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Abstract

Several new quadrature sets for use in the discrete ordinates method of
solving the Boltzmann neutral particle transport equation are derived. These
symmetric quadratures extend the traditional symmetric quadratures by
allowing ordinates perpendicular to one or two of the coordinate axes.
Comparable accuracy with fewer required ordinates is obtained.

Quadratures up to seventh order are presented. The validity and efficiency of
the quadratures is then tested and compared with the LQx level symmetric
quadratures relative to a Monte Carlo benchmark solution. The criteria for
comparison include current through the surface, scalar flux at the surface,
volume average scalar flux, and time required for convergence. Appreciable
computational cost was saved when used in an unstructured tetrahedral cell
code using highly accurate characteristic methods. However, no appreciable
savings in computation time was found using the new quadratures compared
with traditional Sn methods on a regular Cartesian mesh using the standard
diamond difference method. These quadratures are recommended for use in

three-dimensional calculations on an unstructured mesh.
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|. Introduction

This research developed a set of angular quadratures that are
computationally efficient when used with the discrete ordinates method to
solve the three-dimensional Boltzmann neutral particle transport equation.
The quadrature sets contain directions perpendicular to one or more cardinal
directions. These sets are tested for accuracy and computational efficiency.
Performance comparisons are made with traditional (level symmetric)
quadrature sets. Types of problems and conditions where these quadratures

are most applicable are discussed.

Background

The foundation of transport theory is the Boltzmann transport
equation (BTE). This equation, formulated over a century ago, was originally
developed for the study of the kinetic theory of gases (1: 1). Preliminary
study in the field was primarily of the diffusion of light by the atmosphere.
Then study began in the early part of the twentieth century on investigating
the diffusion of energy through the atmosphere of a star (2: 1). The scale of
these problems are such that they can be modeled as semi-infinite media
with one-dimensional geometry and therefore the methods of their solution

are of limited application (1: 1).




In the 1940s, interest in the military and industrial application of
nuclear energy stimulated a tremendous amount of research into neutral
particle transport. The incredible urgency involved in the research of nuclear
energy induced by the events of World War II necessarily resulted in the
development and use of approximate methods for solving the linearized

transport equation (2:1).

Moativation

Military and industrial research into the use of nuclear energy using
actual nuclear material has decreased substantially in recent years. The
comprehensive nuclear test ban treaty (CTBT), if ratified, will eliminate our
ability to obtain any further real data on new weapons designs or systems
survivability in or near a real threat environment. Some aspects of the
radiation environment resulting from a nuclear detonation are simulated at
various test sites. These tests can only approximate the actual post
detonation environment and are very costly (17). It is currently politically
undesirable for private industry to perform research using significant of
amounts nuclear material or to build new nuclear research facilities. These
and other factors have greatly increased the need for accurate computer
modeling of nuclear material and effects. The high performance computers
needed for this modeling are very expensive, and therefore anything that can

increase the efficiency of these machines will translate directly into

I-2




substantial savings by increasing their productivity and extending their
useful life. Reduction in computation time also increases the practicality of
analyzing a large variety of similar scenarios for threat analysis or system

optimization.

The Boltzmann Transport Equation

The Boltzmann transport equation (Equation I-1) is a conservation
equation for the flux of neutral particles (1: 24). The particles can be
neutrons, photons, or any other neutral particle given the nuclear data. The
angular flux, v, is dependent on position (f), direction of motion (Q), on
speed or energy (v, E), and time (t). Equation (I-1) represents a balance
between the loss rate (right side) and gain rate (left side) of particles that

exist at each point of this seven dimensional phase space (3: I-2);

F-‘?—+§2~V+ct(f,E,t)]w(f,E,fz,t)=

v ot (I-1)

4B [aco, BB > B, thiE Q)+ sf E Q)

where the variables are defined in Table 1.




Table I-1: Variable Definitions for the BTE, Equation (I-1)

Variable | Description

v magnitude of the velocity

t time

r position

E energy

o total macroscopic cross-section for
interaction ( absorption and scatter )

O macroscopic scattering cross-section

S total non-scattering source

1 angular flux: a distribution function

of particles at point ¥, with energy E,
moving in direction Q at time t

O unit vector aligned along the
streaming direction of particles: it is
often shown as three components, or

direction cosines, pu, n, & defined by
=08, n=Q-8, £&=08,
as shown in Figure I-1

Figure I-1: Direction Cosines

Though discrete ordinates is valid for time dependent problems, this

treatment will assume steady state conditions with all time dependence
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suppressed; therefore the first term in Equation (I-1) (representing the time
rate of change of particles in the phase space) vanishes. The remaining terms
represent the steady state balance equation. The second term in the brackets
on the left of Equation (I-1) is the streaming operator and represents the loss
rate due to particle divergence. The final term in the brackets on the left is
the collision operator and represents the loss rate due to particle interaction
with the medium. This interaction could be absorption (destroying the
particle), or scatter (changing the particle’s energy or direction) (3: 1-2).

The first term on the right of Equation (I-1) is the gain rate due to
particles traveling in other directions that scatter into the given direction, Q.
As a consequence of the isotropic material assumption, the distribution of
particles scattering into a given direction is not a function of the incident
angle, Q' ; however it is a function of the angle between the incident direction
and final direction, (f) . f!’). Despite the isotropic material assumption, this
dependence on scattering angle means that scattering may be anisotropic (1).
The final term represents the gain rate from production of particles by any
source mechanism. The source can be internal, such as radioactive decay and
fission or external such as solar x-rays or an incident beam. A more detailed
discussion of the BTE and definition of its components is presented in section

I1.

The macroscopic cross sections are functions of position, through

spatially varying number density or changes in material, and of energy
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through the microscopic cross sections in which fundamental properties of the
isotopes are involved. In general the microscopic cross sections could have
some additional implicit spatial variation. For example, this could be due to
a temperature-dependence through Doppler broadening (1: 6). This research
assumes each material is uniform and isotropic and therefore no such implicit
spatial dependence exists.

The physical quantities most often of interest to be found via the BTE

are the scalar flux ¢ (zeroth angular moment of the vector flux) and the

vector current J (first angular moment). The scalar flux is of interest as it
represents the total expected particle path length traveled per unit volume at
a given location in the medium. This will determine the reaction rates for
such things as fission and neutron activation. The vector current will
determine the leakage rate from one region to the next or through boundaries
(3: I-3).

Only a limited number of analytic and semi-analytic solutions exist for
the BTE. Most of these solutions are for highly idealized problems. Many
ingenious methods such as discrete ordinates, Monte Carlo, even-parity,
finite-elements, and Green functions have been developed to solve the
transport equation and to extend the application of such knowledge. The
diffusion equation can be derived from the BTE using several simplifying
assumptions regarding the angular dependence. For problems with nearly

isotropic scatter, this can yield approximate results (16: 2). Of particular
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interest are methods capable of providing solutions to the broad range of
geometrical configurations found in nuclear reactor and radiation shielding
applications (1: 1). From a military perspective, in addition to the application
to power generation, accurate modeling of neutron flux allows for more
precise modeling of the yield and effects of nuclear weapons.

The advent of high-speed computing and large storage capacity has led
to the refinement and use of two primary numerical methods of attaining a
solution to the BTE: the method of discrete ordinates and Monte Carlo (1: 2).
Other less used methods will not be examined. The theory and development
of the Monte Carlo method will not be discussed in detail; however, Monte
Carlo solutions will be used as benchmarks.

Since its evolution from the angular segmentation formulation by
Carlson in 1957 discrete ordinates has become a widely used method for
solving the integrodifferential form of the transport equation. The discrete
ordinates method involves enforcing the transport equation only at discrete
angular directions called ordinates. These ordinates are selected such that
the flux moments may be evaluated accurately by a weighted sum (1: 118).

For example the scalar flux (zeroth flux moment) is

o(F B t) = [d0(E E.Ot)~x Y wo vyl E 0y t).
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A more detailed discussion of the flux moments is found in Chapter II. The
advantages of the discrete ordinates method are the relatively simple
derivation and the subsequent ease of transformation into algorithms of good
computational efficiency (1: 116). It also lends itself well to the discretizing of
energy into multiple energy groups. A distinct advantage over the Monte
Carlo method is that it provides flux and current data everywhere in the
problem rather than only at a limited number of locations. A quadrature set
is the combination of discrete angles and weights used in a weighted sum to
evaluate the flux moments.

There are two independent angular directions for Q. The directions

are parameterized by three direction cosines that obey the relationship
pient+gt=1 a-3)

where p, n, and & are shown in Figure I-1.

Once the angular approximation has been made, a spatial
discretization scheme must be used. Computational cost and storage
requirements are directly proportional to the number of spatial cells and
discrete ordinates used. A large number of spatial schemes have been
formulated for use in discrete ordinates calculations. They include linear
methods such és diamond difference, linear discontinuous, and linear

characteristic and non-linear methods such exponential characteristic (9).
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The most serious drawback to the discrete ordinates method is the
buildup of truncation errors due to the discretized angular and spatial
representations (1: 131). The truncation errors can result in random error,
which limits the accuracy of the results, or may lead to physically unrealistic
results such as negative fluxes or sources. Systematic truncation error may
lead to what are known as ray effects (21, 8, 8). These are errors caused by
the discrete ordinates method of limiting particle motion to discrete
directions or rays. Flux due to unscattered particles will only be found to
occur at points where a line can be drawn from a source to the point in the
direction of a discrete ordinate. This causes the scalar flux to be calculated
higher than expected at points along discrete ordinate directions and lower
between. The method is not well suited to geometry with a strongly peaked
flux in a given direction. Generally, a separate method must be used to
calculate the first scatter source for such a problem. In order to increase
accuracy of the discrete ordinates method and minimize the negative
consequences, it is either necessary to increase the number of directions in
the angular quadrature, thus increasing the computation time and storage
requirements of the computer system, or to develop an alternative
quadrature that produces less error with fewer directions. This research
concentrates on increasing the accuracy of the discrete ordinates

approximation while minimizing the number of angles.
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The primary drawback of allowing motion perpendicular to one or
more cardinal directions in a quadrature set is that mathematical instability
may result when using current computer codes. The resulting zero
components of flux often generate run-time errors. The advantages of using
directions parallel to cell boundaries are (due to one or two of the direction
cosines being zero) the discrete ordinates equations simplify significantly and
fewer directions are required for the same order of anisotropy, thus allowing
for increased computational efficiency.

Except for the simple case of isotropic scatter, the cross section for
scattering will be a function of the scattering angle as well as energy.
Separation of the angular and energy dependence is assumed. Traditionally,
cross sections are then expanded in orthogonal Legendre polynomials (1: 13).
The order of this expansion is another limit to the accuracy obtainable by the
discrete ordinates method.

The high performance computers needed to perform these calculations
are very expensive, and therefore anything that can increase the efficiency of
these machines will translate directly into substantial savings by increasing
their useful life. Reduction of computation time also increases the
practicality of analyzing a large variety of similar scenarios for threat

analysis or system optimization.
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Statement of the Problem

The objective of this research is to develop and evaluate new
quadrature sets that produce accurate discrete ordinates solutions to the
BTE using a minimum number of ordinates. The viability of including
ordinates perpendicular to one or two cardinal directions is examined. This
includes deriving and implementing the appropriate quadrature angles and
weights, and comparing the results with those obtained with standard level-

symmetric LQn quadratures and with Monte Carlo benchmark solutions.

Scope

This research includes the derivation and implementation of discrete
ordinates quadrature sets that include directions perpendicular to one or two
cardinal directions. Demonstration of the method including comparison to
traditional level-symmetric quadratures with regard to computational cost
(execution time) and accuracy of results based on a benchmark calculation is
performed. The test problems use three-dimensional Cartesian coordinates
with no time or energy dependence. The test problems were run using
TETRAN (13), an unstructured mesh tetrahedral cell code developed at the
Air Force Institute of Technology and the THREEDANT code of the RSICC
Computer Code Collection, DANTSYS 3.0 (14) from Los Alamos National
Laboratory (LANL) using a rectangular parallelepiped mesh. LANL’s MQNP

(Monte Carlo Neutron Photon) transport code package (15) provided
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benchmark solutions. Due to current limitations in the TETRAN code still in
development, the test problems are defined as one energy group, isotropic
scatter transport problems. Multiple levels of spatial mesh refinement are
used. The method is tested to identify any variation in performance and
determine an optimal usage. The scope of the comparison using the output of
the THREEDANT module is limited due to the requirement to modify the
developed quadratures in order for the module to run. See chapter IV for a
discussion of the modifications. No code changes ore new modules were
written to augment THREEDANT to obtain a more accurate comparison of

the quadrature sets.

General Approach and Sequence of Presentation

In chapter II the integrodifferential form of the Boltzmann transport
equations is discretized over angle. A brief discussion of spatial and energy
discretization is included. The consequences of discretization are
enumerated. The method of generating the new quadrature sets is developed
in chapter III. Several quadrature sets of various order are presented. The
method is implemented using two test problems and the results are
presented in chapter IV. The geometry of each test problem has been
selected to, in the first case,v exacerbate, then in the second, mitigate the
problem of ray effects. Traditional level symmetric quadratures are used on

the same test problems. Benchmark calculations were performed on each
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test problem using a Monte Carlo simulation. The methods are compared for
accuracy and computational efficiency and potential advantages or
disadvantages of the method identified. Consideration is given to
smoothness, pointwise and global accuracy, ray-effects, and other systematic
errors.

Once the method has been tested and analyzed, recommendations for
use and for further research are given in the final chapter. Appendices
contain complete derivations of the equations used to generate the
quadratures as well as any mathematical routines used to solve them. Also,

pertinent portions of input and output files of the test problems are included
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II. Theory

This chapter will present a development of the discrete ordinates
method, the criteria for selecting a quadrature, discuss spatial discretization,
and some the consequences of applying these approximations.

