALL UTMCOR(NDIM,’RDP’,’SCP 6’)

CALL MMGETB(’DG’,’RDP’ ,MMAX*NMAX,’SCP’,IDG,ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(MMAX*NMAX,’RDP’,’SCP 7’)

RETRIEVE MATRIX OF ACTIVE CONSTRAINT GRADIENTS

CALL DBOPEN(’AMAT’ ,INFO,’RO’,’NOFLUSH’ ,ISTAT)
DO 30 I = 1, MG
CALL MXUNP(’AMAT’ ,DCORE(ITEMP),1,NDIM)
DO 40 J = 1,NDIM
DCORE (IDG+MMAX* (J-1)+(I-1))=-DCORE(ITEMP+J-1)
40 CONTINUE
30 CONTINUE
CALL DBCLOS(’AMAT’)

CALCULATE OBJECTIVE FUNCTION VALUE

FO = 0.DO
DO 50 I = 1, NDIM
FO = FO + DCORE(IDX+I-1)*DCORE(IDDF+I-1)
50 CONTINUE

ALLOCATE AND INITIALIZE MEMORY REQUIRED BY SCP

MNN = MMAX + NMAX + NMAX

RDIMN = MG*MG + NDIM*MG + 24*NDIM + 14*MG + 9
LDIMN = 4%NDIM + 3*MG + 2

IDIMN = 2%MG + 6

CALL MMGETB(’U’,’RDP’ ,MNN,’SCP’,IU,ISTAT)

IF (ISTAT.NE.O) CALL UTMCOR(MNN,’RDP’,’SCP 8°’)
IUL = IU + MMAX

IU0 = IUL + NMAX

CALL MMGETB(’WAS’,’RDP’ ,MMAX+RDIMN,’SCP’,WA,ISTAT)

IF (ISTAT.NE.O) CALL UTMCOR(MMAX,’RDP’,’SCP 9’)
RDIM = WA + MMAX

B-6

CALL MMGETB(’ISCP’,’RSP’,IDIMN+LDIMN,

+ ’SCP’ ,IDIM, ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(2*MG+6+LDIMN,
+ ’RSP’,’SCP 10?)
LDIM = IDIM + IDIMN

C DEFINE SCP PARAMETERS

C
ACC=1.D-4
ITMAX=1
MAXINT=10
ITDUAL=1000
IPRINT=2
NOUT=7
ACTRES=1.D56
T1=0.1D0
T2=1.5D0
GAMMA=0.5D0
METHOD=’S’
STRAT="P’
MODE=2
IERR=0

Q

INITIALIZE COUNTERS

NRF
NRG = 0

]
o

C

C CALL THE SCP OPTIMIZER, GETTING NEW DESIGN POINT

C

555 CALL ASCP(NDIM,MG,MH,MMAX,NMAX,DCORE(IDX),DCORE(IDXL),

+ DCORE(IDXU) ,F0,DCORE(IG) ,DCORE(IDDF),
+ DCORE(IDG),DCORE(IU) ,DCORE(IUL),DCORE(IUU),
+ ACC,ITMAX,NRF,NRG,MAXINT,ITDUAL,IPRINT,NOUT,
+ ACTRES,T1,T2,GAMMA,DCORE(WA) ,DCORE(RDIM),
+ RDIMN,ICORE(IDIM) ,IDIMN,LCORE(LDIM) ,LDIMN,
+ LCORE(TACTIVE) ,METHOD,STRAT,MODE,IERR)

C

IF (IERR .EQ. -2) THEN

C

C GRADIENTS REQUESTED BY SCP

C

GOTO 555
ELSE IF (IERR .EQ. -1) THEN

B-7

Q

QOO0 @] Q

aQQ

QO QC

FUNCTION VALUES REQUESTED BY SCP

GOTO 555
END IF

SET GLOBAL CONVERGENCE PARAMETERS

CTL = -0.0001
CTLMIN = 0.0005

CALCULATE NEW, APPROXIMATE OBJECTIVE FUNCTION VALUE

F = 0.D0
DO 55 I = 1, NDIM
F = F + DCORE(IDX+I-1)*DCORE(IDDF+I-1)
55 CONTINUE

CONVERT NEW DESIGN VARIABLES BACK TO SINGLE PRECISION

DO 60 I = 1, NDIM
RCORE(IX+I-1) = (DCORE(IDX+I-1))
60 CONTINUE

UPDATE GLBDES RELATION
BRING IN THE LIST OF DESIGN VARIABLE ID’S

CALL DBOPEN (GLBDES,INFO,’R/W’,’NOFLUSH’,ISTAT)
CALL REPROJ (GLBDES,1,’DVID’)

