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Abstract

We develop and present results of an artificial neural network (ANN) based com-
pensation technique for mismatched classifier training and testing conditions in a speaker
identification (SID) task. One ANN per feature per speaker is trained to perform a map-
ping of that feature from a corrupted condition to an undistorted condition. Therefore,
a classifier trained under one condition may be used to classify data collected under a

different condition.

Speech utterances from 168 speakers, collected in a studio, and also re-recorded after
transmission over telephone networks, are used for developing and testing the method.
Peak formant resonant frequencies, their bandwidths, and pitch are used as features. These
features from the studio speech are used to train Gaussian Mixture Model classifiers.
Portions of the studio and telephone speech are used to train the compensation ANNs. In
mismatched train and test conditions, features from telephone speech are modified by the

trained ANNs and applied to the GMMs trained with features from studio speech.

Without compensation, SID accuracy is 6%. The compensation method developed
in this work provides mismatch SID accuracy of 58.3%. Previous research on the same
data with the commonly used Mel-Frequency Cepstral Coefficients as features and a typ-
ical compensation method of Cepstral Mean Subtraction with Band-Limiting gives SID

accuracy of 27.4% with the same type of classifiers.




CHANNEL-MISMATCH COMPENSATION
IN SPEAKER IDENTIFICATION:
FEATURE SELECTION AND ADAPTATION
WITH ARTIFICIAL NEURAL NETWORKS

I. Introduction
1.1 Overview

Speaker recognition is the process of identifying a person from the characteristics
of their voice. As performed on computers, speaker identification (SID) is the task of
choosing one speaker model from a set of models best matching the utterance given. The
models are formed from past information and are stored computer memory for eventual
SID testing comparisons. A difficulty arises when the environmental conditions under
which the models were formed are different from those conditions associated with the new
utterance to be tested. Published attempts to solve this channel-mismatch problem have
resulted in relatively poor results [13], [20], [22], while SID under common training and

testing conditons is generally considered solved [3], [7], [13], [20].

Although ideal theoretically, training speaker reference models under the same degra-
dations as the test features is often not realistic, and the training of models under noisy
conditions often still leads to sub-optimum results, whether or not the testing is done
under better conditions [3], [6]. Therefore, the goal is to create an identification system
robust to mismatched training and testing conditions. In this study, the mismatch involves
the difference between studio-quality speech and the same speech distorted over telephone
lines and equipment. This simulates conditions for remote access by deployed military

personnel to secure electronic equipment, as one example.
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1.2 Problem Statement
Investigate features which are robust to channel mismatch and implement a process

to address the effects of mismatched training and testing conditions on those features in

SID.

1.3 Scope

Features from the 168 test speaker set of the Texas Instruments and Massachusetts
Institute of Technology’s TIMIT and NYNEX'’s NTIMIT databases were used to form
speaker models and to manipulate through compensation methods for SID testing. The

general objectives to investigate the previously stated-problem follows:

e Based on previous research, choose features proven to have reasonable speaker-

specific charteristics to achieve high SID accuracy.
e Train models using part of TIMIT, a studio-quality database.

e Perform SID testing using the speaker models against only studio-quality speech to

confirm choice of features and maximum achievable results.

e Perform SID testing using the speaker models against some of the distorted speech
in NTIMIT utterances to achieve baseline statistics on SID under uncompensated,

mismatched conditions.

e Develop channel mismatch compensation technique using portions of TIMIT and

NTIMIT databases not used in SID testing.

e Test compensation technique through SID testing with the trained models.

1.4 Approach

Based on Sambur’s work [8] and preliminary experiments, formant resonance fre-
quencies, their corresponding bandwidths, and pitch were chosen as reasonable features
to pursue. Baseline statistics were obtained for SID for same-channel and cross-channel
conditions. That is, speaker models were created by using TIMIT training sentences, and

testing was done on TIMIT and NTIMIT utterances. Artificial neural networks (ANNs)
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were then used to compensate for the effects of the channel in NTIMIT before obtaining
SID rates for comparison to the baseline. The ANNs were used in feature mapping or

function approximation, attempting to undo the effects of the telephone channel.

1.5 Thests Organization

The remainder of this thesis is organized as follows. Chapter II provides information
on the theory of features, the semi-parametric classifiers, and ANN functional mappers
we used. Chapter III explains the methodology we implemented in the techniques and
experiments. Chapter IV contains our results, and Chapter V contains our conclusions

and recommendations.
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II. Background Theory

2.1 Introduction

This chapter provides the necessary theoretical foundation for SID and ANNs. The
biological and mathematical basis for the selected features is followed by a discussion on

ANN function approximation and semiparametric classification theory.

2.2 Process OQverview

Figure 2.1 shows our general SID process developed from the theories that will be
discussed in this chapter. Feature selection and extraction was used for both speaker
model generation and the creation of mapping ANNs. Original, undistorted features were
SID tested against the speaker models for confirmation of feature selection and to establish
maximum expectations for compensation results. Uncompensated features were SID tested

for baseline statistics to compare the results when we used features mapped by the ANNs.

Qriginal
"Clean" - Featu!'e
Testing Data Extraction
Original Feature Speaker Model
"Clean" " Extraction Generation
Training Data
M Ao | . Classification
Channel Feature Training of )
"Distorted" > Extraction > Feature
Training Data i Mapping ANNs
..&2;?:& - EFeature > Feature
Testing Data xtraction Mapping ANNs

Figure 2.1  General Diagram of Channel Mismatch Solution

2.3 [Feature Selection

The most commonly used and accepted features for speaker recognition are Mel-
Frequency Cepstral Coefficients (MFCCs) [3], [5], [6], [10], [12], [13]. To obtain MFCCs,
a discrete fourier transform (DFT) is performed on the sampled speech segment and pro-

cessed through a series of triangular filters spaced along a Mel-frequency scale; the Mel-
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frequency scale is a nonlinear frequency scale representing characteristics of human hearing.
The log of the output magnitudes of the filters is then calculated and processed by a trans-
form, usually a discrete cosine transform, with the corresponding coefficients being the

MFCCs for the sampled speech segment.

SID accuracy plummets when MFCCs are use in conditions with channel mismatch
[13], [20]. The results are not promising, even with compensation [13], [20], [22]. Therefore,
we sought a different set of features. Sambur [8] demonstrated that the formants and pitch
are good features for similar training and testing conditions, although not to the extent

MFCCs have been.

Formants are the resonant frequencies the vocal tract imposes onto the signal coming
from the diaphragm. For voiced phonemes, speech production generally can be modeled by
a quasi-periodic pulse-train generator with spectral modulation occurring through a cavity,
the vocal tract. The excitation from the diaphragm is changed by the glottis, a cartilage
plate, by manipulating and stretching the adjacent vocal cords as air is passed through.
If the vocal cords are vibrating, phonation occurs and the segment of speech is declared
voiced. If the waveform is instead aperiodic or random due to the vocal cords not oscil-
lating, it is unvoiced. Modulation is imposed on the glottal waveform by the vocal tract.
The vocal tract adds its inherent natural resonances according to the current shape of the
tract. These resonant frequencies are formants, and, in this thesis, their peak frequencies
will be referred to as formants. The particular formant spectrum structures resulting from
the unique shapes of the vocal tract characterize all vowels and some consonants in the En-
glish language [5]. The fundamental frequency, the reciprocal of the fundamental period,
is called the pitch. An example is given in Figure 2.2, showing a sampled speech segment

and its spectrum with the first four formants from the vowel /a/ as in "at”.

~-10 L i >
Time (msec) Frequency (kHz)

Figure 2.2  Time Plot and Corresponding Formant Spectrum from Vowel ”a” in ”at” [4]
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Sambur [8] performed feature saliency tests on 92 features including formants, band-
widths, pitch, formant contours, glottal-source poles, and nasal pole locations. These
general parameters were further subdivided within the 92 by being from particular words;
for example, one of the best features he cited was the third formant in the vowel u. In his
final list of best features, most of the top twenty were the first four formants and pitch
from different phonemes; none of these five were particularly dominant over the other four
in this list. Besides Sambur, Parsons [5] also recommends using at least three formants for
speaker recognition, which includes SID. And since bandwidths are associated with these
formants, we felt they should be included along with formants and pitch and potential

features for addressing the channel mismatch problem.

2.4/ ANNs for Approzimating Functions

Although multilayer perceptron (MLP) artificial neural networks (ANNs) are often
used for classification of data, they can be used to approximate functions also. Refer
to the appendix for background ANN theory. More specifically, MLP-ANNs with two
layer of weights and nonlinear activation functions can approximate arbitrarily well any
continuous functional mapping from one finite-space to another. This fact is true as long
as the number of hidden layer units is sufficient and the number of target nodes does
not exceed the number of input nodes [1]. There is .a wealth of published papers on this

subject [23], [24], [25], [26], [27], [28], [29], [30], [31].

Instead of training the ANNs to connect certain inputs to particular classes, in our
application we train ANNs to function like an inverse channel filters by having the output
training targets be the values we desire the corresponding training inputs to become. Then
we input the corrupted test features to the ANNs with the purpose of ”cleaning” those

features.

