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Abstract 

An analytical method is developed and applied to find 

the activities of two radioisotopes based on measurements 

influenced by true coincidence summing.  The method 

incorporates the solid angle subtended by the detector, the 

macroscopic cross sections of the materials present, the 

absolute peak and total efficiencies of the detector, and 

the modes and probabilities of decay of the radioisotope. 

With this information, the method corrects for both summing- 

in and summing-out events.  Summing events affect peak 

counts and cause the calculated activity to differ from the 

true activity. 

Thin disk sources of Mo-99 and Cs-136 on the face of a 

closed-end, coaxial high purity germanium detector have been 

studied.  For Mo-99, the analytical method shows there is a 

29% reduction in the 740 keV peak counts due to summing 

events.  This factor adjusts the no-coincidence-assumed 

activity to within 4.0% of the correct value.  As for Cs- 

136, the analytical method shows a 41% reduction in the 1048 

keV peak counts.  This factor corrects the simplistic 

activity to within 0.5% of the correct value.  Hence, the 

results indicate that coincidence summing is the primary 

cause of activity discrepancies for the given configuration. 

IX 



AN ANALYTICAL METHOD TO CALCULATE ACTIVITY 
FROM MEASUREMENTS AFFECTED BY COINCIDENCE 

SUMMING 

1. Introduction 

1.1  Customer Background 

The Air Force Technical Applications Center (AFTAC) 

operates the Applied Chemistry Laboratory at McClellan AFB, 

CA.  The mission of the laboratory is to determine the 

quantity of certain radioisotopes in samples and report the 

results in a timely manner.  Its customers use the 

information to verify compliance with nuclear test ban 

treaties which, in turn, can have a direct impact on national 

policies and actions. 

In performing the mission, laboratory personnel analyze 

samples for fission and neutron activation products. 

Laboratory technicians isolate the radioisotopes by element 

through chemical extraction, collect the precipitate on 

filter paper, and then mount the paper onto a planchet shown 

in Figure 1.1.  Depending on the activity of the source on 

the filter paper, a technician places the planchet at a fixed 

distance above the detector for measurement.  Because many of 

the sources have very low activities, they lie on 
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the end cap (face) of the detector.  The typical detector has 

a closed-end, coaxial high purity germanium (HPGe) crystal 

enclosed by an aluminum end cap shown in Figure 1.2. 

Laying the low activity (weak) source on the face of a 

detector maximizes the rate of registering radiation quanta 

(count rate) and minimizes measurement time.  The measurement 

time depends on the total counts recorded which must be over 

the threshold of 10,000 counts.  The laboratory uses this 

threshold to minimize the errors of the counts due to the 

statistical variation of radioactive decay.  The detector may 

operate for as long as 1000 minutes in order to get a valid 

measurement. 

After obtaining a reliable measurement, laboratory 

members determine the activity of the radioisotopes present 

in the sample.  Then, they send the findings to Headquarters 

AFTAC for dissemination to the customers. 

1.2  Problem Background 

Before measuring the activity of a source from a 

collected sample, laboratory personnel calibrate the response 

of each detector to gamma-rays of known energies.  These 

gamma-rays come from a source containing standard 

radioisotopes that predominantly emit one or two gamma-rays 

per decay.  The standard source is usually 10 cm or more 

above the face of the detector.  (The importance of this fact 



will be made later.)  A technician assigns the energies of 

the known gamma-rays to the corresponding peaks of counts 

recorded in the spectrum.  With this data, the software for 

the detector system creates an efficiency function to 

calibrate the energy spectrum for future measurements. 

As each radioisotope has a unique set of radiation 

quanta (gamma-rays in this context) with associated energy 

and rate of emission, laboratory members can determine the 

radioisotopes present and their quantity at time of formation 

(time zero).  To find these values, laboratory technicians 

calculate the activity of each radioisotope based on the 

detector measurements.  With the number of counts under a 

characteristic energy peak per minute, CPM , the branching 

ratio of the gamma-ray that caused the peak, % , the decay 

constant of the radioisotope, X , the efficiency of the 

detector to record the full energy of the gamma-ray (peak 

efficiency), epea , the time of chemical extraction and the 

midpoint time of the measurement, the percent of mass yielded 

from chemical extraction, y, and the dilution of the sample 

before precipitating the solid (fraction of total volume), 

FTV, a technician inputs this data into a computer program 

(GAMANAL) and gets the activity of the radioisotope at time 

zero, CQ.  Equation 1-1 shows the relation of the above 



factors in calculating the activity at time zero (AFTAC, 

1997) : 

CPM@mid  measurement  time 
C0= ~£ = = ; .     (1-1) 

FTVyxe^  Exp[-A,(separation_ to_ mid_ meas. _ time)] 

When they used the above equation to find the initial 

activities of the radioisotopes, laboratory personnel 

obtained reproducible results for sources that were 10 cm or 

more above the face of the detector.  However, they observed 

that certain radioisotopes produced significantly different 

initial activities when the sources were on the face.  They 

assumed that true coincidence summing was occurring.  To 

correct the discrepancy between the initial activities, 

laboratory engineers decided to take measurements of 

sufficiently strong sources at 10 cm or more (where summing 

errors were assumed to be negligible) and then measurements 

of the sources on the face.  Engineers adjusted the peak 

efficiencies for the face measurements to make the face 

initial activities match the upper-geometry initial 

activities.  Consequently, the engineers made a lengthy table 

of adjusted peak efficiencies for each gamma-ray of each 

radioisotope for each detector. 



1.3 Problem and Scope 

Is the assumption of true coincidence summing causing 

the discrepancies in the initial activities correct?  Is the 

effect of angular correlation between cascading gamma-rays 

augmenting the discrepancies? These are the questions AFTAC 

personnel want answered. 

With these questions, a few more arise and must be 

answered:  If true coincidence summing is the cause of the 

discrepancies, is there a method to accurately calculate the 

initial activity? Are there other methods to confirm the 

results?  In addition, is the effect of angular correlation 

negligible for the face measurements?  If not, is there a 

method to correct for it?  In finding answers to all the 

questions, we will make some approximations to simplify the 

problem and, of course, look at the impact of those 

approximations. 

First, with respect to the physical aspects of the 

problem, we will investigate only two radioisotopes of the 

many that AFTAC analyzes.  They are molybdenum-99 (Mo-99) and 

cesium-13 6 (Cs-136).  Their decay schemes are similar in 

complexity to those of the other radioisotopes with anomalous 

initial activities.  Next, we will model the Mo-99 and Cs-136 

sources as ideal thin disks.  Lastly, the detector we will 

model for this effort is Canberra GC4019, Serial Number 



12953567, (also known as AFTAC Detector #120) which has a 

closed-end, coaxial HPGe crystal shown in Figure 1.1. 

Second, with respect to the method to calculate initial 

activity, we will develop an analytical method that can model 

a point or thin disk source over a detector with a 

cylindrical HPGe crystal.  The gamma-ray backscattering from 

the mounting material of the planchet will be ignored in the 

development of the analytical method.  However, the magnitude 

of this approximation will be addressed in Chapter 4.  Next, 

we will assume that the diameter of the disk source is less 

than the diameter of the detector face and that the source is 

centered on the major axis of the detector.  With this being 

true for AFTAC's application, these assumptions will simplify 

the equations to calculate the path length of gamma-rays from 

the source to the detector.  Lastly, we will develop an 

analytical method that can model a gamma-ray emitting 

radioisotope including those with isomeric states and 

positron emission. 

Third, with respect to an alternative method to 

accurately calculate the initial activity, we will use the 

Canberra, Inc. coincidence correction software to produce 

values for an Mo-99 source and compare them with the values 

generated by the analytical method developed here.  The 

software from Canberra, Inc. is still under development and 

is proprietary.  Because the source code has not been 



released, an analysis of any differences can not be provided. 

The reason for using this software package is its 

compatibility with existing Canberra detector systems at 

AFTAC and AFIT. 

Last, with respect to angular correlation between 

cascading gamma-rays, Andreev in his 1972 paper claims that 

its effect may be ignored when determining the true activity 

of a source for near geometries.  We will investigate this 

claim.  If true, we will not include angular correlation in 

the development of the analytical method.  Unfortunately, we 

will not investigate those cases where the source is at some 

intermediate distance above the detector in which angular 

correlation and true coincidence summing may produce a 

maximum discrepancy effect.  The laboratory has manufactured 

source stands for each detector with fixed positions at 0, 5, 

10, and 15 cm above the face.  Laboratory personnel did not 

observe any significant discrepancies in initial activities 

for Mo-99 sources down to the 5 cm position.  Because of the 

laboratory's set measurement configuration, we will not 

investigate where correlation and summing effects create a 

maximum. 

1.4  Outline 

To start the investigation, Chapter 2 reviews the 

relevant fundamentals of cascading radiation, true 



coincidence summing, and angular correlation.  Next, Chapter 

3 presents an analytical method to correct for summing events 

and its results for Mo-99 and Cs-136.  Then, Chapter 4 

compares the analytical results with those of the Canberra, 

Inc. program.  Lastly, Chapter 5 provides some conclusions. 

1.5 Benefits of Research 

With the results from the analytical and Canberra, Inc. 

methods, we will be able to answer AFTAC's questions and show 

if gamma-ray cascades cause the anomalous activities for the 

face geometry.  In addition, as the laboratory transitions 

from planchets to vials containing the radioisotopes in 

solution, this thesis can serve as the starting point for a 

follow-on investigation into the added complications of self- 

attenuation and scattering that a voluminous source presents. 



2.  Nuclear Decay Phenomena 

To understand why a detector has a problem in accurately 

recording gamma-rays, we need to review what the nucleus is 

doing as it decays and emits radiation.  In particular, we 

will look at the decay data on Mo-99 and Cs-136.  Then, we 

will review concepts of angular correlation and the magnitude 

of its effect for Mo-99 and Cs-136. 

2.1  Gamma-Ray Cascades 

The origin of the observed discrepancy in the activity 

of a radioisotope is its inherent decay mechanisms.  A 

nucleus that rapidly emits gamma-rays in series causes 

counting errors due to the finite resolution time of a 

detector in discerning one emission from the next. 

Gamma-rays are photons ejected from the nucleus as it 

de-excites to a state of lower energy.  Depending on the 

radioisotope, a nucleus may de-excite through a number of 

intermediate energy levels emitting gamma-rays with 

corresponding energy.  A serial emission of radiation is 

called a cascade.  If an intermediate energy level is not 

meta-stable, i.e., not relatively long-lasting, the nucleus 

may exist for typically 1CT20 to 10~10 seconds before de- 

exciting to the next level (Peker, 1994).  The typical high- 

purity germanium (HPGe) detector needs time on the order of 

1CT7 seconds (Knoll, 1989) to collect the energy deposited by 

10 



a gamma-ray.  Then there is a system dead time of about 

5X10"6 seconds (Canberra, 1992) for the counting system to 

process the resulting charge pulse and re-establish itself to 

receive the next one. 

In addition to the problem of a finite response time, 

cascading gamma-rays may deposit some or all of their energy 

in the detector and cause a count related to the summed 

energies.  If the sum of the energy deposited approximates 

the energy of an emitted gamma-ray, the event causes a 

summing-in count for that gamma.  Even if the summed energies 

do not tally a count for an existing gamma-ray, the event 

still causes a summing-out situation that suppresses counts 

for the constituent gamma-ray peaks. 

To illustrate these summing-in and -out events, first, 

we observe the energy levels of and gamma-rays emitted from 

Mo-99 and Cs-136 shown in Figures 2.1 and 2.2.  The decay 

schemes show the most prominent energy levels and radiation 

quanta.  (Note the 6 hour meta-stable state of Mo-99 

essentially breaks the 777 keV and 411-366 keV cascades.) 

For an example of a summing-in event, if both the 411 and 366 

keV gamma-rays from Mo-99 deposit their full energy in a 

11 
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detector within its charge collection time, the sum, 777 keV, 

will register a count for the 777 keV gamma-ray.  For an 

example of a summing-out event, if the 411 keV gamma-ray 

deposits its full energy and the 3 66 keV gamma-ray deposits 

some portion of its energy, the sum will register a count in 

the energy spectrum above, i.e., out of, the 411 keV peak. 

As a further contribution to the activity discrepancy, 

the solid angle subtended at the face of the detector allows 

more summing-in and -out events to occur.  This comes from 

the cascading gamma-rays having a greater probability to 

interact and deposit their energy in the detector crystal. 

For radioisotopes with significant gamma-ray cascading, 

summing events may cause substantial deviation which we will 

investigate in the next chapter. 

2.2 Angular Correlation of Radiation 

In most applications, we assume a de-exciting nucleus 

emits gamma-rays isotropically.  However, when the nucleus 

emits a cascade of gamma-rays, a correlation among the 

directions of the gamma-rays appears.  What causes this 

correlation, and how much can it enhance true coincidence 

summing? 

First, the angular momentum (spin state) of the nucleus 

is the primary influence on this correlation of directions. 

13 



A nucleus has a particular spin state for each of its energy- 

levels.  When a nucleus emits a gamma-ray and loses energy, 

its spin state changes.  The direction of the gamma-ray is 

related to the initial spin state (Evans, 1967) .  When there 

is a cascade, the quantum mechanical behavior of the nucleus 

as it de-excites imparts a correlation on the directions of 

the gamma-rays.  In his 1965 book, Ferguson uses wave 

equations to show how the correlation arises and how to 

determine its magnitude.  Because the presentation of the 

details is very lengthy, please refer to his book for further 

inquiry. 

Second, the magnetic and electric quadrupole moments of 

the nucleus may perturb the correlation if the nucleus exists 

at one energy level for more than 10-11 seconds (Friedlander 

and others, 1981).  A case in point is Mo-99. See Figure 2.1 

for its energy level lifetimes.  Unfortunately, in their 

presentations, Friedlander (1981) and Ferguson (1965) do not 

explain and show how the quadrupole moments affect the 

correlation.  Only Gardulski and Wiedenbeck (1974) in their 

paper provide some experimental results on the magnitude of 

this effect for Mo-99.  We will look at the data later. 

In a related matter, even though there is correlation 

between beta particles and a cascade of gamma-rays, we will 

only consider the gamma-gamma correlation when we analyze Mo- 

14 



99 and Cs-136.  The energies of the beta particles from these 

isotopes are not high enough to let the beta particles 

penetrate the mounting structure (aluminum end cap) of a 

detector to make a substantial difference in the counts. 

Appendix A shows the ranges of the highest energy Mo-99 and 

Cs-136 beta particles in aluminum and the weak bremsStrahlung 

radiation created. 

With the cause identified, we will now define angular 

correlation in terms of probability.  To begin, we need to 

define the angles that describe the directions of the gamma- 

rays.  We assume a source emits a gamma-ray, y , in the a 

direction of Q with polar angle a  and azimuthal angle 00 
a a a 

as shown in Figure 2.3.  Then, we assume the source emits a 

second gamma-ray, y, , in the direction of £2, with polar 

angle a, and azimuthal angle GO, .  Let the azimuthal angle 

between the paths of the two gamma-rays be AGO.  Also, let 

the angle between the paths of the two gamma-rays in the 

plane defined by those paths be 0 . 

15 



Hence, let the angular correlation, W(Q &u) •   be the 

probability per steradian squared that the nucleus emits y 
a 

and y, in directions Q    and Q, , respectively. 

As a consequence, when we include the detector in the 

situation, we introduce another probability—that of 

registering y and y, .  So, let e(Q ) be the probability of 

detecting y given the nucleus emits y  in the direction of 
a a 

ß .  Likewise, let E(Q, ) be the probability of detecting y, 

given the nucleus emits y, in the direction of Q, .  Then 

the probability of detecting both y  and y, given the same 

nucleus emits them is , W, the integral of the probability 

A source 

gamma-ray   * a 

in direction ^<s 

,'0t 
CO = azimuth 

coordinate 

gamma-ray   «b 

OCA indirection «h 

detector face 

Figure 2.3 Reference Angles for Correlation 
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of detecting y over all directions multiplied by the 

probability of detecting y, over all directions multiplied 

by the angular correlation between y and y, as shown in 

Equation 2-1: 

da da 
w=JJe(na)e(nb)W(na,Qb)1^1^.        (2-D 

Next, to find how much of an effect angular correlation 

has on the probability of detecting y and y, , we will 
ä       D 

normalize Equation 2-1 with respect to the probability of 

detecting y  and y, assuming the nucleus emits them 

isotropically which Equation 2-2 expresses.  If there is no 

angular correlation between y  and y, , then the normalized 

angular correlation, W, will equal one: 

dQ dQ, 
- Jl^a)B(Qb)W(Qa>Qb)^^ 
w = " da da   • (2"2: 

Now, we take a closer look at W(Q  ,a, ) .  Due to the 

spherical harmonics of Legendre polynomials, we express the 

17 



function W in terms of an infinite series of these 

polynomials, P, , which operate on the cosine of the angle 

between y and y, , that is, 0, with their coefficients, A, , 
'ab K 

as weights which Equation 2-3 shows: 

W(9) = l+   I   A P (cos0). (2-3) 
k = 2,4,6,... K k 

The magnitude of A, comes from the relations of the 

wave equations of the nucleus as it de-excites from one 

energy level with its electric and magnetic moments to the 

next (Ferguson, 1965). 

As a reminder, Equation 2-4 shows the relation between 

0 and the components of Q for y and y, , i.e., a and (0 

shown in Figure 2.3: 

cos0 = cosa cosa, +sina sin a, cosAco. (2-4) ab ab 

Employing a widely accept approximation, we reduce the 

infinite series of Equation 2-3 to the first two terms 

because experimental data has shown that the higher order 

terms are negligible.  Thus, Equation 2-5 approximates the 

function W: 
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W(0) = 1 + A2P2(COS9) + A4P4(COS9). (2-5) 

Next, as a brief review, Equations 2-6 and 2-7 show the 

second and fourth order Legendre polynomials used in Equation 

2-5: 

P2(cose) = ^-(3cos2e-l) (2-6) 

P4(cose) = |(35cos4e-30cos29 + 3). (2-7) 

In executing Equation 2-2 to find W, Camp and Van Lehn 

(1969) present in their paper a set of equations that 

computes W in a more efficient manner. (Appendix B shows 

some of the key steps in transforming Equation 2-2 to Camp 

and Van Lehn's equations.)  They incorporate the A- and A. 

coefficients as well as the integration and normalization 

into the A^xp and A. P terms shown in Equation 2-8.  In 

particular, they incorporate the integration and 

normalization into the Q, term shown in Equation 2-9: 

W = l + A2
Xp+A4

Xp (2-8) 
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A-P = AkQk. (2-9, 

In the next step, they separate the variables for y 
3. 

and y,, i.e., the angles that define the directions of the 
b 

gamma-rays, into the J functions as Equation 2-10 shows: 

Q _ K a K D (2-10) 

The j function is an integral of the probability of a 

gamma-ray interacting with the detector and of the Legendre 

polynomial of order k operating on the cosine of the angle 

between y and y, , 0.  First, the probability of 

interaction is a function of the energy of the gamma-ray, 

E , and the macroscopic cross section of the target 

material, S„ , in this case germanium.  However, in the 

detector of Figure 1.2, there are the aluminum end cap and 

lithium contact which may attenuate the gamma-rays.  So, we 

will incorporate their macroscopic cross sections as well, 

£., and ET . . 
Al      Li 

In addition, the probability of interaction is a 

function of the path length of the gamma-ray through the 
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detector.  Let x.,(a) be the path length of a gamma-ray 

through the end cap at the polar angle, a,   from the source 

to the detector.  Let x, .(a) be the path length of a gamma- 

ray through the lithium contact for the same angle a. 

Lastly, let xr  (a) be the path length of the gamma-ray 

through the detector crystal at angle, a .  As we explain in 

the next section, if the detector is divided into zones for 

ease to mathematically describe the path length of a gamma- 

ray, then we introduce upper and lower limits of the zones 

for integration.  Let A(a) be the lower limit angle defining 

a zone while B(oc) be the upper limit angle. 

Finally, incorporating all the cross sections, path lengths, 

and Legendre polynomials, Equation 2-11 shows that the J 

function is an integral of the probability of the gamma-rays 

interacting with the detector with attenuation by the end cap 

and lithium contact and weighted by a modified correlation 

factor, P, (cosG) : 

Jk^Y^^Tr^^^k^^-^^^Ge^^Ge^)!^ 

Exp[-XA1(EY)xA1(a). -ELi(EY)xLi(a).]Jsin(a)id(a)i.   (2-11) 
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There are some assumptions in using Equation 2-11.  One 

is the aluminum end cap and lithium contact that cover the 

detector crystal attenuate the gamma-rays via any 

interaction.  This means the interacted gamma-rays can.not 

deposit their full, initial energy.  Also, no scattered 

radiation returns to the crystal which would add to the total 

detection efficiency.  The impact of this assumption will be 

reviewed in Chapter 4. 

2.3 Effect of Angular Correlation 

With Equations 2-8 through 2-11, we now have a way to 

approximate angular correlation.  The terms that remain for 

us to determine are the macroscopic absorption cross sections 

and the path lengths of the gamma-rays going through the 

detector.  First, the macroscopic cross sections are 

dependent on the atom density of the material and the energy 

of the incident gamma-ray.  The densities of aluminum, 

lithium, and germanium with their natural abundance of 

constituent isotopes are widely published.  The most recent 

values for the energy dependent microscopic absorption cross 

sections (Compton scattering, photoelectric, and pair 

production) are listed in the Brookhaven National Laboratory 

website  (Brookhaven, 1997).  Pages 90 through 93 in Appendix 

C have the densities and cross sections listed.  {Appendix C 
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is the source code for the Mathematica program to perform the 

calculations needed.) 

Second, to find the path lengths of the gamma-rays, we 

need the dimensions of the configuration of the source and 

detector.  We already have the dimensions of Detector #120 

shown in Figure 1.2, and AFTAC has provided the area of the 

source whose radius is 0.9974 cm on the filter paper.  The 

disk source is centered on the major axis of and parallel to 

the detector. 

The task is to represent the path lengths of the gamma- 

rays from any point on the source through any portion of the 

detector in mathematical equations.  Then, using Equations 2- 

8 through 2-11, we will find the angular correlation. 

However, when we look at the trigonometry and integration to 

find the J functions, we see that the disk source and 

closed-end, coaxial detector will lead to a long set of 

complicated piece-wise functions and integrals.  This is due 

to the loss of symmetry when the source point is off of the 

major axis. 

To avoid this difficulty, there are two main techniques 

to approximate the integration.  We may use a Monte Carlo 

program, tally the results of many gamma-ray histories, and 

determine a value for the J functions.  On the other hand, 

we may use the J function values of other, simpler 
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configurations and proportion them to find an approximate 

value for the actual configuration.  One difficulty with the 

Monte Carlo technique is inserting a correlation into gamma- 

ray histories.  Another difficulty is modeling the varying 

electric field in the detector crystal which determines the 

charge collection and peak efficiency (McCallum and Coote, 

1975) . 

Due to these difficulties with the Monte Carlo 

technique, we will proportion the results from the 

configurations of (1) a point source centered over a solid 

cylindrical detector, Figure 2.4, (2) a disk source centered 

over a solid cylindrical detector, Figure 2.5, and (3) a 

point source centered over a bored cylindrical detector, 

Figure 2.6.  Heath (1964) and Camp and Van Lehn (1969) have 

published formulas similar to Equations 2-12 through 2-14 for 

the total efficiency of a detector.  When we include the 

PfcCcosS) term into their formulas, we obtain the necessary J 

functions. 

The first configuration, Figure 2.4, is for the point 

source (ps) with the three sided (3s) cylindrical detector 

(two circular faces plus one side).  The detector is divided 

into two zones to compute the necessary J function, J^psSs: 

The first one is for the truncated inner cone.  The second is 

for the convoluted outer wedge.  In Equations 2-12 through 2- 
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Figure 2.4 Point Source-Solid Crystal (Heath, 1964) 

14, the cosine of the polar angle is used to reduce the 

computation time with the Mathematica program: 

2 Bps3s(i) 

Jkps3s(Ey) = -£     JPk©{l-Exp[-SGe(EY)xps3Si(0]} (2-12) 
i=lAps3s(i) 

x {Exp[-2A1(EY)xAl(^) -ZLi(EY)xLi(^)]}d^     where 

Po(^) = l. 

T, ,^     35
t4     3°t2     3 

Aps3s(l) = 1, 
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Rcrystal 
Bps3s(l) = Cos(Arctan( —■— —— ——r-: :)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal 
Aps3s(2) = Cos(Arctan( —— ——: ——:—: r)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal 
Bps3s(2) = Cos(Arctan( —— ——: ——-)), 

sourceheight + Aldepth + gap + Lidepth 

xps3sj = Lcrystal / \, 

Rcrystal    sourceheight + Aldepth + gap + Lidepth 
xps3s2 = 

xAl = Aldepth / \,   and 

xLi = Lidepth/^. 

The second configuration, Figure 2.5, is for the disk 

source (ds) with the three sided (3s).  The detector is again 

divided into two zones to compute the necessary J function, 

JfcdsSs :  The first one is for the truncated inner cone.  The 

second is for the convoluted outer wedge.  The limits of 

integration in Equation 2-13 show the increased complexity of 

determining the gamma-ray path lengths when modeling a source 

point that is away from the central axis: 
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Figure 2.5 Disk Source-Solid Crystal (Heath, 1964) 

J^dsSsCEy) = 
1 

2 Rsource   JI/2    Bds3s(i) 

y£    Jpdp Jd(p    Jpk(^){l-Exp[-2Ge(EY)xds3si(^)]} 
TiRcrystal  i=1    0      _n/2 Ads3s(i) 

x {Exp[-SA1(EY)xAl(0-2:Li(EY)xLi(^)]}d^      (2-13 ] 

where   Ads3s(l) = 1, 

- p sin (D + -Jp2 sin2 q> - p2 + Rcrystal2 

Bds3s(l) = Cos(Arctan( ,     ,       A,,    L T .,——— -)), 
sourceheight + Aldepth + gap + Lidepth + Lcrystal 

- p sin cp + Y P sin cp - p  + Rcrystal 
Ads3s(2) = Cos(Arctan( 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

- p sincp + -y/p sin 9 - p  + Rcrystal 

)), 

Bds3s(2) = Cos(Arctan(—:  '    ,"    t      '    ' fz—r)), 
sourceheight + Aldepth + gap + Lidepth 

xds3sj = Lcrystal / ^,  and 
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xds3s2 = 

I   22—————— — 
-psin(p + ^/p sin cp-p  +Rcrystal      sourceheight + Aldepth + gap + Lidepth 

The third configuration, Figure 2.6, is for the point 

source (ps) with the five sided (5s) cylindrical detector 

(two circular faces, one annular face, plus two sides).  The 

detector is divided into four zones to compute the J 

function, J^psSs :  The first one is for the truncated inner 

cone.  The next three are for the convoluted outer wedges: 

Zone 4 

Aldepth gap 

Figure 2.6 Point Source-Closed-end Coaxial Crystal 
(Camp and Van Lehn, 1969) 
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4 Bps5s(i) 

Jkps5s(EY) = -X     /^(^{l-ExpE-ZceCEyJxpsSsi^)]} (2-14) 
i=lAps5s(i) 

x {Exp[-EAi(EY)xAl(^) - XLi(EY)xLi(^)]}d^     where 

Aps5s(l) = 1, 

Rcrystal - Rdd 
Bps5s(l) = Cos(Arctan( —■— —— ——-— -)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal - Rdd 
Aps5s(2) = Cos(Arctan( —— —-— —-—-— -)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal - Rdd 
Bps5s(2) = Cos(Arctan( —— —— ——-——)), 

sourceheight + Aldepth + gap + Lidepth + Add 

Rcrystal - Rdd 
Aps5s(3) = Cos(Arctan( —— —-— —-— TTT)). 

sourceheight + Aldepth + gap + Lidepth + Add 

Rcrystal 
Bps5s(3) = Cos(Arctan( —— —-——* ——-— -)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal 
Aps5s(4) = Cos(Arctan( —— —— ——-— -)), 

sourceheight + Aldepth + gap + Lidepth + Lcrystal 

Rcrystal 
Bps5s(4) = Cos(Arctan(     . .,     ../   .    . .,    ,,)), 

sourceheight + Aldepth + gap + Lidepth 

xps5si = Add / £, 

sourceheight + Aldepth + gap + Lidepth + Lcrystal + Add    Rcrystal - Rdd 
xps5s2 = 

xds5s4 = 

xps5s3 = Lcrystal / £,   and 

Rcrystal    sourceheight + Aldepth + gap + Lidepth 
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Thus, with Equations 2-12 through 2-14, the dimensions 

of the source and detector, and the energy-dependent 

macroscopic absorption cross sections, we can calculate the 

J function values for the Mo-99 gamma-rays that have 

correlation data.  Then we proportion those values according 

to Equation 2-15 to find an approximation for the J function 

of the actual source and detector geometry, Jkds5s : 

Jkps5s 
Jkds5s = Jkds3s K   n . (2-15) K K       Jkps3s 

To get some confidence in using this approximation 

based on the results from the simple configurations, we 

compare the total efficiencies for the Mo-99 gamma-rays using 

the point-source-five-sided-detector (ps5s) to those of the 

point-source-three-sided-detector with the contribution from 

the inner core (equivalent to the hole in the ps5s detector) 

removed.  In this instance, we will compare the total 

efficiencies with the Mo-99 source 10 cm above the face using 

Equations 2-11 through 2-14 and deleting the Pk(^) term. 

Pages 7 through 10 in Appendix C show the equations in 

Mathematica code.  Table 2.1 below displays the nearly equal 

results between the two cases. 
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Table 2.1 Approximation Check with Total Efficiencies 
for the Closed-end, Coaxial Detector with Point Source 

Gamma-Ray (keV) ps5s Total 
Efficiency 

Delta ps3s Total 
Efficiency 

778 0.01144 0.01143 
740 0.01157 0.01156 
411 0.01289 0.01288 
366 0.01313 0.01311 
181 0.01553 0.01552 
142 0.01625 0.01624 
140 0.01633 0.01632 
40 0.01517 0.01517 

To bring to attention a special note about the 

correlation data of Mo-99 gamma-rays, the relatively long 

lifetimes of the energy levels allows the angular correlation 

to be perturbed by the electric and magnetic quadrupole 

moments.  This results in the chemical state of Mo-99 

affecting the angular correlation of a nuclear event! The A^ 

coefficients can differ by a factor of two between pure Mo 

in a cubic crystal and Mo as a powder in the compound 

MoO^/Mo-O- (Gardulski and Wiedenbeck, 1974) (Bailar and 

others, 1973) . Table 2.2 displays the range of values the 

coefficients may have depending on the chemical form. For 

our purposes, the Mo-99 source is in the form of MoCL/Mo^O^ 

(AFTAC, 1997) . 
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Table 2.2 Correlation Coefficients for Some Mo-99 Chemical 
Compounds (Gardulski and Wiedenbeck, 1974) 

Cascade 
(keV) 

A2 A4 Source 
Form 

740-181 0.126 + 0.004 -0.005 ± 0.006 Metal 

740-181 0.061 ± 0.003 -0.004 ± 0.005 Mo03 

powder 
740-40-140 -0.184 ± 0.004 0.001 ± 0.005 Metal 

740-40-140 -0.083 ± 0.009 0.007 ± 0.012 M0O3 
powder 

Finally, to get the results, we enter Equations 2-11 

through 2-15 and the necessary data into the Mathematica 

program with the code shown on pages 19 through 3 0 of 

Appendix C.  The Mo-99 gamma-rays that have correlation data 

are the 740, 181, 40, and 140 keV ones shown in Figure 2.1. 

The program computes the normalized angular correlation, W , 

for the two cases where the source is 10 cm or 0 cm above the 

face.  Table 2.3 shows the values of W for the 10 cm case, 

and Table 2.4 shows the values for the 0 cm case. 
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Table 2.3 Calculated Normalized Angular Correlation 
for Mo-99 Source 10 cm above Detector 

Cascade 
(keV) 

W(ps3s) W(ps5s) W(ds3s) W(ds5s) 

740-181 1.053 1.052 1.052 1.052 
740-40 0.918 0.918 0.919 0.919 
740-140 0.930 0.930 0.930 0.930 
140-40 1.104 1.104 1.103 1.103 

Table 2.4 Calculated Normalized Angular Correlation 
for Ho-99 Source 0 cm above Detector 

Cascade 
(keV) 

W(ps3s) W(ps5s) W(ds3s) W(ds5s) 

740-181 1.004 1.004 1.004 1.004 
740-40 0.994 0.995 0.994 0.994 
740-140 0.995 0.995 0.995 0.995 
140-40 1.005 1.005 1.005 1.005 

Hence, we see for all configurations the normalized 

angular correlation, W , approaches unity as the source 

moves closer to the detector as Andreev (1972) claimed.  The 

correlation effect diminishes as the solid angle subtended by 

the detector increases.  The probability of detecting two 

correlated gamma-rays approaches the probability of detecting 

two isotropically emitted gamma-rays.  Therefore, in view of 

the roughly 0.5% effect for the face geometry, we will make 

another approximation in our analytical method by not 

considering the effect of angular correlation. 

33 



3.  An Analytical Coincidence Correction Method 

We now begin the development of an analytical method to 

estimate the true activity of a source based on measurements 

affected by coincidence summing.  The analytical method will 

use the dimensions, materials, and nuclear properties of the 

source and detector to determine the probability of gamma- 

rays being individually recorded or summed with others.  As 

stated in the previous chapters, we will use the 

approximations of (1) modeling the source as a thin disk, (2) 

ignoring beta particles and scattered gamma-rays that may 

enter the detector crystal in coincidence with other gamma- 

rays, and (3) ignoring the effect of angular correlation 

between gamma-rays in cascade.  Then given the duration of 

the measurement, the peak counts, and the probability of 

recording the nuclear events, we can obtain an accurate 

estimate of the initial activity. 

3.1  Determination of Summing Events from Cascades 

In order to determine the extent of summing-in and -out 

events from cascades, we need to investigate a radioisotope's 

decay scheme to see the relationships between all the 

existing gamma-rays, the frequency of each emission,  the 

presence of meta-stable states, and the presence of positron 

emission.  Also, based on the energy of the gamma-ray, the 
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absolute peak and total efficiencies will affect the 

recording of the counts. 

First, we will look at a simple, hypothetical decay 

scheme with only ß  decay from parent to daughter nuclei and 

de-excitation by gamma-ray emission with no meta-stable 

states as shown in Figure 3.1.  In this example, we will 

include the ratio of internal conversion electrons being 

emitted per gamma-ray, a .  However, we will assume these 

electrons will not penetrate the aluminum end cap and thereby 

not deposit any energy in the detector crystal. 

parent 
nucleus energy level 

3(m) 

2 

1 

0 
daughter nucleus 

ß - ß  decay fraction Y =    gamma-ray 

X- branch ratio m =   highest level 

Figure 3.1 Hypothetical Decay Scheme 

Let us look at the probability of a detector recording 

the transition from level 3 to level 0 per decay.  There are 

\\%30      %31    X32 

Y32 X20    X21. 

Y31 ' Y21 Xio 

Y30 Y20 Y10 
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four paths or chains of gamma-rays emitted in this 

transition:  (1) y30; (2) y31 and y10; (3) y32 and y20; and, 

(4) y32, y2j / and y10.  The last three chains are the ones 

that cause summing-in events.  During its resolution time, 

the detector collects all the deposited energies of the 

constituent gamma-rays and registers a count for the sum—in 

this case, a count for y30. 

First, the probability of the detector recording chain 

1 is the probability of y3Q depositing its full energy (peak 

efficiency), 83Q, given the probability that the parent 

nucleus decays to level 3, ß3, the probability that the 

daughter nucleus de-excites to level 0, %3Q, and the 

probability that the daughter nucleus emits a gamma-ray vice 

1 
an internal conversion electron,  .  Thus, the 

I + OC30 

p 

probability for recording chain 1 is ßa . 
I + OC30 

Next, the probability of the detector recording chain 2 

is the probability of y31 and y10 depositing their full 

energy, £31810 / given the probability that the parent nucleus 

decays to level 3, ß3, the probability that the daughter 

nucleus de-excites to level 1 and then to level 0, X31X10/ 
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and the probability that the daughter nucleus emits gamma- 

1    1 
rays vice internal conversion electrons,  .  The 

l + a31l + a10 

P   P 
0-.-U--.-4-.C J-     1,-o-R %31e31 %10e10 probability for recording chain 2 is p? . H3l + a31l + cc10 

The probability of the detector recording chain 3 is 

the probability of y32 and y20 depositing their full energy, 

e32e20 ' given the probability that the parent nucleus decays 

to level 3, ß3 , the probability that the daughter nucleus 

de-excites to level 2 and then to level 0, %32%2o # and the 

probability that the daughter nucleus emits gamma-rays vice 

1    1 
internal conversion electrons, .  Therefore, the 

l + a32l + oc20 

P P 
probability for recording chain 3   is   ß  %32e32 %20e20 _ 

Jl + a32l + a20 

At last, the probability of the detector recording 

chain 4 is the probability of y32, y21, and y10 depositing 

their full energy, £32e2iefo >   given the probability that the 

parent nucleus decays to level 3, ß3, the probability that 

the daughter nucleus de-excites to level 2, to level 1, and 

then to level 0, %32%2i%io / and the probability that the 

daughter nucleus emits gamma-rays vice internal conversion 
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1       1       1 
electrons, .  Thus, the probability for 

l + a32 l + a2il + a10 

p   p   p 
-,.           -..       .    .      o   %32£32 X20e20 %10e10 recording chain 4  is   p3 . 

Jl + a32l + a2ol + aio 

Because the parent nucleus will decay only once through 

one of the chains, the probabilities of recording the chains 

are independent.  As such, the probability of recording a 

level 3 to 0 transition is the sum of the probabilities, S30, 

of the chains as Equation 3-1 shows: 

P     P    P      P    P     P    P 
c   fp rr%30e30 , %31e31 ,%10el(K . %32e32 ,%20e20 . %21e21 ,%10el(K^  ,_ -, 

We now proceed to find the probability of a detector 

recording the transition from level 3 to level 1 per decay. 

There are two chains of gamma-rays in this transition:  (1) 

y31and y10; and, (2) y32, y21, y10 .  The probability of the 

detector recording chain 1 is the probability of y31 

depositing its full energy (peak efficiency), £31, given the 

probability that the parent nucleus decays to level 3, ß3, 

the probability that the daughter nucleus de-excites to level 

1' %31' the  probability that the daughter nucleus emits a 

1 
gamma-ray vice an internal conversion electron,  , and, 

l + a31 
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however, the probability that the y^o gamma-ray emitted in 

cascade does not deposit any energy (total efficiency), e^o • 

The last probability accounts for the summing-out event from 

coincident detection of the jo>\   and y^g gamma-rays.  Thus, 

P       t 
the probability for recording chain 1 is ß3~ Xiod-^ ) • 

l + a31    l + «io 

Next, the probability of a detector recording chain 2 

is the probability of y32 and y21 depositing their full 

energy, £32621' given the probability that the parent nucleus 

decays to level 3, ß3, the probability that the daughter 

nucleus de-excites to level 2 and then level 1, X32X21 ' tne 

probability that the daughter nucleus emits gamma-rays vice 

1    1 
internal conversion electrons, , and the 

l + a32l + a21 

probability that  the  y^g   gamma-ray emitted in cascade does 

not deposit any energy,   e^g •     Thus,   the probability for 

recording chain 2   is   ß  ^^L X21^1       (1__glo_ 
P3l + a32l + a21

M0V     l + a1(/ 

Hence, the probability of recording a level 3 to 1 

transition is the sum of the probabilities, S31, of the 

chains from above as Equation 3-2 shows: 
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^H^^^taoa-^).. 