The steady state assumptions reduces the Boltzmann transport

equation (Equation I-1) to:

Q- Vy(E.EQ)+o(F, E)(F, EQ)=

[dE [d0ro, (5B E,Q- 0 Jy(5. Q) + (5. EQ) v

In order to yield a convenient normalization over all angles, the incremental

solid angle is defined as

do d0sin® _ de dp

I1-2
or 2 2m 2 l-2)

dQ =

so that

Jda= j j i _ (11-3)
0
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Definitions of the above angles are shown in Figure II-1 (1: 11). Equation (II-
1) contains terms that are functions of position, scattering angle, and energy.
The energy dependence in the discrete ordinates approximation is most often
accounted for by dividing the energy range of interest into a number of
intervals. It is assumed that for each interval, cross-sections are given as

average values over the interval (18: 109). The transport equation is then

¥

Figure Il-1: Particle Entering from Direction ), Scattering into direction Q'

solved in each energy interval as a mono-energetic equation with particle
contributions scattered from outside the energy interval added as a source
term and particles scattering from thé interval of interest into other energy
intervals treated as losses. The resulting equations are known as the
multigroup equations (1: 61). For clarity, the remainder of the derivations
given will be for a mono-energetic system. The Boltzmann equation then

becomes the mono-energetic transport equation:
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>

Q-W(f, )+c(f)q1(f,f).)= | dé’cs(i‘,f}-é’) w(fQ)+s(I'Q) (I1-4)

| In the discrete ordinates method each term of the integrodifferential
transport equation is assumed tobea separable function of space and angle
and the dependencies are dealt with separately (3: I-3). Both the spatial and
angular variables are required to be discretized before the problem may be
solved numerically. The angular discretization, being the focus of this

research, will be considered first and discussed in some detail while the

spatial discretization will be dealt with later.

Angular Discretization

The majority of the derivation that follows is an extension into three-
dimensions of the procedure presented by Lewis and Miller (1). The

differential scattering cross sections are expanded in orthogonal Legendre

polynomials Pl(f). : f).') where g = Q- Q) is the cosine of the scattering angle.

The differential scattering cross section may be expressed as

A A L A A
os(,Q2-0') ~ §0(21+1)Gsl(i~')Pl(Q-Q'). (11-5)

1

The scattering moments ¢4 are found from
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1d
oa(F) = Jl%cs(f,uo)m(uo), (11-6)

having taken advantage of the orthogonality property of the Legendre
polynomials. The expansion in Equation (II-5) has been truncated at L+1
terms, assuming and adequate level of approximation, taking into
consideration the degree of anisotropy and the availability of cross section
data. For the case of isotropic scatter only the first term of Equation (II-5) 1s

used (L = 0) resulting in
os(5,Q- Q) = 64(). (I1-7)

This derivation will not assume isotropic scatter. Combining Equations (II-4)

and (II-5) yields

A A

Q- VylF, )+c(f)w(i~,é)=é)(zn1)osl(f)jdgrpl(g‘z-fz')w(f,fz')+s(f,é) (11-8)

which can be simplified using the Legendre addition theorem (1: 367)

By (0 6)=

= mé}?m(é)Ylm(é') I1-9)
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where the Y, (f)) are the spherical harmonics and the asterisks signifies the

complex conjugate. Using this, the sum on the right hand side of Equation

(I1-8) becomes

éocsl(f) :i_sl(i‘m(fz) JdQY,, (©) w(EY). (I1-10)

The angular integral in expression (II-10) is now just the coefficients

resulting from the expansion of the angular flux in spherical harmonics

w(r.Q)= éo %_14)1111 (5) Vi () (I1-11)
with
O1ma () = 140 Y1in (@) w(EY). (I1-12)

Substituting this into expression (II-10) gives

L 1 ~
2 2Yin(Q)oa(Bim (). (1-13)
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Replacing the sum in Equation (II-8) with expression (II-13) yields a form of

the transport equation that is convenient for discretization in angle

~ A

G- Vy(F, )+c(f)\|f(f,f2)=éom%}'*{m(é)csl(f)q)lm(f)+s('1",f2). (11-14)

In the discrete ordinates approximation, Equation (II-14) is enforced only for

a set of discrete directions yielding

A —

Q, -V, (F) +o(B)wa(F) =

3 V(@ )ouEm@ rs(f ). @119)

m=-1

Lac

where vy, (T) = \y(f,f)_n). The scalar flux is approximated by

¢o(r) = lenwn(f), (11-16)

b1 ()= 2 Vi (1 ). @1
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By defining the right hand side of Equation (II-15) as the emission density or

scattering source q,(T) and substituting Equation (I-17) for the flux

moments, Equation (II-15) becomes

A —

Q- V‘Vn(i:) + (S(i")\p n (_1;) = qn(f) (1-18)

where

qn(f-)=s(’f,g‘zn)+§ iy’fm(fzn)csl(f) W Vi (@) wo(F)  A1-19)

1=0m=-1 n

Mz

The most common way of solving Equation (II-18) is the iteration on the
scattering source form of Von Neuman’s series solution (1: 80). The method’s
usefulness is derived from the fact that if the right side of Equation (II-18) is

known, solving for y(7) is usually straightforward. The iteration is defined

by modifying Equation (II-18) to

(@, V+0(®)] wi(F) = an (@) (I11-20)

where i is the iteration index. Equation (II-19) likewise becomes
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qill(f):s(f,f)n)_}. % iY>i=m<éxl)(5sl(_1;) § Wn’Ylm(én’) Wil’(f)- (I1-21)
1=0m=-1 n'=1

The system of Equations (II-20) and (II-21) must be solved to convergence at
each T of interest.

Before proceeding to the methodology of choosing a quadrature set, a
brief discussion of the spatial discretation which allows for the approximation
of the those terms which are now function of the spatial variable only will be

helpful.

Spatial Discretization

Discretization of the spatial variable in three dimensions can take
many forms. The most common ﬁethod is to divide each of the three
Cartesian spatial directions, x, y, and z, into i, j, and k intervals respectively
resulting in a three dimensional grid containing i x j x k rectangular
parallelepiped cells. Another method gaining popularity is to generate an
unstructured mesh of tetrahedra. All cross sections are taken to be piecewise
constant and therefore not allowed to vary inside a given cell. Various
methods exist then to calculate the angular flux v, for each value of n in
each cell given appropriate boundary conditions. THREEDANT uses
diamond difference (DD) with negative flux fix up in a structured Cartesian
mesh, and TETRAN has the capability of using linear characteristic (LC),

exponential characteristic (EC) or step characteristic (SC) on an unstructured
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tetrahedral mesh. Each of these methods and many more are discussed and

derived in detail elsewhere (1,2,3,8,9,16).

Consequences of Discretization

Several problems arise when using discrete ordinates. Any time
computations are performed on a computer, truncation errors will occur. The
effects of truncation error will accumulate with each computation.
Truncation errors therefore limit the accuracy achievable by computational
methods. With each refinement of the spatial or angular mesh, the
mathematical model more ciosely resembles the continuous analytical
solution, however the number of computations also increases. Though
truncation error associated with each calculation should decreases with mesh
refinement, there is a limit to the accuracy gained by continued mesh
refinement as the number of calculations gets increasingly large. This effect
is most visible in three-dimensional problems where the number of cells
increases as the cube of the linear refinement. Another, more systematic
problem arises due to the angular discretization called ray effects. The
phenomenon is most evident in problems with localized sources and small
scattering cross sections (1:195).

When the scattering cross section is small, a substantial percentage of
particles traveling from a localized source to an area of interest will be
uncollided. This will result in a peaked distribution about the discrete

ordinates. Clearly these results are physically unrealistic. Ray effects
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manifest as oscillations (1: 197), peaks about a region where an ordinate can
be traced from a source region and valleys in between. As the order of the
angular approximation increases so does the number of oscillations, which
also tend to decrease in the amount of deviation from a smooth curve. If the
oscillations are uniform about the correct curve, then the integral of the
scalar flux over the boundary will still yield good results (1: 200). When the
scattering source makes a large contribution to the scalar flux, ray effects
tend to be mitigated. The scattering source tends to be distributed over a
large area and is often nearly isotropic. This gives a more uniform angular
distribution of neutrons.

Numerical diffusion is a consequence of the spatial discretization and
truncation errors due to spatial differencing. For example, if a beam of
neutrons were to enter the lower left corner of a pure absorbing cube of
material traveling along the cube diagonal, one would expect the attenuated
beam to exit only at the upper right corner. In the spatial walk of the
discrete ordinates calculation, each cell is considered to have a distribution of
flux through out the cell and flux can only enter and exit the faces of the cells.
For a mesh consisting of regular parallelepiped cells, this means the beam
entering the cell in the bottom left corner will exit that cell through the top
and sides. The fraction entering the adjacent cells is determined by the
incident angle of the beam. This will continue through the spatial walk

resulting in a smearing out of the beam. This effect, to a small extent, may
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mitigate ray-effects. A more complete discussion of numerical diffusion can

be found in reference 3 where is referred to as quasi-ray effect.
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[1l. Method

The primary desire when selecting a quadrature set is to maximize
accuracy while minimizing the number of ordinates. The primary source of
computational cost of obtaining a discrete ordinates solution to the BTE is in
the spatial integration. A complete walk through the spatial mesh is
required for each ordinate. Thus minimizing the number of ordinates
reduces the computational cost by minimizing the number spatial walks
required. Other concerns are the mitigation of numerical artifacts both
systematic and nonsystematic such as truncation errors, ray effects, and
numerical diffusion. With these concerns in mind, this work will present a
method of generating simultaneous sets of polynomial equations, which
produce quadrature sets based on exact integration of spherical harmonics.

Quadrature sets up to order seven are presented.

Zero Components

The key difference in the quadratures presented here from those seen
elsewhere is the addition of ordinates with zero components for one or two of
the direction cosines. There have been several reasons for not using zero
components in the past, primarily stemming from arguments in one or two-
dimensional geometry. In these problems, vertical vector flux does not
propagate through the problem. The infinite path length resulting from the

reciprocal cosine term in the spatially discretized mesh must also be dealt
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with. Discontinuity in the vector flux at a vacuum boundary can lead to

ambiguity in the meaning of q;(u = O) at the boundary when using a regular
Cartesian mesh. Also, it can be shown that y(u = 0) is not truly an

independent variable when discretized in 2-D and therefore contributes little
to the accuracy of the solution (19: 132).

When three-dimensional quadratures are developed, they are often an
extension of one and two-dimensional cases. The use of even order in
traditional quadrature sets, when applied to 3-D problems has invariably
been due to the even order used in the lower dimensional base. The use of
diamond difference (DD) is also pervasive in old computer codes. DD codes
will not accept zero components without special handling routines being
developed. There is often a desire when developing quadrature sets to
generate results that will run on the legacy codes without modification. This
is unfortunate, as modern parallel computers are capable of handling far
greater complexities than the computers for which these codes were
developed. The development of computer codes capable of performing
discrete ordinates calculations on an unstructured mesh eliminates many of
the problems associated with special directions. More accurate characteristic
methods of dealing with the spatial integration do not have the same

problems dealing with zero components as the DD method.
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Quadrature Derivation

The derivation of these polynomial equations for the generation of
quadrature sets is based on methodology developed by Dr. Kirk Mathews (25)
as an extension of work by B.G. Carlson and others (5). The basic quadrature
sets presented here are defined over the entire unit sphere, but can be
represented in the principal octant or its edges. The principal octant is where
the components of Q are all positive. We require the quadrature set to meet
the total symmetry condition. Total symmetry, sometimes referred to as cubic
symmetry, requires the quadrature set to remain invariant under all axis
exchanges, ninety-degree rotations about a cardinal axis, and reflections
across the x -y, X - z, or y - z planes. An axis exchange operation is the same
as a reflection across any x=y, X =-y, X =2z, X =-7,y =z, or y = -z plane. The
discrete ordinates can be represented as points on the surface of the unit
sphere. These points represent where the tips of the unit vectors
corresponding to each ordinate lie on the unit sphere. A base set refers to
those ordinates in the original hextant of the principal octant. The original
hextant is a spherical triangle covering a one sixth area of the principal
octant. Figure III-1 shows the unit sphere with the principle octant shaded
and an expanded view of the principle octant with the original hextant
shaded. A complete quadrature set can be built by choosing points in any

hextant and reflecting the points by performing successive axes exchange
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Figure l1l-1: Unit Sphere and Principal Octant Showing Quadrature Base Set

Cases and Designators

Figure lll-2: p <> & Exchange Operation
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Figure lll-4: Complete Principal Octant after & <» n Exchange Operation
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operations as shown in Figures III-2 through 4 (25). The remaining ordinates
are generated by sequential reflections across the x-y, x-z and y-z planes.

The directions Q,, constitute a discrete set of values of Q over its entire
domain (6: 2). If y has a convergent expansion in spherical harmonics, then
from Equations (II-15) and (II-17) we see that a necessary condition for
choosing the ordinates and weights is that the spherical harmonic

orthogonality condition up to the desired order be satisfied, that is

(401 ()T (€)= ZWnYlm( o Vi (@0 ) = 818 (I-1)

n=1

forall 0<11' <L, -1<m<1,and -1'<m' <1’ with the desired order of
precision L. The1=1=m =m’ = 0 case provides the normalization condition

for the weights,

Sw, =1. (ILI-2)

We also require thatw,, >0 to reduce to possibility of obtaining physically
unrealistic results.
Because of the symmetry requirements and the exchangeability of

coordinates, Equation (III-1) will be satisfied if the moments equations,
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. N
fuldo =Y wopn, i=0,1,..,2L  (I-3)

n=1

are satisfied exactly. In Equation (III-3) i is an exponent not a superscript.
This condition is enough to ensure that Iuinj E_,de will integrate exactly for
all 0 <1i,j,k < 2L with i+j+k <2L (25). Also due to symmetry, ifi, j, or k is
odd, the integral is exactly zero. This is because the integration in Equation
(III-1) can be represented as the integration of a product Legendre

polynomials, which are intern polynomials of p = cos(6), and gl(m-me

Symmetry guarantees the exponential will ingrate exactly because for every

¢, there exists with equal weight and equal n, a ¢ that equals ¢, + 7.