In very general terms, adding additional layers can cause a decrease in typical ANN
error criterion. More specifically, with nonlinear function approximations, multiple lay-
ers with nonlinear activation functions lead to a much higher probability of lowering the
standard error parameter, Sum-Squared-Error (SSE), to an acceptable level [1]. The use

of backpropagation, whereby the error derivatives of the network outputs are propagated
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back to the hidden layers to be used in their error metric, is a technique for adjusting
weights to minimize SSE. While updating the weights based on the errors relating to the
weights can lead to convergence, the use of an adaptive learning rate and momentum
greatly assists finding a global minimum. The adaptive learning rate is a fractional mul-
tiplicative term for adjusting the change in weight updates according to the level of error
change. For example, it is desirable to make larger changes in weight values when the SSE
is decreasing rapidly. Momentum assists in centering on a global minimum by causing the

weight changes to be based on previous weight changes [19].

2.5 Mizture Classification Theory

Statistical classifiers require estimates of class conditional probability density func-
tions (PDFs). Semiparametric methods of classification often prove to be ideal since they
can combine good aspects of both nonp;a'fametric and parametric approaches. Avoiding
the problem of model growth directly with the size of the data set, the model only be-
comes more sophisticated with data expansion. One type of a semiparametric method is
the Gaussian Mixture Model (GMM). GMMs, given the necessary number of components
with corresponding appropriate parameters, can approximate any non-disjoint density to
a desired accuracy [1]. GMMs have been applied with great success to SID tasks, approx-

imating even multimodal PDFs very well [7].

The GMM is simply a linear, weighted combination of M basis functions, here normal

probability density functions:

M
p(z)=>_p(=|)P() (2.1)

j=1

where p(z | 7) is a normal probability density function,

N 1 (z— py)?
P(le)—maj_eXP 3 207 (2.2)

and P(j) is the mixture weight, u; is the mean, and o; is the standard deviation for

mixture component j.
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After the GMM is formed by inputting traihing data, ai ‘error metric, the log=" "

likelihood equation, is used for a set of test observations [1] :
N N M
E=-InL=-) Ilnp(ea) == In{D_plen|HPUH)} (23)
n=1 n=1 j=1

The error is minimized by maximizing the likelihood score, i.e. the Maximum Aposteriori
Probability (MAP). Therefore, in SID the GMM speaker model with the highest likelihood
score given the utterance would be considered the identified speaker. See the Appendix

for more information on classification theory.

2.6 Summary

Based on poor performance of SID under mismatched conditions with MFCCs [13],
[20], [22] and work by Sambur (8], formants, bandwidths, and pitch were chosen as features.
As good features for modeling the vocal tract, these features must be taken from speech
segments declared voiced, since those type of features better model the entire vocal tract
than those from unvoiced speech. ANNs were chosen as a transforming compensation
technique for the effects of mismatch on the features. The mapped features were used in
final testing with Gaussian Mixture Speaker Models, which have been shown [7] to have

good performance characteristics in SID applications.
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III. Approach and Methods

3.1 Introduction

This chapter describes the databases and expands on feature, ANN, and GMM the-

ories by demonstrating their use for within-channel and cross-channel SID applications.

8.2 TIMIT and NTIMIT Databases

We used the 168 test speaker set of the Texas Instruments and Massachusetts In-
stitute of Technology’s TIMIT and NYNEX’s NTIMIT databases. NTIMIT is rerecorded
TIMIT with the use of a carbon-button telephone handset and artificial mouth sent over
various length telephone lines and looped back for recording at a 16 kHz sampling rate [15].
Although originally designed for speech recognition research, TIMIT is a good database for
SID under an almost ideal environment given it specifications: eight KHz bandwidth, min-
imum equipment noise and variability, and depth in phonetic diversity in approximately

three second utterance lengths.

The 168 speakers are divided into eight dialect regional subsets, varying size from 11
to 32 speakers. Ten sentences were recorded from each of the 168 speakers. For diversity,
the ten sentences per speaker are divided into two sentences with sa designations, three
with s7, and five with sz. The two sa are identical for all speakers, while the si and sz
sentences are not. For testing purposes, the last two sz, by using the numerical ordering
from UNIX Is command, were used for testing as the other eight sentences were used
in training. The training set included the two sa to insure some completely common
conditions for all speakers for GMM generation [7]. The two sz were used to simulate more

of a real-world text-independent condition.

3.8 Preprocessing of Features

3.8.1 ESPS Feature Extraction Commands.  Figure 3.1 helps clarify the follow-
ing discussion. The pitch values in each frame and the corresponding probabilities of
voiced speech were obtained with ESPS 5.1’s getf0 command through a C-shell script.
The command getf0 is similar to an algorithm developed by Secrest and Doddington [14].
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Using a correlation function on filtered (one-pole model) linear prediction residuals, poten-
tial pitch values are obtained and then used along with spectral consistency penalties over

many frames and voicing state information to make final determination of pitch terms [16].

The formant and bandwidths are obtained via ESPS 5.1’s formant command in a
C-Shell script. They are selected from potential values given by the solution for the linear
prediction polynomials’ roots. Cost penalties are imposed on these candidates, and the
final terms are a result of a modified Viterbi algorithm for achieving an optimum mapping
regarding consistency over multiple frames of the speech waveform. A preemphasis value of
0.7 was used [4], [6], [16]. With a desire to achieve the multimodal sharpness of the spectra
without distortion, we chose a linear prediction coefficient (LPC) order of twelve [6], [16].
And for smoothing of the frame transitions, a Hamming window was applied to each 20
millisecond frame with a ten millisecond step size. The preemphasis value, the LPC order,
and the step size were all software defaults. The other parameters were common choices [6].
The choice of these values was not of central importance to this thesis, as was the SID

performance when these features are undistorted, corrupted, and transformed.

ESPS 5.1 Matlab code for
MET. wezw Hes L

AV//!//”?":”/ ™ :?'g:ta r;t':' o wier | 3 \s/g?cce':;-‘:;::lz;ng
TNT viterrcss — Yz A 3) HTK format

TIHT 787 WTIHT 757 N7 7758 77807 7750 fasire matriaas

Matlab code for
Training ANNs/spkr
I/Ps: NTIMIT TRN
Matlab code for

mapping Targets: TIMIT TRN l HTK 2.0 GMM Script
individual
NTIMIT TST «— ANN/spkr GMM/spkr

> HTK 2.0 HVite SID SID Accuracy

Figure 3.1 Diagram of Speaker Modeling, Baseline SID, and SID after Compensation

3.3.2 Matlab Feature Preprocessing. After the generation of outputs from the
formant and getf0 commands, the formants, bandwidths, pitch, and probabilities of voiced

speech were input to a data manipulation program written in Mathworks Matlab 4.2c. As

3-2




evident by file headers, the outputs of each of the commands have different starting times
which caused practically a one-frame shift between the two. Also, getf0 might have one and
occasionally two extra frames, disregarding the shift mentioned. Therefore, correspondence
had to be achieved primarily since the ANNs are to be direct feature mappers.Furthermore,
accurate values of pitch (being a measurement of periodicity) and formants for proper
modeling of the vocal tract can only come from voiced segments. Thus, we needed to
eliminate unvoiced frames. We did this by employing the probabilities of voiced speech
to eradicate useless data. The use of 0.5 as a decision threshold for voicing probabilities
caused no complications as the probabilities from getf0 were typically zero or one, with

occasionally a one-one millionth term or a 0.99 value.

Then, since first formant ranges for vowels, voiced fricatives and voiced stops are
typically below 1000 Hz [4], [6] and pitch values in normally read sentences should not
generally exceed 160 Hz for males and 400 Hz for females [5], criteria for unlikely values
can be developed. Extreme outliers, such as first formants at 2000 Hz, triggered a part of
the preprocessing algorithm to eliminate the entire feature vector, since other values might
also be impacted. We chose a threshold of plus or minus two standard deviations, as this
was found to typically eliminate about three percent of the original feature vectors of each
speaker’s feature matrices. The use of probabilities of voiced speech eliminated about 50%

of the typically 250 original feature vectors per utterance.

3.4 HTK Gaussian Mizture Models

GMMs can be implemented with HTK 2.0, since GMMs are single-state Hidden
Markov Models (HMMs). GMMs were created by using feature vectors from the eight
training sentences from each speaker in a C-shell script which included HTK commands
HInit, HRest, and HHEd. HInit provides initial estimates for the means and variances
of the component densities in a GMM. HInit functions by repeatedly segmenting training
data by Viterbi alignment and recalculating the means and variances using a K-Means
clustering algorithm.  HRest uses an EM/Baum-Welch algorithm for re-estimation of
the GMM parameters to best model the feature vectors’ probability density for individual

speakers; this theory is further discussed in the Appendix. We set the variance floor at
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0.01 for comparison to previous research [7], [13]. After initially modeling with one, the
amount of non-defunct mixture components was grown by an option with a mixture editor,
HHEdJ. The mixture with largest weight is then duplicated. Each twin mixture then has
their weight halved and is offset from the original mean by plus or minus two standard

deviations [13], [17].

For SID, a C-Shell script is implemented which uses the HTK 2.0 HVite command.
This command uses Viterbi algorithmic techniques to test trained models with a set of
feature vectors from a speaker. The object is to find the model with the greatest log-

likelihood score given a set of feature vectors from a particular utterance.