Next, we determine the probability of a detector 

recording the transition from level 3 to level 2 per decay. 

There are two chains in this transition:  (1) y32 and y20; 

and (2) y32, Y21 / and YJQ .  There is the probability of 

summing-out events due to coincident detection of y32 with 

Y20 from chain 1 and with y21 or y10 from chain 2. 

First, the probability of the detector recording chain 

1 is the probability of y32 depositing its full energy, £32, 

given the probability that the parent nucleus decays to level 

3, ß3 , the probability that the daughter nucleus de-excites 

to level 2, %32, the probability that the daughter nucleus 

emits a gamma-ray vice an internal conversion electron, 

1 
 , and the probability that the y2g emitted in cascade 
I + OC32 

does not deposit any energy, 82Q .  The probability of 

P        t 
recording chain 1 is ß3(^2i)x (i_-^-) . 

1 + a32     1 + a20 

Second, the probability of the detector recording chain 

2 is the probability of y32 depositing its full energy, e32, 
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given the probability that the parent nucleus decays to level 

3, ß3 , the probability that the daughter nucleus de-excites 

to level 2, X32/ the probability that the daughter nucleus 

emits a gamma-ray vice an internal conversion electron, 

1 
 ,   and the probability that  the  Y21   and  YJQ   gamma-rays 
I + OC32 

emitted in cascade do not deposit any energy, £21 and e\o . 

The probability of recording chain 2 is 

Putting it all together, Equation 3-3 shows the 

probability of recording the level 3 to 2 transition: 

s32 = (ß3.(^)teoa-^)+x21a-T^xx1oa-T|t»»'-   »-" 

Moving to the next transition, we will determine the 

probability of a detector recording the de-excitation from 

level 2 to level 0 per decay.  There are four chains involved 

in this transition:  (1) y2Q; (2) y21 and y10; (3) y32 and 

y20; and, (4) y32 , y21, and y10 .  For this transition, there 

is the probability of summing-out events due to coincident 

recording of y32 at the beginning of the chain 3.  Also, 
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there is the probability of summing-in events from the y21 

and YJQ cascade. 

First, the probability of recording chain 1 is the 

probability of y20 depositing its full energy, £20/ given the 

probability that the parent nucleus decays to level 2, $2< 

the probability that the daughter nucleus de-excites to level 

0' X20' an<^ the  probability that the daughter nucleus emits a 

1 
gamma-ray vice an internal conversion electron,  .  Thus 

l + a20 

p 

the probability for chain 1 is 69 . 
l + «20 

Because the gamma-rays of chain 1 are a subset of chain 

3, we only need to include the probability that the nucleus 

decays to level 3, ß3, de-excites to level 2, X32/ and emits 

a gamma-ray, Y32, vice an internal conversion electron, 

1 
 , without the detector receiving any energy from y32, 
I + OC32 

£32 (thereby increasing the occurrence of the y20 and Y2i~Yio 

cascades).  The resulting probability for chain 3 is 

ßx (1__!32_)(X20!l0)> 
P3X32^ i + a32

Al + a2(/ 

Next, the probability of recording chain 2 is the 

probability of Y21 an^ Y10 depositing their full energy, 
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e2lel0 ' given the probability that the parent nucleus decays 

to level 2, ß2, the probability that the daughter nucleus 

de-excites to level 1 and then level 0, %21%10 / and the 

probability that the daughter nucleus emits gamma-rays vice 

1    1 
internal conversion electrons, .  The probability 

1 + 0121 1 + «10 

P     P 
of recording chain 2 is B (X21e21)(Xl0£l0) _ 

z l + a2i l + a10 

Again, because the gamma-rays of chain 2 are a subset 

of chain 4, we only need to include the probability that the 

nucleus decays to level 3, ß3, de-excites to level 2, X32, 

and emits a gamma-ray, Y32, vice an internal conversion 

1 
electron, , without the detector receiving any energy 

I + CC32 

from Y32, £32.  The resulting probability for chain 4 is 

R „    n        e32 v%21e21vXlOel(K 

Ergo, the probability of recording a level 2 to 0 

transition is the sum of the probabilities, S20 / of the four 

chains as Equation 3-4 shows: 

SM-»2+fete(l-r^-))l^IL+^L(^)} • (3-4) 
I + OC32       1 + 0120     1 + «21   I + OC10 
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Moving along, we look at the probability of recording 

the transition from level 2 to level 1 per decay.  There are 

two chains involved with this transition:  (1) Y21 an<^ TlO > 

and (2) Y32 ' Y21 / an<^ YlO •  Once more, there is the 

probability of summing-out events for Y21 due to coincident 

detection with Y32 from the chain 2 cascade and detection 

with Yio later in the cascades.  As for summing-in events, 

there are none because the nucleus emits no other gamma-rays 

from level 2 to 1. 

So, the probability of the detector recording chain 1 

is the probability of Y21 depositing its full energy, efi, 

given the probability that the parent nucleus decays to level 

2, ß2, the probability that the daughter nucleus de-excites 

to level 1, %21' the  probability that the daughter nucleus 

emits a gamma-ray vice an internal conversion electron, 

1 
 , and the probability that Yio emitted in cascade does 
I + OC21 

not deposit any energy, E\Q •  The probability of recording 

chain 1 is M^X^a-^)) . 

Next, due to the fact that the gamma-rays of chain 1 

are a subset of chain 2, we just include the probability that 
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the nucleus decays to level 3, ß3, de-excites to level 2, 

%32, and emits a gamma-ray, Y32, vice an internal conversion 

1 
electron,  , without the detector receiving any energy 

l + a32 

from  Y32,   £32•     The resulting probability for chain 2   is 

R „    n       e32    vX21E21w.J    n       e10   x to2(1-TT^2:)(TT^2T)(5Clo(1-T7^) • 

The probability of recording a level 2 to 1 transition 

is the sum of the probabilities, S21, of the two chains as 

Equation 3-5 shows: 

t P t 

S21 = {ß2 + ß3X32(l-T^)}{^2L}{Xl0(l-T7j?-)} ■ (3-5) 
I + CC32      1 + 0C21 1 + a10 

At last, we look at the probability of the detector 

recording the level 1 to 0 transition.  There are four chains 

of concern with this process:  (1) y10; (2) Y21 and Y10'" (3) 

Y31 and YlO'' and, (4) Y32 ' Y21' and YlO •  Again, there are 

probabilities of summing-out with Y21 i-n  chains 2 and 3, with 

Y31 in chain 4, and with y32 in chain 3. 

First, the probability of the detector recording chain 

1 is the probability of y10 depositing its full energy, efg, 

given the probability that the parent nucleus decays to level 

45 



1, ßi, the probability that the daughter nucleus de-excites 

to level 0, XIQ, and the probability that the daughter 

nucleus emits a gamma-ray vice an internal conversion 

1 
electron, .  Thus, the probability for recording chain 

l + a10 

i is ßJöds-. 
l + aio 

Next, the gamma-ray of chain 1 is a subset of chain 2, 

we include the probability that the nucleus decays to level 

2, ß2, de-excites to level 1, %21' 
an<^ emits a gamma-ray, 

1 
Y21 / vice an internal conversion electron,  , without 

l + a21 

the detector receiving any energy from y2i , £2i •  The 

t      P 
resulting probability for chain 2 is ß2Y2i(l- ^   )(Xl°ei0) . 

l + a2i l + a10 

Once more, the gamma-ray of chain 1 is a subset of 

chain 3, we include the probability that the nucleus decays 

to level 3, ß3 , de-excites to level 1, %31, and emits a 

1 
gamma-ray, y3i, vice an internal conversion electron,  , 

l + a3i 

without the detector receiving any energy from y31, e3'j .  The 

resulting probability for chain 3 is ß3X3i(l- 
&31   X^10^0) . 

l + oc31 l + oc10 
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Finally, the probability of the detector recording 

chain 4 is the probability of y10 depositing its full energy, 

£j0, and the probability that the daughter nucleus emits a 

1 
gamma-ray vice an internal conversion electron,  , given 

l + <x10 

that the parent nucleus decays to level 3, ß3, the 

probability that the daughter nucleus de-excites to level 2, 

%32, the probability that the daughter nucleus emits y32 

without detection, the probability that the nucleus de- 

excites to level 1, %21' an<3 ^e probability that the nucleus 

emits Y21 without detection.  Thus, the probability for 

t t      p 

recording chain 4 is ß3X32(l-7^)X21 (1-7^)77^ • 
I + CC32      1 + a21 1 + a10 

The probability of recording a level 1 to 0 transition 

is the sum of the probabilities, S^Q , of the four chains as 

Equation 3-6 shows: 

Sl0 = {ßl + [ß2 + ß3X32(l-T^)]X2l(l-T^) + ß3X3l(l-T^)}{^}- 
I + OC32 I + OC21 1 + 032      l"*"a10 

(3-6) 

From the analysis of this simple, hypothetical decay 

scheme, a pattern emerges in accounting for (1) the 
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probability of gamma-rays preceding the transition of 

interest that cause summing-out events, (2) the probability 

of gamma-rays in the transition of interest that deposit 

their full energy into the detector that cause summing-in 

events, and (3) the probability of gamma-rays that follow the 

transition of interest that cause summing-out events.  This 

pattern holds for decay schemes with more energy levels, such 

as for Mo-99 and Cs-136, providing that there is no angular 

correlation terms to include.  Due to the large number of 

terms, we will not present the equations for probabilities of 

recording the energy level transitions. 

Fortunately, Andreev and others (1972) noted this 

pattern and developed a recursion relation—a major portion of 

the analytical method we seek.  Their formula produces the 

terms of the probability equations, again, providing there is 

no angular correlation to include.  Their recursion relation 

consists of three main factors.  As alluded to above, the 

first factor, Bj, accounts for the probability of gamma-rays 

preceding the transition of interest, which begins with level 

i, that cause summing-out events as Equation 3-7 shows: 

m et 

Bi=ßi+ I BnZnitt-T^T) '■ (3"7> 
n=i+l ^m 
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The second factor, A^, accounts for the probability of 

gamma-rays in the transition of interest (level i to k) that 

deposit their full energy into the detector that cause 

summing-in events as Equation 3-8 shows: 

A*=^T^)+ii.*A)A*-        (3-8) 
«ik j=k+i   -y 

The third factor, M^, accounts for the probability of 

gamma-rays that follow the transition of interest, which ends 

at level k, that cause summing-out events as Equation 3-9 

shows.  Because there are no gamma-rays emitted in 

coincidence below level 0, Mg = 1 : 

k-l       e\ 
Mk = EMjXkj(l--i). (3-9) 

j=g      1 + akj 

The product of  these three  factors yields  the equation 

for the probability of the detector recording a level   i   to   k 

transition,   S^ ,   as Equation 3-10 displays: 

Sik=BiAikMk- (3-10) 
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In the present form, the Equation 3-10 does not include 

the number of decays that occurred during the measurement or 

the number of counts recorded in the energy peak, E^ , i.e., 

the energy released in the level i to k transition.  To 

include this data into the equation, we introduce the factor 

N to account for the number of decays and S^ to be the 

number of peak counts. 

With respect to N , we wish to determine the number of 

decays events that happened during the time of the 

measurement correcting for any decrease in the activity of 

the source.  We will not account for activation or production 

of parent nuclei during the measurement as the case does not 

apply to AFTAC.  With that stated, Equation 3-11 determines 

the number of decay events, N, that occurred during a 

measurement from time t^ to time t2 given the true initial 

activity, CQ / of the source and the radioisotope's decay 

constant, X : 

C0 N = -g-(Expt-Mj] - Exp[-fa2]) . (3 -11; 
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.    ,   . 1 However, if A is small compared to   or what we 

l 
will call —, then Equation 3-11 is poorly conditioned.  To 

At 

remedy this, we will use a series expansion.  First, we 

convert Equation 3-11 to a different form: 

l-Exp[-AAt] 
N = C0(At)Exp[-Ät1]{ ^ -} , (3-12) 

where   CQ(At)Exp[-Atj]   would be  the counts   if  the  initial 

l-Exp[-AAt] 
activity were maintained and   { — }   is  the  correction 

AAt 

factor accounting for the decrease in the activity during the 

measurement.  On the latter term, we apply the series 

expansion: 

l      y(-AAt)h 

rl-Exp[-AAt] hr0     h! - (-1)1-1 flAQh-1      ^ (_^At)h 
1 AAt > AAt * h! hr0(h + D!  ' 

where we would use a few terms if 0<AAt«l.  Thus, Equation 

3-12 takes on the new form: 
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N = C0(Ät)Exp[-Xt1]£
(^ . (3-14) 

Hence with the product of the probability of recording 

the level i to k transition, S^ , and the number of decays 

that occurred during the measurement, N, we find the number 

of counts in the Ej^ energy peak, i.e., S^ : 

% = BjAfcMtN . (3-15) 

By rearranging the terms in Equation 3-15, we find the 

analytical method that determines the true initial activity 

of a source: 

C0= r . (3-16) 
°° (-AAt) 

BiAikMkCAOExpHit!] ITT-T^ 
h=0(n-t-iJ- 

3.2  Modification of Method for Special Cases 

In the above form, the analytical method can be applied 

to the most complex ß- and y   decay scheme.  However, if a 

radioisotope has meta-stable states or ß  emission in its 

decay, the method needs modification. 
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A meta-stable state interrupts the coincidence of a 

cascade if the state has a half-life that is long relative to 

the resolving time of the detector.  It is possible that the 

meta-stable state may decay quickly enough to emit the next 

gamma-ray in the cascade within the resolving time. 

Therefore, the summing-in and -out events are greatly reduced 

when the nucleus reaches this state.  Of course, there may be 

more summing events if a cascade continues after this meta- 

stable state. 

The analytical formula presumes there are no breaks in 

a cascade.  To remedy this problem, a solution is to de- 

couple the cascades, adjust/check Bj to correctly estimate 

the production of each gamma-ray, execute the equations for 

each chain, and then sum the results. 
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Na-22 Na-22 

EC 9.5% 

1275 keV- 

EC 90.5% 

1786 keV- 

ß+ 90.5% a = -05 

EC 9.5% 

Na-22 Decay Scheme Modified Na-22 Decay Scheme 

Figure 3.2 Modified Na-22 Decay Scheme 

(McCallum and Coote, 1975) 

For ß  emission, McCallum and Coote (1975) modified 

Andreev's method by representing the ß  branch with a pseudo 

ß" branch that decays to a level 511 keV higher than the 

actual energy state and has an internal conversion 

coefficient a = -05   as shown in Figure 3.2.  This fix 

provides for the two 511 keV photons that are not measured in 

coincidence (McCallum and Coote, 1975). 

3.3 Application of Method for Mo-99 and Cs-136 

With the analytical method determined, we will now 

apply it to find the probabilities of recording the 

54 



Table 3.1 Mo-99 Nuclear Data (Peker, 1994) 

Energy 
(keV) 

ß Decay 
Fraction 

Branch 
Ratio 

Internal 
Con- 

version 

Int. 
Conv. 
Error 

Inten- 
sity 

% 

Inten- 
sity 
Error 

778 0.164 0.260 0.00059 0.00008 35.1 0.4 
740 0.164 0.739 0.0016 0.0004 100 1 
411 0.164 0.001 0.003 0.001 0.120 0.005 
366 0.012 1 0.0076 0.0010 9.82 0.11 
181 0 0.579 0.126 0.007 49.4 0.6 
142 0.824 0.01 29 3 0.021 0.002 
140 0 1 0.119 0.003 37.3 1.9 
40 0 0.421 3.2 0.2 8.68 0.27 

transitions in the decay of Mo-99 and Cs-136.  Because these 

probabilities are the key part of obtaining the true initial 

activity, we will concentrate on calculating their values for 

the two radioisotopes.  We will put aside the number of 

decays, N, and recorded counts, S-^ , which can easily be 

found after a measurement. 

To start, we note the eight prominent gamma-rays and 

six levels of Mo-99 in Figure 2.1 and the fifteen gamma-rays 

and eight levels of Cs-136 in Figure 2.2.  Their nuclear data 

is listed in Tables 3.1 and 3.2: 
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Table 3.2 Cs-136 Nuclear Data 
(Tuli, 1987) 

Energy 
(keV) 

ß Decay 
Ratio 

Branch 
Ratio 

Internal 
Conversion 

1235 0.00790 0.982 0 
1048 0.0198 1 0 
818 0 1 0.00282 
507 0.0226 0.527 0.0112 
340 0.929 0.673 0.0305 
320 0.0226 0.272 0.0393 
273 0.00128 0.670 0.016 
187 0.00790 0.018 0.190 
176 0.929 0.159 0.094 
166 0.0226 0.201 0.245 
164 0.0178 1 2.26 
153 0.929 0.092 0.433 
109 0.00128 0.013 1.47 
86 0.00128 0.314 0.343 
67 0.929 0.076 0.694 

The next piece of information we need is data to 

characterize the peak efficiency of the model detector. 

AFTAC has measured the peak efficiency of Detector #120 using 

a source of standard radioisotopes 10 cm above the face.  The 

program that calibrates the energy response of the detector 

to the known gamma-ray energies has produced a function of 

the peak efficiency, efocm >   for a source at 10 cm above the 

face for a gamma-ray with energy, Ey : 

efocmCEy) = Exp[-5.927-0.8438Ln[Ey]- 0.0203 l(Ln[Ey])
J (3-17) 
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0.00007080(Ln[Ey])3 + 0.02496(Ln[Ey ])4 + 0.01560(Ln[Ey])5] 

With (1) the nuclear data on Mo-99 and Cs-136, (2) the 

macroscopic absorption cross sections for aluminum, lithium, 

and germanium for Mo-99 gamma-rays (page 7, Appendix C) and 

for Cs-136 gamma-rays (page 8, Appendix D), and (3) a means 

to determine the peak efficiency of the detector at a 

reference height, we can now determine the total efficiency 

at 10 cm, the peak-to-total ratio, and the efficiencies at 

the face.  As we previously have done in Chapter 2.3, we 

transform Equations 2-12 through 2-14 with the same 

definitions for the terms to find the total efficiency, e1, 

for the three simple configurations by removing the Legendre 

polynomials: 

2 Bps3s(i) 

elps3s(Ey) = -£  J{l-Exp[-i:Ge(EY)xps3si(^)]} (3-18) 

i=lAps3s(i) 

x {Exp[-ZA1(Ey)xAl(^) - Zu(EY)xLiß)]}d$ , 

1 2 Rsource   JI/2    Bds3s(i) 

etds3s(EY) = — -jX    JpdP jd(P    J{l-Exp[-EGe(EY)xds3Si(^)]} 
TtRcrystal  i=1     Q      _n/2 A(Js3s(i) 

x{Exp[-SA1(EY)xAl(^)-XLi(EY)xLi(^)]}d^,   and        (3-19) 
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4 Bps5s(i) 

elps5s(EY) =-X  J{l-Exp[-2;Ge(EY)xps5si(^)]} (3-20) 
i=lAps5s(i) 

x {Exp[-XA1(EY)xAl(^) - ZLi(EY)xLi(^)]}d^ . 

Then, using the approximation of proportioning the total 

efficiencies from the three simple configurations, we modify 

Equation 2-15 to find the total efficiency for the model 

configuration of a thin disk source and closed-end, coaxial 

detector: 

t     f       e ps5s 
eMitfs = eMsSs-p—. (3-21) 

e ps3s 

After finding the total efficiency of the model 

configuration with the source at 10 cm above the face with 

Equations 3-18 through 3-21 and then finding the peak 

efficiency for each gamma-ray of Mo-99 and Cs-136 with 

Equation 3-17, we determine the peak-to-total (P/T) 

efficiency ratios which we assume are sufficiently 

independent of the distance between source and detector 

(McCallum and Coote, 1975).  Then we find the total 

efficiencies for all the Mo-99 and Cs-136 gamma-rays with the 

sources on the face.  Finally, we multiply the P/T ratios 

with the face total efficiencies to obtain the face peak 
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efficiencies  for all  the gamma-rays.     Tables  3.3  and 3.4  show 

the efficiencies and P/T ratios  for the Mo-99  and Cs-136 

sources  on the  face.     For Mo-99,   pages  13   through 17  in 

Appendix C show the calculations,   and,   for Cs-136,   pages  13 

through  18   in Appendix D show the calculations. 

Table 3.3 Detector #120 Calculated Efficiencies with 
Mo-99  Source at  0  cm 

Gamma-Ray 
(keV) 

Total 
Efficiency 

Peak Efficiency P/T Ratio 

778 0.2002 0.0578 0.2887 
740 0.2028 0.0604 0.2978 
411 0.2302 0.1003 0.4357 
366 0.2354 0.1108 0.4707 
181 0.2941 0.1994 0.6780 
142 0.3113 0.2277 0.7314 
140 0.3130 0.2291 0.7319 
40 0.2566 0.0394 0.1535 
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Table 3.4 Detector #120 Calculated Efficiencies with 
Cs-136  Source at  0  cm 

Gamma-Ray 
(keV) 

Total 
Efficiency 

Peak Efficiency P/T Ratio 

1235 0.1767 0.0386 0.2184 
1048 0.1851 0.0446 0.2410 
818 0.1975 0.0553 0.2800 
507 0.2203 0.0837 0.3799 
340 0.2391 0.1181 0.4939 
320 0.2427 0.1246 0.5134 
273 0.2734 0.1455 0.5322 
187 0.2912 0.1947 0.6686 
176 0.2951 0.2026 0.6865 
166 0.2958 0.2095 0.7082 
164 0.2957 0.2113 0.7146 
153 0.2955 0.2184 0.7391 
109 0.3156 0.2392 0.7579 
86 0.3180 0.2210 0.6950 
67 0.3129 0.1680 0.5369 

At  this point,   all  the data  is present  to  employ the 

analytical method,   Equations  3-7  through 3-10,   to calculate 

the probabilities  of  recording  the  transitions  in Mo-99  and 

Cs-136.     In addition,   we can compare  the probabilities with 

those  of  the no-coincidence-assumed  formula,   i.e.,   Equations 

Table 3.5 Detector #120 Calculated Probabilities of 
Recording a Transition per Decay of Mo-99 at  0  cm 

Gamma-Ray 
(keV) 

No-Summing 
Method 

Analytical 
Method 

Ratio 

778 2.464E-3 2.467E-3 0.9989 
740 7.312E-3 5.206E-3 0.7120 
411 1.640E-5 1.257E-5 0.7665 
366 1.338E-3 1.334E-3 0.9970 
181 1.243E-2 9.979E-3 0.8028 
142 6.669E-5 6.667E-5 0.9997 
140 1.885E-1 1.859E-1 0.9862 
40 4.789E-4 2.750E-4 0.5742 
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3-7 through 3-10 with the terms accounting for summing-in and 

-out events deleted.  Tables 3.5 and 3.6 show the comparison 

for Mo-99 and Cs-13 6. For Mo-99, pages 31 through 37 in 

Appendix C show the calculations, and, for Cs-136, pages 2 0 

through 25 in Appendix D show the calculations. 

From the information in Tables 3.5 and 3.6, we notice 

the extent that summing events have on measuring Mo-99 and 

Cs-136 sources on the face of the detector.  For Mo-99, the 

probability of recording a count for the 740 keV gamma-ray 

per decay is reduced by nearly 29% from what the simplistic, 

no-coincidence-assumed formula produces.  Lastly, for the 40 

keV gamma-ray, its probability is reduced by almost 43%.  In 

the case of Cs-136, the smallest reduction is 30% for the 507 

Table 3.6 Detector #120 Calculated Probabilities of 
Recording a Transition per Decay of Cs-136 at 0 cm 

Gamma-Ray 
(keV) 

No-Summing 
Method 

Analytical 
Method 

Ratio 

1235 1.118E-2 6.907E-3 0.6178 
1048 3.062E-2 1.804E-2 0.5892 
818 5.384E-2 3.273E-2 0.6079 
507 4.051E-2 2.821E-2 0.6964 
340 1.450E-2 7.499E-3 0.5172 
320 3.030E-2 2.024E-2 0.6680 
273 2.132E-3 1.059E-3 0.4967 
187 8.683E-4 4.356E-4 0.5017 
176 5.536E-3 2.518E-3 0.4548 
166 3.142E-2 1.526E-2 0.4857 
164 1.958E-3 7.161E-4 0.3657 
153 2.636E-3 1.362E-3 0.5167 
109 3.008E-5 1.355E-5 0.4505 
86 1.150E-3 5.731E-4 0.4983 
67 1.417E-3 5.268E-4 0.3718 
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keV gamma-ray, and the largest reduction is 63% for the 164 

keV gamma-ray.  Overall, the importance of correcting for 

summing events is clear with these two radioisotopes. 

3.4  Error Analysis of Mo-99 Results 

Given the results from the analytical method, we now 

need to perform an error analysis and gauge some confidence 

in the calculated probabilities.  Unfortunately, there is 

insufficient error data for the decay fractions, branching 

ratios, and internal conversion factors of Cs-13 6.  For Mo- 

99, there is error data on the intensity and internal 

conversion factors shown in Table 3.1.  However, we will need 

to make some approximations to perform the error analysis. 

To begin, we note the equations used in calculating the 

probabilities, i.e., Equations 3-7 through 3-10: 

m et 

Bi=ßi+  I  ^W1"!^-) • (3-7) 
n=i+l m 

4    y    i 
A* = Xik(TT^)+

j|+1
5Cy(T^)AJk • (3"8) 

k-i -t 
Mk = EMjXkj(l--i). (3-9) 

j=o 1 + akj 

Sik=BiAikMk- (3-10) 
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Next, we apply Equation 3-22 to the above equations to 

determine the error propagation from the terms with measured 

(x, y, and z) data and the errors (Gx, Gy , and Gz)  to the 

resulting error (Gu) in the probability (u) (Knoll, 1989). 

a = (3—) a +C3-) G +13-) G +... (3-22) u vdx/  x vdy'  y vdzy  z 

To make the error propagation manageable, we perform the 

differentiation on the top level equation first, Equation 3- 

10, and proceed down: 

r)S r)S r)S 
Gs=[(äi)2aB+(äÄ)2GA+(äM)2G^]1/2 and (3_23) 

GS =[(AM)
2G| + (BM)2Gi+(BA)2G^]1/2 . (3-24) 

To find the errors Gg, a^ ,   and a^ , we continue the 

differentiation with respect to the constituent terms of 

Equations 3-7 through 3-9: 

*B =K§)2°ß + (f )24 + (f )2°« + <fr>2<£11'2 <     (3"25) 
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3A. 2^2 .3A. 2^2 3A 2_2 ,1/2 
aA = [(.T-roi + Or") aa + (T-p) Xp]  , and 3%  z  9a 3e 

„  _r^
M^2„2 ^^Mx2„2 .,^2^2 ,1/2 cM-[(^)ax + (—)aa + (—)ae,] 

(3-26) 

(3-27) 

Due to the absence of error data for the decay fraction 

ß and the branch ratio % , we will make an approximation and 

assume that ß and a are constants with no errors in the 

equation to determine the intensity of a gamma-ray: 

ßx 
1 = 

1 + a ' 

„2     /<*I   2   2 

<*I = ß 
1 + a 

ax 

<*I = 
I 

X 
ax f 

°r x 

(3-28) 

(3-29) 

(3-30) 

(3-31) 

(3-31) 

In addition, to these approximations for errors, we will 

make an approximation for the error in the peak and total 

efficiencies.  There is a worst case error of 1.5% in the 

peak efficiencies for the sources at 10 cm (AFTAC, 1997). 
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Also, there is rough estimate of 3% in the total efficiency 

at 10 cm (Canberra, 1995).  To propagate the error from each 

of the simple detector configurations into the model one, we 

invoke Equation 3-22 with regard to Equation 3-21: 

Etds5s = [(-r-)2E2
ps5s + (    ,t    a,2     )2eps3s + (-TT-) 43sr    •      (3-32) 

e ps3s     F (e ps3s) y        e ps3s 

With these Equations 3-24 through 3-32, we apply them 

to Equations 3-7 through 3-10 for the Mo-99 decay scheme. 

Because the error analysis equations are quite lengthy, they 

are listed on pages 96 through 149 in Appendix C.  Table 3.7 

shows the results of the error analysis.  For ease of 

reading, Table 3.7 shows the errors in percent, i.e., the 

error divided by the mean value. 
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Table 3.7 Error of Calculated Probabilities of 
Recording a Transition per Decay of Mo-99 using 

Detector #120 

Energy Peak 
(keV) 

%  Error of Calculated 
Probability of 

Recording a Transition 
(at 10 cm) 

%  Error of Calculated 
Probability of 

Recording a Transition 
(at 0 cm) 

778 4.621 7.303 
740 2.316 5.540 
411 1.105 1.930 
366 49.29 38.92 
181 2.207 4.848 
142 10.17 11.32 
140 1.778 5.295 
40 5.880 8.024 

It  is apparent  the probabilities  for the 3 66 and 142 

keV energy peaks  suffer  the most uncertainty.     However,   the 

errors   for  the  740,   411,   181,   and 140  keV peaks  seem to be 

quite reasonable.     To be able  to make  a better  judgment,   we 

turn to the next chapter and compare the analytical results 

against  the measured data. 
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4.  AFTAC Experimental Data and Analysis 

In this chapter, we compare the probabilities and 

face peak efficiencies from the analytical method with 

measurement data from AFTAC.  Then we look at the values from 

the Canberra, Inc. coincidence correction program.  Lastly, 

we the gamma-ray backscatter from the mounting materials of a 

planchet. 

4.1  Comparison of Mo-99 and Cs-136 Data 

To begin, AFTAC has provided measurement data as a 

benchmark for the probabilities of recording transitions 

during the decay of Mo-99 and Cs-136 with Detector #120. 

This data includes the probabilities of detecting nuclear 

transitions and the AFTAC adjust face peak efficiencies for 

Detector #120.  However, AFTAC has removed data from its 

analysis on several Mo-99 and Cs-13 6 gamma-rays due to the 

difficulty in measuring their very low intensities. 

Nevertheless, Table 4.1 displays the analytical and measured 

results for the probabilities of Mo-99 nuclear transitions 

with the source on the face of the detector.  The error in 

the experimental data is around ±2%. 
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Table 4.1 Probabilities of Detecting Nuclear 
Transitions of Mo-99 Source at 0 cm 

Energy Peak 
(keV) 

Analytical 
Method 

AFTAC 
Measurement 

%  Relative 
Difference 

778 2.467E-3 2.271E-3 8.62 
740 5.210E-3 5.007E-3 4.06 
366 1.334E-3 1.174E-3 13.6 
181 9.989E-3 9.015E-3 10.8 

Next, to see how the AFTAC adjusted face peak 

efficiencies compare, we use the ratios of the simplistic 

method to the analytical one in Tables 3.5 and 3.6 to scale 

the face peak efficiencies from the analytical method. 

Tables 4.2 and 4.3 show the significance of summing events 

for face measurements by altering the analytical efficiencies 

to nearly match several of the AFTAC adjusted efficiencies. 

In reviewing the Cs-136 results, Table 4.3 shows the 

results from the analytical method.  The peak efficiencies 

for 1048, 86, and 818 keV gamma-rays are under 2% relative 

difference to the experimental ones (AFTAC, 1997).  The 

analytical peak efficiencies for the 273 and 1235 keV gamma- 

rays are moderately off by 6.6% and 8.3%.  The remainder 

deviate by 13% to 50%. Yet, like the case with Mo-99, the 

errors associated with the other gamma-rays are suspected of 

compounding the error of these few energy peaks. 
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Table 4.2 Detector #120 Adjusted Face Peak 
Efficiencies with Mo-99  Source 

Energy Peak 
(keV) 

Adjusted 
Analytical 
Efficiency 

Adjusted AFTAC 
Efficiency 

%  Relative 
Difference 

778 0.05779 0.05356 7.90 
740 0.04302 0.04172 3.12 
366 0.1105 0.09876 11.9 
181 0.1601 0.1493 7.23 

Next,   we compare results with the Canberra,   Inc. 

coincidence  correction program which is  in development 

(Kolotov and others,   1997).     Again,   the software is 

proprietary,   and the details  of  the  code have not been 

released.     Therefore,   we can not determine how any 

differences   in results happen.     However,   Canberra,   Inc.   has 

Table 4.3  Detector #120 Adjusted Face Peak 
Efficiencies with Cs-136 Source 

Energy Peak 
(keV) 

Adjusted AFIT 
Face Peak 
Efficiency 

Exp. Face Peak 
Efficiency 

%  Relative 
Difference 

1235 0.02386 0.02203 8.307 
1048 0.02629 0.02615 0.5354 
818 0.03364 0.03318 1.386 
340 0.06107 0.07467 -18.21 
273 0.07226 0.07740 -6.641 
176 0.09214 0.1878 -50.94 
163 0.07729 0.1326 -41.71 
153 0.1129 0.1424 -20.72 
86 0.1102 0.1115 -1.166 
66 0.06245 0.07185 -13.08 
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Table 4.4 Detector #120 Correction Factor with 
Mo-99 Source at 0 cm 

Energy Peak 
(keV) 

Analytical 
Method 

Correction 
Factor 

Canberra, Inc. 
Correction 

Factor 

%  Relative 
Difference 

778 0.999 1.000 0.100 
740 0.712 0.042 -94.1 
366 0.997 0.992 -0.502 
181 0.803 0.739 -7.97 

identified a problem in analyzing the 40 keV gamma-ray that 

is coincident with the 740 keV one for Mo-99.  The 40 keV 

energy lies below the spectrum analysis cut-off of 60 keV 

which creates an error in a software module.  Canberra, Inc. 

is addressing the issue. 

In reviewing Table 4.4, the Canberra, Inc. correction 

factors for the 778 and 366 keV energy peaks match the values 

of the analytical method.  However, for the 740 and 181 keV 

peaks, the Canberra factors differ significantly.  Hence, 

there needs to be further investigation of the software to 

determine the cause of the discrepancy considering the 

results from analytical method closely approximate AFTAC's 

values for the 740 and 181 keV peaks. 

5.2  Planchet Effect 

The model of the source and detector has been a thin 

disk containing a uniformly distributed radioisotope 
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perfectly centered above and parallel to an ideal right- 

cylindrical detector.  Due to the complication of modeling 

gamma-rays that backscatter into the detector, the copper 

disk and PVC cylinder have been removed from the scenario. 

See Figure 1.1.  However, these materials are present during 

measurements.  They can and do affect the results of the 

analytical method.  The coincident gamma-rays that 

backscatter from the planchet and enter the detector cause a 

summing-out event.  Other backscatter gamma-rays that enter 

the detector add to the absolute total efficiency.  They do 

not add to the peak efficiency since they have lost some 

energy through scattering. 

To determine the extent of not incorporating the full 

planchet, measurements were taken at AFIT of a source with 

and without the copper and PVC materials.  The source was Cs- 

137 which emits a single gamma-ray of 662 keV.  Table E.l in 

Appendix E shows the experimental data.  The experiment 

showed a minor but statistically significant 2 to 3% 

reduction in the peak-to-total efficiency ratio. 

This reduction would directly apply in determining the 

peak and total efficiencies in the present analytical method. 

Due to the scope of this thesis, modeling and incorporating 

scattering effects are left for a follow-on effort.  Such an 

effort directly applies to modeling a radioisotope suspended 

in solution in a vial.  References in the bibliography 
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(Singh, 1983) and (Kolotov and others, 1997) provide the 

starting point for this investigation. 
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5.  Conclusions 

In this thesis, we addressed AFTAC's problem of showing 

that coincidence summing is the cause of the discrepancies in 

the initial activities when sources are on the face of the 

detector.  We developed an analytical method to account  for 

the summing events and obtain the true initial activity. 

Also, in the process, we showed that angular correlation was 

a minor effect for a Mo-99 source in a face geometry. 

Lastly, we looked at the Canberra, Inc. program to correct 

for summing events with mixed results, however. 

In particular for AFTAC, the analytical method showed 

that it can duplicate with reasonable accuracy the adjusted 

peak efficiencies for the energy peaks of Mo-99 and Cs-13 6 

compared to experimental values.  For Mo-99, the 740 keV 

analytical (adjusted) face peak efficiency is only 4% off 

from the experimental value while two other analytical peak 

efficiencies (the 181 and 778 keV ones) are 7% to 8% off. 

For Cs-13 6, several analytical (adjusted) peak efficiencies 

(at 1048, 818, and 86 keV ) are within 1.5% of the 

experimental values. 

The accuracy in the analytical results are quite 

sensitive to the errors of the associated gamma-rays.  Large 

errors in the coincident gamma-ray intensities and internal 
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conversion coefficients can compound significantly as in the 

case of the 366 keV peak of Mo-99. 

As for the analytical code in the appendix, it can be 

readily modified to produce count distributions or adjusted 

peak efficiencies for other radioisotopes and detector 

geometries.  The dimensions of the detector crystal can 

quickly be substituted as well as the factors in the 

empirical formula describing the peak efficiency energy 

curve.  Also, the source-to-detector distances along the 

major axis can be modified.  As for the gamma-rays and energy 

levels, they would need to be changed to model the new 

isotope.  The section on determining angular correlation may 

be deleted if the effect is presumed to be minor. 

As for restrictions in using the code, the source must 

be a thin disk with a radius smaller than that of the 

detector face.  The source must be parallel to and centered 

along the major axis of the detector.  The code can account 

for attenuation if there are absorbers between the source and 

detector.  However, the code does not model the scattered 

radiation that adds to the total efficiency. 

Unfortunately, performing the error analysis will take 

a fair degree of effort for moderately to highly complex 

decay schemes.  The code will have to be written to account 

for all the errors of the transitions that cause summing-in 

and -out effects for each energy peak.  In addition, since 
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many errors are usually given for an overall gamma-ray 

intensity, the errors for the decay mode fraction, ß, and 

branching ratio, % , will have to be derived.  When 

accomplishing this effort for a long chain of cascading 

radiation, one will see how the errors build. 

In summary, the analytical method provides a tool to 

the user to discern how much coincidence summing is affecting 

the recorded counts and calculated activity in a measurement. 

An experimenter may place a source as close to the detector 

as possible (keeping dead time and good counting statistics 

in mind) and determine the true activity in one trial. 
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Appendix A:  Beta Particle Range 

The analytical method presented in the text requires 

that beta particles, emitted in coincidence with the 

cascading gamma-rays, not to enter the detector and cause 

summing events.  The method would need modification to 

account for these extra summing events.  The method does not 

account for neutron emitting sources as well. 

