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Abstract

Optimal linear smoothing theory is applied to the data
from the Speed of Sound record attempt of a three-wheeled
rocket car on 17 December 1979. A forward-backward estima-
tion method is used which employs a seven state forward-
running extended Kalman filter and a Meditch-form backward
recursive "fixed-interval" smoothing algorithm. Data for
this analysis is supplied by a longitudinal accelerometer
mounted on the vehicle and tracking radar measurements of
range, azimuth, and elevation. States of interest include
two components of vehicle position and velocity, accelero-
meter time-correlated error, and radar range and azimuth bias
errors.

Two iterations of the forward-backward smoothing algo-
rithm provide excellent covergence of state estimates and
error variance. Based on this analysis a peak speed esti-
mate of 1082.028 ft/sec or 1.008 Mach is obtained at 16.85
seconds from the start of the high speed run. After two
iterations of the smoother the standard deviation of the peak
Speed estimate is reduced to 1.055 ft/sec. We conclude with
a confidence level of nearly one, based on the assumptions
and modeling techniques employed in this analysis, that the
rocket car did, in fact, exceed the reference speed of sound

on 17 December 1979.
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Fig. i - Rocket Car (Courtesy Mr. Ray VanAken)



STOCHASTIC ESTIMATION APPLIED TO THE
LAND SPEED OF SOUND RECORD ATTEMPT

BY A ROCKET CAR

I. Introduction

Filtering Theory

Any engineering problem inherently involves the use of
Measured or calculated information. The engineer bases his
decisions on a variety of issues by using mathematical models
Of the "real world" to predict results obtained by experimen-
tation. The mathematical models seldom describe every factor
impacting a particular issue, but are simplifications in
order to describe the most important characteristics of the
Problem and maintain tractability. Likewise, no measurement
device can be considered "perfect', no matter what accuracy
is claimed. How, then, does the engineer meet the ever-in-
Creasing demand for accuracy when he must rely on imperfect
models and measurement devices?

One method for obtaining better answers is to model the
important characteristics of a system and include the effects
Of model simplificatipons and measurement imperfections. This
is the basic idea behind filtering theory, developed by sev-
eral individuals, most notably Kalman. Filtering theory is
COncerned with estimating the "state" or status of a system

Of interest at any time, t; » by incorporating the time



history of measurements up through time ti . Another
method of estimation, called the predictor algorithm, com-
putes a state estimate at any time, t, , based on the time

history of measurements received before time, ty - The
"Kalman filter" algorithm combines both prediction of the
state estimate before time = and correction of this pré—
dicted value based on the measurements received up through
time b, . With the advent of high-speed digital computers,
the "Kalman filter" has proven to be very suitable in a num-
ber of applications most frequently in guidance and control
problems. In this implementation, state estimates are gener-
ated in an "on-line'" manner utilizing the measurement time
history up through the time at which an estimate of state
Values is required. When the entire time history of meas-
urements over a particular time interval of interest has been
recorded, "off-line" estimation methods can be implemented.
In this case, a "smoother" algorithm can be employed to gen-
erate state estimates based on all of the measurements, before
and after any time t. . Since the smoother algorithm has
more information available for state estimation, it 1s the
Preferred method for post-run data analysis.

The Kalman filter algorithm requires a linear model to
describe the dynamics of a particular system and a linear
relationship between available measurements and the states
Oof interest. More often than not, the system model or obser-
vVation relationships are non-linear. This requires lineariza-

tlon about some reference values for the states as in the



"linearized Kalman filter”, or re-linearization about the
current state estimate provided by the “"extended Kalman
filter". The extended Kalman filter is most appropriate
when the nominal (reference) state trajectory is unknown or

when deviations from the nominal trajectory may become severe.

Application of Theory

The purpose of this report is to apply estimation theory
in post-run data analysis of the "Budweiser Rocket Car" speed
Of sound attempt. The method used is to develop an extended
Kalman filter to describe the vehicle dynamics and available
measurements of vehicle position provided by a tracking radar.
The events leading up to this unigue event have been well

documented in many publications, most notably Road and Track

Magazine, April 1980. It is not my purpose here to provide a
historical account of the "Budweiser Rocket Car" or to analyze
Air Force involvement in this project. However, some brief

background information may be helpful.

Description of Rocket Car Test

In the summer of 1979 a company known as Speed of Sound,
Inc. (S0S) requested and received permission from the Air
Force to use Rodgers Dry Lake at Edwards Air Force Base.
Their purpose was to drive a rocket-powered land vehicle at
the reference speed of sound. If successful, their rocket
Car would be the first to attain such a speed on land. The
"Budweiser Rocket Car" was not designed for high sustained

Speeds due to very limited fuel storage capability and short




duration thrust augmentation (Sidewinder motor). The SOS
Plan was to reach peak speed very quickly and then slow to

a4 stop. For these reasons, an official "land speed record”
attempt would not be made. The Air Force Flight Test Center
(AFFTC) provided a safe test area for conducting high speed
runs. The speed runs were not allowed to impact in any wéy
with normal operations at the base, and the government was
reimbursed. At the request of S0S, the AFFTC provided com-
pPuter analysis of the final high speed run.

The test track used for all the high speed runs at
Edwards AFB began at the northwest corner of Rodgers Dry Lake
(Fig. 1.1). The starting position varied but was located ap-
pProximately 200 feet from the lake shore. The course followed
a straight line on a heading of nearly true south from remote
Camera site A8 to the intersection of lakebed runways 17/35
and 15/33. From here it made a 12 degree turn to the right
and followed runway 17 to the end. This turn began at about
the seven mile point and had a radius of five miles. Use of
the curve was required to take full advantage of the length
Of the lake and would only be used if the normal deceleration
Systems on the vehicle (parachute and brakes) failed. Every
Quarter mile along the course there were a pair of yellow
flags mounted 30 feet either side of centerline to help guide
the driver. Special red flags were used to signal the driver
when to fire the thrust augmentation system. Approximately
two miles from the starting position was a photoelectric

"Speed trap" system erected by the Federation Internationale




1.1 Rodgers Dry Lake Test Area

Fig.




des Motorcyclistes (FIM), official speed recorder for the
event. The "trap" was actually a series of four precisely
measured gates lined with lights that would flash at very
precise time intervals to measure average speed through the
gate. The traps were installed and not moved during the runs,
which posed a difficult problem for the SOS engineers.

The idea was to hit the FIM speed trap at peak velocity
which would presumably be just as the main engine or augmented
System ran out o fuel. The speed was gradually raised on
€dach successive run by increasing the amount of main engine
fuel and adjusting the timing for Sidewinder ignition. The
PCint at which the vehicle would reach peak speed for a given
fuel load/configuration was estimated using a simulation of
vehicle performance. Based on the data from this simulation,
the starting position was adjusted to reach peak speed at the
traps. In most cases the peak speed was seldom achieved at
the traps but slightly before due to underestimated vehicle
drag (3). The speed trap system proved to be a very unreli-
able measurement of peak velocity due to the problems stated
above.

In addition to the FIM speed trap system several other
instruments were used to record speed. A magnetic pickup on
4 rear wheel was used to convert wheel rotations into veloc-
ity. This device proved to be useless above 500 miles per
hour due to inadeguate freguency response of the device and a
Seévere buildup of dirt over the run. A pitot tube installed

On the nose of the vehicle measured air speed. Due to



compressibility errors near Mach one and the unknown influence
of ground effect this device was not considered reliable (3).
Longitudinal and lateral accelerations were measured by a set
of accelerometers installed on the vehicle. Accelerometer
data was not used to find velocity by the SOS engineers, only
as a check on the number of acceleration units (g's) the
driver was exposed to. Data from these devices were recorded
via frequency modulated (FM) telemetry. An Air Force track-
ing radar was used to track the car and provide a backup of
vehicle performance. This radar coverage was considered
training for the operators and in no way impacted on any mis-
Sion requirements at Edwards.

On the final day of the high speed runs, the fuel load
on the vehicle was increased to maximum capacity and a Side-
Winder motor was installed. The run was set for early morning
to take advantage of light winds and lower temperatures.

Radar coverage was provided by a tracking radar located ap-
Proximately 4.5 miles from the starting position on a hill
Overlooking Rodgers Dry Lake (Fig. 1.l1). Temperature at the
Speed trap was recorded by an FIM official as 20 degrees Fahr-
enheit. Using the familiar relationship for the calculation

Of the reference speed of sound, a,

a = JyRT (1-1)

Where

YA ratio of specific heats for air = 1.4

gas constant = 1715 ftz/Secz-R

[}

o
nwe>

temperature in degrees Rankine = 479.66 R

<)
e

7




we find

a = 1073.536213 ft/sec = 931.956 mph
The speed of sound depends primarily on the temperature of
the air. The value at a given temperature can also vary due
to changes in relative humidity. For this analysis, we have
no information on the accuracy of the FIM temperature reéord-
ing system, or relative humidity. Since the run was made in
desert conditions we assume any changes to the calculated
Speed of sound due to relative humidity can be ignored. We
also assume that the recorded temperature of 20 degrees is
eXact. The calculated speed of sound is used as a reference
Velocity to compare rocket car performance. A peak speed of
931.956 mph, therefore, was the goal of SOS people.

At (0726 Pacific Standard time the main rocket engine
ignited, followed 12 seconds later by ignition of the Side-
winder. The vehicle ran out of fuel about a fifth of a mile
Prior to the speed traps and thus was already decelerating
as it passed through them. The four traps showed the vehicle
Speed to be 666.234 mph, 646,725 mph, 640.112 mph, and 632.522
mph, respectively (3). Since the speed trap measurements
Were made after the vehicle had reached peak speed they could
Not be used. The radar measurements would have to provide
the estimate of top speed. Unfortunately, the radar range
broke lock at the critical point during the run and followed
@ larger vehicle running parallel to the test track and ap-
Proximately 1500 feet beyond the rocket car. After two

Seconds the radar again picked up the car. The Air Force



radar became the only check of actual vehicle performance
Wwith the FIM speed trap system unavailable and unreliable
Wheel speed and air speed indicators. The radar azimuth and
€levation data were considered valid for the following rea-
sons (3). The Air Force radar operator used a television
monitor aligned with the axis of the radar dish and manuaily
adjusted azimuth and elevation tracking rates. Using a set
Oof "cross-hairs" on the monitor, the operator kept the car
centered on the television screen. To attempt to correct
the erroneous range data, another vehicle was driven over
the tracks of the rocket car. The same tracking radar fol-
lowed this vehicle and measured range and azimuth. Agimuth
data from the rocket car and this second vehicle were aligned
and a corrected range measurement for the rocket car was
found. Based on this corrected range data, Air Force com-
Puter analysis showed three data points above the reference
Speed of sound, 731.96 mph. Speed of Sound, Inc. averaged
these three points and claimed a maximum speed of 739.66 mph
Or 1.0106 Mach.

Speed of Sound, Inc. elected not to make any more high
Speed runs as the engineers felt they could get no more per-
formance from the vehicle and the driver had complained of
Stability problems. Thus, the speed of 739.66 mph became the
"official" figure that was claimed as the top speed of the

"Budweiser Rocket Car".




Method of Analysis

The data available for this analysis includes raw radar
range, azimuth, and elevation sampled at 20 points per sec-
ond. Also we have the data from the longitudinal accelero-
meter which measured specific force continuously. The te-
lemetry data for the accelerometer is digitized at 250 sam-
Ples per second. Using these data sources, a model for the
dynamics of the vehicle is developed and put in proper form
for use in an extended Kalman filter algorithm. A measure-
ment model for the radar measurements is used to relate the
States of interest to the available measurements. To find
the best estimate of vehicle performance with the lowest
achievable error, a "fixed-interval" smoother algorithm is
used. The filtering theory used in this analysis and specific
modeling methods are developed in the next two chapters.
Chapter IV will present the results of the extended Kalman
filter, while Chapter V details two iterations of the ex-
tended Kalman filter-fixed interval smoother estimation
Scheme. Finally, Chapter VI will present a hypothesis test
Of the peak velocity estimate and give a confidence level for

this estimate.

10




IT. Background Theory

The problem as defined in Chapter I is to obtain better
estimates of vehicle position and velocity by proper modeling
Oof vehicle dynamics and measurement devices. By combining
data from all measurement sources and including the effects
Of identifiable errors and noise through the use of a Kalman
filter, one hopes to get improved state estimates. The
standard form for the model to describe the dynamics of a
Problem for which a Kalman filter is to be developed is a
first order vector differential equation. Generally, a dis-
Crete-time (sampled data) measurement model is used to relate
Observations to the states of interest. The basic Kalman
filter equations will be presented here with little explana-
tion. It is assumed that the reader is generally familiar
With Kalman filtering. An excellent text on this subject is

available by Maybeck (4).