3.5 Feature Mapping Artificial Neural Networks

The main problem to address is thé,inonlinea,r nature of the handset, while accounting
for the bandwidth limitations of the telephone networks [3]. This problem was evident
from equipment specification, spectrum study, previous research [3], and some attempts at
solving the channel mismatch problem based on linear models such as Missing Features [11].
As previously discussed, ANNs became a logical choice to address this nonlinear problem.
Since the speaker models were trained on TIMIT, it would be ideal if the channel-distorted
test utterances from NTIMIT actually could be made to appear as if no distortion had
occurred. We used Mathworks Matlab Neural Networks Toolbox (MM-NNT) 2.0b to
construct a training method for function-approximating ANNs. The method inputs all
the particular speaker’s training feature matrices from NTIMIT and sets a corresponding

target output of the TIMIT feature matrices. This is supervised training [1], [9].

The first experiments were done by inputting the parts of the feature matrices with
only formants, and setting the target output as only one feature. Therefore, one ANN per
feature per speaker had to be created; see Figure 3.2. We used this architecture and set of
features due to Sambur’s list of best features [8]. An algorithm for insuring convergence
and a reasonable SSE was included in the ANN-generation program. The resultant trained
ANNs often took longer than originally anticipated since convergence was not automatic
given the initial weights of each training iteration. Reaching an acceptable SSE often

occurred only after several loop iterations. Each loop iteration caused a reinitialization of

3-4




The Training of the Feature Mapping Artificial Neural Networks

Feature matrices

from the first eight Elements of single
NTIMIT TRN features from the
utterances/spkr first eight TIMIT TRN
are the input; utterances/spkr
"known quantity" are the target;
"known quantity”

This entire Artificial Neural Network is ANNl

The number of features used determines the number of artificial neural networks per speaker.

Figure 3.2 The Configuration for Training the Feature Mapping ANNs

ANN weights given by the MM-NNT :nitff.m routine at the beginning. This last step was
needed, since experiments were completed on a smaller scale to obtain the correct number

of hidden node weights and ANN parameters.

After the complete training of each speaker’s ANNs for each feature, the feature vec-
tors from individual test utterances were input to each of the ANNs as shown in Figure 3.3.
The transformed feature outputs from each ANN were then recombined into a transformed
NTIMIT feature matrix. As evident by Chapter IV of this thesis, some features appeared
from sample study to not be transform well to the corresponding TIMIT feature matrix.
Therefore, other feature combinations were also tried in SID, such as using one or more

original NTIMIT features along with other transformed features.

To elaborate further on the neural network architecture, a number of attempts were
made to find the parameters which were optimized in the sense of SSE. When consider-
ing four formants as inputs and one as output, the trials with subsets of speakers were
performed with hidden nodes ranging from three to 25. ANNs with twelve hidden nodes
achieved optimum results, though up to 20 was close. We implemented the idea, partially
based on previous research, that the number of hidden layer nodes increasing with input

layer complexity could be tied to their ratio. In this case, the ratios giving best results had
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The Usage of the Feature Mapping Artificial Neural Networks

Feature matrices
from the last two
NTIMIT TST
utterances/spkr
are the input;
"known quantity”

Elements of single
features from the
mapped NTIMIT
utterances/spkr
are the output;

"unknown quantity"

This entire Artificial Neural Network is ANN;

The outputs are then grouped into matrices to be used in HVite SID.

Figure 3.3 The Configuration for Transforming the Features through the ANNs

ratios of nodes between 3:1 and 5:1. This empirical theory was used with other feature
combinations for validity. With nine inputs of formants, bandwidths and pitch, 45 hidden
nodes, i.e. 5:1 ratio, gave the best results. Decreasing the amount of nodes towards 3:1
ratios caused a rapid degradation in accuracy. Increasing to 72 hidden nodes yielded good,
but lower percentages. We also noted the ANNs with 72 nodes took two to three times as

long to train as those with 45 hidden nodes.

The ANN parameter search was appropriate for the full speaker set though done on
a subset, since the ANNs were trained on individual speakers. We settled on a momentum
rate of 0.9 with a learning rate decrease (LRD) of 0.5, versus the cited rates of 0.95 [19]
and default of 0.7, after a number of subset trials. The LRD is a multiplying fraction

which reduces the momentum term when an error increase is encountered.

The initial parameter search trials also demonstrated the combination of the non-
linear activation function logistic sigmoid for the output layer and hyperbolic tangent for
the hidden layer proved to be the optimum pair. Before processing, the feature elements

were all divided by 10000 to keep them within the range of the activation functions. After




being transformed, they were multiplied by that same constant to achieve useful values for

classification.

3.6 Summary

The 168 test speaker set of TIMIT and NTIMIT were used in this study. Although
originally intended for use in speech recognition research, the databases’ characteristics,
including richness in phonemes and dialects, make it suitable for use in SID. The extrac-
tion of features from these sampled speech databases was done primarily through the use
of ESPS 5.1’s tools formant and getf0. They both use linear prediction techniques for
estimation, then assign cost penalties related to consistency to assist in making final value

determinations.

Recognizing GMMs are single-state HMMs, HTK 2.0 provided the means for gen-
erating GMMs for each speaker in the databases. A C-Shell script with the initializing
(HInit), growing (HHEd), and parameter re-estimating (HRest) of the GMMs was used.

To address the apparent nonlinear nature of the mismatch problem, ANNs were
created to transform corrupted features towards undistorted ones. After small scale trials
that determined the general ANN architecture, it became clear features needed to be fed
into an individual ANN for each mapped feature desired. Various feature combinations
with formants, bandwidths, and pitch were tried with different numbers of hidden nodes
and adjustments of ANN training parameters. Through experimentation, we determined
fairly optimum ANN architectures before total feature mapping and SID experiments were

performed.
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IV. Results
4.1 Introduction

This chapter provides baseline statistics on within-channel and cross-channel condi-
tions. These will be followed with the results of SID with features transformed by ANN
channel compensation techniques. A discussion of the results includes explanations for

certain feature combinations out-performing others.

4.2  Mizture Models with Baseline Statistics

Reynolds [15] showed that the best method for finding the optimum mixture amount
was through empirical methods. Bishop [1] alludes to this parameter search for optimiza-
tion regarding GMMs. Therefore, a search was done to determine the appropriate number
of mixture components for maximum accuracy. Some initial results demonstrated there
was not enough diversity in the data to support the 32 mixtures Reynolds found to be
optimum for his use [15]. So we tested GMMs with maximum mixtures of two to 16 (or

more as necessary) until a peak and accuracy descent was found.

4.8 Train and Test on TIMIT (T/T)

As the results of Sambur [8] indicated, the use of four formants and pitch provided
respectable SID accuracy rates with a peak of 82.7% with GMMs of ten mixtures while
training and testing on TIMIT. In the tables and charts, f represents formant frequency, b
stands for bandwidth, and p represents pitch; the adjacent numbers indicate the particular

formant frequency or bandwidth.

It is reasonable to hypothesize from Sambur’s work the elimination of one of these
good features would lead to a decrease in accuracy. This is demonstrated by the results
when one formant, the fourth, was eliminated as well as when pitch was not included.
Observing the results with ten mixture components in Table 4.1 and Figure 4.1, the results
dropped to 50.9 % and 69.3 % , respectively, with little improvement with different amounts
of mixtures. This demonstrates the value of pitch and, especially, the fourth formant. The

bandwidths were included in this study and found to be valuable, increasing the within-
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Table 4.1  SID Accuracy on T/T and T/N for Several Combinations of Features

Number of | T/T T/N | T/T|{T/N|T/T|T/N|T/T|T/N
Mixtures fblfb2 | fblfb2 | fif2 | fi1f2 | fif2 | fif2 | f1f2 | f1f2
per GMM || fb3fbdp | fb3fbdp | f3f4p | £3f4p | £3f4 | f3f4 f3p | f3p
2 72.6 5.9 59.8 6.0 | 38.0 | 2.1
4 86.0 6.3 804 | 9.2 | 350 ]| 2.7
6 91.1 6.8 80.4 6.0 | 699 | 3.0
8 92.3 5.9 81.3 | 7.1 |69.9 | 3.0 | 52.7 | 12.2
10 92.3 6.3 82.7 77 1693 | 24 | 509 | 113
12 91.1 6.3 79.2 | 71 | 705 | 2.4 | 55.7 | 104
14 90.0 6.5 789 | 7.1 | 717 | 2.4 | 542 | 12.2
16 87.5 5.9 762 | 65 | 7T1.7 | 7.4 | 521 | 11.9
18 70.5
20 68.2
22 66.4
24 64.3

channel SID accuracy to a peak of 92.3 %. Some additional conclusions to be drawn relate
to the usefulness of the features with reasonable values of cross-correlation, i.e. formants
and bandwidths, to be used in an ANN for mapping of testing feature matrices from

NTIMIT.

4.4 Train on TIMIT and Test on NTIMIT (T/N)

There is a significant drop in SID accuracy when measuring SID with channel mis-

match conditions.