In order to use the method, an analysis must be done to 

verify that beta particles and their bremsStrahlung radiation 

will not significantly deposit their energy in the detector 

along with coincident gamma-rays.  Since Mo-99 and Cs-136 are 

the model radioisotopes, an analysis is performed on both 

below: 

The range of a ß- in low Z materials can be found by 

using Equation A-l (Turner, 1995).  The maximum energy of the 

ß~ emitted by Mo-99 is 444.6 keV and by Cs-136 is 218.7 keV 

(ICRP, 1983) : 

R(-\) = 0.412T(127 °-9451nT)  o.Ol MeV < T(MeV) <2 .5 MeV; (A-l) 
cm 

C^QQC-V) = 0.412(0.4426)(1-27 " 0.9451n(0.4426)) = 
Mo yy cnr 

= 0.07810-^-;   (A-2) 
cm 
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Rmaxß     _^ = 0412(02187)(1.27-0.9451n(0.2187)) = aoo6733^L 
Cs-136 cm2 cm- 

(A-3) ,2 

The ranges are multiplied by the density of  the 

absorbing material,   aluminum,   2.70  g/cm2   (Turner,   1995) 

R?fPnn(cm) = sm— = £m__ 0.02893cm,   and       (Ä-4) 
M°-" PAI 2.70-^3 

cm 

RCs
a-136(_S")     a006733^2 

R™ax?^(cm) = ^S3— = ^m- = 0.002494cm . (A-5) 
1A1 2.70- g 

Cs-136v -      n 

cm 

With the aluminum end cap of Detector #120 being 0.16 

cm thick, neither ß- will penetrate and enter the detector. 

The next task is to determine if the bremsStrahlung 

radiation created by the ß- has enough energy to cause a 

summing event with cascading gamma-rays.  Equation A-6 is an 

empirical formula to calculate the fraction of the ß~ energy 

that is converted to bremsStrahlung radiation.  Z is the 

number of protons in the nucleus of the absorbing material 

atom, and T is the kinetic energy of the ß- in MeV: 
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6xlO"4ZT 
Y = -. ;   thus we  obtain (A-6) 

l + 6xlO~4ZT 

AT 6xl0~4(13)(0.4426) 
Y™    QQ = j^ — = 0.003440 , (A-7) 

Mo-yy     l + 6xl0"4(13)(0.4426) 

Al 6xl0~4(13)(0.2187) 
Y™   „,= j-£ — = 0.001703, (A-8) 

Cs-lrib    i + 6xl0~4(13)(0.2187) 

EMo™ 99 = YMo - 99T = (°-003440X442-6keV) = l-52keV ,   and       (A- 9) 

EC?™136 = YCs- 136T = (°-001703X218-7keV) = 0.372keV . (A-10) 

The bremsStrahlung x-rays of 1.52 and 0.372 keV will not 

create separate sum peaks due to the 1 to 2 keV resolution of 

the detector.  These x-rays are likely to broaden or distort 

the existing full energy peaks.  Thus, the analytical method 

is applicable for these radioisotopes and the given detector. 
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Appendix B:  Angular Correlation Formula 

In Chapter 2.2, we claim the first-principles 

expression, Equation 2-2, to calculate the normalized angular 

correlation factor,W , is equivalent to Camp and Van Lehn's 

formula, Equations 2-8 through 2-11.  In this appendix, we 

show some of the key steps in converting Equation 2-2 to the 

form of Equations 2-8 through 2-11. 

First, we present Equation 2-2 noting the definition of 

the angles in Figure 2.3.: 

_ Jje(Q )e(a )W(Q Q )  a  b 

w = - - a' b 4rc 4rc (B_1} 

JJ      a'      W An   An 

Then we substitute the coordinate components of Qa and 

Qjj, i.e., a and GO .  We will only consider the probability 

of interaction of the gamma-rays with the germanium crystal 

ignoring the aluminum end cap and lithium contact: 

_    JjJ{l - Exp[fa]} {1- Exp[fb]}W(cos6)^sinabdab sinaadaa 
W= f7 —  (B-l) 

JJ{l-Exp[fa]}{l-Exp[fb]}sinabdabsinaadaa 

79 



where 

fy =-x(cos(X,y)Z(Ey)   and (B-3) 

W(cose) = l + A2P2(cose) + A4P4(cose)  where (B-4) 

cos0 = cosaacosocb + sinaasinabcosAcü , (B-5) 

P2(cos9) = ^-(3cos2e-l),   and (B-6) 

P4(cos9) = ^(35cos4e-30cos26 + 3). (B-7) 

To begin the conversion,   the  integrals  in Equation B-l 

are  separated into  three parts with each containing one  of 

the terms  of Equation B-4,   the correlation function.     Also, 

for  efficiency,   we use  the   £„ = cosoty   transformation: 

_    J/J{l-Exp[fa]}{l-Exp[fb]}(l)^d^a 
W = fj + 

JJ{l-Exp[fa]}{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]}{l-Exp[fb]}(A2P2(^a^b,Aa)))^d^a 

JJ{l-Exp[fa]}{l-Exp[fb]}d^a 

i 

2rc 

+ (B-8) 

JJJ{l-Exp[fa]}{l-Exp[fb]}(A4P4(^a^b,Aö»)^d^bd^ 

JJ{l-Exp[fa]}{l-Exp[fb]}d^bd^ 

Then we continue with expanding the terms in the 

correlation function: 
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_    (27t-0)^JJ{l-Exp[fa]}{l-Exp[fb]}d^a 
W = j-f h 

JJ {1 - Exp[fa]} {1 - Exp[fb] }d^£ 

r 
JJJ{l-Exp[fa]}{l-Exp[fb]}(P2(^a^b>Äa)))^fd^bd^ 

A2 r? ~     ~. + (B-9) 

A4 

JJ {1 - Exp[fa]} {1 - Exp[fb] }d^£ 

( 
27C 

a 

JJJ{l-Exp[fa]}{l-Exp[fb3}(P4(^a^b,Aa)))d|fd^bd^ 

Jj{l-Exp[fa]}{l-Exp[fb]}d^bd^ 

and Equation B-10 
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W = l + 

A   JJJ{l-Exp[fa]{l-Exp[fb]}{|^}^f d^a [ 

2 JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}{|^gcos2Aco(l-^)(l-^)}^d^a 

2 JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JIJd-Exp^Kl-ExptfbJJO^cosA^d-^Kl-^^-^^d^d^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

35t4t4 . 3, dA(0 ,K   ,e 
8^a% + 8}^d%d5a 

JJJ{l-Exp[fa]{l-Exp[fb]}{f^4+|}M^d^ 

4 JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JjJ{l-Exp[fa]{l-Exp[fb]}{fcos4A(0(l-^2)2(l-^)2}^fd^bd^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^bd^ 

2n 
]\\{1 - Exp[fa]{l - Exp[fb]}[*f ^3 COSÄt0A/(i_^)(1_^2)}M^d^d^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}{^^cos2Aco(l-^2)(l-^)}^d^£ 

=a 
3 

A4 

JJ{l-Exp[fa]{l-Exp[fb]}d^ 

JJJll-Exp^lil-ExptfbJl^^cos^CDCl-^^Cl-^^^d^ 

J|{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}{f^2}^d^a_ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}{^cos2A(D(l-^2)(l-^)}^d^bd^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

A 
jJJ{l-Exp[fa]{l-Exp[fb]}{f^bcosA(aA/(l-^2)(l-^)}^d^bd^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 
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Now, we enter the integrals below into Equation B-10: 

2TC 

JcosA(D^ = 0, 
0 

dAco 
OSAUJ 

27t       „ , . . 
J cos  Aco-^—-= 7T, 

o 27t    2 
(B-ll) 

Jcos3Acod^ = 0,and 
0 

2fcos4Aco^ = |. 
o 27C    8 

The  result   is  Equation B-12: 

W = l + 

A   lJl{l-Exp[fa3{l-Exp[fb]}|{f^2_1^2_1^2+l}d^d^a 

2 JJ{l-Exp[fa]{l-Exp[fb]}d^a 

IfJ (1" Exp[fa]{l-Exp[fb]}f{^4+|(1_2^2+^4_2^2)}d|^^bd^ 

- + 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}f{|(4^g-2^+^)}d^d^d^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

jJJ{l-Exp[fa]{l-Exp[fb]}f{|(-2^2+^4)}d^d^^ 

|J{l-Exp[fa]{l-Exp[fb]}d^a 

JJJ{l-Exp[fa]{l-Exp[fb]}f {3(ffig -ffig _^4 +^4)}d^d^£ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 

/JJ{l-Exp[fa]{l-Exp[fb]}f{^ +1(1-^ -^ + ^§)}^d^bd^a 

A4 

Jj{l-Exp[fa]{l-Exp[fb]}d^bd^ 

JJJd-Exp^Kl-ExptfbJI^I^d^d^ 

JJ{l-Exp[fa]{l-Exp[fb]}d^a 
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Next, the integrals are separated and solved for t,a   and 

£b assuming ^a and ^ are independent: 

W = l + 

J{^(3^-l)}{l-Exp[fa]}d^aJ{l(3^-l)}{l-Exp[fb]}d^b 

2 J{l-Exp[fa]}d^aJ{l-Exp[fb]}d^b 

A   J{(f^^f^+f)}{l-E»p[fa]}^aJ{(f^-?^+f)Hl-Exp[fb]}d^b 
4 J{l-Exp[fa]}d^aj{l-Exp[fb]}d^b 

(B-13) 

We recognize the form of the £a and £b functions as 

Legendre polynomials of orders 2 and 4: 

W = l + 

A   J{P2(^a)}{1-ExP[fa]}^aJ{p2(^b)}{1-ExP[fbJ}^b ,     (B_14) 
2 J{l-Exp[fa]}d^aj{l-Exp[fb]}d^b 

J{P4(^a)}{l-Exp[fa]}d^aJ{P4(^b)}{l-Exp[fb]}d^b 

4 J{l-Exp[fa]}d^aJ{l-Exp[fb]}d^b 

Finally, we see that the integrals are functions of the 

Legendre polynomial and the probability of interaction for 

one gamma-ray which matches the J function of Camp and Van 

Lehn (1969), Equation 2-11: 
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2 WJo(Yb>  4 Jo(Ya)Jo(Yb> 

Then, using the nomenclature of their formula, Equations 

2-8 through 2-10, we obtain the desired form: 

W = 1 + A2Q2+A4Q4  and (B-16) 

W = 1 + A2XP+A4XP. (B-17) 
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Appendix C:    Analytical Method Code for Mo-99 

Off[General::spelll] 

AFTAC Canberra Detector 120 peak efficiency was characterized using a NIST 
source 10 cm above the detector.  This distance is large enough to ensure 
that the solid angle subtended makes the contribution from correlated 
cascading gammas negligible by a factor of Q shown below. 

The following are the dimensions for a Mo-99 disk source and Det#120 to 
calculate the solid angle subtended.  The reference is Equation 8.10, pg. 
254, in (Tsoulfanidis, 1983). 

Mo-99 disk source radius in cm.  The precipitate area on the planchet is as 
follows: 
1.667 cm2 for Y, Ce, Nd, Sm, Eu, Tb 
3.125 cm2 for Sr, Zr, Mo, Ag, Cd, Cs, Ba 
2.3 81 cm2 for U, Np 

3.125 
Rsourcei 

7T 

Det#120 crystal radius minus the Li contact in cm: 

Lidepth= 0.05; 

Rcrystal =6.0/2 - Lidepth; 

The thickness of the Al end cap in cm: 

Aldepth= 0.16; 

The spacing between the end cap and lithium contact in cm: 

gap =0.5; 

Source to detector distance in cm: 

sourceheight =9.7; 

sourceheight + Aldepth + gap + Lidepth 
z = ^——^——-^^^^^^—^^^^^^— • 

Rsource 

s = Rcrystal / Rsource; 
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afar = 
r BesselJ[l, p] , 

s*NIntegrate Exp[-p*z] *BesselJ[l,  (p*s)]* # {p, 0, 10} 
L P J 

0.0188295 

Thus, summing contributions are about two percent of the total counts of the 

correlated energy peaks. 

The following are the efficiency function coefficients for Detector 120 with 

the disk source at 10cm.  The efficiency is calibrated only between 0.059 

and 1.83 6 MeV.  Thus, the peak efficiency for the 0.0405845 MeV gamma is 

suspect to large error.  The error in the peak efficiencies for the 

calibrated range is no larger than 1.5% as Capt Weimer, AFTAC/TOD, stated on 

25 Jul 97. 

cl= -5.927; 

c2=-0.8438; 

c3 = -0.02031; 

c4=-.00007080; 

c5= .02496; 

c6= .01560; 

The following is the peak efficiency function with the disk source at 10 cm. 

epds5sfar[e_] = Exp[cl + c2*Log[e] + c3* (Log[e]) A2 + c4* (Log[e]) A3 + 

c5* (Log[e]) *4 + c6* (Log[e]) A5]; 
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Plot[epds5sfar[e], {e, .02, 2.}, 

PlotRange -> All, Frame -> True, GridLines -> Automatic, PlotLabel -> 

"Det#120 Absolute Peak Efficiency with Disk Source 10cm Above", 

FrameLabel-> {"Energy (MeV) ", "e peak"}] 

Det#120Absolute?eakEfficiencydthDiskSourcelCcm Above 
|                  i                  .                  .                  . ' . , 

0.012 

0.01 
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The following are the Mo-99 gamma energies of interest with their 

corresponding peak efficiencies. 

Mb99gammas = {.777921, .739500, .411491, .366421, .181068, 

.142675, .140511, .0405845}; 

epds5sfarlist = Table[epds5sfar[Mo99gammas[ [i] ] ], {i, 1, 8} ] ; 

The row and column numbers of the matrix element represent the transition 

from level i to k. 
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epfar = {{0, 0, 0, 0, 0, 0}, 

{epds5sfarlist[[7]], 0, 0, 0, 0, 0}, {epds5sfarlist[ [6] ], 0, 0, 0, 0, 0}, 

{epds5sfarlist[[5]]# epds5sfarlist[[8]], 0, 0, 0, 0}, 

{0, 0, epds5sfarlist [ [4] ] , 0, 0, 0}, 

{0, 0, epds5sfarlist[[l]], epds5sfarlist[[2]], epds5sfarlist[[3]], 0}}; 

The density (g/cm3) at 300K is assumed to be similar to actual conditions 

of 77K for Ge and Li.  The reference is (Turner, 1995). 

Gedensity= 5.32; 

Aldensity=2.70; 

Lidensity= 0.53; 

The atomic weight is in atoms per gram. The reference is (Turner, 1995). 

Geatcmicweight 
6.022 *1023 

72.59 

Geatamden = Gedensity * Geatcmicweight; 

6.022* 1023 
Alatomicweight =  ; 

26.98154 

Alatomden = Aldensity * Alatomicweight; 

Liatomicweight 
6.022 *1023 

6.941 

Liatomden = Lidensity* Liatomicweight; 

The following is a table of the compton scattering, photoelectric, and pair 

production cross sections in Ge, Al, and Li which will be turned into an 

interpolation function for use in computing total efficiencies.  The 

reference is the Brookhaven National Laboratory website at TELNET 

bnlnd2.dne.bnl.gov, 23 Jul 1997.  The gamma energies are in MeV and the 

cross sections in cm2. 
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Gedata = Table[{{.02, (12.38 + 4996.) * 10"z* * Geatamden}, 

* 10~24 * Geatamden}, 

* 10~24 * Geatamden} , 

* 10"24 * Geatamden} , 

* 10~24 * Geatamden} , 

* 10"24 * Geatamden} , 

* 10"24 * Geatamden}, 

* 10"24 * Geatamden}, 
,-24 * 10  * Geatamden}, 
1-24 * 10  * Geatamden}, 

* lO"" * Geatamden}, 

.03, (14.00 + 1610. 

.04, (14.75 + 704.5 

.05, (15.05 + 367.0 

.06, (15.12 + 214.0 

.08, (14.94 + 90.61 

.10, (14.59 + 46.24 

.15, (13.57 + 13.56 

.20, (12.63 + 5.706 

.30, (11.13 + 1.733 

.40, (10.03+.7731 

.50, (9.188+ .4270) 

.60, (8.516+.2699 

.80, (7.497+.1379 
1.0, (6.747+ .08585) * 10-"*Geatamden}, 

1.022, (6.676+ .08158) * 10'24 * Geatamden} , 

1.25, (6.038+ .05512 + . 01073) * 10-24 * Geatamden} , 

1.5, (5.490+ .03968+ .05320) * 10"24 * Geatamden} , 

2.0, (4.687 + . 02437 + . 1971) * 10"24 * Geatamden} , 

2.044, (4.629+ .02353+ .2116) * 10-24 * Geatamden}, 

3.0, (3.689 + . 01314 + . 5378) * 10-24 * Geatamden} } ] ; 

r24 
-24 * 10""" * Geatamden} , 

* 10"24 * Geatamden}, 

* 10~24 * Geatamden}, 
-24 

SGe= Interpolation[Gedata]; 

The macroscopic cross sections (in 1/cm) of Ge for the Mo-99 gamma energies 

are below: 

SGelist=Table[SGe[Mo99gammas[[i]]], {i, 1, 8}]; 

SGem= {{0, 0, 0, 0, 0, 0}, 

{EGelist[[7]], 0, 0, 0, 0, 0}, {SGelist[ [6] ], 0, 0, 0, 0, 0}, 

{EGelist[[5]], ZGelist[[8]], 0, 0, 0, 0}, {0, 0, SGelist[ [4] ] , 0, 0, 0}, 

{0, 0, ZGelist[[l]], SGelist[[2]], SGelist[[3] ], 0}}; 
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24 Aldata = Table[{{.02, (6.142 + 138.9) * 10'" * Alatamden}, 
-24 6.561 + 39.08)* 10-" * Alatamden} 
24 6.695 + 15.70) * 10"" * Alatamden}, 

6.702 + 7.696)* 10"" * Alatamden}, 
24 6.645 + 4.285) * 10""* * Alatamden} 

6.447 + 1.695) * 10"" * Alatamden}, 
24 6.218 + .8254) * 10"" * Alatamden} 

5.678+ .2237) * 10"" * Alatamden} , 
5.233+ .08970) * 10"" * Alatamden} , 

24 4.573+ .02573) * 10"" * Alatamden} 

4.105 + . 01111) * 10"" * Alatamden} , 

.03, 

.04, 

.05, 

.06, 

.08, 

.10, 

.15, 

.20, 

.30, 

.40, 

.50, ( 

.60, 

.80, 

1.0, 

1.022, (2.717+ .001115) * 10"" * Alatamden} , 

1.25, (2.456+ .0007562 + .001404) * 10"24 * Alatamden}, 

1.5, (2.232+ .0005476+ .007652) * 10"24 * Alatamden} , 

2.0, (1.905+ .0003420+ .03023) * 10"24 * Alatamden}, 

2.044, (1.882+ .0003307+ .03258) * 10"24 * Alatamden}, 

3.0, (1.499+ .00031892+ .08595) * 10"24 * Alatamden} }]; 

3.752+ .006021) * 10"" * Alatamden}, 

3.474+ .003764) * 10"" * Alatamden}, 

3.053+ .001905) * 10"" * Alatamden}, 

2.746+ .001184) * 10"" * Alatamden}, 

SAl = Interpolatlon[Aldata] ; 

The macroscopic cross sections (in 1/cm) of Al for the Mo-99 gamma energies 

are below: 

SAllist = Table [SAl [Mo99gammas [[!]]], {i, 1, 8}]; 

SAlm = {{0, 0, 0, 0, 0, 0}, 

{SAllist[[7]], 0, 0, 0, 0, 0}, {SAllist[[6]], 0, 0, 0, 0, 0}, 

{SAllist[[5]], SAllist[[8]], 0, 0, 0, 0}, {0, 0, SAllist[[4]], 0, 0, 0}, 

{0, 0, SAllist[[l]], SAllist[[2]], SAllist[[3]], 0}}; 
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Lidata = Table [{{.02, (1.702+ .1516) * 10~24 * Liatamden}, 

.03, (1.718+ .03841) * 10"24 * Liatamden}, 

.04, (1.692+ .01445) * 10"24 * Liatamden}, 

.05, (1.656+ .006770) * 10"24 * Liatamden} , 

.06, (1.617+ .003645) * 10-24 * Liatamden} , 

.08, (1.540+ .001373) * 10"24 * Liatamden} , 

.10, (1.471 + .0006464) * 10"24 * Liatamden} , 

.15, (1.328+ .0001666) * 10"24 * Liatamden}, 

.20, (1.218+ .00006481) * 10"24 * Liatamden}, 

.30, (1.060+ .00001796) * 10"24 * Liatamden}, 

.40, (.9499 +7.615* 10"6) * 10"24 * Liatamden} , 

.50, (.8676 +4.081* 10"6) * 10"24 * Liatamden}, 

.60, (.8027 + 2.533*10~6) * 10-24 * Liatamden} , 

.80, (.7053 + 1.276 *10"6) * 10"24 * Liatamden} , 

1.0, (.6341 + 7.939*10-7) * 10"24 * Liatamden} , 

1.022, (.6274 +7.038* 10"7) * 10"24 * Liatamden} , 

1.25, (.5670 +4.788* 10'7 + 7.052* 10-5) * 10-24 * Liatamden}, 
v-7 24 1.5, (.5154 + 3.486* 10"' + .0003953) * lO-" * Liatamden} , 

2.0, (.4398 + 2.212* 10"7 + .001583) * lO"" * Liatamden} , 

2.044, (.4344 + 2.141* 10"7 + .001707) * 10"24 * Liatamden} , 

3.0, (.3460 + 1.250* 10"7 + .004545) * 10"24 * Liatamden} }] ; 

ZLi=Interpolation[Lidata]; 

The macroscopic cross sections (in 1/cm) of Li for the Mo-99 gamma energies 

are below: 

SLilist=Table[SLi[M099gammas[[i]]], {i, 1, 8}]; 

SLim= {{0, 0, 0, 0, 0, 0}, 

{SLilist[[7]], 0, 0, 0, 0, 0}, {SLilist[ [6] ], 0, 0, 0, 0, 0}, 

{SLilist[[5]], ZLilist[[8]], 0, 0, 0, 0}, {0, 0, SLilist[ [4] ] , 0, 0, 0}, 

{0, 0, SLilist[[l]], SLilist[[2]], ELilist[[3]], 0}}; 

To review and compare the macroscopic cross sections of the elements 

involved: 
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TableForm[Table[ {Mö99gaimnas [ [i] ] , EGelist [ [i] ], 

ZAllist[[i]], SLilist[[i]]}, {i, 1, 8}], TableHeadings-> 

{None, {"Mev", "ZGe (1/cm) ", "SAl (l/cm)n, "SLi (1/cm)"}}, 

TableAlignments -> Center] 

Mev SGe (1/cm) SAl (1/cm) SLi (1/cm) 
0.777921 0.342247 0.186625 0.03287 
0.7395 0.351296 0.19112 0.0336536 

0.411491 0.469232 0.245234 0.0431885 
0.366421 0.497454 0.256621 0.0451909 
0.181068 1.13086 0.338259 0.0577854 
0.142675 1.83996 0.378773 0.0619439 

0.140511 1.97079 0.383828 0.0622062 
0.0405845 30.3487 1.30237 0.078344 

To better simulate the response of the detector, the Al end cap and Li 

contact will be included to account for their attenuation. 

The path length of a gamma through the end cap and contact in cm.  Since the 

end cap and contact extend beyond the crystal, there are no vertical edges 

affecting the path length for this simplified approach. 

xAl[§_] = Aldepth/£; 

xLi [f_] = Lidepth / f; 

The following is the equation to compute the total efficiency of the five- 

sided detector crystal with a point source.  The references are (Camp and 

Van Lehn, 1969), pg. 237-238, (McCallum and Coote, 1975), pg.  192, and 

(Heath, 1964), pg. 21. 

The radial depth of the five-sided crystal in cm: 

Rdd= (6.0 - 0.8 -2*Lidepth) /2; 

The axial depth of the five sided crystal in cm: 

Add = 5.1 - 3.65 - Lidepth; 

The crystal length in cm: 

Lcrystal = 5.1- Lidepth; 

The limits of integration for the five-sided cylinder: 

Array[Aps5sfar, 4]; 

Array[Bps5sfar, 4]; 
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Array[xps5sfar, 4]; 

Bps5sfar[4] =Cos[0]; 

Aps5sfar[4] =Cos[ArcTan[ 

(Rcrystal - Rdd) / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sfar[4] [f_] = Add/ f; 

3ps5sfar[3] = Aps5sfar[4]; 

Aps5sfar[3] =Cos[ 
ArcTan[ (Rcrystal - Rdd) / (sourceheight + Aldepth + gap + Lidepth + Add) ] ] ; 

xps5sfar[3][£_] = 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal + Add) / f - 

(Rcrystal - Rdd) / Vl-f2 ; 

3ps5sfar[2] = Aps5sfar[3]; 

Aps5sfar[2] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sfar[2] [f_] = Lcrystal/£; 

Bps5sfar[l] =Aps5sfar[2]; 

Aps5sfar[l] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps5sfar[l][£_] = 

Rcrystal/ V1 - f2 - (sourceheight + Aldepth + gap + Lidepth) / f; 

1 4 

etps5sfar[e_] := — * VNIntegrate[ (1 - Exp[-2Ge[e] *xps5sfar[i] [?]]) * 2 ti 
EKP[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{£, Aps5sfar[i], Bps5sfar[i]}] 

The total efficiency for the five-sided cylinder with a point source 10 cm 

above for the Mo-99 gamma energies: 

Etps5sfarlist = Table[etps5sfar[Mo99gammas[ [n] ]], {n, 1, 8}]; 

etps5sfarm= {{0, 0, 0, 0, 0, 0}, 

{etps5sfarlist[ [7] ] ,  0, 0, 0,  0, 0} , {etps5sfarlist [ [6] ], 0# 0, 0, 0, 0}, 

{Etps5sfarlist[[5]], etps5sfarlist[[8]],  0, 0, 0, 0}, 
{0, 0, etps5sfarlist[ [4]], 0, 0, 0}, 

{0, 0, etps5sfarlist[[1] ], etps5sfarlist[[2] ], etps5sfarlist[[3]], 0} }; 
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The following is the equation to compute the total efficiency of the solid 

cylindrical detector crystal with a point source 10cm above.  The references 

is (Heath, 1964), pg. 21. 

The limits of integration for the solid cylinder with a point source: 

Array[Aps3sfar, 2] ; 

Array[Bps3sfar, 2]; 

Array[xps3sfar, 2] ; 

Bps3sfar[2] =1; 

Aps3sfar[2] = 
Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps3sfar[2][£_] = Lcrystal/ f; 

3ps3sfar[l] =Aps3sfar[2]; 

Aps3sfar[l] = 
Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps3sfar[l][£_] = 

Rcrystal/ V1 - €2   - (sourceheight + Aldepth + gap + Lidepth) / f ; 

1 
etps3sfar[e_] := — * YNIntegrate[ (1 - Exp[-2Ge[e] *xps3sfar[i] [£]]) * 2   ti 

Exp[-SAl[e] *xAl[£] -SLi[e] *xLi[f]], 
{g, Aps3sfar[i] , Bps3sfar[i] }] ; 

etps3sfarlist = Table[etps3sfar[Mo99gammas[[n] ]] , {n, 1, 8}]; 

etps3sfarm= {{0, 0, 0, 0, 0, 0}, 

{etps3sfarlist[[7]]# 0, 0, 0, 0, 0}, {etps3sfarlist[ [6] ] , 0, 0, 0, 0, 0}, 

{ctps3s£arlist[[5]], etps3sfarlist[[8] ], 0, 0, 0, 0}, 

{0, 0, £tps3s£arlist[[4] ] , 0, 0, 0}, 

{0, 0, etps3sfarlist[[1]], etps3sfarlist[[2]], etps3sfarlist[[3]], 0}}; 

To perform a quick check on the total efficiencies of the five sided 

cylinder, the efficiency contribution from the core will be subtracted from 

the efficiency of the solid three-sided cylinder computed above. 

The limits of integration for the core cylinder with a point source: 

Rcore = .8/2; 

sourcecore = sourceheight + Aldepth + gap + Lidepth + Add; 
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coredepth= 3.65; 

Array[Aps3score, 2]; 

Array[Bps3score, 2] ; 

Array[xps3score, 2] ; 

Bps3score[2] =1; 

Aps3score[2] = Cos[ArcTan[Rcore / (sourcecore + coredepth) ] ] ; 

xps3score[2] [£_] = coredepth/ f; 

Bps3score[l] =Aps3score[2]; 

Aps3score[l] = Cos[ArcTan[Rcore/ sourcecore] ] ; 

xps3score[l][f_] = (Rcore/Vl- €2 )  - ( sourcecore/ f) ; 

etps3scorefar[e_] := 

— » y [ NIntegrate [ (1 - Exp[-SGe[e] *xps3 score [i] [£]])* 
2 i=i 

Exp[-SAl[e] *xAl[f] -SLi[e] *xLi[f] - (SGe[e] *Add/£)], 

{§■, Aps3score[i], Bps3score[i] }] ; 

etps3score£arlist=Table[etps3scorefar[Mo99gammas[[n]]],  {n, 1, 8}]; 

Now, we compare the total efficiency between the five-sided cyclinder and 

the reduced efficiency of the three-sided cylinder.  The table shows the 

contribution of Zone 2 of the five-sided crystal letting gamma rays re-enter 

whereas the three-sided crystal removing all gamma rays that enter the core. 

TableForm[Table[{M099gammas[[i] ], etps5sfarlist[[i]], 

(£tps3s£arlist[[i]] - £tps3scorefarlist[[i]]) },  {i, 1, 8}], 
TableHeadings -> 

{None, {"Mevn, "5s Total Eff.n# "Delta 3s Total Eff."}}, 

TableAlignments -> Center] 

Mev        5s Total Eff.     Delta 3s Total Eff. 
0.777921 0.0114423 0.0114321 
0.7395 0.0115715 0.011561 

0.411491    |  0.0128898 0.0128767 
0.366421 0.0131267 0.0131132 

0.181068 0.0155308 0.0155185 
0.142675 0.0162487 0.0162428 
0.140511 0.016326 0.016321 
0.0405845 0.0151698 0.0151698 
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TableFormfTable[{Mo99ganmas[[!]], etps3sfarlist[[i]], 

etps3scorefarlist[[i]]}, {i, 1,  8}], TableHeadings -> 
{None, {nMevn, "3s Total Ef£.n, "3s Core Total Eff."}}, 

TableAlignments -> Center] 

Mev 3s Total Eff.     3s Core Total Eff. 
0.777921 0.011531 0.0000989049 
0.7395 0.01166 0.0000989923 

0.411491    '  0.0129726 0.0000959297 
0.366421 0.0132075 0.0000943819 
0.181068 0.0155667 0.0000482212 

0.142675 0.0162615 0.0000187687 
0.140511 0.0163367 0.0000156997 

0.0405845       0.0151698 8.03424x 10"23 

The following is the equation to compute the total efficiency of the solid 

cylindrical detector crystal with a disk source 10 cm above.  The references 
is  Scintillation Spectrometry 2nd Ed.. Heath, R., 1964, pg. 21. 

The limits of integration for the solid cylinder with a disk source: 

Alds3sfar = Cos[0]; 

Blds3sfar[0_, p_] = 

Cos[ArcTan[[-p*Sin[0] + ^J p2 * (Sin[<£])2 - (p2 - Rcrystal2 ) 1 / 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xlds3sfar[f_] = Lcrystal/ f; 

A2ds3sfar[0_, p_] = 

Cos[ArcTan[[-p*Sin[0] + ^p2 * (Sin[0])2 - (p2 - Rcrystal2 ) ) / 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

B2ds3sfar[0_, p_] = 

Cos[ArcTan[J-p*Sin[0] + -\/p2 * (Sin[0])2 - (p2 - Rcrystal2 ) ] / 

(sourceheight + Aldepth + gap + Lidepth) ] ] ; 

x2ds3sfar[£_, <f>_, p_] = 

——===-  f-p*Sin[0] + -\lp2* (Sin[0])2 - (p2 - Rcrystal2 ) j - 

(sourceheight + Aldepth + gap + Lidepth) 
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etds3sfarl[e_] :=  (NIntegrate[ 
7T (Rsource)  v 

NIntegrate[ 

NIntegrate[ 
(1 - Exp[-SGe[e] *xlds3sfar[f]]) * 

Exp[-SAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{?, Blds3sfar|>, p], Alds3sfar}] , {0, , —JJ *p, 

{p, 0, Rsource}]) 

ctds3sfarllist= Table[etds3sfarl[Mo99gainmas[ [n] ] ], {n, 1, 8}]; 

£tds3sfar2[e_] :=   [NIntegrate[ 
7T (Rsource)2 * 

NIntegrate[ 

NIntegrate[ 
(1 - Exp[-2Ge[e] *x2ds3sfar[£, <t>, p]]) * 

Exp[-2Al[e] *xAl[f] -ZLi[e] *xLi[f]], 

{f, B2ds3sfar[0, p] , A2ds3sfar[0, p]}] , [<f>, , —}]*p, 

{p, 0, Rsource}]] 

Etds3sfar21ist= Table[etds3sfar2[Mo99gaxnmas[[n]]], {n, 1, 8}]; 

etds3sf arlist = etds3sf arllist + stds3sfar21ist; 

£tds3sfarm= {{0, 0, 0, 0, 0, 0}, 
{£tds3sfarlist[[7]], 0, 0, 0, 0, 0}, {Etds3sfarlist[[6]], 0, 0,0, 0, 0}, 
{Etds3sfarlist[[5]], £tds3sfarlist[[8]], 0, 0, 0, 0}, 
{0, 0, £tds3sfarlist[[4]], 0, 0, 0}, 
{0, 0, £tds3sfarlist[[l]], £tds3sfarlist[[2]], £tds3sfarlist[[3]], 0}}; 

The following table shows the contribution of each zone to the total 
efficiency of the three-sided cylinder with a disk source. 

TableForm[Table[{£tds3sfarllist[[i]], 
Etds3sfar21ist[[i]], stds3s£arlist[[i]]}, {i, 1, 8}], 

TableHeadings-> {None, {"Inner Cone Total Eff.", 
"Outer Wedge Total Eff.", "Sum Total Eff."}}, 

TableAlignments -> Center]; 

The following is the equation to compute the total efficiency of the five- 
sided cylindrical detector crystal with a disk source 10 cm above.  It is 
assumed the ratio of the five-sided to three-sided crystal total 
efficiencies using a point source at a given distance is the same for using 
a disk source at the same distance. 
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etps5sfarlist 
etds5sfarlist =  * etds3sfarlist; 

etps3sfarlist 

etfar= {{0, 0, 0, 0, 0, 0}, 

{etds5sfarlist[[7]], 0, 0, 0, 0, 0}, {etds5sfarlist[ [6] ] , 0, 0, 0, 0, 0}f 
{etds5sfarlist[[5]], etds5sfarlist[[8]], 0, 0, 0, 0}, 

{0, 0, etds5sfarlist[[4]], 0, 0, 0}, 

{0, 0, etds5sfarlist[[l]], etds5sfarlist[[2] ], etds5sfarlist[[3]], 0}}; 

The following is the peak to total efficiency ratio which is presumed to be 

independent of distance.  This ratio will allow finding the peak efficiency 

from the calculated total efficiency with a disk source on the face of the 

detector.  The reference is Equation 11 and text, (McCallum and Coote, 1975), 

pg. 192. 

epds5sfarlist 
PKtoTTLds5slist =  ; 

etds5sfarlist 

TableForm[Table[{Mo99gainnas[[i]], etds5sfarlist[[i]], 

epds5sfarlist[[i]], PKtoTTLds5slist[[i]]}, {i, 1, 8}], 

TableHeadings-> {None, {"Mevn, "etds5sn# -epds5s", "P/T"}}, 

TableAlignments -> Center] 

Mev £tds5s        epds5s P/T 
0.777921 0.0113962 0.00329189 0.288859 
0.7395 0.0115246 0.00343397 0.29797 

0.411491 0.0128343 0.00558991 0.435546 
0.366421 0.0130694 0.00615309      0.4708 
0.181068 0.0154519 0.0104779 0.678097 
0.142675 0.0161608 0.0118159 0.731147 
0.140511 0.0162371 0.0118833 0.73186 
0.0405845 0.0150736 0.00231552 0.153614 

TableForm[Table[{Mo99gammas[[i]], etds3sfarlist[[i]], 

£tps5sfarlist[[i] ] , etps3sfarlist[[i] ] }, {i, 1, 8}], 

TableHeadings-> {None, {"Mev", "etds3s", "etps5s", "etps3sn}}, 

TableAlignments -> Center] 

Mev £tds3s       £tps5s       £tps3s 
0.777921 0.0114845 0.0114423 0.011531 
0.7395 0.0116127 0.0115715      0.01166 

0.411491 0.0129168 0.0128898 0.0129726 
0.366421      0.01315 0.0131267 0.0132075 

0.181068 0.0154876 0.0155308 0.0155667 

0.142675 0.0161736 0.0162487 0.0162615 
0.140511 0.0162477 0.016326 0.0163367 
0.0405845 0.0150736 0.0151698 0.0151698 
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Next, the total efficiency of the three-sided crystal with the disk source 

on the detector face is shown below.  (The procedure of using the ratios of 

the efficiencies is repeated to find the total efficiency for the five-sided 

crystal.)  The distance in cm between the detector's face and crystal 

includes the thickness of the Al can, the axial space (vacuum), and the Li 

contact. 

sourceheight = 0; 

The limits of integration for the five-sided cylinder: 

Array[Aps5sface, 4] ; 

Array[Bps5sface, 4] ; 

Array[xps5sface, 4] ; 

Bps5sface[4] =Cos[0]; 

Aps5sf ace [ 4 ] = Cos [ ArcTaxi [ 
(Rcrystal - Rdd) / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sface[4] [f_] = Add/ £; 

Bps5sface[3] =Aps5sface[4]; 

Aps5sface[3] =Cos[ 

ArcTan[ (Rcrystal - Rdd) / (sourceheight + Aldepth + gap + Lidepth + Add) ] ] ; 

xps5sface[3][?_] = 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal + Add) / f - 

(Rcrystal - Rdd) / Vl-f2 ; 

Bps5sface[2] =Aps5sface[3]; 

Aps5sface[2] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sface[2][£_] = Lcrystal/?; 

Bps5sface[l] =Aps5sface[2]; 

Aps5sface[l] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps5s£ace[l][f_] = 

Rcrystal/ V1 - f2 - (sourceheight + Aldepth + gap + Lidepth) / ?; 
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1 Vn etps5sface[e_] := —* > NIntegrate[(1 - Exp[-2Ge[e] *xps5sface[i] [£]]) * 
2 i=i 

Exp[-SAl[e] *xAl[f] -ZLi[e] *xLi[f]], 

{€, Aps5sface[i], Bps5sface[i]}]; 

etps5sfacelist=Table[etps5sface[Mo99gammas[[n]]], {n, 1, 8}]; 

The limits of integration for the solid cylinder with a point source: 

Array[Aps3sface, 2] ; 

Array[Bps3sface, 2] ; 

Array[xps3sface, 2] ; 

Bps3sface[2] =Cos[0]; 

Aps3sface[2] = 

Cos [ArcTan [Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps3sface[2] [§_] = Lcrystal/ f; 

Bps3s£ace[l] = Aps3sface[2]; 

Aps3sface[l] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps3sface[l][£_] = 

Rcrystal/ V1 - §2   - (sourceheight + Aldepth + gap + Lidepth) / f; 

1 vn etps3sface[e_] := —* > Nlntegrate[ (1 - Exp[-ZGe[e] *xps3sface[i] [?]])* 2 ti 
Exp[-SAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{£, Aps3s£ace[i], Bps3sface[i]}]; 

etps3sfacelist = Table[etps3sface[Mo99gairmas[ [n] ] ], {n, 1, 8}]; 

The limits of integration for the solid cylinder with a disk source: 

Alds3sface = Cos[0]; 

Blds3sface[0_, p_] = 

Cos[ArcTan[f-p*Sin[0] + "\/p2 * (Sin[0])2 - (p2 - Rcrystal2 ) J / 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal) 11; 

xlds3sface[£_] = Lcrystal/ f ; 
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A2ds3sface[tf>_, p_] = 

Cos[ArcTan[(-p*Sin[0]   + ^p2 * (Sin[0])2   -    (p2 - Rcrystal2 ) j / 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

B2ds3sface[0_, p_] = 

Cos[ArcTan[(-p*Sin[0]   + "\/p2 * (Sin[0])2   -    (p2 - Rcrystal2 ) j / 

(sourceheight + Aldepth + gap + Lidepth) ] ]; 

x2ds3sface[£_, <t>_, p_] = 

——==- f-p*Sin[0]   + yjp2 * (Sin[0])2   -   (p2 - Rcrystal2 ) j   - 
VTTf2" v ; 
(sourceheight + Aldepth + gap + Lidepth) 
 • 

etds3sfacel[e_] :=   (NIntegrate[ 
7T (Rsource)2 v 

NIntegrate[ 

NIntegrate[ 

(1 - Exp[-ZGe[e] *xlds3sface[f]]) * 

Exp[-EAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{f, Blds3sface[0, p] , Alds3s£ace}] , \4>, ,  —jj *p, 

{p, 0, Rsource}]] 

£tds3sfacellist = Table[etds3sfacel[Mo99gammas[[n]]], {n, 1, 8} ] ; 

etds3sface2[e_] :=   (NIntegrate[ 
7T (Rsource)2 * 

NIntegrate[ 

NIntegrate[ 
(1 - Exp[-EGe[e] *x2ds3sface[£, 4>, p] ]) * 

Exp[-SAl[e] *xAl[f] -2Li[e] *xLi[f]]# 

{£, B2ds3sface[0, p] , A2ds3sface[<£, p]}] ,  |0# ,  —jj *p, 

{p, 0, Rsource}] J 

Etds3sface21ist = Table[etds3sface2[Mo99gammas[[n] ]], {n, 1, 8}]; 

etds3sf acelist = etds3sf acellist + ctds3sf ace21ist; 

The following table shows the contribution of each zone to the total 

efficiency of the three-sided cylinder with a disk source. 
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TableForm[Table[{ctds3sfacellist[[i]], 

etds3sface21ist[[i]], etds3sfacelist[[i]]}, {i, 1, 8}], 

TableHeadings-> {NOne, {"Inner Cone Total Eff.", 

"Outer Wedge Total Eff.", "Sum Total Eff."}}, 

TableAlignments -> Center]; 

The following is the equation to compute the total efficiency of the five- 

sided cylindrical detector crystal with a disk source at the face.  It is 

assumed the ratio of the five-sided to three-sided crystal total 

efficiencies using a point source is the same for using a disk source at the 

same distance. 

etps5sfacelist 
etds5sfacelist =  * etds3sfacelist; 

etps3sfacelist 

Using the peak-to-total efficiency ratio calculated above, the peak 

efficiency of the five-sided crystal with a disk source at the face is shown 

below: 

epds5sf acelist = etds5sf acelist * PKtoTTLds5slist; 

To summarize the results up to present, a table is provided below. 