The terms in the summation therefore cancel except when m = m’, which

results in the exponential reducing to unity. The odd powered terms are

exactly zero because cosine integrates to zero over the range of -1 to 1.
Finally, the case where i =0 and the case where 1 = 2 are not

independent. For the i =0 case, Equation (III-3) becomes

N
de =1=Y wy, , (I11-4)
n=1

and for the 1= 2 case
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Woln> . (I11-5)
1

M=z

Ipde = —é— =

n

Because of the symmetry requirements, the urzl values with equal weights

will always exist in sets of three that sum to one (this can readily be seen by
examining the most general case (case 4) in appendix B with k = 1). Equation

(I1I-5) therefore becomes

1 Y
g = Z §Wn . (III-G)

n=1

Equation (II1-6) and Equation (III-3) are not linearly independent. We can

therefore replace the system of Equations (III-3) with

N
— = YwupZk, k=12, .., L (I11-7)

The system of Equations (III-7) may have a solution or solutions providing
the number of equations, L, is equal to the total number of free parameters

(degrees of freedom): the total number of independent values for wy, and pp,.
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It is important to make clear that the criteria used for the selection of
a quadrature set is that it will evaluate, without quadrature error, integrals
of the sort
[ Yim (Q)f(@)d0
for any N >1; which means
| Vi (©) Vi (Q)02
must integrate with out error. This is why Equation (III-3) requires ui to

integrate exactly for i = 0 to 2L. Symmetry assures getting all the odd
powers exactly while the degrees of freedom in the weights and angles are
used to get the even powers. Thus five degrees of freedom integrate the
coefficients of a fifth order expansion. Ps anisotropic scatter needs this order
of expansion. Chapter II discusses the expansion of the scattering cross
section. With highly anisotropic scattering, a high order expansion may be
ﬁeeded to get accurate results. This requires the discrete ordinates order to
be at least as high. Computational efficiency with highly anisotropic
scattering therefore becomes of even greater concern. Therefore, obtaining
the desired order of expansion with fewer ordinates is very desirable.

The objective is then to use the most reasonable value of L and
minimize N, maintain total symmetry, and produce accurate transport
results. The desired (or available) precision of the arithmetic, computation
cost, and the order of the Legendre expansion of the scattering cross section

will determine the most reasonable value of L.
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Figure ITI-4 shows the principle octant and the various possible cases
for points to be located and satisfy all symmetry requirements. The four
cases not on the edge of the octant correspond with the cases 1 through 4
presented by Carlson (5) and have 1, 3, 3, and 6 points in the octant (hence 8,
24, 24, 48 points on the unit sphere) with 1, 2, 2, and 3 degrees of freedom
respectively. The three additional cases, A, B, and C, are shared by two or
more octants. Case A points are on a primary axis. Case B points are in a
zero plane with the remaining two components equal. Case C points are in a
zero plane but the remaining two components are not equal. There are a
total of 6, 12, and 24 points over the unit sphere with 1, 1, and 2 degrees of
freedom for cases A, B, and C respectively. Table III-2 provides a summary of

pertinent information regarding each case.

Table lil-1: Summary of Quadrature Case Data

Case | Total Points on | Degrees of | Parameters to Ordinates per
Unit Sphere Freedom be Determined | Degree of Freedom
1 8 1 w 8
2 24 2 w,l 12
3 24 2 w,H 12
4 48 3 W, 1M 16
A 6 1 w 6
B 12 1 w 12
C 24 2 W, H 12
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Cases A and 1 have the fewest ordinates per degree of freedom and are
therefore preferred. Case 4 is the most expensive and also the most difficult
to calculate and is to be avoided. The remaining cases are equivalent in this
regard.

To distinguish these quadrature sets from those previously developed
the notation MQx is adopted for a quadrature of order n. To uniquely solve for
a quadrature set of order n, the total degrees of freedom in the equation set
used must also equal n. This is accomplished by selecting a combination of
cases from Table ITI-1 such that the sum of the degrees of freedom equals n.
Equation (III-7) is then used to determine the free parameters. Care must be
taken to uniquely identify the quadrature being referenced because there
may be multiple quadrature sets of the same order. For exaﬁlple, to find an
MQs quadrature case 1 + case 2 + case A + case B will provide the needed
degrees of freedom. A different MQs quadrature results from selecting case 4
+ case C. Further discussion of notation is presented later.

When selecting the cases, those cases with no free angles may only be
selected once; otherwise a case may be used multiple times. Each free
parameter must be uniquely identified. For example, for case 3 + case 3 +

case A, the free parameters would be {(w3,p3,n3), (wgr, 1, ng ) (wa )}
resulting in an MQ7 quadrature.

Because for each case only one point on the sphere is independent, the

others resulting from exchange and reflection operations, we are able to write
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a set of equations for each case that depends only on the free parameters of

that point. This series of equations is then inserted into the system of

) 1 . . .
Equations (III-7). For case 1, u; =n; =&; = —= in the primary octant with

J3
w1 to be determined and a total of eight points over the sphere. Therefore,

the contribution of case 1 to Equation (III-7) is

CRCRCRORCRCRERC It

k=12 .., L (I11-8)

The contributions of the other cases are found analogously. A complete
derivation of each case is given in Appendix A and is summarized in Table

III-2. Note that cases 2 and 3 have the same form of contribution equation.

If the angle solved for is less thanL then this is a case 2 ordinate and the

V3

angle is p, if the angle is greater thanL then a case 3 ordinate results and

V3

the angle is 1. The column labeled “Cosines” gives the equations or values

needed to find the initial (p, n §) triplet. The rest of the quadrature is then

generated by the operations described previously. As an example, for the
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Table 1l-2: Contribution of Each Case to Equation (l1I-7)

Case | Contribution Cosines (M, n, §)
e h
W1t — T = —
13 J3 343
2 _
k
o 1-pp” 1 2 1- ”2
8W2 35 +2
2
3 I 2\k 2
2k 1-7 1-n
8wz| N3 +2[ 23 ] [ LY 23 ]
4 k k
16W4[u42 +(1—u42—n42)k+n42 } (u4, e V1-pa® —ny )
A low, ( 1, 0, 0)
B k 1
8WB l ('—7 07 L]
2 V2 V2
C "
8we|nc? +(1—H02)k} (Mc, 0, Vl—ucz)

MQs quadrature using case 1 + case 2 + case A + case B, the following

equations result
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k=12 3, 4,5. (I11-9)

These equations were entered into a Mathematica™ (20) notebook and solved
using built-in functions. A listing of the notebook is found in Appendix B.
The solution for Equations (III-9) is shown in Table III-3. Including all
unique permutations of the cosines will complete the principal octant. For
example, there are two additional case A ordinates with the same weight as
the one shown and having cosines (0, 1, 0) and (0, 0, 1) respectively. There
are no additional case 1 ordinates as there are no more unique permutations
of the cosines. Figure III-3 shows the distribution of these points on the
principal octant. Both the exact solution and the decimal fractions of the
weights are given. The weights are all positive, as required, which reduces
the likelihood of physically unrealistic results such as negative flux. They are
also similar in magnitude, providing for better conditioning of the problem.
From Table I1I-1 we see that there are fifty total directions and five degrees
of freedom for this quadrature. For comparison, an LQ1o quadrature also has
five degrees of freedom but has 120 total directions over the unit sphere
requiring 2.4 times the computational cost (assuming both calculations
converge in the same number of iterations). The LQs level symmetric

quadrature has 48 directions but only three degrees of freedom. Table III-3
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also gives the base sets for an MQs and an MQ7 quadrature set. Table I1I-4
shows the number of discrete ordinates required to obtain a desired number

of degrees of freedom for various MQn and LQn quadrature sets.

Figure 1li-5: Example MQs Quadrature Layout
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Table I1I-3: Some Possible MQ,, Quadrature Base Sets

Order | Class | weight B n £
— 1/21
n=3 |A 047619047619 | 1 0 0
9/280
B 0321428571420 | V2 0 /2
4/105
1 0380052380052 | /° 13 13
— 4/315
n=5 |A 0126984126984 | © 0 0
64 / 2835
B 0225749550088 | VY2 0 12
27/ 1280
1 ‘0210037500000 | 13 13 13
14641/ 725760
2 1020173335379 8/¥11 111 131
n=7 |A .00904818883016 | 1 0 0
B .02103246043743 | 1/2 0 /42
C 00645149153857 | .954580866940172 | 0 0.29795195665031
1 .01827941392342 | 1/43 13 /43
2 01634375972737 | .875317087598172 | .34192104070871 | .34192104070871
Table 11I-4: Comparison of Computational Cost of MQ, versus LQy
Degrees MQn Cases | LQn MQnu: Total LQn: Total
of Used Required | Number of Number of
Freedom Ordinates on Ordinates on
Unit Sphere Unit Sphere
1 A So 6 8
3 A B 1 Se 26 48
5 A B, 1,2 S10 50 120
7 ABC, 1,2 |Si2/Sis" 74 168 /224
9 A B, 1,24 |Sis 110 288

*S12 only has six degrees of freedom and Si4 has eight. No level symmetric Sn

quadrature has 7 degrees of freedom.

For the MQ7 quadrature in Table III-3, the exact values are not given,

because Mathematica was not able to solve this set of equations exactly.

Instead a numerical solutions was obtained using a numerical solving built-
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in, NSolve. As the order of the quadrature increases the complexity of the
polynomial system of equations increases substantially. Only for the lowest
order quadrature sets was I able to obtain exact solutions.

These quadrature sets were tested with a computer algorithm to verify
they met the orthogonality condition in Equation (III-1) to double precision.
Many more combinations of cases are available than are presented here.
Quadrature sets can be tailored using Table III-2 and Equation 3 to best fit
the geometry of the problem. Appendix C shows several additional
quadrature sets.

Generating the sets of equation to solve is a straightforward matter,
solving them is often a challenge. Some of the equation sets do not have real
solution that I have been able to find. The requirement of positive weights
also eliminates some possibilities. Appendix B contains some of the work I
did in attempting to get valid quadrature sets. Table III-6 summarizes a
significant number of possible quadrature set combinations and the results of
my efforts. Only those combinations using at least one of the new cases are
shown. The “2(3)” notation in the Cases column is intended to show that the
resulting equations when selecting a case 2 or a case 3 are mathematically
equivalent as discussed above. An entry in the results column of one valid
found means a valid quadrature sét was found for the resulting system of
equations, no valid means all the solutions had either negative weights,

imaginary values or cosines greater than one. No solution means that the
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system of equations did not provide any solutions, good or bad. Empty spaces
are quadrature combinations I have not tried and those marked with “tried”,
means they were attempted,‘but I was unable to solve the equations. The
letters in the order column are a method to distinguish different quadratures
of like order, for example Msp. Valid quadrature sets are presented in

Appendix C

Table 111-3: Case Combination for Quadrature of Order n

Order Cases Results

3 |a AB1 One valid found
b C1 One valid found
c AC No solution
d BC No solution

5 |a AB12(3) One valid found
b AC2(3) One valid found
c BC2(3) One valid found
d C4 One valid found
e ABC1 No solution
f C12(3) No valid
g AB4 Tried
h A23
i B23
j Al3
k B13

7 |a ABC12(3) One valid found
b AC23 One valid found
c ABC4 Tried
d ACl4
e AB14 Tried
f AB42(3)
g AB123 No valid

9 |a ABC123 Tried
b ABC2(3) 4 Tried
c Etc.
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Though trial and error can yield valid quadrature sets it may be
possible to gain some direction when selecting the cases to use. Since the
method is based on the exact integration of spherical harmonics, selecting
cases based on features of the spherical harmonics of the order being matched
may yield systems of equations that are more readily solved. Figure I11-6

(12) shows the first few spherical harmonics.

¥3(0, ¢)

r?r, 9)

¥{(8, ¢) Yi(6, 9) Yi(8, ¢) Yi(6, ¢)
Figure 111-6 :Spherical Harmonics, Y,"(8,¢)

The three quadratures show in Table III-3 where tested and compared
with level symmetric quadratures. These quadratures were chosen because

they are the sets with the fewest ordinates for the given order. Also they
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have ordinates which are reasonable dispersed over the unit sphere and the
weights are all about the same order of magnitude. The MQsa quadrature
was shown in Figure III-5, the MQsa. and MQ7, quadrature sets are shown in

Figures I1I-7 and III-8.

Figure Il-7: MQ3, Quadrature Layout
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Figure 111-8: MQ7a Quadrature Layout

I1I-21




IV. Results

Some of the new quadrature sets were tested on two problems and
compared with the level symmetric LQn quadratures. The first problem is a
cube source inside a cube shield region and was designed to exacerbate ray
effects. The second problem is a spherical source region in a spherical shield.
This problem was selected to reduce ray-effects. Due to the symmetry of this
problem, the solution should also by symmetric; therefore any deviation from
smooth behavior must be due to the method of calculation. Each test problem
was run on the TETRAN code using the linear characteristic (L.C) method for
handling the spatial computations. The MQs, MQs, and MQ7 quadrature sets
from Table III-3 are compared with the standard LQs, LQ10, and LQi¢ level
symmetric quadrature sets. For brevity, no letter subscript will be used with
the MQn quadratures. Each problem was also run on the THREEDANT
module of the DANTSYS code package using Diamond Difference with
negative flux fix-up (DZ). Some quadratures with zero ordinates would cause
the code to produce nan (not a number) values for some of the output. The
case A ordinates did not cause problems, but the case B and C would. The
input file for THREEDANT requires p, 1, and the weights to be entered.

The program calculates the value of . For the case B and C ordinates, when
£ should be zero, instead a nan would be reported. Error handling routines
prevent the code from failing but the output is not useful. By reducing the

precision of the quadrature angles input into THREEDANT, the code does
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run and provide output. Presumably because the value of £, though very
near zero, is sufficiently large so as not to cause problems.