Linear Kalman pilter
The basic equation to describe system dynamics has the

following continuous-time forms:
x(t) = £[x(t), ult), t] + c(t)u(t) (2-1)
Where

x(t) - n-state vector
u(t) - r-input vector (controls)

£ - dynamics vector (possibly non-linear)

11




G(t) - time dependent coefficient matrix (n-by-s)
w(t) - zero-mean, white Gaussian noise s-vector of

strength Q(t) such that

E[z(t)x(t*T)T] = Q(t)d8(1) (s-by-s) (2-2)

where §(T) is the Dirac delta function. Available dis-—

Crete-time measurements are modeled by the following relation

z(t;) = hlx(t;),t;] + w(ty) (2-3)
where
ty - discrete measurement time
g(ti) - m-vector of discrete measurements
h - measurement model vector function (possibly

non-linear)

X(t,) - n-state vector

=
‘.'.

e 4
I

vit, zero mean, white, Gaussian discrete-time m-vector
noise process, independent of system noise and

of covariance g(ti), i.e. such that
L Vi -
BLy(t;)ulty) 1= R(t;)6;5 (m-by-m) (2-4)

The initial condition on the state is only known with
Some uncertainty, and is modeled as a Gaussian random n-vector,

aSsumed independent of w(t) and g(ti) , with mean and

Covariance:
gla(t )] = & (2-5)
B[ (x(t,)-% ) (x(t )k )] = p_ (2-6)
12




The Kalman filter algorithm is most easily generated
when the dynamics and measurement models are linear relation-
Sships. If the vectors f and h are linear combinations of the
States, the dynamics model and measurement relation become

linear relationships:
x(t) = E(t)x(t) + B(t)ul(t) + G(t)w(t) (2-7)

E(ti) = ﬁ(ti)?_i_(ti) + X(ti) (2-8)

where F(t) and g(ti) become time-dependent (or possibly
time invariant) coefficient matrices of dimensions n-by-n
and m-by-n, respectively, and B(t) is an n-by-r matrix
relating control inputs to the dynamics model.

The Kalman filter incorporates measurement updates

using the following relations:

K(t;) = p(ti')gT(ti)[g (ti)g(ti°)§T(ti) + g(ti)J'1 (2-9)
2(e;*) = X(e;7) + K(t)z;-HER(E; )] (2-10)
B(t;") = B(t;7) - K(t;)H(tIR(t;7) (2-11)

where

ti' - before measurement update at time £,

ti+ - after measurement update at time t

K(t,;) - Kalman filter gain matrix (m-by-n)
x(t;) - n-state estimate vector

Z: - m vector of measurements
P(t;) - error covariance matrix (n-by-n)

13




The state estimate and covariance are propagated forward to

A
the next sample time from the initial condition, g(ti_1+)
and E(ti_1+) at time t;_7 » by integrating

A A
é(t/ti_l) = E(t)z(t/ti_1)+§(t)g(t) (2-12)
> o ; M S
E(t/ti_l) = t(t)g(t/tj_1)+g(»/ti_l)£ (t)
: T
G () (t)e(t) (2-13)
Where t/ti_] , indicates integration forward from the pre-

Vious measurement update time, Ee

Extended Kalman Filter

The case where either the vector of dynamics relations,
£, or the measurement equation vector, h, is non-linear in
the states requires special consideration. The method most
Commonly used when system dynamics or measurement non-1ine-
arities exist is the "extended Kalman filter". The approach
uUsed in this method is to relinearize the dynamics and/or
Measurement equations about the most recent estimate of the

A A 5
State, X(ti‘) , at update time, or 5(t/ti_1) in the

€nsuing sample period. Thus, the matrices F, H, K, and P
are evaluated by knowing the most recent estimate of the
nominal (reference) state trajectory.

The system matrix, F(t) , in (2-13) and observation

matrix, ﬁ(ti) in (2-9) and (2-11) become partial derivetive

Matrices in the extended Kalman filter:

14



3rfx(t),ult),t]

A
E[t3§(t/ti_1)] F e i g(t/t ) (2-14)
& O i-1

% E = () (2-15)

Hlt, x(t )]

In equations (2-14) and (2-15) the differentiation is done so
that the derivative of a scalar with respect to a column vec-
tor is a row vector. The matrices resulting from this dif-
ferentiation have dimensions n-by-n and m-by-n, respectively.
These matrices relate small perturbations in the state vec-
tor, x(t), to changes in the equations for x(t) and z(ty).
The F matrix is called the "filter dynamics partial matrix"
and the H matrix the "measurement sensitivity matrix". De-
fining the perturbation of the state, x(t), from its current

: A
estimate, x(t;") as

ne

sx(t) = x(t)-x(t;7) (2-16)

the perturbation 5x(t) is called the error state while x(t)
is the full state.

We expand equations (2-1) for é(t) and (2-3) for g(ti)
in a Taylor series about the current state estimate in
POWers of $x(t). Since 5x(t) is assumed small, powers of
8x(t) higher than one are ignored. We arrive at the follow-

'Ng linearized perturbation equations in 8x(t):

8x(t) = f_‘[t;?_c(t/ti_l)]5_:5(t)+§(t)y_(t) (2-17)

15




x (b, Tox (e, ) +u(t,) (2-18)

sz(t;) = HLt,

where F and H are defined as in (2-14) and (2-15), respectively.
Equations (2-17) and (2-18) are in the proper form for

use in a conventional filter. Thus, an estimate éé(ti+)

of the error state $x(t) can be made from perturbation

measurements, Qg(ti) , using equations (2-9) through (2-11).

The measurement difference 8z(t,) is called the residual.

It is formed by subtracting the predicted measurements

A
é(ti) from the actual measurements g(ti) :

sz(ty) = gi-g[§<ti'),ti] (2-19)

Equation (2-10) provides an updated estimate of the error
A
State, Q_(ti+) . By using eguation (2-16) we can obtain

A +
an updated estimate of the whole value state, §(ti ) :
A
x(t:,7) = ke, )+dx(t, ™) (2-20)

This eguation places all of the available information into
the whole-value state estimate. This allows gﬁ(ti+) to be
reset to zero for propagation of the state estimate to the
next update time. At any time, ti,gﬁ(t) has a conditional
mean, ég(ti) , and conditional covariance Ea(ti) such

that:

A

ELox(t;)]|2(t )] = bxlty) (2-21)

and

16



A ) A A
BLex(t;)-8x(t ) [ox(e;)-ox(e )T |z(e )] = B (£ (2-22)

wWhere Z(ti) is defined as the entire measurement history

up through time ti . If we assume a zero mean 1lnitial con-

dition on the error state,

gx(t,) - O (228}

A
then £x(t) will be zero over the entire interval between

updates such that:

SXUEY = O for £ S (2-24)
— St T =Sl

. A
With Q_(ti') zero, the error state update egquation from
(2-10)

ie.t) = $x

; (t;7)+K(t;)82(¢;) (2-25)

i
Simplifies to
s : ‘ ;
Selt.F) = wle ) sz(k,) (2-26)
Which upon substitution into the full state update equation
(2-20) produces
A A
+ = Atz - —
x(£;7) = x(t,7)+K(t;)62(t;) f2-27]
¥here 8z(t.) 1is given by (2-19).
Consider the conditional covariance, Egcti) of the
€rror state, &6x(t) , given by (2-21). We wish to relate

this conditional covariance to the conditional covariance,

E(ti) of the whole state, x(t) . From (2-21)

A A
P.(t;) = ELL —QJEEX—QKJTIZ(H)7

S
o

ElLexIlex1 |zt )T from (2-24)

i



E[Ez_c—%][z-QJTI 2(t;)] from (2-16)

"

]

B(t;)

Thus, the error covariance of x(t) is identical to that of
8x(t) . Equations (2-13) and (2-11) describe the propaga-
tion and update of the error state covariance, P(t) |, with
E(t) and H(t) in these equations replaced by equations
(2-14) and (2-15), respectively.

The extended Kalman filter algorithm is summarized here.

The measurement vector at time t,,z(t;) , is incorporated

using
K(t;) = p(t;T)H Ley5x(e, )X
[g[ti;?_c(ti')Jg(ti‘)gT[ti;f_c(ti')}g(ti)]'1 (2-28)
Fee*) = Memyeie )z -hl%(t. =), t:]] (2-29)
x(¢, x(t; )+E(t;)lz;-hix(t,"),t;
B(ty") = p(t;7)K(tHE sx(E, D) IR(ET) (2-30)

The estimate is propagated forward to the update time, ti -

from the previous update time, ti by integrating

; A
x(e/ey ) = glx(e/e; ),u(e),e] (2-31)
and

é‘t/ti-l) - z[tz?_g(t/ti_l)]g(t/ti_l)+P(t/ti_1)zT[t;Q(t/ti_l)]
wa(e)g(tie(e)”  (2-32)

1 to &, using the initial conditions pro-
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the smoothed estimate is generated backward in time using

A A » A A -
Where the "smoothing estimator gain matrix" é(ti) is given
by

Bl ) Bl I Kok BT HEpLeT) (2-40)

and 3(t,

1+1’ti) is the state transition matrix for prop-

agating adjoint system quantities backward in time (4).
The covariance of the zero mean Gaussian estimation
A
error [E(ti)—g(ti/tf)] can be generated backward from the

boundary condition by

Blti/er) = P(t;)%A(t )[Rty /8 )-Blty,, I IAT (£5) (2-41)

i+1
The method of analysis chosen to analyze available data
from the rocket car is to develop such a "fixed-interval
Smoother" algorithm based on the state trajectory (time
history) generated from an extended Kalman filter. The ex-
tended Kalman filter will be shown as the appropriate choice
due to non-linear measurement relations. The amount of
PSeudo-noise is adjusted to achieve optimum filter perform-
ance in a "tuning” process described more fully in Chapter
IV. The next chapter describes the methods used to model
Vehicle dynamics, errors to be estimated, and available meas-

Urements for implementation in an extended Kalman filter.
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III. Modeling Technigques

System Model

The test track described in Chapter I has no surveyed
Positions from which to reference vehicle position. The best
information on the starting position is provided by the radar
Which was set on the vehicle for several minutes before the
Start of the high speed run. It is this position provided by
the radar to which changes in vehicle position are referenced.

The coordinate system for the dynamics of the rocket car
is chosen as a Cartesian system fixed at the starting point
©f the run. This system is shown in Fig. 3.1 and has the
X-axis aligned with the straight portion of the test track
(true south) and the y-axis aligned with true east. The time
interval of interest is the first 24 seconds of the run, as
the vehicle achieved its maximum velocity at approximately
17 seconds into the run. Thus, the velocity and position
along the x and y axis is taken with respect to a fixed posi-
tion on the earth corresponding to an inexact starting posi-
tion. The elevation of the car is ignored due to minimal
Change in vertical displacement (+ 20 feet). Therefore, the
Coordinate frame we are concerned with becomes planar or
two-dimensional. Post-run inspection of the test track in-
dicated that the vehicle deviated very little from track
Cénterline (3). Therefore, y components of position and
Velocity are minimal with the motion restricted to the x-axis

almost entirely.
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the only assumed inaccuracies in these measurements. Thus,
the additional states to be estimated include one error
State for the accelerometer, and two error states for the
radar. Lack of additional measurements and resulting ob-
Servability problems precluded the identification of any
Other errors. It will be shown in the next chapter that even
these states are only weakly observable.

The states to be estimated become:

X, - position component along x-axis

-

position component along y-axis

»
[N
i

»
w
1

velocity along x-axis

%
B

~ velocity along y-axis
- longitudinal accelerometer time-correlated error

radar range bias error

J o S

- radar azimuth bias error

The first four states are related by deterministic means
(i.e., velocity is the first derivative of position, etc.).
The error states are modeled as stochastic processes in the
following manner.

The time-correlated error of the accelerometer is modeled
a5 a first order Gauss-Markov process, the output of a first
Order lag, which is driven by white, Gaussian noise. Figure
3.2 shows the output of the longitudinal accelerometer in-
dicating the extreme fluctuations in specific force sensed
by this device. Such rapid fluctuations are due to extreme
Vibrations caused by rough ground and engine “pulsing” (3).