TableForm[Table[{Mo99gammas[[i]], ctds5sfacelist[[i]], 

epds5sfacelist[[i]]}, {i, 1, 8}], TableHeadings-> {None, 

{"Gannia (Mev)n, "Total Face Efficiency", "Peak Face Efficiency"}}, 

TableAlignments -> Center] 

Gamma (Mev)     Total Face Efficiency    Peak Face Efficiency 
0.777921 0.200224 0.0578365 
0.7395 0.202814 0.0604324 

0.411491 0.230221 0.100272 
0.366421 0.235375 0.110815 
0.181068 0.29407 0.199408 
0.142675 0.311384 0.227668 
0.140511 0.312996 0.22907 
0.0405845 0.25664 0.0394235 
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TableForm[Table[{Mb99gaimnas[ [i] ] , etds3sfacelist [ [i] ] , 

Etps5sfacelist[[i]], etps3sfacelist[[i] ] }, {i, 1, 8}], 

TableHeadings -> {None, {"Mev", "etds3sn, "etps5sn# 
B£tps3s"}}, 

TableAlignments -> Center] 

Mev etds3s etps5s etps3s 

0.777921 0.20133 0.205031 0.206163 

0.7395 0.203913 0.207689 0.208815 

0.411491 0.231198 0.235803 0.236804 

0.366421 0.236318 0.241084 0.242049 

0.181068 0.294406 0.300605 0.300948 

0.142675 0.31149 0.317405 0.317513 

0.140511 0.313083 0.318911 0.319 

0.0405845 0.25664 0.259284 0.259284 

The next step is to place the various coefficients for the summing 

correction equations in matrix form.  The reference is (Andreev and others, 

1972),  pg. 1358-1360. 

The internal conversion coefficients for Mo-99 are shown below.  The 

reference is (Peker, 1994), pg. 40-41.  Due to Mathematica's indexing, the 

ground state is level 1. 

a= {{0, 0, 0, 0, 0, 0}# {0.119, 0, 0, 0, 0, 0}, 

{29., 0, 0, 0, 0, 0}, {0.126, 3.2, 0, 0, 0, 0}, {0, 0, 0.0076, 0, 0, 0}, 

{0, 0, 0.00059, 0.0016, 0.003, 0}}; 

MatrixFormfa]; 

The following are branch ratios for cascading Mo-99 gammas in Chain 1 

(740-181&40-141), Chain 2 (777&411-366), and the Tc-99m Chain (142&2-140). 

The reference is (Peker, 1994), pg. 40-41.  Due to Mathematica's indexing, 

the ground state is level 1. 

xMol= {{0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, 

{0.579, 0.421, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0.739, 0, 0}}; 

MatrixForm[xMol]; 

xMto2 = {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, 

{0, 0, 0, 0, .0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0.260, 0, 0.001, 0}}; 

MatrixForm[xMo2]; 

xTcl = {{0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0}, {0.01, 0.99, 0, 0, 0, 0}, 

{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}; 

MatriXForm[xTcl]; 
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The peak face efficiencies are placed in a matrix according to their level 

transitions. 

epface= {{0, 0, 0, 0, 0, 0}, {epds5sfacelist[ [7] ], 0, 0, 0# 0, 0}, 

{Epds5s£acelist[[6] ] , 0, 0, 0, 0, 0}, 

{epds5sfacelist[[5]], epds5sfacelist[[8]], 0, 0, 0, 0}, 

{0, 0, epds5sfacelist[[4]], 0, 0, 0}, {0, 0, epds5sfacelist[ [1] ], 

epds5s£acelist[[2]], epds5sfacelist[[3]], 0}}; 

HatrixFoxm[epface]; 

MatrixFormfepfar]; 

The total face efficiencies are placed in a matrix according to their level 

transitions. 

etface= {{0, 0, 0, 0, 0, 0}, {etds5sfacelist [ [7] ], 0, 0, 0, 0, 0}, 

{Etds5sfacelist[[6]], 0, 0, 0, 0, 0}, 

{etds5sfacelist[[5]], etds5sfacelist[[8]], 0, 0, 0, 0}, 

{0, 0, etds5sfacelist[[4]], 0, 0, 0}, {0, 0, etds5sfacelist[ [1] ], 

etds5s£acelist[[2]], etds5sfacelist[[3]], 0}}; 

MatrixFormfetface]; 

MatrixFormfetfar]; 

The Mo-99 ß-  decay branch ratios are listed below in the array.  The 
reference is (Peker, 1994), pg. 42. 

ß =  {0, 0, 0.824, 0, 0.012, 0.164}; 

MatrixForm[/3] ; 

The following method adjusts the theoretical or normalized angular 

correlation coefficients for the geometric relation between source and 

detector.  The equation's form is W=  1 +A2exp-P2 (cos©) + A4exp-P4 (cosö) with 

Akexp=AkQk(-y-L,Y2) 1   Ak  being the theoretical coefficient, Pk  being the Legendre 

polynomial of order k, 6  being the angle between yi and y2, Qk = 

Jk(n) Jk(r3)    where 
Jb(Yi) Jo(y2) 

wnere . 
rB(a) 1 

J*(Y) = Zi=?nes JA(a) i Pk(cosa) [1 - Exp(-r(E^) x(a)  i) ] sinada. The 
reference is (Camp and Van Lehn, 1969), pg. 192-240. To calculate the Jk 

terms will involve repeating the above method of finding ratios of point 

source/disk source geometries. 

The following determines J2 and J4 for the three-sided cylinder with the 

disk source at the face of the detector. 
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J. r 
J2ds3sface[e_] :=  - NIntegrate[ 

7T (Rsource) 

NIntegrate[ 

NIntegrate[ 

[—* (£)2 ) * (1 - Exp[-SGe[e] *xlds3sface[f]]) * 

Exp[-EAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{£, Blds3sface[0, p], Alds3sface}] + NIntegrate[ 

f—* (f)2 ) * (1 - Exp[-SGe[e] *x2ds3sface[f, 0, p] ]) * 

Exp[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{£, B2ds3sface[0, p] , A2ds3sface[0, p]}] , 

{*' -J' j}]*p' 
{p, 0, Rsource}] 

1 r 
J2ds3sfar[e_] :=  NIntegrate [ 

7T (Rsource) 

NIntegrate[ 

NIntegrate[ 

(3        1 ^ 
_* (f)2 * (1 - Exp[-ZGe[e] *xlds3sfar[f] ]) * 

Exp[-ZAl[e] *xAl[f] -ZLi[e] *xLi[f]], 

{f, Blds3s£ar[0, p], Alds3sfar}] +NIntegrate[ 

[ —* (f)2 -  — J * (1 - Exp[-SGe[e] *x2ds3sfar[f, <j>, p] ]) * 

Exp[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{f, B2ds3sfar[0, p] , A2ds3sfar[4>, p] }] , 

{p, 0, Rsource}] 

J2ds3sfacelist= Table[J2ds3sface[Mo99gairanas[[i]]],  {i, 1, 8}]; 

J2ds3sfarlist=Table[J2ds3sfar[M099gammas[[i]]], {i, 1, 8}]; 
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J4ds3sface[e_] :=  — NIntegrate [ 
7T (Rsource) 

NIntegrate[ 

NIntegrate[ 

l 35    .30    ,   3 \ 
— * (S) * (€)    + — * (1 - Exp[-2Ge[e] *xlds3sface[f ] ]) * 

I 8 8 8 ) 
Exp[-SAl[e] *xAl[f] -ZLi[e] *xLi[f]], 
{£, Blds3s£ace[0, p] , Alds3sface}] + NIntegrate[ 

/35    4   30    2   3\ 

(1 - Exp[-SGe[e] *x2ds3sface[f, <fi, p] ]) * 
Exp[-SAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{Si B2ds3s£ace[0, p], A2ds3sface[0, p]}] , 

i*' "7' 7/J*p' 
{p, 0, Rsource}] 

1 r J4ds3sfar[e_] := NIntegrate [ 
7T (Rsource)2 

NIntegrate[ 

NIntegrate[ 

I 35 .        30 ,       3 ^ 
 * (f) * (S)    +  —   * (1 - Exp[-SGe[e] *xlds3sfar[f]]) * 

\ 8 ,8 8) 
Exp[-SAl[e] *xAl[f] -ELi[e] *xLi[f]], 

{g, Blds3s£ar[0, p] , Alds3sfar}] + NIntegrate[ 
/ 35    4   30    2   3 \ 

(1 - Exp[-ZGe[e] *x2ds3sfar[£, 0, p] ]) * 
Exp[-SAl[e] *xAl[f] -SLi[e] *xLi[£]], 
{f, B2ds3s£ar[0, p] , A2ds3s£ar[0, p]}] , 

* 

. 7T   7T . . 

{p, 0, Rsource}] 

J4ds3sfacelist = Table[J4ds3sface[Mo99gammas[ [i]] ], {i, 1, 8}]; 

J4ds3s£arlist=Table[J4ds3s£ar[Mo99gammas[[i]]], {i, 1, 8}]; 

Q2ds3s£ace = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q2ds3sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ds3sface = Table[1, {i, 1, 6}, {k, 1# 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ds3sfar = Table[1, {i, 1, 6}, {k, 1# 6}, {1, 1, 6}, {m, 1, 6}]; 
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J2ds3sfacelist[ 
Q2ds3sface[[6, 4, 4, 1]] = fc. , _ —— 

etds3sfacelist[ 

J2ds3sfarlist[[2 J2ds3sfarlist[[2' 
Q2ds3sfar[[6, 4, 4, 1] ] =  : -—: 

£tds3sfarlist[[2; 

J4ds3sfacelist[ J4ds3sfacelist[I 
Q4ds3sface[[6, 4, 4, 1]] =  :  

etds3sfacelist[| 

J4ds3sfarlist[[2] J4ds3sfarlist[[2' 
Q4ds3sfar[[6, 4, 4, 1]] =  -^ 

etds3sfarlist[[2; 

J2ds3sfacelist[ J2ds3sfacelist[ 
Q2ds3sface[[6, 4, 4, 2]] =  fcJ , , —— 

etds3sfacelist[ 

J2ds3sfarlist[[2 J2ds3sfarlist[[2' 
Q2ds3sfar[[6, 4, 4, 2] ] =    fcJ ,  g    ...   fcrr<v etds3sfarlist[[2 

J4ds3sfacelist[ J4ds3sfacelist[ 
Q4ds3sface[[6, 4, 4, 2]] =  - 

ctds3s£acelist[ 

J4ds3sfarlist[[2 J4ds3sfarlist[[2' 
Q4ds3sfar[[6, 4, 4, 2]] = .. . _ .. fcrr<v etds3sfarlist[[2 

J2ds3sfacelist[ J2ds3sfacelist[ 
Q2ds3sface[[6, 4, 2, 1] ] =        ——j 

£tds3sfacelist[ 

J2ds3sfarlist[[2 J2ds3sfarlist[[2 
Q2ds3sfar[[6, 4, 2, 1] 1 =  — 

etds3sfarlist[[2 

J4ds3sfacelistr J4ds3sfacelist[ 
Q4ds3sface[[6, 4, 2, 1]] = ——— —— 

etds3sfacelist[ 

J4ds3sfarlist[[2 

[2 

J4ds3sfarlist[ 
Q4ds3sfar[[6, 4# 2, 1] ] =  - 

etds3sfarlist[ 

J2ds3sfacelist[ 
Q2ds3sface[[4, 2. 2,  1]] =  - 

etds3sfacelist[ 

J2ds3sfarlist[[8 J2ds3sfarlist[[8 
Q2ds3sfar[ [4, 2. 2,  1] ] = fcj , ^     " 

etds3sfarlist[[8 

J4ds3sfacelist[ 
Q4ds3sface[[4, 2, 2, 1]] = ———  

£tds3sfacelist[ 

J4ds3sfarlist[[8 

[[8 

2] ] *J2ds3sfacelist 

2] ] *ctds3sfacelist 

] * J2ds3sfarlist[[5 

] * etds3sfarlist[[5 

2] ] *J4ds3sfacelist 

2] ] * etds3sfacelist 

] *J4ds3sfarlist[[5 

] * £tds3sfarlist[[5 

2] ] *J2ds3sfacelist 

2] ] *etds3sfacelist 

] * J2ds3sfarlist[[8 

] * etds3sfarlist[[8 

2] ] *J4ds3sfacelist 

2]] *£tds3sfacelist 

] * J4ds3sfarlist[[8 

] * etds3sfarlist[[8 

2] ] *J2ds3sfacelist 

2] ] * etds3sfacelist 

] * J2ds3sfarlist[[7 

] * etds3sfarlist[[7 

2]] *J4ds3sfacelist 

2] ] *£tds3sfacelist 

] * J4ds3sfarlist[[7 

]* £tds3sfarlist[[7 

8] ] *J2ds3sfacelist 

8] ] * £tds3sfacelist 

] * J2ds3sfarlist[[7 

] * £tds3sfarlist[[7 

8] ] * J4ds3sfacelist 

J4ds3sfarlist 
Q4ds3sfar[[4# 2,  2, 1] ] =   

£tds3sfarlist 

The following determines J2 and J4 for the five 
point source at the face of the detector. 

8] ] * £tds3sfacelist 

] * J4ds3sfarlist[[7 

] * £tds3sfarlist[[7 

-sided cylinder with 

5] 

si: 

5] 

si: 

8]: 

8]: 

si: 
8] 

7]: 

7] 

7]: 

7]: 

7]: 

7] 

7] 

7] 

the 
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J2ps5sface[e_] := 

— * VNIntegrate[   f —* (£)2 ] * (1 - Exp[-SGe[e] *xps5sface[i] [£]]) * 

Exp[-SAl[e] *xAl[f] -ZLi[e] *xLi[f]], 
{S, Aps5sface[i] , Bps5sface[i]}]; 

J2ps5s£ar[e_] := 

— *VNIntegrate[ (—* (f)2 j * (1 - Exp[-2Ge[e] *xps5sfar[i] [£]])* 

Exp[-2Al[e] *xAl[f] -ELi[e] *xLi[f]], 
{g, Aps5sfar[i], Bps5sfar[i]}]; 

J2ps5sfacelist = Table[J2ps5sface[Mo99gammas[[i]]], {i, 1, 8} ]; 

J2ps5sfarlist=Table[J2ps5sfar[Mö99gammas[[i]]], {i, 1, 8}]; 

1  4 

J4ps5sf ace [e_] : = — * V NXntegrate [ 
2       i.! 

I 35 .        30 ,        3 \ 
 * (f)4 * (f)2 +  — I * (1 - Exp[-SGe[e] *xps5sface[i] [£]])* 

V 8 8        8) 
Exp[-ZAl[e] *xAl[£] -ELi[e] *xLi[f]], 
{£, Aps5sface[i], Bps5sface[i]}]; 

1 4 

J4ps5s£ar [ e_] : = — * V NXntegrate [ 
2 i=i 

(—* (£)4 - — * (f)2 + — ] * (1 - Exp[-SGe[e] * aq?s5sfar[i] [£] ]) * 
\ 8 8 8 / 
Exp[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 
{£ , Aps5sfar[i] , Bps5sfar[i]}]; 

J4ps5sfacelist= Table[J4ps5sface[Mö99gaimnas[[i]]], {i, 1, 8}]; 

J4ps5sfarllst=Table[J4ps5s£ar[MC99gammas[[i]]], {i, 1, 8}]; 

Q2ps5sface = Table[1# {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q2ps5sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ps5s£ace = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ps5sfar= Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1# 6}]; 

J2ps5sfacelist [ [2] ] * J2ps5sfacelist [ [5] ] 
Q2ps5sface[ [6, 4, 4, 1] ] = 

Etps5sfacelist[[2]] * etps5sfacelist[[5]] 
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Q2ps5sfar[[6, 4, 4, 1] ] 
J2ps5sfarlist[[2 

Q4ps5sface[[6, 4, 4, 1]] = 

etps5sfarlist[[2 

J4ps5sfacelist[ 

Q4ps5sfar[[6, 4, 4, 1] ] 

etps5sfacelist[ 

J4ps5sfarlist[[2 

Q2ps5s£ace[[6, 4, 4, 2]] = 

Q2ps5sfar[[6, 4, 4, 2]] 

£tps5sfarlist[[2 

J2ps5sfacelist[ 

etps5sfacelist[ 

J2ps5sfarlist[[2 

Q4ps5sface[[6, 4, 4, 2]] = 

£tps5sfarlist[[2 

J4ps5sfacelist[ 

Q4ps5sfar[[6, 4, 4, 2]] 

etps5sfacelist[ 

J4ps5sfarlist[[2 

Q2ps5sface[[6, 4, 2, 1]] = 

Q2ps5sfar[[6, 4, 2, 1]] = 

Q4ps5sface[[6, 4, 2, 1]] 

Q4ps5sfar[[6, 4, 2, 1] ] = 

etps5sfarlist[[2 

J2ps5sfacelist[ 

stps5sfacelist[ 

J2ps5sfarlist[[2 

Etps5sfarlist[[2 

J4ps5sfacelist[ 

etps5sfacelist[ 

J4ps5sfarlist[[2 

Q2ps5sface[[4, 2, 2, 1] ] 

Q2ps5sfar[[4, 2, 2, 1] ] = 

Q4ps5sface[ [4, 2, 2, 1]] : 

Q4ps5sfar[[4, 2, 2,  1] ] = 

etps5sfarlist[[2 

J2ps5sfacelist[ 

etps5sfacelist[ 

J2ps5sfarlist[[8 

ctps5sfarlist[[8 

J4ps5sfacelist[ 

£tps5sfacelist[ 

J4ps5sfarlist[[8 

£tps5sfarlist[[8 

] * J2ps5sfarlist[[5 

] * Etps5sfarlist[[5 

2] 

2] 

]* 

]* 

2] 

2] 

]* 

]* 

2] 

2] 

]* 

]* 

2] 

2] 

]* 

]* 

2] 

2] 

]* 

]* 

8] 

8] 

]* 

]* 

8] 

8] 

* J4ps5sfacelist 

* £tps5sfacelist 

J4ps5sfarlist[[5 

£tps5sfarlist[[5 

* J2ps5sfacelist 

* £tps5sfacelist 

J2ps5sfarlist[[8 

£tps5sfarlist[[8 

* J4ps5sfacelist 

* etps5sfacelist 

J4ps5sfarlist[[8 

Etps5sfarlist[[8 

* J2ps5sfacelist 

* £tps5sfacelist 

J2ps5sfarlist[[7 

Etps5sfarlist[[7 

* J4ps5sfacelist 

* £tps5sfacelist 

J4ps5sfarlist[[7 

£tps5sfarlist[[7 

* J2ps5sfacelist 

* £tps5sfacelist 

J2ps5sfarlist[[7 

£tps5sfarlist[[7 

* J4ps5sfacelist 

* £tps5sfacelist 

] * J4ps5sfarlist[[7 

] * £tps5sfarlist[[7 

5] 

5] 

8] 

8] 

8] 

8] 

7] 

7] 

7] 

7] 

7] 

7] 

7] 

7] 

The following determines J2 and J4 for the three-sided cylinder with the 

point source at the face of the detector. 
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J2ps3sface[e_] := 

1      2 / 3 1 \ 
— *VNIntegrate[   — * (f)2 * (1 - Exp[-SGe[e] * scps3sface[i] [f] ]) * 

Exp[-EAl[e] *xAl[f] -SLi[e] *xLi[f]], 
{f, Aps3sface[i], Bps3sface[i]}]; 

J2ps3s£ar[e_] := 

1      2 / 3 1 \ 
— *VNIntegrate[  — * (£)2 * (1 - Exp[-2Ge[e] *xps3sfar[i] [£]])* 

Exp[-SAl[e] *xAl[f] -ELi[e] *xLi[f]], 
{f, Aps3sfar[i], 5ps3sfar[i]}]; 

J2ps3sfacelist=Table[J2ps3sface[Mo99gammas[[i]]], {i, 1, 8}]; 

J2ps3sfarlist = Table[J2ps3sfar[Mö99gammas[ [i]]], {i, 1, 8}]; 

1 Vi J4ps3sface[e_] : = — * > NIntegrate[ 

( 35 ,        30 ,        3 \ 
 * (£) * (f)    +  —   * (1 - Exp[-SGe[e] *xps3sface[i] [£]])* 

\  6 8 8 / 
Exp[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{f, Aps3sface[i], Bps3sface[i]}]; 

— ■ -H—' 
/35 .        30 ,        3\ 
 * (f)4 * (€)    +  —   * (1 - Exp[-ZGe[e] *xps3sfar[i] [£]])* 

V  8 8 8 ) 
Exp[-SAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{§, Aps3sfar[i], Bps3sfar[i]}]; 

J4ps3s£acelist=Table[J4ps3sface[Mo99gammas[[i]]], {i, 1, 8}]; 

J4ps3sfarlist=Table[J4ps3sfar[Mö99gammas[[i]]], {i, 1, 8}]; 

Q2ps3s£ace = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q2ps3sfar = Table[1, {i, 1, 6}, {k, 1, 6}# {1, 1, 6}, {m, 1, 6}]; 

Q4ps3sface = Table [1, {1, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ps3sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m# 1, 6}]; 

J2ps3sfacelist[[2]] *J2ps3s£acelist[[5]] 
Q2ps3s£ace[[6, 4, 4, 1] ] 

etps3sfacelist[[2]] * etps3sfacelist[[5]] 
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Q2ps3sfar[[6, 4, 4, 1]] = 

Q4ps3sface[[6, 4, 4, 1]] 

Q4ps3sfar[[6, 4, 4, 1]] = 

J2ps3sfarlist[[2 

£tps3sfarlist[[2 

J4ps3sfacelist[ 

£tps3sfacelist[ 

J4ps3sfarlist[[2 

Q2ps3s£ace[[6, 4, 4, 2]] = 

Q2ps3sfar[[6, 4, 4, 2] ] = 

Q4ps3sface[ [6, 4, 4, 2]] 

Q4ps3sfar[[6, 4, 4, 2]] = 

Q2ps3sface[ [6, 4, 2, 1]] 

Q2ps3s£ar[[6, 4, 2, 1]] = 

etps3sfarlist[[2 

J2ps3sfacelist[ 

Etps3sfacelist[ 

J2ps3sfarlist[[2 

etps3sfarlist[[2 

J4ps3sfacelist[ 

etps3sfacelist[ 

J4ps3sfarlist[[2 

£tps3sfarlist[[2 

J2ps3sfacelist[ 

etps3sfacelist[ 

J2ps3sfarlist[[2 

Q4ps3sface[[6, 4, 2, 1] ] = 

Q4ps3s£ar[[6, 4, 2, 1]] 

etps3sfarlist[[2 

J4ps3sfacelist[ 

etps3sfacelist[ 

J4ps3sfarlist[[2 

Q2ps3sface[ [4, 2, 2, 1]] = 

Q2ps3sfar[[4, 2, 2,1]]: 

Q4ps3sface[[4, 2, 2, 1]] 

Q4ps3sfar[[4, 2, 2,1]]: 

£tps3sfarlist[[2 

J2ps3sfacelist[ 

£tps3sfacelist[ 

J2ps3sfarlist[[8 

£tps3sfarlist[[8 

J4ps3sfacelist[ 

£tps3sfacelist[ 

J4ps3sfarlist[[8 

] * J2ps3sfarlist[[5 

] * etps3sfarlist[[5 

2] ] * J4ps3sfacelist 

2] ] *£tps3sfacelist 

] * J4ps3sfarlist[[5 

] * £tps3sfarlist[[5 

2] ] *J2ps3sfacelist 

2] ] *etps3sfacelist 

] * J2ps3sfarlist[[8 

] * etps3sfarlist[[8 

2] ] *J4ps3sfacelist 

2] ] *£tps3sfacelist 

] * J4ps3sfarlist[[8 

] * £tps3sfarlist[[8 

2] ] *J2ps3sfacelist 

2] ] * £tps3sfacelist 

] * J2ps3sfarlist[[7 

] * £tps3sfarlist[[7 

2] ] *J4ps3sfacelist 

2] ] *£tps3sfacelist 

] * J4ps3sfarlist[[7 

] * £tps3sfarlist[[7 

8] ] *J2ps3sfacelist 

8] ] * £tps3sfacelist 

] * J2ps3sfarlist[[7 

] * £tps3sfarlist[[7 

8] ] * J4ps3sfacelist 

8] ] * £tps3sfacelist 

] * J4ps3sfarlist[[7 

£tps3sfarlist[[8 

The following is the equation to compute the Jk 
cylindrical detector crystal with a disk source 
the ratio of the five-sided to three-sided crys 
is the same for using a disk source at the same 

5] 

5] 

8] 

8] 

8] 

8] 

7] 

7] 

7] 

7] 

7] 

7] 

7] 

7] 

] * £tps3sfarlist[[7 

of the five-sided 
at the face.  It is assumed 

tal Jjc's using a point source 
distance. 
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J2ps5sfacelist 
J2ds5sf acelist = ——^-^ r^—— * J2ds3sf acelist; 

J2ds5sfarlist 

J4ds5sfacelist 

J4ds5sfarlist 

J2ps3sfacelist 

J2ps5s£arlist 

J2ps3sfarlist 

J4ps5sfacelist 

J4ps3sfacelist 

J4ps5sfarlist 

* J2ds3sfarlist; 

* J4ds3sfacelist; 

* J4ds3sfarlist; 
J4ps3sfarlist 

Q2ds5sface = Table[1, {i, 1, 6}, {k, 1, 6}, {1# 1, 6}, {m# 1, 6}]; 

Q2ds5sfar = Table[1, {i, 1, 6}, {k; 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ds5sface = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q4ds5sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Q2ds5sface[[6, 4, 4, 1] ] = 

Q2ds5sfar[[6, 4, 4, 1] ] = 

Q4ds5s£ace[[6, 4, 4, 1]] = 

Q4ds5s£ar[[6, 4, 4, 1] ] = 

Q2ds5sface[[6, 4, 4, 2]] = 

Q2ds5sfar[[6, 4, 4, 2] ] = 

Q4ds5sface[[6, 4, 4, 2]] = 

Q4ds5sfar[[6, 4, 4, 2] ] = 

Q2ds5sface[[6, 4, 2, 1]] 

Q2ds5sfar[[6, 4, 2, 1]] = 

Q4ds5sface[[6, 4, 2, 1]] 

J2ds5sfacelist[[2]] * J2ds5sfacelist[ 

etds5sfacelist [ [2] ] * etds5sfacelist [ 

J2ds5sfarlist[[2]] * J2ds5sfarlist[[5] 

etds5sfarlist [ [2] ] * etds5sfarlist [ [5] 

J4ds5sfacelist[[2]] * J4ds5sfacelist[ 

etds5sfacelist [ [2] ] * etds5sfacelist [ 

J4ds5sfarlist[[2]] * J4ds5sfarlist[[5] 

etds5sfarlist[[2]] *etds5sfarlist[[5] 

J2ds5sfacelist[[2]] * J2ds5sfacelist[ 

Etds5sfacelist[[2]] * etds5sfacelist[ 

J2ds5sfarlist [ [2] ] * J2ds5sfarlist [ [8] 

etds5sfarlist[[2]] * etds5sfarlist[[8] 

J4ds5sfacelist [ [2] ] * J4ds5sfacelist [ 

£tds5sfacelist[[2]] *etds5sfacelist[ 

J4ds5sfarlist [ [2] ] * J4ds5sfarlist [ [8] 

etds5sfarlist [ [2] ] * £tds5sfarlist [ [8] 

J2ds5sfacelist [ [2] ] * J2ds5sfacelist [ 

£tds5sfacelist [ [2] ] * £tds5sfacelist [ 

J2ds5sfarlist [ [2] ] * J2ds5sfarlist [ [7] 

£tds5sfarlist [ [2] ] * £tds5sfarlist [ [7] 

J4ds5sfacelist[[2]] *J4ds5sfacelist[ 

etds5sfacelist[[2]] * £tds5sfacelist[ 

si: 
5]: 

si: 
5]: 

si: 
si: 

8] 

si: 

iy 
7]: 

7]: 

7] 
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J4ds5sfarlist[[2]1 * J4ds5sfarlist[[7]] 
Q4ds5sfar[[6, 4, 2, 1] ] 

Q2ds5sface[[4, 2, 2, 1]] = 

Q2ds5sfar[[4, 2, 2,1]]= 

Q4ds5sface[[4, 2, 2, 1]] = 

Q4ds5sfar[[4, 2, 2, 1]] = 

etds5sfarlist[ [2] ] * etds5sfarlist[ [7] ] 

J2ds5sfacelist[[8]] * J2ds5sfacelist[[7]] 

Etds5sfacelist[[8]] *etds5sfacelist[[7]] 

J2ds5sfarlist[[8]] * J2ds5sfarlist[[7]] 

etds5sfarlist[[8]] *etds5sfarlist[[7]] 

J4ds5sfacelist[[8]] * J4ds5sfacelist[[7]] 

£tds5sfacelist[[8]] * etds5sfacelist[[7]] 

J4ds5sfarlist [ [8] ] * J4ds5sfarlist [ [7] ] 

etds5sfarlist [ [8] ] * Etds5sfarlist [ [7] ] 

The following creates and initializes the matrix of angular correlation 
coefficients between cascading Mo-99 gammas.  The reference is (Gardulski 
and Wiedenbeck, 1974), pg.  262-265. 

Wps5sface = Table[1, {i, 1, 6}, {k, 1,  6}, {1, 1, 6}, {m, 1, 6}]; 

Wps5sfar = Table [1, {i, 1, 6}, {k, 1, 6),  {1, 1,  6}, {m,  1, 6}]; 

Wps5sface[[6, 4, 4, 1]] = 
1 + .061*Q2ps5sface[[6, 4, 4, 1]] - .004*Q4ps5sface[ [6, 4, 4, 1] ] ; 

Vtt>s5sfar[[6, 4, 4, 1]] = 
1 + .061*Q2ps5sfar[[6, 4, 4, 1] ] - .004*Q4ps5sfar[ [6, 4, 4, 1] ] ; 

Wps5sface[[6, 4, 4, 2] ] = 
1 - .089*Q2ps5sface[[6, 4, 4, 2] ] - .002 *Q4ps5sface[ [6, 4, 4, 2] ] ; 

Wps5sfar[[6# 4, 4, 2]] = 
1 - .089*Q2ps5sfar[[6, 4, 4, 2] ] - .002*Q4ps5sfar[ [6, 4# 4# 2] ] ; 

Wps5sface[[6, 4, 2, 1] ] = 
1 - .083*Q2ps5sface[[6, 4, 2, 1]] + .007 *Q4ps5sface[ [6, 4, 2, 1]]; 

Wps5sfar[[6, 4, 2,  1] ] = 
1 - .083*Q2ps5sfar[[6, 4, 2, 1]] + ,007*Q4ps5sfar[ [6, 4, 2, 1]]; 

Wps5s£ace[[4, 2, 2, 1]] = 
1 + .113*Q2ps5sface[[4, 2, 2, 1]] + ,004*Q4ps5sface[ [4, 2, 2, 1]]; 

Wps5sfar[[4, 2, 2, 1]] = 
1 + .113*Q2ps5sfar[[4# 2, 2, 1] ] + .004*Q4ps5sfar[ [4, 2, 2, 1] ] ; 

Wps3sface = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6), {m, 1,  6}]; 

Wps3sfar = Table[1, {i, 1, 6},  {k, 1, 6}, {1, 1, 6), {m, 1,  6}]; 
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Wps3sface[[6, 4, 4, 1]] = 
1 +  .061*Q2ps3sface[[6, 4, 4, 1] ]   -  .004*Q4ps3sface[ [6, 4, 4, 1] ] ; 

Wps3sfar[[6# 4, 4, 1] ] = 
1 +   .061*Q2ps3sfar[[6# 4, 4, 1] ]   -   .004*Q4ps3sfar[ [6, 4, 4, 1] ] ; 

Wps3sface[[6# 4, 4, 2]] = 
1 -   .089*Q2ps3sface[[6, 4, 4, 2]]   -  .002 *Q4ps3sface[ [6, 4, 4, 2] ] ; 

Wps3sfar[[6, 4, 4, 2]] = 
1 -   .089*Q2ps3sfar[[6, 4, 4, 2] ]   -   .002 * Q4ps3sfar[ [6, 4, 4, 2] ] ; 

Wps3sface[[6, 4, 2, 1] ] = 
1 -  .083*Q2ps3sface[[6, 4, 2, 1] ]   +   .007 *Q4ps3sface[ [6, 4, 2, 1] ] ; 

Wps3sfar[[6, 4, 2, 1]] = 
1 -   .083*Q2ps3sfar[[6, 4, 2, 1]]   +   .007*Q4ps3sfar[ [6, 4, 2, 1]]; 

Wps3sface[ [4, 2, 2, 1]] = 
1 +  .113*Q2ps3sface[[4, 2, 2, 1]]   + .004*Q4ps3sface[ [4, 2, 2, 1]]; 

Wps3sfar[[4, 2, 2, 1] ] = 
1 +   .113*Q2ps3sfar[[4, 2, 2, 1]]   + .004*Q4ps3sfar[ [4, 2, 2, 1] ] ; 

Wds3sface = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Wds3sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Wds3sface[[6, 4, 4, 1]] = 
1 + .061*Q2ds3sface[[6, 4, 4, 1] ] - .004*Q4ds3sface[ [6, 4, 4, 1] ] ; 

Wds3sfar[[6, 4, 4, 1] ] = 
1 + .061*Q2ds3sfar[[6, 4, 4, 1]] - .004*Q4ds3sfar[ [6, 4, 4, 1] ] ; 

Wds3s£ace[[6, 4, 4, 2]] = 
1 - ,089*Q2ds3sface[[6, 4, 4, 2] ] - .002*Q4ds3sface[ [6, 4, 4, 2]]; 

Wds3sfar[[6, 4, 4, 2]] = 
1 - .089*Q2ds3sfar[[6, 4, 4, 2] ] - .002 *Q4ds3sfar[ [6, 4, 4, 2]]; 

Wds3sface[[6, 4, 2, 1] ] = 
1 - .083*Q2ds3sface[[6, 4, 2, 1]] + .007 *Q4ds3s£ace[ [6, 4, 2, 1] ]; 

Wds3sfar[[6, 4, 2,  1]] = 
1 - .083*Q2ds3sfar[[6, 4, 2, 1]] + .007 *Q4ds3sfar[ [6, 4, 2, 1] ] ; 

Wds3s£ace[[4, 2, 2, 1]] = 
1 + .113*Q2ds3sface[[4, 2, 2, 1] ] + .004 *Q4ds3sface[ [4, 2, 2, 1]]; 
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Wds3sfar[[4, 2, 2, 1]] = 
1 +   .113*Q2ds3sfar[[4, 2, 2, 1] ]   + .004*Q4ds3sfar[ [4, 2, 2, 1] ] ; 

Now, the correlation factors are combined to make the one for the five-sided 
detector with a disk source. 