CALL RECOND (GLBDES,’NITER’,’EQ’,NITER)

CALL REENDC

CALL MMGETB (’DVID’,’RSP’,NDIM,’SCP’,IDV,ISTAT)
IF (ISTAT.NE.O) CALL UTMCOR(NDIM,’RSP’,’SCP 11°)
CALL REGB (GLBDES,ICORE(IDV),NDIM,ISTAT)

CALL DBCLOS (GLBDES)

CALL THE DVUPDT UTILITY TO UPDATE THE RELATION

CALL DVUPDT(NITER,NDIM,ICORE(IDV),RCORE(IX),GLBDES,
+ >SCP’ ,ICORE,ICORE)

WRITE A NEW ENTRY TO THE DESHIST RELATION

B-8

CALL DBOPEN (DESHIST,INFO0,’WO0’,’NOFLUSH’,ISTAT)
CALL REPROJ (DESHIST,11,DHLIST)
IF (INFO(3) .EQ. O) THEN

BUF(1) = FO

CALL UTZERS(IBUF(2), 8, 0)

IBUF(10) = NITER

CALL READD (HIST, BUF)

END IF

IBUF(10) = NITER + 1
BUF(1) = FO

BUF(11) = F

IBUF(2) = NRF
IBUF(3) = NRG
IBUF(4) = MG

¢
C DETERMINE NUMBER OF ACTIVE AND VIOLATED CONSTRAINTS
c
NAC = 0
NVC = 0
DO 70 I =0, MG -1
IF (RCORE(ICON+I) .GE. CTL) THEN
NAC = NAC + 1
IF (RCORE(ICON+I) .GT. CTLMIN) NVC = NVC + 1
END IF
70 CONTINUE
IBUF(5) = NAC
IBUF(6) = NVC
C .
C DETERMINE NUMBER OF ACTIVE SIDE CONSTRAINTS
c
NLBS = 0
NUBS = 0
DO 80 I = 0, NDIM - 1 ,
IF (ABS(RCORE(IX+I)-RCORE(IXL+I)) .LE. CTLMIN)

+ NLBS = NLBS + 1
IF (ABS(RCORE(IXU+I)-RCORE(IX+I)) .LE. CTLMIN)
+ NUBS = NUBS + 1

80 CONTINUE
IBUF(7) = NLBS
IBUF(8) = NUBS

C

C DETERMINE STATUS OF APPROXIMATE PROBLEM CONVERGENCE
C

CALL ACNVRG (NITER, APPCNVRG, CNVRGLIM, ’MP’, NDIM,
+ ICORE(IDV), RCORE(IX0), RCORE(IX), FO, F)

B-9

IF (APPCNVRG) THEN

IBUF(9) = 1
ELSE

IBUF(9) = 0
END IF

CALL READD (DESHIST,BUF)

CALL DBCLOS (DESHIST)

PRINT %, ’ITERATION ’, NITER

PRINT *, ’FUNCTION CALLS, NRF = °, NRF

PRINT *, ’GRADIENT CALLS, NRG = >, NRG

CALL MMFREG (’SCP’)
C

RETURN

END
**
C

C THESE SUBROUTINES ARE USED FOR EXPLICITLY DEFINED FUNCTIONS.
C THEY ARE EMPTY FOR STRUCTURAL, FINITE-ELEMENT APPLICATIONS.
C

SUBROUTINE NLFUNC (M,ME,MMAX,N,F,G,X,ACTIVE)
RETURN
END
**
SUBROUTINE NLGRAD (M,ME,MMAX,N,F,G,DF,DG,X,
+ ACTIVE,WA)
RETURN
END

10.

11.

12.

13.

14.

15.

Bibliography

Abramson, M.A. Application of Sequential Quadratic Programming to Large-Scale
Structural Design Problems. Thesis, Graduate School of Engineering, Air Force In-
stitute of Technology, 1994.

Abramson, M.A. and J.W. Chrissis. “Sequential Quadratic Programming and the AS-
TROS Structural Optimization System,” Structural Optimization, 15:24-32 (1998).

Arora, J.S. Introduction to Optimum Design, McGraw-Hill, 1989.

Barthelemy, J.-F.M. and R.T. Haftka. “Function Approximations,” Structural Opti-
mization: Status and Promise edited by M.P. Kamat, chapter 4, 51-70, AIAA, 1993.