ConceiVably, the accelerometer error state can also vary

25
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The first order differential vector dynamics model for
the propagation of the seven states of interest plus addi-

tive "driving” noise becomes:

il(t) = Xg
xz(t) = X,
X5(£) = a+x (t)

k,(t) = w4(t)

X5 (t) = -1/Txg (£)*+wg(t)

Xg () = wg(t)

x,(t) = w,(t)
Here w(t) is a white Gaussian vector noise process of
Strength Q(t) over the time interval [to,tf] . Off-line
"tuning" of the system noise matrix, Q(t) , can be used to
Match the available data as closely as desired. This was not
done in this analysis. Instead, the noise matrix, Q(t) is
adjusted "on-line” in a performance analysis in order to
achieve lowest possible variance in the state estimates. The
FeSults of this tuning process are detailed in the next
Chapter.

In the system model presented above the longitudinal ac-
Ceélerometer output ay is used to "drive" the propagation of
the x Ccomponent of velocity. The output of the accelerometer
is Corrupted by a time correlated error which is expected to
Vary frequently during the run. With no lateral accelero-
Meter data available, we assume the y velocity component,

x4 » is well modeled as a constant with zero value. A
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The only information available on the longitudinal ac-
Celerometer is calibration data taken before and after the
high speed run of the rocket car. This data indicates that
the accelerometer calibration varied by an average of .003
g's between the two calibration checks. With no more in-
formation on the inherent errors in the accelerometer, we
are forced to refer to information on comparable models. We
desire a comparable accelerometer which has a specified bias
€rror on the order of .003 g's. The model chosen in this
Case is a Honeywell solid-state low-cost accelerometer. The
Specified RMS error for this model is listed at .005g.

Thus, we use this specified error as the steady-state devia-
tion in error of the accelerometer actually used in this test
fun. Obviously, we need to vary this value in order to check
filter performance, but .005g will serve as a "first-guess".

We now can solve for the driving noise, dg

Pg(=) = (.0059)° = q.T/2 (3-13c)

and

s (t) = 2(.0059)2 = .0518 (ft/sec?)?/sec (3-13q)

Choosing the initial variance, Pg(0) , to be equal to
the steady-state variance, P(w) , results in a "station-
Ary"™ process (4) for the accelerometer error state, Xg
This Stationary characteristic is, in fact, implemented in
the system model for the rocket car.

The initial condition of the state vector at the start

°f the run is known only with some uncertainty and is
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modeled as a Gaussian random variable of zero-mean and

Covariance, P, » such that:
E[x(t )] = ;\—(o =0 (3-14)
A A
B[[x(t,)-x,1(x(t,)-x 3] = B, (3-15)

Initially, our uncertainty in the state values is very high.

We choose the following values for B, 3

10000
10000

100 0
= 100 (3-16)

J'U

0  .0259
225

L- 0 25E _6d

The initiail guess on the last three diagonal elements is
Obtained by using specified Root Mean Squared (RMS) errors

for the accelerometer, range, and azimuth respectively:

o5 = (:0059)% = .0259 [£t/sec?]?
_ 3 2

PLs = (15 ££)2 = 225 £t

Py, = (.0005 rad)? = .25E - 6 rad’

The initial variances of the first four states are subjec-
tive values based on relatively high uncertainty in state
Values. Having developed the dynamics model for propagating

t .
he states of interest, it is now necessary to relate these
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Thus, the extended Kalman filter incorporates the measure-

ments at time, t. by using:

i
E(ty) = R(ti-)gT[H P(ti')§?+g(ti)]'1 (3-25)
o, # o ]
E(ti k= E(ti )+K(ti)§5(ti) (3-26)

+ ‘
B(t;") = P(t,

JT)-K(t)H B(t,) (3-27)

where gg(ti) is given by:

= A
bz, (t;) zl—[[(DELx-Ql’)2+(DELy+§2 )2+zr2]+x6
Sz(t,) =

= 8 o N
bz, (t,) zz-[arctan[(DELY+x2 )/ (DELX-x, ) J+x.,

(3-28)
The state estimate at time ti 4 is propagated forward to
the next sample time t; by integrating:
F‘A '1
xy(t/t5 1)

A

f4(t/‘i-1)

(t/ti_l) = 0 5 (3—29)
b K

“1/xg (E/y )
0 s

Fea'® ¥

The error covariance P(t/t; ;) is propagated forward by

[H> -

integrating equation (2-32) in which
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6'e’1 6 "0 0o
00 019 w0
0.0 00 . .1 008
zﬂt;2<t/ti_1>3 =|l0000 0 00| by (2-14)
0000 -1/ 00
0000 0 00
0000 0 00]

The initial value for the system noise matrix in (2-32) is

chosen as:
-
0

Q(t) = .01 (3-30)
.0518
1

0.1E-7 |

|[=)

The initial values for the diagonal elements of Q(t) are
Chosen to indicate our relative uncertainty of the behavior
Oof the Ccorresponding states over the time interval of inter-
eSt. The initial value for driving noise on the accelero-
Meter error state, X5, has been previously calculated (3-134).
The remaining diagonal elements of Q(t) are chosen by subjec-
tiVel}’ deciding how much these states will vary from con-
Stant vailues, By comparing Q,,(t), Qgg(t) and Q54(t) one

Can see that we have little doubt that the azimuth bias error,
*7» is a constant. We are less certain about the behavior

Of the y velocity, X,» and even more uncertain about the
fange bias error state, xg. The initial value for Q,,(t)

is .
based on our knowledge of the rocket car trajectory -
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described as nearly a straight line along the x-axis (3).

We do not expect the y velocity to vary significantly from a
constant value of zero. Use of the radar in a "look-down"
mode increases our uncertainty in how the range bias state,
Xg» Will behave over the 24 second interval. The azimuth
bias error is not expected to vary significantly from the be-
havior of a constant. The initial value for Q(t) presented
in (3-30) is ad justed in a "tuning” process to achieve lowest
Possible variance values for the seven states of interest.
This performance analysis is detailed in the next chapter
along with the results of the seven state extended Kalman

filter developed here.
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IV. Development and Performance Analysis

of the Extended Kalman Filter

The previous chapters have developed an extended Kalman
Filter estimation algorithm for post-run data analysis of
the Budweiser Rocket Car. This chapter describes the re-
SUlts obtained by using the seven state filter outlined pre-
Viously. The amount of computer programming regquired by
this analysis is minimal due to existing software available
for the development of a Kalman filter.

The computer software used in this analysis is a Monte
Carlo Simulation for Optimal Filter Evaluation (SOFE) avail-
able at Wright-Patterson AFB (6,7). The program was devel-
Oped under contract by the Air Force Avionics Laboratory
(AFAL) and is we11 documented by Musick (6). SOFE is invalu-
able when designing Kalman Filters. The normal method used
is a Monte Carlo analysis (4) whereby a suboptimal (reduced
Order) Kalman filter is evaluated against a "truth model".
The suboptimal filter is ad justed to achieve the best pos-
Sible Performance when compared to a much higher order "truth
Model™. The idea is to track the important characteristics
°f a physicai system adequately using a Simpler model. Such
@ reduced order filter could then be implemented in an opera-
tional system where computer capability may be limited.

For the Purpose of analyzing the rocket car data, SOFE

'S used to integrate the dynamics equations and update the
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States of interest at measurement times. There is no truth
Model available for tuning purposes, nor do we have the
ability to generate sample statistics. SOFE implements the
Kalman filter equations for either the linear or extended
Kalman filter presented in Chapter II. The user simply spec-
ifies the dynamics and measurement relations for his system.
SOFE Propagates the state and covariance estimates forward
from the specifiea initial time, using a fifth order Kutta-
Merson integration algorithm (6). Updates of state and co-
Variance estimates based on available measurements are pro-
Vided at user-specified intervals. The user can specify

any number of measurements to be incorporated at a given up-
date time. Use of SOFE greatly reduces the amount of com-
Puter Programming necessary in developing a Kalman filter and
allows the user to concentrate on the finer details of his
Particular problem.

The fifth-order Kutta-Merson integrator implemented in
SOFE requires gz step-size no greater than approximately two
milliseconds for the chosen integration tolerances. The in-
tegrator uses a variable step size to automatically maintain
the: integration error below & specified value. The user can
SPecify a fixeg step size mode if exterior factors, such as
2 high measurement rate, cause the step size to remain small
Tegardless of dynamics, If, in order to handle severe dynam-
ics, the integrator reduces its step size to a minimum spec-
ifieq Value without satisfying error tolerances, an integra-

tlon failure Occurs and the program stops. The default
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parameters for the integrator are variable step size, error
tolerance of .0001, maximum step size of 1.0 E + 9, minimum
Step size of .0001, and initial step size of .0l. We are
unsure of exact vehicle dynamics but expect rapid changes in
acceleration over a very short time interval. We desire to
allow the integrator to automatically adjust its step size
in order to reduce integration error and avoid "stepping-over”
any fluctuations in the solution. A variable step size also
reduces Computer time. For these reasons, we interpolate
the accelerometer data to .002 second intervals for integra-
tion purposes.

SOFE implements user-supplied data records from one ex-
ternal tape ana expects the same number of records every time
the tape is read. The external data provided for the rocket
Car includes accelerometer, range, azimuth, and elevation
data. This data is interpolated to .002 second intervals
Using the cubic spline interpolator implemented in SOFE. Thus,
accelerometer data for integration purposes is available every
*002 seconds while the specified measurement update interval
Of .05 seconds insures that actual, not interpolated values

for the radar measurements are used.

Accelerometer calibration

The first run through the data using SOFE is made to
Check the calibration of the accelerometer data. The seven
State extended Kalman filter as implemented in SOFE is run

wi ) N .
1thout 1ncorporat1ng any radar measurements. Integration
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Of accelerometer data provides state estimates of X position

and velocity. We desire to compare the estimate of x veloc-
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Fig. 4.8(a),(b) Accelerometer model for Xq = No measurements
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Only can find the noise strength of the measurements, but
Check our equations for range and azimuth used in the filter.

Figures 4.9(a) and 4.9(b) are plots of actual range and
©stimated range. Figure 4.9(a) includes a plot of the dif-
ference between these two values for radar range. It is
©bvious from these plots that between 16 and 18 seconds the
fange is tracking a larger vehicle beyond the rocket car. It
is aiso apparent from these plots that the range measurement
is ingeeq extremely "noisy"” and has significant errors.

The azimuth measurement, however, appears to be much
better. Referring to Fig. 4.10, we can see that the actual
and estimated azimuth values are very close. This confirms
Our assumption that the radar operator did a good job of track-
ing the car in azimuth.

The purpose of comparing actual to estimated measurements
is to determine realistic values for the diagonal terms in
the measurement noise matrix, R(t;). To accomplish this, we
Sum the "residuals", or difference between actual and esti-
Mated measurements, over the entire time interval. We then

Calculate a mean and variance for the residual values using

the following equations

N
Mean, p_ o = 1/N-1 iEI r; (4=1)
N
2 2
Variance, dies = 1/N-1 ‘Zl (r;"-p ) (4-2)
1-

Where Ly is the residual measurement at a given sample time

N4 N is the number of sample periods used in the calculations.
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ACTUAL, ESTIMATED, AND RESIDUAL RANGE MEASUREMENT
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Fig. 4.9(a),(b) Residual range analysis based on an assumed
track heading of 180 degrees true.
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Fig. 4,10 Residual azimuth analysis based on an assumed
track heading of 180 degrees true.
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Referring to Fig. 4.10(a), the coordinate translation be-

comes :
X, DELX + (cos 179°)x1 + (sin 179°)x2 (4-5)
Y, = DELY + (sin 1°)x1 + (cos 1°)x2 (4-6)
or
xr = DELX - .99985x1 = .01745x2

DELY + ,01745x, + .99985x2

Yr 1

When these corrections are applied to (3-22) and (3-23) and
the residual plotting and variance calculations are made,
the actual and estimated range measurements are much closer.
The corrected plots of range and azimuth are shown in Fig.
4.11(a), (b) and 4.12. With these corrections, calculated

Yesidual variance for range becomes 16807.66 £t? and azimuth

Variance reduces to .3573 x 10'4 radz. These lower variances
Tesult in RMS errors for range and azimuth of 129.88 feet and
005977 radian, respectively. Note that we have calculated
AN error for the azimuth which matches our initial guess of
*006 radian. It is apparent that the one degree correction
is closer to the true track heading and reduces the ma jority
Of modeling error. Thus, we have computed the estimated
Measurement noise strength matrix, g(ti)t
16807.66 0

(4-7)

0 .3573E-4
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Fig. 4.10 (a) Corrected Coordinate Frame
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Fig. 4.11(a),(b) Residual range analysis based on assumed
track heading of 179 degrees true.
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Fig. 4.12 Residual azimuth analysie based on assumed
track heading of 179 degrees true.
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T = arctan[(DELY+.0174Sx1+.99985x2)/%DELX-.99985x1

+,01745x%.,) J+x. +v
2 e

Applying (2-15) to these equations we form the observation
Sensitivity matrix, x_{ti;g(ti')] . It is the model for
Measurement incorporation, z(t;), and the calculation of
H[ti!g(ti—)] that we desire to check. By comparing state
trajectories of position and velocity independently obtained
from each measurement, we hope to confirm our calculations
and modeling techniques.