Observing Table 4.1 and Figure 4.2, the best results seem to occur with three formants
and pitch; with eight or 14 components, SID accuracy was 12.2%. This seems to verify
the need for a good fourth formant and, conversely, the degradation with a poor fourth
formant. The degradation occurs by both the upper bandwidth limitations of the channel
and the nonlinearites of the microphone [3]. The bandwidths made little difference, but the
pitch estimates, in a relative sense, were valuable as a feature under those test conditions.
We feel the few percentage differences are of no great significance, since SID rates of 10%

are of no practical use.
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Train TIMIT/Test TIMIT with Combinations of Formants,Bandwidths, and Pitch
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Figure 41 T/T with Combinations of Formants, Bandwidths, and Pitch

4.5 Train on TIMIT and Test on Transformed NTIMIT Features (T/ANN)

The results of the ANNs were promising. See Tables 4.2 through 4.5 and Figures 4.3
through 4.6, while recognizing a mapped feature is signified by a tilda on top.Although
valuable as a feature, the pitch from the ANNs both in early small scale attempts and
with the full ANNs did not map well to the desired TIMIT feature elements. The original
NTIMIT pitch was, therefore, usually substituted.The use of all nine available features is
shown in Tables 4.4 and 4.5 and Figures 4.5 and 4.6. The accuracies each increase about
20% with ANNs with 45 hidden nodes and 15% with 72 nodes, regardless of the amount
of mixtures in the models, when uncompensated pitch is substituted for the transformed

pitch.

Just as the importance of the fourth formant with or without its bandwidth was
shown by Sambur, it is also shown by the pre- and post-compensation accuracies. It
seems the ANNs are able to reconstruct the missing fourth formant from the available
formant structure and the cross-correlation of the features. The peak accuracy for all
three transformed formants with uncompensated pitch was 23.5%, while the use of the

fourth formant in the ANNs and as a feature increased this combination’s rate to 31.0%.
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Figure 4.2 T/N with Combinations of Formants, Bandwidths, and Pitch

In fact, this addition raised the SID rates with all mapped combinations, peaking at 34.2%

if all the uncompensated second formants were used instead of the transformed versions.

The incorporation of bandwidth as another feature and ANN input boosted rates
again, peaking at 58.3% with 45 nodes and 54.2% with 72 nodes when uncompensated
pitch was the sole, unmapped feature. Mimh of this data also shows the presence of the
fourth formant in the ANNs greatly assists in the reconstructing of the third and, to a

lesser extent, second formant.

4.6 Summary

The use of all features easily outperformed any feature subset combination when no
channel mismatch is involved. The SID rate of 92.3% with four formants, bandwidths,
and pitch was excellent, confirming the choice of features as reasonable for SID. All rates
plummet to about ten percent or less upon cross-channel conditions. Very promising
results occurred with the use of certain combinations of transformed features. Generally,
the uncompensated pitch provided better data as the ANNs were apparently not able to
transform the pitch well. And the importance of the fourth formant was established in

several ways. They include the better uncompensated, cross-channel performance when
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Table 4.2 SID Accuracy with Combinations of Compensated and NTIMIT Features for
Three Formants and Pitch Using ANNs (45 Hidden Nodes)
Number of (T/ANN) | (T/ANN) | (T/ANN) | (T/ANN)
Mixtures
ver et | /T \ N | FiFSTRp | Fipassp | Fifite | Firefe
2 375 | 1.7
4 488 | 9.8
6 50.0 | 11.9
8 52.7 | 12.2 21.1 17.6 18.2 14.0
10 50.9 | 11.3 23.5 19.0 13.1 14.9
12 55.7 | 10.4 21.4 18.4 14.3 14.3
14 54.2 | 12.2 22.0 18.2 16.7 12.3
16 52.1 | 11.9 22.0 17.6 16.7 14.0
Table 4.3  SID Accuracy with Combinations of Compensated and NTIMIT Features for
Four Formants and Pitch Using ANNs (45 Hidden Nodes)
Number of (T/ANN) | (T/ANN) | (T/ANN) | (T/ANN)
Mixtures
per MM | /T TN FIFSFSFip | Fisass7he | 7iFs574 | Fif2fiTin
8 81.3 | 7.1 29.8 22.0 19.6 33.6
10 82.7 | 7.7 31.0 244 22.6 34.2
12 792 | 7.1 29.2 26.2 22.0 32.7
14 789 | 7.1 27.4 25.6 21.4 32.7
16 76.2 | 6.5 29.2 23.8 20.2 31.0
Table 4.4  SID Accuracy with Combinations of Compensated and NTIMIT Features for
Four Formants, Bandwidths and Pitch Using ANNs (45 H-Nodes)
Number of (T/ANN) (T/ANN) (T/ANN) (T/ANN)
Mixtures
T/T | T/N | s | 59 mmm s | T eo Tt | 7o 7m0 rra7id
per GMM fb1fb2fb3fbdp | FbLFb2fb3fb4p | fblfb2fb3fbdp | fb1fb2fb3fbdp
8 92.3 | 5.9 58.3 38.1 33.3 18.4
10 923 | 6.3 53.9 35.4 32.1 22.9
12 91.1 | 6.3 54.2 35.7 33.6 17.6
14 90.0 | 6.5 50.3 32.1 30.4 274
16 87.5 | 5.9 49.4 324 29.2 17.9




Table 4.5 SID Accuracy with Combinations of Compensated and NTIMIT Features for
Four Formants, Bandwidths and Pitch Using ANNs (72 H-Nodes)

Number of (T/ANN) (T/ANN) (T/ANN) (T/ANN)
Mixtures
T/T | T/N | == | T mmrias | 7 roFiaian | 7o 700 £52 700

per GMM fb1fb2fb3fbdp | fblfb2fb3fbdp Fb1fb2fb3fbdp | fo1fb2fb3fbdp

8 92.3 | 5.9 54.2 36.0 36.0 19.0

10 92.3 | 6.3 53.0 37.5 354 18.4

12 911 | 6.3 49.7 321 31.0 17.6

14 90.0 | 6.5 45.2 31.0 29.2 15.2

16 87.5 | 5.9 47.6 34.2 31.8 17.3

not used, its effects when transformed properly, and its value in reconstructing the third

and, to a lesser extent, the second formant. The best results were when all nine features

were input to each ANN, and all transformed output features were used except pitch; the

distorted version was substituted as closer to TIMIT target. The SID accuracy peaked at

58.3%, up from 5.9% with no compensation for eight mixtures components.
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Train TIMIT/Test ANN NTIMIT with 4 Formants, 4 Bandwidths, and Pitch
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V. Conclusions
5.1 Compensation Technique Development

Through early testing with other compensation methods [11], [21], previous research
[3], and spectrum analysis, it became apparent to us the chief cross-channel SID problem
was the nonlinear distortion imposed by the microphone. We felt a compensation technique
using ANNs should be developed. After many architectural attempts, best results were
found when using all nine features to train individual ANNs for mapping each feature for

each speaker.

5.2 Baseline Testing

With channel conditions kept consistent with training and testing, good SID ac-
curacies of over 92% were obtained by GMMs with formants, bandwidths, and pitch as
features. This accuracy result experimentally confirmed our choice of features and our use
of GMMs as a classification tool. Telephone equipment and network distortions caused
large degradations in the ability to use the previously trained GMMs for SID. When we
used ANNs to compensate for the distortion effects, improvements were substantial with
various feature combinations. For example, the peak accuracy using features transformed
with our technique across all 168 speaker models was 58.3%. This compares favorably to
the 5.9% with no channel mismatch compensation and the 27.4% from previous research

with different features, MFCCs, and another compensation technique.

5.8 SID with Transformed Features

The best results for channel compensation were when structuring the ANNs with nine
inputs and one output, and then taking all of the transformed output feature data except
the pitch. Although good results occurred when using the cleaned pitch, much better
results (typically 20% improvement) were given when substituting the original NTIMIT
pitch values. This improvement was also verified when ﬁsing the other feature combinations

which lacked bandwidth. When comparing various examples of the training inputs and
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outputs, pitch does not seem to transform well to the ideal targets. Theortically, this

probably is due to the lower cross-correlation between the pitch and the other features.

When comparing many of the inverse covariance matrices HTK 2.0 gives for the
GMMs of each speaker, calculations show the autocorrelation of the pitch to typically
be the lowest value of any element. The autocorrelation values often are two orders of
magnitude less than the other autocorrelation values. And the cross-correlation values
with pitch are most often among the average or lower values of the matrices. Consistent
in a general sense with Sambur’s results [8] was the outcome that pitch was a valuable

feature and did improve SID.

The importance of the fourth formant with or without its bandwidth was shown by
Sambur, as is also shown by the pre- and post-compensation accuracies. It seems the ANNs
are able to reconstruct the missing fourth formant from the available formant structure
and the cross-correlation of the features. It also seems the presence of the fourth formant
in the ANNs greatly assists in the reconstructing of the third and, to a lesser extent, the

second formant.

5.4 Final Thoughts

We have demonstrated relative improvements in cross-channel SID accuracy from 6%
to about 60%. Recognizing the best previously-published rates using other compensation
methods was near 27% [13], this technique, theoretically and experimentally, seems to hold

great promise for eventually solving the channel mismatch problem.