In order to overcome the limitations of THREEDANT with regard to
the expectation that the ordinates not lie on the edges of an octant and to the
total number of directions in a quadrature set, it was necessary to make
further modifications. THREEDANT defines a quadrature only in the
principle octant, the remaining angles generated by reflection operations.
This also requires the weights that should lie on a boundary to be divided by
the number of octants among which it is shared. For example, in order for
the normalization of the weights to be correct the weight of a case B or C
ordinate must be divided by two. Also, the number of ordinates in a
quadrature must match the number of ordinates expected. The variable isn
in the input file must be set to the value of n for the LQn quadrature intended
for use (there are provisions for other quadrature types not of relevance
here). The LQx level symmetric quadratures are selected by default if no
quadrature information is given. If a quadrature set is entered, the number
of ordinates supplied for the principle octant must‘match the number in a
LQn quadrature for the value of n supplied. This number is given by
N =n(n +2)/8. For the MQs quadrature there are seven angles in the
principle octant. The closest LQn quadrature with at least that many
ordinates is LQs with ten ordinates. Therefore, to run the MQs quadrature,

the variable isn must be set to eight and the first seven ordinates in the
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quadrature array are filled with the MQs values. The remaining three slots
in the quadrature array are fill with dummy angles with the weights set to
zero. This fix will maintain the quadrature set’s ability to integrate properly.
The disadvantage of this fix is a loss of computational efficiency because the
code still has to perform computations using the dummy values that do not
contribute to the solution. Valid comparisons of computational efficiency
between the MQn and LQx sets using THREEDANT are therefore limited.

The TETRAN calculations were performed on the IBM SP located at
the major shared resource center (MSRC) of Wright Patterson AFB. These
problems were run on a single node, consisting of an RS/6000 P2SC model
595 processor with a clock speed of 135MHZ and 1Gb of memory (23). The
THREEDANT code was run on an IBM RS-6000/590 workstation using the
AIX 3.2.5 operating system with 256 Mb of memory and operating at 67MHz.
The convergence tolerance for each problem was 106,

A benchmark solution was obtained for each problem using a Monte
Carlo simulation generated with MCNP (15). MCNP is a general three-
dimensional simulation code widely used and accepted. MCNP results are
the average of the computed quantity over all histories. Each history is a
simulation of one particle’s motion through the media. MCNP also provides
the estimated statistical relative error, R, at the one standard deviation level

defined as the sample standard deviation divided by the sample mean.
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Problem Definition

The cube problem uses the geometry shown in Figure IV-1. The mesh
shown is for clarity and not used in calculation. This problem is a three-
dimensional extension of the two-dimensional problem presented by Lathrop

(21) and discussed in references 1 and 3. The source region is a 2x2x2 cm

Figure IV-1: Geometry for the Cube in Cube Problem

cube centered in a 4x4x4 cm cube with the source normalized to one over the
source volume. The second problem, shown in Figure IV-2, is a spherical
source region in a spherical shield region. Problem two used a source region
with a radius of 1.5 cm normalized to one over the volume and a shield region
with a radius of 3 cm. Figure IV-2 shows the finest tetrahedral mesh used

with TETRAN. The source and shield regions have the same nuclear data
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for all test problems. Vacuum boundaries are used outside all shield regions.
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benchmark solution gives the volume average scalar flux in each region, the

average scalar flux at the outer surface and the net current through each

surface.

Test Problem One — Cube Source in Cube Shield
The first test problem is a simple 4x4x4 cm cube with vacuum
boundaries and a uniformly embedded isotropically-emitting source of

strength 1.0 cm3 sec’l. The source is constrained to the 2x2x2 cm center
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region of the cube. The nuclear data is given above. The MCNP solution for
this problem was run with one million histories. The statistical relative

error, R as defined above, is .003 for surface data and .0007 for volume data.

Tetrahedral Mesh

Each tetrahedral mesh was generated using the Pro/Mesh module of
Pro/Engineer (22). This problem was run with two levels of mesh refinement.
The meshes are shown in Figure IV-3. Table IV-1 gives the tetrahedral mesh
information for test problem one. For clarity, only the surface cells are show

for the fine mesh.

Lol 3

Figure IV-3: Tetrahedral Meshes Used in Test Problem One
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Table IV-1 : Tetrahedral Mesh Data for Test problem One

Mesh Total Cells in Net Volume of | Average Optical
Tetrahedra Source Region | Source Region | Thickness

Coarse | 191 47 8.0 1.203

Fine 1513 162 8.0 0.5997

For a right regular problem geometry the tetrahedral mesh does very
well in matching the region volumes, even with a relatively coarse mesh.
Here the average optical thickness is defined as the mean path length
through a cell measured in mean-free paths. The accuracy of each
quadrature relative to the benchmark will be examined first.

Figure IV-4 shows contour plots of the surface average scalar flux for
the coarse mesh for the MQ7 and LQ16 quadrature sets. Figure IV-5 shows
the same data for the fine mesh. The plots of the other quadrature sets are
very similar and are not shown. The TETRAN code gave the scalar flux at
the center of each cell and at the surface of each cell on the boundary. To
generate these plots it was necessary to have values at the nodes. Each node
value was approximated as the average of the cell center values for each
tetrahedron shared by that node. This averaging may effect the variability of
the actual surface data. Also from these figures, the flux distribution’s
dependence on cell geometry and orientation is very evident. These contour
plots show little dependence on quadrature. Contour plots of the net current

out the cell faces at the surface are very similar to those for the scalar flux
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and are not presented. These plots indicate that the new quadratures do not
cause any significant loss in uniformity and that it is the spatial mesh which
is the primary source of surface variation in scalar flux and current. The
variability of the data does decreases slightly with quadrature order. For low
order quadrature sets the LQn sets have less variability than the MQn sets
but this difference is minor. Using the tetrahedral mesh, it is very difficult to
get a qualitative comparison of quadrature sets using individual data points.

The integral values provide a clearer method of comparison.

FLUX
0.22123%
0.208343
0.195451
0.182558
0.169666
0.156773
0.143881
0.130988
0.118096
0.105204

Figure IV-4: Contour Plot of the Surface Average Scalar Flux, Cube Problem,

Coarse Tetrahedral Mesh
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0.14
0.1285%
0.117
0.1055

0.036% MQ

Figure IV-5: Contour Plot of Surface Average Scalar, Cube Problem, Fine

Tetrahedral Mesh

The surface average scalar flux for each quadrature and mesh are
shown in comparison with the MCNP benchmark calculation in Figures IV-6
and 7. The surface average is calculated as the sum of the product of the flux
at the vacuum interface of a surface cell and the area of that cell’s face

divided by the total surface area,
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Z ¢ cellA cell

__ cells on surface

¢surface average z A
cell

cells on surface

The net current out of the cube is similarly shown in Figures IV-8 and 9. The
benchmark is shown with error bars indicating the statistical errdr R. With
the exception of the surface flux calculation for the fine tetrahedral mesh,
these plot show there is little significant difference in the accuracy achieved

by the quadratures tested.

Quadrature vs. Surface Average Scalar Flux,
Cube Problem, Coarse Tetrahedral Mesh
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Figure IV-6: Surface Average Scalar Flux, Cube Problem, Coarse Tetrahedral

Mesh
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Quadrature vs. Surface Average Scalar Flux,
Cube Problem, Fine Tetrahedral Mesh
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Figure IV-7: Surface Average Scalar Flux, Cube Problem, Fine Tetrahedral Mesh
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Cube Problem, Coarse Tetrahedral Mesh
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Figure IV-8: Net Current Through the Surface, Cube Problem, Coarse

Tetrahedral Mesh
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Quadrature vs. Net Current Through the Surface,
Cube Problem, Fine Tetrahedral Mesh
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Figure IV-9: Net Current Through the Surface, Cube Problem, Fine Tetrahedral

Mesh

The absolute value of the relative error, ¢, is defined as

e — M) benchmark — ¢calculated| (IV-1)
® benchmark

The absolute value of the relative error for the current is found analogously
to the flux. The flux, current, and relative error are summarized in Tables
VI-2 and 3 for test problem one. The value for € given for the MCNP entry is

actually the statistical error R and is shown for reference.
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Table IV-2: Surface Average Scalar Flux, Net Current, and Relative Error, Cube

Problem, Coarse Tetrahedral Mesh

Quadrature [Scalar Flux g€ Net Current £

MQs 0.054461034 |0.05100 |0.039715347 [0.004732
MQs 0.054827230 |0.04462 |0.039796675 [0.002693
MQ~ 0.054314746 |0.05355 |0.039788637 [0.002895
LQ4 0.054765258 [0.04570 0.039818522 (0.002146
LQ1o 0.055312273 |0.03617 [0.039825301 [0.001976
LQie 0.055447146 |0.03382 [0.039821360 |0.002075
MCNP 0.05739 0.003 0.03990 0.003

Problem, Fine Tetrahedral Mesh

Table IV-3: Surface Average Scalar Flux, Net Current and Relative Error, Cube

Quadrature [Scalar Flux g Net Current €
MQs 0.054574800 {0.04902 [0.03969063 10.005351
MQs 0.055480478 [0.03324 [0.03989043 [0.0003442
MQz 0.054711298 [0.04664 {0.03986661 10.0009411
LQ4 0.055361991 ]0.03530 [0.03998596 10.002050
LQi1o 0.057121652 [0.004641 [0.03995183 [0.001194
LQ1e 0.057210746 |0.003090 [0.03992792 |0.000595
MCNP 0.05739 0.003 0.03990 0.003

For the surface values the LQn quadratures have slightly better accuracy.
The difference in relative error between quadrature sets tested is small for
the coarse cube. In the fine cube the LQs quadrature sets do better for scalar
flux but the MQs and MQ7 provide comparable results for net current.
Figures IV-10 - 13 show the Volumeb average scalar flux in each region

and quadrature with the MCNP solution. The volume average is calculated
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as the sum of the product of cell flux and cell volume divided by the total

region volume,

Z ¢ cell Vcell

__ cells in region

¢ average z V
cell

cells in region

The source and shield regions are shown. Tables IV-4 and 5 summarize this

data as well as present the relative error.

Quadrature vs. Volume Average Scalar Flux,
Shield Region, Cube Problem, Coarse Tetrahedral Mesh
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Figure IV-10: Volume Average Scalar Flux, Shield Region, Cube Problem Coarse

Tetrahedral Mesh
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Quadrature vs. Volume Average Scalar Flux,
Shield Region, Cube Problem, Fine Tetrahedral Mesh
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Figure IV-11 Volume Average Scalar Flux, Shield Region, Cube Problem, Fine

Tetrahedral Mesh

Quadrature vs. Volume Average Scalar Flux,
Source Region, Cube Problem, Coarse Tetrahedral Mesh
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Figure IV-12: Volume Average Scalar Flux, Source Region, Cube Problem,

Coarse Tetrahedral Mesh
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Quadrature vs. Volume Average Scalar Flux,
Shield Region, Cube Problem, Fine Tetrahedral Mesh
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Figure IV-13: Volume Average Scalar Flux, Source Region, Fine Cube

Table IV-4 : Volume Average Scalar Flux and Reletive Error, Cube Problem,

Coarse Tetrahedral Mesh

Quadrature Region |Volume Average |MCNP Benchmark [Relative
Scalar Flux +/- .07% Error
MQs Source [0.9490771 0.93175 0.018596
Shield [0.1635121 0.16466 0.0069711
MQs Source ]0.9269118 0.93175 0.0051926
Shield 0.1661212 0.16466 0.0088739
MQ~ Source (0.9291961 0.93175 0.0027409
Shield 0.1658497 0.16466 0.0072253
LQ4 Source [0.9096752 0.93175 0.023692
Shield 0.1684340 0.16466 0.022920
LQio Source [0.9191761 0.93175 0.013495
Shield 1]0.1670303 0.16466 0.014395
LQis Source [0.9209707 0.93175 0.011569
Shield [0.1668003 0.16466 0.012998
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Table IV-5:; Volume Average Scalar Flux, Fine Mesh

Quadrature Region |Volume Average |MCNP Benchmark Relative
Scalar Flux +/- .07% Error
MQs Source 0.9544397 0.93175 0.024352
Shield ]0.1629156 0.16466 0.010594
MQs Source 0.9324943 0.93175 0.00079882
Shield ]0.1646805 0.16466 0.00012450
MQ~ Source 10.9346356 0.93175 0.0030970
Shield [0.1645381 0.16466 0.00074031
LQ4 Source |0.9160339 0.93175 0.016867
Shield 10.1663769 0.16466 0.010427
LQio Source [0.9252458 0.93175 0.0069806
Shield [0.1652950 0.16466 0.0038564
LQis Source |0.9269132 0.93175 0.0051911
Shield [0.1652210 0.16466 0.0034068

The MQn quadrature set performed better than the LQn quadrature

set for the volume average data in all but the MQs case on the fine mesh.

Computational efficiency was measured as the user time on the IBM

SP taken to solve the problem. Table IV-6 shows the user time for each

quadrature and each mesh. Recall the convergence tolerance for all problems

was 10-6.

Table IV-6 :User Time in Seconds Taken to Solve the Cube in Cube Problem

Quadrature |Coarse Mesh |[Iterations to |Fine Mesh [Iterations to
(sec) Convergence |(sec) Convergence

MQs 9.51 20 96.75 20

MQs 18.43 19 187.55 20

MQ7 26.73 19 274.3 20

LQ4 9.58 19 92.77 20

LQ1o 48.15 19 459.17 20

LQis 116.75 19 1100.61 20
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For these quadratures to be of value, they must provide increased
computational efficiency while maintaining comparable error, or they must
provide increased accuracy in comparable time. Figures IV-14 through 17
show plots of user time versus the absolute value of relative error for the
surface average scalar flux and net current through the surface. Data points
nearer to the origin represent better performance. For these surface
averaged values the LQn quadrature sets perform better on this problem
except for the current through the surface on the fine mesh, where the MQs
and MQ7 quadratures perform well. Figures IV-18 and 19 show the volume
average scalar flux versus relative error. The MQn quadrature sets have
consistently better performance, providing less error for the computation cost
in all cases except for the MQs on the fine mesh. These plots clearly show the

savings in computational costs while maintaining accurate transport results.
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User Time vs. Relative Error Surface Curent
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User Time vs. Relative Error of Volume Average Scalar Flux
Cube Problem, Coarse Tetrahedral Mesh
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Parallelepiped Mesh

This problem was run with one mesh. The mesh is 16x16x16 cells in the
principal octant. Reflective boundaries were used on three sides. This
results in a 2x2x2 cm cube which is one corner of the test problem containing
one eighth of the volume. The solution to the remaining seven eighths of the
problem is assumed to be the same by symmetry. The source is normalized to
.125 over this source volume which is one eighth of a complete source cube.
Data for the parallelepiped mesh is shown in Table VI-7. The volumes of the
regions are easily conserved with this meshing method. The number in
parenthesis in the volume column is for an equivalent volume if reflective

boundaries had not been used.