The primary reason for deviations between measurement
trajectories and the accelerometer profile is due to the
Tather crude model we substitute for the x-velocity state,
¥3+ We now choose this state to be modeled as a random walk
Of the form

§3 = wa(t)
Where the driving noise, w3(t), has a relatively high strength
to account for our uncertainty in such a model and allow

Closer tracking of actual data. Modeling this state as we

have, the x velocity is considered a constant. Any change
£o its value based on measurement updates is done in a step-
like manner. Therefore, we do not expect to get exact agree-
Ment with accelerometer results.

The model for x-velocity is incorporated into a six

State extended Kalman filter where accelerometer error, Xg,

has been removed. The filter is run using range measurements
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Only, azimuth measurements only, and both measurements com-
bined. The results of these three runs of the extended Kalman
filter are shown in Fig. 4.13 to 4.16. Plots are made of the
estimates of x and y position and velocity. Part (a) of each
figure is the depicted state estimate generated using range
lMeasurements only. Part (b) is the state estimate generated
Using azimuth measurements only, while part (c) of each fig-
ure shows the result of combining both range and azimuth. We
See, in fact, that position and velocity along the x-axis be-
have as we would expect from the accelerometer trajectory
Shown in Figs., 4.1 through 4.4. However, the geometry of the
Fadar position to the vehicle is not conducive to accurate
®Stimates of deviations along the earth-fixed y-axis. The
fange measurement is the only means by which we can hope to
@Stimate position and velocity along the y-axis. The state
@Stimates of these values are subject to any errors in the
Tange measurement and indicate only weak observability of these
States. The range measurement is ignored between 16-18 seconds
to account for the known error in this measurement during this
interval. Due to the geometry of the problem, the range
Measurement is even less likely to track the vehicle along

the x-axis correctly. This can be seen from comparing the
Plots of x-position and velocity for range only to the plots

Of these states with azimuth only and both measurements com-
bined. From these plots, it is apparent that the azimuth

does 5 credible job of tracking changes in position and

ve10city along the x-axis. Conversely, the azimuth
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Fig. 4.13(a) Random walk model for x, - Range only
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‘FMg. 4.13(b) Random walk model for Xy - Azimuth only
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Fig. 4.13(c) Random walk model for x5 - Range and Azimuth
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Fig. 4.14(c) Random walk model for x, - Range and Azimuth
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71




VELOCITY COMPONENT IN X-DIRECTION

1000 1400.9

e,

800.0
"

VELOCITY (FEET/SEC)
0.9

L0200
n i

0.0

30 20 40 0 &0 150 130 140 0 180 20 40 0 /0 B0
TIME (SECONDS)

e

——

Fig. 4.15(c) Random walk model for X, - Range and Azimuth
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measurement can tell very little about y-axis changes of
position and velocity. Again, the geometry of the radar and
Vehicle track causes this observability problem.

Figures 4.13 (c) through 4.16 (c) are generated by
utilizing both azimuth and range measurements. Again, the
estimates of x position and velocity are fairly consistent
With the estimates of these values generated by using ac-
Celerometer data. Deviations from track centerline are less
Severe but still subject to range measurement errors. It
is apparent from this analysis that the basic trajectory of
the vehicle generated using accelerometer data is reconfirmed.
Thus, we conclude that the extended Kalman filter is cor-

A -
Fectly calculating the observation matrix, Eftiii(ti )1,

and that our model for g(ti) is correct.

Extended Kalman Filter Performance Analysis

Having calculated measurement noise strengths for range
8nd azimuth and also having checked the calculation of the
Observation matrix, we are now ready to run the extended
Kalman filter modeled in Chapter III. The initial condition
for the propagation of the state vector is chosen as zero-

Mean Gaussian random variable with mean

A
E [;_{(to)]z X, = 0] (4-8)

and covariance
& & Wi 4-9)
E[(E(to)—go)(z(to)-go) 1= B, (
¥here the initial covariance matrix from (3-16) is specified

as:
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[10000
10000
100
= 100 (4-10)
.0259
225
. 25E-6)

A’U

The initial values for the diagonal entries of the system

noise matrix, Q(t), are repeated here for reference:

[0
0
0
Q(t) = .01
.0518
1.0
<1E-7

(4-11)

The extended Kalman filter as implemented in SOFE is
run with several different combinations of Q(t), B,, and
R(ti). This analysis is necessary to monitor the behavior

Of the error variance of each state estimate in order to

Check filter performance. We desire to obtain the lowest

Possible error variance on each state after 24 seconds of
filter operation, using realistic values of initial covari-
ance, P, system noise, Q(t), and measurement noise, R(t;).
This performance analysis can be thought of as "tuning" the
extended Kalman filter. The results obtained from a large

Number of noise and initial covariance combinations are sum-

Marized here.
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estimates and associated driving noise strengths and measure-

ment noise is presented in Table I. The initial variance
on each state is 100 (ft/éec)z, or +10 ft/sec.
TABLE I
Filter Performance Analysis
_kDriVing Noise g ‘Measurement Noise, R(ti) P(t = 24 sec)
4 © « 2E=2 22456/ .5388E~-4 P3 = 2.4
Hg = .0518 ” 2 P4 = 6.36
q6 = 10.0 " "
q7 = 5E-5 n "
Ay = 1E-2 22456/ .5388E~-4 P3 = 3.193
qs = .0515 " " p4 = 6.43
q6 = 1.0 " "
q; = «1E=-7 " "
dg = «1E=-3 22456/ .5388E~-4 P3 S 9
qs = '3E-1 » o P4 = 6-24
q6 = .10 " ”
q.] = J1E-=7 " "
q = «1E-7 16808/.3573E~4 Py = 2.27
qs = -3E‘-1 i " P4 = 5092
q6 = .01 " "
q7 — .13_‘7 " "

The combination of system noise, initial covariance, and

Measurement noise chosen as a result of this performance

Analysis is presented here:
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10000 ] = ”
10000 e
100 k
o * 100 o(t) =}  .1E-7
.03 o
1600 o
X S L AE-T
16808 O
R(t;) =
0 .3573E-4

Results of One Iteration of the Extended Kalman Filter
State estimates and error standard deviation in these
estimates for the "tuned" extended Kalman filter are pre-
Sented in Fig. 4.17 through Fig. 4.25. These plots are
generated using the values for P Q(t), and g(ti), specified
above. Figure 4.24(a) is a plot of the range measurement
Fesidual bracketed by the residual standard deviation. The
azimuth measurement residual and associated residual standard
deviation is plotted in Fig. 4.24(b). It should be noted
that a "residual monitoring" routine has been included in

the basic software for SOFE. This routine calculates the

residual standard deviation at each sample time from:

- T ;f
O es = LH(E;IB(E; TIH (£;)4R(E;)]

and compares the residual measurement to this value for
ares' If the residual measurement, gg(ti), is greater than

3cr95’ the measurement is ignored. As a result of residual
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monitoring, 40 measurements between 16-18 seconds, and three
measurements near six seconds, are ignored.

Figure 4.25 (b) is a "blown up” version of Fig. 4.25
(a) which is the magnitude of the velocity vector converted
to Mach number.

The plots of standard deviation for range bias and
azimuth bias indicate weak covergence of the standard devia-
tion for these states. As mentioned previously, this is due
to limited observability of these states. The standard de-
viations of the other state estimates show good covergence
and indicate that even the "noisy" range measurement provides
Some information on state values which can be used to improve
State estimation. From the plot of range residual standard
deviation it should be apparent that the residual monitoring
routine is rejecting measurements of range which have a
residual value greater than 3°res’ or approximately 390 feet.
The straight 1line segment between 16-18 seconds and the "spike"
at six seconds in Fig. 4.24 (a) show where the range meas-
Urements have been ignored.

The large deviation in y position shown in Fig. 4.18 (a)
at approximately 10 seconds is due to range measurement
€rrors which are significant between 6-10 seconds. The fil-
ter weights these measurements lightly due to relatively
high measurement noise, but does not totally reject them.
Thus, the estimated y position shows unrealistic values for
It

4 . . ' nt.
this state due to inaccuracies in the range measureme

appears from Fig. 4.11 (b) that during this four second
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observability problems previously mentioned associated with
estimating X3 from range measurements. The azimuth only
run of the extended Kalman filter indicates the following

vehicle performance:

Xg = 1080.26 (16.85 sec)

A
x5 = 977.081 (18.65 sec, trap entry)

Time above Mach 1 = 1.30 sec

The azimuth only run, however, does not provide very good
estimates of y position or velocity due to the observability
Of these states from azimuth measurements alone. It should
be noted, that the apparent error in x velocity caused by
Observability problems using range measurements is corrected
by using the fixed-interval smoother algorithm. The time
history of state estimates and error variances from the run
Of the extended Kalman filter incorporating both measure-
ments is stored for use in the smoother algorithm. The re-
Sults of the smoother analysis will be presented in the next

Chapter.
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V. Optimal Smoother Results

Chapter II describes the Meditch form of the optimal
"fixed~-interval" smoother algorithm in detail. A simple
FORTRAN program was written by the author to incorporate
this smoother algorithm. The output of the extended Kalman
filter, detailed in the previous chapter, is stored for use
by the smoother program. The FORTRAN code used in the smoother
pProgram is listed for reference in Appendix B. The results
Obtained from this program are presented in this chapter.

The output of the optimal smoother at the initial time,
t,s is used to correct the initial conditions for another
iteration of the forward extended Kalman filter. Such a
"forward-backward" iteration scheme is used to correct model
errors and initial conditions of the extended Kalman filter.
After eaéh iteration of the forward-backward estimator a
Comparison of state values is made. When the difference in
State estimates from one iteration to the next is less than
Some arbitrarily specified value, €, the estimator is said

to have "converged"”. Since our main area of concern 1S 1n

the estimate of vehicle speed, we compare the peak estimates
Of velocity for each run of the smoother. When the differ-
®nce between peak Speed estimates from one iteration to the
Next is less than 2 ft/sec and the standard deviation of
this estimate allows at least a 99 percent confidence that

the vehicle exceeded the speed of sound, we stop the itera-

tions. The 1latter requirement for standard deviation
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becomes the driving factor due to time limitations and suf-

ficient confidence after two iterations.

One Iteration of Smoother

The plots of the "smoothed" state estimates after one
smoother iteration are presented in Figs. 5.1 (a) to 5.7 (a).

The variance for each state estimate calculated by the

smoother are presented in Figs. 5.1 (b) to 5.7 (b). Note

that the smoother works "as advertised" in reducing the error
variance of state estimates when compared to the standard
deviation plots of the extended Kalman filter in Chapter IV.
Some very interesting results are obtained and need to be
discussed. The plot of y position, Fig. 5.2 (a) indicates
that the vehicle track is indeed a straight line. However,
the figure indicates that y position begins approximately
250 feet east of the assumed origin and decreases in a
linear-manner to 60 feet east of centerline. This indicates
that the starting position of the vehicle is displaced east
Of the earth-fixed coordinate frame and that the assumed
track heading of 179 degrees true is incorrect by approxi-
mately .209 degrees. The smoother estimated state values

and variances of x and y position at the start of the run,
to. are shown to be

3746.5 ££°

A
x,(t /t.) = 167.78 ££ Py (t/t)

3649.5 £t2

A
x,(t /t.) = 255.85 £t P, (t /te)
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and at the final time, t, = 24.3 seconds:

£
% 2
X)(te/ty) = 16771 ££ Py, (e /t.) = 3186.3 ft
. 2
X (te/t.) = 61.21 £t Pyy(t /t.) = 1428.0 £t

Figure 5.2 (a) indicates that the vehicle track is indeed a

Straight line but not aligned with the x-axis we have chosen.