5.5 Recommendations for Further Study

The results proved promising for a new avenue for channel mismatch compensation.
Further use of ANN software, with MM-NNT and other types, along with different ar-
chitectural schemes should be employed. Other features should be looked at which have
reasonable cross-correlation which may assist in the transformation through ANNs. A
logical, direct follow-on would be to test the transformed features in a speaker verification

" task. But this mapping technique may also be applicable to other fields of research.




VI. Appendiz
6.1 Artificial Neural Networks Theory

6.1.1 Network Classification Theory.  The simplest classification problem is the
two-class problem with the use of the linear discriminant function, i.e. if y(z) > 0 then
classify = as a member of class one; if less than zero classify as a member of class two. The

general equation is [5] |
y(z) =wlz +wp (6.1)

where w is a d-dimensional weight vector. The threshold or offset, wp, is often referred to
as the bias. Equation 6.1 corresponds to a hyperplane of dimensionality (d—1) . If we
set the offset to zero and set two points, z; and zg, on the hyperplane boundary where

y(z) = 0, equation 6.1 becomes
T —
w' (zg — 1) = 0. (6.2)

Therefore, the weight vector is geometrically normal to any 2 vector contained in the
hyperplane. As mentioned, the bias determines the offset position of the hyperplane.
Hence, a linear discriminant function can be represented by Figure 6.1, where the input

z0 is permanently set to unity. This is often referred to as a single-layer perceptron.

Output Layer Y,

Input Layer X,

Figure 6.1  Simple Artificial Neural Network

6.1.2 Multi-class ANN. An easy extension to multiple classes is performed if

each class, class k, has its own discriminant function. The hyperplane decision boundary
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is
(wg — wj)Tw + (wgo — ’wjo) = 0. (6.3)

The network from Figure 6.1 has been changed for multiple classes, as demonstrated in
Figure 6.2. Each connection has an associated weight with it. The network outputs can

now be expressed by

yr(z) = wfa: + wio (6.4)
or
d
(@) =) wkisi + wio, (6.5)
i=1

if the function associated with output nodes is merely linear with unity slopes. Otherwise,

Output Layer
p Y/ Y,
w,;

Input Layer X,

Figure 6.2  Single-Layer, Multiple Output Network

these activation functions may perform a nonlinear distortion to this sum to obtain the

desired outputs.

6.1.8 Multilayer Perceptron Theory. We now extend these single-layer networks
to multiple-layered networks, where the outputs of the first layer become the inputs of the

second. They are called hidden layer nodes. Refer to Figure 6.3.

They are obtained, as before, by a linear combination of d weighted inputs, along

with a bias term.

d d
aj(z) = Zwﬁ)w, + wg.(l))wo = Z wg)wi (6.6)
i=1 1=0
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Output Layer z,

Figure 6.3 Multilayer Perceptron

where wﬁ) denotes a first layer weight from input node 7 to hidden node j. Combining the
fact a is the input the activation functions operate on and the existence of layers of hidden

weights, the output of the k nodes are

M d
o) = (S0 (Sutd) 1)
§=0 =0

with the numbers in paraentheses relating to the assigned layer affiliation. The concept

can be extended to multiple layers of weights.

6.1.3.1 Nonlinear Activation Functions. —Now consider a function, g(w,z),
called an activation function, which operates on the weighted sum. A popular nonlinear
function is the logistic sigmoid, (1 + €®)~!; another is the hyperbolic tangent. Since the
updating of the weights for convergence is based on the partial derivatives of the error
function, the logistical sigmoid function is useful since its derivative is merely a function
of itself, g'(z) = g(z) x [1 — g(z)]. This leads to easier calculations and weight updates.
Although linear functions are used, the logistic sigmoid and, a sibling, the hyperbolic
tangent, are good for dealing with nonlinearities. This fact is evident by the Exclusive-
OR data separation problem example in [2]. [1] The problem was solved more readily
with a sigmoid-sigmoid or tanh-tanh combination for the activation function of the first
and second layer of weights than with a combination which included one layer of linear

functions.

6.1.4 ANN parameters. Often with classification tools, training must occur, and,

therefore, a measurement for validity must be used. One often used is the Sum-of-Squared
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Errors (SSE), [2].
1 K
E=3 > (d — 21)? (6.8)
k=1

where dj is the desired output and z is the actual output. As adapation of the weight
for optimum performance is desired, an update rule for them must be established with

relation to their impact on the SSE. This rule is [2],

OF
which is equivalent to
OF
N 6.1
AWy =—n W (6.10)

all representing vector notation, where W is the updated set of weights, W_ is the old set
of weights, h is the perceptron layer, and 7 is learning rate [2]. This formula uses gradient
descent, which it seeks out the minimum SSE by use of the partial derivative of the error.
An adaptive learning rate is best; for example, an n which is inversely proportional to the
weight index number. This often reduces oscillations in SSE plot, since smaller corrections
as proceeding towards convergence is desired. Another option is to tie n to the difference

between the current output and actual target value.

In addition to an aeta term, a momentum term may be used to avoid local minimums
in error, and thereby find the total minimum error. Momentum, which is proportional to
the change in the weight values resulting from the last update, often speeds up convergence

[2]. With momentum, the weight update equation becomes

AW, = + pu AW, (6.11)

W

6.1.5 Backpropagation. Error backprogation is the process where the partial
derivatives of the ANN output errors with regards to the second layer of weights is passed

back to evaluate the partial derivatives of the outputs of each hidden layer node with
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regards to the first layer of weights. It is due to backpropagation that updating weights

become more efficient [1]. Again realizing the output of the activation function is
zj = g(a;) = 9(D_ wjz) (6.12)
t

the drive is to minimize the error in relation to the weights; the weight is connecting nodes
i to j, and ¥; refers to errors of the hidden units relating to inputs. The errors of the

network output units are the same, merely substituting & for j as layer indicator.

As the SSE metric demonstrates, the error of an ANN is a differentiable function
of output variables. For backpropagation, the error relationship of network weights to be

minimized is found by combining equations.

L = 9,z (6.13)

From the chain rule, the input error relationship for the output and hidden nodes is,

respectively,
SE™ SE™
By = =4 .
F= g (ax) i (6.14)
and
__6E™ ™ Say,
6a] zk: bay, 6a]' (6.15)

Note in the latter equation, the sum encompasses all the outputs k which is connected to
j. Note also this equation demonstrates variations in a; , the weighted sum of network
inputs impact the aj variables, the weighted sum of the upper layer inputs. Combining
equations, the hidden unit input errors can be calculated by the backward propagating the

input errors from the output nodes.
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¥ = g'(aj) Zwk;‘ﬂk (6.16)
k

6.2 Gaussian Mizture Model Classification Theory

6.2.1 Semiparametric Classification Theory.  The probability density function of

mixture models is formed from a linear combination of basis functions.
M
pz)=> _p(=|§)P() (6.17)
j=1

To demonstrate the use of Gaussian Mixture Models (GMMs) and the optimization algo-

rithm, the connect with posterior probabilities is investigated via Bayes’ theorem 1]

: p(z | )P)
P(j|z)=—>""""= 6.18
(7 | =) (@) (6.18)
The value of P(j | z) represents the probability that component j was responsible for

creating the data point x. The log-likelihood equation, a type of error function is given

as [1]
N N M
E=-InL=-) Inp(es) ==Y n{) plen|5)PQ)} (6.19)
n=1 =1 j=1

The error is minimized by maximizing the likelihood score, i.e. the Maximum Aposteriori

Probability (MAP).

6.2.2 Ezpectation-Mazimization Theory for Solving the Mizture Model Parameters.
Given the adjustable parameters of this formula are the mean, variance and prior proba-
bility, the desire is to minimize this error function in relation to these parameters. Partially

differentiating E with respect to each parameter, we get

N

6F _ . (K5 = Tn)
E,U'—j —;P(J | Zn)- ! z (6.20)

7
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N .
§E . d |z —p |
or _ VR | e Bt/ B L 6.21
by = 2 P e — ) (6:21)
and
N
6F ) .
5 =2 Plilza) = P(), (6:22)
7 n=1
where
P(j) = =’ ) (6.23)
k=1 €zp (k)

Setting the derivatives equal to zero, and solving yield the highly nonlinear trinity of

equations
N .
n= P J $n)w
pi = 2 G | Zn)on, (6.24)
Yon=1 P | 2n)
P o — il
and

Z P(j | zn). (6.26)

n—l

which can only be solved in a practical sense by an iterative process. Baum-Welch [5]
devised a way to better optimize through an iterative process by more carefully calculating

updates to the iterations. The error function is manipulated into an updating process,

pnew(mn
E'new = old = - Zl Potd(fbn) (627)

n

The resulting updatable parameter equations are

3 ’ .
S Pod(j | @a)

Hjnew =




— 1277:1 Pota(j | @a)llza — P'j,new"2 (6.29)

(O’ R e'w)2 - . 1y
" d Sony Pota(j | Tn)
and
1 N
P(™Y = N Z Poa(J I Tp). (630)
n=1

6-8




% fbf02htkgfbpu.m

% Edmund Fitzgerald 22SEP97, some.from lines from Arb’s files %£bf02htkfpuo2.m
% Takes default feature vectors (unvoiced) of the .fb files, combines 4-formants
% and 4-bandwidths into single feature vectors of 8 features and strips

Y% unvoiced records from them, via finding ESPS-imposed defaults for unvoiced;