Table V-7 : Parallelepiped Mesh Data

Total Cells Cells in Source Net Volume of Optical
Region Source Region Thickness
4096 512 1.0 (8.0) .09375

Figure IV-20 shows a contour plot of the cell center scalar flux for the
base layer of cells (Z= .125 cm plane) using each quadrature set. The flux
shows a significant dependency on quadrature for this mesh. The MQs case
shows a very pronounced ray effect. The higher order quadrature sets show

better behavior.
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Figure IV-21: Scalar Flux at Cube Surface
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Figure IV-21 shows a comparison of the flux at the top layer of cells (Z =
1.875 plane). Each successively lower line represent a step of one cell width
in the positive y direction starting at y = .125. The lower order MQn
quadratures display a substantial drop in flux when crossing from the source
to shield region. This is still evident in the MQ7 quadrature but is not as
pronounced. This is evidently a ray effect due to the ordinates perpendicular
to the axes. Figure IV-22 shows the volume average scalar flux for each
quadrature compared with the MCNP benchmark. All quadrature sets
performed well, with error less than one percent except for LQa. MQs and
LQi6 performed very well, both with error less than 0.1 percent. The net
current through the surface for each quadrature and the MCNP solution are
plotted in Figure IV-23. This data is summarized in Table IV-8 with the

relative error for each quadrature.

Table IV-8: Parallelepiped Cube Data Summary

Quadrature |Flux £ Net Current €
MQ3 0.2622893 10.0066899 0.059428 |0.489260
MQ5 0.2607804 ]0.0008985 0.059805  |0.498714
MQ7 0.2609637 |0.0016024 0.0569759  10.497565
L.Q4 0.2558341 [0.0180855 0.061041  [0.529702
1.Q10 0.2601124 (0.0016650 0.059972  10.502898
LQ16 0.2604749 10.0002739 0.059881  10.500627

Figures IV-24 and 25 shows the relative error vs. computation time.
The lines were added for clarity connecting the MQ, and LQxn quadratures

with separate lines by increasing order. When using the THREEDANT code
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with these quadratures the convergence time is not as direct a function of the
number of angles in the quadrature set as it is when using TETRAN. This is
primarily due to the added dummy angles required. For Example, both the
MQs and MQ5 quadrature used isn = 8, requiring the input of 10 ordinates.
For the MQs case, three of the ordinates were dummy values with zero
weights but for the MQs all ten ordinates are used. The MQ7 quadrature
used isn = 12, requiring 21 ordinates, five of which were dummy values. In
addition, since THREEDANT uses quadrature sets input by octant,
redundant calculations are made for the case A, B, and C ordinates that lie
on octant boundaries. Despite this, the MQn quadratures still seem to have
better computational efficiency when examining integral values. Table IV-9

shows the computation times for each quadrature sets.

Table IV-9 : Time by Quadrature, Parallelepiped Mesh, Cube Probelem

Quadrature [Time (sec) |Iterations to
Convergence

MQ3 3.6 10

MQ5 3.03 8

MQ7 11.49 8

LQ4 1.91 9

LQ10 5.56 8

LQ16 24.39 8
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Test Problem Two — Spherical Source in Spherical Shield

The second test problem is a 3 cm radius sphere with vacuum

boundaries and a uniformly embedded isotropically emitting source of

strength 1.0 cm3 sec’l. The source is constrained to a 1.5 cm radius sphere in

the center. The nuclear data is the same as the previous problem. The same

computer systems and convergence tolerance that were used in problem one

were used for problem two.

Tetrahedral Mesh

This problem was run with three levels of mesh refinement. The

structure for each mesh is shown in Figure IV-26. Table IV-10 gives the

tetrahedral mesh information for test problem two. The volumes shown are

the sums of the tetrahedron volumes in each region. This is compared with

14.14 and 98.96 cm-3 for an actual spherical volume. For curved geometry the

Table IV-10 : Tetrahedral Mesh Data

Mesh Total Cellsin | Mesh Volume | Mesh Volume | Average
Tetrahedra | Source |in Source in Shield Optical
Region | Region (cm3) | Region (cm3) | Thickness
Coarse 211 14 5.885 82.24 1.1317
Medium | 896 152 11.69 93.48 0.84944
Fine 6632 2033 13.74 96.46 0.40539

tetrahedral mesh does not conserve volume very well until a very fine mesh is

used. This is a fault in the design of mesh generators. They are usually used
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Figure IV-26: Tetrahedral Mesh Structures Used in Problem 2
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for finite elements mechanics calculations where volume is not an issue.
Figure IV-27 shows the source region for the coarsest mesh. This figure
shows how difficult it is to mesh curved regions. The accuracy of each

quadrature will again be examined first.

Figure IV-27: Source Region for Sphere Problem, Coarse Mesh

Figure IV-28-30 shows contour plots of the surface average scalar flux
at the surface layer of tetrahedra for each mesh and various quadrature sets.
Due to the similarity of the plots, not all of the quadratures are presented.
The same method of node averaging was used to present this data. These
contour plots also show little dependency on quadrature. To better show the
quadrature dependence, Figure IV-31 shows contour plots of the fine sphere

using MQs and LQ1s quadrature sets, looking from the -x, x, and z directions
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respectively. The orientation can be seen from the standard arrowhead ©,
signifying the positive direction is out of the page, or tail ®, signifying the
positive direction is into the page; notation at the origin of each plot. Also
from this figure, an unusual asymmetry can be seen. There is a biasing in
the positive x direction. This appears to be due to a problem in the TETRAN
code that is currently under investigation. The degree of variability in the
surface average scalar flux can be seen in Figure IV-32. This figure shows
the TETRAN calculated surface flux arbitrarily ordered by magnitude for the
medium mesh. Due to the symmetry of the problem the actual flux should be
uniform over the surface. The shape of this curve remains the same as the
mesh is made more or less refined, however the magnitude of the peak
increases to about .11 for the coarse mesh and decreases to about .065 for the
fine mesh. These plots are not shown. Figures IV-33 shows the net surface
current in the same manner as the scalar flux. This data is ordered by the
magnitude of the scalar flux to allow comparison with the previous figure.
The current and scalar fluxes have similar trends but do vary independently.
Only the MQ7 and LQi¢ data is presented here, the other quadratures have

similar behavior.
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Figure IV-28: Contour Plot of Surface Average Scalar Flux, Sphere Problem,
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Figure 1IV-29: Contour Plot of Surface Average Scalar Flux, Sphere Problem,

Medium Tetrahedral Mesh
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Figure IV-30: Contour Plot of Surface Average Scalar Flux, Sphere Problem,
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The surface average scalar flux and net current through the surface
show little dependence on quadrature. Figure IV-34 shows this for the scalar
flux on the coarse sphere. The small differences in accuracy can be seen in a
plot of relative error versus quadrature as shown in Figures IV-35-37 for the
scalar flux. Plots of the net current are similar and are not presented.
Regardless of mesh, the quadratures have comparable performance in
approximating the surface values. The relative error for this geometry 1s
much larger than for the cube problem above. This is primarily attributed to
the poor job the mesh does in matching the curved surfaces. Though the MQnx
sets do appear to have less error for the surface flux on the coarser two
meshes, the difference is small and, as can be seen from Figure IV-34, has

little significance. This information is summarized in Tables VI-11-13.

Table 1V-11: Surface Average Scalar Flux and Net Current, Sphere Problem,

Coarse Tetrahedral Mesh

Quadrature [Scalar Flux € Net Current €
MQs 0.072776076 (0.2663 0.056724275 |0.2363
MQs 0.072876460 |0.2681 0.05722983 10.2360
MQs 0.072896331 [0.2684 0.05722878 10.2360
LQ4 0.072993465 [0.2701 0.05720223 [0.2354
LQ1o 0.073059529 10.2712 0.05723194 [0.2360
LQis 0.073047543 10.2710 0.05723134 |0.2360
MCNP 0.05747 0.003 0.04630 0.003
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Table IV-12: Surface Average Scalar Flux and Net Current, Sphere Problem,

Medium Tetrahedral Mesh

Quadrature [Scalar Flux € Net Current

MQs 0.062842334 [0.0935 0.05024186 {0.0851
MQs 0.062996823 10.0961 0.05027019 [0.0857
MQ7 0.062990863 |0.0960 0.05026612 10.0856
LQ4 0.063196562 |0.0996 0.05028158 [0.0859
LQo 0.063011997 |0.0964 0.05028019 [0.0859
LQis 0.063010129 ]0.0964 0.05027461 10.0858
MCNP 0.05747 0.003 0.04630 0.003

Table IV-13: Surface Average Scalar Flux and Net Current, Sphere Problem,

Fine Tetrahedral Mesh

Quadrature |[Scalar Flux € Net Current €
MQs 0.060902901 ]0.0597 0.04857312 |0.0490
MQs 0.060905444 10.0598 0.04857166 10.0490
MQ~ 0.060910336 |0.0598 110.04857333  [0.0490
LQ4 0.060900515 |0.0597 0.04857391 [0.0490
LQuo 0.060900610 [0.0597 0.04856642 [0.0489
LQis 0.060915316 [0.0599 0.04856830 [0.0489
MCNP 0.05747 0.003 0.04630 0.003

Tables IV-14 and 15 summarize the volume average data. All quadratures

show nearly equal performance in calculating the volume average scalar flux
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Table IV-14: Volume Average Scalar Flux Data, Coarse Sphere

Quadrature Region  [Volume MCNP €
Average Scalar [Benchmark
Flux +/- .2%
MQs Shield 0.259490998  [0.17601 0.47430
Source 2.073454733 1.29600 0.59989
MQ5 Shield 0.260540247 |0.17601 0.48026
Source 2.059669935  |1.29600 0.58925
MQ7 Shield 0.260516136  |0.17601 0.48012
Source 2.060075531  |1.29600 0.58956
1L.Q4 Shield 0.261797736  [0.17601 0.48740
Source 2.043972732  |1.29600 0.57714
LQ10 Shield 0.260675794  |0.17601 0.48103
Source 2.057621449  [1.29600 0.58767
LQ16 Shield 0.26067187 0.17601 0.48101
Source 2.05772263 1.29600 0.58775

for a given mesh. By examining the errors in the source region shown in
Tables IV-15 and 16 an interesting phenomenon can be detected when
refining the mesh from the medium to the fine sphere. The error in the
source region increases from about one percent up to about nine percent. The
expected trend is for error to decrease with this level of mesh refinement.

The source of this increase in error is suspected to be the same unresolved
problems in the TETRAN code that induced the biasing mentioned earlier.
This only seems to become detectable when running fine mesh problems. It
is suspected that a very small biasing in the positive x direction that only
accumulates significantly for very fine meshes is caused by a tetrahedron

splitting algorithm used by TETRAN. The magnitude of this problem does
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not appear to vary with quadrature and therefore we can still use this output

for relative comparisons between quadrature sets.

Table IV-15: Volume Average Scalar Flux Data, Medium Sphere

Quadrature Region  (Volume MCNP g
Average Scalar |Benchmark
Flux +/- .2%
MQs Shield 0.206680395 |0.17601 0.17425
Source 1.313078744  [1.29600 0.01318
MQs Shield 0.20660516 0.17601 0.17383
Source 1.312631187  |1.29600 0.01283
MQ- Shield 0.206585308 0.17601 0.17371
Source 1.312932737  11.29600 0.01307
LQ4 Shield 0.206521942  |0.17601 0.17335
Source 1.312863629 1.29600 0.01301
LQio Shield 0.20670228 0.17601 0.17438
Source 1.311474207 1.29600 0.01194
LQise Shield 0.206639441 10.17601 0.17402
Source 1.312184651  |1.29600 0.01249
Table IV-16: Volume Average Scalar Flux Data, Fine Sphere
Quadrature Region  [Volume MCNP Absolute
Average Scalar |Benchmark |Relative Error
Flux +/- .2%
MQs Shield 0.19327010 0.17601 0.09806
Source 1.18027900 1.29600 0.08929
MQs Shield 0.19331830 0.17601 0.09834
Source 1.17998870 1.29600 0.08951
MQ7 Shield 0.19331458 0.17601 0.09832
Source 1.17996012 1.29600 0.08954
LQ4 Shield 0.19331059 0.17601 0.09829
Source 1.17996978 1.29600 0.08953
LQ1o Shield 0.19336766 0.17601 0.09862
Source 1.17981243 1.29600 0.08965
LQs Shield 0.19334904 0.17601 0.09851
~ Source 1.17988161 1.29600 0.08960
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Computational efficiency was measured in the same fashion as for
problem one. Table IV-17 shows the user time for each quadrature and each

mesh.

Table IV-17 :User Time in Seconds Taken to Solve the Sphere Problem

Quadrature |Coarse Mesh [Medium Mesh |Fine Mesh
MQs 13.46 62.73 531.79
MQs 25.78 121.17 1015.44
MQ7 37.99 177.87 1494.66
LQ4 12.48 58.87 491.42
LQ1o 62.47 278.98 2471.91
LQis 149.05 701.37 5788.87

Figures IV-38 shows a plot of data from Table IV-14 of user time versus
relative error in the volume average scalar flux for the coarse mesh. This
curve is nearly flat. Curves for the other levels of mesh refinement and for
the net current as similar. The lack of significant features implies the
quadratures have already converged to the minimum error obtainable by the
discrete ordinates method even for the lowest order quadrature. This is not

surprising considering the simple nature of the problem.
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Figure IV-38: Relative Error in Volume Average Scalar Flux, Sphere Problem,

Coarse Tetrahedral Mesh

Parallelepiped Mesh

Only one mesh was used for this problem. As in the cube case,
reflective boundaries were used on three sides and the problem was run using
a one eighth section of the sphere. The remainder of the problem is assumed
to be the same by symmetry. Data for the parallelepiped mesh is shown in
Table VI-18. The numbers in parentheses in the volume columns are for an
entire sphere if reflective boundaries had not been used. The volumes shown
here are compared with 98.96 and 14.14 cm3 for an actual spherical volume.