The estimate of y position at the final time is used to re-

Correct the track heading of 179 degrees. The y position at

te is 61.21 feet. This deviation in position indicates that

We have "over-corrected" track heading previously by:

61.21
16771

] = .209 degree

A
tan-l [M} = tan-l
x, (t./t,)

The corrected track heading now becomes 179.209 degrees. We

€an apply this corrected heading to the measurement rela-

tion (4-5) ang (4-6) so that the bracketed terms in these
€quations now become:

(DELX - .9999.x1 + -0138x2)

(DELY + .0138x, + .9999x2)

By adjusting the track heading by this amount and recalcu-

lating the residual variance, as in Chapter IV, we should be
able to reduce the amount of measurement noise, E(ti)'

These ad justments should help reconfirm our knowledge of

Vehicle trajectory and allow the next forward-backward itera-

tions to converge to the "true" state values.
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In addition to resetting the initial covariance matrix,

P, s to reflect smoother covariance P(t_/t.), we also correct
the initial conditions of the state vector and ad just the

amount of driving noise, Q(t). We should note here that

Several methods are available to adjust Q(t). The backward-

recursive smoother can be used to generate an estimate of
. , A
System noise at each sample time, g(ti/%f) (4). One can also

"tune" Q(t) in an "off-line" manner and allow the system

noise to vary over the time interval of interest. If one

has knowledge of the time-varying nature of a particular

State, this knowledge can be used to adjust the strength of
driving noise. For example, we might desire to relate the
amount of driving noise on the azimuth bias error state to

incorporate our knowledge of radar operator tracking perform-

ance versus vehicle acceleration. As a side note, we should

also mention that the smoother algorithm can be used to gener-
ate an estimate of the applied controls, ﬁ(ti/tf)- An esti-

Mate of the controls applied to the system at any time, t,,

is not the concern of this analysis. We also choose to

iteratively adjust Q(t) and use constant noise levels over

the time interval of interest. Such an iterative adjustment

to g(t) provides adequate smoother performance and simplifies

the algorithm.

Figure 5.4 (a) is a plot of the y component of veloc-
ity obtained after one iteration of the smoother algorithm.
It is apparent from this plot that the y velocity indeed be-

hayesg as a constant with a value of approximately -8.0 ft/sec.
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This constant negative velocity is caused by the erroneous
initial conditions we used in the extended Kalman filter.

As seen in Fig. 5.4 (a) the smoother is able to detect small

deviations from the constant Y velocity. This is seen as

Small "bumps" in the plot of y velocity. Thus, our model of

Tandom walk with small driving noise is reconfirmed and
Will be used for the next forward-backward iteration.

The smoother estimated value for accelerometer error,

QS(ti/tf)n can be seen in Fig. 5.5 (a). The error appears
to grow with time and seems to be related to velocity (i.e.,
the higher the velocity, the more error). The error does

APpear to be time-correlated and does not behave as a constant

bias error. Thus, the time-correlated model for accelero-

Meter bias appears to be valid. We can, however, adjust the

driving noise on the propagation of this state by using the

Smoother calculated steady state variance. Figure 5.5 (b)

2
Shows a constant variance of 0.14937(ft/sec’)? arter only a

Very short transient period. We can adjust the driving noise

On this state by using this steady-state variance:

2,2
d5 = Pg(»)2/T = .029874 (ft/sec”)”/sec
The initial variance value for this state, Pos» is also set
to .014937 (ft/secz)2 to insure a stationary accelerometer

Sfror state process.
Figure 5.6 (a) is a plot of smoother estimated radar

fange bias error, ﬁs(ti/tf). This figure indicates that

this state indeed behaves as a constant with only slight
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variations from the initial estimate, §6(to/tf) = =177.49 ft.

Thus, a reduction in the amount of driving noise on this
State appears valid. We now reduce the strength of driving
noise on this state to indicate more confidence in its be-
havior as a constant. The value of dg for the next itera-
tion of the extended Kalman filter-smoother combination is
Obtained by "tuning” the extended Kalman filter in a sensi-

tivity analysis. rhe new value for g, is determined to be:

q, = -0001 ftz/SeC

This amount of driving noisc is Lwo orders of magnitude less

than the value used in the first iteration. The new initial

o
arliance for xG becomes s

= . \ 2 2
P = 1186.1 ft

and the new initial rondition on this state obtained from
the smoother becomes:

xo() = —177.19 £t

Referring to Fig. 5.7 (a) we see that the azimuth bias

€rror, x.(t,/t.), does not behave enlirely as a constant.
It appears that during the first five seconds of the run

the bias error is greatest and reduces to a minimum value as

the vekicle achieves peak speed (minimum acceleration). As

the vehicle begins to decelerate, the azimuth blas error

4gain grows to a larger value. This result is consistent

With our knowledge of radar operator tracking error. The

104



amount of driving noise on this state appears adequate to
allow the filter to track deviations in its value. Thus,
97 is left unchanged for the next iteration of the forward-
backward estimator. wWe ad just the initial condition and
Variance of this state, as before:

.91619 E-5 rad2

Po7

207 .0066051 rad

The extended Kalman filter and smoother are used again
With new initial conditions on the states and adjusted ini-
tial variance. The amount of driving noise on accelerometer
®rror, x;, and range bias, X, , are also adjusted for the next
iteration of the forward-backward estimator. As a result of
the first iteration of the smoother we make the following
adjustments to our model for measurements and initial con-
ditions:

1) The track heading is corrected to 179.209 degrees
true.

2) Based on the corrected model for measurement in-
COrporation, we recalculate measurement residual variance to

req i R
uce the estimate for R(t;), R(t;).

3) Initial conditions on the state vector are corrected

A
to reflect the smoother calculation of x(t/tg) such that

[167.78
255,88

1.1896

- -8-0108

-.003834

-177.49

-.0064 |

&>
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4) The initial covariance matrix, B» is adjusted to

Teflect the smoother calculated value of E(to/tf)'

—

3746.5
3649.5
24315 0
2o * 5.91
0 .015
1186.1
.916E-5

5) Finally, the system noise matrix, Q(t) is corrected
to indicate increased confidence in our model for range bias,

and ad justed steady-state variance on the accelerometer error:

K
0
0 4]
Q(t) = | 0 .1E-7
.02987
.1E-3
.1E-7 |

The residual variance analysis detailed in Chapter IV
A

NOw produces an estimated measurement noise matrix, g(ti),

Such that:

A 16235.4 0
R(t.) =
& 0 .3900685E-4

The range residual variance is calculated from 415 of 487
total measurements which have a residual magnitude less than
300 feet. These variance values result in calculated RMS
®Irors for the range and azimuth measurements Of 127.42 £t
and .006245 radian, respectively.

Incorporating updated values for measurement noise,

initial state and variance conditions, and system noise, we
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Terun the extended Kalman filter. The results of this run

are shown in Appendix A. The state and covariance time

histories are stored for use in a second iteration of the

Smoother algorithm.

Second Iteration of Smoother

The second iteration of the optimal smoother algorithm
Provides refined state estimates as shown in Figs. 5.8 (a)
to 5.14 (a). The basic behavior and values of these states
Temain unchanged from the first iteration of the smoother.
The smoother state estimates at the initial time, t_, are
Yefined from those obtained in the first iteration.

To illustrate the convergent properties of the smoother,
We present a comparison of state estimates and variances be-
tween the first ang second smoother iterations in Table II.
This table inciludes the percentage difference between the
two iterations for each state and variance value and the
Overali percentage change between the second and first itera-

tion. We choose to compare these values at the time of peak

Vehicle speed at 16.85 seconds. Table II indicates good

feéduction in error variance for all the states. This is due
to the improved initial conditions supplied to the extended
Kalman fiiter after the first run of the smoother. The
SMoother is able to reduce error variance from the first to
Second iterations due to improved state estimates from the

Torward fiiter. The convergence of the velocity state esti-

Mates and reduction in error variance on these states is
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TABLE II

Comparison of First and Second Smoother Iterations

State x(16.85/tf)* x(16.85/tf)** Difference(%) P(16.85/tf)* P(16.85/tf)** Difference (%)

X, 10502.3 10577.3 +5 71 3107.5 1254.2 -59.64
X, 120.89 259.72 +114.84 1367.3 772.7 -43 .49
X4 1080 1082 +.185 2.096 1.117 -46 .71
Xy -8.01 -8.33 -4.0 5.909 2.14 -63.78
Xg -.1073 -.0427 +60.2 .01488 .01488 0

X -177.53 -255.7 -44.03 1186.2 663.22 -44,08
X -.00429 -.0108 -151.75 . 8687E-5 .3444E-5 -60.35

Average change = =3.4% Average change = -45.44%
* First Iteration

** Second lteration






X-axis we have used. However, an exact starting position

and track orientation are not the goals of this analysis.

Our main interest is to obtain a good estimate of peak

Vehicle speed along the track. We are not concerned with

Where this peak speed occurs but more with the value and

€rror of this estimate.
The second iteration of the smoother yields a maximum

Velocity of 1082.028 ft/sec at 16.85 seconds from chosen
initial time. The scalar speed estimate at 18.65 seconds,

FIM trap entry time, is 975.043 ft/sec. The reason we do

Not get better agreement between the smoother and FIM esti-

Mates of velocity at the trap is due to the time skew in the

Tadar data previously discussed. The time scale we have used

Shows trap entry between 18.60 to 18.70 seconds but we are

MOt sure exactly where trap entry occurs in this interval.

The behavior of the error states indicated by the first
iteration of the smoother is reconfirmed by the second itera-

tion. The radar range bias error behaves very much as a

Constant with only slight deviations from a steady value of

~255.68 ft. The smoother estimate of range error is plotted

in Fig. 5.13 (a). Radar azimuth error in Fig. 5.14 (a) is
again shown to be "slowly-varying" over the 24 second inter-

Our initial assumptions about the radar operator azimuth

val,
The error in azimuth

tracking error are again reconfirmed.
Starts out high as the operator lags behind the vehicle due

to rapiq acceleration, decreases as the operator "catches up"
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to the car near peak speed, and again increases upon vehicle

deceleration as the operator '"jumps” ahead of the car.
The accelerometer error state estimate shown in Fig.

5.12 (a) indicates that this state varies between approximately
0 to 0.08 ft/sec2 or 0 to .0025 g's. Maximum error in the ac-

Celerometer occurs at approximately ten seconds into the run

and the error decreases to near zero by 24 seconds. Perhaps

the behavior of this error state can be explained by referring

to Fig. 3.2 which is a plot of raw accelerometer data in g's

vVersus time. Figure 3.2 indicates that maximum sustained

9's on the vehicle occur between 0 to 10 seconds and slowly

decrease from that time on. It appears from Fig. 5.12 (a)

that the accelerometer error is a function of the time of
application and level of sustained g's on the vehicle. This

figure indicates a time-correlated behavior of the accelero-

Such behavior may have been adequately modeled as a
to re-

heter,

Yandom walk. One way to model this behavior might be
error

late the amount of driving noise on the accelerometer
State to the level of acceleration units at any given time.
Thus, 95, could be modeled as time-varying for use in a
Yandom walk model of accelerometer error. Certainly, it can

be argued that a correlation time of one second is too short

from the behavior of the accelerometer error shown in Fig.

S.12 (a). Nevertheless, the forward-backward iterations

have provided better information on the "true"” behavior of

the states of interest. Another iteration of the smoother

Could be made with updated initial conditions and perhaps a
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different model for accelerometer error, but two iterations

have provided sufficient reduction in variance values for

our purposes.
Figures 5.8 (b) through 5.14 (b) are plots of smoother

Calculated error variances for each state. These plots show

that the backward filter is able to reduce the errors in

State estimates from those obtained from the first iteration

Of the smoother. After two iterations of the forward-backward

estimator, the error in state estimation is reduced by an

average of 45% over that obtained in the first iteration of

the smoother.

The results of this second iteration of the smoother are
Now used to test the hypothesis that the rocket car did, in
fact, exceed the reference speed of sound. This will be shown

in detail in the next chapter.
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VI. Hypothesis Testing

The previous chapter presented the results of the ex-
tended Kalman filter - fixed interval smoother estimation

SCheme. The resulting state estimates and error covariance

after two iterations of the smoothing method will now be

€valuated to yield the best estimate of peak rocket car
SPeed and a confidence level for this estimate. Before we
€an analyze g hypothesis test of the peak vehicle speed, it

1S necessary to calculate the scalar speed estimate standard

dF-‘Viation.

nggiggmggg of Scalar Speed Standard Deviation
The values for X3 and Xgs X and y velocity, are given

in terms of mean values, §3(ti/tf) and Qa(ti/%f) and variances
P33(ti/tf) and Py, (t;/t.) and the covariance Py, (t;/t.).

Under our assumptions of approximately Gaussian error models,
these mean and variance values completely describe a two-
dimen8ional Gaussian probability density function which pro-

Pagates forward in time from the initial to final time. The

State estimates of x and y velocity provide the components
°f a two-dimensional conditional mean vector, m, the magnitude
°f Which is the estimate of scalar speed at any time, t;.