Wds5sface = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Wds5sfar = Table[1, {i, 1, 6}, {k, 1, 6}, {1, 1, 6}, {m, 1, 6}]; 

Wds5sface[[6, 4, 4, 1] ] = 
1 + .061*Q2ds5sface[[6, 4, 4, 1] ] - .004*Q4ds5sface[ [6, 4, 4, 1]]; 

Wds5sfar[[6, 4, 4, 1]] = 
1 + .061*Q2ds5sfar[[6, 4, 4, 1] ] - .004*Q4ds5sfar[ [6, 4, 4, 1] ] ; 

Wds5s£ace[[6, 4, 4, 2]] = 
1 - .089*Q2ds5sface[[6, 4, 4, 2] ] - .002*Q4ds5sface[ [6, 4, 4, 2] ] ; 

Wds5sfar[[6, 4, 4, 2]] = 
1 - .089*Q2ds5sfar[[6, 4, 4, 2] ] - .002*Q4ds5sfar[ [6, 4, 4, 2] ] ; 

Wds5sface[[6, 4, 2, 1]] = 
1 - .083*Q2ds5sface[[6, 4, 2, 1] ] + .007 *Q4ds5sface[ [6, 4, 2, 1]]; 

Wds5sfar[[6, 4, 2, 1] ] = 
1 - .083*Q2ds5sfar[[6, 4, 2, 1] ] + .007 *Q4ds5sfar[ [6,  4, 2,  1]]; 

Wds5s£ace[[4, 2, 2, 1]] = 
1 + .113*Q2ds5sface[[4, 2, 2,  1] ] + .004*Q4ds5sface[ [4# 2, 2, 1] ] ; 

Wds5sfar[[4, 2, 2,  1] ] = 
1 + .113*Q2ds5sfar[[4, 2, 2, 1]] + .004*Q4ds5sfar[ [4, 2, 2, 1]]; 

wlist= {nW[6,4,4,l]»# 
nW[6,4,4,2]", nW[6,4,2,l]", "W[4,2,2,l]"}; 

The tables below compare the correlation factors for the various geometries. 
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TableForm[ { {wlist [ [1] ] , Wfcs3sfar[ [6, 4, 4, 1] ] , 

W)?s5sfar[[6, 4, 4, 1] ], Wds3sfar[[6, 4, 4, 1]], Wds5sfar[[6, 4, 4, 1]]}, 

{wlist[[2]], W]ps3sfar[[6, 4, 4, 2]], 

Wps5sfar[ [6, 4# 4, 2] ] , Wds3sfar[ [6, 4, 4,2]], Wds5sfar[ [6, 4,4,2]]}, 

{wlist [ [3] ], Vfc>s3sfar[ [6, 4, 2, 1] ] , 

Wps5sfar[[6, 4, 2, 1] ] , Wds3sfar[[6, 4, 2, 1]], Wds5sfar[ [6, 4, 2, 1]]}, 

{wlist [ [4] ] , Wfc>s3sfar[ [4, 2, 2, 1] ] , W]ps5sfar[ [4, 2, 2, 1] ] , 

Wds3sfar[[4, 2, 2, 1] ], Wds5sfar[[4, 2, 2, 1]]}}, TableHeadings-> 

{None, {"Cascade", "Vft>s3sfar", "Wps5sfar", "Wds3sfar", "Wds5sfar"}}, 

TableAlignments -> Center] 

Cascade Wps3sfar Wps5sfar .Wds3sfar Wds5sfar 

W[6,4,4,l] 1.0525 1.05248 1.05206 1.05204 
W[6,4,4,2] 0.918297 0.918327 0.919145 0.919175 
W[6,4,2,1] 0.929824 0.929846 0.930396 0.930418 

W[4,2,2,l] 1.1039 1.10389 1.10273 1.10272 

TableForm[{ {wlist [[1]], W]ps3sface[ [6, 4, 4, 1] ] , Vft>s5sface[ [6, 4, 4, 1]], 

Wds3sface[[6, 4, 4, 1]], Wds5sface[ [6, 4, 4, 1]]}, 

{wlist[ [2] ] , Wfc>s3sface[ [6, 4, 4, 2] ], Vfl?s5sface[ [6, 4, 4, 2] ] , 

Wds3sface[[6, 4, 4, 2]], Wds5sface[[6, 4, 4, 2]]}, 

{wlist[[3]], Wps3sface[[6, 4, 2, 1]], Wfc>s5sface[ [6, 4, 2, 1]], 

Wds3sface[[6, 4, 2, 1]], Wds5sface[ [6, 4, 2, 1]]}, 

{wlist[ [4] ] , Wjps3sface[ [4, 2, 2, 1] ] , W)?s5sface[ [4, 2, 2, 1] ], 

Wds3sface[[4, 2, 2, 1]], Wds5sface[[4, 2, 2, 1]]}}, 

TableHeadings -> {None, 
{"Cascade", "WJ>s3sface", "WfcsSsface", "Wds3sface", "Wds5sface"}}, 

TableAlignments -> Center] 

Cascade Wps3sface Wps5sface Wds3sface Wds5sface 
W[6,4,4,l]      1.00405 1.00398 1.00423       1.00415 
W[6,4,4,2] 0.994496 0.994563 0.994286' 0.994356 
W[6,4,2,l] 0.995169 0.99524 0.99492 0.994993 
W[4,2,2,l]      1.00459 1.00458       1.0049        1.0049 

The following method determines the fraction of counts underneath an 

observed energy peak.  The peak represents the sum of direct and true 

coincidence gamma rays depositing the given energy.  The true activity has 

been normalized to one.  This method does not include the angular 

correlation coefficient W.  The reference is (Andreev and others, 1972), pg. 

1359. 

The number of energy levels  in Mo-99 in the simplified decay scheme is six 

(five plus ground state).  However due to Mathematica's automatic indexing 

at one, m = 6.  The terms are decoupled along the decay chains in order to 

calculate their contributions.  They will be summed at the end. 
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m= 6; 

rxMöl[[i, k]] *epfar[[i, k] ]    , 
aMolfar = Table [ - - - —, {i, 1, m}, {k# 1, m}]; L       l + a[[i, k]] 

J 

r xMoir [i, k] ] * epfacef [i, k] ]   , . 
aMblface = Table  LL   JJ -        , {i, 1, m}, {k# 1, m} ; L        l + a[[i, k]] 

MatrixFormfaMolface]; 

MatrixForm[aMolfar]; 

r /   £tface[[i, k]] ^ , 
bMölface = Table[xMöl[[i, k] ] * 1 :  , {i, 1, m}, {k, 1, m}]; L I    l + a[[i, k]] ; 

/   etfar[[i, k] ] \ , 
bMblfar = Table[xMtol[ [i, k] ] * 1 —  , {i, 1, m} , {k, 1, m} 1 ; L V   1+ a[[i, k]] ; 

MatrixFormfbMOlface]; 

MatrixForm[bMOlfar]; 

£Mölface = {0, 0, 0, 0, 0, 0}; 

£Mölfar = {0, 0, 0, 0, 0, 0}; 

m 
Do[«Molface[ [i] ] = ß [ [i] ] + J^  £Molface[ [n] ] *bMolface[ [n, i] ], 

n=i+l 

{i, m, 1, -1}] 

m 

Do[BMölfar[[i]] = J3[[i]] +  ^ £Mblfar[[n]] *bMolfar[ [n, i] ], {i, m, 1, -1}] 
n=i+l 

MatrixFormfSMolface]; 

MatrixFormfiBMolfar] ; 

MMölface= {1, 1, 1, 1, 1, 0}; 

A«tolfar= {1, 1, 1, 1, 1, 0}; 

mm = m- 1; 

k-l 

Do[MMolface[ [k] ] = VbMolface[ [k, j] ] * MMolface[ [j] ], {k, 2, mm}] 
3 = 1 

k-l 

Do[MMt>lfar[[k]] = YbMolfar[ [k, j] ] *MMolfar[ [j] ] , {k, 2, mm}] 
J=i 

MatrixForm[MMolface] ; 
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MatrixFormfAIMolfar] ; 

.HMolf ace = Table [0, {i, 1, m}, {j, 1, m}]; 

flMölfar = Table [0, {i, 1, m}, {j, 1, m}]; 

Do[Do[^ltolface[[i# k] ] = 

i-l 
aMblface[[i, k] ] +   V aM£>lface[ [i, j]] * flMblf ace [ [ j, k] ], {k, 1, i}], 

j=k+l 

{i, 2, m}] 

Do[Do[^lMölfar[[i, k] ] = 

i-l 
aMolfar[[i, k] ] +  ^ aMolfar[ [i, j] ] *.9lMolfar[ [j, k] ], {k, 1, i}] # 

j=k+l 

{i, 2, m}] 

MatrixFormf jTMolface]; 

MatrixForm[ jtMolfar] ; 

SMölface = Table[SMolface[ [i] ] *5IMolface[ [i, k] ] * MMolface[ [k] ] , 

{i, 1, m}# {k, 1, m}]; 

SMolfar = 

Table [SMölfarf [i] ] *S0Sol£ax[ [i, k] ] * MMölfar[ [k] ] , {i, 1, m}, {k, 1, m}] ; 

MatrixForm[SMolface]; 

MatrixFormfSMolfar]; 

The following is the contribution from the second, decoupled Mo-99 decay- 

chain. 

SMo2face = {0, 0, 0, 0, 0, 0}; 

£Mo2far = {0, 0, 0, 0, 0, 0}; 

5fMo2 f ace = Table [0, {i, 1, m}, {j, 1, m}]; 

51Mo2far = Table[0# {i, 1, m}, {j, 1, m}]; 

MMo2face = {0, 0, 0, 0, 0, 0}; 

A«to2far= {0, 0, 0, 0, 0, 0}; 

5Mo2face = Table[0, {i, l,m}, {k, 1, m}]; 

SMb2far = Table [0, {i, 1, m}, {k, 1, m}]; 
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/ (       etface[[6, 5] ] ^ 
SMb2face[[5]] = ^/3[[5]] + ß[ [6] ] *xMö2 [ [6, 5] ] * ^1 -     ± + Jj; 

m o*       rrC   „i      fxMb2[[5, 3]]*epface[[5, 3]] ^ 
*Mb2face[[5, 3]] =      ; 

^ l + a[ [5, 3] ] 7 

MMto2face[[3]] = (1) ; 

/ /        £tface[[6, 5]] \\ 
,SMö2face[[5, 3]] = ^[[5]] + j8[[6] ] *xMo2[ [6, 5] ]* ^1 - ____-—— j j 

/xMto2[[5, 3]] *cpface[[5, 3]] \ 
    * (1) ; 

{ l+«[[5, 3]] ) 

i                                                              I       etfar[[6, 5]] \\ 
3Mo2far[[5]] =   /3 [ [5] ] + 0[[6] ] *xMo2[ [6, 5] ] *   1- -———-; 

V ^      i + a[[6, 5]]  ;; 

fxMo2[[5, 3]] *ej 
*Mö2far[[5, 3]] =      JJ 

^ l + a[[5. 

xMo2[[5, 3]] *epfar[[5, 3]] 

'[[5, 3]] 

MMo2far[[3]] = (1) ; 

/ /       etfar[[6, 5]] \\ 
.SMö2far[[5, 3]] =   /3[[5]] + jB[ [6] ] *xMo2[ [6, 5] ] *   1 - ———— 

V ^ l + a[[6, 5]]    J J 

/xMo2[[5, 3]] *epfar[[5, 3]] \ 

{ l + «[[5, 3]] J * (i) ; 

2Hb2£ace[[6]] = (J8[[6]]); 

xMo2[[6, 3]] *epface[[6# 3]] 
OTfo2face[ [6, 3]] 

/xMo2[[6, 3]] *ep 

I l + «[[6. [[6, 3]] 
xMo2[[5, 3]] *epface[[5# 3]]  xMö2[[6, 5]] *epface[[6, 5]] 

* 
l + «[[5, 3]] l + a[[6, 5]] 

A-Mo2face[[3]] = (1); 

xMo2[[6# 3]] *epface[[6, 3]] 
3Mt>2face[[6, 3]] = (j3[[6]]) * 

l + a[[6, 3]] 

xMb2[[5, 3]] *epface[[5, 3]]  xMb2[[6, 5]] *epface[[6, 5]] 
* I * 

l + «[[5, 3]] l + a[[6, 5]] 

(i); 

SMö2far[[6]] = (/3[[6]]); 

(xMo2[[6, 3]] *epfai 

{ l + a[[6, 3]; 

)» 

nn, o*     rr^    „„      . xMb2[[6, 3]]*ep£ar[[6, 3]] 
5lMo2far[ [6, 3] ] =     + 

xMo2[[5# 3]] *epfar[[5, 3]]      xMo2[[6, 5]] *epfar[[6, 5]] 

l + a[[5, 3]] l + a[[6, 5]] 

>VMö2far[ [3] ] = (1); 
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/xMö2[[6, 3]] *epfar[[6, 3]] 
SMo2far[ [6, 3] ] - (jB [ [6] ]) *   

l + a[[6, 3]] 

xMö2[[5, 3]] *epfar[[5, 3]]  xMö2[[6, 5]] *epfar[[6, 5]] 

l + a[[5, 3]] l + a[[6, 5]] 

(i); 

^ ^       rr*    c,,      /xMb2[[6, 5]] *epface[[6, 5]] \ 
*IMb2face[[6, 5]] =     -      ; 

V l + a[[6, 5]] ; 

/       etface[[5, 3]] ^ 
AUfo2face[[5]] = xMb2[[5, 3]]*   1- —  ; 

V l + o[[5, 3]]     I 

I xMto2[[6, 5] ] * epface[ [6, 5] ] 
,SMö2face[[6, 5]] = </B[[6]])*           .       rrg   B1,       

V l + a[[6, 5]] 
/ /       etface[[5, 3]] \\ 
xMö2[[5, 3]] *   1 — —     ; 

{ I l + «[[5, 3]]     )) 

n., •>*     rrc    C11      (xMb2[[6, 5]]*ep£ar[[6, 5]] \ 
jWfo2far[[6, 5]] =     -      ; 

V l + a[[6, 5]] y 

/       etfar[[5, 3]] ^ 
AHfo2far[[5]] = xMb2[[5, 3]]*   1-- \l        \      ; 

V 1 + o[ [5, 3] ]   ) 

I xMö2 [ [6, 5] ] * epfar[ [6, 5] ] \ 
.SMo2far[[6, 5]] = (/8[[6]])*     JJ ll —   * 

\ l + a[[6, 5]] J 
etfar[[5, 3]] / /        etfar[[5, 3]M\ 

xMC2[[5, 3]]*   1-- iL—iL     , 
I ^    l + a[[5, 3]] )] 

The following is the contribution from the third, decoupled Tc-99m decay- 

chain.  Due to the near zero detection efficiency of a 2.1726 keV gamma ray, 

the 5Tcl[[3,2]] contribution is negligible. 

OIIW1      /3[[6]]*xMö2[[6, 3]] 
/3Tcl =   + 

l+«[[6, 3]] 
0[[5]]*xHo2[[5, 3]]       /        jB [ [6] ] *xMC2 [ [6, 5]] 

— *  1+ :       +/3[[3]]; 
f±i   £[[6]]*xMC2[[6, 5]] \ 

[   + l + a[[6, 5]] J l + a[[5, 3]] 

STclface= {0, 0# 0, 0, 0, 0}; 

STclfar = {0, 0, 0, 0, 0, 0}; 

tfTclface=Table[0, {i, 1, m}, {j, 1, m}]; 

MTclfar=Table[0, {i# 1, m), {j, 1, m}]; 

MTclface = {0, 0, 0, 0, 0, 0}; 

MTclfa.r= {0, 0, 0, 0, 0, 0}; 

STclface = Table[0, {i, 1, m}, {k, 1, m}]; 
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,STclfar = Table[0, {i, 1, m}, {k, 1, m}]; 

£Tclface[[2]] = (/3Tcl*xTcl[ [3, 2]]); 

„nw,*       rro   ,11      r xTcl[[2, l]]*epface[[2, 1]] ^ 
MTclface[ [2, 1] ] =        ; 

I 1 +at [2,1]] I 

MTclface[[l]] = (1) ; 

>STclface[[2, 1]] = 
I xTclf[2, 1] ] * epface[[2, 1] ] \ 

(/3Tcl*xTcl[[3, 2]])*     JJ  Ü-   *(1); 
v i + a[[2, i]] ; 

£Tclfar[[2]] = (/3Tcl*xTcl[[3, 2]]); 

„nw,*     rn   in      fxTcl[[2, 1] ] *epfar[[2, 1]] ^ 
flTclfar[ [2, 1] ] =        ; 

I l + a[[2, 1]] J 

MTclfar[[l]] = (1)| 

, xTcl[[2, 1] ] * £pfar[[2, 1] ] 
STclfar[[2, 1]] = (/3Tcl * xTcl [ f~      

/xTcl    2,1     *epfar    2,1 
[3' 2 ]> *  ;—rro  ,,„  * (i); I l + a[[2, 1]] } 

jSTclface[[3]] = (/3Tcl); 

xTcl[[3, 1]] *epface[[3, 1] ] 
#Tclface[[3, 1]] = 

l + a[[3, 1]] 

( xTclf[3, 1] ] * epfac 

i       l + *[[3, 1]; 

, xTcl[[3, 1] ] * epface[[3, 1] ] , 
,STclface[ [3, 1] ] = ()3Tcl) * | ——^        — — \ * (1) ; 

STclfar[ [3] ] = (/3Tcl) ; 

xTcl[[3, 1] ] * epfar[[3, 1] ] 
J(Tclfar[ lu _ I xTcl[ [3, 1] ] * epfar[ [3, 1] ] \ 

I        i+«[[3, in        r 

/ xTcl[[3, 1] ] * epfar[[3, 1] ] ^ 
.STclfarf [3, 1] ] = (/Mtal) *        ,„ ,„ ~ * W ■ 

\ l + a[[3, 1]]       } 

The following combines all the contributions from the decoupled decay chains. 
Note: It is assumed that Tc-99m is in secular equilibrium with Mo-99; i.e., 
their activities are equal. 

St ar = vSTclfar + £Molf ar + 5Mo2f ar; 
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MatrixForm[Sfar] 

0 0 0 0 

0.00976995 0 0 0 

3.4602xl0"6 0 0 0 

0.000645766 0.0000274028 0 0 

0 0 0 0000742688 0 

0 0 \ 
0 0 

0 0 

0 0 

0 0 

19xl0~7 o J , 2.23977xl0"6    9.50439xl0"8     0.000140289     0.000409061    9.02149x10 

Sf ace = STclf ace + SMolface + SMo2f ace; 

MatrixForm [Sface] 

0 0 0 0 0 0 \ 
0.185865 0 0 0 0 0 

0.0000666706 0 0 0 0 0 

0.00998895 0.000275118 0 0 0 0 

0 0 0 00133364 0 0 0 

,   0.000755717     0.0000208141     0.0024665     0.00521012    0.0000125654    Oj 

The   following  is   to  show an estimate  of   the uncorrected values   ignoring 
summing-in and  -out  effects. 

Sunface = Table[0, {i, 1, m}, {k, 1, m}] ; 

2unfar = Table [0, {i, 1, m}, {k, 1, m}]; 

x = xMol + xMo2 + xTcl; 

x[[2, 1]] =1; 

Do[ 
m 

Do[#unface[ [i, k] ] = ß[ [i] ] +   V 2unface[ [n, i] ] *x[ [n, i] ] , {k, 1, mm}] , 
n=i+l 

{i, m, 1, -1}] 

m 

Do[Do[sunfar[[i, k] ] =/3[[i]] +  ^ Sunfar[[n, i] ] *x[ [n, i] ] , {k, 1, mm}], 
n=i+l 

{i, m, 1, -1}] 

tfunface = Table[0# {i, 1, m}, {j, 1, m}]; 

rtunfar = Table [0, {i, 1, m}, {j, 1, m}]; 

T>_rTv_r«    «       rr-    1.1,      x[[i, k]] *epface[[i, k]] . Do[Do[.flunface[[i., k] ] =   , {k, 1, x}\, {x, 2, m}\ 1     L l + a[[x, k]] J J 

T^r^r»    *    rr-    I.,,      x[[I, k]] *epfar[[i, fc]] . , Do[Do[.?lunfar[[i, k] ] = ;—- , {k# 1, x}\, {x, 2, m}] 
l + a[[i, k]] J J 
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Muafa.ce = Table[1, {i, 1, m}, {k, 1, m}]; 

Monfax = Table[1, {i, 1, m}# {k, 1, m}]; 

Sunface = Table [ Sunface [ [i, k] ] * #unface[ [i, k] ] * Munface[ [i, k] ], 

{i, 1, m}# {k, 1, m}]; 

Sunfacelist= 

{Sunface[[6, 3]], Sunface[[6, 4]], Sunface[[6, 5]], Sunface[[5, 3] ] , 

Sunface[ [4, 1] ], Sunface[ [3, 1] ], Sunface[ [2, 1] ] , Sunface[ [4# 2] ] }; 

Sunfar = Table[£unfar[ [i, k] ] *#unfar[ [i, k] ] * Munfar[ [i# k] ] , 

{i, 1, m}, {k, 1, m}]; 

Sunfarlist= 
{Sunfar[ [6, 3] ], Sunfar[ [6, 4] ] , Sunfar[ [6, 5] ] , Sunfarf [5, 3] ] , 

Sunfar[[4, 1] ] , Sunfar[[3, 1]], Sunfar[[2, 1] ], Sunfar[[4, 2]]}; 

MatrixForm[Sunface] 

0 0 0 0 

0.188545 0 0 0 

0.0000666917 0 0 0 

0.0124271 0.000478934 0 0 

0 0 0 00133778 0 

0 0 0 00246469 0.0072 

0 \ 
0 
0 
0 
0 

MatrixForm [ Sunfar ] 

0.00978103 

3.46129x10" 
0.000652984  0.00002813 

0 0 
0 0 

0 0 
0 0 

0.0000742816 0 

0 \ 
0 

0 
0 
0 

0 0      0.000140284  0.000415519 9.14004xl0~7 oj 

MatrixForm [Evaluate[Sface / Sunface] ] ; 

Ratiofacelist= 

{Evaluate [Sface/Sunface] [[6, 3]], Evaluate [Sf ace /Sunf ace] [[6, 4]], 

Evaluate[Sface/ Sunface] [ [6, 5] ] , Evaluate[Sface/Sunface] [ [5, 3] ], 

Evaluate [Sface/Sunface] [ [4, 1] ] , Evaluate[Sface/ Sunface] [ [3, 1] ], 

Evaluate [Sf ace / Sunface] [ [2, 1] ], Evaluate [Sface / Sunface] [ [4, 2] ]}; 

MatrixForm [Evaluate [Sf ar / Sunf ar] ] ; 
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Ratiofarlist= 
{Evaluate[Sfar /Sunfar] [ [6, 3] ] , Evaluate [Sfar/Sunfar] [ [6, 4] ] , 
Evaluate [Sfar/Sunfar] [ [6, 5] ], Evaluate[Sfar/ Sunfar] [ [5, 3] ] , 
Evaluate [Sfar/Sunfar] [ [4, 1] ], Evaluate[Sfar / Sunfar] [ [3, 1] ], 
Evaluate [Sfax I Sunf ar] [ [2, 1] ] , Evaluate [Sfar / Sunf ar] [ [4, 2] ] } ; 

r       r Sf ace - .Sunf ace n n 
Hat rixForm Evaluate    ; L       L    Sface    JJ 

r       r Sfar - Sunf ar ..., 
MatrixForm Evaluate    ; L       L    Sfar    JJ 

The tables below compare the corrected and uncorrected peak count fraction- 

the fraction of decays that result in gamma rays depositing their full 

energy in the detector crystal and causing a count in the full energy peak. 

Sfacelist = {Sface[[6, 3]], Sface[[6, 4] ], Sface[[6, 5] ], Sface[[5, 3] ] , 
Sface[[4, 1] ], Sfacef[3, 1] ] , Sface[[2,  1] ] , Sfacef[4# 2] ] }; 

Sfarlist = {Sfar[[6, 3]], Sfar[[6, 4]], Sfar[[6, 5]], Sfar[[5, 3] ] , 
Sfar[[4, 1]], Sfar[[3, 1]], Sfar[[2, 1] ] , Sfar[[4# 2]]}; 

TableForm[ Table [ {Mo99gairmas [[!]], 

Sunfarlist[ [i] ] , Sfarlist [ [i] ] , Ratiofarlist [ [i] ] }, {i,  1, 8}], 
TableHeadings-> {None, {"Gamma (Mev)", 

"Far, üncrtd Peak Prob", "Far, Crtd Peak Prob", "Ratio"}}, 

TableAlignments -> Center] 

Gamma (Mev) 
0.777921 
0.7395 

0.411491 
0.366421 
0.181068 

0.142675 
0.140511 
0.0405845 

Far, Uncrtd Peak Prob 
0.000140284 
0.000415519 

9.14004xl0"7 

0.0000742816 
0.000652984 

3.46129xl0"6 

0.00978103 
0.00002813 

Far,   Crtd Peak Prob Ratio 
0.000140289 1.00004 
0.000409061 0.984457 

9.02149xl0"7 0.987029 
0.0000742688 0.999827 
0.000645766 0.988946 

3.4602xl0"6 0.999684 
0.00976995 0.998868 

0.0000274028 0.97415 
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TableForm[Table[ {Mo99gammas[ [i] ], 

Sunfacelist [ [i] ], Sfacelist [ [i] ] , Ratiofacelist [ [i]]}, {i, 1, 8}], 

TableHeadings-> {None, {"Gamma (Mev)", 

"Face, Uncrtd Peak Prob", "Face, Crtd Peak Prob", "Ratio"}}, 

TableAlignments -> Center] 

Gamma (Mev)     Face, Uncrtd Peak Prob    Face, Crtd Peak Prob      Ratio 
0.777921 0.00246469                0.0024665 1.00073 
0.7395 0.00731246 0.00521012 0.712499 

0.411491 0.0000163954 0.0000125654          0.7664 
0.366421 0.00133778 0.00133364 0.996905 
0.181068 0.0124271 0.00998895 0.803802 
0.142675 0.0000666917 0.0000666706 0.999684 
0.140511 0.188545                 0.185865 0.985784 
0.0405845 0.000478934 0.000275118 0.574438 

AFTACepds5sface= 

Table[epds5sfacelist[[i]] * Ratiofacelist [ [i] ], {i, 1, 8}]; 

The table below shows the adjusted face peak efficiency that AFTAC could use 

in its ananlysis. 

TableForm [ Table [{Mo99gammas[[i]], epds5sfacelist[[i] ], 

Ratiofacelist[ [i] ] , AFTACepds5sface[ [i] ] } , {i, 1, 8} ] , 

TableHeadings-> {None, {"Gamma (Mev)", 

"Face Peak Eff.", "Ratio", "Adjusted Face Peak Eff."}}, 

TableAlignments -> Center] 

Gamma (Mev) Face Peak Eff.      Ratio      Adjusted Face Peak Eff. 
0.777921 0.0578365 1.00073 0.0578788      /' 
0.7395 0.0604324 0.712499 0.043058 

0.411491 0.100272 0.7664 0.0768482 
0.366421 0.110815 0.996905 0.110472 

0.181068 0.199408 0.803802 0.160284      :, : 
0.142675 0.227668 0.999684 0.227596      -:, ,• 
0.140511 0.22907 0.985784 0.225813      5 -ß 

0.0405845 0.0394235 0.574438 0.0226463 

The following section is the error propagation of the correction factors. 

Standard deviations come from (Peker, 1994), pg. 40-41 unless otherwise 

noted. 

oa = {{0, 0, 0, 0, 0, 0}, {0.003, 0, 0, 0, 0, 0}, 
{3., 0, 0, 0, 0, 0}, {0.007, 0.2, 0, 0, 0, 0}, {0, 0, 0.0010, 0, 0, 0}, 

{0, 0, 0.00008, 0.0004, 0.001, 0}}; 
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/3[[61] *xMöl[[6, 41] 
ai=  LL JJ LL   JJ *{{0, 0, 0, 0, 0, 0}# {0.0019, 0, 0, 0, 0, 0}, 

l + a[[6, 4]] 

{0.00002, 0, 0, 0, 0, 0}, {0.006, 0.0027, 0, 0, 0, 0}, 

{0, 0, 0.0011, 0, 0, 0}, {0, 0, 0.004, 0.01, 0.00005, 0}}; 

aepfar= {{0, 0, 0, 0, 0, 0}, {0.015* epds5sf arlist [ [7] ] , 0, 0, 0, 0, 0}, 

{0.015 *epds5sf arlist [[6]], 0, 0, 0, 0, 0}, 

{0.015* epds5sfarlist [[5]], 0.015* epds5sfarlist[ [8] ] , 0, 0, 0, 0}, 

{0, 0, 0.015* epds5sfarlist[[4]], 0, 0, 0}, 

{0, 0, 0.015* epds5sfarlist[[1]], 0.015* epds5sfarlist [ [2] ], 

0.015* epds5sfarlist[[3]], 0}}; 

The following tolerances in the branch ratios are derived standard 

deviations from the gamma ray intensity.  The error from angular correlation 

is neglected due to its small effect on the resulting correction factors. 

The deviation of the total efficiency is not explicity known, but it is on 

the order of 1% to 2% higher than that of the peak efficiency.  Thus a 

constant 3% is used. 

<7£tps5sfar= {{0, 0, 0, 0, 0, 0}, {0.03* ctps5sfarlist [ [7] ] , 0, 0, 0, 0, 0}, 

{0.03 *etps5sfarlist[ [6] ], 0, 0, 0, 0, 0}, 

{0.03 *etps5sfarlist [[5]], 0.03 * etps5sfarlist [ [8] ], 0, 0, 0, 0}, {0, 0, 

0.03 *etps5sfarlist [[4]], 0, 0, 0}, {0, 0, 0.03 * etps5sfarlist [ [1] ], 

0.03 *etps5sfarlist [[2]], 0.03* etps5sfarlist[ [3] ] , 0}}; 

aetps3sfar= {{0, 0, 0, 0, 0, 0}, {0.03* etps3sf arlist [ [7] ] , 0, 0, 0, 0, 0}, 

{0.03 *etps3sfarlist[[6]], 0, 0, 0, 0, 0}, 

{0.03 *etps3sfarlist[[5]], 0.03* etps3sfarlist[ [8] ] , 0, 0, 0, 0}, {0, 0, 

0.03 *etps3sfarlist[[4]], 0, 0, 0}, {0, 0, 0.03* etps3sfarlist [ [1] ], 

0.03 *etps3sfarlist [[2]], 0.03 * etps3sfarlist [ [3] ], 0}}; 

CT£tds3sfar= {{0, 0, 0, 0, 0, 0}, {0.03* etds3sfarlist [ [7] ], 0, 0, 0, 0, 0}, 

{0.03 * etds3sfarlist [ [6]], 0, 0, 0, 0, 0}, 

{0.03*etds3sfarlist[[5]], 0.03* etds3sfarlist[ [8] ], 0, 0, 0, 0}, {0, 0, 

0.03*etds3sfarlist[[4]], 0, 0, 0}, {0, 0, 0.03* etds3sfarlist[ [1] ] , 

0.03*etds3sfarlist[[2]], 0.03* etds3sfarlist[ [3] ], 0}}; 

aetfar = Table[0, {i, 1, m}, {k, 1, m}]; 
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aetfar[[2# 1] ] 
'( etds3sfarlist[[7]]\2 

*aetps5sfar[[2, 1] ] + 
I etps3sfarlist[[7]] 

((etps5sfarlist[ [7] ] * ctds3sfarlist[ [7] ]) / etps3sfarlist[ [7] ]2) A2* 

aetps3sfar[[2, 1] ]2 + 

£tps5sfarlist[[7] ] 

£tps3sfarlist[[7] ] 
*<j£tds3sfar[[2, 1]]' 

1 

1'' 

aetfar[[3, 1]] = 
' / etds3sfarlist[[6]] 

* CT£tps5sfar[[3, 1] ] + 
V etps3sfarlist[[6] ] 

((etps5sfarlist [ [6] ] * etds3sfarlist [ [6] ]) / etps3sfarlist [ [6] ]2) A2 * 
<j£tps3sfar[ [3, 1] ]2 + 

I etps5sfarlist[[6] ] * 2 

etps3sfarlist[[6]] 
*CTetds3sfar[[3, 1]]' 

1 

~2 

a£tfar[[4, 1] ] 
' / etds3sfarlist[[5]] ^ 2 

I £tps3sfarlist[[5]] 
* a£tps5sfar[[4, 1] ] + 

((£tps5sfarlist [ [5] ] * £tds3sfarlist[ [5] ]) / £tps3sfarlist [ [5] ] ) A2 * 
<7£tps3sfar[ [4, 1] ]2 + 

etps5sfarlist[[5] ] 

£tps3sfarlist[[5] ] 
j * a£tds3sfar [ [4# 1] ]

2 

1 

cjEtfar[[4, 2]] = 
7 £tds3sfarlist[[8]] \2        fc ^c rrA    oii2 
V £tps3sfarlist[[8]] 

* a£tps5sfar[[4, 2] ] + 

((£tps5sfarlist [ [8] ] * £tds3sfarlist[ [8] ]) / etps3sfarlist[ [8] ]2) A2 * 
cr£tps3sfar[ [4, 2] ]2 + 

( 

Etps5sfarlist[[81] \2 , 
-!^^-     *a£tds3sfar[[4# 2]]2 

[[8]]J etps3sfarlist[ 
1 

~2 
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aetfar[[5, 3]] = 
etds3sfarlist[[4] ] 

etps3sfarlist[[4]] 
* aetps5sfar[[5# 3] ]

2 + 

((etps5sfarlist[ [4] ] * etds3sfarlist[ [4] ]) / etps3sfarlist[ [4] ]2) A2 * 

aetps3sfar[[5, 3] ]2 + 

etps5sfarlist[[4]] 

£tps3sfarlist[[4] ] 

\2 
*aetds3sfar[[5, 3]]2 

1 

aetfar[[6, 3]] = 
' / etds3sfarlist[[3]] 

f)" *aetps5sfar[[6, 3] ]2 + V etps3sfarlist[[3] 

((etps5sfarlist [ [3] ] * etds3sfarlist[ [3] ]) / etps3sfarlist [ [3] ]2) A2 * 

aetps3sfar[[6, 3] ]2 + 

etps5sfarlist[[3]] 

etps3sfarlist[[3]] 

/ etps5sfarlist[[3] ] \2 2 
—- LLJJL  *aetds3sfar[[6, 3]]2 

V etps3sfarlist[[3] 1 I 

1 

~2 

aetfar[[6, 4]] 
' ( etds3sfarlist[[2]] 

* aetps5sfar[[6, 4] ] + 
V etps3sfarlist[[2]] 

((etps5sfarlist [ [2] ] * etds3sfarlist [ [2] ]) / etps3sfarlist [ [2] ]2) A2 * 

aetps3sfar[[6, 4] ]2 + 

etps5sfarlist[[2]] 

etps3sfarlist[[2] ] 
*octds3sfar[[6, 4]]' 

1 

aetfar[[6, 5]] = 
' l etds3sfarlist[[1]] 

* C7£tps5sfar[ [6,  5] ]2 + 
V etps3sfarlist[[1] ] 

((etps5sfarlist [[1]] * etds3sfarlist [[ 1] ]) / etps3sfarlist [ [1] ]2) A2* 

CT£tps3sfar[[6, 5] ]2 + 

/ etps5sfarlist[[1]] 

etps3sfarlist[[1] ] 
■)' 

*aetds3sfar[[6, 5]]' 

1 

~2 

ox = Table[0, {i, 1, m}, {k, 1, m}]; 

ox[[2, 1]] =ai[[2# 1]] *xTcl[[2, 1]] * 

(l + a[[2, l]])/fxTcl[[3# 2]] *xTcl[[2 
/3[[6]] *xMo2[[6# 3]] ,„     (/3[[6]]*xMo2 

\ l + a[[6, 3]] 
ß[[5]]*xMö2[[5, 3]]       /        ^[[6]]*xMo2[[6, 5]] \      or.,..U 

*|1+  : : I   +/3[[3]]lj; 
l + «[[5, 3]] l + a[[6, 5]] 
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ox[[3, 1]] = oi[[3, 1]] *xTcl[[3, 1]] * 
// { ß[[6]] *xMo2[[6, 3]] 

(i..IIa.iII)/(«i[[>,il].( 1..II,,,]]  

/3[[5]] *xMb2[[5, 3]]      /       /3[[6]] *xMo2[[6, 5]] [A     /3[[6]j*xMo2[[6, 5]] }      ......U 

•I1 1 + .[[6,51] J^"3")J' l + a[[5, 3]] I l + a[[6, 5]] 

ox[[4, 2]] = oi[[4, 2]] *xMol[[4, 2]] * 
/3[[6]]*xMQl[[6, 4]] 

'[[6, 4]] 
,, rr-      o„x     /(„irr,      ,, ,       f ^ [ [6] ]  * XMöl [ [6#   4]]   U 
<1+.[[4.2]]>/(XMD1[[«,2]].( 1 + g[[6,4]] JJ 

ox[[4, 1]] = oi[[4, 1]] *xMol[[4, 1]] * 
I [ f/3[[6]] *xMbl[[6, 4]] \\ 

ox[[5, 3]] = oi[[5, 3]] *xMo2[[5, 3]] * 
//                               (                   /B[[6]] *xMö2[[6, 5]] \\ 

(1 + .[[5,3]])/(X1ID2[[5.3]].(*[[5]] + 1 + g[[6,5]] JJ* 

ox[[6, 3]] = 
l[                                ( ß[[6]] *xMo2[[6, 3]] \\ 

oi[[6, 3]]*xMö2[[6, 3]]/ ^xMö2[[6, 3] ] * ( 1 + a[[6, 3]] JJ'* 

ox[[6, 4]] = 
I (                                /- /3[ [6] ] *xMol[[6, 4]] \\ 

oi[[6, 4]]*xMol[[6, 4]]/^xMbl[[6, 4] ] * ^ ^  JJ; 

ox[[6, 5]] = 
II ( ß[[S]] *xMo2[[6, 5]] \\ 

oi[[6, 5]]*xMto2[[6, 5]]/ ^xMö2[[6, 5] ] * ^ 1 + g[[6    5] ] JJ; 

MatrixForm[ax]; 

The following section computes the error in the major terms S,   3K,   and M  of 
the formula for <S. 

o22Molfar = Table [0, {i, 1, m}, {k, 1, m}]; 

o2j8Mo2far = Table [0, {i, 1, m}, {k, 1, m}]; 

o22Tclfar = Table[0, {i, 1, m}, {k, 1, m}]; 

, I I       et£ar[[6, 5] ] U 
o2SMö2far[[5, 3]] =ox[[6, 5] ]2 * \ß[ [6] ] * 1 - LL   JJ  *2 + 

V ^ l + o[[6# 5]]   y; 

'   etfar[[6# 5]]   ' 
oa[[6, 5]]2* |jB[[6]] *xMb2[[6, 5]] * 

(l + a[[6, 5]])2J 
A2 + 

aetfar[[6, 5]]2* (|3[ [6] ] *xMb2[[6, 5]]) A2 ; 



G97DENP09_ApC.nb 131 

,    I I       etfar[[4, 2]] ^\ 
a2£Molfar[[4, 2]] = ox[[4, 2] ]2 * \ß[ [6] ] * \l -    ±+ 2]]   jj

A2 

,    ( (   etfar[[4, 2]]   U 
aa[[4, 2]]2*   /3[[6]]*xMbl[[4, 2]] *       A2 + 

{ [ (l + «[[4, 2]])2 Jj 

aetfar[[4, 2]]2* (/3[[6]] *xMöl[[4, 2]]) A2; 

■>    ( (       etfar[[4, 1]] \\ 
a25JMÖlfar[ [4, 1] ] = ox[[4, 1] ]2 * \ß[ [6] ] *   1 -  A2 