This method of mesh generation has a difficult time matching curved

surfaces.

IV-45




Table IV-18 : Parallelepiped Mesh Data

Total Cells Cellsin | Cells in Source | Net Volume of | Net Volume of
in Problem | Material | Region Shield (cm3) Source Region (cm3)
3375 1464 211 10.02 (80.2) 1.688 (13.5)

The cells are cubes .1 cm across corresponding to .075 optical thickness. The
source volume was allowed to bulge into the shield region a small amount to
allow for closer volume modeling. Figure IV-39 shows contour plots of the
scalar flux in the x-y plane cutting through the origin. Despite the rough
geometry of the mesh, the results are fairly uniform. Figure IV-40 shows the
volume average scalar flux and Figure 41 shows the relative error. All
quadrature sets did well, with error less than two percent. This data is

summarized in Table IV-19

Table IV-19: Sphere Data Summary, Parallelepiped Mesh

Quadrature [Volume Average |Relative Error |Net Current|Relative Error
Scalar Flux
MQs 0.3110153 0.0158015 0.047224  ]0.019887
MQs 0.3111058 0.0155153 0.047246  {0.020359
MQ7 0.3111027 0.0155251 0.047224 |0.019871
LQ4 0.3107919 0.0165086 0.047302 0.021565
LQio 0.3111415 0.0154021 0.047215 |0.019677
LQis 0.3112716 0.0149906 0.047218 10.019755

Figure IV-42 shows the net current by quadrature with the MCNP

benchmark. Again, the results show little deviation by quadrature. Figures

IV-43 and 44 show the relative error vs. computation time. Neither

quadrature method seems to have a clear advantage.
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Table IV-20 : Time by Quadrature, Sphere Problem, Parallelepiped Mesh

Quadrature [Time (sec)
MQ3 3.24

MQ5 3.3

MQ7 9.58

LQ4 2.92
LQ10 5.81
LQ16 29.97
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Figure IV-39: Comparison of Contour Plots: Scalar Flux, Z = .125 plane, Sphere

Problem, Parallelepiped mesh
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Figure IV-41: Relative Error, Volume Average Scalar Flux, Sphere Problem,
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V. Conclusion

The quadratures developed here show the potential for use in discrete
ordinates transport calculations. The MQn quadratures tested do provide
accuracy comparable to traditional methods, and often at a substantial
saving in time. However, there is as yet insufficient data to make conclusive
statements on the effectiveness of the method.

Deqreased computational cost for use on parallelepiped meshes may be
obtained by development of new computer codes to take advantage of the one,
or two dimensional aspect of the special directions, and by use of more
flexible quadrature input modules to allow any number of ordinates.

The MQn quadratures seem to perform best in the unstructured mesh.
It is difficult to determine the type problem with regard to mesh type and
problem geometry that these quadratures will work best with due to the
limited amount of data obtained. The sphere in sphere problem did not
adequately differentiate performance between quadrature sets. More work
is need on a greater variety of problems before significant conclusions on this
aspect of performance can be made.

The reduced number of angles in the new quadratures does reduce the
computational cost of the problems solved. Using the tetrahedral mesh, these
quadratures had comparable accuracy to the LQn quadratures with regard to
smoothness and global accuracy. Their performance was best when used to

find integral results. On the parallelepiped mesh, the MQn quadratures
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showed substantial ray effects though still did well when calculating integral
results.

I recommend using the MQn quadratures on problems with little
symmetry on an unstructured mesh. For structured meshes and problems

with high symmetry, more data is need before a recommendation can be

made.

Recommendations for further research

More quadrature sets need to be solved and more data needs to be
generated. From an increased database, the optimal quadrature set to use as
a function of problem geometry and mesh type may be found. Also, the
potential benefits of the higher order of these quadratures as compared to
others with the same number of angles needs to be investigated by evaluating
them on anisotropic test problems.

Development of code to take advantage of the one- and two-
dimensional aspects of the MQn quadrature sets may provide an interesting
challenge with potentially a great deal of gain. Integrating the new code
modules with current programs may allow for easy transition to these new
sets where applicable

I have been unable to solve any quadrature above seventh order.
I spent many hours on Mathematica, and attempted to write a FORTRAN

program using an expansion method, but was unsuccessful. More time in
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developing a method of solving the high order polynomials may yield higher

order quadratures.
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Appendix A
EachcaseA, B, C, 1, 2, 3, and 4 included in a quadrature contribute to the summation

N
anunZk, k=1,2,..., L.
n=1

Becauseofthesymetyrequiretentsallofﬂxeveightsforapartiaﬂarcasearereqﬁxed

to be the identical and all of the angles for each case are functions of the angles, pandn,
in the base hextant . In scme of the cases the angles have restrictions on them so they

are not free parameters . The mmber of degrees of freedom provided by a case is the number of
free angles plus one for the weight . Each case below will have a discussion of which

parameters are free .

Casel: This consist of six points over theunit sphere, twooneachcoordinate axisat
1. All of the angles are restricted in this case and only the weight is free,
yielding one degree of freedam . The contribution of caseA to the summation is

W[(1)2k+ (0)2k+ (0)2k+ (0)2k+ (0)2k+ (_1)2k]

which simplifies to

forallks# O.
CaseB: This case consist of 12 oxrdiates over theunit sphere. Eachordinatehas

1
one direction cosine equal to zero and the other two equal T— in the principal
2

octant . The only free parameter for this case then is the weight for one degree of
freedom . The contribution of caseB to the summations is

2k 2k
w[4‘~L'_) +4(0)2k+4(-—1_) ]
V2 V2
which simplifies, fork# 0, to
8w
2k,

CaseC: This case consistof 24 ordinates
over theunit sphere . Each ordinate has one direction cosine equal to zero,
cne free, and the other is found framu®+n®+ £ = 1.
This leaves one free angle and the weight for two degrees of freedom . The contribution
to the summation is

w[4u2k+4 (\/ 1—u2)2k+ 8 (0)2Fk+ 4 (-u)2k+ 4 (—‘\/1—;12 )Zk] .
This simplifies to, forks 0, to

8w[u2k+ (1—u2) k] .
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Casel: This case consist of eight ordinates over theunit sphere. Eachdirection

1
cosine is equal to —— inthe principal octant. This leaves only the weight free
3

for one degree of freedom . The contributionis
2k 2k
w[4[_1:) +4(_ i] ].
V3 V3

8w
3k,

This simplifies to

Case? : This consist of 24 ordinates over theunit sphere . One angle is free,
the other two areequal . This yields two degrees of freedam,
one angle and one weight . The contributionis

1 2 2k 1 > 2k
W[4u2k+8( 211 ] +4(—u)2k+8[—1, 2“ ) ]

2|k
sw[u2k+2(12” ) ].

which simplifies to

Case3: This consist of 24 ordinates over theunit sphere. Oneanglesis
free and the other two areequal . This yields two degrees of freedom as for case2
above . There are two way to look at the contribution for case3. The firstis tonote
that all angles for this case result if when solving fora case2, theanglesareless

1
than:/j . 'J.'hisputstheanglewtofthebasehextantifﬂmisangleisu. But if,
3

when this results, we concider the angle asn instead,
this ordinate will lie in the base hextant and is infact a case3 ordinate . The other
method is to proceed as normal resuling in the following contribution equation

w[Bu?*s 4 (VI-242) " 48 (cw2*e 4 (-V1-2,2 )
which simplifies to
8w[2u2%+ (1-24%)%] .
I prefer to use the former method and use a contribution equation in the form

_.2h\k
8w[n2k+2[1—2n—) ].

The two equations are equivalent,

1-n2
ascanbeeasilyverifiedbysubstiwtirgu=1/ 2” into the first result.




Cased : This consist of 48 directions over the unit sphere. Bothu andn are free parameters
as is the weight. This is the most expensive case to inclued and the most difficult
tosolve. To find the three angles defining this ordinate in the base hextant,

we must leave y andr as free parameters and £ind £ using €% =
1 - u2+n?. The resulting contribution equationis

W[8u2k+8n2k+8 (\/1_”2_n2)2k+8 (_u)2k+8 ("7)2k"’8 (_.\/1_u2_n2)2k]

which simplifies to

16W[u2k+n2k+ (1_#2 _n2)k] .
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Off [General: :spelll]

caseA[w_, k_] 6w/; k==

caseA[w_, k_] 2w/; k!=0

caseB[w_, k_] := 12w/; k==0
w
caseB[w_, k_] :=8 o /:ki=0

caseC[w_, u_, k_] := 24w /; k==0

caseClw_, u_, k_] :=8w (W2*+ (L-p)") /;k =0

w
caselw_, k_] := 8 3“_

1-p2\*
case2[w_, u_, k_] :=8w[u2k+2( 3 ])

(* When a case 3 ordinate is desired,
use the case 2 equation an substitute n for u. *)

cased[w_, u_, n_, k_] :=16w (#?*+ (1 -p2 -n?)* +n?¥)

(* The Filter function below
searches a list of quadrature output from a Solve function and *)
(* returns null values for elements in the list with negative weights or

angles or imaginary values. +)

Filter[TL , vars_] := Table[If[(vars/. TL) [[3]1] ==
Table[Select[Re[(vars /. TL) [[i]]1], # > 0&], {i, Length[TL]}] [[]] 1, TLI[311]1.,
{3, Length[TL]}]

GetQuad[Equations_, vars_] :=Filter [NSolve[Equations, vars], vars]

1
Egns = Table[Expand[caseA[wA, k] + caseC[wC, uC, k]] == --—1, {k, 3}]
+

2k

2wA+8wWC-16wWCuC?+16wCuc! == %, 2 WA + 8 wC — 24 wC pC? + 24 wC uc?

1

{2wA+8wC == 3

Solve[Egns, {wA, wC, uC}]
{1

(* The caseA + caseC combination has no solution *)

1
Egns = Table[Expand[caseB[wB, k] + caseC[wC, uC, k]] == E-_l' {k, 3}]
+

1
{4wB+8wC:=§, 2wB+8wC-16wCuC?+16wCuct == %, WB + 8 WC - 24 wC uC? + 24 wC uc! =:—%—

I
~| e




Solve[Egns, {wB, wC, uC}]

{3

(» The BC case combination has no solution %)

1
Egns = Table[casel[wl, k] + caseC[wC, uC, k] == 251’ {k, 3}]
+

8 wl 1 8wl . s2y 1 8wl 6 23 1
{ +8wC==?, 5 +8wC(/,1C +(1—uC))--€,—é7—+8wC(uC +(1—/1C)>__—7—}
Solve[Eqgns, {wl, wC, uC}]

{{wl—> WwC - Uc - - L(13—\/65)} {wlva wC-—>—13—
280 ' 420 26 ! 280 ' 420 '

—i()—,wCe—go—, ucC - ?16—(13+\/€5—)}}

(* The fourth solution above belongs to the base set,
the others coinside with the ordinates
resulting from symmetry operations. %)
(* Numerical
conditioning of the quadrature will be best if the weights are simmilar, the decimal
values below show this to potentialy be a good quadrature x)
N[%21[[4]], 16]

{wl > 0.03214285714285714, wC - 0.03095238095238095, uC- 0. 9000482411921158}

1
Eans = Table[caseA[wA, k] + caseB[wB, k] + casel{wl, k] == a1’ {k, 3}]
+
8wl 1 8wl 1 8 wl 1
{ 3 +2wA+4wB-_§—, ) +2wWA+2WwWB== T 57 +2wA+wB__7}

Solve[Egns, {wA, wB, wl}]

1 4 9
{{WA—) Z—’ wB - m, wl > m}}

N[%24, 16]

{{wh >0.04761904761904762, wB - 0.0380952380952381, wl > 0. 03214285714285714}}

(* The above weights are also similar in magnatude. *)




1
Egns = Table[caseA[wA, k] + caseB[wB, k] + caseC[wC, uC, k] + casel[wl, k] == CY TR {k, 5}]

1

8wl L 8Wl+2wA+2wB+8wC (uC4+(1—uC2)2) == 5

+2wA+4wB+8wC:=?, 3

{

8wl 5 203y __ 1 8wl wB g ey 1
55 +2 WA +wB+8wC (uC +(1—uC))__7, o1 +2WA+ — +8wC(uC + (1 IJC))——9:
8 wl wB 10 ey 5y o 1

ﬂ3—+2wA+—4—+8wC(uC + (1 -ucC) )—_——ll}

quadABC1 = Solve[Eqns, {wA, wB, wC, wl, uc}l]
(1

(* TheABCl case has no solutions )

Egns = Table[caseA[wA, k] + caseB[wB, k] + casel[wl, k] +case2[w2, u2, k] == E—-+—1-, {k, 5}]
1
{8§1 +8w2+2wA+4wWB== %, 8;71 +2wA+2WB+8wW2 u24+% (1—;122)2 == =,
8wl s 1 2,3y 1
s + 2 WA+ WB + 8 2 (uz s (1-u2%) )__ =
8 wl wB s, 1 2,4y __ 1
—§1—+2wA+ > +8w2(u2+8 (1 u2))__9,
8 wl wB 10 1 5248 .
—2H+2WA+ 7 +8w2<u2 +~E(1 u2))__ 11}

quadAB12 = Solve[Egns, {wA, wB, wl, w2, u2}]

27 , ., L4641
1280 ' "¢~ 725760 '

—
NEETR
14641

o4 wl > 27 W2 = m=me 2—9——?—}}
835 ' 1280 ' 725760 ' M7 i1

, Wl U2 - -

4 64
{wr - 335/ ¥B~ 5533

, WB -

4
{wA—> 315

(*» The second solution belongs
to the base set. Its numerical value shows it to potentialy be

a good quadrature *)

N[quadaB12[[2]], 16]

{wA > 0.0126984126984127, wB - 0.02257495590828924, wl - 0.02109375,
w2 - 0.02017333553791887, u2 » 0.904534033733291}
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Egns = Table[caseA[wA, k] + caseC[wC, uC, k] +case2[w2, u2, k] == o1