This mean vector in the x-y plane, shown in Fig. 6.1, locates
the peak of the density function. Surfaces of "constant like-
Lihoog» (4) are generated by passing planes through the den-

Sity function parallel to the x-y plane. These surfaces are
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constant 1lik
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@llipses parallel to the x-y plane and when viewed from above,

the one sigma surface of constant likelihood appears as in

Fig‘ 601-
The covariance matrix for the two-dimensional velocity

density function determines the spread of the density about

M as in the figure. This covariance matrix also determines

the angular orientation of the "principal axes" (4) of the
€llipses of constant 1ikelihood.

2 v e
J33 P34934%3
234(ti) - (6-1)

G, .2

P43943%34 44

Where P is the correlation factor. If there were no correla-

tion between state estimates of x and y velocity (i.e.,

P3q = Pa3 = 0 ), the covariance matrix would be diagonal,
and the principal axes of the ellipse would be parallel to

the x and Yy axes. The magnitudes of the semimajor and semi-

Minor axes of the one sigma ellipse are determined from the

€lgenvalues, A;» Of the covariance matrix

033 = A (6-2)
04 =%y (6-3)

¥here the primed notation indicates the lengths are defined
in the principal axes frame of reference. We desire to re-
late the calculated scalar speed estimate from the optimal

Smoot her

- A
[Pt ) = Ciky(eyre00) 2y 0e3/60) T (6-4)
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A-P =P
[Az-pj=| " 33 TT34f_,2_
43 44
This "characteristic polynominal" is set equal to zero and
of the

t g .
he Tesulting roots are the eigenvalues, Xl and 12,

v : ; ; - 4
€locity covariance matrix. Noting that this covariance

Matrix is Symmetric so that:
7 e (6-9)
Ve define the characteristic polynominal as:
2 Zx e
AS =(Poa#P, JAH(P P, =P C) = 0 (6-10)
The resulting eigenvalues are

e, y) 2,
172 [(P33+P44)i-./(P33+P44) ~4(P33P, %P3, )1/2

(6-11)

S . . :
Ubstituting these eigenvalues, },, into the matrix [lil‘gj

And noting that the eigenvectors are in the "null space” of
this matrix, so that

Aj=P33 “P3g4] %
1 (6-12)

fesults in two equations for each eigenvector of the form:
(6~13)

ae, *be, =0
11 12

€ither one of which is related to the other by a constant.
Th“S: we have one equation and two unknowns from which to
SOlve for the eigenvector, €;, for a given eigenvalue, A..
We neeq another relation between the components of the eigen-

Yector in order to solve for the individual elements. Noting

that the "normalized"” eigenvector is the unit vector we find

the Other i
at
eguation: - 2 2 Ty (6-14)



Wi .
ith two €quations and two unknowns we can solve for the in-

dividua) components of each eigenvector.

The resulting eigenvectors determine the angular orienta-

tion of the principal axes of the one sigma ellipse. The

Angle, 6,, between the x-axis and the semiminor axis of the

€llipse (associated with x velocity error variance) can be

found from:
6, = can (612/311) (6-15)

are the components of the eigenvector which

This angle

describes the orientation of the semiminor axis.

SPecifies a coordinate transformation matrix, L, for a rota-
tion about the z axis, such that:

cos® sin® O

L =|-sin® cos® O

0 0 i1

(6-16)

This coordinate transformation matrix is used to relate the

Orientation of the normalized velocity vector to the princi-
P21 axes of the one sigma ellipse. Transforming this veloc-
'ty unit vector into the frame of reference of the principal

» We obtain a length from ellipse center to the one sigma

dXes
It is the

€llipse in the direction of the velocity vector.
Magnitude of this length, Iyel in Fig. 6.1, which determines
SCalar Speed standard deviation.

gélSElEEiQﬂ of Peak Scalar Speed and Standard Deviation
After two iterations of the smoother algorithm we arrive

at the following estimates of X and y velocity at 16.85
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S ‘ ’ .

econds. As in the previous iteration, this time is found
t . .

© be the point at which peak x velocity is obtained. The
associated error variances and covariances for X3 and X, at

this time are also given:

Velocity State Estimates Covariances

A

f3(16.85/%f) = 1081.99 fps Py, = 1.117148 (fps)?

x o

4(16.85/t_) = -8.335287 fps P,, = 2.140282 (fps)?
Pyy = Pg3 = -071 (fps)?

T 2 '
he magnitude of the velocity vector or scalar speed estimate

is;

| %] = 1082.028 £ps (6-17)

F . . -

rom the covariances for the velocity state estimates at

16.85 seconds we form the two-dimensional covariance matrix:
1.117148 071

(6-18)

B3y =
071 2.140282

T 3 . 2 D
he eigenvajues and associated eigenvectors for this matrix

are found from (6-11), (6-13), and (6-14):

" .99852
A, = 1.11328 &, =
.0544
(6-19)
E .06894
A, = 2.14453125 &, = [. ]
.99762

The lengths of the semiminor and semimajor axes of the one

Sigma ellipse of constant likelihood become:
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Subtracting (6-26) from (6-21) we £ind the angle between the

€, eilgenvector and the velocity vector in the principal

aXes frame:
61 - 62 = .44172 degrees (6-27)
This knowledge will become helpful in a moment.

We need to find the distance from the one sigma ellipse

Center to the ellipse itself, in the direction of the veloc-

ity Vector, V- - . To accomplish this, we have the generail

e.
1 2
€quation for any point (xl, xz) on the ellipse:

2 2
X x
e i ot & (6-28)
SR

Where c is a constant. For the one sigma ellipse ¢ is equal

to one. We also have the familiar relationship between two

Vectors v., v.:
e i

A

Where y is the angle between the vectors.

= cos ¥ (6-29)

Let x1 and xz

describe the coordinates of the point where the line from

©llipse center in the direction of the transformed velocity

Wnit vector intersects the ellipse. We apply (6-28) and

(6‘29) to the point on the ellipse described by these points

X1 and X,- In (6-29) we are interested in the e, eigenvector

direction of length Jll, and the transformed velocity vector

V= X8 + X,8 (6~30)
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of length Jxli + xzi. It is this length which describes the

One sigma deviation of the scalar speed estimate. From
(6-28)
x12 "22
_— 4 T = 1 (6-31)
Ay 2

and from (6-29)

VA& . [x,8,+x,8,]
—— . S ~=— = CcOos Y = COS(-4417ZJ = ,99997

,ﬁléll ,"1;1”‘252,

.
Jx17+x22 = .99997
X, = 129.095572x, (6-32)
From (6-31)
2 2
A 5
we find
x, = .008173

and from (6-32)

%, 1.055098

2 e 6-33
x,© + %, 1.05513 ( )

This value is the standard deviation of the scalar speed esti-

Thus b

Mate, 1082.028 ft/sec. Note that we expected the standard

deviation of the velocity estimate to be only slightly higher

than the one sigma deviation of the x velocity estimate due
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to the smaii off-diagonal terms of the Bay matrix, and rela-

tive magnitudes of the x and y velocities.

EXEQEEEEEE Test of Peak Speed and Confidence Level
We are now prepared to apply a hypothesis test of the

bPeak vehicle speed. We wish to test the hypothesis that the

Peak speed estimate is above the reference speed of sound, a:

a = 1073.536213 £fps
From our assumptions of Gaussian models, the estimate
Of peak speed and associated covariance describe a condi-

tional normal distribution. The appropriate one-sided "con-

fidence interval" (8) for this hypothesis test is given by

(8):

X - z (confidence level) G(;) > u (6=34)
Where
X - mean of normal distribution = 1082.028
Z - area under the standard normal distribution
curve
0(X) - standard deviation of normal distribution =
1.05513
L - lower bound of confidence interval = 1073.536213
For x = 1082.028 £ps, p = 1073.536213, o(X) = 1.05513:

i_ — -
z(confidence) = —GE = 8.048 (6-35)

To eight significant figures (6-35) yields a probability

that the vehicle was below Mach one of:
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1 - P(x) = 3.4346578 E-15 (6-36)
from which P(x), the probability that the vehicle was above

Mach one, is found to be:
P(x) = .9999999999989965653422 (6-37)

For all intents and purposes, we have achieved a proba-

bility or confidence level of one that the vehicle exceeded

the reference speed of sound. Of course, this confidence

level is based on the assumptions and modeling technigues we
have used in this analysis. Such a high confidence after
Only two iterations of the forward-backward estimator illus-

trates the power of optimal smoothing theory in post-run

data analysis.

132






See exact correlation between filter estimated velocity and

FIM trap Speed at 18.65 seconds. On the time scale we have

used, the FIM trap occurs somewhere between 18.60 and 18.70

Seconds. In Spite of this time skew, the estimated values

are close enough to trap speed to allow the comparison shown

in Table III.
The actual starting position of the vehicle is really

Mot the information we desire. We set out primarily to get

the best estimate possible of peak vehicle speed no matter at

What time or where on the track this occurs. In terms of

Vehicle velocity, the smoothing algorithm used in this analy-

Sis after two iterations has provided excellent convergence

to the "tryen peak speed.
We also have come close to the maximum velocity estimate

Obtained on the day of the run from AFFTC radar data analysis.
It appears that the AFFTC method used to correct erroneous

fange data was valid and even averaging only three radar
Points came very close to the "true" peak speed. We now

SUummarize the estimates obtained of the peak vehicle speed
by arrrc, accelerometer data only, and one and two iterations

Of the forward-backward smoothing method incorporating range

and azimuth measurements. These velocity estimates are con-

Verted to Mach number using the calculated reference speed

Of sound of 1073.536213 ft/sec. These results are summarized

in Table 1V,
Two iterations of the optimal smoother also provide some

Information on the behavior of the error states of the
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TABLE III

Speed Estimate at FIM Trap (18.65 seconds)

=
=l Method Feet/sec MPH
FIM Recorded speeqd 977.1432 666 .234
Accelerometer pata Only 978.582 667.215
gifierun of Extended Kalman 5185 667.649
First Run of Smoother 972.91 663.35
g?g:gg Run of Extended Kzlman
978.568 667.206
975.043 664,802

Second Run of Smoother

TABLE IV
Peak Scalar Speed Estimates
- Abov
Time e
Method Used Feet/sec MPH MACH Mach, 1

AFFTC Computer Analysis

Of Corrected Radar Data 1084.835 739.66 1.0105 N/A

Integratio i
. n of Longitud-
ina Accelerometergbata 1080.05 736.4 1.006 1.25 sec
Pirst Run o
f Extended

Kalman Filter 1089.5  742.84 1.0149 2.0 sec
First Run of Smoother  1080.006 736.34 1.006 1.25 sec
Second R

un of Extended
Kalman Filter 1086.71 740.94 1.0123 1.8 sec

1.008 1.4 sec

Secong Run of Smoother 1082.028 737.75
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accelerometer and radar. The accelerometer error varies be-

tveen 0 and .08 ft/becz(o to .0025 g's) during the 24 second

time interval of interest, achieving its maximum value at ap-

Proximately ten seconds into the run. From ten seconds on,

this error Slowly decreases to approximately zero by 24 sec-
Onds. The sustained g's on the vehicle are fairly high
(Fig. 3.2) up to ten seconds and then begin to decrease after
this time. 1t would appear the accelerometer error is a
function of the length of time sustained g's are applied to
the accelerometer and the magnitude of these acceleration
units. Depending on one's definition of "slowing-varying",
One could make a case for using a random walk model for the

dCcelerometer error., Certainly, it could be argued that a

COrrelation time of one second is too short for the behavior

Of this error. Another study of the rocket car data could

Use on-line "tuning" of the system noise matrix, Q(t), by
Allowing the smoother to calculate an estimate of its value
over time, ﬁtti/th. One could also calculate smoother esti-
Mated inputs a(ti/tf). In terms of the rocket car analysis,
Such estimation of accelerometer input at any time t; based

°n the entire measurement time history would yield improved

State estimation. Nevertheless, the smoother has provided a

better "glimpse" of the “true" behavior of this state than

is available from a forward filter only, especially without

More knowledge about inherent accelerometer €rrors.

The random walk models for radar range and azimuth bias

®rrors prove to be very adequate. These errors are shown as
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Nearly constant over the 24 second interval with only slow

changes from the behavior of true constants. Certainly, we

are somewhat surprised at the magnitude of the radar range

bias error. Considering the size of the vehicle being tracked,

lack of transponder, ground clutter, and distance from the

Tadar site, it is conceivable that the radar range has a

large inherent error. The azimuth bias error behaves as we

€Xpected based on our knowledge of operator tracking perform-

ance. Perhaps "bias" is a misnomer, as most of the error in

azimuth is operator-induced. The azimuth error shows that

the operator lags behind the vehicle initially but is able to

regain good tracking as the acceleration decreases. After

engine "flame-out” at approximately 18 seconds, the azimuth

error again increases, indicating the operator has probably

"Jjumped” ahead of the vehicle. For another iteration of the

eStimator, a better description of the azimuth error could

be used. oOne could relate the strength of driving noise on

this state, 9,, to the acceleration of the vehicle. When ac-

Celeration is high g would be increased. The amount of driv-

ing noise would decrease as vehicle acceleration decreases.
This analysis has shown that state estimation can be

Significantly improved if the estimation algorithm has access

This is the real benefit of a

to future measurements.
The method

Smoother algorithm in post-run data analysis.