% adds pitch also

clear all

close all

filenames=[];

indexunvs=[];

filecounter=i;

[fid1,messagel=fopen([’/home/fugglesl/efitzger/toy/timit/test/dr5/total.gf0’], ’r’);

A

listing of get_f0 files

difflengs=[];

done=0;

counter=0;

while “done

nextline=fgetl(£id1);

if ~isstr(nextline) % at end of path list
done=1;
else ' not at end of path list
fborfO=fliplr(abs(nextline));
if fborf0(1)==48 % .fb or .f0 file
flag=0;
flagnum=abs(flag) ;

else
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flag=1;
flagnum=abs(flag) ;

end

% now Behead and copy back w/ new extension; but work on tmpfeatgfbpudr5.fbx

cd /home/fugglesi/efitzger/toy/timit/test/dr5;

eval([’!cp ’,nextline,’ /home/fugglesi/efitzger/toy/timit/test/dr5/tmpfeatgfbpudrs.£fb2’
eval([’!bhd tmpfeatgfbpudr5.fb2 tmpfeatgfbpudr5.fbx’]); ¥“data to tmpfeatgfbpudr5.fbx

cd /home/fugglesi/efitzger/toy/timit/test/drb
if flag==
flag

% pull in beheaded file to put into new matrix
[£id2,message]l=fopen(’tmpfeatgfbpudr5.fbx’,’r’,’b’); %;
A=fread(fid2,inf,’float64’);

fclose(fid2);

counter=counter+i;

Arows=size(A,1);

Brows=fix(Arows/8);

trash=Arows- (Brows*8) ;

A=A(1:Arows-trash,1);

B=reshape(A,Brows,8); % now the matrix is 8 (featgfbpu) by whatever
%FMBW=B’;% the mat2fea needs x by 8 matrices
C=reshape(B,8,Brows) ;%

FMBWI=C’;

% Now change order for easy missing features: f£2f3bw2bw3fibwlfibwé
FMBWX=[];

FMBWX=FMBWI’; % 8 by x

FMBW=[FMBWX (2, :) ; FMBWX (6, :) ;FMBWX (3, :) ; FMBWX (7, :) ;FMBWX (1, :) ;FMBWX(5, :) ;FMBWX(4,:);...

...FMBWX(8,:)];
Y F2B2F3B3F1B1F4B4
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%Y%Y%Not till FO incorporated FMBW=FMBW’; get rid of it use nnz to reshape again for...
. size
stringfile=abs(nextline);
for index=1:length(stringfile)
if stringfile(index)==47 J s115
if stringfile(index+1)==115 ) /47 .46
if (length(stringfile)==65) & (stringfile(index+4)==46) ;% .
filename(1:3)=stringfile(index+1:index+3); % sal obtained, what about sa3456
elseif (length(stringfile)==66) & stringfile(index+5)==46 ;J .
filename(i:4)=stringfile(index+1:index+4); % sal obtained, what about sa3456
elseif (length(stringfile)==67) & stringfile(index+6)==46 ;} .
filename(1:5)=stringfile(index+1:index+5); % sal obtained, what about sa3456
elseif (length(stringfile)==68) stringfile(index+7)==46 ;J .
filename(1:6)=stringfile(index+1:index+6); % sal obtained, what about sa3456
end %elseif
end % 115
end %47
end % for index varname=[filename flagnum];
filenameB=setstr(filename); %;
save /home/fugglesi/efitzger/drbfeatgfbpu FMBW filenameB
end % flag==1

if flag==

load /home/fugglesi/efitzger/dr5featgfbpu Ytakes in the 4fms and 4bws

adjust=0; % now obtain pitch and prob of voicing

eval([’!fea2mat -f FO ’,nextline,’ /home/fugglesi/efitzger/toy/timit/test/...
...tmpfeatgfbpudr51.mat’]);

eval([’!fea2mat -f prob_voice ’,nextline,’ /home/fugglesi/efitzger/toy/timit/tést/..
...tmpfeatgfbpudr52.mat’]);

load /home/fugglesi/efitzger/toy/timit/test/tmpfeatgfbpudr5l
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load /home/fugglesi/efitzger/toy/timit/test/tmpfeatgfbpudrs2
strayzero=0;
for nonzeroloopi=1:size(FMBW,1)
for nonzeroloop2=1:size(FMBW,2)
if FMBW(nonzeroloopl,nonzeroloop2)==
FMBW (nonzeroloopl,nonzeroloop2)=0.01 ‘eliminates stray zeros so no nnz ...
...confusion w/Pr<0.5
strayzero=strayzero+l;
end %if
end % for nonzeroloop2

end % for nonzeroloopl

diffleng=length(F0)-max (size (FMBW))
FO=FO0’;
if length(F0)>max(size (FMBW))
FO=FO0(1,1:max(size(FMBW))); %incase of a one frame discrepancy;v&unv regions ok
end Y%since , 10ms overlap of 20ms frames
if length(F0)<max(size (FMBW))
FMBW=FMBW(:,1:length(F0)); %FMBW already made into matrix from first time through;
end Y%Now incorporating pitch into matrix
FMBWO=[] ; lengFO=length(F0) ;
[max(size (FMBW)) length(FO0) 1];
counterzero=0; tolerout=0;
FMBWO=[FMBW(1,:);FMBW(2,:);FMBW(3,:);FMBW(4,:);FO;FMBW(S,:);FMBW(G,:);FMBW(?,:);...
...FMBW(8,:)];
FMBW=FMBWO’; % Now ready to output
toler1=mean(FMBw(:,1))+2*std(FMBH(:,1));toler1n=mean(FMBW(:,1))-2*std(FMBW(:,1));
toler2=mean(FMBW(:,2))+2*std(FMBW(:,2));toler2n=mean(FMBW(:,2))-2*std(FMBW(:,2));
toler3=mean (FMBW(:,3))+2*std (FMBW(:,3)) ;toler3n=mean (FMBW(:,3))-2*std (FMBW(:,3));
toler4=mean (FMBW(:,4))+2*std (FMBW(:,4)) ;toler4n=mean(FMBW(:,4))-2*std (FMBW(:,4));
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-

toler5=mean(FMBW(:,5))+2*std(FMBW(:,5));toler5n=mean(FMBW(:,5))—2*std(FMBW(:,5));
for indexrec=1:length(F0)

YNOT length(prob_voice) since FO might have been corrected by one frame=FMBW leng
if prob_voice(indexrec)<0.5 %4%%ANY of the following will zero out a feature vector
counterzero=counterzero+l;

FMBW(indexrec, :)=zeros(1,9);
elseif FMBW(indexrec,1)>tolerl | FMBW(indexrec,2)>toler2
tolerout=tolerout+l;
FMBW(indexrec, :)=zeros(1,9);
elseif FMBW(indexrec,2)==1000 & FMBW(indexrec,4)==1000
tolerout=tolerout+i;
FMBW (indexrec, :)=zeros(1,9);
elseif FMBW(indexrec,3)>toler3 | FMBW(indexrec,4)>toler4 | FMBW(indexrec,5)>toler5
tolerout=tolerout+i;
FMBW(indexrec, : )=zeros(1,9);
elseif FMBW(indexrec,1)<tolerin | FMBW(indexrec,2)<toler2n |
...FMBW(indexrec,3)<toler3n
tolerout=tolerout+1;
FMBW(indexrec, :)=zeros(1,9);
elseif FMBW(indexrec,4)<toler4n | FMBW(indexrec,5)<tolerbn
tolerout=tolerout+i;
FMBW(indexrec, :)=zeros(1,9);
end %if
end % for indexrec
%sizeofNZideal=9* (length(FO)-counterzero);
FMBWNZ=nonzeros (FMBW) ; %check for stray zero

[max (size (FMBWNZ))/9 length(FO)-counterzero-tolerout counterzero 2] % check sizes

if flag™=2

FMBWP=reshape (FMBWNZ, length(FO)-counterzero-tolerout,9); %New matrix
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FMBWP=FMBWP’ ;
% since .gf0 vs .fb or .f0 (2 char)
stringfile=abs(nextline);
stringfile=stringfile(1:(length(stringfile)-1));
setstr(stringfile)
for index=1:length(stringfile)
if stringfile(index)==47 1} s115
if stringfile(index+1)==115 % /47 .46
if (length(stringfile)==65) & (stringfile(index+4)==46) ;} .
filename(1:3)=stringfile(index+1:index+3); % sal obtained, what about sa3456
elseif (length(stringfile)==66) & stringfile(index+5)==46 ;J .
filename(1:4)=stringfile(index+1:index+4); % sal obtained, what about sa3456
elseif (length(stringfile)==67) & stringfile(index+6)==46 ;} .
filename(1l:5)=stringfile(index+1:index+5); % sal obtained, what about sa3456
elseif (length(stringfile)==68) stringfile(index+7)==46 ;J .
filename(1:6)=stringfile(index+1:index+6); % sal obtained, what about sa3456
end Yelseif
%if (length(stringfile)==69) & (stringfile(index+7)==46) % .
%other order did not work
end % 115
end %47
end % for index
varname=[filename flagnum];
filenameA=setstr(filename); %;
absfile=[39,abs(nextline(1:58)),abs(’/featgfbpu/’),abs(filenameld),46,104,116,50,39];

filename=setstr(absfile)
filenameA Y% check

filenameB

if filenameA==filenameB
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Y% don’t write out until FO (pitch) taken in