Beckers, M. and C. Fleury. “A Primal-Dual Approach in Truss Topology Optimiza-
tion,” Computers & Structures, 64(1-4):77-88 (1997).

Ben-Tal, A. and G. Roth. “A Truncated Log Barrier Algorithm for Large-Scale Convex
Programming and MinMax Problems: Implementation and Computational Results,”
Optimization Methods and Software, 6:283-312 (1996).

Bletzinger, K.-U. “Extended Method of Moving Asymptotes Based on Second-Order
Information,” Structural Optimization, 5:175-183 (1993).

Boyd, S. and L. Vandenberghe. “CRCD Program: Convex optimization for Engineering
Analysis and Design,” Proceedings of the American Control Conference, 2: 1069-71
(1995). ’

Canfield, R.A. and V.B. Venkayya. “Implementation of Generalized Optimality Crite-
ria in a Multidisciplinary Environment,” Journal of Aircraft, 27:1037-42 (1990).

Duysinx, P. and C. Fleury. “Optimization Software: View from Europe,” Structural
Optimization: Status and Promise edited by M.P. Kamat, chapter 28, 807-849, ATAA,
1993.

Fleury, C. “Structural Weight Optimization by Dual Methods of Convex Program-
ming,” International Journal for Numerical Methods in Engineering, 14:1761-83
(1979).

Fleury, C. and V. Braibant. “Structural Optimization: A new Dual Method Us-
ing Mixed Variables,” International Journal for Numerical Methods in Engineering,
23:409-428 (1986).

Fleury, C. “Efficient Approximation Concepts Using Second Order Information,” In-
ternational Journal for Numerical Methods in Engineering, 28:2041-58 (1989).

Fleury, C. “First and Second Order Convex Approximation Strategies in Structural
Optimization,” Structural Optimization, 1:3-10 (1989).

Fleury, C. “CONLIN: An Efficient Dual Optimizer Based on Convex Approximation
Concepts,” Structural Optimization, 1:81-89 (1989).

BIB-1

16.

17.

Fleury, C. “Sequential Convex Programming for Structural Optimization Problems,”
Optimization of Large Structural Systems, 1 of NATO ASI edited by G.ILN. Rozvany,
531-553, Kluwer Academic Publishers, 1993.

Fleury, C. “Dual Methods for Convex Separable Problems,” Optimization of Large

- Structural Systems, 1 of NATO ASI edited by G.I.LN. Rozvany, 509-530, Kluwer Aca-

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

demic Publishers, 1993.

Fleury, C. “Mathematical Programming Methods for Constrained Optimization: Dual
Methods,” Structural Optimization: Status and Promise edited by M.P. Kamat, chap-
ter 7, 123-150, AIAA, 1993.

Fleury, C. “Recent Developments in Structural Optimization Methods,” Structural
Optimization: Status and Promise edited by M.P. Kamat, chapter 9, 183-208, AIAA,
1993.

Jarre, F. and M. Saunders. “A Practical Interior-Point Method for Convex Program-
ming,” SIAM Journal on Optimization, 5(1):149-171 (1995).

Johnson, E.W. “Tools for Structural Optimization,” Structural Optimization: Status
and Promise edited by M.P. Kamat, chapter 29, 851-863, ATAA, 1993.

Jonsson, O and T. Larsson. “A note On Step-Size Restrictions in Approximation Pro-
cedures for Structural Optimization,” Computers & Structures, 37(3):259-263 (1990).

Kirsch, U. Optimum Structural Design, McGraw-Hill, 1989.

Larsson, T. and M. Ronngvist. “A Method for Structural Optimization Which Com-
bines Second-Order Approximations and Dual Techniques,” Structural Optimization,
5:225-232 (1993).

Ma, Z.-D. and N. Kikuchi. “A New Method of Sequential Approximate Optimization
for Structural Optimization Problems,” Engineering Optimization, 25:231-253 (1995).

Mahmoud, K.G. “An Efficient Approach to Structural Optimization,” Computers &
Structures, 64(1-4):97-112 (1997). A

Neill, D.J. and R.A. Canfield. “ASTROS—A Multidisciplinary Automated Structural
Design Tool,” ATAA Paper 87-0713, 44-53, April 1987.

Neill, D.J. and D.L. Herendeen. ASTROS Enhancements, Volume I-ASTROS User’s
Manual. Technical Report WL-TR-96-3004, Wright Laboratory, May, 1995.

Neill, D.J. and D.L. Herendeen. ASTROS Enhancements, Volume II-ASTROS Pro-
grammer’s Manual. Technical Report WL-TR-96-3005, Wright Laboratory, May, 1995.