USed in this analysis requires a straightforward incorpora-
tion of existing theory and available software with only

limited additional programming required. The forward-backward
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iteration Scheme is a simple yet effective way to provide
improved state estimates in an "off-line” application. It
Can be applied to almost any system of interest no matter
what dimension, with only computer workload becoming a driv-

ing factor, Good dynamical and error models are a require-

Ment, but not a necessity. The iterative method used in

this analysis can help "fine-tune"” very simplified models to

Provide improved state estimates.

The reader familiar with estimation of unknown para-
Meters using a "maximum likelihood"” estimation technique may
Wonder if such a technique could have been employed in this

analysis. The answer is a guarded "yes" if we can make some

valid assumptions. The inherent assumption in maximum likeli-

hood estimation is that the parameters to be identified can

be accurately modeled as constants over some time interval

Of interest. 1In this analysis, we are concerned with accur-

ate estimates of state values at discrete points in time (i.e.,
Peak speed at some time, ti). If we assume the parameters
affecting this problem, such as accelerometer and radar errors,

are constant over time, a maximum likelihood estimation algo-
Fithm will yield a best fit of a constant to the data. If

the parameters are not true constants, a better (non-constant)
Model would inherently allow better estimation accuracy.

This ana1ysis has shown that the error states do not behave

S constants. Therefore, one cannot accurately model these

Sfrors as constant unknown parameters for implementation in

% maximum likelihood estimation algorithm without non-negligible
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estimation performance degradation. Without a priori informa-

tion on the behavior of the errors to be modeled, the deci-
Sion was made to model the errors as states in the forward
€Xtended Kalman filter-backward smoother estimator.

If there is a !"bottom-line" to this analysis it has to
do with the peak speed of the Budweiser Rocket Car on 17
December 1979. Rather than "eyeballing"” the peak speed of
the car based on poor data, we are able to provide an esti-
Mate of the speed and a confidence level for our estimate.
In fact, afrter only two iterations of the forward-backward
Smoothing technique, we can state with probability of nearly
One that the vehicle did achieve the reference speed of

Sound, based on the assumptions and modeling techniques used

in this analysis.

Recommendat ions

The position estimates and off-zero velocities calcul-

3ted by the smoother at the initial time, t , indicate a
father poor choice of origin for the vehicle frame of refer-

b d ] NEAN
®hce. Relying on the radar to provide a good initial "fix

- . . t
Of vehicle position, no matter how long the radar 1s aimed a

the vehicie, is only "wishful thinking". Perhaps a better

Origin could have been located at remote camera site A8

Shown in Fig. 1.1. This point has been surveyed and "exact

i r
latitude and longitude coordinates of both A8 and the rada

: ' S
Slte are known. Using these coordinates one could calculat

4 much better DELX and DELY from which to reference changing
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r . .
adar measurements to vehicle motion in the frame of refer-
en . : : »

Ceé. If the information on track alignment with respect to

A8 4
1S correct, a frame of reference at A8 should indicate a

v .
®hicle track parallel to the x-axis. The starting position

of . : :
the vehicile within a frame of reference centered at A8 is
sti : A

11 unknown, however, and only iterative methods could

" s
Zero-in" on the "true" starting position.

An adjustment could be made in the initial time chosen

in the radar data to £ind the "true" sample time as the
Vehicle starts to move. At 20 samples per second, however,
One can only get within 0.05 second accuracy. Also, the

fadar data is constant until the azimuth suddenly increases

We chose one sample time before the first
One could "back-up”

Very rapidiy.
change in azimuth as the initial time.
the radar data until the smoother estimate of x-velocity at
to approaches zero.

Other possibilities for further study include some off-

l i ' . .
ine tuning of system noise to account for the time-varying

n
Ature of accelerometer and azimuth errors. One way to ac-

Complish this might be to use the smoother estimate of Sys-
tem noise, a(ti/%f), based on the measurement data to provide
2 time history of driving noise for each of the affected
States. This would provide the forward extended Kalman fil-
ter with improved knowledge of state behavior.

Finally, it might be beneficial to allow the smoother

t . :
© calculate an estimate of the applied controls, in this

c :
4Se accelerometer specific force. This smoother estimated
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Control input, a(ti/tf), could be used to better determine
Accelerometer errors and improve state estimation. These
POSsibilities were not explored in this analysis due to time

limitations and a feeling that confirmation of peak vehicle

Speed was the critical area of concern.
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Plots from Second Iteration

Appendix A.
of Extended Kalman Filter

This section presents the results of the second itera-
tion of the extended Kalman filter developed in Chapter III
8d IV. State estimates and error variances at the initial
time from the first iteration of the Meditch (5) smoothing

Algorithm are used to update the initial conditions of the

SXxtended Kalman filter for this run. In addition, a slight

GOrrection to the assumed test track heading provides closer
Fillter correiation to range and azimuth measurements, allow-
g a reduction in the estimated measurement noise for radar

range.
Figure A.1 shows a plot of estimated and actual radar

fange obtained with the corrected test track heading. This
Figure indicates that the divergence of actual and estimated
Fange between 20 to 24 seconds has been removed.

The extended Kalman filter shows improved convergence
Of the standard deviations of the state estimates due to im-
Proved initial conditions from the smoother. This can be
S€en by comparing to part (b) of Figs. A.2 through A.8 to
Part (b) of Figs. 4.17 to 4.23. Figures A.9 (a) and A.9 (b)
are plots of the range and azimuth measurement residuals
Bracketed by the residual standard deviations. From Fig.
4:9 (a) it is apparent when the residual monitoring routine

bypasses range measurements in excess of three times the re-

Sldual standard deviation. Figure A.10 (b) is an expanded
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i i ] ar speed estimate
Version of Fig. A.10 (1) which is the scalar speed

\ A/ b

Magnit ude £ o te : ber.
: ' i i ~ity vector) converted to Mach num
(magnitude of the velocity vector) conver
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Appendix B. Optimal Smoother Computer Program

This appendix includes a listing of the computer pro-

9ram used to incorporate the Meditch (5) backward-recursive

Optimal linear smoother algorithm described in detail in

Chapter II. The data required for this program includes the

Current sample time, t,, state estimate vector before update,

Covariance matrix before update (stored in upper triangular
form), state estimate vector after update, and covariance

Matrix after update (stored in upper triangular form) from

£, to te.
For this analysis the state estimates and covariance

before and after each measurement update are stored as a re-
Sult of one run of the extended Kalman filter implemented in

SOFE., a short data reformating program was used to put the

data at the final time first and the remaining data records

in backward-recursive form to the initial time. This €enables

the Smoother program to read forward through the data but

Actually compute quantities "bhackward” iu time. The Meditch

A @ A . '
algorithm requires x(t; ) and x(t;,, ) for one calculation

at each sample time. The data was put in the following order

to alilow for a step-by-step "read" of the required quantities

for each time of calculation. Each data record contains the

following information in the order shown:

1. time’ ti

A .
2. state vector at time ti after update, E(ti )
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3. covariance matrix at time t; after update, E(ti+)

4. state vector at time t; before update, §(ti—)

5. covariance matrix at time t, before update, g(ti°)
The order of the system used in the rocket car analysis aj-
lowed for storage of formated records. A higher order sys-~
tem will probably require more efficient data storage and

improveq formating of smoother printed output.
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74/74 OPT=1 FTN 4.8+564

PROGRAM SMOOTH( INPUT ,QUTPUT, TAPES=INPUT, TAPE6=0QUTPUT,TAPE7,
- TAPES, TAPES)

THIS IS THE EXECUTIVE RQUTINE OF A FIXED INTERVAL

SMOOTHER ALGORITHM, THE DELVELOPMENT OF THE ALGORITHM
IS THE RESULT OF WORK DONE BY J. S. MEDITCH AND
PUBLISHED IN INFORM AND CONTROL, 1967,

THIS ALGORITHM USES THE QUTPUT OF A FORWARD RUNNING
KALMAN FILTER{IN THIS CASE AN EXTENDED FILTER). IT
PROPAGATES A SMOOTHED ESTIMATE OF THE STATE VECTOR AND
COVARIANCE MATRIX BACKWARD FROM AN INITIAL CONDITION
AT THE FINAL TIME OF THE FORWARD FILTER. THIS RESULTS
IN AN IMPROVED STATE ESTIMATE AND LOWER COVARIANCE.

DATA FROM THE FORWARD FILTER IS STORED ON MAGNETIC TAPE
IN THE FOLLOWING FORMAT FOR EACH RECORD:
1. TIME
2. XFMINUS - VECTOR OF STATE ESTIMATES BEFORE
MEASUREMENT UPDATE
3. PFM - UPPER TRIANGULAR COVARIANCE MATRIX
BEFORE MEASUREMENT UPDATE(STORED IN THIS
MANNER FOR COMPACTNESS)
4. XFPLUS - VECTCR OF STATE ESTIMATES AFTER
MEASUREMENT UPDATE
5. PFP - UPPER TRIANGULAR COVARIANCE MATRIX
AFTER MEASUREMENT UPDATE

DEFINITION OF VARIABLES IN MEDITCH ALGORITHM
XFMINUS = VECTOR OF (NS) STATES BEFORE UPDATE
XFPLUS ~ VECTOR OF (NS) STATES AFTER UPDATE
XFTF - SMOOTHED ESTIMATE OF STATE VECTOR
PFMINUS — COVARIANCE MATRIX BEFORE UPDATE
PFPLUS - COVARIANCE MATRIX AFTER UPDATE (NSXNS)
PFTF = SMOOTHED COVARIANCE
AMAT -~ SMOOTHING ESTIMATOR GAIN MATRIX (NS X NS)
PHI = STATE TRANSITION MATRIX FOR ADJUOINT SYSTEMS

PHI = EXP (F * T) (TRANSPOSED)

STARTING CONDITION FOR SMOOTHER

XFTF(TF)=XFPLUS(TF)

PFTF(TF)=PFPLUS(TF)
PROPAGATION OF STATE ESTIMATE
XFTF(TI)=XFPLUS(TI)+AMAT(TI) (XFTF(TI4+1)=XFMINUS(TI+1))
AMAT(TI)=PFPLUS(TI)*PHI(TI+1,TI)*PFMINUS(TI+1)%*=1
PETF(TI)=PFPLUS(TI)+AMAT(TI)(PFTF(TI+1)~PFMINUS(TI+1))*

AMAT (TI) TRANSPOSED

IN ADDITION TC THE ROUTINES HERE, THE DAVID L, KLEINMAN

LIBRARY OF LINEAR SYSTEMS PROGRAMS 1S USED TO PROVIDE
VECTOR AND MATRIX OPERATIONS.

COMMON /MAIN1/ NDIM,NDIM1,COMi(10,10)
COMMON /MAIN2/ COM2(10,10)

COMMON /INQU/ KIN,KOUT,KPLOT,KDATA,KUSER
comMoN /DIM/ NS,NTR,NSEC,NSAMP,NSTEP
COMMON /PHI/ PHI(10,10)
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PROGRAM SMOOTH 74/74 OPT=Y
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c
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FTN 4.8+564

COMMON /XFP/ XFPLUS(10)

COMMON /XFM/ XFMINUS(10)

COMMON /PFPV/ PFP(55)

COMMON /PFMV/ PFM(55)

COMMON /PFP/ PFPLUS(10,10)

COMMON /PFM/ PFMINUS(10,10)

COMMON /A/ AMAT(10,10)

COMMON /XFTF/ XFTF(10)

COMMON /PFTF/ PFTF(10,10)

COMMON /HEADING/ TITLE(20),ADATE,ATIME
COMMON /TIME/ T,T0,TF

LOGICAL PLOTEM,DATACHK,USEROUT

NAMELIST /IN/ NS,NTR,NSAMP,T0,TF,DATACHK,PLOTEM,USEROUT
DATA NDIM,NDIM1/10,11/

DATA KIN,KOUT,KPLOT,KDATA,KUSER/5,6,7,8,9/

INITIALIZE AND READ IN VARIABLES FROM INPUT FILE

NS=0
NTR=0
NSAMP=0
NSEC=0
T0=0.
TF=0.
T=0.
USERQUT=.FALSE.
DATACHK=,FALSE.
PLOTEM=.FALSE.
NSTEP=0

READ TITLE AND PRINT TO OQUTPUT

CALL DATE(ADATE)

CALL TIME(ATIME)

READ(KIN,1000) TITLE

WRITE(KOUT ,1001)TITLE,ADATE,ATIME

READ(KIN,IN)
WRITE(KOUT, IN)

NSTEP=INT(NSAMP*(TF-T0))+1

IélTIAL!ZE COMMON BLOCKS AND FIND FINAL TIME CONDITION
CALL ONCE(DATACHK)

LOOP FOR SMOOTHER CALCULATIONS

CALL GETMINS

CALL GETPLUS

CALL MAKEA .