% Keep all variable in a dialect region,then cat those FO,FB same spkr
eval(([’!mkdir ’,nextline(1:58),’/featgfbpu’l));

eval(([’!chmod -fR g+w,g+x ’,nextline(1:58),’/featgfbpu’l));

cd /home/haﬁkeye19/97d/efitzger/thesissum/SID/makefbwp/fbe2htk
numfeat=min (size (FMBWP));

FMBWMAT=FMBWP;

FMBWT=FMBWP;

FMBWQ=reshape(FMBWT,max(size(FMBWT))*min(size(FMBWT)),1);
FMBWP=reshape (FMBWQ ,max (size (FMBWP)) ,min(size (FMBWP))) ;

% Developed empirical method ("Plaid-Shirt Method") to put into HTK 2.0 format
eval([’w_error=whtkparm(FMBWP,’ ,filename,’);’])
% eval([’w_error=alwrthtkwav(FMBWP,’,filename,’,numfeat);’])
if w_error==-1
W_error
flag=2
end
if flag™=2
[max(size (FMBWI)) max(size(F0)) max(size(FMBWP))]
FMBWT=FMBWP’ ;
eval(([’save ’,nextline(1:58),’/featgfbpu/’,filenameB,’ FMBWMAT adjust strayzero ...
...tolerout;’])); %,counter is simple distinguishment
end %if flag™=2
end %if filename==filenameB
elseif flag==
end % if flag™=2
end % if FO

difflengs=[difflengs;diffleng];
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...FMBW FO data

end %isstr

end Ywhile loop
difflengs’

status=fclose(fidl);

% nnetpx921linovi3e2.m 1nov97

% Captain Edmund Fitzgerald

% This is for nine input, one output mapping ANN generation using training data
% and mapping of the corresponding test features. Would be difficult to insure
Y% correct ANN with corresponding test utterances if separated to two programs.
h

close all

clear all

flops(0)

tic

hidcounter=0;ptrnmatch =0;ptrnmiss =0;ptstmatch =0;ptstmiss =0;
flopnum=[];T=[];P=[];totrand=75;

convergetry=0;fmiterx=0
[£id1,messagel=fopen([’/home/fugglesl/efitzger/toy/ntimit/test/drl/totalfbptnt.tst’], r’)

Y list of test feature file paths
P
done=0;

tstcounter=1;

while “done
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spkrtemp=fgetl(fid1)

if "isstr(spkrtemp) % at end of path list
done=1;

else 7’ not at end of path list

%strip off speaker name for variable attachment
ntimortim=(abs(spkrtemp));
%for iter=1:length(ntimortim)
if ntimortim(29)==110 % ’n’ ,116=t
flag=0; %;
flagnum=abs(flag) ;
spkr=spkrtemp(45:49) %if ntimit
else
flag=1;%;
flagnum=abs(flag) ;
spkr=spkrtemp(44:48) if timit
end
if flag==

% Will bring in 2 tst sentences for conversion with the trained NNet

if tstcounter==

spkrtempl=spkrtemp; % hold first test sentence
% Now generate nnet..only do once/spkr/feature
% The training data is combined, not the test data,i.e. test individual utters
eval([’load /home/fugglesi/efitzger/toy/ntimit/test/dr1/’,spkr,’/FMBWPNtrn’]);

% loading NTIMIT training data, i.e. formants, bandwidths, and pitch (trn)

FMBWPNs=FMBWPNs’;
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Y FMBWPNs=[FMBWPNs (1, :) ; FMBWPNs (2, :) ;FMBWPNs (4, :)];
P=(1/10000) . *FMBWPNs; % Need to divide data by constant to be input to...

...nonlinear activation functions.

eval([’load /home/fuggles1/efitzger/toy/timit/test/dri/’,spkr,’/FMBWPTtrn’]);
% loading corresponding TIMIT data

FMBWPTs=FMBWPTs’;

F1ts=FMBWPTs (1, :);F2ts=FMBWPTs (2, :) ;F3ts=FMBWPTs(3,:);

F4ts=FMBWPTs (4, :) ; F5ts=FMBWPTs (5, :) ; F6ts=FMBWPTs(6,:);
F7ts=FMBWPTs(7,:) ;F8ts=FMBWPTs (8, :) ;F9ts=FMBWPTs(9,:);

for fmiter=1:9 %need an end later

eval ([’Fts=F’,int2str(fmiter),’ts;’1);
T=(1/10000) .*Fts;

Fi=’tansig’;F2=’logsig’; ‘%activation functions
hidvctr=[45]; % Used 45 hidden layer nodes

maxcount=max(size (hidvctr));

% ANN parameters

for hidcounter=1:maxcount %use same randn dat in e xter fcn 10x,rtrn
trnmsclsfy=0;tstmsclsfy=0;trnmatch=0;tstmatch=0;

Ynote learnbpm.m is contained in trainbpx.m/tbpx3.m

dsplyepochs=50; maxepochs=300; sse=0.01; 1r=0.01;

1rinc=1.05; lrdec=0.5; mo=0.90 ;maxerr=1.04;

% defaults: dsplyepochs=25; maxepochs=100; sse=0.02; learnrate=0.01;
%lrinc=1.05; lrdec=0.7; momentum=0.9;a)0.7,0.96; b)0;5,0.96 maxerr=1.04;.

tp=[dsp1yepochs,maxepochs,sse,lr,lrinc,lrdec,mo,maxerr];

hidden=hidvctr(hidcounter);
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[Wi,b1,W2,b2]=initff (P,hidden,F1,min(size(T)),F2);
[Wi,b1,W2,b2,te,tr]=trainbpx(Wi,b1,F1,W2,b2,F2,P,T,tp);

% ANN trained using training data

format bank

[’dsplyepochs ’ ’maxepochs ’ ’sse ’ ’lr ’ ’lrinc ’ ’1rdec ’ ’mo ’ ’maxerr ’ ’hidden...

...-nodes’]

%iparameters=[dsplyepochs, maxepochs, sse, 1r, 1rinc, lrdec, mo, maxerr, Fi, F2]

[tp, hidvctr(hidcounter)]

filenamex=’pxnovi3_drizde2’

eval([’save /home/hawkeyel9/97d/efitzger/thesissum/SID/makefbwp/makegmm/gmmfpu/nnet. ..
.../netwtsnov13/pxnov13_drizde2’,num2str(fmiter),spkr,numzstr(hidden),...
...num2str(maxepochs),’ Wi bl W2 b2 te tr tp flopnum’]);

%%Y%move downend % of hidcounter loop

filenamex=’pxnovl3_drizde2’

YEven number times of bringing in files, skipped over making nnet..go to (.ht2) o/p...

spkrtemp % log file check
eval([’load ’,spkrtemp]);’combine tim and ntim separately, but insure same length
FMBWPT=FMBWPT./10000; Y% TIMIT test formants bandwidths and pitch ;divide by const
FMBWPN=FMBWPN./10000; YNTIMIT test formants bandwidths and pitch from NTIMIT...div
p=FMBWPN;
t=simuff (p,W1,b1,F1,W2,b2,F2);% now map the test data using the trained ANN

eval([’Nop’,int2str(fmiter),’=t;’]);

meanNop1=10000.*mean (Nop1)
if meanNopi<100 % This is decision area; if true then test data transformed badly so
% ...try the ANN generation again (using training data)

% The following loop insures a convergence to reasonable SSE
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fmiterx=fmiter;%%%%

convergetry=convergetry+1

while fmiterx==fmiter Y%go through nnet generation until meanNop>100
AN YN A NS YA

T=(1/10000) .*Fts;

Fl=’tansig’;F2=’logsig’;

hidvctra=[45];

%use same randn data in exter ANN generation fcn 10x,return

Ynote learnbpm.m is contained in trainbpx.m/tbpx3.m

dsplyepochs=50; maxepochs=300; sse=0.01; 1r=0.01;

1rinc=1.05; lrdec=0.5; mo=0.90 ;maxerr=1.04;

% defaults: dsplyepochs=25; maxepochs=100; sse=0.02; learnrate=0.01;
Y1lrinc=1.05; lrdec=0.7; momentum=0.9;2)0.7,0.96; b)0.5,0.96 maxerr=1.04;

tpa=[dsplyepochs,maxepochs,sse,1r,1rinc,1rdec,mo,maxerr];

hiddena=hidvctra;

[W1,b1,W2,b2]=initff(P,hiddena,F1,min(size(T)),F2);
[W1,b1,W2,b2,te,tr]=trainbpx(Wi,b1,F1,W2,b2,F2,P,T,tpa);

format bank

[’dsplyepochs ’ ’maxepochs ’ ’sse ’ ’lr ’ ’lrinc ’ ’lrdec ’ ’mo ’ ’maxerr ? ’hidden...
...-nodes’] ‘%check progress in log file

Yparameters=[dsplyepochs, maxepochs, sse, lr, lrinc, lrdec, mo, maxerr, Fi, F2]

[tpa, hidvctra] Y%check in log file

filenamex=’pxnovl3_drlzde2’

eval([’save /home/hawkeyel9/97d/efitzger/thesissum/SID/makefbwp/makegmm/gmmfpu. ..