Neill, D.J., D.L. Herendeen, and V.B. Venkayya. ASTROS Enhancements, Volume I1I-
ASTROS Theoretical Manual. Technical Report WL-TR-96-3006, Wright Laboratory,
May, 1995.

Nesterov, Y. and A. Nemirovskii. Interior Point Polynomial Methods in Convexr Pro-
gramming, Philadelphia, STAM, 1994.

Rao, S.S. Engineering Optimization: Theory and Practice, John Wiley and Sons, 1996.

BIB-2

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Reklaitis, G.V., A. Ravindran, and K.M. Ragsdell. Engineering Optimization: Methods
and Applications, John Wiley and Sons, 1983.

Schittkowski, K., C. Zillober and R. Zotemantel. “Numerical Comparison of Nonlinear
Programming Algorithms for Structural Optimization,” Structural Optimization, 7:1-
19 (1994).

Schittkowski, K. and C. Zillober. “Sequential Convex Programming Methods,” in
Stochastic Programming, edited by K. Marti and P. Kall, Lecture Notes in Economics
and Mathematical Systems, vol. 423, Springer, 1995.

Schmit Jr., L.A. and B. Farshi. “Some Approximation Concepts for Structural Syn-
thesis,” AIAA Journal, 12(5):692-699 (May 1974).

Schmit Jr., L.A. “Structural Optimization—Some Key Ideas and Insights”, New Di-
rections in Optimum Structural Design, edited by E. Atrek, R.H. Gallagher, K.M.
Ragsdell and O.C. Zienkiewicz, chapter 1, 1-45, Wiley, 1984.

Svanberg, K. “The Method of Moving Asymptotes—a New Method for Structural
Optimization,” International Journal for Numerical Methods in Engineering, 24:359-
373 (1987).

Svanberg, K. “Some Second Order Methods for Structural Optimization,” Optimiza-
tion of Large Structural Systems, 1 of NATO ASI edited by G.I.N. Rozvany, 567-578,
Kluwer Academic Publishers, 1993.

Svanberg, K. “The Method of Moving Asymptotes (MMA) with Some Extensions,”
Optimization of Large Structural Systems, 1 of NATO ASI edited by G.I.N. Rozvany,
555-566, Kluwer Academic Publishers, 1993.

Thanedar, P.B., J.Arora, C.H.Tseng, O.K.Lim, and G.J.Bark “Performance of Some
SQP Algorithms on Structural Design Problems,” International of Numerical Methods
in Engineering, 23(3):2187-2203 (1986).

Vanderplaatz, G.N. “An Efficient Feasible Directions Algorithm for Design Synthesis,”
AIAA Journal, 22(11):1633-1640 (November 1984).

Vanderplaatz, G.N. Numerical Optimization Techniques for Engineering Design: With
Applications, McGraw-Hill, 1984.

Vanderplaatz, G.N. “Structural Optimization,” Computational Nonlinear Mechanics
in Aerospace Engineering edited by S.T. Atluri, chapter 14, 507-529, ATAA, 1992.

Vanderplaatz, G.N. “Mathematical Programming Methods for Constrained Optimiza-
tion: Primal Methods”, Structural Optimization: Status and Promise edited by M.P.
Kamat, chapter 3, 29-49, ATAA, 1993.

Venkayya, V.B. “Optimality Criteria: A Basis for Multidisciplinary Design Optimiza-
tion,” Computational Mechanics, 5(1):1-21 (1989).

Venkayya, V.B., V.A. Tischler, and S.M. Pitrof. “Benchmarking in Structural Opti-
mization,” Proceedings of the jth AIAA/USAF/NASA/OAI Symposium on Multidis-
ciplinary Analysis and Optimization, Sep. 21-23, 1992, Cleveland, OH, ATAA Paper
ATAA-92-4784.

BIB-3

48.

49.

50.

51.

52.
53.

Venkayya, V.B. “Introduction: Historical Perspective and Future Directions”, Struc-
tural Optimization: Status and Promise edited by M.P. Kamat, chapter 1, 1-10, ATAA,
1993. :

Venkayya, V.B. “Generalized Optimality Criteria Method”, Structural Optimization:
Status and Promise edited by M.P. Kamat, chapter 8, 151-182, ATAA, 1993.

Zhang, W. and C. Fleury. “A Modification of Convex Approximation Methods for
Structural Optimization,” Computers & Structures, 64(1-4):89-95 (1997).