CALL SMOOTHX ¢

CALL SMOOTHP .
CALL OUT(PLOTEM,USEROUT)

IF(T.EQ.TO) GOTO 20

GOTO 10

1t1/02/83
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PROGRAM SMOOTH 74/74 OPT=1

1000 FORMAT(20A4)
1001 FORMAT("1SMOOTHER1",10X,20A4,10X,2A10)
20 STOP "SMOOTHER1 FINISHED"

END

FTN 4.8+564
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oPT=1 FIN 4.8+564

SUBROUT INE ONTE(DATACHK )

CALLED ONLY ONCE PER RUN TO INITIALIZE ALL
MATRICES AND FIND THE FINAL TIME CONDITION,
CAN BE USED TO READ IN A TIME~INVARIANT MATRIX.

COMMON /MAIN1/ NDIM,NDIM1,COM1(10,10)
COMMON /MAIN2/ COM2(10,10)

COMMON /INOU/ KIN,KQOUT,KPLOT,KDATA,KUSER
COMMDN /DIM/ NS,NTR,NSEC,NSAMP,NSTEP
COMUON /PHI/ PHI(10,10)

COMMON /XFP/ XFPLUS(10)

COMMON /XFM/ XFMINUS(10)

COMMON /PFMV/ PFM(55)

COMMON /PFPV/ PFP(55)

COMMON /PFM/ PFMINUS(10,10)

COMMON /PFP/ PFPLUS(10,10)

COMMON /A/ AMAT(10,10)

COMMON /XFTF/ XFTF(10)

commotl /PFTF/ PFTF(10,10)

CORVON /TIME/ T,T0,TF

LOGICAL DATACHK

ZERDO ALL REQUIRED MATRICES AND VECTORS

CALL ZROIZE(NS,NS,PHI)

CALL ZROIZE(1,NS,XFPLUS)
CALL ZROIZE(1,NS,XFMINUS)
CALL ZROIZE(1,NTR,PFM)

CALL ZROIZE(1,NTR,PFP)

CALL ZROIZE(NS,NS,PFPLUS)
CALL ZROIZE(NS,NS,PFMINUS)
CALL ZROTIZE(NS,NS,AMAT)
CALL ZRDIZE(1,NS,XFTF)

CALL ZRDIZE(NS,NS,PFTF}
CALL ZRODIZE(NDIM,NDIM,COM1)
CALL ZROIZE(NDIM,NDIM,COM2)

READ IN TIME~INVARIANT PHI MATRIX
IN THIS CASE, PHI WAS SIMPLY SET IN THE SUBROUTINE

DO 10 I=1,NS
PHI(I,1)=1.0
CONTINUE
PHI(3,1)=0.05
PHI(4,2)=0,05
PHI(5,5)=.9512
PHI(5,1)=.001229
PHI(5,3)=.04877

SEARCH DATA FILE FOR FINAL TIME AND SET INITIAL
CONDITICN FOR BACKWARD PROPAGATION

READ(KDATA,90) T,(XFTF(JU),J=1,NS),(PFP(J),J=1,NTR)
FORMAT (F6.2,7E15.7,4(/7E15.7))

CALL MAKEP(NS,PFP,PFTF)
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1002
1003
1004

FTN 4.8+564

PRINT FINAL TIME CONDITIONS

WRITE(KOUT,1000) T
WRITE(KQUT,1001)

DO 50 I=1,NS
WRITE(KOUT,1002) I,XFTF(1)

CONTINUE

WRITE(KOUT,1003)

DO 60 I=1,NS

WRITE(KOUT ,1004) (PFTF(I,J),J=1,NS)
CONT INUE

FORMAT (" 1SMOOTHER INITIAL CONDITION AT TF=",F6.2,".%)
FORMAT("OSTATE VECTOR AT FINAL TIME:*")
FORMAT ("OELEMENT(" ,12,%)=",E13.5)

FORMAT(//,"OCOVARIANCE MATRIX AT FINAL TIME:"*)
FORMAT(1H010E13.5)

1F (DATACHK) STOP “FORMAT CHECK OF DATA COMPLETE"
RETURN

END

11/02/83
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FTN 4.8+564

SUBROUTINE GETMINS

READS DATA FILE AND FINDS XFMINUS VECTOR AND
PFM VECTOR. FILLS PFMINUS MATRIX.

COMMON /XFM/ XFMINUS(10)

COMMON /PFMV/ PFM(55)

COMMON /PFM/ PFMINUS(10,10)

COMMON /INOU/ KIN,KOUT,KPLOT KDATA,KUSER
COMMON /DIM/ NS,NTR,NSEC,NSAMP ,NSTEP
COMMON /TIME/T,TO,TF

READ (KDATA,91) (XFMINUS(I),I=1,NS),(PFM(1),I=1,NTR)
FORMAT (7E15.7,4(/7€15.7))

FILL PFMINUS MATRIX
CALL MAKEP(NS,PFM,PFMINUS)

RETURN
END
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SUBROUTINE GETPLUS 74,74 OPT={ FTN 4.8+564

SUBROUTINE GETPLUS

c
£ READS DATA FILE AND FINDS XFPLUS AND PFPLUS
c FOR PREVIOUS SAMPLE TIME. FILLS IN PFPLUS MATRIX.
p
COMMON /INOU/ KIN,KOUT,KPLOT,KDATA,KUSER
COMMON /DIM/ NS,NTR,NSEC,NSAMP,NSTEP
COMMON /XFP/ XFPLUS(10)
COMMON /PFPV/ PFP(55)
COMMON /PFP/ PFPLUS(10,10)
COMMON /TIME/ T,TO,TF
o

READ (KDATA,92) T, (XFPLUS(I),I=1,NS),(PFP(1),1=1,NTR)
92 FORMAT(F6.2,7E15.7,4(/7E15.7))

FILL IN PFPLUS MATRIX

CALL MAKEP(NS,PFP,PFPLUS)

o oono

RETURN
END
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SUBROUTINE MAKEA

COMPUTES SMOOTHER GAIN MATRIX, A
REQUIRES A MATRIX INVERSE ROUTINE
AND A MATRIX MULTIPLICATION ROUTINE,

COMMON /MAIN1/ NDIM,NDIM1,COM1(10,10)
COMMON /INOU/ KIN,KOUT,KPLOT,KDATA,KUSER
COMMON /DIM/ NS,NTR,NSEC,NSAMP,NSTEP
COMMON /PHI/ PH1(10,10)

COMMON /PFP/ PFPLUS(10,10)

COMMON /PFM/ PFMINUS(10,10)

COMMON /A/ AMAT(10,10)

DIMENSION PFINV(10,10), A1(10,10), A2(10,10)
EQUATE DUMMY MATRIX WITH PFMINUS
CALL EQUATE(AT,PFMINUS,NS,NS)

INVERT PFMINUS, PRINT ERROR MESSAGE IF PFMINUS
1S OF DEFICIENT COMPUTATIONAL RANK TO INVERT

MT=1
CALL GMINV(NS,NS,A1,PFINV MR MT)

MULTIPLY PHI MATRIX BY PFINV
CALL MAT1(PHI,PFINV,NS ,NS,N5,6A2)
COMPUTE AMAT MATRIX (AMAT=PFPLUS*A2)

CALL MAT1(PFPLUS,A2,NS,NS,NS,AMAT)

RETURN
END
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SUBROUTINE MAKEP
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74/74  OPT=1

SUBROUTINE MAKEP(N,PIN,POUT)

FILLS IN FULL MATRIX FROM A VECTOR MATRIX
STORED IN UPPER TRIANGULAR FORM.
PIN IS STORED IN THE FOLLOWING ORDER:

PIN(1)=P(1,1)
PIN(2)=P(1,2)
PIN(3)=P(2,2)

ETC.
DIMENSION PIN(S55), POUT(10,10)

1COL=1

Ni=1

DO 10 I=1,ICOL

POUT(I,1COL)=PIN(N1)

Ni=N{+1

CONTINUE

IF (I1COL.EQ.N) GOTO 30
ICOL=ICOL+1

GOTO 20

Ni=1
N2=2
DO 40 U=N2,N
POUT (U .N1)=POUT(N1,u
CONTINUE .
1F (N2.EQ.N) GOTO 50
Ni=N1+1
N2=N1+1
GOTO 60

RETURN
END

FTN 4.8+564
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SUBROUTINE SMOOTHX

COMPUTES THE “SMOOTHED" ESTIMATE OF STATE VECTOR
AS IT PROPAGATES BACKWARD IN TIME.

REQUIRES VECTOR ADDITION AND VECTOR MULTIPLICATION
ROUTINES TO BE USED,

O0000Qn

COMMON /DIM/ NS,NTR,NSEC,NSAMP NSTEP
COMMON /XFP/ XFPLUS(10)

COMMON /XFM/ XFMINUS(10)

COMMON /A/ AMAT(10,10)

COMMON /XFTF/ XFTF(10)

DIMENSION A(10), B(10), C(10)
EQUATE A DUMMY VECTOR A TO XFTF

AND FIND THE DIFFERENCE BETWEEN XFTF AND
XFMINUS

ooonoa ©

DO 10 I=1,NS
A(1)=XFTF(1)
10  CONTINUE
CALL VADD(NS,=1.0,A,XFMINUS)

COMPUTE AMAT TIMES VECTOR DIFFERENCE
CALL VMAT1(AMAT,A,NS,NS,B)

o0oo 000

COMPUTE NEW XFTF VECTOR(SMOOTHED ESTIMATE)

DO 20 I=1,NS
C(I)=XFPLUS(I)
20 CONTINUE
CALL VADD(NS5,1.0,C,B) %

C SET NEW ESTIMATE
Cc
DO 30 I=1,NS
XFTF(I)=C(1)
30 CONTINUE

RETURN
END
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SUBROUTINE SMOOTHP

COMPUTES THE "“SMOOTHED® COVARIANCE MATRIX AS
IT PROPAGATES BACKWARD IN TIME.

REQUIRES MATRIX ADDITICON AND MULTIPLICATION
ROUTINES TO BE USED.

COMMON /MAIN1/ NDIM,NDIM1,COM1(10,10)
COMMON /DIM/ NS,NTR,NSEC,NSAMP ,NSTEP
COMMON /PFP/ PFPLUS(10,10)

COMMON /PFM/ PFMINUS(10,10)

COMMON /A/ AMAT(10,10)

COMMON /PFTF/ PFTF(10,10)

DIMENSION PDIFF(10,10), APAT(10,10)
COMPUTE DIFFERENCE BETWEEN PFTF AND PFMINUS

CALL MADD1(NS,NS,PFTF,PFMINUS,PDIFF,-1.0)

COMPUTE MATRIX PRODUCT AMAT*PDIFF®*AMAT(T)
CALL MATS(NS,NS,AMAT,PDIFF,APAT)

COMPUTE NEW VALUE FOR PFTF
CALL MADD1(NS,NS,PFPLUS,APAT,PFTF,1.0)

RETURN
END
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CARD NR.
41

43
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44
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891

SUBROUTINE OUT
SEVERITY DETAILS

I
I
I
1
I

23 CD 42
56 CD 43
59 CD 43
20 CD 45
23 CD 45

FTN 4.8+564 11/02/83 16.25.55

74/74  OPT=1
DIAGNOSIS OF PROBLEM
TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE 1/0 DEVICE CAPACITY.
FIELD WIDTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE I/0 DEVICE CAPACITY.
TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE I/0 DEVICE CAPACITY.
IT MAY EXCEED THE I/0 DEVICE CAPACITY.
IT MAY EXCEED THE I/0 DEVICE CAPACITY,

FIELD WIDTH IS GREATER THAN 137 CHARACTERS.
TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS.
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SUBROUTINE ZROIZE 74/74 oPT=1

c
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SUBROUTINE ZROIZE(M,N,A)
ZEROS AN M X N MATRIX, A
DIMENSION A(10,10)

DO 10 I=1,M
DO 20 J=1,N
A(I.d)'on
CONTINUE
CONTINUE

RETURN
END

FTN 4.8+564
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