1
{8w2+2wA+8wC=: %, 2wA+8w2 (u24+-2—

1
2 WA + 8 w2 (u26+%(1—u22)3)+8wc (uC6+(l—uC2)3) ===
1
2 WA+ 8 w2 (,u28+—]8'—(1—/,122)4)+8wc (qu+(l—uC2)4) == 5
10 1 2,5 10 ey 0y 1
2 WA+ 8 w2 (uz + 55 (1-u2?) )+8wC(uC +(1-pch)) == =}

quadAC2 = Solve[Eqns, {wA, wC, w2, uC, u2}]

(*# Large output deleted %)

(* I'1ll apply the Filter function to better see what I have x)

Filter[quadAC2, {wA, wC, w2, uC, u2}]

2 (41-2+/22) 44 +134/22

{Null, Null, Null, {wAa ——>%g35 wC —» 5670

11 (55—4@) , uc_)\[—61—6— (33—\[33 (—ll+4\/2_2-) ) ’ ﬂZ%J% (11+2@) }’

w2 = 22680
2 (41 -2+22 11 (55-4+/22
R TP (O CLI.0 ) BRINLLES <5 I N Lt L

I4

= (11+2+/22) }, Null, Null, Null,

“C"\/’é% (33+\/§(—11+4m))'“2"\/33

Null, Null, Null, Null, Null}

(* Let' s see what the numerical values are )

N[%%, 16]
(Null, Null, Null, {wA - 0.02230629169689816, wC~ 0.01851418075444525,
w2 5 0.01757591298799687, uC - 0.5074563057138757, u2 —» 0.7858759158676477},

Null, Null, Null, {wA > 0.02230629169689816, wC— 0.01851418075444525,
w2 - 0.01757591298799687, uC -+ 0.8616774905910132, 42 - 0.7858759158676477},

Null, Null, Null, Null, Null, Null, Null, Null}

(* Since u2 is greater then -«/1? this is a case2 ordinate. The second non

*)

null solution is in the base set.
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1
Egns = Table[caseB[wB, k] + caseC[wC, uC, k] + case2[w2, u2, k] == —, {k, 5}]

2k+1

1 g, 1 2,2 4 202y 1

{8w2+4wB+8wC:: 3 2 wB+8wW2 (;12 ) (1-u2%) )+8wC (uC + (1 -ucC) )_z =
1

WB + 8 w2 <u26+%(1-u22)3)+8wc (uC6+(1—uc2)3) == =
wB 8 i B 2,4 ) B 2,4 __i_
—2—+8w2 (uZ * 3 (1-u2%) )+8wC<uC + (L -puc%) )__ g
wB w0, 1 2,5 10 2y 5 o L
—4—+8w2 (uZ +l—6—(l—u2) )+8wC(uC + (1 -puC*) )__ 11}

quadBC2 = Solve[Egns, {wB, wC, w2, uC, u2}}
(* Large output deleted )

Filter[quadBC2, {wB, wC, w2, uC, u2}]

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,
16 (—190+169x/22) c 169565 - 5933 /22 ) 11 (55 -4 Vaz2)

{wB - 526995 P 9485910 r e 22680 '
HC—)\/74521—\/45219§)247261+52 vez) u2—>\/§1§ (11+242Z) }, Null, Null,
Null, {wB- - (—1122919659@> r WC 16956954;3:99133\/_2_2 Sz <5252_62(;/§§> ’
#C*\/452“\/452195)24726“52\/2_2—) ,u2—>\[% (11+272) })
N[%, 16]

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,
{wB->0.01829786661080761, wC - 0.01494182037326599, w2 - 0.01757591298799687,
uC - 0.3039216446504884, u2 - 0.7858759158676477}, Null, Null, Null,
{wB > 0.01829786661080761, wC - 0.01494182037326599, w2 > 0.01757591298799%687,
uC > 0.9526970315441012, u2 - 0.7858759158676477}}

(* This quadrature also has promising weights,
the last solution is in the base set. *)




1
Egns = Table[caseC[wC, uC, k] + cased[wd, u4, n4, k] == ?k_—l-' {k, 5}]
+

o]
<

{16 w4 +8wC == %, 16wa (nd*+pd®+ (1 - n4? —u42)2) +8wWC (uC* + (1—uc2)2)

16 wd (n4°+ 4%+ (1-n4? - ua?)?) +8we (uct + (1 - uc?)?)

u

ol |-

’

14

+)

16wa (nd®+pud®+ (1-n4? -pa?)*) +8we (uct + (1-uc?)*)
16 w4 (1’]4l°+/1410+ (1 -n4? -;,142)5) + 8 wC (uC1°+ (l-uCZ)S) == 77

quadC4 = Solve[Egns, {wC, wd, uC, ud, n4}]

(* Large output deleted x)

(+ The decimal equivalent after filtering is shown below =*)

N[quadC4, 25]




Filter[%, {wC, w4, uC, u4, n4}]

{Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
Wi > 0.01229674796747967479674797, u4 - 0.2856038324721905188708181+ -0. x107°¢ 1,
n4 »0.757316019511794446172265+ -0. x 10-%7 1}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
wi > 0.01229674796747967479674797, wé - 0.587284341241964586253482+-0.x107%° 1,
n4 > 0.757316019511794446172265+ ~0. %1077 I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
wh - 0.01229674796747967479674797, pd - 0.587284341241964586253482+ 0. x107%° 1,
nd - 0.2856038324721905188708181+ -0. x107°° I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
wd > 0.01229674796747967479674797, 4 » 0.757316019511794446172265+0.x107°° 1,
nd - 0.2856038324721905188708181+ -0. x107°° I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
wd = 0.01229674796747967479674797, ud —» 0.2856038324721905188708181+ 0. x107°° 1,
n4 > 0.587284341241964586253482+ -0. x107°" I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.326499776057011143395600,
wd - 0.01229674796747967479674797, pd - 0.757316019511794446172265+ 0. x107°° T,
nd »0.587284341241964586253482+~0. x 107" I},

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,

Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.945197279003024623550787,
wd - 0.01229674796747967479674797, p4 - 0.2856038324721905188708181+ -0. x107°° I,
n4 - 0.757316019511794446172265+ -0. x 1077 I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC > 0.945197279003024623550787,
Wi - 0.01229674796747967479674797, ud - 0.587284341241964586253482+-0.x107°° I,
n4 - 0.757316019511794446172265+ ~0. x 107" I}, Null, Null,

Null, {wC-0.01707317073170731707317073, uC - 0.945197279003024623550787,
Wi > 0.01229674796747967479674797, ud - 0.587284341241964586253482+0.x107°° 1,
nd4 - 0.2856038324721905188708181+ -0. x107°° I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.945197279003024623550787,
Wi - 0.01229674796747967479674797, pd - 0.757316019511794446172265+ 0. x107°° I,
n4 - 0.2856038324721905188708181+ -0. x107°° I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.945197279003024623550787,
wd = 0.01229674796747967479674797, ud - 0.2856038324721905188708181+0.x107% I,
nd »0.587284341241964586253482+ -0.x 107" I}, Null, Null,

Null, {wC - 0.01707317073170731707317073, uC - 0.945197279003024623550787,
Wi - 0.01229674796747967479674797, w4 - 0.757316019511794446172265+ 0. x107°° I,
n4 - 0.587284341241964586253482+ -0. x 107 I}}

(* The filter didi no eliminate the imaginary portions above because the
are artifacts of rounding error and not truely imaginary values. Higher
precision math reduces the imaginary component further. Carfull inspection
shows that all the above solutions are reflections of the last one,

which is in the base set. %)




1
Table[casel [wl, k] + caseC[wC, uC, k] + case2[w2, u2, k] == ——2 o1 {k, 5}]
+

Egns =
{BW1 +8 w2 +8wC == —é—, 8;1 + 8 w2 (u24+% (l—u22)2) + 8 wC (uC4+ (l—uCz)z) == —é—,
8;;1 +8 w2 (,u26+ % (l—u22)3) + 8 wC (/.1C6+ (l—ucz)B) == —_17—,
88‘;1 +8 w2 (u28+ -;— (1—;122)4) +8wC (uC® + (1-puc?)*) == %
§27w31—+8w2 (u21°+ T16— (l—u22)5) +8wC (uClO+ (l—ucz)s) == Tl—l—}
quadlC2 = Solve[Eqns, {wl, wC, w2, uC, u2}}
(*# Large output deleted #*)
N[quadlC2, 40]
Filter[%, {wl, wC, w2, uC, u2}]
21,

{Null, Null, Null, {wl- 0.03139662070471866287073752871645825335788+ 0. x 107
WwC > 0.03118946912313230360638905694603843725377+ 0. x 10731,
w2 > 0.00001165730862814210336510014847547829359805+ 0. x 107 1,
uC - 0.440124599527176955730943844695059472227+ -0.x107% 1,
U2 >1.482898731354957472518351725181578455870+ -0. X 107 1}, Null,
Null, Null, {wl- 0.03139662070471866287073752871645825335788+ 0. x 10721,
WwC - 0.03118946912313230360638905694603843725377+ 0. x 10731,
w2 5 0.00001165730862814210336510014847547829359805+ 0. x 107 1,
uC > 0.897936710960768162219787279180959387596+ -0.x107% 1,
U2 -»1.482898731354957472518351725181578455870+ -0. x107%® I}, Null, Null,
Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null}

(» From the above two sets of output,
we see that there are no acceptabe 1C2 quadratures.
shows quadratrues with cosines greater than one and from the unfiltered

The filtered output

solutions we see there are quadratres with valid angles but negative weights.

1
Table[caseA[wA, k] + caseB[wB, k] + cased[w4, u4, n4, k] == Sra1’ {k, 5}]
+

Egns =
{16 w4 +2 WA +4wB == %, 2wA+2wB+16wd (nd®+pud”+ (1-n4%-puda?)?) == %,
2B +wB 16w (nd®+pua®+ (1-n42 - ua?)’) == %
2wA+i2li+l6w4 (r)48+u45+(1—n42—u42)4) == _;_,
wB 10 10 2 2,5y __ 1
2wh+ —- +16wd (na'® + pd™ + (1 -n4% - pud?) ) == ET}

quadBC2 = Solve[Eqns, {wA, wB, w4, ud, n4d}l]
(* Large output deleted *)

N[%, 40]

*)




Filter([%, {wA, wB, w4, u4, nd}]

{Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null,
Null, Null, Null, Null, Null, Null, Null, Null, Null, Null, Null}

(* there are no valid AB4 quadratures *)

(* The next series of quadratures are of order 7 x)

Eqns = Table|

caseA[wA, k] + caseB[wB, k] + caseC[wC, uC, k] + casel[wl, k] + case2[w2, u2, k] ==

{k, 7}]

{8‘3”1 +8w2+2wA+4wB+8wC== %,
831 +2 WA+ 2wB+8w2 (u24+% (1-u22)2) +8wC (uCh+ (1-uc?)?) == %,
82";1 +2 WA +wB+8w2 (u26+% (l-u22)3) +8wC (uC6+ (1—uc2)3) == %,

Bl Loums B2 g2 (42t g (1-u28)) +8uC (uC+ (1-uch)) == 5

S s2uns B2 (k2% + g (L-u2%)7) +8wC (uC°+ (1 -uC)’) == T
80l 2uns MB w2 (427 v o (1-42)°) +BuC (WO + (1-uCh)) == 75,
2L oune Y2 gz (12t o (1-u2%) )+ BwC (UM (1-uch)T) = 75

quadABC12 = Solve[Egns, {wA, wB, wC, wl, w2, uC, u2}]
(* Large output deleted *)

N[quadABC12, 16]

Filter[%, {wA, wB, wl, wC, w2, uC, u2}]

{Null, Null, Null, {wA- 0.009048188830155413,

WB - 0.02103246043742795, wl » 0.01827941392341811, wC - 0.006451491538566835,

w2 > 0.0163437597273743, uC - 0.2979519566503113, p2 - 0.8753170875981718},
Null, Null, Null, {wA - 0.009048188830155413, wB —» 0.02103246043742795,
wl > 0.01827941392341811, wC - 0.006451491538566835, w2 » 0.0163437597273743,

uC - 0.9545808669401723, u2 » 0.8753170875981718}, Null, Null, Null, Null,
Null, Null, Null, Null}

(* The second of the above valid quadratures is in the base set,
the other is a reflection. x)

2k +

1

r




1
Egns = Table[caseA[wA, k] + caseC[wC, uC, k] + case2 [w2, u2, k] + case2[w3, u3, k] == —_Zk T
+

{k, 7}]
1
J;8w2+8w3+2w1-\+8wc=: 3
1 1
2 WA + 8 w2 (u24+ % (1—u22)2) +8w3 (u34+7 (1-;132)2) +8uC (uCh+ (1-uCh)") == &,
1 1
2 wA + 8 w2 (,u26+% (1—u22)3) +8w3 (u36+ T (l—u32)3) +8wC (uc6+ (l—uc2)3) ===
1
2 Wh + 8 w2 (uzhé (1-;422)4) +8w3 u38+% (1—;132)4) +8uC (uC®+ (1-pc?)") == =
2 wh + 8 W2 (u21°+ L (l-u22)5) +8w3 (u31°+ L (1-#32)5) +8WC (UC + (1-uc?)®) == L
16 16 11"
1 6 1 6 6 1
12 2 12, L 4 a2 12 2 -
2 WA + 8 w2 (uz + 2 (1-u2?) )+8w3 (u3 + 55 (1-u3) )+8wc (MC? + (1-uC®)®) == =,
w, 1 2) (14_1__27> 14 ey L
2wA+8w2( 2"+ 2 (1-42%) +8w3 (3 + o (1-u3%) ) +8wC (uCH + (1 - pc?) ) == 15}
quadAC23 = Solve[Eqns, {wA, wC, w2, w3, uC, u2, u3}]
SAborted
(* The computer was not able to solve this exactly,
I will now try the numerical function %)
quadAC23 = NSolve[Egns, {wA, wC, w2, w3, uC, u2, u3}]
$Aborted
(* The computer was not able to find this solution directly either. I
will lend some assistance *)
Eqnsl4 = Table|
1
caseA[wA, k] + caseC[wC, uC, k] + case2[w2, u2, k] + case2[w3, u3, k] == -2—;{-—1, {k, 4}]
+
{8w2+8w3+2wA+8wC:: %,
4 i 2.2 4 1 2,2 ) 2\ 2 o 1
2 WA + 8 w2 (uz + 5 (1-p2°) )+8w3 (u3 + 5 (1-p3%) )+8wC (ue + (1-uc?)?) == &,
2 whA + 8 w2 (u26+% (l—u22)3) +8w3 (;.136+ % (l—u32)3) +8wC (/,1(26+ (l-uC2)3> == %—,
s, 1 2,4 s, 1 2,4 8 204y 1
2 wh + 8 W2 (uz s 5 (1-u2) )+8w3 (u3 v (1-p3%) )+8wc (uc®+ (1-uc®)*) == 5}