\ \ l + a[[4, 1]]   ^ 
r   etfar[[4, 1]]   ' 

aa[[4, 2]]** \ß[[6]] *xMöl[[4, 1]] * 

aetfar[[4# l]]
2* (0[[6]] *xMöl[[4, 1]]) A2; 

a2:BTclfar[ [3, 1]] = 

{ (l + a[[4, l]])2 ) 
A2 + 

ox[[5, 3]]2*((/3[[5]]   + 

aa[[5, 3]]2*M/3[[5]]   + 

/5[[6]] 

£[[6]] *xM62[[6, 5]] 

l + «[[6, 5]] 

/3[[6]] *xMö2[[6, 5]] 

ax 

l + *[[6, 5]] 

xMö2[[5, 3]] 

) * 1 A2H 
J      l + a[[5, 3]] 1 

\ xMo2[[5, 3]]     ' 

J*   (l + «[[5, 3]])2 d 

A2 + 

rr*    «i,2     (        g[[6]] xMto2[[5# 3]] ^ 
U + a[[6, 5]]        l + a[[5, 3]]  J 

rr*    c„2     , /3[[6]]*xMb2[[6, 5]]       xMö2[[5, 3]]^ 
aa[[6, a]]'* I : * 

ax 

(l + «[[6, 5]])' 

0[[6]] 

l + «[[5, 3]]  j 
A2 + 

[[6, 3]]2* f    [[       ] A2 + aa[[6, 3]]: 

ll + a[[6, 3]] } 

( £[[6]}*xMQ2[[6, 3]] 

(l + a[[6, 3]])2 

A2; 
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a2SMölfar[[2# 1]] = ox[[4, 2]]2* 
( I       etfar[[6, 4]] \     /       etfar[[4, 2] ] U 

aa[[4, 2]]2* /3[[6]]*xMöl[[6, 4]] * 

etfar[[6, 4]] 
1 * 

l+«[[6, 4]] 

aetfar[[4, 2]]2* 

( xMtol[ [4, 2] ] * etfar[ [4, 2] ] ' 

(l + «[[4, 2]])
2 

*2 + 

/ /        etfar[[6, 4]] \     / xMol[ [4, 2] ] \ ^ 
/3[[6]]*xMöl[[6, 4]]*   1-- LL J J     * ii__ii-     A2   + 

^ I l+a[[6, 4]]    J     V l + a[[4, 2]]  /7 

K[[6, 4]]2* 
f      f   etfar[[6, 41M /   etfar[[4, 2] ] \ \ 

oa[[6,  4]]2* /3[[6]] *xMÖl[[6, 4]] * 

etfar[[6, 4]] /   £tfar[[4# 2]]\\ 

[   " l + a[[4, 2]] )) 
*xMol[[4, 2]] *   1 — —      A2 + 

<l + «[[6, 4]])2 

etfar[[4, 2]] 
aetfar[[6, 4]]2* 

/ /       etfar[[4, 2]] \\ 
^[[6]]*xMol[[6, 4]]*xMbl[[4, 2]] * ^1- -_____——-J J A2 
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a2STclfar[[2, 1]] = 
xMö2[[5, 3]]       I J8[ [6] ] *xMo2[[6# 5]] 

ax 
,     // xMfc>2[[5, 3]]       I 

[[3, 2]]2*      jB[[3]]+- i±_±L*   /3[[5]] 
U l + a[[5, 3]]       V l + a[[6, 5]] 

/3[[6]] *xMb2[[6, 3]] \     /       etfar[[3, 2]] 

l + a[[6, 3]] 
■)4l-£t£ar[[3-2]M1-2 

J     I l + a[[3, 2]]    JJ 

aa[[3, 2]]2* 
((■ 

|   xMb2[[5, 3]]   ^ 
+   l+a[[5, 3]] 

„,,      /3[[6]] *xMö2[[6, 5]] ^      /3[[6]] *xMfc>2[[6, 3]] 
J3[ [5] ] + - 

l + «[[6, 5]] j l + «[[6, 3]] 

xTcl[[3, 2]] *£tfar[[3, 2]] ' 
(l + a[[3, 2]])2 

2 + 

a£tfar[[3, 2]]2* 
fLrr,^      XMÖ2     5, 3 (...-..      fl     6   ]«%Ho2     6, 5]] 

0     3]]+      »   /3[[5]] +    
Ü l + a[[5, 3]]       I l + a[[6, 5]] ; 

ß[[6]] *xMo2[[6, 3]] \     (xTcl[[3, 2]] 

l + a[[6, 3]] 

|     ,XTC1[[3,2]]U    2 

J     I l + a[[3, 2]]  )) 

ax 
,    f       /B[[6]l (       etfar[[3# 2]] \\ 

[[6. ,„.. [_2ÜSl_.*l[[,. 2]1.(L^£J5IL)1.a 
l(l + a[[6, 3]]) V l + o[[3,2]]   ^J 

rrC    ,,,2     (( ! (flrrcil      j8[[6]]»xM02[[6, 5]] ) 
5, 3     2* _——_*   /3[[5]] +    

Ul + a[[5, 3]]      V l + a[[6, 5]] I 
t       «tfr[[3,2]]UA2 

I l + a[[3, 2]]    )) 

ax[[5, 3]]'* rrc    ,,.   *li3[[5]] + : ...    -. I + 
U l + a[[5, 3]] 

ß[[6]] *xMb2[[6, 3]] 

l + a[[6, 3]] 

aa[[5, 3]]2* 
xMö2[[5, 3]] 

{ <l + a[[5, 3]])2 * 

( 

orrcil      /3[[6]]*xHto2[[6, 5]] \      /3[[6]]*xMo2[[6, 3]] ^ 
^[[5]] +  ; „^    „,     + 

l + «[[6, 5]]    ) l + «[[6, 3]] 

/   etfar[[3, 2]] \\ 
xTcl[[3,2]],(l- 1 + g[[3#2]] ))-2 + 

ff**>2[[5'3]] g[[6]]     UxTci[[3,2]3*fi-
et£ar[[3'2]]11*2 

Ul + «[[5, 3]]        l + «[[6, 5]]J I l + a[[3, 2]]    JJ 

ox[[6, 5]]2* 

aa[[6, 5]]2* 
(xM£>2[[5, 3]]       /3[[6]] *xTcl[[6, 5]] 

* 2 '* l + a[[5,  3]]     (l + a[[6, 5]]) 

etfar[[3, 2]] V 

2; 

/  etfar[[3, 
xTcl[[3, 2]]* 1-- -LL_ 

^   l + «[[3, 

a2.?MDlfar = Table [0, {i, 1, m}, {k, 1, m}] 
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CT2,7!Mo2far = Table[0# {i, 1, m}, {k, 1, m}]; 

a2MTclfar = Table[0, {i, 1, m}, {k, 1, m}]; 

.    / epfar[[2, 1] ] \ 
a2*Mölfar[[2, 1]] = ox[[2, l]]2* LL        JJ     A2 

V   l + a[[2, 1]]   ; 
, xMöl[[2, l]]*epfar[[2, 1] ] ) 

aa[[2, l]]2* 
(l + a[[2, l]])2 

xHol[[2, 1]] 

A2 + 

,     (xHol[[2, 1]] \ 
aepfar[[2, l]]2* LL        JJ W2 

I l + a[[2, 1]]  ^ 

,    / epfar[[2, 1]] ^ 
a2#Tclfar[[2, 1]] = ax[[2, l]]2* Ll JJ     A2 

^   l + a[[2, 1]]   I 
I xTcl[[2, 1] ] * epfar[[2, 1] ] ' 

aa[[2, l]]2* 

act 

(l + a[[2, l]])2 

xTcl[[2, 1]] 

k2 + 

2     fxTcl[[2, 1]] \ 
spfar[[2, l]]2* LL JJ     A2; 

^ l + a[[2, 1]]  ^ 

,    / epfar[[3, 1]] \ 
a2#Tclfar[[3, 1]] = ox[[3, l]]2* -ii__ii-U2 + 

I   l + a[[3, 1]]   ) 

rr-    11l2    fxTcl[[3# l]]*epfar[[3, 1] ] \ 
aa[[3, 1]]   *     -    A2 + 

1 (l + a[[3, l]])2 J 
,    /xTcl[[3, 1]] \ , 

a£pfar[[3, l]]2* ii__ii- U2   + ox[[3, 2]]2* 
I l + «[[3, 1]]  J 

(epfar[[3, 2]]      xTcl[[2, 1] ] * epfar[ [2, 1] ] ^ 
 *    A2 + aa[[3#2]l   * 

I l + a[[3, 2]] l + «[[2, 1]]       ) 

( 

xTcl[ [3, 2] ] * epfar[ [3, 2] ]  xTcl[ [2, 1] ] * epfar[ [2,  1] ] ' 
* 

aepfar[[3, 2]]2* 

(l + a[[3, 2]])2 l + a[[2, 1]] 
I, 2]]2* 

xTcl[[3, 2]]      xTcl[[2, 1]] *epfar[[2, 1] ] ^ , 
 LL J     * LL JJ - Ll JJ     A2   + ox[[2,l]]2 

l + a[[3, 2]] l + «[[2, 1]] J 
xTcl[[3, 2]]*epfar[[3, 2]]      epfar[[2^_l]] \ 
 *    A2 + aa[[2# 11] 

l + «[[3, 2]] l + a[[2, 1]]    ) 
xTcl[ [3, 2] ] * epfar[ [3, 2] ]      xTcl[ [2, 1] ] * epfar[ [2, 1] ] 

A2 + 

l + a[[3, 2]] (l + a[[2, l]])2 

xTcl[[3, 2] ] * epfarf[3, 2] ]      xTcl[[2, 1] ] 

A2 + 

(xTcl[[3, 2] ] *epfarf[3, 2]]      xTcl[[2, l]n 
aepfar[ [2, 1] ] *  *  

I       l + a[[3, 2]] l + a[[2, 1]] J 
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a2^IMölfar[ [4, 1] ] = ox [ [ 
,    I epfar[[4, 1]] ^ 

4, l]]2*   —  A2 
{   l + a[[4, 1]]   ) 

aa[[4,l]3^fXMtol[[4-1]]*£P£ar[
2
[4-1]]|A2 + 

[ (l + a[[4, l]])2 J 

,     /xMÖl[[4, 11] \ , 
aepfar[[4, l]]2* lt JJ     ^2   + ox[[4, 2]]2* 

^ l + a[[4, 1]]  J 
(£pfar[[4, 2]]      xMöl[ [2, 1] ] * epfar[ [2, 1] ] \ , 
 *    A2 + oa[[4,2]]   * 

I   l + a[[4, 2]] l + a[[2, 1]] ) 

xM6l[ [4, 2] ] * epfar[ [4, 2] ]      xMbl[[2, 1]] *epfar[ [2, 1] ] ) 

(l + a[[4, 2]])2 l + «[[2# 1]] 
2 

>2  + 

aepfar[[4, 2]]"* 
(xMöl[[4, 2]]      xMbl[[2, l]]«epfar[[2, 1] ] } , 
 *    *2   + ox [ [2, 1] J   * 
ll + a[[4, 2]] l + a[[2, 1]] ) 
fxMQl[[4, 2]]*epfar[[4, 2]]      epfar[ [2, 1]] ^AO - 
 *    A2 + oa[[2, 1]]   * 

I l + a[[4, 2]] l + a[[2, 1]]    J 

fxMQl[[4, 2] ] * epfar[[4, 2] ]   ^ xMbl[[2# 1] ] * epfar[[2, 1] ] \        + 

( l + a[[4#2]] * (l + a[[2, l]])2 J 

M     rro    „,    (xMöl[[4, 2]]*epfar[[4# 2]]       xMÖl[[2, 1]]\ 
aepfarr [2, 1] 1   *    *    A2 ; 

I l + a[[4, 2]] l + «[[2, 1]]  J 

,    ( epfar[ [4, 2] ] \ 
a2*Mölfar[[4, 2]] = ox[[4, 2]]2* \l        JJ     A2 + 

V   l + a[ [4, 2]]    I 

{ xMtol[[4, 2]] *epfar[[4, 2]] 
oa[[4, 2]]2* 

(l + a[[4, 2]])2 
'2  + 

,     /xMOl[[4, 2]] \ 
aepfar[ [4, 2] ]2 * ll JJ     A 2 ; 

^ l + a[[4, 2]]  / 

,     / epfar[[5, 3]] \ 
o2*Mö2far[ [5, 3]] = ox[[5, 3]]2* rrc        '       *2 

V   1 + a[ [5, 3] ]    y 

,xMb2[[5, 3]]*epfar[[5, 3]] 
aa[[5, 3]]   *    A2 + 

(l + a[[5, 3]]) 
xMto2[[5, 3]] 

2 

,     /xMto2[[5, 3]] \ 
aepfar[[5, 3]]2* i±__ii-   *2 

V l + a[[5, 3]]  J 
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,    I epfar[[6, 3]] \ 
CT2*Mb2far[[6, 3]] = ox[[6, 3]]2*  A2 

V   l + o[ [6, 3] ]   1 

fxMb2[[6, 3]] *epfar[[6, 3]] ' 
c«[[6, 3]]2* 

(l + a[[6, 3]])2 
2 + 

,    /xMo2[[6, 31] ^ , 
aepfar[[6, 3]]2* i±-l_if   A2   + ox[[6, 5] ]2* 

V l + a[[6, 3]] y 

/epfar[[6, 5]]  xMo2[[5, 3] ] *epfar[[5, 3] ] } 2 
 *  A2 + aa[ [o,  5] ] * 

[   l + a[[6, 5]"   ] l + a[[5, 3]] 

5. 311 *£Dfarr T5. 311 \ A2  + 
xMto2[[6, 5]] *epfar[[6, 5]]      xMo2[[5, 3]] *epfar[[5, 3]] ' 

* 
(l + a[[6, 5]])2 l + «[[5, 3]] 

crepfar[[6, 5]]2* 
/xMö2[[6, 5]]       xHo2[[5, 3]] *epfar[[5, 3]] \ , 
 *    A2   +ax[[5,3]j   * 
ll + a[[6, 5]] l + a[[5, 3]] ) 
/xMb2[[6, 5]]*epfar[[6^5]]      epfar[[5, 3]] ^ 2 
 *    A2 + aa[ [5, 3] ] 

I l + a[[6, 5]] l + a[[5, 3]]   ) 
xMö2[[6, 5]] *epfar[[6, 5]]       xMb2[[5, 3]] *epfar[[5, 3]] 

l + «[[6, 5]] (l + a[[5, 3]])2 

xMo2[[6, 5]] *epfar[[6, 5]]  xMo2[[5, 3]] 

* 

'2 + 

acpfar[[5 
,     .    /xJfo2[[6, 5]]*epfar[[6, 5]]       xMb2[[5, 3] ] \ 
3] ]   *     *    A2 ; 

V l + *[[6, 5]] l + «[[5, 3]]  J 

,    I epfar[[6, 4]] \ 
CT2*Mblfar[[6, 4]] =ax[[6, 4]]2* J-i_-i-   A2 + 

^   l + a[[6, 4]]    ^ 

rr£    ...a    fxMbl[[6, 4]]*£pfar[[6, 4]] } An 
aa[[6, 4]]   * -    A2 + 

,     /xMol[[6, 4]]  . 
aepfar[[6, 4]]2* ii__±L   A2 

V 1 + a[ [6, 

(l + a[[6, 4]]) 

L[[6, 4]] 

<[[6, 4]] 

2 

,    / epfar[[6, 5]] \ 
a2*Mölfar[[6, 5]] =ox[[6, 5]]2* LL JJ     A2 

V   l + a[ [6, 5]]    7 

fxMta2[[6, 5]]*epfar[[6, 5]] } ^ 
CTä[[6,5]]   * -    A2 + 

(l + a[[6, 5]])' 
,    fxM62[[6, 5]] \ 

a£pfar[[6, 5]]2* ll        JJ     A2 ; 
V l + a[ [6, 5]]  7 

a2A0tolfar = Table[0, {i, 1, m}, {k, 1, m}]; 

a2,MMo2far = Table [0, {i, 1, m}, {k, 1, m}]; 

a2AtTclfar = Table [0, {i, 1, m}, {k, 1, m}]; 
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-    /       etfar[[2, 1]] \ 
a2AUtolfar[[4, 2]] = ox[[2, l]]2*   1-- \ *2 

V l + a[[2, 1]]   ; 

,    ( etfar[[2, 1] ]   ) 
aa[[2, l]]2*   xMÖl[[2, 1]] *  

[ (1 + «[[1, 2]])2J 
aetfar[[2, l]]2*(xMol[[2, 1] ]) A2 ; 

a2AHtolfar[[6, 4]] = 

A2 + 

ox 
,    //       etfar[[2# 1] ] ^ /       etfar[[4, 2] ] \\ 

[[2, I]]2*      1 LUL_J±   *xM£>l[[4, 2]] *   1 LL     A2 LL        JJ       U 1 + «[[2,1]]   J I l + «[[4,2]]   JJ 
etfar[[2, 1]]   \ 

1]]2*(( aa[[2, 1]]**     xMbl[[2, 1]] * 
(l + a[[2, l]])2 

'2 + 

et£ar[[4, 2]] 

u1rN    _„     (,     etfar    4, 2     \) 
xMöl[[4, 2*1- —  

\ l + a[[4, 2]]   ) 

,    ( {       et£ar[[4, 2]] \\ 
oetfar[[2, l]]2*    (xMöl[[2, 1] ]) *xMol[ [4, 2] ] *   1 - —-——-     A2 

\ \ l + a[[4, 2]] )) 
, / /   etfar[[2, 1] ] \ I       etfar[[4, 2] ] U 

[[4, 2]]2* xMöl[[2, 1]]* 1-- \\       JJ  * 1-- " J*       A2 
V V   l + a[[2, 1]] ^  V   l + «x[[4, 2]] I) 

ox 

oa[[4, 2]]2* 
/ /   etfar[[2, 1] ] \ etfar[[4, 2] ] \ 
xMbl[[2, 1]]*   1-- lL JJ     *xMbl[[4, 2]]* L-± Ü-   *2 

( I l + a[[l, 2]]    J (l + a[[4, 2]])2 J 

oetfar[[4, 2]]2* 
/ I       etfarf [2, 1]] \ 1 ^ 
xMöl[[2, 1]]*   1-- \\       JJ     *xMbl[[4, 2]]*- ———   A2; 

^ ^ l + a[[2, 1]]   ) l + «[[4, 2]]J 

,    (       etfar[[5, 3]] \ 
a2AHfo2far[[6# 5] ] = ox[[5, 3]l2*   1 — —   A2 + 

^   l + «[[5, 3]] J 

, ( etfar[[5, 3]] , 
aa[[5,  3]]2* xM62[[5, 3]]* - -L

T\A2 * 
{ (l + a[[5, 3]])2 

aetfar[[5, 3]]2* |xMö2[[5, 3]] * [xMö2[[5, 3]] * j A2 ; 
{ l + a[[5, 31] J 

The   following combines   the  constituent  errors   from the major  terms  S,   Si,   and 
M into  a  total  error   for S,   the peak count   fraction. 

ovSMolfar = (Table[a2£Molfar[ [i, k] ] * JIMölfar[ [1, k] ]2 * JUMölfar[ [k] ]2 + 

o2flMolfar [ [i, k] ] * SMblfar [ [i] ]2 * AUfolfar [ [k] ]2 + 
a2MMolfar[[i, k] ] *^Mblfar[[i, k] ]2 *SMölfar[ [i] ]2, 

{i, 1, m}, {k, 1, m}]) A 

1 

V 
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aSMo2far = (Table[a2SMb2far[ [i, k] ] *flMo2far[ [i, k] ]2 *MMö2far[ [k] ]2 + 

a25Mö2far [ [i, k] ] * SMö2far[ [i] ]2 * A-tMo2far [ [k] ]2 + 
CT2MMö2far[[i, k] ] *tfMo2far[ [i, k] ]2 *£Mo2far[ [i] ]2, 

{i, 1, m}, {k, 1, m}])* 
1 

V 
aSTclfar = (Table[a2£Tclfar[ [i, k] ] *ÄTclfar[ [i, k] ]2 * MTclf ar [ [k] ]2 + 

cr2,*Tclfar[ [i, k] ] * STclfar[ [i] ]2 * MTclfarf [k] ]2 + 
a2MTclfar[ [i, k] ] *flTclfar[ [i, k] ]2 *£Tclfar[ [i] ]2, 

{i, 1, m}, {k, 1, m}])* 
1 

V 
aSfax = oSMolf ar + oSMo2far + oSTclf ar; 

MatrixForm[aSfar] ; 

percentoSfarlist= 
100*{cr.Sfar[[6, 3]] /Sfar[[6, 3] ] , aSfar[[6, 4]] /.Sfar[[6, 4]], 

a.Sfar[[6, 5]] /5far[[6, 5]], aSfar[[5, 3]] /.Sfar[[5, 3]], 
oSfiar[[4> 1]] /5far[[4, 1] ] , aSfar[[3, 1]] /.Sfar[[3, 1] ] , 
aSfar[[2, 1]] /5far[[2, 1] ] , a5far[[4# 2]] /5far[[4, 2]]}; 

TableForm [Table[ 
{Mo99gammas[[i]], «Sfarlistf [i] ] , percenta-Sf arlist [ [i] ] }, {i, 1, 8}]# 

TableHeadings-> {None, {"Gamma (Mev)", "Peak Prob, 10cm.", "% Dev"}}, 
TableAlignments -> Center] 

Gamma   (Mev) Peak Prob,   10cm %  Dev 

0.777921 0.000140289 4.6209 

0.7395 0.000409061 2.31596 

0.411491 9.02149xl0~7 1.10471 

0.366421 0.0000742688 49.2925 

0.181068 0.000645766 2.2063 

0.142675 3.4602xl0-6 10.1708 

0.140511 0.00976995 1.77762 

0.0405845 0.0000274028 5.88082 

The procedure is repeated now for the face efficiency standard deviations. 

aetps5sface= {{0, 0, 0, 0, 0, 0}, {0.03* etps5sfacelist[ [7] ] , 0, 0, 0, 0, 0}, 
{0.03* etps5sfacelist[ [6] ] , 0, 0, 0, 0, 0}, 
{0.03* etps5sfacelist[ [5] ] , 0.03* etps5sfacelist[ [8] ] , 0, 0, 0, 0}, 
{0, 0, 0.03* Etps5sfacelist[ [4] ] , 0, 0, 0}, 
{0, 0, 0.03* etps5sfacelist[ [1] ] , 0.03 * ctps5sfacelist[ [2] ], 
0.03 *etps5sfacelist [ [3] ] , 0}}; 
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CT£tps3sface= {{0, 0, 0, 0,  0, 0}, {0.03* £tps3sfacelist[ [7] ], 0, 0, 0, 0, 0}# 
{0.03*etps3sfacelist[ [6]], 0, 0, 0, 0, 0}, 
{0.03 *£tps3sfacelist[ [5] ], 0.03* £tps3sfacelist[ [8] ], 0, 0, 0, 0}, 
{0, 0, 0.03*etps3s£acelist[ [4]], 0, 0, 0}, 
{0, 0, 0.03* £tps3sfacelist[ [1] ] , 0.03* etps3sfacelist[ [2] ], 
0.03 *£tps3sfacelist [ [3] ] , 0}}; 

a£tds3sface= {{0, 0, 0# 0, 0, 0}, {0.03 * £tds3sfacelist[ [7] ] , 0, 0, 0, 0, 0}, 
{0.03 *£tds3sfacelist[ [6] ] , 0, 0, 0, 0, 0}, 
{0.03*£tds3sfacelist[[5]], 0.03*£tds3sfacelist[ [8] ] , 0, 0, 0, 0}, 
{0, 0, 0.03 *£tds3sfacelist[ [4] ], 0, 0, 0}, 
{0, 0, 0.03 *£tds3sfacelist[[1]], 0.03* £tds3sfacelist[ [2] ], 
0.03*£tds3sfacelist[[3]], 0}}; 

eretface = Table[0, {i, 1, m}, {k, 1, m}]; 

aetface[[2, 1] ] 
(( 

£tds3sfacelist[[7]] \2 2 
* a£tps5sface[[2, 1] ] + 

£tps3sfacelist[[7]] 

((£tps5sfacelist [ [7] ] * £tds3sfacelist [ [7] ]) / 

Etps3sfacelist[[7]]2) A2* 
cj£tps3sface[ [2, 1] ]2 + 

£tps5sfacelist[[7] 1 \2 , 1 *a£tds3sface[[2, l]]2 
I £tps3sfacelist[[ 

1 

1111 
7]] J 

a£tface[[3, 1]] 
(( 

£tds3s£acelist[[6]] \2 , 
* a£tps5sface[[3, 1] ] + 

£tps3sfacelist[[6]] 

( (Etps5sf acelist [ [6] ] * £tds3sf acelist [ [6] ]) / 
£tps3sfacelist[[6]]2) A2 * 

<7£tps3sface[ [3, 1] ]2 + 

/ £tps5sfacelist[[6]] ^ 2 , 
— LLJJL  *CT£tds3sface[[3, l]]

2 

V £tps3sfacelist[[6] ] J 

1 
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aetface[ [4, 1] ] = I I -  '"" "  I * aetps5sface[ [4, 1] ]2 + 
11 etds3sfacelist[[5] ] \ 
{ V etps3sfacelist[[5]] J 

((etps5sfacelist [ [5] ] * etds3sfacelist [ [5] ]) / 
etps3sfacelist[[5]]2) A 2 * 

aetps3sface[[4, 1] ]2 + 

V etps3s£acelist 

1 

[[5]] \ 
[[5]] J 

2 £tps5sfacelist[[5] 1 , , 1 *aetds3sface[[4, l]]2 

a£t£ace[[4, 2] ] 
(( 

etds3sfacelist[[8] 1 \2 , 1 * aetps5sface[ [4, 2] ]2 + 
V etps3sfacelist[[8]] 

( (Etps5sfacelist [ [8] ] * etds3sfacelist [ [8] ]) / 

Etps3sfacelist[[8]]2) A2 * 
aetps3sface[[4, 2] ]2 + 

etps5sfacelist[[8] 1 \2 , 1 *CT£tds3sface[[4, 2]]2 
V £tps3sfacelist[[8]] 

1 

~2S 

■)' 

CT£tface[[5, 3]] 
(( 

£tds3sfacelist[[4]] \2 , 1 * a£tps5sface[ [5, 3] ]2 + 
etps3sfacelist[[4]] 

((£tps5sfacelist [ [4] ] * Etds3sfacelist [ [4] ]) / 
Etps3sfacelist[[4]]2) A2 * 

a£tps3sface[[5, 3] ]2 + 

£tps5sfacelist[[4] 1 \2 , 
 LLJJL  *CT£tds3sface[[5, 3]]

2 

£tps3sfacelist[[4]] ) 

1 

V 
2 £tds3sfacelist[[1]] ,    ^__^_^ rr, ,,,2 <7£tface[ [6, 3] ] =            * aetps5sface[ [6, 3] ]"* + 

[ \ £tps3sfacelist[[1]] ) 

((Etps5sf acelist [ [1] ] * etds3sf acelist [ [1] ]) / 
£tps3sfacelist[[1]]2) A2 * 

<7£tps3sface[ [6, 3] ]2 + 

■)' 

I £tps5sfacelist[[111 , 
 LLJJL  *a£tds3sface[[6, 3]]' 

I £tps3sfacelist[[1]] ' 

1 
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<7Etface[ [6, 
*»-(( 

etds3sfacelist[[2]] %2 

I] J etps3sfacelist[[2] 

((etps5sfacelist[[2]] * etds3sfacelist[[2]]) / 

etps3sfacelist[[2]]2)A2 * 

aetps3sface[[6, 4] ]2 + 

* aetps5sface[[6, 4] ] + 

etps5sfacelist[[2] ] 

etps3sfacelist[[2] ] 
*CT£tds3sface[[6, 4]]' 

1 

aetfacef[6, 5] ] 
/ Etds3s£acelist[[3]] ^ 2 , 
   * aetps5sface [ [ S,  5] ] + 

\ Etps3sfacelist[[3]] / \ £tps3sfacelist[[3 

((£tps5sfacelist [ [3] ] * etds3sfacelist [ [3] ]) / 

Etps3sfacelist[[3]]2) A2 * 

<7£tps3sface[ [6, 5] ]2 + 

( 

Etps5sfacelist[[3]] \2 , 
£tps3sfacelist[[3]] 

*<7Etds3sface[ [6, 5]]' 

1 
~2 

aPKtoTTLds5s = Table[0, {i, 1, m}, {k, 1, m}] ; 

1        ^2 

aPKtoTTLds5s[[2 ,!]] = ( 
Etds5sfarlist[[7]] 

*a£pfar[[2, 1]] + 

(  £pds5sfarlist[[7]] )2 
 -| *<j£tfar[[2, 1]]"; 
Etds5sfarlist[[7]]2 

aPKtoTTIids5s[[3, 1] ] = I 

' £pds5sfarlist[[6]] 

Etds5sfarlist[[6]]2 

aPKtoTTLds5s[[4, 1] ] = I 

' £pds5s£arlist[[5]] 

Etds5s£ariist[[5]]2 

aPKtoTTLds5s[[4, 2] ] = I 

' £pds5sfarlist[[8]] 

,Etds5s£arlist[[8]]2 

Etds5sfarlist[[6] ] 

*a£tfar[[3, l]]2; 

1 

*a£pfar[[3, l]]2 + 

etds5sfarlist[[5] r)' *a£pfar[[4# 1] ]
2 + 

*a£tfar[[4, l]]2; 

£tds5sfarlist[[8]] 

*a£tfar[[4, 2]]2; 

*a£pfar[[4# 2]]
2 + 



G97DENP09_ApC.nb 142 

aPKtoTTLds5s[[5, 31] = f 1 *aepfar[[5, 3]]2 + 
Utds5sfarlist[[6]] j 

(  epds5sfarlist[[6]] }2 __^__prE ,,,2 

etds5sfarlist[[6]] 

*aetfar[[5, 3]]2; 
etds5sfarlist[[6]]2 

aPKtoTTLds5s[[6# 3]] = [ I *aepfar[[6, 3]]2 + 
[ etds5sfarlist[[1] 1 ) etds5sfarlist[[l]] 

epds5sfarlist[[1]1 \ , 
' *aetfar[[6, 3]]2; 

etds5sfarlist[[1] ]' 

aPKtoTTLds5s[[6, 4]] = f ] *aepfar[[6, 4]]2 + 
Utds5sfarlist[[2]l ) Etds5sfarlist[[2]] 

f  epds5sfarlist[[2]] )2 
 -| *aetfar[[6, 4]T; 
etds5sfarlist[[2]]z 

>i 5]] = f : ) 
\ etds5sfarlist[[3]] I 

aPKtoTTLds5s[[6, 5] ] = I : I   * aepfar[ [6, 5] ]2 + 

I epds5sfarlist[[3]]   ^2 

*aetfar[[6, 5]]2; 
Letds5sfarlist[[3]]2, 

aepface = Table [0, {i, 1, m}, {k, 1, m}] ; 

crepface[[2, 1]] = ((PKtoTTIids5slist[ [7] ] )2 * cretface[ [2, 1]]2 + 
(etface[[2, 1] ] )2 * aPKtoTTLds5s[ [2, 1]]2)A 

1 

V 
aepface[[3, 1]] = ((PKtoTTLds5slist[ [6] ] )2 * aetfacef [3# 1]]

2 + 

(etface[[3, 1] ] )2*aPKtoTTLds5s[[3, 1]]2)A 

1 

7; 

aepface[[4, 1]] = ((PKtoTTLds5slist[ [5] ] )2 *aetface[ [4, 1]]2 + 

(etface[[4, 1] ] )2*aPRtoTTLdsSs[[4, 1]]2)A 

1 

7; 

aepface[[4, 2]] = ((PKtoTTLds5slist[ [8] ] )2 * aetface[ [4, 2]]2 + 

(etface[[4# 2] ] )
2*aPKtoTTLds5s[[4, 2]]2)A 

1 
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aepface[[5, 3]] = ((PKtoTTLds5slist[ [4] ] )2 * cretface[ [5, 3]]2 + 

(etface[[5, 3] ])2*cPRtoTTLdsSs[[5, 3]]2)A 

1 

7; 

aepface[[6, 3]] = ((PKtoTTLds5slist[ [1] ] )2 * aetface[ [6, 3]]2 + 

(etface[[6, 3] ] )2 *aPKtoTTLds5s[ [6, 3]]2)A 

1 

7; 

aepface[[6, 4]] = ((PKtoTTLds5slist[ [2] ] )2 * aetfacef [6, 4]]2 + 

(etface[[6# 4] ] )
2*aPKtoTTLds5s[[6, 4]]2)A 

1 

V 
aepface[[6, 5]] = ((PKtoTTLds5slist[ [3] ] )2 * aetface[ [6, 5]]2 + 

(etface[[6, 5] ] )2*aPKtoTTLds5s[[6, 5]]2)A 

1 

T; 

a2i8Molface = Table[0, {i, 1, m}, {k, 1, m}]; 

a2iBMo2face = Table[0, {i, 1, m}, {k, 1, m}]; 

a2£Tclface = Table [0, {i, 1, m}, {k, 1, m}]; 

,  /       I       etface[[6, 5] ] ^ 
a2SMo2face[[5, 3]] =ox[[6, 5] ]2 * |3[ [6] ] * 1 - —  LL   JJ   A2 

V V 1 +«[[6, 5]]    ;/ 

,    I (   etfar[[6, 5]]   \ 
aa[[6, 5]]2*   /3[ [6] ] *xMC2[ [6, 5]]*     tl LL. 

{ [ (l + a[[6, 5]])2J 

aetface[[6, 5]]2* (/3[[6]] *xMö2[[6, 5]]) A2 ; 

'2 + 

2    ( (       etface[[4, 2]] ^ 
a2SMölface[[4, 2]] = ox[[4, 2] ]2 *   j3[ [6] ] *   1 - —  ll        JJ       A2 

^ I l + a[[4, 2]]     II 

,    ( I   etfar[[4, 2]]   \\ 
aa[[4, 2]]2*   /3[ [6] ] *xMol[ [4, 2]]*    ^ Ü-      A2 + 

(l + a[[4, 2]])2 JJ 
aetface[[4, 2] ]2 * (/3 [ [6] ] *xMtol[[4# 2]]) A2 ; 

,    / f       etface[[4, 1]] \\ 
a2SMölface[[4, 1]] = ox[[4, 1] ]2 *   j3[ [6] ] *   1 - —  Ll JJ       A2 

V V l + a[[4, 1]]    ll 

etface[[4, 1] ]  V 
aa[[4, 2]]"* /3[[6]] *xMol[[4, 1]] * 

(l + a[[4, I]])2 ) 
'2 + 

aetface[[4# l]]
2* (/3[ [6] ] *xMbl[[4, 1] ]) A2 ; 
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a2£Tclface[[3, 1]] = 
rrc   „,2    (forrc11       /3[[6]]*xMö2[[6, 5]] \ 1 \ 

~     5,3]]2*     /3[[5]]   +      *- _____   A2H 
U l + a[[6, 5]] I     l + a[[5, 3]] J 

\        x_2[[5, 3]]     ' 

i*   (l + a[[5, 3]])2, 
aa[[5, 3]]2*     0[[5]]   + 

((' 

jB[[6]] *xMto2[[6, 5]] 

l + «[[6, 5]] 

xMo2[[5, 3]] 

A2 + 

rre    „.a     r       £[£6]] x_2[[5# 3]] ^ 
crx[ [6, 5] ]   *     *  

U + «[[6, 5]]       l + a[[5, 3]]  ) 
A2 + 

OB[[6, 5]]2* 
/3 [ [6] ] *xMo2[[6, 5]]       xMö2[[5, 3]]' 

(l+«[[6, 5]])' l + «[[5, 3]] J 
'2 + 

ox 
5    f       i3[[6]]        \ 

Et6' 3"   * h  L,n     A2 + as[[6, 3]]' V l + a[[6, 3]] ; 

a2£Molface[[2, 1]] = ox[[4, 2]]2* 

( |B[[6]] *xMb2[[6, 3]] 

(l + a[[6, 3]])2 

ctface[[4, 2]] 

'2; 

/ f   etface[[6, 4] ] \  /   etface[[4, 2]] \\ 
/3[[6]]*xMöl[[6, 4]]* 1-—  LL   JJ  * 1-— rrA    011    

A2 
V V    l + a[[6, 4]]  ;  V    l + a[[4, 2]] II 

aa[[4, 2]]2* j3[[6]] *xMÖl[[6, 4]] * 

etfacef [6, 4]] \ [ xMol[ [4, 2] ] * etfar[ [4, 2] ] ' / _ etface[[6, 4]] \ ^ ( 
I   "     l + «[[6, 4]]    J * I 

aetface[[4, 2]]'* 

[/3[[6]]*xMöl[[6, 4]]*(l- 

[[6#*]]  '  I      (l + a[[4, 2]])' 
2 

'2 + 

et£ace[[6, 4]] 

1 + al 

e[[6# 4]] \  fxMtol[[4, 2]] jj^ 

[[6, 4]]  J *l l + a[[4, 2]] ]J 

/       /   etface[[6, 4]] \ (       etface[[4, 2] ] ^\ 
0[[6]j* 1-—  " ' JJ  *x_l[[4, 2]]* 1- — -LL__i_ W2. 

^        V    l + *[[6, 4]] I ^    l + a[[4, 2]] II 

ox[[6, 4]]2* 

aa[[6, 4]]'* h3[[6]] *xMbl[[6, 4]] * 

etface[[6, 4]] ' 

(l + a[[6, 4]])2 J 

aetface[[6, 4]]2* 

l       etface[[4, 2]] \\ 
xMbl[[4, 2]]* 1-—  LL   JJ  *2 

I    l + o[[4, 2]] )) 

I I       etface[[4, 2]] \\ 
/3[[6]]*xMöl[[6, 4]]*xMbl[[4, 2]]* 1 - — -iJ___i_ N2 . 