.../nnet/netwtsnovi3/pxnovi3_drizde2’ ,num2str(fmiter),spkr,num2str(hidden),...
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...num2str(maxepochs),’ Wi bl W2 b2 te tr tp flopnum’]);
%WYmove downend % of hidcounter loop
filenamex=’pxnovi3_drlzde2’
YEven number times of bringing in files, skipped over making hnet..go to .ht2 o/p...
%still have if flag==
spkrtemp
eval([’load ’,spkrtemp]);’%combine tim and ntim separately, but insure same leng
FMBWPT=FMBWPT./10000;
FMBWPN=FMBWPN./10000;
p=FMBWPN;
t=simuff(p,W1,b1,F1,W2,b2,F2);% we just want #s'conf matrix
eval([’Nop’,int2str(fmiter),’=t;’1);
eval([’meanNopx=10000.*mean(Nop’,int2str(fmiter),’);’]);
if meanNopx<100 %junk data
fmiterx=fmiter; %instead of 1
else
fmiterx=fmiter+1 Jiinstead of 0
end %if four lines up
end Y%while fmiterx=1

LTl hol AR I I DLl ARBADIDRAANANAAR%  End of convergence-insurance loop
else

fmiterx=fmiter+1

convergetry=0
end %if 3lines up/mean<100

% Now can format and output

end Y%fmiter

end % of hidcounter loop
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end % if tstcont=

1

% Combinations of transformed and original NTIMIT features

fm1=[Nop1;Nop2;Nop3;Nop4;FMBWPN(5,:);Nop6;Nop7;Nop8;Nop9];

fm2=[Nop1;Nop2;Nop3;Nop4;Nop5;Nop6;Nop7;Nop8;Nop93;;%how get pitch in here...

...unchanged pitched

fm3=[FMBWPN(1,:);

FMBWPN (2, :) ; Nop3;Nop4 ; Nop5 ; Nop6 ; Nop7 ; Nop8;Nop9] ;

fm4=[Nop1;Nop2; FMBWPN(3, :) ; FMBWPN(4, : ) ; Nop5;Nop6; Nop7 ; Nop8; Nop9] ;

fm5=[Nop1;Nop2;Nop3;Nop4;Nop5;Nop6;Nop7;FMBWPN(8,:);FMBWPN(Q,:)];

fm6=[Nopi;Nop2;Nop3;Nop4;Nop5;FMBWPN(6,:);FMBWPN(T,:);Nop8;Nop9];

fm7=[FMBWPN(1, :);

FMBWPN(2,:);Nop3;Nop4;FMBWPN(5,:);NopS;Nop?;Nop8;Nop9];

fm8=[Nop1;Nop2;FMBWPN(3,:);FMBWPN(4,:);FMBWPN(S,:);Nop6;Nop7;Nop8;Nop9];

Whihhikeyboard

FMBWPNtoT1=10000.
FMBWPNtoT2=10000.
FMBWPNtoT3=10000.
FMBWPNtoT4=10000.
FMBWPNtoT5=10000.
FMBWPNtoT6=10000.
FMBWPNtoT7=10000.
FMBWPNtoT8=10000.

YWant NTIMIT tst
.../GMMs

*fml;
*fm2;
*fm3;
*fm4;
*fmb;
*fm6;
*fm7;
*fm8;

feature vectors to appear to be TIMIT tst fvectors for classification...

%Need to put into .ht2 format files

stringfile=abs(spkrtemp);

stringfile=stringfile(1:(length(stringfile)));

setstr(stringfile)

for index=1:length(stringfile)

if stringfile(index)==47 7/ s115
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if stringfile(index+1)==115 % /47 .46
if (length(stringfile)==82) & (stringfile(index+9)==46) sho.
filename=stringfile(index+6:index+8); % sal obtained, what about sa3456
elseif (length(stringfile)==83) & stringfile(index+10)==46 ;% .
filename=stringfile(index+6:index+9); /% sal obtained, what about sa3456
elseif (length(stringfile)==84) & stringfile(index+11)==46 iho.
filename=stringfile(index+6:index+10); % sal obtained, what about sa3456
elseif (length(stringfile)==85) & stringfile(index+12)==46 ;i .
filename=stringfile(index+6:index+11); % sal obtained, what about sa3456
end %elseif
%if (length(stringfile)==69) & (stringfile(index+7)==46) % .
%other order did not work
end % 115
end %47
end % for index varname=[filename flagnum];
basic=setstr(filename)
absfile1=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpii/’),abs(filename),46,104,116,50,39];
absfi1e2=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpi2/’),abs(filename),46,104,116,50,39];
absfi1e3=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpis/’),abs(filename),46,104,116,50,39];
absfi1e4=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpi4/’),abs(filename),46,104,116,50,39];
absfile5=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpi5/’),abs(filename),46,104,116,50,39];
absfi1e6=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpiG/’),abs(filename),46,104,116,50,39];
absfi1e7=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpi?/’),abs(filename),46,104,116,50,39];
absfi1e8=[39,abs(spkrtemp(1:59)),abs(’/fesgfbpiB/’),abs(filename),46,104,116,50,39];
Yabsfile9=[39,abs (spkrtemp(1:59)),abs(’/fesgfbpi9/’) ,abs(filename),46,104,116,50,39];
filenamei=setstr(absfilel) ; % A TICK (tick ’) MARK IS ABS 39
filename2=setstr (absfile2);
filename3=setstr(absfile3);
filenamed4=setstr(absfile4d);

filenameS=setstr(absfile5) ; % A TICK (tick ’) MARK IS ABS 39
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filename6=setstr(absfile6);
filename7=setstr(absfile?);
filename8=setstr(absfile8);
%filename9=setstr(absfile9);
%eval([’!mkdir ’,filename1(1:71)]);
%eval([’'!'chmod -fR g+w,g+x ’,filenamel(1:71)1);
eval (([?!mkdir ’,filenamel(2:60),’/fesgfbpil/’]1));
eval(([’!chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpil/’1));
eval (([?'mkdir ’,filename2(2:60),’/fesgfbpi2/’1));
eval(([’'chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpi2/’]));
eval(([’!mkdir ’,filename3(2:60),’/fesgfbpi3/’]1));
eval(([’!chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpid/’]));
eval (([’ 'mkdir ’,filename3(2:60),’/fesgfbpi4/’]));
eval(([’!chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpi4/’]));
eval (([’ !mkdir ’,filename3(2:60),’/fesgfbpib/’]));
eval(([’'chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpib/’1));
eval (([’'mkdir ’,filenamel(2:60),’/fesgfbpi6/’]));
eval(([’'chmod -fR g+w,g+x ’,filename1(2:60),’/fesgfbpi6/’1));
eval(([’!'mkdir ’,filename2(2:60),’/fesgfbpi?/’]));
eval(([’!chmod -fR g+w,g+x > filename1(2:60),’/fesgfbpi7/’]));
eval(([’'mkdir ’,filename3(2:60),’/fesgfbpi8/’]1));
eval(([’!chmod -fR g+w,g+x ’,filenamel(2:60),’/fesgfbpi8/’]1));

filename;

for saveiter=1:8 % 5SNOV

if saveiter==
FMBWP=FMBWPNtoT1;
FMBWT=FMBWPNtoT1;
filename=filenamel;
elseif saveiter==

FMBWP=FMBWPNtoT2;
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FMBWT=FMBWPNtoT2;
filename=filename2;
elseif saveiter==
FMBWP=FMBWPNtoT3;
FMBWT=FMBWPNtoT3;
filename=filename3;
elseif saveiter==
FMBWP=FMBWPNtoT4;
FMBWT=FMBWPNtoT4;
filename=filename4;
elseif saveiter==
FMBWP=FMBWPNtoT5;
FMBWT=FMBWPNtoT5;
filename=filename5;
elseif saveiter==
FMBWP=FMBWPNtoT6;
FMBWT=FMBWPNtoT6;
filename=filename6;
elseif saveiter==
FMBWP=FMBWPNtoT7;
FMBWT=FMBWPNtoT7;
filename=filename7;
elseif saveiter==
FMBWP=FMBWPNtoT8;
FMBWT=FMBWPNtoT8;
filename=filename8;

end %if 48lines up

FMBWQ=reshape(FMBWT,max(size(FMBWT))*min(size(FMBWT)),1);
FMBWP=reshape (FMBWQ ,max (size (FMBWP)) ,min(size (FMBWP)));
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cd /home/hawkeyel19/97d/efitzger/thesissum/SID/makefbwp/fbf02htk

eval([’w_error=whtkparm(FMBWP,’,filename,’);’])

flopnum=£flops;

cd /home/hawkeye19/97d/efitzger/thesissum/SID/makefbwp/makegmm/gmmfpu/nnet/netwtsnole

eval([’save pxnov13_drizdwts2’,spkr,num2str(maxepochs),FS,num2str(hidden),’ )

Y, dontoverwrite

tstcounter=tstcounter+i;

if tstcounter==

tstcounter=1;

end
end
end
end
end
end
end

end

%2lines above...reset
%tstcounter

%extra in here for

%if isstr

Ywhile

flops

toc

fclose(fidl)
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