Zillober, C. SCP - An Implementation of a Sequential Convex Programming Algorithm
for Nonlinear Programming, DFG-Report No. 470, Schwerpunkt Anwendungsbezogene
Optimierung and Steuerung, 1993.

Zillober, C. unpublished SCP algorithm FORTRAN source code.

Zillober, C. “A Globally Convergent Version of the Method of Moving Asymptotes,”
Structural Optimization, 6:166-174 (1993).

BIB-4

Vita

Capt. Todd A. Sriver was born on — in _ He

graduated from Riley High School in South Bend, Indiana in 1986 and then attended
Purdue University in West Lafayette, Indiana. He graduated with a Bachelor of Science
degree in Aeronautical and Astronautical Engineering in December 1990. He received
a reserve commission in the USAF on 22 September 1993 upon graduation from Officer

Training School.

Captain Sriver’s first assignment was with Detachment 2, Space and Missiles Sys-
tems Center at Onizuka Air Station, California. Assigned to the Engineering Directorate,
he was responsible for the analysis and planning of over 100 new R&D satellite control
requirements per year. He was also the project officer for the integration and testing of
the Interim RDT&E Support Complex (IRSC), a prototype satellite command and control
system. In August 1996, he entered the Graduate School of Engineering, Air Force Insti-
tute of Technology as a student in Operations Research. Upon graduation, Captain Sriver
is assigned to the 33rd Flight Test Squadron, Air Mobility Command, McGuire AFB, New

Jersey.

Captain Sriver is a member of the Tau Beta Pi and Omega Rho national honor

societies.

Captain Sriver and his wife, the former _r of Mishawaka, Indiana,
have two children: Tyler and Kayla.

A -

VITA-1

Form Approved
REPORT DOCUMENTATION PAGE BRI S

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank] | 2. REPORI DATE | 3. REPORT 1YPE AND DATES COVERED
March 1998 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE APPLICATION OF SEQUENTIAL CONVEX PROGRAMMING TO
LARGE-SCALE STRUCTURAL OPTIMIZATION PROBLEMS

6. AUTHOR(S)

Todd Allen Sriver, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology

2950 P Street ’ AFIT/GOR/ENS/98M-24
Wright-Patterson AFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Dr. Vipperla Venkayya AGENCY REPORT NUMBER
2130 8th Street, Suite 1
AFRL/VASD

Wright-Patterson AFB OH 45433-7542

11. SUPPLEMENTARY NOTES

Advisor: Dr. James W. Chrissis, (937) 255-6565 ext. 4338, jchrissi@afit.af.mil

12a. DISTRIBUTION AVAILABILITY STATEMENT : 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

[13. ABSTRACT (Maximum 200 words)
Structural design problems are often modeled using finite element methods. Such models are often characterized by
constraint functions that are not explicitly defined in terms of the design variables. These functions are typically evaluated
through numerical finite element analysis (FEA). Optimizing large-scale structural design models requires computationally
.| expensive FEAs to obtain function and gradient values. An optimization approach which uses the SCP sequential convex
programming algorithm of Zillober, integrated as the optimizer in the Automated Structural Optimization System
(ASTROS), is tested. The traditional approach forms an explicitly defined approximate subproblem at each design iteration
that is solved using the method of modified feasible directions. In an alternative approach, the SCP subroutine is called to
formulate and solve the approximate subproblem. The SCP method is an implementation of the Method of Moving
Asymptotes algorithm with five different asymptote determination strategies. This study investigates the effect of different
asymptote determination strategies and constraint retention strategies on computational efficiency. The approach is tested
on three large-scale structural design models, including one with constraints from multiple disciplines. Results and
comparisons to the traditional approach are given. The largest of the three models, which had 1527 design variables and
6124 constraints, was solved to optimality with ASTROS for the first time using a mathematical programming method. The
structural weight of the resulting design is 9% lower than the previously recorded minimum weight.

4. SUBJECT TERMIS 15. NUMBER OF PAGES
Optimization; Structural Optimization; Nonlinear Programming; Sequential Convex 90
Programming [16. PRICE CODE
77 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION) '————ﬂ-pm 9. SECURITY CLASSIFICATIO :
OF REPORT } OF THIS PAGE . OF ABSTRACT
Unclassified Unclassified Unclassified . UL

Standard Form 298 iFev. 2-89) IEES)
Pres;tl:}'ibed by ANSI Std. 239.18

Designed using Perform Pro, WHS/DIOR, Oct 94

	The Application of Sequential Convex Programming to Large-Scale Structural Optimization Problems
	Recommended Citation

	tmp.1683833954.pdf.nGxaa