Solve[Egqnsl4d, {wA, wC, w2, w3}]

{wA, wC, w2, w3} = {wA, wC, w2, w3} /. $S[[11];
Expand[wA];

Together[%];

Cancel[%];

PowerExpand[%] ;




Simplify[%]
(—(1—2uc2)2 (3+9u3%-29uC?+29 uC* + 3% (-1 +54 uC? - 54 ucC*) +p3% (-11-21pC%+21uCh)) +
9 128 (- (1-2uc?)”+
434 (=39 +210 uC? - 210 uc*) + 21 p3® (1-5uC?+5uct) +pu3% (19-105uC?+105uC!)) +
u2? ((1-2pC?)” (1-54uC? +54uC) +
9 3% (19 - 105 uC? + 105 uC*) + pu3* (-281 + 1716 uC* - 2556 uC* + 1680 ucC® -840 uc) +
132 (109 - 653 uC? + 989 uC* - 672 uC® + 336 ucy) -
p2t ((1-2puc?)® (-11-21 uC? + 21 uC*) +
27 u3% (13 - 70 uC? + 70 uC*) - 3 u3* (207 - 1225 uC* + 1645 uC? -840 uCk + 420 uCt) +
13% (281 - 1716 uC? + 2556 uC* - 1680 uC® + 840 ucs)))/
(630 (-1 +p2%) (-1 +u3%) pC? (-1 +puc?) (9u2* u3% (-1 +u3%) + (-1+u3%) (1-2uc?)°+
u2? (-9 u3® + (1-2pc?)?+4u3® (2-3uc?+3uch)))

wA = %27;
Expand[wC];

Together[%];

Cancel[%];
PowerExpand[%] ;
Simplify[%]

(3+2u3%-9u3* -9 u2* (1-18u3%+21u3%) +2u2? (1-54u32+81u3%))/
(2520 uc? (-1 +uc?) (9p2* u3® (-1 +p3%) + (-1 +u3?) (1-2uc?)%+
u2? (-9 u3t+ (1-2uc?)?+apu3? (2-3uc?+3uch))))

wC = $33;
Expand[w2] ;
Together[%];

Cancel[%38];

PowerExpand[%] ;
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Simplify[%]

(-9u3®+ (1~ 2 uC?)? ~3 3?2 (5-24 uC? +24 uc?) + 3" (23 -84 uC? + 84 ucty) /
(630 (-1 +u2%) (u2% - u3?) (9;12%132 (-1 +pu3%) + (-1 +u3?) (1-2uc?)?+

u2? (-9 u3* + (1-2pc?)?+4u3? (2-3uc?+3uch)))

w2=%;

Expand{w3];

Together[%];

Cancel([%];

PowerExpand[%] ;

Simplify[%]

(9 u2f - (1-2uC?)? +pu2® (-23 +84 uC? -84 uC') + 3 u2? (5-24uc?+24ucty)/
(630 (u2? - u3%y (-1 +p3®) (9uz4u32 (-1 +u3%) + (-1 +pu3?) (1-2uc?)?+
u2? (-9 u3t+ (1-2uc?)?+4u3? (2-3uc?+3uch)))

w3 = %;

1hs5 = caseA[wA, 5] + caseC[wC, uC, 5] + case2[w2, u2, 5] + case2[w3, u3, 5];
Expand[%];

Together([%] ;

Cancel[%];

PowerExpand[$%] ;




Simplify[%]

((-23+25u32 - 543" +34u3°) (1-2puc??-

3 u2 (9;136— (1-2uc?)® + u3* (-23+84 uC? -84 uc*) + 3 u3% (5-24 uc? + 24 ucty) +
u2t (-5 (1-2puc?)% + 3" (65+636uC? - 636 uC*) +
3 3% (23 -84 uC? + 84 uC') +3 3% (-43-124 uC? + 124 uC")) +
u2? (25 (1-24uc?)* -9 u3° (5-24 uC? + 24 uC*) +
432 (149 - 112 uC? +112 uC?) + 3 u3* (43 - 124 pC? +124 uC“)))/
(252 (9 p2® u3? (-1 +p3%) + (-1 +u3%) (1-2uc?)?+
u2? (-9 3t (L-2pc?)?+4u3? (2-3uc?+3uch))))

lhs5

%;
1lhs6 = caseA[wA, 6] + caseC[wC, uC, 6] + case2[w2, u2, 6] + case2[w3, u3, 6];
Expand[%];
Together[%] ;
Cancel[%];
PowerExpand[%] ;
Simplify[%]
((1-2uc?)? (27 43°+33u3° +
2 (97 - 6 uC? + 6 uC*) +u3% (245 -8 uC? + 8 uc*) - 3 u3* (37 -12uC? +12uch)) -
33 u2t (9;136— (1-2uC?)% + 3% (-23+84 uC? -84 uC*) + 3 u3® (5-24uC?+24 uchy ) -
3u2° (9+11u3%) (9pu3°- (1-2uc?) + u3* (-23 +84 uC% -84 uC*) +3 u3? (5-24uC?+24 uCh) ) +
u2? ((l—Z,uCZ)Z (245 -8 uC2 + 8 uC*) - 99 u3® (5-24 uC? + 24 uc') -
12 u3® (31 - 151 uC% + 151 uC*) + u3? (676 + 2220 uC? - 3948 uC* + 3456 uC® - 1728 ucty +
54 43% (-1 -162uC% +210 uc* - 96 uC® + 48 uce)) +
3u2® (-6u3% (-7 - 6uC?+6ucCt) - (1-2uc?)? (37-12 uC? + 12 uc?) +
11 u3® (23 -84 uC? +84 uC*h) + 18 3?2 (-1 - 162 uC? + 210 uC* - 96 uC® + 48 uC?) -
4 p3% (60 - 991 uC? + 1243 uC* - 504 uc® + 252 uc®) ) ) /
(2520 (9 p2 u3? (-1 +u32) + (-1 +u3%) (1-2uc?)*+
p2? (-9 u3t+ (1-2uc?)®+4u3? (2-3uc?+3uch))))

1hs7 %;

1lhs7 = caseA[wA, 7] + caseC[wC, uC, 7] + case2[w2, u2, 7] +case2[w3, u3, 71;

Expand[%];
Together([%] ;
Cancel[%];

PowerExpand%] ;




Simplify([%]

-(9;1210 (9 u3®- (1-2uc?)? +pu3* (-23 +84 uC? - 84 uc*) +3 u3? (5—24uC2+24uC“)) +
p2® (10 + 9 u3%) (9u3®- (1-2uc?)% +u3* (-23+84uC%-84uch) +3u3% (5-24uC® +24 ucty) +
p28 (7 +10 u3%+ 9 u3h)
(9u3® - (1-2uC?)%+p3% (-23 +84 uC? -84 uCt) +3 3% (5-24uC?+24uC*) ) + (1-2uc?)’
(47 -7 u3 - 10 3% - 9 3% + 12 uc? - 12 uc* - 8 u3% (9 - uC® + uct) +u3* (51-36uc?+36uch)) +
u2? (-8 (1-2uC?)? (9 - puC?+puCt) +27 u3'° (5-24 ucC? + 24 uct) +3u3% (47 - 228 uC? +228 ucty +
135 (95 - 464 uC? + 464 pC*) + p3* (-349 + 4348 uC? - 6940 uC? + 5184 uc® - 2592 uc?) +
1432 (50 = 1872 uC? + 3600 uC* ~ 3456 uC® + 1728 uC®) ) -
u2* (=3 (1-2pC%)® (17 -12 uC? + 12 uC*) -
4435 (-5-24 uC? + 24 uC') + 9 u3'° (23 - 84 uC? + 84 ucC*) +
138 (95 -192 uC? + 192 uC*) - 4 u3* (155- 1376 uC* + 2132 uCt - 1512 uC® + 756 uCt) +
132 (349 - 4348 uC? + 6940 uC* - 5184 uC® + 2592 ucs)))/
(720 (9 u2® u3? (=1 +u3%) + (-1 +u3%) (1-2uct)%+
p2? (-9 u3*+ (1-2uc?)® +4p3” (2-3uC+3uch))))

lhs7 = %;

1 1 1
NSolve[{lhs5 == TR 1hs6 == 3 lhs7 == -1?}, {uc, u2, p3}|

$SAborted

1
Solve[lhs5 == o {uc}]

(* Large output deleted x)
Length{%]

4

(* The four solutions above correspond to the base angle and its reflections,
I will continue only using the last solution above x)

uC = uC /. %78[[4]1]
Expand{%];
Together[%];

PowerExpand[%] ;
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Simplify[%]

(\/(—1+23 u3? - 55u3*+

33 436+ 33 2% (1-18u3% +21pu3*) +u2® (23-448 u3% +1023 p3% - 594 u3°) +

11 p2% (-5+ 93 u3% - 159 u3* + 63 u3°) - p2 3 N (71 - 1807 3% + 8006 u3* - 14190 u3°® +
11187 u3® - 3267 3% + 1089 2 (-3 + 52 u3% - 18 u3* - 204 13% +189 u3®) +
33 u2® (339 - 6287 u3? + 9822 u3* + 7698 135 - 18513 u3® + 6237 u3'%) -
2 u2% (-4003 + 83437 u3? - 287774 u3* + 360954 u3% - 162063 u3® + 9801 u3'°) -
22 425 (645 - 12706 3% + 32814 u3* - 19704 p3° - 11547 13% 410098 3% +
422 (~1807 + 40008 3% - 166874 3" + 279532 §3-207471 u3® + 56628 u3'%)) ) /

(VZ V(-1 +23u3° - 553" + 33 3% + 33 u2° (1-18u3%+21u3%) +
422 (23 - 448 3% + 1023 p3% - 594 p3°) + 11 u2* (-5+93 p3? - 159 u3* + 63 u3°%)))

Expand[lhs6] ;
Together[%];
PowerExpand[%] ;
Together[%] ;
Cancel[%];
PowerExpand[%92] ;
Simplify[%]

(* Large ugly equation deleted +)
lhs6 = %;
Expand[lhs7];
Together[%] ;
Cancel[%];
PowerExpand[%] ;
Simplify[%]:/

lhs7 =%

(* Large ugly equation deleted =*)

1 1
NSolve[{1lhs6 == 5 1hs7 == TE}’ {u2, u3}]

Out of memory. Exiting.
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quadAC23 = FindRoot [Eqns, {wA, .0130608}, {wC, .0154866},
(w2, .00673874}, {w3, .0161761}, {uC, .410254}, {u2, .848421}, {u3, .300144},

AccuracyGoal -» 24, WorkingPrecision - 34]

{wAae0.0130607521845754340403783199581725& wC - 0.01548662322913343575994122509932307,
w2 - 0.00673874365125243712696660016440459, w3 > 0.01617611174013693526966426141339587,
uC—éO.410253515086337l7156017498l7254l$ u2 > 0.848421498634701466179649259967932,

u3 - 0.3001438436359286871701637504638956)

(* The FindRoot function is a root solving function. The initial guesses used are
from a previous effort on a slower computer. This is one possible solution to the

system of equations. ¥)




Appendix C: Valid Quadrature Base Sets

N=3
Cases | weight mu eta xi
AB
A 0.0476190476190476 1 0 0
B 0.0380952380952381 0.7071067811865475 0 0.7071067811865475
1 0.0321428571428571 0.5773502691896258 0.5773502691896258 0.5773502691896258
C1
C 0.0309523809523810 0.9000482411921158 0 0.4357902747044488
1 0.0321428571428571 0.5773502691896258 0.5773502691896258 0.5773502691896258
N=5
Cases | weight mu eta xi
AB12
A 0.0126984126984127 1 0 0 .
B 0.0225749559082892 0.7071067811865475 0 0.7071067811865475
1 - 0.0210937500000000 0.5773502691896258 0.5773502691896258 0.5773502691896258
2 0.0201733355379189 0.9045340337332910 0.3015113445777637 0.3015113445777637
AC2
A 0.0223062916968982 1 0 0
C 0.0185141807544452 0.8616774905910132 0 0.5074563057138757
2 0.0175759129879969 0.7858759158676477 0.4372636760921183 0.4372636760921183
BC2
B 0.0182978666108076 0.7071067811865475 0 0.7071067811865475
C 0.0149418203732660 0.9526970315441012 0 0.3039216446504885
2 0.0175759129879969 0.7858759158676477 0.4372636760921183 0.4372636760921183
C4
C 0.0170731707317073 0.9451972790030246 0 0.3264997760570111
4 .01229674796747967 0.7573160195117944 0.5872843412419646 0.2856038324721905
N=7
Cases weight mu eta xi
ABC12
A 0.0090481888301554 1 0 0
C 0.0064514915385668 0.9545808669401723 0 0.2979519566503114
B 0.0210324604374280 0.7071067811865475 0 0.7071067811865475
1 0.0182794139234181 0.5773502691896258 0.5773502691896258 0.5773502691896258
2 0.0163437597273743 0.8753170875981718 0.7854361833270270 0.7854361833270270
AC23
A 0.0130607521845754 1 0 0
C 0.0154866232291334 0.911971520037388 0 0.4102535150863372
2 0.0067387436512524 0.8484214986347015 0.374286628571238 0.374286628571238
3 0.0161761117401369 0.3001438436359287 0.674504882535127 0.674504882535127
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