V I    l + «[[4, 2]] )) 
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a2«Tclface[[2, 1]] = 
,     // xMö2[[5, 3]]       / /3[[6]] *xMfc>2[[6, 5]] \ 

°x[[3, 2]]2*     /3[[3]] + ii__i±* h[[5]] + \S      + 
U l + a[[5, 3]]       ^ l + a[[6, 5]] ) 

/3[[6]]*xHo2[[6, 3]] \     /       etface[[3, 2]] \\ 

'} * { l + a[[3, 21]     )) l + a[[6, 3]] 1     V l + a[[3, 2]] 

,    ., xMto2[[5, 3]] 
TO[[3-2]]   *"g[[3]]+1+g[[5#3]]   * 

>2 + 

2]]2*f(/ 

/ |   /3[[6]]*xMb2[[6, 5]] \      j3[[6]]*xMo2[[6, 3]] 

r[[        + l + a[[6, 5]] J l + a[[6, 3]] 

xTcl[[3, 2]] *etface[[3, 2]] ' 

(l + «[[3, 2]])2 

aetface[[3, 2]]2* 

2 + 

U l+a[[5, 3]]       V l + a[[6, 5]] / 
/3[[6]] *xMb2[[6, 3]] \     (xTcl[[3, 2]] 

+ 

l + «[[6, 3]] J     I l + a[[3, 2]]  JJ 

ox 
,  '/       /3[[61] /       etface[[3, 2]] U 

[[6, 3]]2*       LL   JJ *xTcl[[3, 2]] *   1 —      *2 11        JJ       U + a[[6,3]] I          l + a[[3, 2]]    JJ 
,    (          /3[ [6] ] (       etface[[3# 2]] \\ 

[[6, 3]]2* Z!±-i± r*xTbl[[3, 2]]*   1-— L JJ 

[ (l + a[[6, 3]])2 V           l + a[[3, 2]]     )) 

lll + a[[5, 
°*[[5,3]]2*|[- r_ * 

forrcni      j3[[6]]*xMo2[[6, 5]] \      /B[[6]]*%Mo2[[6, 3]] ^ 
h3[[5] 1 +      +   
I l + a[[6, 51] J l + a[[6# 3]] J l + a[[6, 5]] I l + a[[6# 3]] 
£tface[[3, 2]] 

[[3, 2]] 

fi     ^face[[3,2]]U    2| 

I l + a[[3, 2]]     }} 

U    xMb2[[5, 3] 

11 (l + a[[5, 3]] 
/3[[6]] *xMo2[[6# 5]] \      /3[[6]] *xMo2[[6, 3]] 

~[[5, 3]]2«||      ^ i 3      „ 
--      n])2 

f /3[[6]] *xMo2[[6# 5  ] \ 

V l + o[t6, 5]] y l + a[[6, 5]] ; l + a[[6, 3]] 

/       etface[[3, 2]] \\ 
xTcl[[3, 2]] *   1 —     *2 

\ l + a[[3, 2]]       j 

ox[[6, 5]]2* 

ffXMto2[[5-3]],        ß[[6]]        )*x1cl[[3.2U*U-Etf*Ce[[3'2]]})*2 
Ul + a[[5, 3]]        l + a[[6, 5]]J V l + a[[3, 2]]     JJ 

rrc    C112    f(xM*>2[[5, 3]]       JB[ [6] ] «%Tcl[ [6, 5]] ^ 
aa[[6, 5]]^*  * ;    * 

^xM*>2[[5, 

[[ l + a[[5, 3]]     (l + a[[6, 5]])2 

/   etface[[3, 2]] V 
xTcl[[3, 2]]* 1- — -1±—IL\   * 

I    l + a[[3, 2]] ) 

2; 
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a25raolface = Table[0, {i, 1, m}, {k, 1, m}]; 

CT2MMO2face = Table[0, {i, 1, m}, {k, 1, m}]; 

a2,ftTclf ace = Table [0, {i, 1, m}, {k, 1, m}]; 

2    / epface[[2# 1]] \ 
a2*Mölface[[2, 1]] = ax[[2, l]]2*   — _ii__±L U2 + 

^ l + a[[2, 1]] J 

( xMöl[ [2, 1] ] * epface[ [2, 1] ] \ 
oa[[2, l]]2* 

(l + a[[2, l]])2 

xMbl[[2, 1]] 

'2  + 

.     fxMbl[[2, 1]] \ 
aepface[[2, 1]]2 * LL        JJ     *2 ; 

11 + «[[2, i]] ; 

,    / epface[[2, 1]] \ 
a2#Tclface[[2, 1] ] =ox[[2, l]]2*   — _ii__ii- U2 . 

^    l + a[[2, 1]]    ) 

aa[[2, l]]2* 
' xTcl[[2, 1] ] * epface[[2, 1] ] ' 

(l + a[[2, l]])2 

xTcl[[2, 1]] 

'2 + 

,     /xTcl[[2, 1]] \ 
crepface[[2, 1]]2 *    — —   A2 ; 

[ l + a[[2, 1]]  ) 

-    I epface[[3, 1]] \ 
a2*Tclface[[3, 1] ] =ax[[3, l]]2*   — -ii__±i-U2 

^    l + a[[3, 1]]     ) 

aa[[3, l]]2* 
' xTcl[[3, 1] ] * epface[[3, 1] ] ' 

'2 + 
(l + «[[3, l]])2 

,     /xTcl[[3, 1]] \ , 
Epface[[3# l]]

2* ii__ii-   A2   + ax[[3, 2]J2* 
^ l + a[[3, 1]] ) 

(epface[[3, 2]]  xTcl[[2, 1] ] *epface[[2,  1] ] \ 
 *  A2 + a«[ [3, 2] 1 * 

[    l + a[[3, 2]] l + a[[2, 1]]        ) 

xTcl[[3, 2] ] * epface[[3, 2] ]  xTcl[[2, 1] ] * epface[[2, 1] ] 

aepface[[3, 2]]2* 

(l + a[[3, 2]])2 l + «[[2, 1]] 

3, 2]]2* 
xTcl[[3, 2] ]      xTcl[[2, 1] ] * epface[[2, 1] ] 

l + a[[3, 2]] l + a[[2, 1] ] 
xTcl[[3, 2] ] * epface[[3, 2] ]      epface[[2, 1] ] 

l + a[[3, 2]] l + a[[2, 1]] 

xTcl[ [3, 2] ] * epface[ [3, 2] ]      xTcl[ [2, 1] ] * epface[ [2, 1] ] 

2 + 

fxTcl[[3, 2]]      xTcl[[2, l]]*epface[[2, 1] ] ^ ^ 
 * \A2   + ox[[2, 1] y * 

llt»[[3,2]] l + a[[2, 1]] ) 
/xTcl[[3, 2]]*epface[[3, 2]]      epface[ [2, 1] ] \ 
 *    A2 + aa[[2, 1] r t 

{ l + a[[3, 2]] l + a[[2, 1]] 

2 + 
l + a[[3, 2]] (l + a[[2, l]])2 

,    /xTcl[[3, 2]] *epface[[3, 21]      xTcl[[2, 1]]\ 
aepface[[2, l]]2*    iJ^_JJ ^  J J   * LL *2 ; 

I l+«[[3, 2]] l + a[[2, 1]] J 
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,    l epface[[4, 1]] ^ 
a2*Mblfar[[4, 1]] = ax[[4, l]]2*   — _____ U2 

V    l + *[[4, 1]]    / 

2 OB[[4,   1]]"* 
xMöl[[4, 1]] *epface[[4, 1]] ' 

(l + a[[4, l]])2 
'2 + 

,    /xMol[[4, 1]] \ , 
aepface[[4, l]]2* il—if W2   + ox[[4, 2]]2* 

v i + «[[4# i]] ; 
(epface[[4, 2]]      xMtolf [2, 1] ] * epface[ [2, 1] ] \ 2  *    A2+aa[[4, 2] ]   * 
I    l + a[[4, 2]] l + «[[2, 1]] J 

xMöl[[4, 2]] *epface[[4, 2]]      xMbl[[2, 1] ] *epface[[2, 1]] 
2 + 

aepface[[4, 2]]2* 

(l + a[[4, 2]])2 l + «[[2, 1]] 

4, 2]]2* 
(xMbl[[4, 2]]       xMbl[[2, l]]*epface[[2, 1]] ^A„ ,„ a 
 *    A2   +ox[[2# 11]   * 

I l + a[[4, 2]] l + «[[2, 1]] J 
/xMbl[[4, 2]] *epface[[4, 2]]      epface[ [2, 1] ] \ 2  *    A2 + aa[[2#lJ]   * 
{ l + a[[4, 2]] l + a[[2, 1]]     J 

xMöl[ [4, 2] ] * ep£ace[ [4, 2] ]      xMol[ [2, 1] ] * epface[ [2, 1] ] A2 + 

aepface[ 

l + a[[4# 2]] (l + a[[2, l]])2 

/xMol[[4, 2]] *epface[[4, 2]]   ^ xMbl[[2, 1] ] \        _ 

I l + «[[4,2]] *l + «[[2, 1]]J       ; 

(£p£äC6 r r 4    211 A 
—;—tt* ',n  r2 + 
l + a[ [4, 2] ]     y 

aa[[4, 2]]2* 

[[4. 2]] 
(xMol[[4, 2]] *epface[[4, 2]] ' 

2 + 
(l + a[[4, 2]])2 

xMol[[4, 2]] 

epface[[5, 3]] 

,    fxMol[[4, 2]] ^ 
aepface[[4, 2]]2*    - —   A2 ; 

I l + «[[4, 2]] J 

, / epface[[5, 3]] \ 
a2aMo2face[[5, 3]] = ax[[5, 3]]2* —  LL   JJ  A2 

V    l + a[[5, 3]]     y 

(xMb2[[5, 3]]*epface[[5, 3]] ) 
a«[[5, 3]]   *  

[ (l + «[[5, 3]])2 

,     /xMö2[[5, 3]] \ 
aepface[[5, 3]]2*    - —   A2 ; 

{ l + a[[5, 3]]  J 

'2 + 
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,    / epface[[6, 3]] \ 
a2aifo2face[[6, 3]] = ox[[6, 3]]2*   — —————   A2 

^    l + «[[6, 3]]    I 

xMb2[[6, 3]] *epface[[6, 3]] ' 
a«[[6, 3]]2* 

(l + a[[6, 3]])2 
'2 + 

,     /xMo2[[6, 3]] \ , 
aEpface[[6, 3]]2* ii—-if   A2   + ox[[6, 5]]2* 

V 1 + a[ [6, 3] ]  7 
/epface[[6, 5]]      xMö2[ [5, 3] ] * epface[ [5, 3] ] \ 2 
 *     A2 + CT«[ [6, 5] 1    * 

{    l + a[[6, 5]] l + a[[5, 3]] ) 
rxMo2[[6, 5]] *epface[[6, 5]]      xMb2[[5, 3]] *epface[[5, 3]] \ 

(l + a[[6, 5]])2 l + a[[5, 3]] J 

aepface[[6, 5] ]2 * 
(xMb2[[6, 5]]      xMo2[[5, 3]] *epface[[5, 3]] \ 2 
 *    A2   +ax[[5#3]J    * 

Uta[[6,5]] l + a[[5, 3]] ) 
fxMo2[[6, 5]] *epface[[6, 5]]      epface[ [5, 3] ] \ 2  * \    2 + aa[ [5, 3] ]   * 
I l + «[[6, 51] l + a[[5, 3]]    ) l + a[[6, 5]] l + a[[5, 3]] 

xMto2[[6, 5]] *epface[[6, 5]]       xMo2[[5# 3]] *epface[[5, 3]] A2 + 
l + c[[6, 5]] (l + a[[5, 3]])2 

rpE    ,     -    /xMb2[[6, 5]] *£pface[[6, 5]]       xMo2[[5, 3]]\ 
aepface[ [5, 3] ]   *    *    A2 ; LL I l + a[[6, 5]] l + a[[5, 3]]  J 

_    /epface[[6, 4]] ^ 
a2OTfolface[[6, 4]] =ax[[6, 4]]2*   — -i±__   A2 + 

^ l + a[[6, 4]]  y 

' xMol[ [6, 4] ] * epface[ [6, 4] ] 
aa[[6, 4]]2* 

(l + a[[6, 4]])
2 

xMöl[[6# 4]] 

>2  + 

,     fxMöl[[6, 4]] \ 
a£pface[[6, 4]]2* i±-_if   A2 ; 

v i + o[[6# 4]] ; 

,    I £pface[[6, 5]] ^ 
a2*Molface[[6, 5]] = ox[[6, 5]]2*   —  )v        JJ     A2 

^   i + a[[6# 5]]   ; 

fxMo2[[6, 5]]*gpface[[6, 5]] \ 
era [[6, 5]]' *    A2 + 

(l + «[[6, 5]]) 
,     /xMo2[[6, 5]] \ 

aepface[[6, 5]]2*    - —   A2; 
I l + a[[6, 5]]  I 

<J2//Molface = Table [0, {i, 1, m}, {k, 1, m}]; 

a2MMo2face = Table [0, {i, 1, m}, {k, 1, m}]; 

a2A1Tclface = Table[0, {i, 1, m}, {k, 1, m}]; 
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,    /       etface[[2# 1]] \ 
a2MMblface[[4, 2]] = ox[[2, l]]2*   1- — rro    „„       A2 

I l + o[[2, 1]]     J 

aa[[2# l]]
2* 

i etface[[2, 11] ^ 
xMöl[ [2, 1] ] * - i— 

(1 + «[[1, 2]])2J 
l2 + 

cretface[[2, 1] ]2 * (xMbl[ [2, 1] ] * rro   „ ,, ) A2 ; 
^ l + o[[2, 1]] ) 

a2MMblface[[6, 4]] = ax[[2, l]]2* 
ll       etface[[2, 1] ] \ /   etface[[4, 2] ] \\ 

1 Ll *xMol[[4, 2]] *   1 —      A2 
U l + a[[2, 1]]     J I l + a[[4, 2]]     JJ 

etface[[2# 1]] \ 
aa[[2, l]]2* xMol[[2, 1]] * 

(l + a[[2, l]])2 J 

f       etface[[4, 2] ] ^ 
xMöl[[4, 2]]*   1-— -ii—_i±     A2 

I l + a[[4, 2]]     JJ 

<retface[[2, l]]2* 
it 1 \ (       etface[[4, 2]] \\ 

xMol[[2, 1]]*-  *xMOl[[4, 2]]*    1-—    LL J *2  + 
U l + a[[2, 11] ) ^ l + o[[4#2]]     )) 

ax[[4, 2]]2* 
/ /   etface[[2# 1] ] \  /   etface[ [4, 2] ] \\ 
xMöl[[2, 1]] * 1 LL_!_JJL * i Li LL     A2 

I I l + «[[2, 1]]    J     I l + «[[4, 2]]    JJ 

era[[4, 2]]2*   xMöl[[2, 1]] * 

/       etface[[2, 1]] ^      w , ...    ,„      etface[[4, 2]]     AO 1_ —: rr-    011        *xMol[[4, 2]] *    A2 + 
I l + a[[l, 2]]     J (l + a[[4, 2]])2 j 

aetface[[4, 2]]2* 
/ /       etface[[2, 1] ] \ 1 ^ 
xMbl[[2, 1]]*   1-—  LL        JJ     *xM0l[[4, 2]]*- —-——   A2. 

V I l+o[[2, 1]]     } l + a[[4, 2]]/ 

,    I       etface[[5, 3]] \ 
a2MMb2face[[6# 5]] = ox[[5, 3]]2*   1 — —   A2 + 

V    l + a[ [5, 3]] J 
, ( etface[[5, 3]] \ 

oa[[5,  3]]2* xMo2[[5, 3]] * — — A2 + 
[ (l + a[[5, 3]])2 J 

aetface[[5, 3]]2* |xMo2[[5, 3]] * 1 A2 ; 
V l + a[[5, 3]] ) 

oSMölface = (Table [a2SMölf ace [ [1, k] ] * tfMolface [ [1, k] ]2 * Attfolf ace [ [k] ]2 + 
a2^Molface[ [1, k] ] * SMolface[ [i] ]2 * Aflfolface[ [k] ]2 + 

a2A4Molface[ [i, k] ] * flMölf ace [ [i, k] ]2 * ÄMölf ace [ [i] ]2, 
{i, 1, m}, {k, 1, m}]) A 

1 

V 
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aSMö2face = (Table[a2SMo2£ace[ [i, k] ] *5lMo2face[ [i, k] ]2 *MMo2face[ [k] ]2 + 

a2^IMö2face[ [i, k] ] *£Mb2face[ [i] ]2 *MMo2face[ [k] ]2 + 
o2MMo2£ace[[i, k] ] *flMo2face[ [i, k] ]2 *SMo2face[ [i] ]2, 

{i, l,m}, {k, 1, m}])* 
1 

T; 

aSTclface = (Table [ a2STclf ace [[i, k] ] *JtTclface[[i, k]]2 *yUTclface[[k]]2 + 
a2#Tclface[ [i, k] ] *STclface[ [i] ]2 *MTclface[ [k] ]2 + 
a2MTclf ace[[i, k] ] * flTclface[ [i, k]]2 * BTclface[ [i] ]2, 

{i# 1, m}, {k, 1, m}])* 
1 

V 
ovSf ace = oSMolf ace + aSMo2face + aSTclface; 

MatrixForm[a5face] 

0 0 0 0 0 0 \ 

0.00984221 0 0 0 0 0 

7.55002xl0"6 0 0 0 0 0 

0.000486691 0.0000222138 0 0 0 0 

0 0 0 000519062 0 0 0 

0 0 0 000180138 0 000288601 2 42517 xlO"7 o J 
percenta-Sf acelist = 

100* {aSface[[6, 3] ]/«Sface[ [6, 3]], <*Sface[[6, 4] ] /5face[ [6, 4]], 
aSface[[6, 5]] /Sface[[6, 5]], cr.Sface[[5, 3]] /Sface[[5, 3]], 
c*Sface[[4, 1]] /.Sface[[4, 1]], cr>Sface[[3, 1]] /«Sface[[3, 1] ] , 
cr.Sface[[2, 1]] /.Sface[[2, 1]], aSface[[4, 2]] /,Sface[[4, 2]]}; 

TableForm[Table[ 
{Mo99gammas[ [i] ] , £facelist[ [i] ], percentaSfacelist[ [i] ] } , {i, 1, 8} ] , 

TableHeadings-> {None, {"Garnna  (Mev)n, "Peak Prob,  Face", "% Dev"}}, 
TableAlignments -> Center] 

Gamma   (Mev) 
0.777921 
0.7395 

0.411491 
0.366421 
0.181068 
0.142675 
0.140511 

0.0405845 

Peak Prob,   Face 
0.0024665 

0.00521012 
0.0000125654 
0.00133364 
0.00998895 

0.0000666706 
0.185865 

0.000275118 

% Dev 
7.3034 
5.53923 
1.93004 
38.9206 
4.87229 
11.3244 
5.29535 
8.07427 

AFTACepfacelist= {0.053555, 0.041723, 0, 0.098674, 0.14925, 0, 1, 0}; 
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AFTACintensitylist= {0.0424, 0.1200, 0, 0.0119, 0.0604, 0, 0.8245, 0}; 

AFTAGSlist = AFTACepfacelist * AFTACintensitylist; 

r    Sfacelist[[i]] -AFTAGSlist[[i]]   .     . 
RelDiff = Tablef 100* -^-^     , {i, 1, 8}1; L AFTAGSlist[[i]] J 

TableForm[Table[ {Mo99gammas [ [i] ], AFTAGSlist [ [i] ], 
3facelist[[i]], RelDiff[[i]]}, {i, 1, 5}], TableHeadings-> {None, 
{"Gamma (Mev)n, "AFTAC Face Prob", "AFIT Face Prob", "Rel. % Diff"}}, 

TableAlignments -> Center] 

Gamma (Mev) AFTAC Face Prob AFIT Face Prob Rel. % Diff 
0.777921         0.00227073          0.0024665 8.62127 
0.7395          0.00500676         0.00521012 4.06175 

0.411491             0 0.0000125654 Complexlnfinity 
0.366421         0.00117422         0.00133364 13.5769 
0.181068         0.0090147          0.00998895 10.8074 
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Appendix D: Analytical Method Code for Cs-136 

Off[General::spelll] 

AFTAC Canberra Detector 120 peak efficiency was characterized using a 

NIST source 10 cm above the detector.  This distance is large enough 

to ensure that the solid angle subtended makes the contribution from 

correlated cascading gammas negligible by a factor of Q  shown below. 

The following are the dimensions for a Cs-136 disk source and Det#120 

to calculate the solid angle subtended.  The reference is Equation 

8.10, pg. 254, in (Tsoulfanidis, 1983). 

Cs-13 6 disk source radius in cm.  The precipitate area on the planchet 

is as follows: 

1.667 cm2 for Y, Ce, Nd, Sm, Eu, Tb 

3.125 cm2 for Sr, Zr, Mo, Ag, Cd, Cs, Ba 

2.381 cm2 for U, Np 

3.125 
Rsource: 

Det#120 crystal radius minus the Li contact in cm: 

Lidepth= 0.05; 

Rcrystal =6.0/2 - Lidepth; 

The thickness of the Al end cap in cm: 

Aldepth= 0.16; 

The spacing between the end cap and lithium contact in cm: 

gap =0.5; 

Source to detector distance in cm: 

sourceheight =9.7; 

sourceheight + Aldepth + gap + Lidepth 
z = ^———— • 

Rsource 

s = Rcrystal / Rsource; 
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BesselJ[l, p] 
nfar = s*NIntegrate[Exp[-p* z] *BesselJ[l, (p*s)] *  

{P.  0, 10}] 

0.0188295 

Thus, summing contributions are about two percent of the total counts 

of the correlated energy peaks. 

The following are the efficiency function coefficients for Detector 

120 with the disk source at 10cm.  The efficiency is calibrated only 

between 0.059 and 1.836 MeV.   The error in the peak efficiencies for 

the calibrated range is no larger than 1.5% as Capt Weimer, AFTAC/TOD, 

stated on 25 Jul 97. 

cl= -5.927; 

c2 = -0.8438; 

c3 = -0.02031; 

c4 = -.00007080; 

c5 = .02496; 

c6= .01560; 

The following is the peak efficiency function with the disk source at 

10 cm. 

epds5sfar[e_] = 
Exp[cl + c2*Log[e]   + c3* (Log[e]) A2 + c4* (Log[e]> A3 + 

c5* (Log[e]) A4 + c6* (Log[e]) A5]; 
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Plot[epds5sfar[e], {e, .02, 2.}, PlotRange-> All, 

Frame -> True, GridLines -> Automatic, PlotLabel -> 

"Det#120 Absolute Peak Efficiency with Disk Source 10cm Above", 

FrameLabel-> {"Energy (MeV)", "e peak"}] 

Det#120Absolute?eakEfficiencydthDiskSourcel 0cm Above 

0.012 

0.01 

,           .     .     . 

0.008 

cu 
a 0.006 

■ 

0.004 

0.002 

■ 

 . 

0 ) 
i 

0.5 1.5 
EnergyHMeUj 

- Graphics - 

The following are the Mo-99 gamma energies of interest with their 

corresponding peak efficiencies. 

Csl36gammas= {1.235362, 1.048073, .818514, .507188, .340547, 

.319911, .273646, .187285, .176602, .166576, .163920, 

.153246, .109681, .08636, .066881}; 

epds5sfarlist = Table[epds5sfar[Csl36gammas[[i]]], {i, 1, 15} ] ; 

The row and column numbers of the matrix element represent the 

transition from level i to k. 



G97DENP09_ApD.nb 155 

epfar= 
{{0, 0, 0, 0, 0, 0, 0, 0}, {epds5sfarlist[[3]]# 0# 0, 0, 0, 0, 0, 0}, 

{0, epds5sfarlist[[2]]# 0, 0, 0, 0# 0# 0}, 

{0, 0, epds5sfarlist[[ll]]f 0, 0, 0, 0, 0}, {0, epds5sfarlist[ [1] ] , 

epds5sfarlist[[8]]# 0, 0, 0, 0, 0}, {0, 0, epds5sfarlist[ [7] ], 

cpds5sfarlist[[13]], epds5sfarlist[[14]], 0, 0, 0}, {0, 0, 

epds5sfarlist[[5] ], epds5sfarlist[[9]], epds5sfarlist[[12]], 

epds5sfarlist[[15]], 0, 0}, {0, 0, epds5sfarlist[[4]], 

0, epds5sfarlist[[6]], 0, epds5sfarlist[[10]], 0} } ; 

The density (g/cm3) at 300K is assumed to be similar to actual 

conditions of 77K for Ge and Li.  The reference is (Turner, 1995). 

Gedensity= 5.32; 

Aldensity= 2.70; 

Lidensity = 0.53; 

The atomic weight is in atoms per gram. The reference is (Turner, 

1995). 

6.022 *1023 
Geatomicweight= 

72.59 

Geatomden = Gedensity * Geatomicweight; 

Alatomicweight 
6.022*1023 

26.98154 

Alatcmden = Aldensity* Alatomicweight; 

6.022* 1023 
Liatomicweight= 

6.941 

Liatomden = Lidensity* Liatomicweight; 

The following is a table of the compton scattering, photoelectric, and 

pair production cross sections in Ge, Al, and Li which will be turned 

into an interpolation function for use in computing total efficiencies. 

The reference is the Brookhaven National Laboratory website at TELNET 

bnlnd2.dne.bnl.gov, 23 Jul 1997.  The gamma energies are in MeV and 

the cross sections in cm2. 
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Gedata = Table[{{.02, (12.38 + 4996.) * 10~24 *Geatomden}, 

* 10~24 * Geatomden} , 
»-24 

.03, (14.00 + 1610. 

.04, (14.75+704.5 

.05, (15.05 + 367.0 

.06, (15.12 + 214.0 

.08, (14.94 + 90.61 

.10, (14.59 + 46.24 

.15, (13.57 + 13.56 

.20, (12.63 + 5.706 

.30, (11.13 + 1.733 

.40, (10.03+ .7731 

.50, (9.188+ .4270) 

.60, (8.516+ .2699 

.80, (7.497+ .1379 

1.0, (6.747+ .08585) * 10"" * Geatomden} , 

1.022, (6.676+ .08158) * 10"24 * Geatomden} , 

1.25, (6.038+ .05512 + . 01073) * 10"24 * Geatomden}, 

1.5, (5.490+ .03968+ .05320) * 10"24 * Geatomden}, 

2.0, (4.687 + . 02437 + . 1971) * 10"24 * Geatomden} , 

2.044, (4.629+ .02353+ .2116) * 10"24 * Geatomden}, 

3.0, (3.689 + . 01314 + . 5378) * 10"24 * Geatomden} } ] ; 

* 10"" * Geatomden} , 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden}, 

* 10"24 * Geatomden} , 

* 10"24 * Geatomden} , 

* 10"24 * Geatomden} , 
24 

SGe = Interpolation[Gedata]; 

The macroscopic cross sections (in 1/cm) of Ge for the Cs-136 gamma 

energies are below: 

SGelist=Table[SGe[Csl36gammas[[i]]], {1, 1, 15}]; 

SGem = {{0, 0, 0, 0, 0, 0, 0, 0}, {SGelist[ [3] ] , 0, 0, 0, 0, 0, 0, 0}, 

{0, SGelist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, SGelist[[11]], 0, 0, 0, 0, 0}, 

{0, SGelist[[l]], SGelist[[8]], 0, 0, 0, 0, 0}, 

{0, 0, SGelist[[7]], SGelist[[13]], SGelist[ [14] ] , 0, 0, 0}, {0, 0, 

SGelist[[5]], SGelist[[9]], SGelist[[12]], SGelist[[15]], 0, 0}, 

{0, 0, SGelist[[4]], 0, SGelist[[6]], 0, SGelist[[10]], 0}}; 
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Aldata = Table[ { { . 02, (6.142 + 138.9) * 10"24 * Alatomden}, 

.03, (6.561+39.08) * 10"24 * Alatomden}, 

.04, (6.695 + 15.70) * 10'24 * Alatomden}, 

.05, (6.702 + 7.696) * 10-24 * Alatomden}, 

.06, (6.645 + 4.285) * 10"24 * Alatomden}, 

.08, (6.447 + 1.695) * 10"24 * Alatomden}, 

.10, (6.218+ .8254) * 10'24 * Alatomden}, 

.15, (5.678+ .2237) * 10-24 * Alatomden}, 

.20, (5.233+ .08970) * 10-24 * Alatomden} , 

.30, (4.573+ .02573) * 10-24 * Alatomden} , 

.40, (4.105+ .01111) *10-24*Alatomden}, 

.50, (3.752+ .006021) * 10"24 * Alatomden} , 

.60, (3.474+ .003764) * 10"24 * Alatomden} , 

.80, (3.053+ .001905) * 10"24 * Alatomden}, 

1.0, (2.746+ .001184) * 10"24 * Alatomden} , 

1.022, (2.717+ .001115) * 10-24 * Alatomden} , 

1.25, (2.456+ .0007562 + .001404) * 10"24 * Alatomden}, 

1.5, (2.232+ .0005476+ .007652) * 10"24 * Alatomden} , 

2.0, (1.905+ .0003420+ .03023) * 10-24 * Alatomden}, 

2.044, (1.882+ .0003307+ .03258) * 10"24 * Alatomden} , 

3.0, (1.499+ .00031892+ .08595) * 10-24 * Alatomden} }]; 

ZAl=Interpolation[Aldata]; 

The macroscopic cross sections (in 1/cm) of Al for the Cs-136 gamma 

energies are below: 

EAllist=Table[2Al[Csl36gammas[[i]]], {i, 1, 15}]; 

SAlm = {{0, 0, 0, 0, 0, 0, 0, 0}, {ZAllist[ [3] ], 0, 0, 0, 0, 0, 0, 0}, 

{0, SAllist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, ZAllist[[ll]], 0, 0, 0, 0, 0}, 

{0, ZAllist[[l]], ZAllist[[8]], 0, 0, 0, 0, 0}, 

{0, 0, SAllist[[7]], 2Allist[[13]], ZAllist[ [14] ], 0, 0, 0}, {0, 0, 

SAllist[[5]], SAllist[[9]], SAllist[[12]], SAllistf[15]], 0, 0}, 

{0, 0, SAllist[[4]], 0, SAllist[[6]], 0, SAllistf [10] ] , 0}}; 
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Lidata = Table[ { { .02, (1.702 + .1516) * 10"24 * Liatamden} , 
-24 .03, (1.718+ .03841) * 10"" * Liatamden} , 
1-24 .04, (1.692+ .01445) * 10"" * Liatamden}, 

.05, (1.656+ .006770) * 10"24 * Liatamden}, 

.06, (1.617+ .003645) * 10"24 * Liatamden}, 

.08, (1.540+ .001373) * 10""* * Liatamden}, 

.10, (1.471 + .0006464) * 10"" * Liatamden}, 
24 .15, (1.328+ .0001666) * lO"" * Liatamden} 
24 .20, (1.218+ .00006481) * 10"" * Liatamden}, 

.30, (1.060+ .00001796) * 10"" * Liatamden}, 

.40, (.9499 +7.615* 10"6) * 10"24 * Liatamden} , 

.50, (.8676 +4.081* 10"6) * 10"24 * Liatamden} , 

.60, (.8027 +2.533* 10"6) * 10"24 * Liatamden}, 

.80, (.7053 + 1.276*10-6) * 10-24 * Liatamden}, 

1.0, (.6341 + 7.939*10"') * 10"24 * Liatamden} , 
1.022, (. 6274 + 7.038* 10"') * 10"24 * Liatamden} , 
1.25, (.5670+ 4.788*10-' + 7.052* 10"5) * 10"24 * Liatamden}, 
1.5, (.5154 + 3.486* 10"' + .0003953) * 10"24 * Liatamden}, 

2.0, (.4398 + 2.212*10"7+ .001583) * 10"24 * Liatamden}, 
2.044, (.4344 + 2.141*10''+ .001707) * 10"24 * Liatamden}, 

3.0, (.3460 + 1.250*10-' + .004545) * 10"24 * Liatamden}}]; 

SLi= Interpolation[Lidata]; 

The macroscopic cross sections (in 1/cm) of Li for the Mo-99 gamma 
energies are below: 

ZLilist=Table[£Li[Csl36gammas[[i]]], {i, 1, 15}]; 

2Lim= {{0, 0, 0, 0, 0, 0, 0, 0}, {ZLilist[ [3] ], 0, 0, 0, 0, 0, 0, 0}, 
{0, ZLilist[[2]], 0, 0, 0, 0, 0, 0}, 
{0, 0, SLilist[[ll]], 0, 0, 0, 0, 0}, 
{0, SLilist[[l]], SLilist[[8]], 0, 0, 0, 0, 0}, 
{0, 0, SLilist[[7]], SLilist[[13]], SLilistf [14] ] , 0, 0, 0}, {0, 0, 
SLilist[[5]], ZLilist[[9]], SLilist[[12]], SLilist[[15]], 0, 0}, 
{0, 0, ZLilist[[4]], 0, SLilist[[6]], 0, SLilist[[10]], 0}}; 

To review and compare the macroscopic cross sections of the elements 
involved: 
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TableForm[Table[{Csl36gammas[[i]], SGelist[[i]], 

ZAllist[[i]], ZLilist[[i]]}, {i# 1, 15}] , TableHeadings-> 

{None, {"Mfev", "ZGe (l/cm)n, "SAl (l/cm)n, "ELi (l/cm)n}}# 
TableAlignments -> Center] 

Mev 2Ge (1/cm) ZA1 (1/cm) SLi (1/cm) 

1 235362 0.270967 0.149026 0.026236 

1 048073 0.294437 0.161784 0.0284955 

0 818514 0.333168 0.182133 0.0320856 

0 507188 0.421267 0.22511 0.0396563 

0 340547 0.519014 0.263977 0.0464761 

0 319911 0.541161 0.270399 0.0475881 

0 273646 0.783189 0.291284 0.0504276 

0 187285 1.06751 0.333599 0.0571857 

0 176602 1.15798 0.341143 0.058227 

0 166576 1.18203 0.346728 0.0592544 

0 .16392 1.18355 0.348101 0.0595353 

0 153246 1.19032 0.353753 0.0607041 

0 109681 2.44549 0.413162 0.0662532 

0 .08636 4.06767 0.471788 0.0698017 

0 066881 7.30136 0.572063 0.073228 

To better simulate the response of the detector, the Al end cap and Li 

contact will be included to account for their attenuation. 

The path length of a gamma through the end cap and contact in cm. 
Since the end cap and contact extend beyond the crystal, there are no 

vertical edges affecting the path length for this simplified approach. 

xAl [f_] = Aldepth/ S; 

xLi[f_] = Lidepth/ f; 

The following is the equation to compute the total efficiency of the 

five-sided detector crystal with a point source.  The references are 

(Camp and Van Lehn, 1969), pg. 237-238, (McCallum and Coote, 1975), pg. 

192, and (Heath, 1964), pg. 21. 

The radial depth of the five-sided crystal in cm: 

Rdd= (6.0 - 0.8 -2«Lidepth) /2; 

The axial depth of the five sided crystal in cm: 

Add= 5.1 - 3.65 - Lidepth; 

The crystal length in cm: 
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Lcxystal = 5.1- Lidepth; 

The limits of integration for the five-sided cylinder: 

Array[Aps5sfar, 4]; 

Array[Bps5sfar, 4] ; 

Array[xps5sfar, 4] ; 

Bps5sfar[4] =Cos[0]; 

Aps5sfar[4] = Cos[ArcTan[ (Rcrystal - Rdd) / 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sfar[4] [f_] = Add/ f ; 

Bps5sfar[3] =Aps5sfar[4]; 

Aps5sfar[3] = 

r      r (Rcrystal - Rdd) .. n 
Cos ArcTan    ; L       (sourceheight + Aldepth + gap + Lidepth + Add) J 

xps5sfar[3][f_] = 

(sourceheight + Aldepth + gap + Lidepth + Lcrystal + Add) / § - 

(Rcrystal - Rdd) / Vl-f2 ; 

Bps5sfar[2] =Aps5sfar[3]; 

Aps5sfar[2] =Cos[ArcTan[ 

Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sfar[2] [§_] = Lcrystal/f; 

Bps5sfar[l] =Aps5sfar[2]; 

Aps5sfar[l] = 

Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps5sfar[l][f_] = 

Rcrystal/Vl - ?2 - (sourceheight + Aldepth + gap + Lidepth) / £; 

£tps5s£ar[e_] := 

1 * 
— * J1, NIntegrate [ (1 - Exp[-SGe[e] *xps5sfar[i] [£]]) * 
2    1=1 

Exp[-SAl[e] *xAl[f] -SLi[e] *xLi[£]], 
{§, Aps5sfar[i], Bps5sfar[i]}] 
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The total efficiency for the five-sided cylinder with a point source 

10 cm above for the Cs-136 gamma energies: 

etps5sfarlist = Table[etps5sfar[Csl36gammas[ [n] ] ], {n, 1, 15}]; 

etps5sfarm = 

{{0, 0, 0, 0, 0, 0, 0, 0}, {etps5sfarlist[[3]]# 0, 0, 0, 0, 0, 0# 0}, 

{0, etps5s£arlist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, etps5sfarlist[[11]], 0, 0, 0, 0, 0}, {0, etps5sfarlist[ [1] ] , 

etps5sfarlist[[8]], 0, 0, 0, 0, 0}, {0, 0, etps5sfarlist[ [7] ], 

etps5sfarlist[[13]], etps5sfarlist[[14]], 0, 0, 0}, {0, 0, 

etps5sfarlist[[5]], etps5sfarlist[[9]], etps5sfarlist[[12]], 

etps5sfarlist[[15]]# 0, 0}, {0, 0, etps5sfarlist[[4]], 

0, etps5sfarlist[[6]], 0, etps5sfarlist[[10]], 0} }; 

The following is the equation to compute the total efficiency of the 

solid cylindrical detector crystal with a point source 10cm above. 

The references is (Heath, 1964), pg. 21. 

The limits of integration for the solid cylinder with a point source: 

Array[Aps3sfar, 2] ; 

Array[Bps3sfar, 2] ; 

Array[xps3sfar, 2]; 

Bps3sfar[2] =1; 

Aps3s£ar[2] = Cos[ArcTan[ 

Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps3sfar[2] [f_] = Lcrystal / f ; 

Bps3sfar[l] = Aps3sfar[2]; 

Aps3sfar[l] = 

Cos[ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps3sfar[l][£_] = 

Rcrystal/ V1 - S2   -  (sourceheight + Aldepth + gap + Lidepth) / f; 

etps3sfar[e_] := 

1 

~2 
1 h — * > Nlntegrate[ (1 - Exp[-2Ge[e] *xps3sfar[i] [f]]) * 2 ti 

Exp[-SAl[e] *xAl[f] -SLi[e] *xLi[f]], 

{£, Aps3sfar[i], Bps3sfar[i]}]; 
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£tps3sfarlist= Table[etps3sfar[Csl36gammas[[n]]], {n, 1, 15}]; 

etps3sfarm = 
{{0, 0, 0, 0, 0, 0# 0, 0}, {etps3sfarlist[[3]]# 0# 0, 0, 0, 0, 0, 0}, 
{0, £tps3sfarlist[[2]], 0, 0, 0, 0, 0, 0}, 
{0, 0, etps3sfarlist[[ll]], 0, 0, 0, 0, 0}, {0, etps3sfarlist[ [1] ], 
etps3sfarlist[[8]], 0, 0, 0, 0, 0}, {0, 0, £tps3sfarlist[[7]], 
etps3sfarlist[[13]], £tps3sfarlist[[14]], 0, 0, 0}, {0, 0, 
etps3sfarlist[[5]], etps3sfarlist[[9]], etps3sfarlist[[12]], 
£tps3sfarlist[[15]], 0, 0}, {0, 0, £tps3sfarlist[[4]], 
0, £tps3s£arlist[[6]], 0, £tps3sfarlist[[10]], 0}}; 

The following is the equation to compute the total efficiency of the 
solid cylindrical detector crystal with a disk source 10 cm above. 
The references is  Scintillation Spectrometrv 2nd Ed.. Heath, R., 1964, 
pg. 21. 

The limits of integration for the solid cylinder with a disk source: 

Alds3sfar = Cos[0]; 

Blds3sfar[0_, p_] = 

-p*Sin[0] + VP2
* (Sin[0])2 - (p2 - Rcrystal2 ) 

Cos IArcTanl   ; L     L sourceheight + Aldepth + gap + Lidepth + Lcrystal 

xlds3sfar[f_] = Lcrystal/f; 

A2ds3sfar[0_, p_] = 

-p*Sin[0] + -\/p2* (Sin[<*>])2 - (p2 -Rcrystal2) 
Cos [ ArcTanl   ; 1       sourceheight + Aldepth + gap + Lidepth + Lcrystal J J 

B2ds3sfar[0_, p_] = 

-p*Sin[0] + -\/p2* (Sin[0])2 - (p2 -Rcrystal2) 
COS I AypTan I —.^___________________________________________ I I 

^     *■ sourceheight + Aldepth + gap + Lidepth     J J 

x2ds3sfar[£_, </>_, p_] = 

-p*Sin[0] + ^[p2* (Sin[0])2 - (p2 - Rcrystal2) 

Vl-£2 

(sourceheight + Aldepth + gap + Lidepth) 
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Etds3sfarl[e_] :=  (NIntegrate[ 
7T (Rsource)  v 

NIntegrate[ 

NIntegrate[ 

(1 - Exp[-SGe[e] *xlds3sfar[f] ]) * 
Exp[-SAl[e] *xAl[£] -2Li[e] *xLi[f]], 

{£, Blds3sfar[0, p], Alds3sfar}] , [<t>, , —}] *p, 

{p, 0, Rsource}]} 

etds3sfarllist=Table[etds3sfarl[Csl36gammas[[n]]], {n, 1, 15}]; 

etds3sfar2[e_] :=   (NIntegrate[ 
7T (Rsource)2 v 

NIntegrate[ 

NIntegrate[ 
(1 - Exp[-2Ge[e] *x2ds3sfar[£, <f>, p] ]) * 

Exp[-2Al[e] *xAl[f] -SLi[e] *xLi[£]], 

{f, B2ds3sfar[0, p], A2ds3sfar[<£, p]}] , {<£, , —}] *p, 

{p, 0, Rsource}]j 

etds3sfar21ist = Table[ctds3sfar2[Csl36gammas[[n]]], {n, 1, 15} ]; 

ctds3sf arlist = etds3sfarllist + etds3sf ar21ist; 

etds3sfarm = 

{{0, 0, 0# 0, 0, 0# 0, 0}, {etds3sfarlist[[3]], 0# 0, 0, 0, 0, 0, 0}, 

{0, etds3sfarlist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, etds3sfarlist[[ll]], 0, 0, 0, 0, 0}, {0, etds3sfarlist [ [1] ], 

etds3sfarlist[[8]], 0, 0, 0, 0, 0}, {0, 0, etds3sfarlist[ [7] ], 

etds3sfarlist[[13]]# etds3sfarlist[[14]], 0, 0, 0}, {0, 0, 

etds3sfarlist[[5]], etds3sfarlist[[9]], etds3sfarlist[[12]], 

etds3s£arlist[[15]], 0, 0}, {0, 0, etds3sfarlist[[4]], 

0, etds3sfarlist[[6]]# 0, etds3sfarlist[[10]], 0}}; 

The following table shows the contribution of each zone to the total 

efficiency of the three-sided cylinder with a disk source. 

TableForm[Table[{£tds3sfarllist[[i] ] , 

etds3sfar21ist[[i]], etds3sfarlist[[i]]}, {i, 1, 15}], 

TableHeadings -> {None, {"Inner Cone Total Eff.", 

"Outer wedge Total Eff.", "Sum Total Eff."}}, 

TableAlignments -> Center]; 
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The following is the equation to compute the total efficiency of the 

five-sided cylindrical detector crystal with a disk source 10 cm above. 

It is assumed the ratio of the five-sided to three-sided crystal total 

efficiencies using a point source at a given distance is the same for 

using a disk source at the same distance. 

etps5sfarlist 
etds5sfarlist =  * etds3sfarlxst; 

etps3sfarlist 

etfar= 

{{0, 0, 0# 0, 0, 0, 0, 0}, {etds5sfarlist[[3]]# 0, 0, 0, 0, 0, 0, 0}, 

{0, Etds5s£arlist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, £tds5sfarlist[[ll]], 0, 0, 0, 0, 0}, {0, etds5sfarlist[[ 1] ], 

etds5sfarlist[[8]], 0, 0, 0, 0, 0}# {0, 0, etds5sfarlist[ [7] ] , 

etds5sfarlist[[13]], etds5sfarlist[[14]], 0, 0, 0}, {0, 0, 

etds5sfarlist[[5]], etds5sfarlist[[9]], etds5sfarlist[[12]], 

etds5sfarlist[[15]], 0, 0}, {0, 0, etds5sfarlist[[4]], 

0, £tds5s£arlist[[6]], 0, etds5sfarlist[[10]], 0}}; 

The following is the peak to total efficiency ratio which is presumed 

to be independent of distance.  This ratio will allow finding the peak 

efficiency from the calculated total efficiency with a disk source on 

the face of the detector.  The reference is Equation 11 and text, 

(McCallum and Coote, 1975), pg. 192. 

epds5sfarlist 
PKtoTTLdsSslist=  ; 

etds5sfarlist 
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TableForm[Table[{Csl36gaiimas[ [i] ], etds5sfarlist[ [i] ] , 

epds5sfarlist[[i]], PKtoTTLds5slist[[i]]}, {i, 1, 15}], 

TableHeadings-> {None, {"Mev", "etds5s", "epds5s", nP/T"}}# 
TableAlignments -> Center] 

Mev etds5s epds5s P/T 

1 235362 0 0101983 0.002229 0 218565 

1 048073 0 0106328 0.00256278 0 241024 

0 818514 0 0112624 0.00315491 0 280127 

0 507188 0 0123716 0.00469878 0 379804 

0 340547 0 0132356 0.00653519 0 493757 

0 319911 0 0133956 0.00687769 0 513429 
0 273646 0 0146551 0.00779652 0 532001 

0 187285 0 0153411 0.0102609 0 668851 

0 176602 0 0154929 0.0106358 0 686494 

0 166576 0 0155193 0.0109936 0 708381 

0 .16392 0 0155181 0.0110884 0 714546 

0 153246 0 0155142 0.0114644 0 738966 

0 109681 0 0164054 0.0124301 0 757679 

0 .08636 0 0166731 0.0115871 0 694961 

0 066881 0 0166939 0.00896527 0 .53704 

TableForm[Table[{Csl36ganmas[[i]], etds3sfarlist[[i]], 

etps5sfarlist[[i]], etps3sfarlist[[i]]}, {i, 1, 15}], 

TableHeadings-> {None, {"Mev", netds3s", netps5s", "etpsSs"}}, 

TableAlignments -> Center] 

Mev        £tds3s       £tps5s       etps3s 
1.235362 0.0102858 0.0102377 0.0103256 
1.048073 0.0107211 0.0106746 0.0107632 

0.818514 0.0113509 0.0113078 0.0113965 
0.507188 0.012457 0.0124239 0.0125097 
0.340547 0.0133146 0.0132941 0.0133734 

0.319911 0.0134729 0.0134553 0.0135329 
0.273646 0.0147133 0.0147253 0.0147838 
0.187285 0.0153802 0.0154187 0.015458 

0.176602 0.0155273 0.0155723 0.0156068 
0.166576 0.0155524 0.015599 0.0156324 

0.16392 0.0155512 0.0155979 0.0156312 
0.153246 0.0155469 0.015594 0.0156269 
0.109681 0.0164108 0.0164973 0.0165026 
0.08636 0.0166736      0.01677 0.0167706 
0.066881 0.0166939 0.0167939 0.0167939 

Next, the total efficiency of the three-sided crystal with the disk 

source on the detector face is shown below.  (The procedure of using 

the ratios of the efficiencies is repeated to find the total 

efficiency for the five-sided crystal.)  The distance in cm between 
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the detector's face and crystal includes the thickness of the Al can, 
the axial space (vacuum), and the Li contact. 

sourceheight =0; 

The limits of integration for the five-sided cylinder: 

Array[Aps5sface, 4] ; 

Array[Bps5sface, 4] ; 

Array[xps5sface, 4] ; 

Bps5sface[4] =Cos[0]; 

Aps5sface[4] = Cos[ArcTan[ (Rcrystal - Rdd) / 
(sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sface[4] [f_] = Add/f; 

Bps5sface[3] =Aps5sface[4]; 

Aps5sface[3] =Cos[ArcTan[ 
(Rcrystal - Rdd) / (sourceheight + Aldepth + gap + Lidepth + Add) ] ] ; 

xps5sface[3][f_] = 
(sourceheight + Aldepth + gap + Lidepth + Lcrystal + Add) / £ - 

(Rcrystal - Rdd) / Vl-£2 ; 

Bps5sface[2] =Aps5sface[3]; 

Aps5sface[2] =Cos[ArcTan[ 
Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps5sface[2] [£_] = Lcrystal / f; 

Bps5sface[l] =Aps5sface[2]; 

Aps5sface[l] = 
Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps5sface[l][§_] = 

Rcrystal/ V1 - f2 - (sourceheight + Aldepth + gap + Lidepth) / g; 

etps5s£ace[e_] := 

— * > NIntegrate[ (1 - Exp[-2Ge[e] *xps5sface[i] [f]]) * 
2    i=1 

Exp[-2Al[e] *xAl[£] -SLi[e] *xLi[£]]# 

{Si Aps5sface[i], Bps5sface[i]}]; 
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etps5s£acelist = Table[etps5sface[Csl36gammas[[n]]], {n, 1, 15} ] ; 

The limits of integration for the solid cylinder with a point source: 

Array[Aps3sface, 2] ; 

Array[Bps3s£ace, 2] ; 

Array[xps3sface, 2]; 

Bps3sface[2] =Cos[0]; 

Aps3sface[2] =Cos[ArcTan[ 
Rcrystal / (sourceheight + Aldepth + gap + Lidepth + Lcrystal) ] ] ; 

xps3sface[2] [f_] = Lcrystal / f; 

Bps3sface[l] =Aps3sface[2]; 

Aps3sface[l] = 
Cos [ArcTan[Rcrystal / (sourceheight + Aldepth + gap + Lidepth) ] ] ; 

xps3sface[l][f_] = 

Rcrystal/ V1 - ?2 - (sourceheight + Aldepth + gap + Lidepth) / f; 

etps3sface[e_] := 

1 2 

— * V NXntegrate[ (1 - Exp[-SGe[e] *xps3sface[i] [£]])* 
2 i=i 

Exp[-ZAl[e] *xAl[f] -SLi[e] *xLi[f]], 
{f , Aps3sface[i], Bps3sface[i]}]; 

etps3sfacelist=Table[stps3sface[Csl36gammas[[n]]], {n, 1, 15}]; 

The limits of integration for the solid cylinder with a disk source: 

Alds3s£ace = Cos[0]; 

Blds3sface[0_, p_] = 

-p*Sin[0] + VP2
* (Sin[0])2 - (p2 - Rcrystal2) 

Cos I AjrcfFsii I ^—--—-—-—-——-——-—■——^________________________ I I • 
L     "• sourceheight + Aldepth + gap + Lidepth + Lcrystal J J' 

xlds3sface[£_] = Lcrystal/ f; 

A2ds3sface[0_, p_] = 

-p*Sin[0] + A/P2* (Sin[«])2 - (p2 - Rcrystal2 ) 
Cos [ArcTan| 11; L     L sourceheight + Aldepth + gap + Lidepth + Lcrystal J J 
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B2ds3sface[0_, p_] 

-p*Sin[0] + A/P2* (Sin[0])2 - (p2 - Rcrystal2) 
COS I ATVfTaTi f -^____________ I I 

L     L     sourceheight + Aldepth + gap + Lidepth     J J 

x2ds3sface[£_, <f>_, p_] = 

-p*Sin[0] + -y/p2* (Sin[0])2 - (p2 - Rcrystal2) 

(sourceheight + Aldepth + gap + Lidepth) 
 • 

etds3sfacel[e_] :=   [Nlntegrate[ 
7T (Rsource)2 v 

Nlntegrate[ 

Nlntegrate[ 

(1 - Exp[-SGe[e] *xlds3sface[f]]) * 

Exp[-SAl[e] *xAl[f] -2Li[e] *xLi[f]], 

{f, Blds3sface[0, p], Alds3sface}] , {0, , —jj *p. 

{p, 0, Rsource}]] 

etds3sfacellist=Table[etds3sfacel[Csl36gammas[[n]]], {n, 1, 15}]; 

ctds3s£ace2[e_] :=  (Nlntegrate[ 
7T (Rsource)  * 

Nlntegrate[ 

Nlntegrate[ 

(1 - Exp[-2Ge[e] *x2ds3sface[f, <f>, p] ]) * 

Exp[-SAl[e] *xAl[£] -SLi[e] *xLi[f]], 

{f, B2ds3s£ace[0, p], A2ds3sface[0, p]}] , (0, , — JJ *p, 
_£      _S 

{p, 0, Rsource}]] 

Etds3sface21ist=Table[etds3sface2[Csl36gammas[[n]]], {n, 1, 15}]; 

etds3sfacelist= etds3sfacellist+ etds3sface21ist; 

The following table shows the contribution of each zone to the total 

efficiency of the three-sided cylinder with a disk source. 

TableForm[Table[{Etds3sfacellist[[i]], 

etds3s£ace21ist[[i]], etds3sfacelist[[i]]}, {i, 1, 15}], 

TableHeadings-> {None, {"Inner Cone Total Eff.", 

"Outer Wedge Total Eff.", "Sum Total Eff."}}, 

TableAlignments -> Center]; 
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The following is the equation to compute the total efficiency of the 

five-sided cylindrical detector crystal with a disk source at the face. 

It is assumed the ratio of the five-sided to three-sided crystal total 

efficiencies using a point source is the same for using a disk source 

at the same distance. 

£tps5sfacelist 
etds5sfacelist =  * etds3sfacelist; 

etps3s£acelist 

Using the peak-to-total efficiency ratio calculated above, the peak 

efficiency of the five-sided crystal with a disk source at the face is 

shown below: 

epds5sf acelist = etds5sf acelist * PKtoTTLds5slist; 

To summarize the results up to present, a table is provided below. 

TableForm[Table[{Csl36gammas[[i]], 

ctds5sfacelist[[i]], epds5sfacelist[[i]]}, {i, 1, 15}], 

TableHeadings-> {None, {"Gamma (Mev)", 

"Total Face Efficiency", "Peak Face Efficiency"}}, 

TableAlignments -> Center] 

Gamma (Mev)     Total Face Efficiency    Peak Face Efficiency 
1.235362 0.176704 0.0386214 

1.048073 0.185113 0.0446167 
0.818514 0.19754 0.0553363 
0.507188 0.220298 0.0836701 
0.340547 0.239085 0.11805 
0.319911 0.242711 0.124615 

0.273646 0.273449 0.145475 
0.187285 0.291161 0.194743 
0.176602 0.295126 0.202602 
0.166576 0.295752 0.209505 
0.16392 0.295703 0.211293 
0.153246 0.29552 0.218379 

0.109681 0.315647 0.239159 
0.08636 0.317962 0.220971 
0.066881 0.312915 0.168048 
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TableForm[Table[{Csl36gaitmas[ [i] ] , etds3sfacelist[ [i] ], 
Etps5sfacelist[[i]], etps3sfacelist[[i]]}, {i, 1, 15}], 

TableHeadings-> {None, {"Mev", "etds3s", netps5s", "etpsSs"}}, 
TableAlignments -> Center] 

Mev etds3s £tps5s etps3s 

1 235362 0.177835 0 180888 0 182046 

1 048073 0.186242 0 189519 0 190675 

0 818514 0.198652 0 202275 0 203414 

0 507188 0.221331 0 .22563 0 226688 

0 340547 0.24 0 244882 0 245819 

0 319911 0.243599 0 248592 0 249501 

0 273646 0.274058 0 279919 0 280542 

0 187285 0.291536 0 297713 0 298096 

0 176602 0.295447 0 301649 0 301977 

0 166576 0.29606 0 302256 0 302571 

0 .16392 0.29601 0 302203 0 302517 

0 153246 0.295823 0 302006 0 302316 

0 109681 0.315689 0 321184 0 321227 

0 .08636 0.317966 0 322721 0 322725 
0 066881 0.312915 0 317029 0 317029 

The next step is to place the various coefficients for the summing 
correction equations in matrix form.  The reference is (Andreev and 
others, 1972),  pg. 1358-1360. 

The internal conversion coefficients for Cs-136 are shown below.  The 
reference is (Tuli, 1987), pg. 311.  Due to Mathematica's indexing, 
the ground state is level 1. 

a= {{0, 0, 0, 0, 0, 0, 0, 0}, {0.00282, 0, 0, 0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 2.26, 0, 0, 0, 0, 0}, 
{0, 0, 0.190, 0, 0, 0, 0, 0}, {0, 0, 0.016, 1.47, 0.343, 0, 0, 0, 0}, 
{0, 0, 0.0305, 0.094, 0.433, 0.694, 0, 0}, 
{0, 0, 0.0112, 0, 0.0393, 0, 0.245, 0}}; 

MatrixForm[a]; 

The following are branch ratios for cascading Cs-136 gammas . The 
reference is (Tuli, 1987), pg. 311. Due to Mathematica's indexing, 
the ground state is level 1. 
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x = {{0, 0, 0, 0, 0, 0# 0, 0}, 
{1, 0# 0, 0, 0, 0, 0, 0}# {0, 1, 0, 0, 0, 0, 0, 0}, 
{0, 0, 1, 0, 0, 0, 0, 0}, {0, 0.982, 0.018, 0, 0, 0, 0, 0}, 
{0, 0, 0.671, 0.014, 0.315, 0, 0, 0}, 
{0, 0, 0.673, 0.159, 0.092, 0.076, 0, 0}, 
{0, 0, 0.527, 0, 0.272, 0, 0.201, 0}}; 

MatrixFoxm[x]; 

The peak face efficiencies are placed in a matrix according to their 

level transitions. 

epface= 

{{0, 0, 0, 0, 0, 0, 0, 0}, {epds5sfacelist[[3]]# 0, 0, 0, 0, 0, 0, 0}, 

{0, epds5sfacelist[[2]], 0, 0, 0, 0, 0, 0}, 

{0, 0, epds5sfacelist [ [11]] , 0, 0, 0, 0, 0}, 

{0, epds5sfacelist[[l]], epds5sfacelist[[8] ] , 0, 0, 0, 0, 0}, 

{0, 0, epds5sfacelist[[7]], 

epds5sfacelist[[13]], epds5sfacelist[[14]], 0, 0, 0}, {0, 0, 

epds5sfacelist[[5]], epds5sfacelist[[9]], epds5sfacelist[[12]], 

epds5sfacelist[[15]], 0, 0}, {0, 0, cpds5sfacelist[[4]], 

0, epds5sfacelist[[6]], 0, epds5sfacelist[[10]], 0}}; 

MatrixForm[epface]; 

MatrixFormfepfar]; 

The total face efficiencies are placed in a matrix according to their 

level transitions. 

etface = 

{{0, 0, 0, 0, 0, 0, 0, 0}, {ctds5sfacelist [ [3] ], 0, 0, 0, 0, 0, 0, 0}, 

{0, ctds5sfacelist [ [2] ], 0, 0, 0, 0, 0, 0}, 

{0, 0, stds5sfacelist [ [11] ] , 0, 0, 0, 0, 0}, 

{0, ctds5sfacelist[[1]], etds5sfacelist[[8]], 0, 0, 0, 0, 0}, 

{0, 0, £tds5sfacelist[[7]], 

£tds5sfacelist[[13]], Etds5sfacelist[[14]], 0, 0, 0}, {0, 0, 

£tds5sfacelist[[5]], £tds5sfacelist[[9]], etds5sfacelist[[12]], 

£tds5sfacelist[[15]], 0, 0}, {0, 0, £tds5sfacelist[[4]], 

0, £tds5sfacelist[[6]], 0, £tds5sfacelist[[10]], 0}}; 

MatrixForm[etface]; 

MatrixForm[£tfar]; 

The Mo-99 ß-  decay branch ratios are listed below in the array.  The 

reference is (Tuli, 1987), pg. 311. 
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ß= {0, 0, 0.0198, 0, 0.0178, 0.00790, 0.00128, 0.929, 0.0226}; 

MatrixForm[/3]; 

The following method determines the fraction of counts underneath an 
observed energy peak.  The peak represents the sum of direct and true 
coincidence gamma rays depositing the given energy.  The true activity 
has been normalized to one.  This method does not include the angular 
correlation coefficient W since this was shown to be a negligible 
factor in analyzing Mo-99.  The reference is (Andreev and others, 
1972), pg. 1359. 

The number of energy levels  in Cs-136 in the simplified decay scheme 
is eight (seven plus ground state).  However due to Mathematica's 
automatic indexing at one, m =8.  The terms are decoupled along the 
decay chains in order to calculate their contributions.  They will be 
summed at the end. 

m= 8; 

T x[ [i, k] 1 *epfar[ [i, k] ]   . , 
afar = Table[        - —, {i, 1, m}, {k, 1, m}l; L     l + «[[i, k]] 

J 

r x[ [i, k] ] *epface[ [i, k] ]   , , 
aface = Tablef , {i, 1, m}, {k, 1, m} ; L      l + «[[i, k]] 

MatrixForm[aface]; 

MatrixForm[afar] ; 

f       etfacer[i, k] 1 ^ , 
bface = Table [x[[i, k] ] * 1 ~i — , {i, 1, m}, {k, 1, m}l; L V    l + a[[x, k]] ) 

/   etfarrri, k] ] \ , 
bfar = Tablefx[ [i, k] ] * 1 —m —   , {i, 1, m}, {k, 1, m} 1 ; L ^   1+ a[[i, k]] ; 

MatrixFormfbface]; 

MatrixForm[bfar]; 

St ace = {0, 0, 0, 0, 0, 0, 0, 0}; 

Sfar= {0, 0, 0, 0, 0, 0, 0, 0}; 

Do[sface[[i]] =j3[[i]] + V Sface[ [n] ] *bface[ [n, i] ] , {i, m, 1, -1}] 
n=i+l 

m 

Do[sfar[[i]] =/3[[i]] +  J^ Sfar[[n]] *bfar[[n, i] ], {i, m, 1, -1}] 
n=i+l 
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MatrixFoxm[2face] ; 

MatrixForm[Sfar]; 

Mfa.c&= {1, 1, 1, 1, 1, 1, 1, 0}; 

Mfar= {1, 1, 1, 1, 1, 1, 1, 0}; 

mm = m- 1; 

k-l 

Do[Mface[[k]] = ^bface[[k, j]] *Aiface[ [j] ] , {k, 2, mm}] 
j=i 

k-l 

Do[Mfar[[k]] = 2bfar[tk' Jl ] **<far[ [j] ] , {k, 2, mm}] 
j=i 

MatrixForm[A^face]; 

MatrixForm[A1far] ; 

Mface = Table[0, {i, 1, m}, {j, 1, m}]; 

#far = Table[0, {i, 1, m}, {j, l,m}]; 

Do [Do [flf ace [[i, k] ] = 
i- 

aface[[i, k] ] + ^ aface[[i, j]] *Mface[[j, k] ] , {k# 1, i}], 

{i, 2, m}] 

Do[Do[#far[[i, k] ] 

afar[[i, k] ] + ^ afar[[i, j]] *#far[[j, k] ], {k, 1, i}] 

{i, 2, m}] 

MatrixForm[^(face] ; 

MatrixForm[.5!Ifar] ; 

Sface= 
Table[jSface[ [i] ] *#face[ [i, k] ] *Mface[ [k] ] , {i, 1, m}, {k, 1, m}] ; 

Äfacelist = {>Sface[ [5, 2] ] , 3face[ [3, 2] ] , 5face[ [2, 1] ], 
5face[[8, 3] ] , 5face[[7, 3] ] , 5face[[8, 5] ], Sfacef[6, 3] ], 
>Sface[[5, 3] ] , Sface[[7, 4] ] , 5face[[8, 7] ], 3face[[4, 3] ], 
Sface[[7# 5]], Sface[[6, 4]], ,Sface[[6, 5]], 5face[[7# 6]]}; 

i-l 

z 
j=k+l 

] = 
i-l 

Z 
j=k+l 
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Star = 
Table[afar[[i]] *#far[[i, k] ] *Mfar[[k]], {i, 1, m}, {k, 1, m}]; 

Sfarlist = {>Sfar[ [5, 2] ], 3far[ [3, 2] ] , S£ar[ [2, 1] ] , 
5far[ [8, 3] ], >Sfar[ [7, 3] ], S£ar[ [8, 5] ] , Sfar[ [6, 3] ] , 
Sfax[ [5, 3] ], Sfar[ [7, 4] ] , Sfar[ [8, 7] ] , .Sfar[ [4, 3] ] , 
5far[[7, 5]], Sfar[[6, 4]], 5far[[6# 5] ] , Sfar[[7, 6]]}; 

MatrixForm[5face] 

0 0 0 0 0 

0.0327291 0 0 0 0 

0.00123994 0.0180442 0 0 0 

2.69419xl0"6 0.0000392072 0.000716087 0 0 

0.000474625 0.00690696 0.000435644 0 0 

5.80632xl0"6 0.0000844963 0.0010589 0. 0000135511 0. 000573064 

0.0000325451 0.000473611 0.00749862 0 .00251773 0 00136239 

0.00017048 0.00248091 0.0282069 0 000550729 0 .0202376 

MatrixForm[5far] 

0 0 0 0 0 

0.00299268 0 0 0 0 

5.44753xl0~6 0.00171211 0 0 0 

8.06516xl0-10 2.5348X10""7 0.0000978567 0 0 

2.00382xl0"6 0.000629781 0.0000441729 0 0 

1.31752xl0-9 4.14082 xlO"7 0.00011019 1. 50033x 10"6 0. 000058163 

7.34319xl0-9 2.30789xl0"6 0.000776609 0 .000279451 0 .00013392 

2.99246xl0-8 9.40502xl0"6 0.00223265 2. 48152x 10"6 0 .00163735 

The following is to show an estimate of the uncorrected values 

ignoring summing-in and -out effects. 

Sunface = Table[0, {i, 1, m}, {k, 1, m}]; 

Sunfar = Table[0, {i, 1, m}, {k, 1, m}]; 

Do[Do[sunface[[i, k] ] = 

m 

J3[ [x] ] +  Y_^ £unface[[n, k] ] *x[ [n, i] ] , {i, m, 1, -1}], 
n=i+l 

{k, 1, imn}] 
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Do[Do[£unfar[[i, k] ] = 
m 

J3[[i]] +  Yt 2unfar[[n, k] ] *x[[n, i] ], {i, m, 1, -1}], 
. n=i+l 

{k, 1, mm}] 

tfunface = Table[0, {i, 1, m}, {j, 1, m}]; 

5tunfar = Table[0, {i, 1, m}, {j, 1, m}]; 

r     r x[[i, k]] *epface[[i, k]] ,   n Do[Dortfujxface[[i, k] ] = —- - - - —, {k, 1, ±}1, 11 l + «[[i, k]] 
{i, 2, m}] 

r     r x[ [i, k] ] *epfar[ [i, k] ] .   , 
Do Do #un£ar[[i, k] ] = —  JJ LL —, {k, 1, 1}   , 

L  L l + *[[i# k]] 

{i, 2, m}] 

Attuiface = Table [1, {i, 1, m}, {k, 1, m}]; 

A-lunfar = Table [1, {i, 1, m}, {k, 1, m}]; 

Sunface = Table[Bunface[ [i, k] ] *Munface[ [i, k] ] * A1unface[ [i, k] ] , 

{i, 1, m}, {k, 1, m}]; 

Sunfacelist = {£unface[ [5, 2] ] , £unface[ [3, 2] ] , £unface[ [2, 1] ], 

«Sunface[ [8, 3] ] , 5unface[ [7, 3] ], >Sunface[ [8, 5] ], 
«Sunface[ [6, 3] ], 5unface[ [5, 3] ], >Sunface[ [7, 4] ] , 

Sunfacef[8, 7] ], £unface[[4, 3] ], 5unface[[7, 5] ] , 

5unface[ [6, 4] ], 5unface[ [6, 5] ] , Sunfacef [7, 6] ] }; 

Sunfar = Table[2unfar[ [i, k] ] *Mun£ar[ [i, k] ] * /Hunfar[ [i, k] ], 

{i, 1, m}# {k, 1, m}]; 

Sunfarlist = {5unfar[ [5, 2] ], 5unfar[ [3# 2] ] , vSunfar[ [2, 1] ] , 

S\m£ax[ [8, 3] ] , 3unfar[ [7, 3] ], 5imfar[ [8, 5] ], «Sunfar[ [6, 3] ] , 

5unfar[ [5, 3] ] , 5unfar[ [7, 4] ], Sunfar[ [8, 7] ] , 3unfar[ [4# 3] ] , 

5unfar[ [7, 5] ] , 5unfar[ [6, 4] ], ^unfar[ [6, 5] ] , >Sunfar[ [7,  6] ] } ; 
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MatrixForm [Suxif ace] 

0 0 0 0 0 0 

0.0538442 0 0 0 0 0 

0 0.030621 0 0 0 0 

0 0 0.00195764 0 0 0 

0 0.0111797 0.000868316 0 0 0 

0 0 0.00213181 0. 000030078 0 00115001 0 

0 0 0.0144948 0 .00553609 0 00263591 D.00141746 

0 0 0.0405098 0 0.030298 0 

Mat rixForm [ .Sunf ar ] 

0 0 0 0 0 

00306984 0 0 0 0 

0 0.00175886 0 0 0 

0 0 0.000102735 0 0 

0 0.000645226 0.0000457509 0 0 

0 0 0.000114251 1. 56328x 10"6 0. D000603035 
0 0 0.000802424 0 .000290621 0 .00013838 

0 0 0.00227496 0 0 .00167219 

The tables below compare the corrected and uncorrected peak count 

fraction--the fraction of decays that result in gamma rays depositing 

their full energy in the detector crystal and causing a count in the 

full energy peak. 

Ratiof arlist = St arlist / Sunf arlist; 
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TableFozm[Table[{Csl36gainmas[ [i] ], «Sunfarlist[ [i] ], 

.Sfarlist[[i]], Ratiofarlist[ [i] ] }, {i, 1, 15}], 

TableHeadings-> {None, {"Gamma (Mev)", 

"Far, uncrtd Peak Count", "Far, Crtd Peak Count", "Ratio"}}, 

TableAlignments -> Center] 

Gamma (Mev) Far, Uncrtd Peak Count Far, Crtd Peak Count 

1.235362 0.000645226 0.000629781 

1.048073 0.00175886 0.00171211 

0.818514 0.00306984 0.00299268 

0.507188 0.00227496 0.00223265 

0.340547 0.000802424 0.000776609 

0.319911 0.00167219 0.00163735 

0.273646 0.000114251 0.00011019 

0.187285 0.0000457509 0.0000441729 

0.176602 0.000290621 0.000279451 

0.166576 0.00164885 0.00158977 

0.16392 0.000102735 0.0000978567 

0.153246 0.00013838 0.00013392 

0.109681 1.56328xl0~6 1.50033xl0"6 

0.08636 0.0000603035 0.0000581638 

0.066881 0.0000756209 0.0000720608 

Ratiof acelist = Sf acelist / 5unfacelist; 

TableForm[Table[{Csl36gammas[ [i] ] , ^unfacelist [ [i] ] , 

Sfacelist [ [i] ] , Ratiofacelist [ [i] ] }, {i, 1, 15} ], 

TableHeadings-> {None, {"Gamma (Mev)", 

"Face, Uncrtd Peak Count", "Face, Crtd Peak Count", "Ratio"}}, 

TableAlignments -> Center] 

Gamma (Mev) Face, Uncrtd Peak Count Face, Crtd Peak Count 

1.235362 0.0111797 0.00690696 

1.048073 0.030621 0.0180442 
0.818514 0.0538442 0.0327291 

0.507188 0.0405098 0.0282069 
0.340547 0.0144948 0.00749862 

0.319911 0.030298 0.0202376 
0.273646 0.00213181 0.0010589 
0.187285 0.000868316 0.000435644 
0.176602 0.00553609 0.00251773 
0.166576 0.0314223 0.0152555 
0.16392 0.00195764 0.000716087 
0.153246 0.00263591 0.00136239 
0.109681 0.000030078 0.0000135511 
0.08636 0.00115001 0.000573064 
0.066881 0.00141746 0.000526783 
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AFTACepds5sface= 

Table[epds5sfacelist[[i]] *Ratiofacelist[[i] ] , {i, 1, 15}]; 

The table below shows the adjusted face peak efficiency that AFTAC 

could use in its ananlysis. 

TableForm[Table[{Csl36gammas[[i]], epds5sfacelist[[i]], 

Ratiof acelist [ [i] ] , AFTACepds5sf ace [ [i] ] }, {i, 1, 15}] , 

TableHeadings-> {None, {"Gamma (Mev)n, 

"Face Peak Eff.", "Ratio", "Adjusted Face Peak Eff."}}, 

TableAlignments -> Center] 

Gamma (Mev) Face Peak Eff. Ratio Adjusted Face Peak 

1.235362 0.0386214 0.617815 0.0238609 

1.048073 0.0446167 0.589276 0.0262915 

0.818514 0.0553363 0.607849 0.0336361 

0.507188 0.0836701 0.696299 0.0582594 

0.340547 0.11805 0.517333 0.0610711 

0.319911 0.124615 0.667952 0.0832367 

0.273646 0.145475 0.496714 0.0722595 

0.187285 0.194743 0.501711 0.0977049 
0.176602 0.202602 0.454786 0.0921407 

0.166576 0.209505 0.485498 0.101714 

0.16392 0.211293 0.36579 0.077289 

0.153246 0.218379 0.516858 0.112871 

0.109681 0.239159 0.450531 0.107749 

0.08636 0.220971 0.498312 0.110113 

0.066881 0.168048 0.371639 0.062453 

AFTACepfacelist= {.022025, .026148, .033183, 0, .074673, 0, 

.077396, 0, .18784, 0, .13263, .14242, 0, .11149, .071853}; 

r    AFTACepds5sface[[i]] - AFTACepfacelist[[i]] 
RelDiff = Table\100 *  L AFTACepfacelist[[i]] 

{i, 1, 15}]; 
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TableForm[Table[{Cs 136gainmas[ [1] ] , AFTACepfacelist[ [i] ] , 

AFTACepds5sface[[!]], RelDiff[[i]]}, {i, 1, 15}], 

TableHeadings -> {None, {"Ganma (Mev)", "AFTAC Face Peak Eff.", 

"AFIT Face Peak Eff.n, "Rel. % Diff"}}, 
TableAlignments -> Center] 

Gamma (Mev)     AFTAC Face Peak Eff.     AFIT Face Peak Eff. 
1.235362 0.022025 0.0238609 
1.048073 0.026148 0.0262915 

0.818514 0.033183 0.0336361 

0.507188 0 0.0582594 
0.340547 0.074673 0.0610711 

0.319911 0 0.0832367 

0.273646 0.077396 0.0722595 
0.187285 0 0.0977049 
0.176602 0.18784 0.0921407 
0.166576 0 0.101714 
0.16392 0.13263 0.077289 
0.153246 0.14242 0.112871 
0.109681 0 0.107749 
0.08636 0.11149 0.110113 
0.066881'' 0.071853 0.062453 

The following section is the error in the internal conversion 

coefficients and gamma-ray intensities.  Unfortunately, the reference 

(Tull, 1979) is missing a large portion of them and precludes a 

meaningful error analysis. 

aa = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, 

{0, 0, 0.016, 0, 0, 0, 0, 0}, {0, 0, 0.004, 0.07, 0, 0, 0, 0, 0}, 

{0, 0, 0, 0.046, 0, 0.002, 0, 0}, {0, 0, 0.0017, 0, 0.0022, 0, 0, 0}}; 

ai = {{0, 0, 0, 0, 0, 0, 0, 0}, 

{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0.03, 0, 0, 0, 0, 0, 0}, 

{0, 0, 0.0012, 0, 0, 0, 0, 0}, {0, 0.007, 0.0004, 0, 0, 0, 0, 0}, 

{0, 0, 0.004, 0.0003, 0.002, 0, 0, 0}, 

{0, 0, 0.013, 0.004, 0.0018, 0.002, 0, 0}, 

{0, 0, 0.0003, 0, 0.0005, 0, 0.004, 0}}; 



Appendix E:  AFIT Experimental Data 

In an attempt to quantify what percentage of gamma-rays 

that are scattered into the detector due to the presence of 

the planchet, measurements were made at the AFIT Nuclear 

Engineering Laboratory using Cs-137 in the form of a thin 

disk source.  The isotope is a single gamma-ray emitter of 

662 keV.  Because of this property, the isotope is ideal for 

determining the peak-to-total (P/T) efficiency ratio for 

energies near 662 keV.   Since the analytical method uses 

the P/T ratio in determining summing events, a change in the 

P/T ratio will have a direct affect on the results.  Even 

though the scattered gamma-rays will not register counts in 

their full energy peaks, they can add to total detection 

efficiency.  The increased total efficiency would then lower 

the P/T ratio. 

The intent is to get a rough estimate in the change of 

the face peak efficiency for the key Mo-99 gamma-ray, the 

740 keV one.  So, noting the change in the P/T ratios from 

Appendix C between 662 and 740 keV is minor, the reduction 

in the 662 keV P/T ratio suggests a similar reduction in the 

740 keV P/T ratio—ergo, a reduction in the AFIT face peak 

efficiency.  See the experimental data in Table E.l. 
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Table E.l AFIT Experimental Data 

Measure- 
ment 

without 
planchet 

Source Serial 
Number 

Height 
above 

Det #01 

Date Dead 
Time 

Live 
Time 

Real 
Time 

Cs-137 1S811 3 0 cm 5 Sep 97 5.48% 120 sec 126 
sec 

662 
keV 
peak 

Total 
Spectrum 

Left 
Margin 

Right 
Margin 

Peak 
Center 

Total 
Peak 

Counts 

Left 
Margin 

Right 
Margin 

Total 
Counts 

1797 1718 1807 42045 47 1817 160413 

P/T = 42045 
160413 

Error = 0.00144 

=.2621 

Measure- 
ment 
with 

planchet 
Source Serial 

Number 
Height 
above 

Det #01 

Date Dead 
Time 

Live 
Time 

Real 
Time 

Cs-137 1S811 30 cm 5 Sep 97 5.62% 120 sec 127 
sec 

662 
keV 
peak 

Total 
Spectrum 

Left 
Margin 

Right 
Margin 

Peak 
Center 

Total 
Peak 

Counts 

Left 
Margin 

Right 
Margin 

Total 
Counts 

1797 1817 1807 42372 48 1817 165432 

P/T = 42372 
165432 

Error = 0.00139 

=.2561 

ratio: w/pcht 
w/o 

= .2561 
.2622 

= 0.977 Error = 0.0075 
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From the analysis of the experiment, a 2 to 3% 

reduction appears in the peak-to-total counts when placing 

the planchet above the source.  Thus, there should be a 

reduction in the adjusted AFIT face peak efficiency.  The 

errors were found using Equations E-l through E-3. 

PeakCounts(CP) 
p/T —  - — (E-l) 

TotalCounts(CT) 

~ 3P/T 2   o       dP/T 2   o aP/t=W   4>+^f>  °?t (E-2) 

CP     CP2 i/o 
aP/t = [^2+^3] (E_3) 
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